Powered by Deep Web Technologies
Note: This page contains sample records for the topic "land area wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Wind and Temperature Structure over a Land-Water-Land Area  

Science Conference Proceedings (OSTI)

Wind and temperature data obtained on 5 June 1984 during the Øresund experiment are analyzed. The day was characterized by moderately strong winds blowing from a heated land area over a colder water surface and then over a second heated land ...

J. C. Doran; Sven-Erik Gryning

1987-08-01T23:59:59.000Z

2

An assessment of the available windy land area and wind energy potential in the contiguous United States  

DOE Green Energy (OSTI)

Estimates of land areas with various levels of wind energy resource and resultant wind energy potential have been developed for each state in the contiguous United States. The estimates are based on published wind resource data and account for the exclusion of some windy lands as a result of environmental and land-use considerations. Despite these exclusions, the amount of wind resource estimated over the contiguous United States is surprisingly large and has the potential to supply a substantial fraction of the nation's energy needs, even with the use of today's wind turbine technology. Although this study shows that, after exclusions, only about 0.6% of the land area in the contiguous United States is characterized by high wind resource (comparable to that found in windy areas of California where wind energy is being cost-effectively developed), the wind electric potential that could be extracted with today's technology from these areas across the United States is equivalent to about 20% of the current US electric consumption. Future advances in wind turbine technology will further enhance the potential of wind energy. As advances in turbine technology allow areas of moderate wind resource to be developed, more than a tenfold increase in the wind energy potential is possible. These areas, which cover large sections of the Great Plains and are widely distributed throughout many other sections of the country, have the potential of producing more than three times the nation's current electric consumption. 9 refs., 12 figs., 13 tabs.

Elliott, D.L.; Wendell, L.L.; Gower, G.L.

1991-08-01T23:59:59.000Z

3

An area-dependent wind function for estimating open water evaporation using land-based meteorological data  

Science Conference Proceedings (OSTI)

We propose a generally applicable formula for estimating evaporation rate from open water bodies which utilizes readily available land-based meteorological data. We follow the well-known aerodynamic approach in which evaporation rate is modelled as the ... Keywords: Evaporation, Lake, Open water, Pond, Uncertainty, Water body, Wind function, Wind speed

D. L. McJannet; I. T. Webster; F. J. Cook

2012-05-01T23:59:59.000Z

4

Wind Development on Tribal Lands  

SciTech Connect

Background: The Rosebud Sioux Tribe (RST) is located in south central South Dakota near the Nebraska border. The nearest community of size is Valentine, Nebraska. The RST is a recipient of several Department of Energy grants, written by Distributed Generation Systems, Inc. (Disgen), for the purposes of assessing the feasibility of its wind resource and subsequently to fund the development of the project. Disgen, as the contracting entity to the RST for this project, has completed all the pre-construction activities, with the exception of the power purchase agreement and interconnection agreement, to commence financing and construction of the project. The focus of this financing is to maximize the economic benefits to the RST while achieving commercially reasonable rates of return and fees for the other parties involved. Each of the development activities required and its status is discussed below. Land Resource: The Owl Feather War Bonnet 30 MW Wind Project is located on RST Tribal Trust Land of approximately 680 acres adjacent to the community of St. Francis, South Dakota. The RST Tribal Council has voted on several occasions for the development of this land for wind energy purposes, as has the District of St. Francis. Actual footprint of wind farm will be approx. 50 acres. Wind Resource Assessment: The wind data has been collected from the site since May 1, 2001 and continues to be collected and analyzed. The latest projections indicate a net capacity factor of 42% at a hub height of 80 meters. The data has been collected utilizing an NRG 9300 Data logger System with instrumentation installed at 30, 40 and 65 meters on an existing KINI radio tower. The long-term annual average wind speed at 65-meters above ground level is 18.2 mph (8.1 mps) and 18.7 mph (8.4 mps) at 80-meters agl. The wind resource is excellent and supports project financing.

Ken Haukaas; Dale Osborn; Belvin Pete

2008-01-18T23:59:59.000Z

5

NREL: Wind Research - Landing a Job in the Wind Industry: Wind...  

NLE Websites -- All DOE Office Websites (Extended Search)

Landing a Job in the Wind Industry: Wind Powering America Lessons Learned January 28, 2013 Wind Powering America interviewed Marilla Lamb, a 2012 graduate of Northern Arizona...

6

Stakeholder Engagement and Outreach: Wind Power on State Lands  

Wind Powering America (EERE)

Wind Power on State Lands Wind Power on State Lands Wind development can be an attractive revenue option for states that have viable wind resources on their trust lands. Wind can provide much higher revenue per acre than many other sources of typical revenue. An added benefit is that harvesting the wind does not deplete any finite resources. Several state land offices are already pursuing wind development on state trust lands. The first such wind project, in west Texas, is a joint project by the Texas General Land Office and the Lower Colorado River Authority, a public utility in central Texas. Wind Powering America Assistance to State Land Offices Analysis of State Land Potential NREL can assist state land offices in analyzing their trust lands for wind development potential. By overlaying wind resource maps with land use,

7

The Prediction of Nearshore Wind-induced Surface Currents from Wind Velocities Measured at Nearby Land Stations  

Science Conference Proceedings (OSTI)

This paper aims to find a fast and efficient way to predict the wind-induced components of surface currents in a nearshore coastal area of several hundred square kilometers from wind velocities measured at nearby land stations. Ocean Surface ...

Betty Ng

1993-08-01T23:59:59.000Z

8

Wind Opportunities for Idaho State Lands  

Wind Powering America (EERE)

and Local Initiatives Group and Local Initiatives Group National Renewable Energy Laboratory Terri Walters Carol Tombari 303-275-3005 303-275-3821 terri_walters@nrel.gov carol_tombari@nrel.gov Wind Opportunities For Idaho State Lands March 3, 2004 Wind Overview Wind Overview * Technology * Resources * Markets and Drivers * Economic Development Opportunities * Wind Powering America U.S. Electricity Fuel Mix U.S. Electricity Fuel Mix Coal 51.8% Nuclear 19.8% Hydro 7.2% Petroleum 2.9% Gas 16.1% Other/Renewables 2.2% Sizes and Applications Sizes and Applications Small (≤10 kW) * Homes * Farms * Remote Applications (e.g. water pumping, telecom sites, icemaking) Intermediate (10-100 kW) * Village Power * Hybrid Systems * Distributed Power Large (660 kW - 2+MW) * Central Station Wind Farms * Distributed Power Growth of Wind Energy Capacity Growth of Wind Energy Capacity

9

Land-Based Wind Potential Changes in the Southeastern United States (Presentation)  

Science Conference Proceedings (OSTI)

Recent advancements in utility-scale wind turbine technology and pricing have vastly increased the potential land area where turbines can be deployed in the United States. This presentation quantifies the new developable land potential (e.g., capacity curves), visually identifies new areas for possible development (e.g., new wind resource maps), and begins to address deployment barriers to wind in new areas for modern and future turbine technology.

Roberts, J. O.

2013-09-01T23:59:59.000Z

10

Land-use implications of wind-energy-conversion systems  

DOE Green Energy (OSTI)

An estimated 20 utilities in the United States are now investigating potential wind machine sites in their areas. Identifying sites for wind machine clusters (wind farms) involves more than just finding a location with a suitable wind resource. Consideration must also be given to the proximity of sites to existing transmission lines, environmental impacts, aesthetics, and legal concerns as well as the availability of and alternative uses for the land. These issues have made it increasingly difficult for utilities to bring conventional power plants on-line quickly. Utilities are now required, however, to give careful consideration to specific legal, social, and environmental questions raised by the siting of wind energy conversion systems (WECS).

Noun, R.J.

1981-02-01T23:59:59.000Z

11

The Probability Distribution of Land Surface Wind Speeds  

Science Conference Proceedings (OSTI)

The probability density function (pdf) of land surface wind speeds is characterized using a global network of observations. Daytime surface wind speeds are shown to be broadly consistent with the Weibull distribution, while nighttime surface wind ...

Adam H. Monahan; Yanping He; Norman McFarlane; Aiguo Dai

2011-08-01T23:59:59.000Z

12

US areal wind resource estimates considering environmental and land-use exclusions  

DOE Green Energy (OSTI)

In support of the US Department of Energy's National Energy Strategy initiative, estimates of the land area with various levels of wind energy resource have been developed for each state in the contiguous United States. The estimates are based on published wind resource data and account for the exclusion of some land owing to environmental of land-use considerations. These exclusions assume that 100% of the environmentally sensitive land and various percentages of land designated as urban, agricultural or range would be unavailable for wind energy development. Despite these exclusions, the amount of wind resource thus estimated is surprisingly large. For example, estimates of available wind resource and resultant wind electric potential from advanced turbine technology show that a group of 12 states in the midsection of the country could produce more than three times the nation's 1987 electric energy consumption. 1 ref., 7 figs., 1 tab.

Elliott, D.L.; Wendell, L.L.; Gower, G.L.

1990-09-01T23:59:59.000Z

13

US areal wind resource estimates considering environmental and land-use exclusions  

SciTech Connect

In support of the US Department of Energy's National Energy Strategy initiative, estimates of the land area with various levels of wind energy resource have been developed for each state in the contiguous United States. The estimates are based on published wind resource data and account for the exclusion of some land owing to environmental of land-use considerations. These exclusions assume that 100% of the environmentally sensitive land and various percentages of land designated as urban, agricultural or range would be unavailable for wind energy development. Despite these exclusions, the amount of wind resource thus estimated is surprisingly large. For example, estimates of available wind resource and resultant wind electric potential from advanced turbine technology show that a group of 12 states in the midsection of the country could produce more than three times the nation's 1987 electric energy consumption. 1 ref., 7 figs., 1 tab.

Elliott, D.L.; Wendell, L.L.; Gower, G.L.

1990-09-01T23:59:59.000Z

14

Wind Generation on Winnebago Tribal Lands  

DOE Green Energy (OSTI)

The Winnebago Wind Energy Study evaluated facility-scale, community-scale and commercial-scale wind development on Winnebago Tribal lands in northeastern Nebraska. The Winnebago Tribe of Nebraska has been pursuing wind development in various forms for nearly ten years. Wind monitoring utilizing loaned met towers from NREL took place during two different periods. From April 2001 to April 2002, a 20-meter met tower monitored wind data at the WinnaVegas Casino on the far eastern edge of the Winnebago reservation in Iowa. In late 2006, a 50-meter tower was installed, and subsequently monitored wind data at the WinnaVegas site from late 2006 through late 2008. Significant challenges with the NREL wind monitoring equipment limited the availability of valid data, but based on the available data, average wind speeds between 13.6 – 14.3 miles were indicated, reflecting a 2+/3- wind class. Based on the anticipated cost of energy produced by a WinnaVegas wind turbine, and the utility policies and rates in place at this time, a WinnaVegas wind project did not appear to make economic sense. However, if substantial grant funding were available for energy equipment at the casino site, and if either Woodbury REC backup rates were lower, or NIPCO was willing to pay more for wind power, a WinnaVegas wind project could be feasible. With funding remaining in the DOE-funded project budget,a number of other possible wind project locations on the Winnebago reservation were considered. in early 2009, a NPPD-owned met tower was installed at a site identified in the study pursuant to a verbal agreement with NPPD which provided for power from any ultimately developed project on the Western Winnebago site to be sold to NPPD. Results from the first seven months of wind monitoring at the Western Winnebago site were as expected at just over 7 meters per second at 50-meter tower height, reflecting Class 4 wind speeds, adequate for commercial development. If wind data collected in the remaining months of the twelve-month collection period is consistent with that collected in the first seven months, the Western Winnebago site may present an interesting opportunity for Winnebago. Given the distance to nearby substations, and high cost of interconnection at higher voltage transmission lines, Winnebago would likely need to be part of a larger project in order to reduce power costs to more attractive levels. Another alternative would be to pursue grant funding for a portion of development or equipment costs, which would also help reduce the cost of power produced. The NREL tower from the WinnaVegas site was taken down in late 2008, re-instrumented and installation attempted on the Thunderway site south of the Winnebago community. Based on projected wind speeds, current equipment costs, and the project’s proximity to substations for possible interconnection, a Thunderway community-scale wind project could also be feasible.

Multiple

2009-09-30T23:59:59.000Z

15

Land Use for Wind, Solar, and Geothermal Electricity Generation Facilities in the United States  

Science Conference Proceedings (OSTI)

This report provides data and analysis of the land use associated with utility-scale wind, photovoltaic (PV), concentrating solar power (CSP), and geothermal projects. The analysts evaluated 458 existing or proposed projects, representing (as of 2012 third quarter) 51% of installed wind capacity, 80% of PV and CSP capacity, and all known geothermal power plants in the United States. The report identifies two major land use classes: 1) direct area (land permanently or temporarily disturbed due to ...

2012-12-31T23:59:59.000Z

16

Land Use Requirements of Modern Wind Power Plants in the United States  

DOE Green Energy (OSTI)

This report provides data and analysis of the land use associated with modern, large wind power plants (defined as greater than 20 megawatts (MW) and constructed after 2000). The analysis discusses standard land-use metrics as established in the life-cycle assessment literature, and then discusses their applicability to wind power plants. The report identifies two major 'classes' of wind plant land use: 1) direct impact (i.e., disturbed land due to physical infrastructure development), and 2) total area (i.e., land associated with the complete wind plant project). The analysis also provides data for each of these classes, derived from project applications, environmental impact statements, and other sources. It attempts to identify relationships among land use, wind plant configuration, and geography. The analysts evaluated 172 existing or proposed projects, which represents more than 26 GW of capacity. In addition to providing land-use data and summary statistics, they identify several limitations to the existing wind project area data sets, and suggest additional analysis that could aid in evaluating actual land use and impacts associated with deployment of wind energy.

Denholm, P.; Hand, M.; Jackson, M.; Ong, S.

2009-08-01T23:59:59.000Z

17

Stakeholder Engagement and Outreach: Wind Power on Public Lands  

Wind Powering America (EERE)

Resources Public Power Regional Activities State Activities State Lands Siting Wind Power on Public Lands Through its programs at the National Renewable Energy Laboratory (NREL) and partners, Wind Powering America is assisting with the evaluation of wind energy development on public lands. The cover of the publication. Federal Wind Energy Assistance through NREL The National Renewable Energy Laboratory assists with wind resource assessment and development activities initiated by federal agencies to facilitate distributed renewable energy projects at federal agency sites. This brief outlines the process for requesting National Renewable Energy Laboratory assistance with federal wind energy projects. Army National Guard NREL provided the Army National Guard at Fort Carson, Colorado, with a 50-m

18

Trimont Area Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Trimont Area Wind Farm Trimont Area Wind Farm Jump to: navigation, search Name Trimont Area Wind Farm Facility Trimont Area Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner PPM Energy Inc Developer PPM Energy Inc Energy Purchaser Great River Energy Location Southwest MN MN Coordinates 43.779594°, -94.852874° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.779594,"lon":-94.852874,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

19

Wind Projects on Native American Lands | Open Energy Information  

Open Energy Info (EERE)

Projects on Native American Lands Projects on Native American Lands Jump to: navigation, search The United States is home to more than 700 nations, tribes, bands, villages, regional corporations, and communities of indigenous peoples, from Alaska to Hawaii and the Pacific and Caribbean Islands. Native American tribes on reservation lands in the lower 48 states comprise the largest and most diverse of these indigenous peoples. Consideration of wind energy opportunities and issues for Native Americans must recognize this diversity, including cultures, histories, beliefs, relationships to surrounding communities, control of and access to resources, governmental and social organization, land tenure and jurisdiction, and energy infrastructure. Contents 1 Native American Wind Opportunities 1.1 Tremendous Wind Resources

20

111th Congressional Districts and Land Area | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Land Area Law DataTools Law You are here Data.gov Communities Law Data 111th Congressional Districts and Land Area Dataset Summary Description This dataset contains a...

Note: This page contains sample records for the topic "land area wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Landed Costs of Imported Crude by Area  

U.S. Energy Information Administration (EIA) Indexed Site

Area Area (Dollars per Barrel) Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Average Landed Cost 95.72 97.41 96.90 101.19 103.27 102.19 1973-2013 Persian Gulf 102.31 101.35 101.26 103.15 104.94 104.24 1996-2013 Total OPEC 101.76 101.62 101.21 103.96 105.34 105.33 1973-2013 Non OPEC 90.79 93.50 93.49 98.66 101.65 100.05 1973-2013 Selected Countries Canada 83.02 86.83 88.26 94.16 98.81 96.09 1973-2013 Colombia 101.42 100.70 99.47 102.47 106.04 105.49 1996-2013 Angola 105.56 106.32 106.73 110.43 111.75 115.03 1996-2013 Mexico 100.63 100.07 97.56 101.87 101.52 101.12 1975-2013

22

Stakeholder Engagement and Outreach: Utility-Scale Land-Based 80-Meter Wind  

Wind Powering America (EERE)

Maps & Data Maps & Data Printable Version Bookmark and Share Utility-Scale Land-Based Maps Wind Resource Potential Offshore Maps Community-Scale Maps Residential-Scale Maps Anemometer Loan Programs & Data Utility-Scale Land-Based 80-Meter Wind Maps The U.S. Department of Energy provides an 80-meter (m) height, high-resolution wind resource map for the United States with links to state wind maps. States, utilities, and wind energy developers use utility-scale wind resource maps to locate and quantify the wind resource, identifying potentially windy sites within a fairly large region and determining a potential site's economic and technical viability. A wind resource map of the United States. Washington wind map and resources. Oregon wind map and resources. California wind map and resources. Idaho wind map and resources. Nevada wind map and resources. Arizona wind map and resources. Utah wind map and resources. Montana wind map and resources. Wyoming wind map and resources. North Dakota wind map and resources. South Dakota wind map and resources. Nebraska wind map and resources. Colorado wind map and resources. New Mexico wind map and resources. Kansas wind map and resources. Oklahoma wind map and resources. Texas wind map and resources. Minnesota wind map and resources. Iowa wind map and resources. Missouri wind map and resources. Arkansas wind map and resources. Lousiana wind map and resources. Wisconsin wind map and resources. Michigan wind map and resources. Michigan wind map and resources. Illinois wind map and resources. Indiana wind map and resources. Ohio wind map and resources. Kentucky wind map and resources. Tennessee wind map and resources. Mississippi wind map and resources. Alabama wind map and resources. Georgia wind map and resources. Florida wind map and resources. South Carolina wind map and resources. North Carolina wind map and resources. West Virginia wind map and resources. Virginia wind map and resources. Maryland wind map and resources. Pennsylvania wind map and resources. Delaware wind map and resources. New Jersey wind map and resources. New York wind map and resources. Maine wind map and resources. Vermont wind map and resources. New Hampshire wind map and resources. Massachusetts wind map and resources. Rhode Island wind map and resources. Connecticut wind map and resources. Alaska wind map and resources. Hawaii wind map and resources.

23

Land and Renewable Resources [EVS Program Area  

NLE Websites -- All DOE Office Websites (Extended Search)

Land and Renewable Resources EVS's environmental scientists conduct environmental impact statements to help the nation create a framework for developing renewable energy...

24

Wind-hydrogen energy systems for remote area power supply.  

E-Print Network (OSTI)

??Wind-hydrogen systems for remote area power supply are an early niche application of sustainable hydrogen energy. Optimal direct coupling between a wind turbine and an… (more)

Janon, A

2009-01-01T23:59:59.000Z

25

Assessment of Offshore Wind Energy Leasing Areas for the BOEM...  

NLE Websites -- All DOE Office Websites (Extended Search)

Assessment of Offshore Wind Energy Leasing Areas for the BOEM New Jersey Wind Energy Area W. Musial, D. Elliott, J. Fields, Z. Parker, G. Scott, and C. Draxl National Renewable...

26

Assessment of Offshore Wind Energy Leasing Areas for the BOEM...  

NLE Websites -- All DOE Office Websites (Extended Search)

Assessment of Offshore Wind Energy Leasing Areas for the BOEM Maryland Wind Energy Area W. Musial, D. Elliott, J. Fields, Z. Parker, G. Scott, and C. Draxl Produced under direction...

27

Analysis of Offshore Wind Energy Leasing Areas for the Rhode Island/Massachusetts Wind Energy Area  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis of Offshore Wind Analysis of Offshore Wind Energy Leasing Areas for the Rhode Island/Massachusetts Wind Energy Area W. Musial, D. Elliott, J. Fields, Z. Parker, and G. Scott Produced under direction of the Bureau of Ocean Energy Management (BOEM) by the National Renewable Energy Laboratory (NREL) under Interagency Agreement M13PG00002 and Task No WFS3.1000. Technical Report NREL/TP-5000-58091 April 2013 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Contract No. DE-AC36-08GO28308 National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 303-275-3000 * www.nrel.gov Analysis of Offshore Wind

28

Aquifer Protection Area Land Use Regulations (Connecticut)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations describe allowable activities within aquifer protection areas, the procedure by which such areas are delineated, and relevant permit requirements. The regulations also describe...

29

Land-Cover Dynamics in an Urban Area of Ghana  

Science Conference Proceedings (OSTI)

The objectives of this study were to quantify land-cover changes. A short-term projection of land-cover distribution in a 2400-ha (1 ha = 10 000 m2 ) area of northern Ghana was generated. Landsat Thematic Mapper images acquired in 1984, 1992, and ...

Ademola K. Braimoh; Paul L. G. Vlek

2004-01-01T23:59:59.000Z

30

Assessment of Offshore Wind Energy Leasing Areas for the BOEM Maryland Wind Energy Area  

DOE Green Energy (OSTI)

The National Renewable Energy Laboratory (NREL), under an interagency agreement with the Bureau of Ocean Energy Management (BOEM), is providing technical assistance to identify and delineate leasing areas for offshore wind energy development within the Atlantic Coast Wind Energy Areas (WEAs) established by BOEM. This report focuses on NREL's evaluation of the delineation proposed by the Maryland Energy Administration (MEA) for the Maryland (MD) WEA and two alternative delineations. The objectives of the NREL evaluation were to assess MEA's proposed delineation of the MD WEA, perform independent analysis, and recommend how the MD WEA should be delineated.

Musial, W.; Elliott, D.; Fields, J.; Parker, Z.; Scott, G.; Draxl, C.

2013-06-01T23:59:59.000Z

31

Assessment of Offshore Wind Energy Leasing Areas for the BOEM Maryland Wind Energy Area  

SciTech Connect

The National Renewable Energy Laboratory (NREL), under an interagency agreement with the Bureau of Ocean Energy Management (BOEM), is providing technical assistance to identify and delineate leasing areas for offshore wind energy development within the Atlantic Coast Wind Energy Areas (WEAs) established by BOEM. This report focuses on NREL's evaluation of the delineation proposed by the Maryland Energy Administration (MEA) for the Maryland (MD) WEA and two alternative delineations. The objectives of the NREL evaluation were to assess MEA's proposed delineation of the MD WEA, perform independent analysis, and recommend how the MD WEA should be delineated.

Musial, W.; Elliott, D.; Fields, J.; Parker, Z.; Scott, G.; Draxl, C.

2013-06-01T23:59:59.000Z

32

Assessment of Offshore Wind Energy Leasing Areas for the BOEM New Jersey Wind Energy Area  

DOE Green Energy (OSTI)

The National Renewable Energy Laboratory (NREL), under an interagency agreement with the U.S. Department of the Interior's Bureau of Ocean Energy Management (BOEM), is providing technical assistance to identify and delineate leasing areas for offshore wind energy development within the Atlantic Coast Wind Energy Areas (WEAs) established by BOEM. This report focuses on NREL's development and evaluation of the delineations for the New Jersey (NJ) WEA. The overarching objective of this study is to develop a logical process by which the New Jersey WEA can be subdivided into non-overlapping leasing areas for BOEM's use in developing an auction process in a renewable energy lease sale. NREL identified a selection of leasing areas and proposed delineation boundaries within the established NJ WEA. The primary output of the interagency agreement is this report, which documents the methodology, including key variables and assumptions, by which the leasing areas were identified and delineated.

Musial, W.; Elliott, D.; Fields, J.; Parker, Z.; Scott, G.; Draxl, C.

2013-10-01T23:59:59.000Z

33

On Sudbury-Area Wind Speeds—A Tale of Forest Regeneration  

Science Conference Proceedings (OSTI)

A 34% reduction in 10-m wind speeds at Sudbury Airport in Ontario, Canada, over the period 1975–95 appears to be a result of significant changes in the surface roughness of the surrounding area that are due to land restoration and reforestation ...

Andrew J. Tanentzap; Peter A. Taylor; Norman D. Yan; James R. Salmon

2007-10-01T23:59:59.000Z

34

Preliminary Assessment SHALLOW LAND DISPOSAL AREA, PARKS  

E-Print Network (OSTI)

mine haulage-ways. Room and pillar construction allows approximately one-third of the coal to remain be forecasted (ARCO, 1995). Trench 10, in the lower trench area, is excavated into coal mine spoils, where the Upper Freeport Coal seam was once strip-mined. The base of trench 10 rests on a clay and shale layer

US Army Corps of Engineers

35

Landed Costs of Imported Crude by Area  

Gasoline and Diesel Fuel Update (EIA)

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History Average Landed Cost 67.97 93.33 60.23 76.50 102.92 101.00 1973-2012 Persian Gulf 69.83 93.59 62.15 78.60 108.01 107.74 1973-2012 Total OPEC 71.14 95.49 61.90 78.28 107.84 107.56 1973-2012 Non OPEC 63.96 90.59 58.58 74.68 98.64 95.05 1973-2012 Selected Countries Canada 60.38 90.00 57.60 72.80 89.92 84.24 1973-2012 Colombia 70.91 93.43 58.50 74.25 102.57 107.07 1973-2012 Angola 71.27 98.18 61.32 80.61 114.05 114.95 1973-2012 Mexico 62.31 85.97 57.35 72.86 101.21 102.45 1973-2012 Nigeria 78.01 104.83 68.01 83.14 116.43 116.88 1973-2012 Saudi Arabia 70.78 94.75 62.14 79.29 108.83 108.15 1973-2012 United Kingdom 72.47 96.95 63.87 80.29 118.45 W 1973-2012 Venezuela

36

Magnetotellurics At Salt Wells Area (Bureau of Land Management, 2009) |  

Open Energy Info (EERE)

Salt Wells Area (Bureau of Land Management, 2009) Salt Wells Area (Bureau of Land Management, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Salt Wells Area (Bureau of Land Management, 2009) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Magnetotellurics Activity Date 2008 - 2008 Usefulness not indicated DOE-funding Unknown Exploration Basis Vulcan increased exploration efforts in the summer and fall of 2008, during which time the company drilled two temperature gradient holes (86-15 O on Pad 1 and 17-16 O on Pad 3); conducted seismic, gravity and magnetotelluric surveys; and drilled deep exploration wells at Pads 6 and 8 and binary wells at Pads 1, 2, 4, and 7. Notes Data from these wells is proprietary, and so were unavailable for inclusion

37

Wide Area Wind Field Monitoring Status & Results  

DOE Green Energy (OSTI)

Volume-scanning elastic has been investigated as a means to derive 3D dynamic wind fields for characterization and monitoring of wind energy sites. An eye-safe volume-scanning lidar system was adapted for volume imaging of aerosol concentrations out to a range of 300m. Reformatting of the lidar data as dynamic volume images was successfully demonstrated. A practical method for deriving 3D wind fields from dynamic volume imagery was identified and demonstrated. However, the natural phenomenology was found to provide insufficient aerosol features for reliable wind sensing. The results of this study may be applicable to wind field measurement using injected aerosol tracers.

Alan Marchant; Jed Simmons

2011-09-30T23:59:59.000Z

38

Analysis of Offshore Wind Energy Leasing Areas for the Rhode Island/Massachusetts Wind Energy Area  

SciTech Connect

The National Renewable Energy Laboratory (NREL), under an interagency agreement with the Bureau of Ocean Energy Management (BOEM), is providing technical assistance to BOEM on the identification and delineation of offshore leasing areas for offshore wind energy development within the Atlantic Coast Wind Energy Areas (WEAs) established by BOEM in 2012. This report focuses on NREL's evaluation of BOEM's Rhode Island/Massachusetts (RIMA) WEA leasing areas. The objective of the NREL evaluation was to assess the proposed delineation of the two leasing areas and determine if the division is reasonable and technically sound. Additionally, the evaluation aimed to identify any deficiencies in the delineation. As part of the review, NREL performed the following tasks: 1. Performed a limited review of relevant literature and RIMA call nominations. 2. Executed a quantitative analysis and comparison of the two proposed leasing areas 3. Conducted interviews with University of Rhode Island (URI) staff involved with the URI Special Area Management Plan (SAMP) 4. Prepared this draft report summarizing the key findings.

Musial, W.; Elliott, D.; Fields, J.; Parker, Z.; Scott, G.

2013-04-01T23:59:59.000Z

39

Analysis of Offshore Wind Energy Leasing Areas for the Rhode Island/Massachusetts Wind Energy Area  

DOE Green Energy (OSTI)

The National Renewable Energy Laboratory (NREL), under an interagency agreement with the Bureau of Ocean Energy Management (BOEM), is providing technical assistance to BOEM on the identification and delineation of offshore leasing areas for offshore wind energy development within the Atlantic Coast Wind Energy Areas (WEAs) established by BOEM in 2012. This report focuses on NREL's evaluation of BOEM's Rhode Island/Massachusetts (RIMA) WEA leasing areas. The objective of the NREL evaluation was to assess the proposed delineation of the two leasing areas and determine if the division is reasonable and technically sound. Additionally, the evaluation aimed to identify any deficiencies in the delineation. As part of the review, NREL performed the following tasks: 1. Performed a limited review of relevant literature and RIMA call nominations. 2. Executed a quantitative analysis and comparison of the two proposed leasing areas 3. Conducted interviews with University of Rhode Island (URI) staff involved with the URI Special Area Management Plan (SAMP) 4. Prepared this draft report summarizing the key findings.

Musial, W.; Elliott, D.; Fields, J.; Parker, Z.; Scott, G.

2013-04-01T23:59:59.000Z

40

Production of Wind or Solar Energy on School and Public Lands (Nebraska) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Production of Wind or Solar Energy on School and Public Lands Production of Wind or Solar Energy on School and Public Lands (Nebraska) Production of Wind or Solar Energy on School and Public Lands (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Solar Buying & Making Electricity Wind Program Info State Nebraska Program Type Siting and Permitting Provider Board of Educational Lands and Funds These regulations govern the implementation and development of wind and

Note: This page contains sample records for the topic "land area wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Wind flow modeling for wind energy analysis of the Nellis Dunes area in Nevada.  

E-Print Network (OSTI)

??A wind energy analysis of the Nellis Dunes area in Nevada was conducted. A DEM file which contains the elevation data was used to generate… (more)

Rangegowda, Upendra

2010-01-01T23:59:59.000Z

42

Wind Power on Native American Lands: Process and Progress (Poster)  

DOE Green Energy (OSTI)

The United States is home to more than 700 American Indian tribes and Native Alaska villages and corporations located on 96 million acres. Many of these tribes and villages have excellent wind resources that could be commercially developed to meet their electricity needs or for electricity export. The Wind Powering America program engages Native Americans in wind energy development. This poster describes the process and progress of Wind Powering America's involvement with Native American wind energy projects.

Jimenez, A.; Flowers, L.; Gough, R.; Taylor, R.

2005-05-01T23:59:59.000Z

43

Session: What can we learn from developed wind resource areas  

DOE Green Energy (OSTI)

This session at the Wind Energy and Birds/Bats workshop was composed of two parts intended to examine what existing science tells us about wind turbine impacts at existing wind project sites. Part one dealt with the Altamont Wind Resource area, one of the older wind projects in the US, with a paper presented by Carl Thelander titled ''Bird Fatalities in the Altamont Pass Wind Resource Area: A Case Study, Part 1''. Questions addressed by the presenter included: how is avian habitat affected at Altamont and do birds avoid turbine sites; are birds being attracted to turbine strings; what factors contribute to direct impacts on birds by wind turbines at Altamont; how do use, behavior, avoidance and other factors affect risk to avian species, and particularly impacts those species listed as threatened, endangered, or of conservation concern, and other state listed species. The second part dealt with direct impacts to birds at new generation wind plants outside of California, examining such is sues as mortality, avoidance, direct habitat impacts from terrestrial wind projects, species and numbers killed per turbine rates/MW generated, impacts to listed threatened and endangered species, to USFWS Birds of Conservation Concern, and to state listed species. This session focused on newer wind project sites with a paper titled ''Bird Fatality and Risk at New Generation Wind Projects'' by Wally Erickson. Each paper was followed by a discussion/question and answer period.

Thelander, Carl; Erickson, Wally

2004-09-01T23:59:59.000Z

44

Wind Monitoring Report for Fort Wainwright's Donnelly Training Area  

DOE Green Energy (OSTI)

Using the wind data collected at a location in Fort Wainwright’s Donnelly Training Area (DTA) near the Cold Regions Test Center (CRTC) test track, Pacific Northwest National Laboratory (PNNL) estimated the gross and net energy productions that proposed turbine models would have produced exposed to the wind resource measured at the meteorological tower (met tower) location during the year of measurement. Calculations are based on the proposed turbine models’ standard atmospheric conditions power curves, the annual average wind speeds, wind shear estimates, and standard industry assumptions.

Orrell, Alice C.; Dixon, Douglas R.

2011-01-18T23:59:59.000Z

45

Final Report, Wind Power Resource Assessment on the Warm Springs Reservation Tribal Lands, Report No. DOE/GO/12103  

DOE Green Energy (OSTI)

This report concludes a five-year assessment of wind energy potential on the Confederated Tribes of Warm Springs Reservation of Oregon lands.

Jim Manion, Warm Springs Power & Water Enterprises; David McClain, McClain & Associates; HDR Engineering; Dr. Stel Walker, Oregon State University

2007-09-10T23:59:59.000Z

46

FEASIBILITY OF WIND TO SERVE UPPER SKAGIT'S BOW HILL TRIBAL LANDS AND FEASIBILITY UPDATE FOR RESIDENTIAL RENEWABLE ENERGY.  

Science Conference Proceedings (OSTI)

A two year wind resource assessment was conducted to determine the feasibility of developing a community scale wind generation system for the Upper Skagit Indian Tribe?s Bow Hill land base, and the project researched residential wind resource technologies to determine the feasibility of contributing renewable wind resource to the mix of energy options for our single and multi-family residential units.

RICH, LAUREN

2013-09-30T23:59:59.000Z

47

Wind Profiles in Tropical Cyclone Stratiform Rainbands over Land  

Science Conference Proceedings (OSTI)

Observations of 14 stratiform periods in outer tropical cyclone rainbands are used to evaluate wind structure using a velocity–azimuth display (VAD) technique applied to KAMX (Miami) Weather Surveillance Radar-1988 Doppler (WSR-88D) data. These 14 ...

Shaunna L. Donaher; Bruce A. Albrecht; Ming Fang; William Brown

2013-11-01T23:59:59.000Z

48

Landed Costs of Imported Crude by Area - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Landed Costs of Imported Crude by Area (Dollars per Barrel) Period: Download Series History: Definitions, Sources & Notes: Area: Apr-13 May-13 Jun-13 Jul-13 Aug ...

49

Wind Power on Native American Lands: Opportunities, Challenges, and Status (Poster)  

DOE Green Energy (OSTI)

The United States is home to more than 700 American Indian tribes and Native Alaska villages and corporations located on 96 million acres. Many of these tribes and villages have excellent wind resources that could be commercially developed to meet their electricity needs or for electricity export. This conference poster for Windpower 2007 describes the opportunities, challenges, and status of wind energy projects on Native American lands in the United States.

Jimenez, A.; Johnson, P. B.; Gough, R.; Robichaud, R.; Flowers, L.; Taylor, R.

2007-06-01T23:59:59.000Z

50

Avian use of Norris Hill Wind Resource Area, Montana  

DOE Green Energy (OSTI)

This document presents results of a study of avian use and mortality in and near a proposed wind resource area in southwestern Montana. Data collected in autumn 1995 through summer 1996 represented preconstruction condition; it was compiled, analyzed, and presented in a format such that comparison with post-construction data would be possible. The primary emphasis of the study was recording avian migration in and near the wind resource area using state-of-the-art marine surveillance radar. Avian use and mortality were investigated during the breeding season by employing traditional avian sampling methods, radiotelemetry, radar, and direct visual observation. 61 figs., 34 tabs.

Harmata, A.; Podruzny, K.; Zelenak, J. [Montana State Univ., Bozeman, MT (United States). Biology Dept.

1998-07-01T23:59:59.000Z

51

Property:PotentialOffshoreWindArea | Open Energy Information  

Open Energy Info (EERE)

PotentialOffshoreWindArea PotentialOffshoreWindArea Jump to: navigation, search Property Name PotentialOffshoreWindArea Property Type Quantity Description The area of potential offshore wind in a place. Use this type to express a quantity of two-dimensional space. The default unit is the square meter (m²). http://en.wikipedia.org/wiki/Area Acceptable units (and their conversions) are: Square Meters - 1 m²,m2,m^2,square meter,square meters,Square Meter,Square Meters,Sq. Meters,SQUARE METERS Square Kilometers - 0.000001 km²,km2,km^2,square kilometer,square kilometers,square km,square Kilometers,SQUARE KILOMETERS Square Miles - 0.000000386 mi²,mi2,mi^2,mile²,square mile,square miles,square mi,Square Miles,SQUARE MILES Square Feet - 10.7639 ft²,ft2,ft^2,square feet,square foot,FT²,FT2,FT^2,Square Feet, Square Foot

52

Property:PotentialOnshoreWindArea | Open Energy Information  

Open Energy Info (EERE)

PotentialOnshoreWindArea PotentialOnshoreWindArea Jump to: navigation, search Property Name PotentialOnshoreWindArea Property Type Quantity Description The area of potential onshore wind in a place. Use this type to express a quantity of two-dimensional space. The default unit is the square meter (m²). http://en.wikipedia.org/wiki/Area Acceptable units (and their conversions) are: Square Meters - 1 m²,m2,m^2,square meter,square meters,Square Meter,Square Meters,Sq. Meters,SQUARE METERS Square Kilometers - 0.000001 km²,km2,km^2,square kilometer,square kilometers,square km,square Kilometers,SQUARE KILOMETERS Square Miles - 0.000000386 mi²,mi2,mi^2,mile²,square mile,square miles,square mi,Square Miles,SQUARE MILES Square Feet - 10.7639 ft²,ft2,ft^2,square feet,square foot,FT²,FT2,FT^2,Square Feet, Square Foot

53

Stability Dependence of the Ratio of Wind Speeds at Two Levels over Agriculture Land  

Science Conference Proceedings (OSTI)

Hourly averaged winds are computed from a one-year record taken atop five 10 m towers and four 30 m towers distributed over 4000 km2 of typical agricultural land. Vertical temperature differences are available from three of the 30 m towers. The ...

Jack H. Shreffler

1980-04-01T23:59:59.000Z

54

Impact of Balancing Areas Size, Obligation Sharing, and Ramping Capability on Wind Integration: Preprint  

DOE Green Energy (OSTI)

This paper examines wind integration costs as a function of balancing area size to determine if the larger system size helps mitigate wind integration cost increases.

Milligan, M.; Kirby, B.

2007-06-01T23:59:59.000Z

55

Proposed Flyers Creek Wind Farm, Blayney Local Government Area  

E-Print Network (OSTI)

Application reference: MP 08_0252 The Flyers Creek Wind Turbine Awareness Group Inc. (FCWTAG) is comprised of a large group of concerned residents of the Blayney Local Government Area. We object to the Proposed Flyers Creek Wind Farm (“the proposal”) in the strongest possible terms. We believe this development is totally inappropriate. This submission details our objections. The FCWTAG requests that representatives of the group be given the opportunity to speak at the Planning Assessment Commission hearing related to this proposal. Yours faithfully,

Major Development Assessment; Sydney Nsw; Dr. Colleen; J Watts Oam

2011-01-01T23:59:59.000Z

56

The Influence of Boundary Layer Processes on the Diurnal Variation of the Climatological Near-Surface Wind Speed Probability Distribution over Land  

Science Conference Proceedings (OSTI)

Knowledge of the diurnally varying land surface wind speed probability distribution is essential for surface flux estimation and wind power management. Global observations indicate that the surface wind speed probability density function (PDF) is ...

Yanping He; Norman A. McFarlane; Adam H. Monahan

2012-09-01T23:59:59.000Z

57

Preliminary evaluation of wind energy potential: Cook Inlet area, Alaska  

DOE Green Energy (OSTI)

This report summarizes work on a project performed under contract to the Alaska Power Administration (APA). The objective of this research was to make a preliminary assessment of the wind energy potential for interconnection with the Cook Inlet area electric power transmission and distribution systems, to identify the most likely candidate regions (25 to 100 square miles each) for energy potential, and to recommend a monitoring program sufficient to quantify the potential.

Hiester, T.R.

1980-06-01T23:59:59.000Z

58

Land-Use Requirements of Modern Wind Power Plants in the United States  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 August 2009 Land-Use Requirements of Modern Wind Power Plants in the United States Paul Denholm, Maureen Hand, Maddalena Jackson, and Sean Ong National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report NREL/TP-6A2-45834 August 2009 Land-Use Requirements of Modern Wind Power Plants in the United States Paul Denholm, Maureen Hand, Maddalena Jackson, and Sean Ong Prepared under Task No. WER9.3550 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

59

Wind Resource Maps (Postcard)  

DOE Green Energy (OSTI)

The U.S. Department of Energy's Wind Powering America initiative provides high-resolution wind maps and estimates of the wind resource potential that would be possible from development of the available windy land areas after excluding areas unlikely to be developed. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to Wind Powering America's online wind energy resource maps.

Not Available

2011-07-01T23:59:59.000Z

60

Spatial and Temporal Scales of Boundary Layer Wind Predictability in Response to Small-Amplitude Land Surface Uncertainty  

Science Conference Proceedings (OSTI)

Predictability experiments with the Weather Research and Forecast (WRF) model as a proxy for the atmosphere are analyzed to quantify the spatial and temporal scales of boundary layer wind response to land surface perturbations. Soil moisture is ...

Joshua P. Hacker

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "land area wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Artificial Neural Network estimation of soil erosion and nutrient concentrations in runoff from land application areas  

Science Conference Proceedings (OSTI)

The transport of sediment and nutrients from land application areas is an environmental concern. New methods are needed for estimating soil and nutrient concentrations of runoff from cropland areas on which manure is applied. Artificial Neural Networks ... Keywords: Artificial Neural Network (ANN), Land application, Manure runoff, Nitrogen, Nutrient losses, Phosphorus, Soil erosion, Water quality

Minyoung Kim; John E. Gilley

2008-12-01T23:59:59.000Z

62

DOE - Office of Legacy Management -- Shallow Land Disposal Area - PA 45  

Office of Legacy Management (LM)

Shallow Land Disposal Area - PA 45 Shallow Land Disposal Area - PA 45 FUSRAP Considered Sites Shallow Land Disposal Area, PA Alternate Name(s): Parks Township Shallow Land Disposal Area Nuclear Materials and Equipment Corporation (NUMEC) Babcox and Wilcox Parks Facilities PA.45-1 PA.45-5 PA.45-6 Location: PA Route 66 and Kissimere Road, Parks Township, Apollo, Pennsylvania PA.45-1 Historical Operations: Fabricated nulcear fuel under an NRC license as an extension of NUMEC Apollo production facilities. PA.45-1 PA.45-5 Eligibility Determination: Eligible PA.45-6 Radiological Survey(s): None Site Status: Cleanup in progress by U.S. Army Corps of Engineers. PA.45-6 USACE Website Long-term Care Requirements: To be determined upon completion. Also see Documents Related to Shallow Land Disposal Area, PA

63

CFD simulation for pedestrian wind comfort and wind safety in urban areas: General decision framework and case study for the Eindhoven University campus  

Science Conference Proceedings (OSTI)

Wind comfort and wind safety for pedestrians are important requirements in urban areas. Many city authorities request studies of pedestrian wind comfort and wind safety for new buildings and new urban areas. These studies involve combining statistical ... Keywords: Building aerodynamics, Built environment, Computational fluid dynamics (CFD), Discomfort and danger, Experimental validation, Guidelines, Wind flow

B. Blocken; W. D. Janssen; T. van Hooff

2012-04-01T23:59:59.000Z

64

Analysis of Sub-Hourly Ramping Impacts of Wind Energy and Balancing Area Size (Poster)  

DOE Green Energy (OSTI)

WindPower 2008 conference sponsored by AWEA held in Houston, TX on June 1-4 2008. This poster illustrates the data collected for an analysis of sub-hourly ramping impacts of wind energy and balancing area size.

Milligan, M.; Kirby, B.

2008-06-01T23:59:59.000Z

65

Modeling urban growth and land use/land cover change in the Houston Metropolitan Area from 2002 - 2030  

E-Print Network (OSTI)

The Houston-Galveston-Brazoria Consolidated Metropolitan Statistical Area (Houston CMSA) has experienced rapid population growth during the past decades and is the only major US metropolitan area with no zoning regulations. We use SLEUTH, a spatially explicit cellular automata model, to simulate future (2002-2030) urban growth in the Houston metropolitan area, one of the fastest growing metropolises in the United States during the past decades. The model is calibrated with historical data for the period 1974-2002 that are extracted from a time series of satellite images. The dataset consists of four historical urban extents (1974, 1984, 1992, 2002), two land use layers (1992, 2002), five transportation layers (1974, 1984, 1990, 2002, 2025), slope layer, hillshade layer, and excluded layer. Future growth patterns are predicted based on growth coefficients derived during the calibration phase. After calibrating the model successfully, the spatial pattern of urban growth of the Houston CMSA for the period from 2002 to 2030 is predicted. Within SLEUTH, growth in the Houston CMSA is predominately "organic" with most growth occurring along the urban/rural fringe. Projected increases in urban area from 2002 to 2030 parallel projected increases in population growth within the Houston CMSA. We design three specific scenarios to simulate the spatial consequences of urban growth under different environmental conditions. The first scenario is to simulate the unmanaged growth with no restrictions. The second scenario is to project the moderate growth trend by taking into consideration environmental protection, specifically for agricultural areas, forests and wetlands. The last scenario is to simulate the managed growth with maximum environmental protection. Adjusting the level of protection for different land cover types was found to markedly affect the land use changes in the Houston CMSA. Without any protection on resource lands, Houston CMSA is estimated to lose 2,000 km2 of forest land by 2030, about 600 km2 of agricultural land, and approximately 400 km2 of wetland. Approximately half of all resource land could be saved by the third scenario, managed growth with maximum protection.

Oguz, Hakan

2003-05-01T23:59:59.000Z

66

Comparison of 10-m Wind Forecasts from a Regional Area Model and QuikSCAT Scatterometer Wind Observations over the Mediterranean Sea  

Science Conference Proceedings (OSTI)

Surface wind forecasts from a limited-area model [the Quadrics Bologna Limited-Area Model (QBOLAM)] covering the entire Mediterranean area at 0.1° grid spacing are verified against Quick Scatterometer (QuikSCAT) wind observations. Only forecasts ...

Christophe Accadia; Stefano Zecchetto; Alfredo Lavagnini; Antonio Speranza

2007-05-01T23:59:59.000Z

67

Area wind farm energy production BACKGROUND -In Central New York State, home of the New York State Fair, wind turbine construction has had a noticeable  

E-Print Network (OSTI)

Area wind farm energy production ­ BACKGROUND - In Central New York State, home of the New York State Fair, wind turbine construction has they are then trucked to their destinations, and quite a few wind farms dot the hills. One

Keinan, Alon

68

Capacity Requirements to Support Inter-Balancing Area Wind Delivery  

DOE Green Energy (OSTI)

Paper examines the capacity requirements that arise as wind generation is integrated into the power system and how those requirements change depending on where the wind energy is delivered.

Kirby, B.; Milligan, M.

2009-07-01T23:59:59.000Z

69

Wind Resource Mapping for United States Offshore Areas  

DOE Green Energy (OSTI)

A poster for the WindPower 2006 conference showing offshore resource mapping efforts in the United States.

Elliott, D.; Schwartz, M.

2006-06-01T23:59:59.000Z

70

Multi-Area Stochastic Unit Commitment for High Wind Penetration in a Transmission Constrained  

E-Print Network (OSTI)

Multi-Area Stochastic Unit Commitment for High Wind Penetration in a Transmission Constrained@ieor.berkeley.edu In this paper we present a unit commitment model for studying the impact of large-scale wind integration of renewable energy integration. Key words : unit commitment; stochastic programming; wind power; transmission

Oren, Shmuel S.

71

MEETING NOTES Shallow Land Disposal Area (SLDA) FUSRAP Site  

E-Print Network (OSTI)

1900s, the Upper Freeport Coal seam was deep mined beneath the majority of the site. Coal was later feet. The Upper Freeport coal was strip mined from the majority of the lower trench area strip mined from the western end of the site. Nuclear Materials and Equipment Corporation (NUMEC) owned

US Army Corps of Engineers

72

Performance and Economics of a Wind-Diesel Hybrid Energy System: Naval Air Landing Field, San Clemente Island, California  

DOE Green Energy (OSTI)

This report provides an overview of the wind resource, economics and operation of the recently installed wind turbines in conjunction with diesel power for the Naval Air Landing Field (NALF), San Clemente Island (SCI), California Project. The primary goal of the SCI wind power system is to operate with the existing diesel power plant and provide equivalent or better power quality and system reliability than the existing diesel system. The wind system is also intended to reduce, as far as possible, the use of diesel fuel and the inherent generation of nitrogen-oxide emissions and other pollutants. The first two NM 225/30 225kW wind turbines were installed and started shake-down operations on February 5, 1998. This report describes the initial operational data gathered from February 1998 through January 1999, as well as the SCI wind resource and initial cost of energy provided by the wind turbines on SCI. In support of this objective, several years of data on the wind resources of San Clemente Island were collected and compared to historical data. The wind resource data were used as input to economic and feasibility studies for a wind-diesel hybrid installation for SCI.

McKenna, E. (National Renewable Energy Laboratory); Olsen, T. (Timothy Olsen Consulting)

1999-07-06T23:59:59.000Z

73

Thermal Gradient Holes At Salt Wells Area (Bureau of Land Management, 2009)  

Open Energy Info (EERE)

Thermal Gradient Holes At Salt Wells Area (Bureau of Land Management, 2009) Thermal Gradient Holes At Salt Wells Area (Bureau of Land Management, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Salt Wells Area (Bureau of Land Management, 2009) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Thermal Gradient Holes Activity Date 2008 - 2008 Usefulness not indicated DOE-funding Unknown Exploration Basis Vulcan increased exploration efforts in the summer and fall of 2008, during which time the company drilled two temperature gradient holes (86-15 O on Pad 1 and 17-16 O on Pad 3); conducted seismic, gravity and magnetotelluric surveys; and drilled deep exploration wells at Pads 6 and 8 and binary wells at Pads 1, 2, 4, and 7. Notes

74

Single-Well and Cross-Well Seismic At Salt Wells Area (Bureau of Land  

Open Energy Info (EERE)

Single-Well and Cross-Well Seismic At Salt Wells Area (Bureau of Land Single-Well and Cross-Well Seismic At Salt Wells Area (Bureau of Land Management, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Single-Well and Cross-Well Seismic At Salt Wells Area (Bureau of Land Management, 2009) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Single-Well And Cross-Well Seismic Activity Date 2008 - 2008 Usefulness not indicated DOE-funding Unknown Exploration Basis Vulcan increased exploration efforts in the summer and fall of 2008, during which time the company drilled two temperature gradient holes (86-15 O on Pad 1 and 17-16 O on Pad 3); conducted seismic, gravity and magnetotelluric surveys; and drilled deep exploration wells at Pads 6 and 8 and binary

75

Exploratory Well At Salt Wells Area (Bureau of Land Management, 2009) |  

Open Energy Info (EERE)

Exploratory Well At Salt Wells Area (Bureau of Land Management, 2009) Exploratory Well At Salt Wells Area (Bureau of Land Management, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Exploratory Well At Salt Wells Area (Bureau of Land Management, 2009) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Exploratory Well Activity Date 2008 - 2008 Usefulness not indicated DOE-funding Unknown Exploration Basis Vulcan increased exploration efforts in the summer and fall of 2008, during which time the company drilled two temperature gradient holes (86-15 O on Pad 1 and 17-16 O on Pad 3); conducted seismic, gravity and magnetotelluric surveys; and drilled deep exploration wells at Pads 6 and 8 and binary wells at Pads 1, 2, 4, and 7. Notes Data from these wells is proprietary, and so were unavailable for inclusion

76

Ground Gravity Survey At Salt Wells Area (Bureau of Land Management, 2009)  

Open Energy Info (EERE)

Salt Wells Area (Bureau of Land Management, 2009) Salt Wells Area (Bureau of Land Management, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Salt Wells Area (Bureau of Land Management, 2009) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Ground Gravity Survey Activity Date 2008 - 2008 Usefulness not indicated DOE-funding Unknown Exploration Basis Vulcan increased exploration efforts in the summer and fall of 2008, during which time the company drilled two temperature gradient holes (86-15 O on Pad 1 and 17-16 O on Pad 3); conducted seismic, gravity and magnetotelluric surveys; and drilled deep exploration wells at Pads 6 and 8 and binary wells at Pads 1, 2, 4, and 7. Notes Data from these wells is proprietary, and so were unavailable for inclusion

77

Forward-Looking Assimilation of MODIS-Derived Snow-Covered Area into a Land Surface Model  

Science Conference Proceedings (OSTI)

Snow cover over land has a significant impact on the surface radiation budget, turbulent energy fluxes to the atmosphere, and local hydrological fluxes. For this reason, inaccuracies in the representation of snow-covered area (SCA) within a land ...

Benjamin F. Zaitchik; Matthew Rodell

2009-02-01T23:59:59.000Z

78

Area-Averaged Surface Fluxes in a Semiarid Region with Partly Irrigated Land: Lessons Learned from EFEDA  

Science Conference Proceedings (OSTI)

The European Field Experiment in a Desertification-Threatened Area (EFEDA) provides a comprehensive land surface dataset for a semiarid Mediterranean environment with natural vegetation and cultivated dry and irrigated land. This paper discusses ...

M. Anna Osann Jochum; Hendrik A. R. de Bruin; Albert A. M. Holtslag; Alfonso Calera Belmonte

2006-06-01T23:59:59.000Z

79

Numerical Analysis of Air Pollution in a Combined Field of Land/Sea Breeze and Mountain/Valley Wind  

Science Conference Proceedings (OSTI)

Air pollution in the presence of two types of local flows (i.e., land/sea breeze and mountain/valley wind) was studied by advection simulation of the cluster of hypothetical fluid particles, and transport/chemistry calculation employing a three-...

Toshihiro Kitada; Kiyomi Igarashi; Michio Owada

1986-06-01T23:59:59.000Z

80

Avian Monitoring and Risk Assessment at the San Gorgonio Wind Resource Area  

DOE Green Energy (OSTI)

The primary objective of this study at the San Gorgonio Wind Resource Area was to estimate and compare bird utilization, fatality rates, and the risk index among factors including bird taxonomic groups, wind turbine and reference areas, wind turbine sizes and types, and geographic locations. The key questions addressed to meet this objective include: (1) Are there any differences in the level of bird activity, called ''utilization rate'' or ''use'', with the operating wind plant and within the surrounding undeveloped areas (reference area)?; (2) Are there any differences in the rate of bird fatalities (or avian fatality) within the operating wind plant or the surrounding undeveloped areas (reference area)?; (3) Does bird use, fatality rates, or bird risk index vary according to the geographic location, type and size of wind turbine, and/or type of bird within the operating wind plant and surrounding undeveloped areas (reference area)?; and (4) How do raptor fatality rates at San Gorgonio compare to other wind projects with comparable data?

Anderson, R.; Tom, J.; Neumann, N.; Erickson, W. P.; Strickland, M. D.; Bourassa, M.; Bay, K. J.; Sernka, K. J.

2005-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "land area wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Wind Resource Mapping for United States Offshore Areas: Preprint  

DOE Green Energy (OSTI)

The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) is producing validated wind resource maps for priority offshore regions of the United States. This report describes the methodology used to validate the maps and to build a Geographic Information Systems (GIS) database to classify the offshore wind resource by state, water depth, distance from shore, and administrative unit.

Elliott, D.; Schwartz, M.

2006-06-01T23:59:59.000Z

82

H2A Delivery: GH2 and LH2 Forecourt Land Areas  

NLE Websites -- All DOE Office Websites (Extended Search)

GH2 and LH2 Forecourt GH2 and LH2 Forecourt GH2 and LH2 Forecourt Land Areas Land Areas Hydrogen Delivery Analysis Meeting May 8-9, 2007 Columbia, Maryland TIAX LLC Matthew Hooks 1601 S. D Anza Blvd. hooks.matthew@TIAXLLC.com Cupertino CA, 95014 Tel. 408-517-1550 Reference: D0348 © 2007 TIAX LLC General Assumptions ƒ Forecourt stations with fewer than 6 hydrogen dispensers will have both hydrogen and gasoline dispensers on-site (6 total) ƒ Forecourt area (not including convenience store) will be allocated based on relative number of hydrogen/gasoline dispensers ƒ All stations with more than 6 hydrogen dispensers will only dispense hydrogen ƒ 100% of forecourt area (not including convenience store) will be allocated to hydrogen delivery ƒ Area allocated to hydrogen storage will be in excess of the

83

Wind Resource Mapping for United States Offshore Areas: Preprint  

SciTech Connect

The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) is producing validated wind resource maps for priority offshore regions of the United States. This report describes the methodology used to validate the maps and to build a Geographic Information Systems (GIS) database to classify the offshore wind resource by state, water depth, distance from shore, and administrative unit.

Elliott, D.; Schwartz, M.

2006-06-01T23:59:59.000Z

84

Harnessing the Power of the Sun, Solar Impulse Plane Lands in DC Area |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Harnessing the Power of the Sun, Solar Impulse Plane Lands in DC Harnessing the Power of the Sun, Solar Impulse Plane Lands in DC Area Harnessing the Power of the Sun, Solar Impulse Plane Lands in DC Area June 17, 2013 - 6:15pm Addthis Watch Energy Secretary Ernest Moniz give remarks at the Solar Impulse Press Conference in Washington, D.C. Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs More on Solar Impulse View a slideshow of photos from today's event on Secretary Moniz's Facebook Page. Today, Secretary Moniz spoke at an event welcoming the arrival of the solar-powered Solar Impulse plane at Dulles International Airport near Washington, D.C. During the event, held at the National Air and Space Museum's Steven F. Udvar-Hazy Center, Secretary Moniz highlighted the rapid expansion of the solar industry in the United States over the past

85

Harnessing the Power of the Sun, Solar Impulse Plane Lands in DC Area |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Harnessing the Power of the Sun, Solar Impulse Plane Lands in DC Harnessing the Power of the Sun, Solar Impulse Plane Lands in DC Area Harnessing the Power of the Sun, Solar Impulse Plane Lands in DC Area June 17, 2013 - 6:15pm Addthis Watch Energy Secretary Ernest Moniz give remarks at the Solar Impulse Press Conference in Washington, D.C. Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs More on Solar Impulse View a slideshow of photos from today's event on Secretary Moniz's Facebook Page. Today, Secretary Moniz spoke at an event welcoming the arrival of the solar-powered Solar Impulse plane at Dulles International Airport near Washington, D.C. During the event, held at the National Air and Space Museum's Steven F. Udvar-Hazy Center, Secretary Moniz highlighted the rapid expansion of the solar industry in the United States over the past

86

Observed Structure of a Land Breeze Head in the Tokyo Metropolitan Area  

Science Conference Proceedings (OSTI)

The penetration of a land breeze front and its turbulence structure was observed at the center of the Tokyo metropolitan area on 27–28 January 1983. A turbulence sonde, small tethersonde and an acoustic sounder were used for the experiment. The ...

Toshimasa Ohara; Itsushi Uno; Shinji Wakamatsu

1989-08-01T23:59:59.000Z

87

Helicopter Electromagnetic Survey of the Model Land Area, Southeastern Miami-Dade County, Florida  

E-Print Network (OSTI)

Helicopter Electromagnetic Survey of the Model Land Area, Southeastern Miami-Dade County, Florida, Southeastern Miami-Dade County, Florida: U.S. Geological Survey Open-File Report 2012­1176, 77 p. Any use of Environmental Resources Management (Miami-Dade County, Florida) DOI depth of investigation DRG digital raster

88

Retrieving Winds in the Surface Layer over Land Using an Airborne Doppler Lidar  

Science Conference Proceedings (OSTI)

Airborne Doppler wind lidars are increasingly being used to measure winds in the lower atmosphere at higher spatial resolution than ever before. However, wind retrieval in the range gates closest to the earth’s surface remains problematic. When a ...

K. S. Godwin; S. F. J. De Wekker; G. D. Emmitt

2012-04-01T23:59:59.000Z

89

Wind Power Career Chat  

DOE Green Energy (OSTI)

This document will teach students about careers in the wind energy industry. Wind energy, both land-based and offshore, is expected to provide thousands of new jobs in the next several decades. Wind energy companies are growing rapidly to meet America's demand for clean, renewable, and domestic energy. These companies need skilled professionals. Wind power careers will require educated people from a variety of areas. Trained and qualified workers manufacture, construct, operate, and manage wind energy facilities. The nation will also need skilled researchers, scientists, and engineers to plan and develop the next generation of wind energy technologies.

Not Available

2011-01-01T23:59:59.000Z

90

Bat Interactions with Wind Turbines at the Buffalo Ridge, Minnesota Wind Resource Area: An Assessment of Bat Activity, Species Compo sition and Collision Mortality  

Science Conference Proceedings (OSTI)

During avian monitoring studies conducted from 1994-1999, several bat collision victims were found at wind turbines in the Buffalo Ridge Resource Area (WRA) in southwest Minnesota. This study further examined bat interactions with wind turbines at this site.

2003-11-05T23:59:59.000Z

91

A Model for Objective Simulation of Boundary-Layer Winds in an Area of Complex Terrain  

Science Conference Proceedings (OSTI)

An objective analysis model is formulated to simulate the boundary-layer wind field in an area of complex terrain on the island of Oahu, Hawaii. The model is designed to reproduce the effects of the terrain on the undisturbed trade wind flow in ...

D. André Erasmus

1986-12-01T23:59:59.000Z

92

An Aerial Radiological Survey of the Yucca Mountain Project Proposed Land Withdrawal and Adjacent Areas  

SciTech Connect

An aerial radiological survey of the Yucca Mountain Project (YMP) proposed land withdrawal was conducted from January to April 2006, and encompassed a total area of approximately 284 square miles (73,556 hectares). The aerial radiological survey was conducted to provide a sound technical basis and rigorous statistical approach for determining the potential presence of radiological contaminants in the Yucca Mountain proposed Land withdrawal area. The survey site included land areas currently managed by the Bureau of Land Management, the U.S. Air Force as part of the Nevada Test and Training Range or the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) as part of the Nevada Test Site (NTS). The survey was flown at an approximate ground speed of 70 knots (36 meters per second), at a nominal altitude of 150 ft (46 m) above ground level, along a set of parallel flight lines spaced 250 ft (76 m) apart. The flight lines were oriented in a north-south trajectory. The survey was conducted by the DOE NNSA/NSO Remote Sensing Laboratory-Nellis, which is located in Las Vegas, Nevada. The aerial survey was conducted at the request of the DOE Office of Civilian Radioactive Waste Management. The primary contaminant of concern was identified by YMP personnel as cesium-137 ({sup 137}Cs). Due to the proposed land withdrawal area's proximity to the historical Nuclear Rocket Development Station (NRDS) facilities located on the NTS, the aerial survey system required sufficient sensitivity to discriminate between dispersed but elevated {sup 137}Cs levels from those normally encountered from worldwide fallout. As part of that process, the survey also measured and mapped the exposure-rate levels that currently existed within the survey area. The inferred aerial exposure rates of the natural terrestrial background radiation varied from less than 3 to 22 microroentgens per hour. This range of exposure rates was primarily due to the surface geological features within the survey area. The survey area has extensive areas of desert valleys, mountain ranges, extinct volcanic cones, and old lava flows. With the exception of five areas identified within the NRDS boundaries (discussed later in this report), there were no areas within the survey that exceeded aerial survey minimum detectable concentration levels of 0.4 through 0.7 picocuries per gram (pCi/g). The {sup 137}Cs levels do not exceed typical worldwide fallout levels for the continental United States.

Craig Lyons, Thane Hendricks

2006-07-01T23:59:59.000Z

93

Scatter and Doppler Effect of Wind Power Plants to Land Radars  

Science Conference Proceedings (OSTI)

Wind power plant installations at different scales are in an increasing pattern starting from year 2000. A curiosity has been raised about 4-5 years ago for if wind turbines interfere with radars. The interference occurs when wind turbines reflect radar ... Keywords: clutter, Doppler, radar, scatter, turbine, wind

Derya Sozen; Mesut Kartal

2012-03-01T23:59:59.000Z

94

The Relationship Between the Surface Wind Field and Convective Precipitation over the St. Louis Area  

Science Conference Proceedings (OSTI)

Rainfall, wind and temperature data at the surface for a mesoscale area surrounding St. Louis, Missouri for seven summer days in 1975 were used to determine qualitative and quantitative relationships between divergence, and the location, timing ...

Gary L. Achtemeier

1983-06-01T23:59:59.000Z

95

Hazards to Electrical Distribution in Coastal Areas Subject to Flooding and High Wind  

Science Conference Proceedings (OSTI)

EPRI, Dewberry and Davis, and the Federal Emergency Management Agency (FEMA) have jointly prepared this study on hazards to electrical distribution in coastal areas that experience coastal and river flooding and high wind.

2000-09-08T23:59:59.000Z

96

Low-Level Winds in Tornadoes and Potential Catastrophic Tornado Impacts in Urban Areas  

Science Conference Proceedings (OSTI)

Using an axisymmetric model of tornado structure tightly constrained by high-resolution wind field measurements collected by Doppler on Wheels (DOW) mobile radars, the potential impacts of intense tornadoes crossing densely populated urban areas ...

Joshua Wurman; Paul Robinson; Curtis Alexander; Yvette Richardson

2007-01-01T23:59:59.000Z

97

Wind Powering America  

Wind Powering America (EERE)

These news items are notable additions These news items are notable additions to the Wind Powering America Web site. The Wind Powering America Web site reports recent national and state wind market changes by cataloging wind activities such as wind resource maps, small wind consumer's guides, local wind workshops, news articles, and publications in the areas of policy, public power, small wind, Native Americans, agricultural sector, economic development, public lands, and schools. en-us julie.jones@nrel.gov (Julie Jones) http://www.windpoweringamerica.gov/images/wpa_logo_sm.jpg Wind Powering America http://www.windpoweringamerica.gov/ Nominate an Electric Cooperative for Wind Power Leadership Award by January 15 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4076 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4076 Mon, 16

98

Definition: Wind power | Open Energy Information  

Open Energy Info (EERE)

Wind power Wind power Jump to: navigation, search Dictionary.png Wind power The amount of power available to a wind turbine depends on: air density, wind speed and the swept area of the rotor. While the power is proportional to air density and swept area, it varies with the cube of wind speed, so small changes in wind speed can have a relatively large impact on wind power.[1] View on Wikipedia Wikipedia Definition Wind power is the conversion of wind energy into a useful form of energy, such as using wind turbines to make electrical power, windmills for mechanical power, windpumps for water pumping or drainage, or sails to propel ships. Large wind farms consist of hundreds of individual wind turbines which are connected to the electric power transmission network. Offshore wind is steadier and stronger than on land, and offshore farms

99

Naval Station Newport Wind Resource Assessment. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites, and The Naval Facilities Engineering Service Center  

DOE Green Energy (OSTI)

The U.S. Environmental Protection Agency (EPA) launched the RE-Powering America's Land initiative to encourage development of renewable energy (RE) on potentially contaminated land and mine sites. EPA is collaborating with the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) to evaluate RE options at Naval Station (NAVSTA) Newport in Newport, Rhode Island where multiple contaminated areas pose a threat to human health and the environment. Designated a superfund site on the National Priorities List in 1989, the base is committed to working toward reducing the its dependency on fossil fuels, decreasing its carbon footprint, and implementing RE projects where feasible. The Naval Facilities Engineering Service Center (NFESC) partnered with NREL in February 2009 to investigate the potential for wind energy generation at a number of Naval and Marine bases on the East Coast. NAVSTA Newport was one of several bases chosen for a detailed, site-specific wind resource investigation. NAVSTA Newport, in conjunction with NREL and NFESC, has been actively engaged in assessing the wind resource through several ongoing efforts. This report focuses on the wind resource assessment, the estimated energy production of wind turbines, and a survey of potential wind turbine options based upon the site-specific wind resource.

Robichaud, R.; Fields, J.; Roberts, J. O.

2012-02-01T23:59:59.000Z

100

Validation of the Coupled NCEP Mesoscale Spectral Model and an Advanced Land Surface Model over the Hawaiian Islands. Part II: A High Wind Event  

Science Conference Proceedings (OSTI)

A high wind event (14–15 February 2001) over the Hawaiian Islands associated with a cold front is simulated using the National Centers for Environmental Prediction (NCEP) Mesoscale Spectral Model (MSM) coupled with an advanced land surface model (...

Yongxin Zhang; Yi-Leng Chen; Kevin Kodama

2005-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "land area wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Higher U.S. Crop Prices Trigger Little Area Expansion so Marginal Land for Biofuel Crops Is Limited  

SciTech Connect

By expanding energy biomass production on marginal lands that are not currently used for crops, food price increases and indirect climate change effects can be mitigated. Studies of the availability of marginal lands for dedicated bioenergy crops have focused on biophysical land traits, ignoring the human role in decisions to convert marginal land to bioenergy crops. Recent history offers insights about farmer willingness to put non-crop land into crop production. The 2006-09 leap in field crop prices and the attendant 64% gain in typical profitability led to only a 2% increase in crop planted area, mostly in the prairie states

Swinton, S.; Babcock, Bruce; James, Laura; Bandaru, Varaprasad

2011-06-12T23:59:59.000Z

102

Women and land : acces to and use of land and natural resources in the communal areas of rural South Africa.  

E-Print Network (OSTI)

?? The typical face of poverty in South Africa is African, rural, and female. As the primary users of rural land, women engage in farming… (more)

Ursula F. Arends

2009-01-01T23:59:59.000Z

103

Wind energy potential in the United States  

SciTech Connect

Estimates of the electricity that could potentially be generated by wind power and of the land area available for wind energy development have been calculated for the contiguous United States. The estimates are based on published wind resource data and exclude windy lands that are not suitable for development as a result of environmental and land-use considerations. Despite these exclusions, the potential electric power from wind energy is surprisingly large. Good wind areas, which cover 6% of the contiguous US land area, have the potential to supply more than one and a half times the current electricity consumption of the United States. Technology under development today will be capable of producing electricity economically from good wind sites in many regions of the country.

Elliott, D.L.; Schwartz, M.N.

1993-06-01T23:59:59.000Z

104

Statistical analysis of summer winds in Geysers area prior to ASCOT 1979 experiment  

DOE Green Energy (OSTI)

Statistical analytical techniques were tested on 73 days and 16 stations of hourly data for the summer of 1977. These stations were located in the region surrounding the Geysers geothermal area. Principal components analysis (PCA) was used to define typical wind patterns in the region and to determine typical days for each station. Power spectral analysis was used to quantify the temporal variation of winds at Anderson Ridge and Anderson Springs (two stations included in the ASCOT 1979 study in the local region of Anderson Creek with very different terrain exposures). These results will help determine year to year difference in the wind fields in the ASCOT study region of complex terrain.

Porch, W.M.; Walton, J.J.

1980-02-01T23:59:59.000Z

105

Numerical Simulation of Land Subsidence in the Los Banos-Kettleman City Area, California  

E-Print Network (OSTI)

risk assessment of land subsidence in Shanhai. EnvironmentelObserved and simulated land subsidence for extenso meter 1 .and Miller, R. E. 1975. land subsidence due to ground water

Larson, Keith J; Basagaoglu, Hakan; Marino, Miguel

2001-01-01T23:59:59.000Z

106

Numerical Simulation of Land Subsidence in the Los Banos-Kettleman City Area, California  

E-Print Network (OSTI)

risk assessment of land subsidence in Shanhai. EnvironmentalF. and Riley, F. S. 1984. Land Subsidence in the San Joaquinand Miller, R. E. 1975. Land subsidence due to ground water

Larson, Keith J; Basagaoglu, Hakan; Marino, Miguel A

1999-01-01T23:59:59.000Z

107

Bird Mortaility at the Altamont Pass Wind Resource Area: March 1998--September 2001  

Science Conference Proceedings (OSTI)

Over the past 15 years, research has shown that wind turbines in the Altamont Pass Wind Resource Area (APWRA) kill many birds, including raptors, which are protected by the Migratory Bird Treaty Act (MBTA), the Bald and Golden Eagle Protection Act, and/or state and federal Endangered Species Acts. Early research in the APWRA on avian mortality mainly attempted to identify the extent of the problem. In 1998, however, the National Renewable Energy Laboratory (NREL) initiated research to address the causal relationships between wind turbines and bird mortality. NREL funded a project by BioResource Consultants to perform this research directed at identifying and addressing the causes of mortality of various bird species from wind turbines in the APWRA.With 580 megawatts (MW) of installed wind turbine generating capacity in the APWRA, wind turbines there provide up to 1 billion kilowatt-hours (kWh) of emissions-free electricity annually. By identifying and implementing new methods and technologies to reduce or resolve bird mortality in the APWRA, power producers may be able to increase wind turbine electricity production at the site and apply similar mortality-reduction methods at other sites around the state and country.

Smallwood, K. S.; Thelander, C. G.

2005-09-01T23:59:59.000Z

108

Economic Effects of Land Subsidence Due to Excessive Groundwater Withdrawal in the Texas Gulf Coast Area  

E-Print Network (OSTI)

Land surface subsidence continues to be a destructive force in the Texas Gulf Coast area. The sinking of the surface has been linked by engineers to the withdrawal of groundwater. Subsidence causes damages and property value losses as saltwater encroachment is increased, property is permanently inundated, and temporary flooding is intensified. This study provides estimates of private and public costs attributable to land subsidence in a 945 square mile area that has subsided one foot or more since 1943. Estimates are divided into three sub-areas within this total area to provide insight into the incidence of subsidence-related costs. The sub-areas considered in this study were sub-area I, an 83 square mile area between Houston and Baytown containing square mile sample blocks adjacent to the upper Galveston bay and/or Buffalo Bayou and the Houston Ship Channel; sub-area II, the 25 square mile area surrounding Clear Lake and adjacent land fronting on Galveston bay; and sub-area III, the remaining area within the total 945 square mile area that had experienced subsidence of approximately two feet or more since 1943. Personal interviews, using questionnaires designed for reporting of damages and property value losses by a random sample of owners of residential, commercial and industrial property, comprised the data base for estimating total private costs attributable to subsidence. Public costs (federal, state, county and municipal) were obtained from personal interviews with public officials. In total, over 1100 interviews were conducted in the study area. Data from these interviews were expanded to total cost estimates for the subsiding area. Physical effects of surface subsidence were found to be largely dependent upon location of the property. Most damages and losses in property value occur in those areas in close proximity to Galveston bay and/or major waterways. Temporary flooding, permanent inundation, bulkheading and landfilling were the major subsidence-related causes of cost and/or losses in property value. Structural damages, largely from subsidence aggravated surface faults, were also significant. These comprised a higher proportion of damages in areas remote from the waterfront than in low lying areas subject to frequent flooding or permanent inundation. Estimated annual costs and property value losses totaled over $31.7 million per year for the study area as a whole. These were primarily costs to residential, commercial and industrial property owners, but included over $.5 million per year in public costs for damage abatement or repair to public facilities. Estimated costs by sub-areas revealed a higher incidence and intensity of damage and property value loss in waterfront (I and II) than in non-waterfront areas (III). Estimated costs in sub-areas I, II and III were $8.79 million, $5 million and $17.4 million, respectively. Sub-area I, which made up about 8.8 percent of the total study area, experienced 27.7 percent of total subsidence-related costs. Sub-area II experienced 15.8 percent of total costs while occupying only 3 percent of the total study area. And, although sub-area III had almost 55 percent of the total costs, it includes over 88 percent of the total area. Hence, subsidence damages and losses in property value are concentrated heavily in areas in close proximity to the immediate coastline of Galveston bay, Buffalo Bayou, Clear Lake and Taylor Lake. Other sections throughout the study area experienced damages and property losses but less frequently and less intensively. A comparative analysis of the total costs of groundwater pumping with alternative surface water importation was developed to examine the economic feasibility of importing surface water to displace groundwater as a means of avoiding annual subsidence costs. A break-even analysis revealed that for the five year period 1969-73, the importation of surface water to meet all the area's water needs (up to 198.16 billion gallons per year) would have been economically justifi

Jones, L. L.; Larson, J.

1975-09-01T23:59:59.000Z

109

Numerical Analysis on the Contribution of Urbanization to Wind Stilling: An Example over the Greater Beijing Metropolitan Area  

Science Conference Proceedings (OSTI)

A decline of surface wind speed (wind stilling) has been observed in many regions of the world. The greater Beijing metropolitan area in China is taken as an example for analyzing the urbanization impact on wind stilling. This study set up five ...

Aizhong Hou; Guangheng Ni; Hanbo Yang; Zhidong Lei

2013-05-01T23:59:59.000Z

110

Correction of Land-Based Wind Data for Offshore Applications: A Further Evaluation  

Science Conference Proceedings (OSTI)

A formula that linearly relates the difference in wind speed between onshore and offshore regions, as tested successfully in the Great Lakes region, has been revised and extended to other parts of the world. This formula is further substantiated ...

S. A. Hsu

1986-02-01T23:59:59.000Z

111

Spatial Variation of the Regional Wind Field with Land–Sea Contrasts and Complex Topography  

Science Conference Proceedings (OSTI)

This study examines the spatial variation of the wind field observed in the coastal zone of southeast Korea with its complex terrain, using measurements from a regional network 75 km across and centered about Busan. Results are compared with ...

Kyung-Ja Ha; Sun-Hee Shin; Larry Mahrt

2009-09-01T23:59:59.000Z

112

Investigation of the Effects of Different Land Use and Land Cover Patterns on Mesoscale Meteorological Simulations in the Taiwan Area  

Science Conference Proceedings (OSTI)

The U.S. Geological Survey (USGS) land use (LU) data employed in the Weather Research and Forecasting (WRF) model classify most LU types in Taiwan as mixtures of irrigated cropland and forest, which is not an accurate representation of current ...

Fang-Yi Cheng; Yu-Ching Hsu; Pay-Liam Lin; Tang-Huang Lin

2013-03-01T23:59:59.000Z

113

WindPACT Turbine Design Scaling Studies Technical Area 2: Turbine, Rotor and Blade Logistics  

SciTech Connect

Through the National Renewable Energy Laboratory (NREL), the United States Department of Energy (DOE) implemented the Wind Partnership for Advanced Component Technologies (WindPACT) program. This program will explore advanced technologies that may reduce the cost of energy (COE) from wind turbines. The initial step in the WindPACT program is a series of preliminary scaling studies intended to determine the optimum sizes for future turbines, help define sizing limits for certain critical technologies, and explore the potential for advanced technologies to contribute to reduced COE as turbine scales increase. This report documents the results of Technical Area 2-Turbine Rotor and Blade Logistics. For this report, we investigated the transportation, assembly, and crane logistics and costs associated with installation of a range of multi-megawatt-scale wind turbines. We focused on using currently available equipment, assembly techniques, and transportation system capabilities and limitations to hypothetically transport and install 50 wind turbines at a facility in south-central South Dakota.

Smith, K.

2001-07-16T23:59:59.000Z

114

Dynamic valuation model For wind development in regard to land value, proximity to transmission lines, and capacity factor  

E-Print Network (OSTI)

Developing a wind farm involves many variables that can make or break the success of a potential wind farm project. Some variables such as wind data (capacity factor, wind rose, wind speed, etc.) are readily available in ...

Nikandrou, Paul

2009-01-01T23:59:59.000Z

115

Stakeholder Engagement and Outreach: Where Is Wind Power?  

Wind Powering America (EERE)

Where Is Wind Power? Where Is Wind Power? Wind Powering America offers maps to help you visualize the wind resource at a local level and to show how much wind power has been installed in the United States. How much wind power is on my land? Go to the wind resource maps. Go to the wind resource maps. Go to the wind resource maps. If you want to know how much wind power is in a particular area, these wind resource maps can give you a visual indication of the average wind speeds to a local level such as a neighborhood. These maps have been developed using the same mathematical models that are used by weather forecasters and are even used to estimate the wind energy potential-or how much wind energy could potentially be produced at the state level, if wind power were developed there.

116

Remote area wind energy harvesting for low-power autonomous sensors Abstract--A growing demand for deployment of autonomous  

E-Print Network (OSTI)

Remote area wind energy harvesting for low-power autonomous sensors Abstract--A growing demand wind energy harvesting is presented, with a focus on an anemometer-based solution. By utilizing for localized, independent energy harvesting capabilities for each node. In this paper, a method of remote area

117

Habitat Evaluation Procedures (HEP) Report; Precious Lands Wildlife Management Area, Technical Report 2000-2003.  

DOE Green Energy (OSTI)

The Nez Perce Tribe (NPT) currently manages a 15,325 acre parcel of land known as the Precious Lands Wildlife Management Area that was purchased as mitigation for losses incurred by construction of the four lower Snake River dams. The Management Area is located in northern Wallowa County, Oregon and southern Asotin County, Washington (Figure 1). It is divided into three management parcels--the Buford parcel is located on Buford Creek and straddles the WA-OR state line, and the Tamarack and Basin parcels are contiguous to each other and located between the Joseph Creek and Cottonwood Creek drainages in Wallowa County, OR. The project was developed under the Pacific Northwest Electric Power Planning and Conservation Act of 1980 (P.L. 96-501), with funding from the Bonneville Power Administration (BPA). The acreage protected under this contract will be credited to BPA as habitat permanently dedicated to wildlife and wildlife mitigation. A modeling strategy known as Habitat Evaluation Procedure (HEP) was developed by the U.S. Fish and Wildlife Service and adopted by BPA as a habitat equivalency accounting system. Nine wildlife species models were used to evaluate distinct cover type features and provide a measure of habitat quality. Models measure a wide range of life requisite variables for each species and monitor overall trends in vegetation community health and diversity. One product of HEP is an evaluation of habitat quality expressed in Habitat Units (HUs). This HU accounting system is used to determine the amount of credit BPA receives for mitigation lands. After construction of the four lower Snake River dams, a HEP loss assessment was conducted to determine how many Habitat Units were inundated behind the dams. Twelve target species were used in that evaluation: Canada goose, mallard, river otter, downy woodpecker, song sparrow, yellow warbler, marsh wren, western meadowlark, chukar, ring-necked pheasant, California quail, and mule deer. The U.S. Army Corp of Engineers and the Washington Department of fish and Wildlife subsequently purchased numerous properties to mitigate for the identified Snake River losses. These projects, however, were not sufficient to mitigate for all the HU's lost. The Northwest Power Planning Council amended the remaining 26,774 HU's into their 1994-1995 Fish and Wildlife Program as being unmitigated (NPPC 2000), which allowed the Nez Perce Tribe to contract with BPA to provide HU's through the Precious Lands Project. The Precious Lands project contains a different composition of cover types than those assessed during the lower Snake loss assessment. For example, no mallard or Canada goose habitat exists on Precious Lands but the area does contain conifer forest, which was not present on the area inundated by dam construction. These cover type differences have resulted in a slightly different suite of species for the current HEP assessment. Target species for Precious Lands are downy woodpecker, yellow warbler, song sparrow, California Quail, mule deer, sharp-tailed grouse (brood rearing), west em meadowlark, beaver, and black-capped chickadee. This list is a reflection of the available cover types and the management objectives of the Nez Perce Tribe. For example, chukar was not used in the present assessment because it is an introduced Eurasian game bird that does not provide an accurate representation of the ecological health of the native grasslands it was supposed to represent. Initial model runs using the chukar confirmed this suspicion so the brood-rearing section of the sharp-tailed grouse model was used instead. Additionally, the beaver model was used in place of the river otter model because the otter model used in the loss assessment was not a published model, was overly simplistic, and did not provide an accurate assessment of riparian condition. The beaver model, however, provides a detailed evaluation of overstory class structure that the NPT felt was a good compliment to the yellow warbler and song sparrow models that evaluated understory shrub layers. Overall, such substituti

Kozusko, Shana

2003-12-01T23:59:59.000Z

118

The Effects of Remotely Sensed Plant Functional Type and Leaf Area Index on Simulations of Boreal Forest Surface Fluxes by the NCAR Land Surface Model  

Science Conference Proceedings (OSTI)

The land surface models used with atmospheric models typically characterize landscapes in terms of generalized biome types. However, the advent of high–spatial resolution satellite-derived data products such as land cover and leaf area index (LAI)...

Keith W. Oleson; Gordon B. Bonan

2000-10-01T23:59:59.000Z

119

Limited-Area Model Sensitivity to the Complexity of Representation of the Land Surface Energy Balance  

Science Conference Proceedings (OSTI)

By coupling a multimode land surface scheme with a regional climate model, three scientific issues are addressed in this paper: (i) the regional model's sensitivity to the different levels of complexity presented by the land surface ...

H. Zhang; A. Henderson-Sellers; A. J. Pitman; C. E. Desborough; J. L. McGregor; J. J. Katzfey

2001-10-01T23:59:59.000Z

120

Integrating Wind into Transmission Planning: The Rocky Mountain Area Transmission Study (RMATS): Preprint  

DOE Green Energy (OSTI)

Plans to expand the western grid are now underway. Bringing power from low-cost remote resources--including wind--to load centers could reduce costs for all consumers. But many paths appear to be already congested. Locational marginal price-based modeling is designed to identify the most cost-effective paths to be upgraded. The ranking of such paths is intended as the start of a process of political and regulatory approvals that are expected to result in the eventual construction of new and upgraded lines. This paper reviews the necessary data and analytical tasks to accurately represent wind in such modeling, and addresses some policy and regulatory issues that can help with wind integration into the grid. Providing wind fair access to the grid also (and more immediately) depends on tariff and regulatory changes. Expansion of the Rocky Mountain Area Transmission Study (RMATS) study scope to address operational issues supports the development of transmission solutions that enable wind to connect and deliver power in the next few years--much sooner than upgrades can be completed.

Hamilton, R.; Lehr, R.; Olsen, D.; Nielsen, J.; Acker, T.; Milligan, M.; Geller, H.

2004-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "land area wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Diurnal and seasonal variations of wind farm impacts on land surface temperature over western Texas  

E-Print Network (OSTI)

industry has installed a total of 46,919 megawatts (MW) of capac- ity, making it second in the world behind, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA e energy is among the world's fastest growing sources of energy. Through the end of 2011, the US wind

Zhou, Liming

122

Modeling the Effects of Land–Sea Roughness Contrast on Tropical Cyclone Winds  

Science Conference Proceedings (OSTI)

The fifth-generation Pennsylvania State University–National Center for Atmospheric Research (PSU–NCAR) Mesoscale Model (MM5) is used to simulate tropical cyclone (TC) wind distribution near landfall. On an f plane at 15°N, the effects of the ...

Martin L. M. Wong; Johnny C. L. Chan

2007-09-01T23:59:59.000Z

123

Inhalation of primary motor vehicle emissions: Effects of urbanpopulation and land area  

SciTech Connect

Urban population density can influence transportation demand, as expressed through average daily vehicle-kilometers traveled per capita (VKT). In turn, changes in transportation demand influence total passenger vehicle emissions. Population density can also influence the fraction of total emissions that are inhaled by the exposed urban population. Equations are presented that describe these relationships for an idealized representation of an urban area. Using analytic solutions to these equations, we investigate the effect of three changes in urban population and urban land area (infill, sprawl, and constant-density growth) on per capita inhalation intake of primary pollutants from passenger vehicles. The magnitude of these effects depends on density-emissions elasticity ({var_epsilon}{sub e}), a normalized derivative relating change in population density to change in vehicle emissions. For example, if urban population increases, per capita intake is less with infill development than with constant-density growth if {var_epsilon}{sub e} is less than -0.5, while for {var_epsilon}{sub e} greater than -0.5 the reverse is true.

Marshall, Julian D.; McKone, Thomas E.; Nazaroff, William W.

2004-06-14T23:59:59.000Z

124

Avian risk behavior and fatalities at the Altamont Wind Resource Area: March 1998 - February 1999  

DOE Green Energy (OSTI)

Since 1981, more than 7,000 wind turbines have been installed in the Altamont Wind Resource Area in north-central California. Currently, about 5,000 turbines are operating. Past research efforts demonstrated that wind turbines frequently kill birds, especially raptors. Little is known about the specific flight and perching behaviors by birds near wind turbines. A better understanding of these interactions may one day yield insights on how to minimize bird fatalities. This Phase 1 progress report summarizes research findings obtained at 20 study plots totaling 785 turbines of various configurations and conducted between March 1998 and February 1999. The authors examined bird use and behaviors and collected data on fatalities at the same turbines throughout the course of the surveys. They completed 745 30-minute point counts (1,702 bird observations) that quantified bird risk behaviors and bird use of the study plots. The four most frequently observed bird species were red-tailed hawks, common ravens, turkey vultures, and golden eagles. During the same period, the authors recorded 95 bird fatalities. Raptors represent 51% (n=49) of the kills found. The data indicate that the relative abundance of species observed does not predict the relative frequency of fatalities per species. Phase II of the research is underway.

Thelander, C.; Rugge, L.

2000-05-08T23:59:59.000Z

125

United States areal wind resource assessment  

SciTech Connect

Estimates of the electricity that could potentially be generated by wind power and of the land area available for wind energy development have been calculated for the contiguous United States, in support of the US Department of Energy`s National Energy Strategy. These estimates were based on the wind resource data published in a national resource atlas. Estimates of the wind resource in this atlas are expressed in wind power classes ranging from class 1 to class 7, with each class representing a range of mean wind power density or equivalent mean speed at specified heights above the ground (Table 1) . Areas designatedclass 4 or greater are suitable for most wind turbine applications. Power class 3 areas are suitable for wind energy development using tall (50-m hub height) turbines. Class 2 areas are marginal and class 1 areas unsuitable for wind energy development. A map of the areal (percentage of land area) distribution of the wind resource digitized in grid cells (1/4{degrees} latitude by 1/3{degrees} longitude) shows that exposed areas with moderate to high wind resource (class 3 and greater) are dispersed throughout much of the contiguous United States.

Schwartz, M.N.; Elliott, D.L.

1993-03-01T23:59:59.000Z

126

United States areal wind resource assessment  

SciTech Connect

Estimates of the electricity that could potentially be generated by wind power and of the land area available for wind energy development have been calculated for the contiguous United States, in support of the US Department of Energy's National Energy Strategy. These estimates were based on the wind resource data published in a national resource atlas. Estimates of the wind resource in this atlas are expressed in wind power classes ranging from class 1 to class 7, with each class representing a range of mean wind power density or equivalent mean speed at specified heights above the ground (Table 1) . Areas designatedclass 4 or greater are suitable for most wind turbine applications. Power class 3 areas are suitable for wind energy development using tall (50-m hub height) turbines. Class 2 areas are marginal and class 1 areas unsuitable for wind energy development. A map of the areal (percentage of land area) distribution of the wind resource digitized in grid cells (1/4[degrees] latitude by 1/3[degrees] longitude) shows that exposed areas with moderate to high wind resource (class 3 and greater) are dispersed throughout much of the contiguous United States.

Schwartz, M.N.; Elliott, D.L.

1993-03-01T23:59:59.000Z

127

Gridded state maps of wind electric potential  

DOE Green Energy (OSTI)

Estimates of wind electric potential and available windy land area in the contiguous United States, calculated in 1991, have been revised by incorporating actual data on the distribution of environmental exclusion areas where wind energy development would be prohibited or severely restricted. The new gridded data base with actual environmental exclusion areas, in combination with a 'moderate' land-use scenario, is the basis for developing the first gridded maps of available windy land and wind electric potential. Gridded maps for the 48 contiguous states show the estimated windy land area and electric potential for each grid cell (1/40 latitude by 1/30 longitude). These new maps show the distribution of the estimated wind electric potential and available windy land within an individual state, unlike previous national maps that only show estimates of the total wind electric potential for the state as a whole. While changes for some individual states are fairly large (in percentage), on a national basis, the estimated windy land area and wind electric potential are only about 1% to 2% higher than estimated in 1991.

Schwartz, M.N.; Elliott, D.L.; Gower, G.L.

1992-10-01T23:59:59.000Z

128

Stakeholder Engagement and Outreach: Wind Resource Potential  

Wind Powering America (EERE)

Wind Resource Potential Offshore Maps Community-Scale Maps Residential-Scale Maps Anemometer Loan Programs & Data Wind Resource Potential State Wind Resource Potential Tables Find state wind resource potential tables in three versions: Microsoft Excel 2007, 2003, and Adobe Acrobat PDF. 30% Capacity Factor at 80-Meters Microsoft 2007 Microsoft 2003 Adobe Acrobat PDF Additional 80- and 100-Meter Wind Resource Potential Tables Microsoft 2007 Microsoft 2003 Adobe Acrobat PDF The National Renewable Energy Laboratory (NREL) estimated the windy land area and wind energy potential for each state using AWS Truepower's gross capacity factor data. This provides the most up to date estimate of how wind energy can support state and national energy needs. The table lists the estimates of windy land area with a gross capacity of

129

Wind | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assessment and Characterization Defining, measuring, and forecasting land-based and offshore wind resources Environmental Impacts and Siting of Wind Projects Avoiding,...

130

Mesocell Study Area Snow Distributions for the Cold Land Processes Experiment (CLPX)  

Science Conference Proceedings (OSTI)

The Cold Land Processes Experiment (CLPX) had a goal of describing snow-related features over a wide range of spatial and temporal scales. This required linking disparate snow tools and datasets into one coherent, integrated package. Simulating ...

Glen E. Liston; Christopher A. Hiemstra; Kelly Elder; Donald W. Cline

2008-10-01T23:59:59.000Z

131

WindPACT Turbine Design Scaling Studies: Technical Area 4ƒBalance-of-Station Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

1 * NREL/SR-500-29950 1 * NREL/SR-500-29950 D.A. Shafer, K.R. Strawmyer, R.M. Conley, J.H. Guidinger, D.C. Wilkie, and T.F. Zellman With assistance from D.W. Bernadett Commonwealth Associates, Inc. Jackson, Michigan WindPACT Turbine Design Scaling Studies: Technical Area 4- Balance-of-Station Cost 21 March 2000-15 March 2001 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute * * * * Battelle * * * * Bechtel Contract No. DE-AC36-99-GO10337 July 2001 * NREL/SR-500-29950 WindPACT Turbine Desing Scaling Studies: Technical Area 4- Balance-of-Station Cost 21 March 2000-15 March 2001 D.A. Shafer, K.R. Strawmyer, R.M. Conley, J.H. Guidinger, D.C. Wilkie, and T.F. Zellman

132

Characteristics of Summer Trade Wind Rainfall over Oahu  

Science Conference Proceedings (OSTI)

In this study, characteristics of summer trade wind rainfall over Oahu, Hawaii, are analyzed. In the early morning before sunrise, flow deceleration on the windward coastal area is the greatest when the island land surface is the coldest. ...

Treena Marie Hartley; Yi-Leng Chen

2010-12-01T23:59:59.000Z

133

WindPACT Turbine Design Scaling Studies Technical Area 1-Composite Blades for 80- to 120-Meter Rotor  

SciTech Connect

The United States Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL) implemented the Wind Partnership for Advanced Component Technologies (WindPACT) program. As part of the WindPACT program, Global Energy Concepts, LLC (GEC), was awarded contract number YAM-0-30203-01 to examine Technical Area 1-Blade Scaling, Technical Area 2-Turbine Rotor and Blade Logistics, and Technical Area 3-Self-Erecting Towers. This report documents the results of GEC's Technical Area 1-Blade Scaling. The primary objectives of the Blade-Scaling Study are to assess the scaling of current materials and manufacturing technologies for blades of 40 to 60 meters in length, and to develop scaling curves of estimated cost and mass for rotor blades in that size range.

Griffin, D.A.

2001-04-30T23:59:59.000Z

134

Contribution of Land Use Changes to Near-Surface Air Temperatures during Recent Summer Extreme Heat Events in the Phoenix Metropolitan Area  

Science Conference Proceedings (OSTI)

The impact of 1973–2005 land use–land cover (LULC) changes on near-surface air temperatures during four recent summer extreme heat events (EHEs) are investigated for the arid Phoenix, Arizona, metropolitan area using the Weather Research and ...

Susanne Grossman-Clarke; Joseph A. Zehnder; Thomas Loridan; C. Sue B. Grimmond

2010-08-01T23:59:59.000Z

135

Sun, wind, and pedestrian comfort: a study of Toronto's Central Area  

E-Print Network (OSTI)

No. ST10,1978, pp. 1585-1593. Sun, Wind and Comfort Appendixshadow for both spaces. Sun, Wind and Comfort Discretionaryfor the obvious reason that the sun does not shine from the

Bosselmann, P.; Arens, Edward A; Dunker, K.; Wright, R.

1990-01-01T23:59:59.000Z

136

Sun, Wind, and Comfort A Study of Open Spaces and Sidewalks in Four Downtown Areas  

E-Print Network (OSTI)

Plan as o f Bibliography Sun, Wind, and Comfort Arens,Flores, and Terence O'Hare, Sun and Light for Downtown SanSUN, WIND, AND COMFORT A Study of Open Spaces and Sidewalks

1984-01-01T23:59:59.000Z

137

Distribution of Extreme Winds in the Bonneville Power Administration Service Area  

Science Conference Proceedings (OSTI)

Annual extreme 1 min wind speeds at 78 Pacific Northwest locations were analyzed using the Fisher-Tippet type II extreme value function. From computed mean recurrence intervals, we could easily determine the wind speed likely to recur in a ...

J. William Wantz; Robert E. Sinclair

1981-12-01T23:59:59.000Z

138

Fast and effective multi-objective optimisation of wind turbine placement  

Science Conference Proceedings (OSTI)

The single-objective yield optimisation of wind turbine placements on a given area of land is already a challenging optimization problem. In this article, we tackle the multi-objective variant of this problem: we are taking into account the wake effects ... Keywords: multi-objective optimisation, wind farm layout, wind power

Raymond Tran; Junhua Wu; Christopher Denison; Thomas Ackling; Markus Wagner; Frank Neumann

2013-07-01T23:59:59.000Z

139

Feasibility Study on Wind Farm Renewable Energy Development in the Eastern Coast of China  

Science Conference Proceedings (OSTI)

Eastern China has a vast land area with a long coastline, presenting a possible wind resource. But the use of the wind renewable energy to generate electric power is still on a small scale, because of the large upfront investment and lower internal rate ... Keywords: Wind renewable energy, clean development mechanism, greenhouse gas emission reductions

Huang Xiangning; Ma Xiuqin; Wang Jing

2010-08-01T23:59:59.000Z

140

A pilot golden eagle population study in the Altamont Pass Wind Resource Area, California  

Science Conference Proceedings (OSTI)

Orloff and Flannery (1992) estimated that several hundred reports are annually killed by turbine collisions, wire strikes, and electrocutions at the Altamont Pass Wind Resource Area (WRA). The most common fatalities were those of red-tailed hawks (Buteo jamaicensis), American kestrels (Falco sparvatius), and golden eagles (Aquila chrysaetos), with lesser numbers of turkey vultures (Cathartes aura), common ravens (Corvus corax), bam owls (Tyto alba), and others. Among the species of raptors killed at Altamont Pass, the one whose local population is most likely to be impacted is the golden eagle. Besides its being less abundant than the others, the breeding and recruitment rates of golden eagles are naturally slow, increasing their susceptibility to decline as a result of mortality influences. The golden eagle is a species afforded special federal protection because of its inclusion within the Bald Eagle Protection Act as amended in 1963. There are no provisions within the Act which would allow the killing ``taking`` of golden eagles by WRA structures. This report details the results of field studies conducted during 19941. The primary purpose of the investigation is to lay the groundwork for determining whether or not turbine strikes and other hazards related to energy at Altamont Pass may be expected to affect golden eagles on a population basis. We also seek an understanding of the physical and biotic circumstances which attract golden eagles to the WRA within the context of the surrounding landscape and the conditions under which they are killed by wind turbines. Such knowledge may suggest turbine-related or habitat modifications that would result in a lower incidence of eagle mortality.

Hunt, G. [California Univ., Santa Cruz, CA (United States). Predatory Bird Research Group

1995-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "land area wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

EIS-0427: Grapevine Canyon Wind Project, Coconino County, Arizona |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

27: Grapevine Canyon Wind Project, Coconino County, Arizona 27: Grapevine Canyon Wind Project, Coconino County, Arizona EIS-0427: Grapevine Canyon Wind Project, Coconino County, Arizona Summary This EIS evaluates the environmental impacts of a proposed wind energy generation project in Coconino County, Arizona, on privately owned ranch lands and trust lands administered by the Arizona State Land Department. The proposed project includes a new transmission tie-line that would cross lands administered by Coconino National Forest and interconnect with DOE's Western Area Power Administration's existing Glen Canyon-Pinnacle Peak transmission lines. Public Comment Opportunities No public comment opportunities available at this time. Documents Available for Download September 11, 2012 EIS-0427: Record of Decision Interconnection of the Grapevine Canyon Wind Project, Coconino County,

142

U.S. State Wind Resource Potential | OpenEI  

Open Energy Info (EERE)

State Wind Resource Potential State Wind Resource Potential Dataset Summary Description Estimates for each of the 50 states and the entire United States showing the windy land area with a gross capacity factor (without losses) of 30% and greater at 80-m height above ground and the wind energy potential from development of the "available" windy land area after exclusions. The "Installed Capacity" shows the potential megawatts (MW) of rated capacity that could be installed on the available windy land area, and the "Annual Generation" shows annual wind energy generation in gigawatt-hours (GWh) that could be produced from the installed capacity. AWS Truewind, LLC developed the wind resource data for windNavigator® with a spatial resolution of 200 m. NREL produced the estimates of windy land area and windy energy potential, including filtering the estimates to exclude areas unlikely to be developed such as wilderness areas, parks, urban areas, and water features (see the "Wind Resource Exclusion Table" sheet within the Excel file for more detail).

143

Low Wind Speed Technologies Annual Turbine Technology Update (ATTU) Process for Land-Based, Utility-Class Technologies  

SciTech Connect

The Low Wind Speed Technologies (LWST) Project comprises a diverse, balanced portfolio of industry-government partnerships structured to achieve ambitious cost of energy reductions. The LWST Project goal is: ''By 2012, reduce the cost of energy (COE) for large wind systems in Class 4 winds (average wind speed of 5.8 m/s at 10 m height) to 3 cents/kWh (in levelized 2002 dollars) for onshore systems.'' The Annual Turbine Technology Update (ATTU) has been developed to quantify performance-based progress toward these goals, in response to OMB reporting requirements and to meet internal DOE program needs for advisory data.

Schreck, S.; Laxson, A.

2005-06-01T23:59:59.000Z

144

Wind Stress Curl and Coastal Upwelling in the Area of Monterey Bay Observed during AOSN-II  

Science Conference Proceedings (OSTI)

Aircraft measurements obtained during the 2003–04 Autonomous Ocean Sampling Network (AOSN-II) project were used to study the effect of small-scale variations of near-surface wind stress on coastal upwelling in the area of Monterey Bay. Using 5-km-...

Q. Wang; J. A. Kalogiros; S. R. Ramp; J. D. Paduan; G. Buzorius; H. Jonsson

2011-05-01T23:59:59.000Z

145

National Wind Technology Center (Fact Sheet), National Wind Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

facility, fosters innovative wind energy technologies in land-based and offshore wind through its research and testing facilities and extends these capabilities to marine...

146

Comparison of Modeled and Observed Accumulated Convective Precipitation in Mountainous and Flat Land Areas  

Science Conference Proceedings (OSTI)

Convective precipitation is the main cause of extreme rainfall events in small areas. Its primary characteristics are both large spatial and temporal variability. For this reason, the monitoring of accumulated precipitation fields (liquid and ...

Mladjen ?uri?; Dejan Janc

2011-04-01T23:59:59.000Z

147

Analysis of Sub-Hourly Ramping Impacts of Wind Energy and Balancing Area Size: Preprint  

DOE Green Energy (OSTI)

In this paper, we analyze sub-hourly ramping requirements and the benefit of combining Balancing Authority operations with significant wind penetrations.

Milligan, M.; Kirby, B.

2008-06-01T23:59:59.000Z

148

Short Term Hydro Power Planning Coordinated with Wind Power in Areas with Congestion Problems  

E-Print Network (OSTI)

In this paper a day-ahead planning algorithm for a multi-reservoir hydropower system coordinated with wind power is developed. Coordination applies to real situations, where wind power and hydropower are owned by different utilities, sharing the same transmission lines, though hydropower has priority for transmission capacity. Coordination is thus necessary to minimize wind energy curtailments during congestion situations. The planning algorithm accounts for the uncertainty of wind power forecasts and power market price uncertainty. Planning for the spot market and the regulating market is considered in the algorithm. The planning algorithm is applied to a case study and the results are summarized in the paper.

J. Matevosyan; et al.

2006-01-01T23:59:59.000Z

149

EIS-0441: Mohave County Wind Farm Project, Mohave County, Arizona  

Energy.gov (U.S. Department of Energy (DOE))

This EIS, prepared by the Bureau of Land Management with DOE’s Western Area Power Administration as a cooperating agency, evaluated the environmental impacts of a proposed wind energy project on public lands in Mohave County, Arizona. Power generated by this project would tie to the electrical power grid through an interconnection to one of Western’s transmission lines.

150

WindPACT Turbine Design Scaling Studies: Technical Area 4 -- Balance-of-Station Cost  

SciTech Connect

DOE's Wind Partnerships for Advanced Component Technologies (WindPACT) program explores the most advanced wind-generating technologies for improving reliability and decreasing energy costs. The first step in the WindPact program is a scaling study to bound the optimum sizes for wind turbines, to define size limits for certain technologies, and to scale new technologies. The program is divided into four projects: Composite Blades for 80-120-meter Rotors; Turbine, Rotor, and Blade Logistics; Self-Erecting Tower and Nacelle Feasibility; and Balance-of-Station Cost. This report discusses balance-of-station costs, which includes the electrical power collector system, wind turbine foundations, communications and controls, meteorological equipment, access roadways, crane pads, and the maintenance building. The report is based on a conceptual 50-megawatt (MW) wind farm site near Mission, South Dakota. Cost comparisons are provided for four sizes of wind turbines: 750 kilowatt (kW), 2.5 MW, 5.0 MW, and 10.0 MW.

Shafer, D. A.; Strawmyer, K. R.; Conley, R. M.; Guidinger J. H.; Wilkie, D. C.; Zellman, T. F.

2001-07-24T23:59:59.000Z

151

Survey of Revegetated Areas on the Fitzner/Eberhardt Arid Lands Ecology Reserve: Status and Initial Monitoring Results  

Science Conference Proceedings (OSTI)

During 2010, the U.S. Department of Energy (DOE), Richland Operations Office removed a number of facilities and debris from the Fitzner/Eberhardt Arid Lands Ecology Reserve (ALE), which is part of the Hanford Reach National Monument (HRNM). Revegetation of disturbed sites is necessary to stabilize the soil, reduce invasion of these areas by exotic weeds, and to accelerate re-establishment of native plant communities. Seven revegetation units were identified on ALE based on soils and potential native plant communities at the site. Native seed mixes and plant material were identified for each area based on the desired plant community. Revegetation of locations affected by decommissioning of buildings and debris removal was undertaken during the winter and early spring of 2010 and 2011, respectively. This report describes both the details of planting and seeding for each of the units, describes the sampling design for monitoring, and summarizes the data collected during the first year of monitoring. In general, the revegetation efforts were successful in establishing native bunchgrasses and shrubs on most of the sites within the 7 revegetation units. Invasion of the revegetation areas by exotic annual species was minimal for most sites, but was above initial criteria in 3 areas: the Hodges Well subunit of Unit 2, and Units 6 and 7.

Downs, Janelle L.; Link, Steven O.; Rozeboom, Latricia L.; Durham, Robin E.; Cruz, Rico O.; Mckee, Sadie A.

2011-09-01T23:59:59.000Z

152

Greater Sage-Grouse Habitat Use and Population Demographics at the Simpson Ridge Wind Resource Area, Carbon County, Wyoming  

DOE Green Energy (OSTI)

This study was conducted to obtain baseline data on use of the proposed Simpson Ridge Wind Resource Area (SRWRA) in Carbon County, Wyoming by greater sage-grouse. The first two study years were designed to determine pre-construction seasonally selected habitats and population-level vital rates (productivity and survival). The presence of an existing wind energy facility in the project area, the PacifiCorp Seven Mile Hill (SMH) project, allowed us to obtain some information on initial sage-grouse response to wind turbines the first two years following construction. To our knowledge these are the first quantitative data on sage-grouse response to an existing wind energy development. This report presents results of the first two study years (April 1, 2009 through March 30, 2011). This study was selected for continued funding by the National Wind Coordinating Collaborative Sage-Grouse Collaborative (NWCC-SGC) and has been ongoing since March 30, 2011. Future reports summarizing results of this research will be distributed through the NWCC-SGC. To investigate population trends through time, we determined the distribution and numbers of males using leks throughout the study area, which included a 4-mile radius buffer around the SRWRA. Over the 2-year study, 116 female greater sage-grouse were captured by spotlighting and use of hoop nets on roosts surrounding leks during the breeding period. Radio marked birds were located anywhere from twice a week to once a month, depending on season. All radio-locations were classified to season. We developed predictor variables used to predict success of fitness parameters and relative probability of habitat selection within the SRWRA and SMH study areas. Anthropogenic features included paved highways, overhead transmission lines, wind turbines and turbine access roads. Environmental variables included vegetation and topography features. Home ranges were estimated using a kernel density estimator. We developed resource selection functions (RSF) to estimate probability of selection within the SRWRA and SMH. Fourteen active greater sage-grouse leks were documented during lek surveys Mean lek size decreased from 37 in 2008 to 22 in 2010. Four leks located 0.61, 1.3, 1.4 and 2.5 km from the nearest wind turbine remained active throughout the study, but the total number of males counted on these four leks decreased from 162 the first year prior to construction (2008), to 97 in 2010. Similar lek declines were noted in regional leks not associated with wind energy development throughout Carbon County. We obtained 2,659 sage-grouse locations from radio-equipped females, which were used to map use of each project area by season. The sage-grouse populations within both study areas are relatively non-migratory, as radio-marked sage-grouse used similar areas during all annual life cycles. Potential impacts to sage-grouse from wind energy infrastructure are not well understood. The data rom this study provide insight into the early interactions of wind energy infrastructure and sage-grouse. Nest success and brood-rearing success were not statistically different between areas with and without wind energy development in the short-term. Nest success also was not influenced by anthropogenic features such as turbines in the short-term. Additionally, female survival was similar among both study areas, suggesting wind energy infrastructure was not impacting female survival in the short-term; however, further analysis is needed to identify habitats with different levels of risk to better understand the impact of wind enregy development on survival. Nest and brood-rearing habitat selection were not influenced by turbines in the short-term; however, summer habitat selection occurred within habitats closer to wind turbines. Major roads were avoided in both study areas and during most of the seasons. The impact of transmission lines varied among study areas, suggesting other landscape features may be influencing selection. The data provided in this report are preliminary and are not meant to provide a basis for fo

Gregory D. Johnson; Chad W. LeBeau; Ryan Nielsen; Troy Rintz; Jamey Eddy; Matt Holloran

2012-03-27T23:59:59.000Z

153

Challenges and strategies for increasing adoption of small wind turbines in urban areas  

E-Print Network (OSTI)

A student group at MIT in cooperation with the MIT Department of Facilities is currently working to install a Skystream 3.7 wind turbine on MIT's campus. This has raised several questions about how to best develop small ...

Ferrigno, Kevin J. (Kevin James)

2010-01-01T23:59:59.000Z

154

WindPACT Turbine Design Scaling Studies Technical Area 1ÂŒComposite Blades for 80- to 120-Meter Rotor  

NLE Websites -- All DOE Office Websites (Extended Search)

1 * NREL/SR-500-29492 1 * NREL/SR-500-29492 Dayton A. Griffin Global Energy Concepts Kirkland, Washington WindPACT Turbine Design Scaling Studies Technical Area 1-Composite Blades for 80- to 120-Meter Rotor March 21, 2000 - March 15, 2001 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute * * * * Battelle * * * * Bechtel Contract No. DE-AC36-99-GO10337 April 2001 * NREL/SR-500-29492 WindPACT Turbine Design Scaling Studies Technical Area 1-Composite Blades for 80- to 120-Meter Rotor March 21, 2000 - March 15, 2001 Dayton A. Griffin Global Energy Concepts Kirkland, Washington NREL Technical Monitor: Alan Laxson Prepared under Subcontract No. YAM-0-30203-01 National Renewable Energy Laboratory

155

WindPACT Turbine Design Scaling Studies Technical Area 3ÂŒSelf-Erecting Tower and Nacelle Feasibility  

NLE Websites -- All DOE Office Websites (Extended Search)

1 * NREL/SR-500-29493 1 * NREL/SR-500-29493 Global Energy Concepts, LLC Kirkland, Washington WindPACT Turbine Design Scaling Studies Technical Area 3-Self-Erecting Tower and Nacelle Feasibility March 2000-March 2001 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute * * * * Battelle * * * * Bechtel Contract No. DE-AC36-99-GO10337 May 2001 * NREL/SR-500-29493 WindPACT Turbine Design Scaling Studies Technical Area 3-Self-Erecting Tower and Nacelle Feasibility March 2000-March 2001 Global Energy Concepts, LLC Kirkland, Washington NREL Technical Monitor: Alan Laxson Prepared under Subcontract No. YAM-0-30203-01 National Renewable Energy Laboratory 1617 Cole Boulevard

156

United States Wind Resource Potential Chart  

Wind Powering America (EERE)

18,000 18,000 Rated Capacity Above Indicated CF (GW) United States - Wind Resource Potential Cumulative Rated Capacity vs. Gross Capacity Factor (CF) 80 m The estimates show the potential gigawatts of rated capacity that could be installed on land above a given gross capacity factor (without losses) at 80-m and 100-m heights above ground. Areas greater than 30% at 80 m are generally considered to have suitable wind resource for potential wind development with today's advanced wind turbine technology. AWS Truewind, LLC developed the wind resource data for windNavigator® (http://navigator.awstruewind.com) with a spatial resolution of 200 m. NREL filtered the wind potential estimates to

157

A population study of golden eagles in the Altamont Pass Wind Resource area. Second-year progress report  

Science Conference Proceedings (OSTI)

Since January 1994, the Predatory Bird Research Group, University of California, Santa Cruz, has been conducting a field investigation of the ecology of golden eagles (Aquila chrysaetos) in the vicinity of the Altamont Pass Wind Resource Area (WRA). The 190 km{sup 2} facility lies just east of San Francisco Bay in California and contains about 6,500 wind turbines. Grassland and oak savanna habitats surrounding the WRA support a substantial resident population of golden eagles. Each year, the U.S. Fish and Wildlife Service receivers reports from the wind industry of about 30 golden eagle casualties occurring at the WRA, and it is probable that many more carcasses go unnoticed. Over 90 percent of the casualties are attributed to collisions with wind turbines. The main purpose of this study is to estimate the effect of turbine-related mortality on the golden eagle population of the area. Assessing the impact of the WRA kills on the population requires quantification of both survival and reproduction. To estimate survival rates of both territorial and non-territorial golden eagles, we tagged 179 individuals with radio-telemetry transmitters expected to function for about four years and equipped with mortality sensors. Population segments represented in the tagged sample include 79 juveniles, 45 subadults, 17n floaters (non-territorial adults), and 38 breeders. Effective sample sizes in the older segments increase as younger eagles mature or become territorial. Since the beginning of the study, we have conducted weekly roll-call surveys by airplane to locate the tagged eagles in relation to the WRA and to monitor their survival. The surveyed area extends from the Oakland Hills southeast through the Diablo Mountain Range to San Luis Reservoir about 75 km southeast of the WRA. The surveys show that breeding eagles rarely enter the WRA while the non-territorial eagles tend to move about freely throughout the study area and often visit the WRA.

NONE

1997-07-01T23:59:59.000Z

158

Wind Energy Resource Assessment of the Caribbean and Central America  

DOE Green Energy (OSTI)

A wind energy resource assessment of the Caribbean and Central America has identified many areas with good to outstanding wind resource potential for wind turbine applications. Annual average wind resource maps and summary tables have been developed for 35 island/country areas throughout the Caribbean and Central America region. The wind resource maps highlight the locations of major resource areas and provide estimates of the wind energy resource potential for typical well-exposed sites in these areas. The average energy in the wind flowing in the layer near the ground is expressed as a wind power class: the greater the average wind energy, the higher the wind power class. The summary tables that are included with each of the 35 island/country wind energy maps provide information on the frequency distribution of the wind speeds (expressed as estimates of the Weibull shape factor, k) and seasonal variations in the wind resource for the major wind resource areas identified on the maps. A new wind power class legend has been developed for relating the wind power classes to values of mean wind power density, mean wind speed, and Weibull k. Guidelines are presented on how to adjust these values to various heights above ground for different roughness and terrain characteristics. Information evaluated in preparing the assessment included existing meteorological data from airports and other weather stations, and from ships and buoys in offshore and coastal areas. In addition, new data from recent measurement sites established for wind energy siting studies were obtained for a few areas of the Caribbean. Other types of information evaluated in the assessment were climatological data and maps on winds aloft, surface pressure, air flow, and topography. The various data were screened and evaluated for their usefulness in preparing the wind resource assessment. Much of the surface data from airports and other land-based weather stations were determined to be from sheltered sites and were thus not very useful in assessing the wind resource at locations that are well exposed to the winds. Ship data were determined to be the most useful for estimating the large-scale wind flow and assessing the spatial distribution of the wind resource throughout the region. Techniques were developed for analyzing and correcting ship wind data and extrapolating these data to coastal and inland areas by considering terrain influences on the large-scale wind flow. In areas where extrapolation of ship wind data was not entirely feasible, such as interior areas of Central America, other techniques were developed for estimating the wind flow and distribution of the wind resource. Through the application of the various innovative techniques developed for assessing the wind resource throughout the Caribbean and Central America region, many areas with potentially good to outstanding wind resource were identified that had not been previously recognized. In areas where existing site data were available from exposed locations, the measured wind resource was compared with the estimated wind resource that was derived using the assessment techniques. In most cases, there was good agreement between the measured wind resource and the estimated wind resource. This assessment project supported activities being pursued by the U.S. Committee for Renewable Energy Commerce and Trade (CORECT), the U.S. government's interagency program to assist in overseas marketing and promote renewable energy exports. An overall goal of the program is to improve U.S. competitiveness in the world renewable energy market. The Caribbean and Central America assessment, which is the first of several possible follow-on international wind energy resource assessments, provides valuable information needed by the U.S. wind energy industry to identify suitable wind resource areas and concentrate their efforts on these areas.

DL Elliott; CI Aspliden; GL Gower; CG Holladay, MN Schwartz

1987-04-01T23:59:59.000Z

159

Coastal zone wind energy. Part I. Potential wind power density fields based on 3-D model simulations of the dominant wind regimes for three east and Gulf coast areas  

DOE Green Energy (OSTI)

The results of applying a numerical model of the atmosphere to the problem of locating areas of maximum wind power are presented. Three US coastal regions, of approximately 10/sup 5/ km/sup 2/ area each, are investigated. For each region the spatial distribution of daily average power density (W m/sup -2/) for the lowest 100 m of the atmosphere is given for the three most prevalent weather regimes. These distributions are then combined to form an estimate of the annual average power density for each region. Comparisons with long-term climatological data at stations within each region show good agreement between model estimated and observed wind power density for two of the three regions studied.

Garstang, M.; Pielke, R.A.; Snow, J.W.

1980-04-01T23:59:59.000Z

160

Landowners and Wind Energy Development | Open Energy Information  

Open Energy Info (EERE)

Landowners and Wind Energy Development Landowners and Wind Energy Development Jump to: navigation, search Photo from Cielo Wind Power Corporation, NREL 10558 Many people will benefit from the clean air and economic growth brought about by wind power development, but farmers and other rural landowners may benefit the most. The best wind resources tend to be located in rural areas and on farmland in the Great Plains states. Wind power can provide a new cash crop for farmers and ranchers. Large wind turbines use only about one quarter-acre of land, including access roads, so farmers can continue to plant crops and graze livestock right up to the base of the turbines. One of the easiest and most attractive ways for farmers and other landowners to benefit from wind power is to allow wind developers to

Note: This page contains sample records for the topic "land area wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Planning For Wind Energy: Evaluating Municipal Wind Energy Land Use Planning Frameworks in Southwestern Ontario with a Focus on Developing Wind Energy Planning Policies for the City of Stratford.  

E-Print Network (OSTI)

??Wind energy provides an environmentally friendly and renewable source of electricity, that can help meet Canada's Kyoto commitments, help safeguard against future blackouts, reduce air… (more)

Longston, Kristopher, J.

2007-01-01T23:59:59.000Z

162

2008 Special Issue: Optimal wide-area monitoring and nonlinear adaptive coordinating neurocontrol of a power system with wind power integration and multiple FACTS devices  

Science Conference Proceedings (OSTI)

Wide-area coordinating control is becoming an important issue and a challenging problem in the power industry. This paper proposes a novel optimal wide-area coordinating neurocontrol (WACNC), based on wide-area measurements, for a power system with power ... Keywords: Adaptive critic designs, FACTS devices, Particle swarm optimization, Radial basis function network, Wide-area control, Wind power

Wei Qiao; Ganesh K. Venayagamoorthy; Ronald G. Harley

2008-03-01T23:59:59.000Z

163

Cleanup and treatment (CAT) test: a land-area decontamination project utilizing a vacuum method of soil removal  

SciTech Connect

Areas 11 and 13 of the Nevada Test Site (NTS) are contaminated with varying concentrations of Pu-239, 240 and Am-241. An investigation of a vacuum method of soil removal, the Cleanup and Treatment (CAT) test, was conducted over a 3-month period in the plutonium safety shot or Plutonium Valley portion of Area 11. Soil in Plutonium Valley is of the Aridisol Order. The surface 0 to 10 cm is a gravelly loam, and is strongly alkaline (pH 8.8). A large truck-mounted vacuum unit, rather than conventional earth-moving equipment, was used as the primary soil collection unit. Effectiveness of the vacuum method of soil removal was evaluated in relation to conventional earthmoving procedures, particularly in terms of volume reduction of removed soil achieved over conventional techniques. Radiological safety considerations associated with use of the vacuum unit were evaluated in relation to their impact on a full-scale land decontamination program. Environmental and operational impacts of devegetation with retention of root crowns or root systems were investigated. It is concluded that the CAT test was successful under difficult environmental conditions.

Orcutt, J.A.

1982-08-01T23:59:59.000Z

164

EA-1581: Sand Hills Wind Project, Wyoming  

Energy.gov (U.S. Department of Energy (DOE))

The Bureau of Land Management, with DOE’s Western Area Power Administration as a cooperating agency, is preparing this EA to evaluate the environmental impacts of a proposal to construct, operate, and maintain the Sand Hills Wind Energy Facility on private and federal lands in Albany County, Wyoming. If the proposed action is implemented, Western would interconnect the proposed facility to an existing transmission line.

165

NREL: Wind Research - Wind Resource Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Resource Assessment Wind Resource Assessment A map of the United States is color-coded to indicate the high winds at 80 meters. This map shows the wind resource at 80 meters for both land-based and offshore wind resources in the United States. Correct estimation of the energy available in the wind can make or break the economics of wind plant development. Wind mapping and validation techniques developed at the National Wind Technology Center (NWTC) along with collaborations with U.S. companies have produced high-resolution maps of the United States that provide wind plant developers with accurate estimates of the wind resource potential. State Wind Maps International Wind Resource Maps Dynamic Maps, GIS Data, and Analysis Tools Due to the existence of special use airspace (SUA) (i.e., military airspace

166

Wind Agreements (Nebraska)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations address leases or lease options securing land for the study or production of wind-generated energy. The regulations describe agreement terms, compliance, and a prohibition on land...

167

Particle Swarm Optimization and Gradient Descent Methods for Optimization of PI Controller for AGC of Multi-area Thermal-Wind-Hydro Power Plants  

Science Conference Proceedings (OSTI)

The automatic generation control (AGC) of three unequal interconnected Thermal, Wind and Hydro power plant has been designed with PI controller. Further computational intelligent technique Particle Swarm Optimization and conventional Gradient Descent ... Keywords: Automatic generation control, Particle swarm optimization, Gradient Descent method, Generation rate constraint, Area control error, Wind energy conversion system

Naresh Kumari, A N. Jha

2013-04-01T23:59:59.000Z

168

A Population Study of Golden Eagles in the Altamont Pass Wind Resource Area: Population Trend Analysis, 1994-1997  

SciTech Connect

The wind industry has annually reported 28-43 turbine blade strike casualties of golden eagles in the Altamont Pass Wind Resource Area, and many more carcasses have doubtless gone unnoticed. Because this species is especially sensitive to adult survival rate changes, we focused upon estimating the demographic trend of the population. In aerial surveys, we monitored survival within a sample of 179 radio-tagged eagles over a four-year period. We also obtained data on territory occupancy and reproduction of about 65 eagle pairs residing in the area. Of 61 recorded deaths of radio-tagged eagles during the four-year investigation, 23 (38%) were caused by wind turbine blade strikes. Additional fatalities were unrecorded because blade strikes sometimes destroy radio transmitters. Annual survival was estimated at 0.7867 (SE=0.0263) for non-territorial eagles and 0.8964 (SE=0.0371) for territorial ones. Annual reproduction was 0.64 (SE=0.08) young per territorial pair (0.25 per female). These parameters were used to estimate population growth rates under different modeling frameworks. At present, there are indications that a reserve of non-breeding adults still exists, i.e., there is an annual territorial reoccupancy rate of 100% and a low incidence (3%) of subadults as members of breeding pairs.

Predatory Bird Research Group, Long Marine Laboratory

1999-07-20T23:59:59.000Z

169

Bird Risk Behaviors and Fatalities at the Altamont Pass Wind Resource Area: Period of Performance, March 1998--December 2000  

SciTech Connect

It has been documented that wind turbine operations at the Altamont Pass Wind Resource Area kill large numbers of birds of multiple species, including raptors. We initiated a study that integrates research on bird behaviors, raptor prey availability, turbine design, inter-turbine distribution, landscape attributes, and range management practices to explain the variation in avian mortality at two levels of analysis: the turbine and the string of turbines. We found that inter-specific differences in intensities of use of airspace within close proximity did not explain the variation in mortality among species. Unique suites of attributes relate to mortality of each species, so species-specific analyses are required to understand the factors that underlie turbine-caused fatalities. We found that golden eagles are killed by turbines located in the canyons and that rock piles produced during preparation of the wind tower laydown areas related positively to eagle mortality, perhaps due to the use of these rock piles as cover by desert cottontails. Other similar relationships between fatalities and environmental factors are identified and discussed. The tasks remaining to complete the project are summarized.

Thelander, C. G.; Smallwood, K. S.; Rugge, L.

2003-12-01T23:59:59.000Z

170

Wind Power: How Much, How Soon, and At What Cost?  

E-Print Network (OSTI)

been located on land; offshore wind capacity surpassed 1 G Woffshore, and deep offshore wind potential. Even assumingthe potential for offshore wind. As such, the size of the

Wiser, Ryan H

2010-01-01T23:59:59.000Z

171

Operational Impacts of Wind Energy Resources in the Bonneville Power Administration Control Area - Phase I Report  

SciTech Connect

This report presents a methodology developed to study the future impact of wind on BPA power system load following and regulation requirements. The methodology uses historical data and stochastic processes to simulate the load balancing processes in the BPA power system, by mimicking the actual power system operations. Therefore, the results are close to reality, yet the study based on this methodology is convenient to conduct. Compared with the proposed methodology, existing methodologies for doing similar analysis include dispatch model simulation and standard deviation evaluation on load and wind data. Dispatch model simulation is constrained by the design of the dispatch program, and standard deviation evaluation is artificial in separating the load following and regulation requirements, both of which usually do not reflect actual operational practice. The methodology used in this study provides not only capacity requirement information, it also analyzes the ramp rate requirements for system load following and regulation processes. The ramp rate data can be used to evaluate generator response/maneuverability requirements, which is another necessary capability of the generation fleet for the smooth integration of wind energy. The study results are presented in an innovative way such that the increased generation capacity or ramp requirements are compared for two different years, across 24 hours a day. Therefore, the impact of different levels of wind energy on generation requirements at different times can be easily visualized.

Makarov, Yuri V.; Lu, Shuai

2008-07-15T23:59:59.000Z

172

ENVIRONMENTAL LAW IN BRAZIL- ANALYSIS OF ENVIRONMENTAL LICENSING OF WIND POWER PLANTS IN PERMANENT PRESERVATION AREAS  

E-Print Network (OSTI)

The Brazilian electric energy matrix is mostly renewable. According to the Generation Information Base (BIG) of the Brazilian Electricity Regulatory Agency (ANEEL), hydroelectricity is responsible for 67.31 % of the country's energy. The additional generation comes mostly from fossil fuels, which’s use is questioned when it comes to environmental quality and climate change. Despite its abundance, hydroelectric power generation has physical, socioeconomic and environmental limitations. Thus, it is essential to develop alternative technologies, providing security in the supply of electric energy and the maintenance of a clean matrix. Among the alternative technologies available, wind power is the one that has been gaining prominence, domestically and internationally speaking. In the last auction of renewable sources held in August 2010 in Brazil, the energy produced by the plants of sugarcane bagasse (biomass) was traded at an average of R $ 144.20 MWh; wind energy, which was the cheapest, was traded at R $ 130.86, and the energy from small hydropower plants (PCH), at R $ 141.93 MWh. The wind power plants accounted for 70 % of the auction, which resulted in a plan for increasing its installed capacity by fivefold, by the year 2013. Brazil has great potential to be explored (estimated 143,000 MW), yet despite being appealing, wind energy still

Cristiano Abijaode Amaral; Adriana Coli Pedreira

2010-01-01T23:59:59.000Z

173

NREL: Wind Research - Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

spectrum of engineering disciplines that are applicable to both land-based and offshore wind energy, including: atmospheric fluid mechanics and aerodynamics; dynamics, structures,...

174

EIS-0442: Reauthorization of Permits, Maintenance, and Vegetation Management on Western Area Power Administration Transmission Lines on Forest Service Lands, Colorado, Nebraska, and Utah  

Energy.gov (U.S. Department of Energy (DOE))

This EIS is being prepared jointly by DOE’s Western Area Power Administration and the U.S. Forest Service. The EIS evaluates the potential environmental impacts of Western’s proposed changes to vegetation management along its transmission line rights-of-way on National Forest System lands in Colorado, Utah, and Nebraska.

175

Development of a Three-Dimensional Meso-? Primitive Equation Model: Katabatic Winds Simulation in the Area of Terra Nova Bay, Antarctica  

Science Conference Proceedings (OSTI)

The spatial evolution of Antarctic katabatic winds in the area of Terra Nova Bay is examined using the three-dimensional version of the Université Catholique de Louvain-Modèle Atmosphérique Régional (UCL-MAR) mesoscale primitive equation models. ...

Hubert Gallée; Guy Schayes

1994-04-01T23:59:59.000Z

176

Analysis of the Impact of Balancing Area Cooperation on the Operation of the Western Interconnection with Wind and Solar Generation (Presentation)  

DOE Green Energy (OSTI)

This presentation describes the analysis of the impact of balancing area cooperation on the operation of the Western Interconnection with wind and solar generation, including a discussion of operating reserves, ramping, production simulation, and conclusions.

Milligan, M.; Lew, D.; Jordan, G.; Piwko, R.; Kirby, B.; King, J.; Beuning, S.

2011-05-01T23:59:59.000Z

177

EA-1581: Sand Hills Wind Project, Wyoming | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

81: Sand Hills Wind Project, Wyoming 81: Sand Hills Wind Project, Wyoming EA-1581: Sand Hills Wind Project, Wyoming Location of the proposed Sand Hills Wind Project, near Laramie, Wyoming Location of the proposed Sand Hills Wind Project, near Laramie, Wyoming Summary The Bureau of Land Management, with DOE's Western Area Power Administration as a cooperating agency, is preparing this EA to evaluate the environmental impacts of a proposal to construct, operate, and maintain the Sand Hills Wind Energy Facility on private and federal lands in Albany County, Wyoming. If the proposed action is implemented, Western would interconnect the proposed facility to an existing transmission line. Public Comment Opportunities No public comment opportunities available at this time. List of Available Documents

178

EIS-0441: Mohave County Wind Farm Project, Mohave County, Arizona |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

41: Mohave County Wind Farm Project, Mohave County, Arizona 41: Mohave County Wind Farm Project, Mohave County, Arizona EIS-0441: Mohave County Wind Farm Project, Mohave County, Arizona Summary This EIS, prepared by the Bureau of Land Management with DOE's Western Area Power Administration as a cooperating agency, evaluated the environmental impacts of a proposed wind energy project on public lands in Mohave County, Arizona. Power generated by this project would tie to the electrical power grid through an interconnection to one of Western's transmission lines.The project website is http://www.blm.gov/az/st/en/prog/energy/wind/mohave.html. Public Comment Opportunities None available at this time. Documents Available for Download Draft EIS posted at http://www.blm.gov/az/st/en/prog/energy/wind/mohave/reports/DEIS.html.

179

High Horizontal and Vertical Resolution Limited-Area Model: Near-Surface and Wind Energy Forecast Applications  

Science Conference Proceedings (OSTI)

As harvesting of wind energy grows, so does the need for improved forecasts from the surface to the top of wind turbines. To improve mesoscale forecasts of wind, temperature, and dewpoint temperature in this layer, two different approaches are ...

Natacha B. Bernier; Stéphane Bélair

2012-06-01T23:59:59.000Z

180

Seasonal and Interannual Variations of Evapotranspiration and Energy Exchange over Different Land Surfaces in a Semiarid Area of China  

Science Conference Proceedings (OSTI)

Seasonal and interannual variations of evapotranspiration (ET) and energy exchange were estimated over degraded grassland and cropland land surfaces in a semiarid region of northeastern China using the eddy covariance technique from 2003 to 2008. ...

Liu Huizhi; Feng Jianwu

2012-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "land area wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Relationships among Remotely Sensed Data, Surface Energy Balance, and Area-Averaged Fluxes over Partially Vegetated Land Surfaces  

Science Conference Proceedings (OSTI)

Numerous recent field experiments have examined the use of remote sensing to estimate land surface fluxes of latent and sensible heat using combinations of thermal, visible, and near-infrared data. While substantial progress has been made, ...

M. A. Friedl

1996-11-01T23:59:59.000Z

182

AVHRR-Derived Land Surface Conditions for Flux Simulations with a Mesoscale Model over the HAPEX-Sahel Study Area  

Science Conference Proceedings (OSTI)

The description of land surface conditions at a spatial scale adapted to climate and meteorological models is at the core of major problems in environment studies. In this regard, the information routinely provided by remote sensing observations ...

Roselyne Lacaze; Sylvie Donier; Pierre Lacarrère; Jean-Louis Roujean

2003-06-01T23:59:59.000Z

183

Behind "successful" land acquisition : a case study of the Van Quan new urban area project in Hanoi, Vietnam  

E-Print Network (OSTI)

The transition to a market economy has sparked Vietnam's unprecedented urbanization and industrialization. In order to accommodate the spiraling land demand triggered by urban and economic growth, the Vietnamese government ...

Bui, Phuong Anh, M. C. P. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

184

Searchlight Wind Energy Project DEIS Appendix A  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DEIS Appendix A DEIS Appendix A Page | A Appendix A: Public Scoping Report SCOPING SUMMARY REPORT SEARCHLIGHT WIND ENERGY PROJECT ENVIRONMENTAL IMPACT STATEMENT (NVN-084626 Searchlight Wind Energy Project and NVN-085777 Western Area Power Administration Substation) Prepared for: U.S. Department of Interior Bureau of Land Management Las Vegas Field Office Las Vegas, Nevada Prepared by: URS Corporation April 2009 Scoping Summary Report: April 2009 i Table of Contents Searchlight Wind Energy Project EIS TABLE OF CONTENTS 1.0 INTRODUCTION ........................................................................................................................1-1 1.1 OVERVIEW ....................................................................................................................1-1

185

Searchlight Wind Energy Project FEIS Appendix A  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1: Scoping Report 1: Scoping Report SCOPING SUMMARY REPORT SEARCHLIGHT WIND ENERGY PROJECT ENVIRONMENTAL IMPACT STATEMENT (NVN-084626 Searchlight Wind Energy Project and NVN-085777 Western Area Power Administration Substation) Prepared for: U.S. Department of Interior Bureau of Land Management Las Vegas Field Office Las Vegas, Nevada Prepared by: URS Corporation April 2009 Scoping Summary Report: April 2009 i Table of Contents Searchlight Wind Energy Project EIS TABLE OF CONTENTS 1.0 INTRODUCTION ........................................................................................................................1-1 1.1 OVERVIEW ....................................................................................................................1-1

186

Combining Balancing Areas' Variability: Impacts on Wind Integration in the Western Interconnection  

DOE Green Energy (OSTI)

This paper investigates the potential impact of balancing area cooperation on a large-scale in the Western Electricity Coordinating Council (WECC).

Milligan, M.; Kirby, B.; Beuning, S.

2010-07-01T23:59:59.000Z

187

Emerging factors associated with the decline of a gray fox population and multi-scale land cover associations of mesopredators in the Chicago metropolitan area.  

SciTech Connect

Statewide surveys of furbearers in Illinois indicate gray (Urocyon cinereoargenteus) and red (Vulpes vulpes) foxes have experienced substantial declines in relative abundance, whereas other species such as raccoons (Procyon lotor) and coyotes (Canis latrans) have exhibited dramatic increases during the same time period. The cause of the declines of gray and red foxes has not been identified, and the current status of gray foxes remains uncertain. Therefore, I conducted a large-scale predator survey and tracked radiocollared gray foxes from 2004 to 2007 in order to determine the distribution, survival, cause-specific mortality sources and land cover associations of gray foxes in an urbanized region of northeastern Illinois, and examined the relationships between the occurrence of gray fox and the presence other species of mesopredators, specifically coyotes and raccoons. Although generalist mesopredators are common and can reach high densities in many urban areas their urban ecology is poorly understood due to their secretive nature and wariness of humans. Understanding how mesopredators utilize urbanized landscapes can be useful in the management and control of disease outbreaks, mitigation of nuisance wildlife issues, and gaining insight into how mesopredators shape wildlife communities in highly fragmented areas. I examined habitat associations of raccoons, opossums (Didelphis virginiana), domestic cats (Felis catus), coyotes, foxes (gray and red), and striped skunks (Mephitis mephitis) at multiple spatial scales in an urban environment. Gray fox occurrence was rare and widely dispersed, and survival estimates were similar to other studies. Gray fox occurrence was negatively associated with natural and semi-natural land cover types. Fox home range size increased with increasing urban development suggesting that foxes may be negatively influenced by urbanization. Gray fox occurrence was not associated with coyote or raccoon presence. However, spatial avoidance and mortality due to coyote predation was documented and disease was a major mortality source for foxes. The declining relative abundance of gray fox in Illinois is likely a result of a combination of factors. Assessment of habitat associations indicated that urban mesopredators, particularly coyotes and foxes, perceived the landscape as relatively homogeneous and that urban mesopredators interacted with the environment at scales larger than that accommodated by remnant habitat patches. Coyote and fox presence was found to be associated with a high degree of urban development at large and intermediate spatial scales. However, at a small spatial scale fox presence was associated with high density urban land cover whereas coyote presence was associated with urban development with increased forest cover. Urban habitats can offer a diversity of prey items and anthropogenic resources and natural land cover could offer coyotes daytime resting opportunities in urban areas where they may not be as tolerated as smaller foxes. Raccoons and opossums were found to utilize moderately developed landscapes with interspersed natural and semi-natural land covers at a large spatial scale, which may facilitate dispersal movements. At intermediate and small spatial scales, both species were found to utilize areas that were moderately developed and included forested land cover. These results indicated that raccoons and opossums used natural areas in proximity to anthropogenic resources. At a large spatial scale, skunk presence was associated with highly developed landscapes with interspersed natural and semi-natural land covers. This may indicate that skunks perceived the urban matrix as more homogeneous than raccoons or opossums. At an intermediate spatial scale skunks were associated with moderate levels of development and increased forest cover, which indicated that they might utilize natural land cover in proximity to human-dominated land cover. At the smallest spatial scale skunk presence was associated with forested land cover surrounded by a suburban matrix. Compared to raccoon

Willingham, Alison N.; /Ohio State U.

2008-01-01T23:59:59.000Z

188

Evaluation of Global Onshore Wind Energy Potential and Generation Costs  

SciTech Connect

In this study, we develop an updated global estimate of onshore wind energy potential using reanalysis wind speed data, along with updated wind turbine technology performance and cost assumptions as well as explicit consideration of transmission distance in the calculation of transmission costs. We find that wind has the potential to supply a significant portion of world energy needs, although this potential varies substantially by region as well as with assumptions such as on what types of land can be used to site wind farms. Total global wind potential under central assumptions is estimated to be approximately 89 petawatt hours per year at less than 9 cents/kWh with substantial regional variations. One limitation of global wind analyses is that the resolution of current global wind speed reanalysis data can result in an underestimate of high wind areas. A sensitivity analysis of eight key parameters is presented. Wind potential is sensitive to a number of input parameters, particularly those related to land suitability and turbine density as well as cost and financing assumptions which have important policy implications. Transmission cost has a relatively small impact on total wind costs, changing the potential at a given cost by 20-30%. As a result of sensitivities studied here we suggest that further research intended to inform wind supply curve development focus not purely on physical science, such as better resolved wind maps, but also on these less well-defined factors, such as land-suitability, that will also have an impact on the long-term role of wind power.

Zhou, Yuyu; Luckow, Patrick; Smith, Steven J.; Clarke, Leon E.

2012-06-20T23:59:59.000Z

189

Method and Case Study for Estimating the Ramping Capability of a Control Area or Balancing Authority and Implications for Moderate or High Wind Penetration: Preprint  

Science Conference Proceedings (OSTI)

In several regions of the United States there has been a significant increase in wind generation capability over the past several years. As the penetration rate of wind capacity increases, grid operators and planners are increasingly concerned about accommodating the increased variability that wind contributes to the system. In this paper we examine the distinction between regulation, load following, hourly energy, and energy imbalance to understand how restructured power systems accommodate and value inter-hour ramps. We use data from two restructured markets, California and PJM, and from Western Area Power Administration's (WAPA's) Rocky Mountain control area to determine expected load-following capability in each region. Our approach is to examine the load-following capability that currently exists using data from existing generators in the region. We then examine the levels of wind penetration that can be accommodated with this capability using recently collected wind farm data. We discuss how load-following costs are captured in restructured markets, what resources are available to meet these requirements, why there are no explicit load-following tariffs, and the societal importance of being able to access generator ramping capability. Finally, the implications for wind plants and wind integration costs are examined.

Kirby, B.; Milligan, M.

2005-05-01T23:59:59.000Z

190

FINAL REPORT WIND POWER WARM SPRINGS RESERVATION TRIBAL LANDS DOE GRANT NUMBER DE-FG36-07GO17077 SUBMITTED BY WARM SPRINGS POWER & WATER ENTERPRISES A CORPORATE ENTITY OF THE CONFEDERATED TRIBES OF WARM SPRINGS WARM SPRINGS, OREGON  

SciTech Connect

Wind Generation Feasibility Warm Springs Power and Water Enterprises (WSPWE) is a corporate entity owned by the Confederated Tribes of the Warm Springs Reservation, located in central Oregon. The organization is responsible for managing electrical power generation facilities on tribal lands and, as part of its charter, has the responsibility to evaluate and develop renewable energy resources for the Confederated Tribes of Warm Springs. WSPWE recently completed a multi-year-year wind resource assessment of tribal lands, beginning with the installation of wind monitoring towers on the Mutton Mountains site in 2003, and collection of on-site wind data is ongoing. The study identified the Mutton Mountain site on the northeastern edge of the reservation as a site with sufficient wind resources to support a commercial power project estimated to generate over 226,000 MWh per year. Initial estimates indicate that the first phase of the project would be approximately 79.5 MW of installed capacity. This Phase 2 study expands and builds on the previously conducted Phase 1 Wind Resource Assessment, dated June 30, 2007. In order to fully assess the economic benefits that may accrue to the Tribes through wind energy development at Mutton Mountain, a planning-level opinion of probable cost was performed to define the costs associated with key design and construction aspects of the proposed project. This report defines the Mutton Mountain project costs and economics in sufficient detail to allow the Tribes to either build the project themselves or contract with a developer under the most favorable terms possible for the Tribes.

Jim Manion; Michael Lofting; Wil Sando; Emily Leslie; Randy Goff

2009-03-30T23:59:59.000Z

191

Gone with the Wind - The Potential Tragedy of the Common Wind  

E-Print Network (OSTI)

clean, renewable alternative for energy production. Wind isrenewable and clean energy. Future Development In addition to land-based wind energy production,

Lifshitz-Goldberg, Yaei

2010-01-01T23:59:59.000Z

192

The Wind Project Development Process  

Wind Powering America (EERE)

Wind Project Wind Project Development Process Developed for the National Renewable Energy Laboratory by Dale Osborn Distributed Generation Systems, Inc. September 1998 The Wind Project Development Process Site Selection Land Agreements Wind Assessment Environmental Review Economic Modeling Interconnection Studies Financing Permitting Sales Agreements Turbine Procurement Construction Contracting Operations & Maintenance Site Selection Evidence of Significant Wind Preferably Privately Owned Remote Land Proximity to Transmission Lines Reasonable Road Access Few Environmental Concerns Receptive Community Land Agreements Term: Expected Life of the Turbine Assignable Indemnification Rights Compensation: Percentage of Revenues Reclamation Provision Wind Rights, Ingress/Egress Rights, Transmission Rights

193

EIS-0413: Searchlight Wind Energy Project, Searchlight, NV | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

13: Searchlight Wind Energy Project, Searchlight, NV 13: Searchlight Wind Energy Project, Searchlight, NV EIS-0413: Searchlight Wind Energy Project, Searchlight, NV Summary The Department of the Interior's Bureau of Land Management, with DOE's Western Area Power Administration as a cooperating agency, prepared this EIS to evaluate the environmental impacts of a proposal to construct and operate 156 wind turbine generators and related facilities on public lands surrounding the town of Searchlight, Nevada. The proposal includes a substation that would be operated by Western. Public Comment Opportunities None available at this time. Documents Available for Download May 16, 2013 EIS-0413: Record of Decision Searchlight Wind Energy Project, Searchlight, NV January 15, 2013 EIS-0413: Final Environmental Impact Statement

194

United States (48 Contiguous States) Wind Resource Potential Chart  

Wind Powering America (EERE)

Rated Capacity Above Indicated CF (GW) Rated Capacity Above Indicated CF (GW) United States (48 Contiguous States) - Wind Resource Potential Cumulative Rated Capacity vs. Gross Capacity Factor (CF) 80 m The estimates show the potential gigawatts of rated capacity that could be installed on land above a given gross capacity factor (without losses) at 80-m and 100-m heights above ground. Areas greater than 30% at 80 m are generally considered to have suitable wind resource for potential wind development with today's advanced wind turbine technology. AWS Truewind, LLC developed the wind resource data for windNavigator® (http://navigator.awstruewind.com) with a spatial resolution of 200 m. NREL filtered the wind potential estimates to

195

A Simple Parcel Method for Prediction of Cumulus Onset and Area-Averaged Cloud Amount over Heterogeneous Land Surfaces  

Science Conference Proceedings (OSTI)

The purpose of this note is to compare several methods for predicting the onset and quantitative amount of cloud cover over heterogeneous land surfaces. Among the methods tested are that of Wilde et al. (1985) and a new, simple parcel approach. ...

Peter J. Wetzel

1990-06-01T23:59:59.000Z

196

Voltage quality behaviour of a wind turbine based Remote Area Power System  

Science Conference Proceedings (OSTI)

The power quality behaviour of a Remote Area Power System (RAPS) consisting of a Doubly Fed Induction Generator (DFIG), its main loads and a dummy load is presented in this paper. The dummy load is used to maintain the power balance of the system under ...

Nishad Mendis; Kashem M. Muttaqi; Sarath Perera

2009-02-01T23:59:59.000Z

197

New England Wind Forum: Siting Considerations  

Wind Powering America (EERE)

Siting Considerations Siting Considerations Choosing a proper site for a wind turbine or farm is critical to a successful project. While the most important factors may vary from site to site, in any given instance a single factor can undermine success of an otherwise superlative project. On the other hand, sometimes a site may be weak in one area but so strong in another area that it is viable, such as a site with very strong winds that is farther than normal from a transmission line. A viable wind energy site generally includes the following key factors: Attractive Wind Resource Landowner and Community Support Feasible Permitting Compatible Land Use Nearby Access to an Appropriate Electrical Interconnect Point Appropriate Site Conditions for Access During Construction and Operations

198

Sale of Water Resource Land (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sale of Water Resource Land (Maine) Sale of Water Resource Land (Maine) Sale of Water Resource Land (Maine) < Back Eligibility Municipal/Public Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maine Program Type Siting and Permitting This rule requires an eight month advance notice period whenever a consumer-owned water utility intends to transfer water resource land, defined as any land or real property owned by a water utility for the purposes of providing a source of supply, storing water or protecting sources of supply or water storage, including reservoirs, lakes, ponds, rivers or streams, wetlands and watershed areas. The rule also provides an assignable right of first refusal to the municipality or municipalities

199

Wind energy | Open Energy Information  

Open Energy Info (EERE)

(Redirected from Wind) (Redirected from Wind) Jump to: navigation, search Wind energy is a form of solar energy.[1] Wind energy (or wind power) describes the process by which wind is used to generate electricity. Wind turbines convert the kinetic energy in the wind into mechanical power. A generator can convert mechanical power into electricity[2]. Mechanical power can also be utilized directly for specific tasks such as pumping water. The US DOE developed a short wind power animation that provides an overview of how a wind turbine works and describes the wind resources in the United States. Contents 1 Wind Energy Basics 1.1 Equation for Wind Power 2 DOE Wind Programs and Information 3 Worldwide Installed Capacity 3.1 United States Installed Capacity 4 Wind Farm Development 4.1 Land Requirements

200

Order-of-magnitude enhancement of wind farm power density via counter-rotating vertical-axis wind turbine arrays  

E-Print Network (OSTI)

Modern wind farms require significant land resources to separate each wind turbine from the adjacent turbine wakes. These aerodynamic constraints limit the amount of power that can be extracted from a given wind farm footprint. We conducted full-scale field tests of vertical-axis wind turbines in counter-rotating configurations under natural wind conditions. Whereas wind farms consisting of propeller-style turbines produce 2 to 3 watts of power per square meter of land area, these field tests indicate that power densities approaching 100 W m^-2 can be achieved by arranging vertical-axis wind turbines in layouts that enable them to extract energy from adjacent wakes. In addition, we calculated that the global wind resource available to 10-m tall turbines based on the present approach is approximately 225 trillion watts (TW), which significantly exceeds the global wind resource available to 80-m tall, propeller-style wind turbines, approximately 75 TW. This improvement is due to the closer spacing that can be a...

Dabiri, John O

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "land area wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

MODIS Land Products Subsets  

NLE Websites -- All DOE Office Websites (Extended Search)

ORNL DAAC MODIS Land Product Subsets MODIS Collection 5 Global Subsetting and Visualization Tool Create subset for user selected site, area, product, and time period. Data for...

202

land | OpenEI  

Open Energy Info (EERE)

land land Dataset Summary Description This dataset is part of a larger internal dataset at the National Renewable Energy Laboratory (NREL) that explores various characteristics of large solar electric (both PV and CSP) facilities around the United States. This dataset focuses on the land use characteristics for solar facilities that are either under construction or currently in operation. Source Land-Use Requirements for Solar Power Plants in the United States Date Released June 25th, 2013 (5 months ago) Date Updated Unknown Keywords acres area average concentrating solar power csp Density electric hectares km2 land land requirements land use land-use mean photovoltaic photovoltaics PV solar statistics Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon Master Solar Land Use Spreadsheet (xlsx, 1.5 MiB)

203

Property:WindTurbineManufacturer | Open Energy Information  

Open Energy Info (EERE)

WindTurbineManufacturer WindTurbineManufacturer Jump to: navigation, search This is a property of type Page. Pages using the property "WindTurbineManufacturer" Showing 25 pages using this property. (previous 25) (next 25) 3 3-D Metals + Northern Power Systems + A AB Tehachapi Wind Farm + Vestas + AFCEE MMR Turbines + GE Energy + AG Land 1 + GE Energy + AG Land 2 + GE Energy + AG Land 3 + GE Energy + AG Land 4 + GE Energy + AG Land 5 + GE Energy + AG Land 6 + GE Energy + AVTEC + Northern Power Systems + Adair Wind Farm I + Vestas + Adair Wind Farm II + Siemens + Adams Wind Project + Alstom + Aeroman Repower Wind Farm + GE Energy + Affinity Wind Farm + Suzlon Energy Company + Agassiz Beach Wind Farm + Vestas + Agriwind Wind Farm + Suzlon Energy Company + Ainsworth Wind Energy Facility + Vestas +

204

Making the Economic Case for Small-Scale Distributed Wind -- A Screening for Distributed Generation Wind Opportunities: Preprint  

DOE Green Energy (OSTI)

This study was an offshoot of a previous assessment, which examined the potential for large-scale, greater than 50 MW, wind development on occupied federal agency lands. The study did not find significant commercial wind development opportunities, primarily because of poor wind resource on available and appropriately sized land areas or land use or aesthetic concerns. The few sites that could accommodate a large wind farm failed to have transmission lines in optimum locations required to generate power at competitive wholesale prices. The study did identify a promising but less common distributed generation (DG) development option. This follow-up study documents the NREL/Global Energy Concepts team efforts to identify economic DG wind projects at a select group of occupied federal sites. It employs a screening strategy based on project economics that go beyond quantity of windy land to include state and utility incentives as well as the value of avoided power purchases. It attempts to account for the extra costs and difficulties associated with small projects through the use of project scenarios that are more compatible with federal facilities and existing land uses. These benefits and barriers of DG are discussed, and the screening methodology and results are included. The report concludes with generalizations about the screening method and recommendations for improvement and other potential applications for this methodology.

Kandt, A.; Brown, E.; Dominick, J.; Jurotich, T.

2007-06-01T23:59:59.000Z

205

Revegetation Plan for Areas of the Fitzner-Eberhardt Arid Lands Ecology Reserve Affected by Decommissioning of Buildings and Infrastructure and Debris Clean-up Actions  

SciTech Connect

The U.S. Department of Energy (DOE), Richland Operations Office is working to remove a number of facilities on the Fitzner Eberhardt Arid Lands Ecology Reserve (ALE), which is part of the Hanford Reach National Monument. Decommissioning and removal of buildings and debris on ALE will leave bare soils and excavated areas that need to be revegetated to prevent erosion and weed invasion. Four main areas within ALE are affected by these activities (DOE 2009;DOE/EA-1660F): 1) facilities along the ridgeline of Rattlesnake Mountain, 2) the former Nike missile base and ALE HQ laboratory buildings, 3) the aquatic research laboratory at Rattlesnake Springs area, and 4) a number of small sites across ALE where various types of debris remain from previous uses. This revegetation plan addresses the revegetation and restoration of those land areas disturbed by decommissioning and removal of buildings, facilities and associated infrastructure or debris removal. The primary objective of the revegetation efforts on ALE is to establish native vegetation at each of the sites that will enhance and accelerate the recovery of the native plant community that naturally persists at that location. Revegetation is intended to meet the direction specified by the Environmental Assessment (DOE 2009; DOE/EA-1660F) and by Stipulation C.7 of the Memorandum of Agreement (MOA) for the Rattlesnake Mountain Combined Community Communication Facility and InfrastructureCleanup on the Fitzner/Eberhardt Arid Lands Ecology Reserve, Hanford Site, Richland Washington(DOE 2009; Appendix B). Pacific Northwest National Laboratory (PNNL) under contract with CH2M Hill Plateau Remediation Company (CPRC) and in consultation with the tribes and DOE-RL developed a site-specific strategy for each of the revegetation units identified within this document. The strategy and implementation approach for each revegetation unit identifies an appropriate native species mix and outlines the necessary site preparation activities and specific methods for seeding and planting at each area. evegetation work is scheduled to commence during the first quarter of FY 2011 to minimize the amount of time that sites are unvegetated and more susceptible to invasion by non-native weedy annual species.

Downs, Janelle L.; Durham, Robin E.; Larson, Kyle B.

2011-01-01T23:59:59.000Z

206

Wind Energy Resources | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

determine whether the wind resource in a particular area is adequate for wind power. Addthis Related Articles Glossary of Energy Related Terms Hydropower Technologies Wind Turbines...

207

Wind Power Plant Evaluation Naval Auxiliary Landing Field, San Clemente Island, California: Period of Performance 24 September 1999--15 December 2000  

DOE Green Energy (OSTI)

The purpose of this report is to evaluate the wind power benefits and impacts to the San Clement Island wind power system, including energy savings, emissions reduction, system stability, and decreased naval dependence on fossil fuel at the island. The primary goal of the SCI wind power system has been to operate with the existing diesel power plant and provide equivalent or better power quality and system reliability than the existing diesel system. The wind system is intended to reduce, as far as possible, the use of diesel fuel and the inherent generation of nitrogen oxide emissions and other pollutants.

Olsen, T.L.; Gulman, P.J.; McKenna, E.

2000-12-11T23:59:59.000Z

208

Time-domain Fatigue Response and Reliability Analysis of Offshore Wind Turbines with  

E-Print Network (OSTI)

-domain based simulation model of 750 kW land-based wind turbine Gear contact fatigue analysis of a wind of 750 kW land-based wind turbine Gear contact fatigue analysis of a wind turbine drive train under response and reliability analysis #12;Time domain based simulation model of 750 kW land-based wind turbine

Nørvåg, Kjetil

209

Wind | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Wind Wind America is home to one of the largest and fastest growing wind markets in the world. Watch the video to learn more about the latest trends in the U.S. wind power market and join us this Thursday, August 8 at 3 pm ET for a Google+ Hangout on wind energy in America. The United States is home to one of the largest and fastest growing wind markets in the world. To stay competitive in this sector, the Energy Department invests in wind projects, both on land and offshore, to advance technology innovations, create job opportunities and boost economic growth. Moving forward, the U.S. wind industry remains a critical part of the Energy Department's all-of-the-above energy strategy to cut carbon pollution, diversify our energy economy and bring the next-generation of

210

Stakeholder Engagement and Outreach: Resources for Public Lands  

Wind Powering America (EERE)

Resources Public Power Regional Activities State Activities State Lands Siting Resources for Public Lands This page lists wind-related resources and tools such as publications, Web resources, and news about public lands. Search the Stakeholder Engagement and Outreach initiative's Database Choose a Type of Information All News Publications Web Resource Videos Choose # of Records per Page Default (10 per page) 5 25 50 To search the titles, enter a word or phrase. Start Search Clear Contents Total of 24 records found. Page 1 of 5, Sorted by descending date Filtered by: Public Lands 1 2 3 4 5 Next Page >> Date sort by ascending date sort by descending date State sort by ascending state sort by descending state Type of Information Program Area Title sort by ascending title sort by descending title

211

Renewable Energy Project Leasing on Tribal Lands Webinar | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Leasing on Tribal Lands Webinar Project Leasing on Tribal Lands Webinar Renewable Energy Project Leasing on Tribal Lands Webinar June 26, 2013 11:00AM MDT Webinar The U.S. Department of Energy (DOE) Office of Indian Energy Policy and Programs, Office of Energy Efficiency and Renewable Energy Tribal Energy Program, and Western Area Power Administration are pleased to continue their sponsorship of the Tribal Renewable Energy Webinar Series. According to the Intertribal Council on Utility Policy, wind resources on tribal lands in the Great Plains alone could power more than 50 million homes. The HEARTH Act of 2012 provides the opportunity for Tribes to eliminate delays, costs, federal environmental reviews, federal administrative and judicial litigation, and risks associated with Bureau of

212

WindPACT Turbine Design Scaling Studies Technical Area 2: Turbine, Rotor, and Blade Logistics; March 27, 2000 to December 31, 2000  

NLE Websites -- All DOE Office Websites (Extended Search)

1 * NREL/SR-500-29439 1 * NREL/SR-500-29439 Kevin Smith Global Energy Concepts LLC Kirkland, Washington WindPACT Turbine Design Scaling Studies Technical Area 2: Turbine, Rotor, and Blade Logistics March 27, 2000 to December 31, 2000 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute * * * * Battelle * * * * Bechtel Contract No. DE-AC36-99-GO10337 June 2001 * NREL/SR-500-29439 WindPACT Turbine Design Scaling Studies Technical Area 2: Turbine, Rotor, and Blade Logistics March 27, 2000 to December 31, 2000 Kevin Smith Global Energy Concepts LLC Kirkland, Washington NREL Technical Monitor: Alan Laxson Prepared under Subcontract No. YAM-0-30203-01 National Renewable Energy Laboratory

213

Naval Station Newport Wind Resource Assessment. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites, and The Naval Facilities Engineering Service Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Naval Station Newport Naval Station Newport Wind Resource Assessment A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites, and The Naval Facilities Engineering Service Center Robi Robichaud, Jason Fields, and Joseph Owen Roberts Technical Report NREL/TP-6A20-52801 February 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Naval Station Newport

214

NREL: Wind Research - Offshore Wind Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Offshore Wind Research Offshore Wind Research Photo of a European offshore wind farm. Early progress in European Offshore Wind Energy over the last decade provides a glimpse into the vast potential of the global offshore resource. For more than eight years, NREL has worked with the Department of Energy to become an international leader in offshore wind energy research. Capabilities NREL's offshore wind capabilities focus on critical areas that reflect the long-term needs of the offshore wind energy industry and the U.S. Department of Energy including: Offshore Design Tools and Methods Offshore Standards and Testing Energy Analysis of Offshore Systems Offshore Wind Resource Characterization Grid Integration of Offshore Wind Key Research NREL documented the status of offshore wind energy in the United States in

215

Remote sensing for wind power potential: a prospector's handbook  

DOE Green Energy (OSTI)

Remote sensing can aid in identifying and locating indicators of wind power potential from the terrestrial, marine, and atmospheric environments (i.e.: wind-deformed trees, white caps, and areas of thermal flux). It is not considered as a tool for determining wind power potential. A wide variety of remotely sensed evidence is described in terms of the scale at which evidence of wind power can be identified, and the appropriate remote sensors for finding such evidence. Remote sensing can be used for regional area prospecting using small-scale imagery. The information from such small-scale imagery is most often qualitative, and if it is transitory, examination of a number of images to verify presistence of the feature may be required. However, this evidence will allow rapid screening of a large area. Medium-scale imagery provides a better picture of the evidence obtained from small-scale imagery. At this level it is best to use existing imagery. Criteria relating to land use, accessibility, and proximity of candidate sites to nearby transmission lines can also be effectively evaluated from medium-scale imagery. Large-scale imagery provides the most quantitative evidence of the strength of wind. Wind-deformed trees can be identified at a large number of sites using only a few hours in locally chartered aircraft. A handheld 35mm camera can adequately document any evidence of wind. Three case studies that employ remote sensing prospecting techniques are described. Based on remotely sensed evidence, the wind power potential in three geographically and climatically diverse areas of the United States is estimated, and the estimates are compared to actual wind data in those regions. In addition, the cost of each survey is discussed. The results indicate that remote sensing for wind power potential is a quick, cost effective, and fairly reliable method for screening large areas for wind power potential.

Wade, J.E.; Maule, P.A.; Bodvarsson, G.; Rosenfeld, C.L.; Woolley, S.G.; McClenahan, M.R.

1983-02-01T23:59:59.000Z

216

Stakeholder Engagement and Outreach: Offshore 90-Meter Wind Maps and Wind  

Wind Powering America (EERE)

Offshore 90-Meter Wind Maps and Wind Resource Potential Offshore 90-Meter Wind Maps and Wind Resource Potential The Stakeholder Engagement and Outreach initiative provides 90-meter (m) height, high-resolution wind maps and estimates of the total offshore wind potential that would be possible from developing the available offshore areas. The offshore wind resource maps can be used as a guide to identify regions for commercial wind development. A map of the United States showing offshore wind resource. Washington offshore wind map. Oregon offshore wind map. California offshore wind map. Texas offshore wind map. Minnesota offshore wind map. Lousiana offshore wind map. Wisconsin offshore wind map. Michigan offshore wind map. Michigan offshore wind map. Illinois offshore wind map. Indiana offshore wind map. Ohio offshore wind map. Georgia offshore wind map. South Carolina offshore wind map. North Carolina offshore wind map. Virginia offshore wind map. Maryland offshore wind map. Pennsylvania offshore wind map. Delaware offshore wind map. New Jersey offshore wind map. New York offshore wind map. Maine offshore wind map. Massachusetts offshore wind map. Rhode Island offshore wind map. Connecticut offshore wind map. Hawaii offshore wind map. Delaware offshore wind map. New Hampshire offshore wind map.

217

An integrated multi-criteria scenario evaluation web tool for participatory land-use planning in urbanized areas: The Ecosystem Portfolio Model  

Science Conference Proceedings (OSTI)

Land-use land-cover change is one of the most important and direct drivers of changes in ecosystem functions and services. Given the complexity of the decision-making, there is a need for Internet-based decision support systems with scenario evaluation ... Keywords: Decision support, Ecological value, Ecosystem restoration, Land-use planning, Quality of life, Sea level rise mitigation, Sustainability

W. B. Labiosa; W. M. Forney; A. -M. Esnard; D. Mitsova-Boneva; R. Bernknopf; P. Hearn; D. Hogan; L. Pearlstine; D. Strong; H. Gladwin; E. Swain

2013-03-01T23:59:59.000Z

218

Lower Sioux Wind Feasibility & Development  

SciTech Connect

This report describes the process and findings of a Wind Energy Feasibility Study (Study) conducted by the Lower Sioux Indian Community (Community). The Community is evaluating the development of a wind energy project located on tribal land. The project scope was to analyze the critical issues in determining advantages and disadvantages of wind development within the Community. This analysis addresses both of the Community's wind energy development objectives: the single turbine project and the Commerical-scale multiple turbine project. The main tasks of the feasibility study are: land use and contraint analysis; wind resource evaluation; utility interconnection analysis; and project structure and economics.

Minkel, Darin

2012-04-01T23:59:59.000Z

219

Limits to the power density of very large wind farms  

E-Print Network (OSTI)

A simple analysis is presented concerning an upper limit of the power density (power per unit land area) of a very large wind farm located at the bottom of a fully developed boundary layer. The analysis suggests that the limit of the power density is about 0.38 times $\\tau_{w0}U_{F0}$, where $\\tau_{w0}$ is the natural shear stress on the ground (that is observed before constructing the wind farm) and $U_{F0}$ is the natural or undisturbed wind speed averaged across the height of the farm to be constructed. Importantly, this implies that the maximum extractable power from such a very large wind farm will not be proportional to the cubic of the wind speed at the farm height, or even the farm height itself, but be proportional to $U_{F0}$.

Nishino, Takafumi

2013-01-01T23:59:59.000Z

220

Searchlight Wind Energy Project FEIS Appendix E  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

E E Page | E 21B Appendix E: Visual Simulations and Contrast Rating Forms Form 8400-4 UNITED STATES DEPARTMENT OF THE INTERIOR BUREAU OF LAND MANAGEMENT VISUAL CONTRAST RATING WORKSHEET Date June 2, 2009 District Las Vegas Field Office Resource Area Activity (program) Proposed Wind Generation SECTION A. PROJECT INFORMATION 1. Project Name Searchlight Wind Project 4. Location Township 23S Range 63E Section 2 5. Location Sketch 2. Key Observation Point KOP 1 - Railroad Pass Hotel/Casino 3. VRM Class NA SECTION B. CHARACTERISTIC LANDSCAPE DESCRIPTION 1. LAND/WATER 2. VEGETATION 3. STRUCTURES FORM Gently rolling to flat valleys with angular and jagged mountainous features Pixilated and amorphous/patchy Vertical, horizontal, angular, cylindrical, and geometric

Note: This page contains sample records for the topic "land area wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

NREL: Wind Research - Grid Integration of Offshore Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

Grid Integration of Offshore Wind Grid Integration of Offshore Wind Photograph of a wind turbine in the ocean. Located about 10 kilometers off the coast of Arklow, Ireland, the Arklow Bank offshore wind park consists of seven GE Wind 3.6-MW wind turbines. Much can be learned from the existing land-based integration research for handling the variability and uncertainty of the wind resource. Integration and Transmission One comprehensive grid integration study is the Eastern Wind Integration and Transmission Study (EWITS), in which offshore wind scenarios were analyzed. Nearly 80 GW of offshore wind was studied in the highest penetration scenario. Specific offshore grid distribution and transmission solutions were identified, including cost estimates. With the Atlantic coast likely to lead the way in offshore wind power deployment, EWITS is a benchmark for

222

AREA  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AREA AREA FAQ # Question Response 316 vs DCAA FAQ 1 An inquiry from CH about an SBIR recipient asking if a DCAA audit is sufficient to comply with the regulation or if they need to add this to their audit they have performed yearly by a public accounting firm. 316 audits are essentially A-133 audits for for-profit entities. They DO NOT replace DCAA or other audits requested by DOE to look at indirect rates or incurred costs or closeouts. DCAA would never agree to perform A-133 or our 316 audits. They don't do A-133 audits for DOD awardees. The purpose of the audits are different, look at different things and in the few instances of overlap, from different perspectives. 316

223

The Effect of Clouds and Wind on the Difference in Nocturnal Cooling Rates between Urban and Rural Areas  

Science Conference Proceedings (OSTI)

The urban warming effect is interesting in its own right and is important for understanding global warming. The aim of this study is to determine how the urban warming effect changes with cloud conditions and with wind speed. Studies of the urban ...

Stanley Q. Kidder; Oskar M. Essenwanger

1995-11-01T23:59:59.000Z

224

Simulations of the Climatological Wind Field in the Baltic Sea Area Using a Mesoscale Higher-Order Closure Model  

Science Conference Proceedings (OSTI)

A three-dimensional mesoscale numerical model is utilized to investigate the climatological wind field over the Baltic Sea. To cover all synoptic and boundary layer conditions, a large number of model runs have to be made. Since this type of ...

Stefan Sandström

1997-11-01T23:59:59.000Z

225

A Preliminary Survey of C-Band RFI in the SMEX04 Area of Operations using WindSat Radiometry  

E-Print Network (OSTI)

spacing is set equal to four times the mean spacing of the swath data obtained from WindSat. This grid. of Electrical & Computer Engineering, 340 Whittemore Hall, Virginia Polytechnic Institute & State University distribution can be obtained from an analysis of radiometry from exisiting systems in Earth orbit, as described

Ellingson, Steven W.

226

NREL: Wind Research - NREL's System Advisor Model: New Features...  

NLE Websites -- All DOE Office Websites (Extended Search)

latest wind power model includes the following enhancements: Integration of the wind turbine design model with SAM's wind farm model A cost estimate option for land-based and...

227

Wind Power Across Native America: Opportunities, Challenges, and Status (Poster)  

Science Conference Proceedings (OSTI)

Wind projects on tribal lands are differennt, and this poster outlines the ways in which these projects differ, a summary of existing and pending Native American Wind Projects (50 kW and larger), and tribal wind opportunities and issues.

Jimenez, A.; Gough, R.; Flowers, L.; Taylor, R.

2009-05-01T23:59:59.000Z

228

The National Wind Technology Center  

DOE Green Energy (OSTI)

Wind energy research began at the Rocky Flats test site in 1976 when Rockwell International subcontracted with the Energy Research and Development Administration (ERDA). The Rocky Flats Plant was competitively selected from a number of ERDA facilities primarily because it experienced high instantaneous winds and provided a large, clear land area. By 1977, several small wind turbines were in place. During the facility`s peak of operation, in 1979-1980, researchers were testing as many as 23 small wind turbines of various configurations, including commercially available machines and prototype turbines developed under subcontract to Rocky Flats. Facilities also included 8-kW, 40-kW, and 225-kW dynamometers; a variable-speed test bed; a wind/hybrid test facility; a controlled velocity test facility (in Pueblo, Colorado); a modal test facility, and a multimegawatt switchgear facility. The main laboratory building was dedicated in July 1981 and was operated by the Rocky Flats Plant until 1984, when the Solar Energy Research Institute (SERI) and Rocky Flats wind energy programs were merged and transferred to SERI. SERI and now the National Renewable Energy Laboratory (NREL) continued to conduct wind turbine system component tests after 1987, when most program personnel were moved to the Denver WEst Office Park in Golden and site ownership was transferred back to Rocky Flats. The Combined Experiment test bed was installed and began operation in 1988, and the NREL structural test facility began operation in 1990. In 1993, the site`s operation was officially transferred to the DOE Golden Field Office that oversees NREL. This move was in anticipation of NREL`s renovation and reoccupation of the facility in 1994.

Thresher, R.W.; Hock, S.M. [National Renewable Energy Lab., Golden, CO (United States); Loose, R.R.; Cadogon, J.B.

1994-07-01T23:59:59.000Z

229

NREL: Wind Research - Small Wind Turbine Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Wind Turbine Research Small Wind Turbine Research The National Renewable Energy Laboratory and U.S. Department of Energy (NREL/DOE) Small Wind Project's objectives are to reduce barriers to wind energy expansion, stabilize the market, and expand the number of small wind turbine systems installed in the United States. "Small wind turbine" refers to a turbine smaller than or equal to 100 kilowatts (kW). "Distributed wind" includes small and midsize turbines (100 kW through 1 megawatt [MW]). Since 1996, NREL's small wind turbine research has provided turbine testing, turbine development, and prototype refinement leading to more commercially available small wind turbines. Work is conducted under the following areas. You can also learn more about state and federal policies

230

New England Wind Forum: Determining Factors Influencing Wind Economics in  

Wind Powering America (EERE)

Determining Factors Influencing Wind Economics in New England Determining Factors Influencing Wind Economics in New England Figure 1: Installed Wind Project Costs by Region: 2003 through 2006 Projects Only New England's high land values, smaller land parcels, varied terrain, and more moderate wind speeds make for projects of smaller scale and higher unit cost than those likely to be built in Texas or the Great Plains states. Click on the graph to view a larger version. New England's high land values, smaller land parcels, varied terrain, and more moderate wind speeds make for projects of smaller scale and higher unit cost than those likely to be built in Texas or the Great Plains states. View a larger version of the graph. Figure 2: 2006 Project Capacity Factors by Region: 2002 through 2005 Projects Only The chart depicts project capacity factor by region. Click on the graph to view a larger version.

231

Land use and land cover, 1978 Hot Springs, South Dakota, Nebraska  

SciTech Connect

Land use and land cover of the area surrounding Hot Springs, South Dakota in 1978 is presented in map form. (ACR)

1980-01-01T23:59:59.000Z

232

2010 Cost of Wind Energy Review  

DOE Green Energy (OSTI)

This document provides a detailed description of NREL's levelized cost of wind energy equation, assumptions and results in 2010, including historical cost trends and future projections for land-based and offshore utility-scale wind.

Tegen, S.; Hand, M.; Maples, B.; Lantz, E.; Schwabe, P.; Smith, A.

2012-04-01T23:59:59.000Z

233

Wind Energy Resource Atlas of the Philippines  

DOE Green Energy (OSTI)

This report contains the results of a wind resource analysis and mapping study for the Philippine archipelago. The study's objective was to identify potential wind resource areas and quantify the value of those resources within those areas. The wind resource maps and other wind resource characteristic information will be used to identify prospective areas for wind-energy applications.

Elliott, D.; Schwartz, M.; George, R.; Haymes, S.; Heimiller, D.; Scott, G.; McCarthy, E.

2001-03-06T23:59:59.000Z

234

Cost of Offshore Wind Energy Charlene Nalubega  

E-Print Network (OSTI)

Cost of Offshore Wind Energy water as well as on land based wind farms. The specific offshore wind energy case under consideration kilowatt Hour will be determined. Wind Energy has been around for a very long time. It started as out

Mountziaris, T. J.

235

Stakeholder Engagement and Outreach: State Wind Activities  

Wind Powering America (EERE)

Federal, Federal, State, & Local Printable Version Bookmark and Share Economic Development Policy Public Lands Public Power Regional Activities State Activities State Lands Siting State Wind Activities The U.S. map below summarizes Wind Powering America's state activities as of February 2010, which include Wind Working Groups, validated wind maps, anemometer loan programs, small wind guides, Wind for Schools Wind Applications Centers, exhibits, and workshops or webcasts. To read more state-specific news, click on a state. You can also view an enlarged map or print the state wind activities map. U.S. map showing Wind Powering America's activities in each state. Washington has an inactive/evolved wind working group, validated wind map, and a small wind guide. Exhibits have been displayed. Oregon has a wind working group, validated wind map, small wind guide, an anemometer loan program, and has had workshops or Webcasts. California has an inactive/evolved wind working group and valided wind map. Exhibits have been displayed. Idaho has an inactive/evolved wind working group, validated wind map, small wind guide, an anemometer loan program, has had workshops or Webcasts, exhibits have been displayed, and it has a Wind for Schools Wind Applications Center. Nevada has a wind working group, validated wind map, a small wind guide, an anemometer loan program, and has had workshops or Webcasts and exhibits. Montana has a wind working group, validated wind map, small wind guide, an anemometer loan program, and has had workshops or Webcasts, exhibits have been displayed, and it has a Wind for Schools Wind Applications Center. Wyoming has a wind working group, validated wind map, small wind guide, anemometer loan program, and has had workshops or Webcasts and exhibits. Utah has a wind working group, validated wind map, a small wind guide, an anemometer loan program, and has had workshops or Webcasts. Arizona has a wind working group, validated wind map, small wind guide, an anemometer loan program, has had workshops or Webcasts, and exhibits have been displayed. Colorado has a wind working group, a validated wind map, small wind guide, an anemometer loan program, has had workshops or Webcasts, exhibits have been displayed, and it has a Wind for Schools Wind Applications Center. New Mexico has a wind working group, validated wind map, small wind guide, an anemometer loan program, has had workshops or Webcasts, and exhibits have been displayed. North Dakota has a wind working group, validated wind map, small wind guide, an anemometer loan program, and has had workshops or Webcasts and exhibits. South Dakota has a wind working group, a validated wind map, small wind guide, an anemometer loan program, has had workshops or Webcasts, exhibits have been displayed, and it has a Wind for Schools Wind Applications Center. Nebraska has a wind working group, a validated wind map, a small wind guide, has had workshops or Webcasts, exhibits have been displayed, and it has a Wind for Schools Wind Applications Center. Kansas has a wind working group, a validated wind map, a small wind guide, has had workshops or Webcasts, exhibits have been displayed, and it has a Wind for Schools Wind Applications Center. Oklahoma has a wind working group, validated wind map, small wind guide, an anemometer loan program, and has had workshops or Webcasts. Texas currently does not have any Wind Powering America activities. Minnesota has a small wind guide. Iowa has a small wind guide and has had exhibits. Missouri has a wind working group, validated wind map, small wind guide, an anemometer loan program, and has had workshops or Webcasts. Arkansas has a wind working group, validated wind map, and workshops or Webcasts. Lousiana currently does not have any Wind Powering America activities. Mississippi currently does not have any Wind Powering America activities. Alabama currently does not have any Wind Powering America activities. Georgia has a wind working group, a validated wind map, and has had workshops or Webcasts. Florida currently does not have any Wind Powering America activities. South Carolina has a wind working group. Alaska has a wind working group, validated wind map, an anemometer loan program, has had workshops or Webcasts, and it has a Wind for Schools Wind Applications Center. Hawaii has a wind working group, validated wind map, a small wind guide, and has had exhibits. Puerto Rico has a validated wind map and a planned wind working group. Wisconsin has a wind working group, a small wind guide, an anemometer loan program, and has had workshops or Webcasts. Illinois has a wind working group, validated wind map, a small wind guide, and has had workshops or Webcasts. Michigan has a wind working group, validated wind map, a small wind guide, an anemometer loan program, and has had workshops or Webcasts and exhibits. Indiana has a wind working group, a validated wind map, a small wind guide, and has had workshops or Webcasts and exhibits. Kentucky has a wind working group and a validated wind map. Tennessee has a wind working group, a validated wind map, small wind guide, anemometer loan program, and has had workshops or Webcasts. North Carolina has a wind working group, validated wind map, a small wind guide, an anemometer loan program, has had workshops or Webcasts, exhibits have been displayed, and it has a Wind for Schools Wind Applications Center. Virginia has a wind working group, a validated wind map, a small wind guide, an anemometer loan program, has had workshops or Webcasts, exhibits have been displayed, and it has a Wind for Schools Wind Applications Center. West Virginia has a wind working group, a validated wind map, and has had workshops or Webcasts. Ohio has a wind working group, validated wind map, a small wind guide, an anemometer loan program, and has had workshops or Webcasts. Maryland has a wind working group, a validated wind map, a small wind guide, and an anemometer loan program. Pennsylvania has a wind working group, a validated wind map, small wind guide, an anemometer loan program, has had workshops or Webcasts, and it has a Wind for Schools Wind Applications Center. Delaware has a validated wind map and a small wind guide. New Jersey has a wind working group, validated wind map, a small wind guide, an anemometer loan program, and has had workshops or Webcasts. Connecticut has a wind working group and a validated wind map. New York has a small wind guide. Vermont has a validated wind map and a small wind guide. Massachusetts has a wind working group, validated wind map, a small wind guide, an anemometer loan program, and has had exhibits. New Hampshire has a validated wind map and small wind guide. Maine has a wind working group, validated wind map, small wind guide, an anemometer loan program, and has had workshops or Webcasts. Rhode Island has a validated wind map and small wind guide. The U.S. Virgin Islands have a validated wind map.

236

Evaluation of Land Surface Models in Reproducing Satellite Derived Leaf Area Index over the High-Latitude Northern Hemisphere. Part II: Earth System Models  

E-Print Network (OSTI)

Abstract: Leaf Area Index (LAI) is a key parameter in the Earth System Models (ESMs) since it strongly affects land-surface boundary conditions and the exchange of matter and energy with the atmosphere. Observations and data products derived from satellite remote sensing are important for the validation and evaluation of ESMs from regional to global scales. Several decades ’ worth of satellite data products are now available at global scale which represents a unique opportunity to contrast observations against model results. The objective of this study is to assess whether ESMs correctly reproduce the spatial variability of LAI when compared with satellite data and to compare the length of the growing season in the different models with the satellite data. To achieve this goal we analyse outputs from 11 coupled carbon-climate models that are based on the set of new global model simulations planned in support of the IPCC Fifth Assessment Report. We focus on the average LAI and the length of the growing season on Northern Hemisphere over the period 1986–2005. Additionally we compare the results with previous analyses (Part I) of

Ro Anav; Guillermo Murray-tortarolo; Pierre Friedlingstein; Stephen Sitch; Shilong Piao; Zaichun Zhu

2013-01-01T23:59:59.000Z

237

IDRISI Land Change Modeler | Open Energy Information  

Open Energy Info (EERE)

IDRISI Land Change Modeler IDRISI Land Change Modeler Jump to: navigation, search Tool Summary LAUNCH TOOL Name: IDRISI Land Change Modeler Agency/Company /Organization: Clark Labs Sector: Land Focus Area: Agriculture, Forestry Topics: Co-benefits assessment, - Environmental and Biodiversity, Resource assessment Resource Type: Maps, Software/modeling tools User Interface: Desktop Application Website: www.clarklabs.org/ Cost: Paid IDRISI Land Change Modeler Screenshot References: IDRISI Land Change Modeler[1] Overview "The Land Change Modeler is revolutionary land cover change analysis and prediction software with tools to analyze, measure and project the impacts of such change on habitat and biodiversity." References ↑ "IDRISI Land Change Modeler" Retrieved from

238

Wind Easements | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Easements Wind Easements Wind Easements < Back Eligibility Agricultural Fed. Government Institutional Local Government Nonprofit Residential Schools State Government Tribal Government Savings Category Wind Buying & Making Electricity Program Info State North Dakota Program Type Solar/Wind Access Policy North Dakota allows property owners to grant an easement that ensures adequate exposure of a wind-energy system to the wind. The easement runs with the land benefited and burdened, and terminates upon the conditions stated in the easement. The statutes authorizing the creation of wind easements include several provisions to protect property owners. For example, a wind easement may not make the property owner liable for any property tax associated with the wind-energy system or other equipment

239

NREL: Wind Research - Offshore Wind Resource Characterization  

NLE Websites -- All DOE Office Websites (Extended Search)

Offshore Wind Resource Characterization Offshore Wind Resource Characterization Map of the United States, showing the wind potential of offshore areas across the country. Enlarge image US offshore wind speed estimates at 90-m height NREL scientists and engineers are leading efforts in resource mapping, remote sensor measurement and development, and forecasting that are essential for the development of offshore wind. Resource Mapping For more than 15 years, NREL's meteorologists, engineers, and Geographic Information System experts have led the production of wind resource characterization maps and reports used by policy makers, private industry, and other government organizations to inform and accelerate the development of wind energy in the United States. Offshore wind resource data and mapping has strategic uses. As with terrestrial developments, traditional

240

Wind Power | Open Energy Information  

Open Energy Info (EERE)

Wind Power Wind Power Jump to: navigation, search Wind Power WIndfarm.Sunset.jpg Wind power is a form of solar energy.[1] Wind is caused by the uneven heating of the atmosphere by the sun, variations in the earth's surface, and rotation of the earth. Mountains, bodies of water, and vegetation all influence wind flow patterns[2], [3]. Wind energy (or wind power) describes the process by which wind is used to generate electricity. Wind turbines convert the energy in wind to electricity by rotating propeller-like blades around a rotor. The rotor turns the drive shaft, which turns an electric generator.[2] Three key factors affect the amount of energy a turbine can harness from the wind: wind speed, air density, and swept area.[4] Mechanical power can also be utilized directly for specific tasks such as

Note: This page contains sample records for the topic "land area wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

A COOLING SYSTEM FOR BUIDINGS USING WIND ENERGY  

E-Print Network (OSTI)

A COOLING SYSTEM FOR BUIDINGS USING WIND ENERGY Hamid Daiyan Islamic Azad University - Semnan in dray land, and only uses wind energy for conditioning. It technologies date back over 1000 years. Wind system, Wind energy, Temperature Fig.1 Wind tower of Doulat-Abad garden of Yazd with it's altitude is 33

242

High Resolution Atmospheric Modeling for Wind Energy Applications  

SciTech Connect

The ability of the WRF atmospheric model to forecast wind speed over the Nysted wind park was investigated as a function of time. It was found that in the time period we considered (August 1-19, 2008), the model is able to predict wind speeds reasonably accurately for 48 hours ahead, but that its forecast skill deteriorates rapidly after 48 hours. In addition, a preliminary analysis was carried out to investigate the impact of vertical grid resolution on the forecast skill. Our preliminary finding is that increasing vertical grid resolution does not have a significant impact on the forecast skill of the WRF model over Nysted wind park during the period we considered. Additional simulations during this period, as well as during other time periods, will be run in order to validate the results presented here. Wind speed is a difficult parameter to forecast due the interaction of large and small length scale forcing. To accurately forecast the wind speed at a given location, the model must correctly forecast the movement and strength of synoptic systems, as well as the local influence of topography / land use on the wind speed. For example, small deviations in the forecast track or strength of a large-scale low pressure system can result in significant forecast errors for local wind speeds. The purpose of this study is to provide a preliminary baseline of a high-resolution limited area model forecast performance against observations from the Nysted wind park. Validating the numerical weather prediction model performance for past forecasts will give a reasonable measure of expected forecast skill over the Nysted wind park. Also, since the Nysted Wind Park is over water and some distance from the influence of terrain, the impact of high vertical grid spacing for wind speed forecast skill will also be investigated.

Simpson, M; Bulaevskaya, V; Glascoe, L; Singer, M

2010-03-18T23:59:59.000Z

243

Offshore Wind Research (Fact Sheet), National Wind Technology Center (NWTC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Offshore Offshore Wind Research The National Renewable Energy Laboratory is internationally recognized for offshore wind energy research and development (R&D). Its experience and capabilities cover a wide spectrum of wind energy disciplines. NREL's offshore wind R&D efforts focus on critical areas that address the long-term needs of the offshore wind energy industry and the Department of Energy (DOE). R&D efforts include: * Developing offshore design tools and methods * Collaborating with international partners * Testing offshore systems and developing standards * Conducting economic analyses * Characterizing offshore wind resources * Identifying and mitigating offshore wind grid integration challenges and barriers NREL documented the status of offshore wind energy in the United

244

Sault Tribe Wind Energy Feasibility Study  

DOE Green Energy (OSTI)

The Sault Tribe conducted a feasibility study on tribal lands in the Upper Peninsula of Michigan to determine the technical and economic feasibility of both small and large-scale wind power development on tribal lands. The study included a wind resource assessment, transmission system analysis, engineering and regulatory analyzes and assessments.

Toni Osterhout; Global Energy Concepts

2005-07-31T23:59:59.000Z

245

Improved Offshore Wind Resource Assessment in Global Climate Stabilization Scenarios  

SciTech Connect

This paper introduces a technique for digesting geospatial wind-speed data into areally defined -- country-level, in this case -- wind resource supply curves. We combined gridded wind-vector data for ocean areas with bathymetry maps, country exclusive economic zones, wind turbine power curves, and other datasets and relevant parameters to build supply curves that estimate a country's offshore wind resource defined by resource quality, depth, and distance-from-shore. We include a single set of supply curves -- for a particular assumption set -- and study some implications of including it in a global energy model. We also discuss the importance of downscaling gridded wind vector data to capturing the full resource potential, especially over land areas with complex terrain. This paper includes motivation and background for a statistical downscaling methodology to account for terrain effects with a low computational burden. Finally, we use this forum to sketch a framework for building synthetic electric networks to estimate transmission accessibility of renewable resource sites in remote areas.

Arent, D.; Sullivan, P.; Heimiller, D.; Lopez, A.; Eurek, K.; Badger, J.; Jorgensen, H. E.; Kelly, M.; Clarke, L.; Luckow, P.

2012-10-01T23:59:59.000Z

246

Improved Offshore Wind Resource Assessment in Global Climate Stabilization Scenarios  

DOE Green Energy (OSTI)

This paper introduces a technique for digesting geospatial wind-speed data into areally defined -- country-level, in this case -- wind resource supply curves. We combined gridded wind-vector data for ocean areas with bathymetry maps, country exclusive economic zones, wind turbine power curves, and other datasets and relevant parameters to build supply curves that estimate a country's offshore wind resource defined by resource quality, depth, and distance-from-shore. We include a single set of supply curves -- for a particular assumption set -- and study some implications of including it in a global energy model. We also discuss the importance of downscaling gridded wind vector data to capturing the full resource potential, especially over land areas with complex terrain. This paper includes motivation and background for a statistical downscaling methodology to account for terrain effects with a low computational burden. Finally, we use this forum to sketch a framework for building synthetic electric networks to estimate transmission accessibility of renewable resource sites in remote areas.

Arent, D.; Sullivan, P.; Heimiller, D.; Lopez, A.; Eurek, K.; Badger, J.; Jorgensen, H. E.; Kelly, M.; Clarke, L.; Luckow, P.

2012-10-01T23:59:59.000Z

247

Searchlight Wind Energy Project FEIS Appendix E  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 2, 2009 District Las Vegas Field Office Resource Area Activity (program) Proposed Wind Generation SECTION A. PROJECT INFORMATION 1. Project Name Searchlight Wind Project 4....

248

Volcanic Ash Transport from Mount Asama to the Tokyo Metropolitan Area Influenced by Large-Scale Local Wind Circulation  

Science Conference Proceedings (OSTI)

The eruption of the Mount Asama volcano on 16 September 2004 produced an ash cloud and led to ashfall in the Tokyo metropolitan area that lies on the Kanto Plain. Satellite images showed the ash cloud drifting toward the south in the morning but ...

Nobumitsu Tsunematsu; Tomohiro Nagai; Toshiyuki Murayama; Ahoro Adachi; Yasuhiro Murayama

2008-04-01T23:59:59.000Z

249

Grand Traverse Band Renewable Energy Feasibility Study in Wind, Biomass and Solar  

DOE Green Energy (OSTI)

Renewable Energy Feasibility Study for wind, biomass, solar on the Grand Traverse Band tribal lands from 2005 - 2008

Suzanne McSawby, Project Director

2008-12-31T23:59:59.000Z

250

INDEPENDENT CONFIRMATORY SURVEY REPORT FOR THE REACTOR BUILDING, HOT LABORATORY, PRIMARY PUMP HOUSE, AND LAND AREAS AT THE PLUM BROOK REACTOR FACILITY, SANDUSKY, OHIO  

Science Conference Proceedings (OSTI)

In 1941, the War Department acquired approximately 9,000 acres of land near Sandusky, Ohio and constructed a munitions plant. The Plum Brook Ordnance Works Plant produced munitions, such as TNT, until the end of World War II. Following the war, the land remained idle until the National Advisory Committee for Aeronautics later called the National Aeronautics and Space Administration (NASA) obtained 500 acres to construct a nuclear research reactor designed to study the effects of radiation on materials used in space flight. The research reactor was put into operation in 1961 and was the first of fifteen test facilities eventually built by NASA at the Plum Brook Station. By 1963, NASA had acquired the remaining land at Plum Brook for these additional test facilities

Erika N. Bailey

2011-10-10T23:59:59.000Z

251

June 26 Webinar to Explore Renewable Energy Project Leasing on Tribal Lands  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 26 Webinar to Explore Renewable Energy Project Leasing on June 26 Webinar to Explore Renewable Energy Project Leasing on Tribal Lands June 26 Webinar to Explore Renewable Energy Project Leasing on Tribal Lands June 19, 2013 - 7:28pm Addthis The U.S. Department of Energy (DOE) Office of Indian Energy, the DOE Office of Energy Efficiency and Renewable Energy's Tribal Energy Program, and the Western Area Power Administration will present the next Tribal Renewable Energy Series webinar, "Renewable Energy Project Leasing on Tribal Lands," on Wednesday, June 26, 2013, from 1:00 p.m. to 2:30 p.m. Eastern Time. According to the Intertribal Council on Utility Policy, wind resources on tribal lands in the Great Plains alone could power more than 50 million homes. This webinar will explore the opportunities for Tribes to reap the

252

Russian Land Cover Data Sets Released, January 7, 2004  

NLE Websites -- All DOE Office Websites (Extended Search)

Russian Land Cover Data Sets Released, January 7, 2004 The ORNL DAAC announces the release of 12 map data products -- land cover, forested area, forest carbon content, and...

253

Wind Energy Update  

Wind Powering America (EERE)

by the Alliance for Sustainable Energy, LLC. by the Alliance for Sustainable Energy, LLC. Wind Energy Update Wind Powering America January 2012 NATIONAL RENEWABLE ENERGY LABORATORY Evolution of Commercial Wind Technology NATIONAL RENEWABLE ENERGY LABORATORY Small (≤100 kW) Homes Farms Remote Applications (e.g. water pumping, telecom sites, icemaking) Midscale (100-1000 kW) Village Power Hybrid Systems Distributed Power Large, Land-based (1-3 MW) Utility-scale wind farms Large Distributed Power Sizes and Applications Large, Offshore (3-7 MW) Utility-scale wind farms, shallow coastal waters No U.S. installations NATIONAL RENEWABLE ENERGY LABORATORY Capacity & Cost Trends As of January 2012 (AWEA) 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 $- $200 $400 $600 $800 $1,000 $1,200

254

Illinois Wind Workers Group  

Science Conference Proceedings (OSTI)

The Illinois Wind Working Group (IWWG) was founded in 2006 with about 15 members. It has grown to over 200 members today representing all aspects of the wind industry across the State of Illinois. In 2008, the IWWG developed a strategic plan to give direction to the group and its activities. The strategic plan identifies ways to address critical market barriers to the further penetration of wind. The key to addressing these market barriers is public education and outreach. Since Illinois has a restructured electricity market, utilities no longer have a strong control over the addition of new capacity within the state. Instead, market acceptance depends on willing landowners to lease land and willing county officials to site wind farms. Many times these groups are uninformed about the benefits of wind energy and unfamiliar with the process. Therefore, many of the project objectives focus on conferences, forum, databases and research that will allow these stakeholders to make well-educated decisions.

David G. Loomis

2012-05-28T23:59:59.000Z

255

Economic Impacts of Wind Turbine Development in U.S. Counties  

NLE Websites -- All DOE Office Websites (Extended Search)

are the economic development impacts on U.S. counties of are the economic development impacts on U.S. counties of wind power projects, as defined by growth in per capita income and employment? Objective To address the research question using post-project construction, county-level data, and econometric evaluation methods. Background * Wind energy is expanding rapidly in the United States: Over the last 4 years, wind power has contributed approximately 35 percent of all new electric power capacity. * Wind power plants are often developed in rural areas where local economic development impacts from the installation are projected, including land lease and property tax payments and employment growth during plant construction and operation. * Wind energy represented 2.3 percent of the U.S. electricity supply in 2010, but studies show

256

Wind energy applications guide  

DOE Green Energy (OSTI)

The brochure is an introduction to various wind power applications for locations with underdeveloped transmission systems, from remote water pumping to village electrification. It includes an introductory section on wind energy, including wind power basics and system components and then provides examples of applications, including water pumping, stand-alone systems for home and business, systems for community centers, schools, and health clinics, and examples in the industrial area. There is also a page of contacts, plus two specific example applications for a wind-diesel system for a remote station in Antarctica and one on wind-diesel village electrification in Russia.

anon.

2001-01-01T23:59:59.000Z

257

Stakeholder Engagement and Outreach: Resources and Tools for Siting Wind  

Wind Powering America (EERE)

Federal, Federal, State, & Local Printable Version Bookmark and Share Economic Development Policy Public Lands Public Power Regional Activities State Activities State Lands Siting Resources & Tools Resources for Siting Wind Turbines This page lists information resources such as publications, websites, and news for siting wind turbines. Search the Stakeholder Engagement and Outreach initiative's Database Choose a Type of Information All News Publications Web Resource Videos Choose # of Records per Page Default (10 per page) 5 25 50 To search the titles, enter a word or phrase. Start Search Clear Contents Total of 39 records found. Page 1 of 8, Sorted by descending date Filtered by: Siting 1 2 3 4 5 6 7 8 Next Page >> Date sort by ascending date sort by descending date State sort by ascending state sort by descending state Type of Information Program Area Title sort by ascending title sort by descending title

258

land use | OpenEI  

Open Energy Info (EERE)

use use Dataset Summary Description This dataset is part of a larger internal dataset at the National Renewable Energy Laboratory (NREL) that explores various characteristics of large solar electric (both PV and CSP) facilities around the United States. This dataset focuses on the land use characteristics for solar facilities that are either under construction or currently in operation. Source Land-Use Requirements for Solar Power Plants in the United States Date Released June 25th, 2013 (5 months ago) Date Updated Unknown Keywords acres area average concentrating solar power csp Density electric hectares km2 land land requirements land use land-use mean photovoltaic photovoltaics PV solar statistics Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon Master Solar Land Use Spreadsheet (xlsx, 1.5 MiB)

259

land requirements | OpenEI  

Open Energy Info (EERE)

requirements requirements Dataset Summary Description This dataset is part of a larger internal dataset at the National Renewable Energy Laboratory (NREL) that explores various characteristics of large solar electric (both PV and CSP) facilities around the United States. This dataset focuses on the land use characteristics for solar facilities that are either under construction or currently in operation. Source Land-Use Requirements for Solar Power Plants in the United States Date Released June 25th, 2013 (5 months ago) Date Updated Unknown Keywords acres area average concentrating solar power csp Density electric hectares km2 land land requirements land use land-use mean photovoltaic photovoltaics PV solar statistics Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon Master Solar Land Use Spreadsheet (xlsx, 1.5 MiB)

260

Analysis of Temporal and Spatial Characteristics on Output of Wind Farms with Doubly Fed Induction Generator Wind Turbines  

Science Conference Proceedings (OSTI)

Due to the large number of wind turbines and covering too large area in a large wind farm, wake effects among wind turbines and wind speed time delays will have a greater impact of wind farms models. Taking wind farms with doubly fed induction generator(DFIG) ... Keywords: wind farm, modeling, temporal and spatial characteristics, DFIG, output characteristics

Shupo Bu, Xunwen Su

2012-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "land area wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Wind News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind News Wind News Wind News RSS February 7, 2011 Salazar, Chu Announce Major Offshore Wind Initiatives Strategic plan, $50 million in R&D funding, identified Wind Energy Areas will speed offshore wind energy development December 16, 2010 Department of Energy Finalizes Loan Guarantee to Support World's Largest Wind Project 845-Megawatt Wind Facility Will Create Hundreds of Jobs and Avoid Over 1.2 Million Tons of Carbon Dioxide Annually October 29, 2010 Statement by Energy Secretary Steven Chu on Today's Grand Opening of the Nordex Manufacturing Facility in Jonesboro, Arkansas Recovery Act investment creates jobs, helps lay the foundation for a clean energy economy September 13, 2010 DOE Announces More than $5 Million to Support Wind Energy Development Funds to Enhance Short-Term Wind Forecasting and Accelerate Midsize Wind

262

Wind Energy Resource Atlas of Oaxaca  

DOE Green Energy (OSTI)

The Oaxaca Wind Resource Atlas, produced by the National Renewable Energy Laboratory's (NREL's) wind resource group, is the result of an extensive mapping study for the Mexican State of Oaxaca. This atlas identifies the wind characteristics and distribution of the wind resource in Oaxaca. The detailed wind resource maps and other information contained in the atlas facilitate the identification of prospective areas for use of wind energy technologies, both for utility-scale power generation and off-grid wind energy applications.

Elliott, D.; Schwartz, M.; Scott, G.; Haymes, S.; Heimiller, D.; George, R.

2003-08-01T23:59:59.000Z

263

Wind Energy Resource Atlas of Armenia  

DOE Green Energy (OSTI)

This wind energy resource atlas identifies the wind characteristics and distribution of the wind resource in the country of Armenia. The detailed wind resource maps and other information contained in the atlas facilitate the identification of prospective areas for use of wind energy technologies for utility-scale power generation and off-grid wind energy applications. The maps portray the wind resource with high-resolution (1-km2) grids of wind power density at 50-m above ground. The wind maps were created at the National Renewable Energy Laboratory (NREL) using a computerized wind mapping system that uses Geographic Information System (GIS) software.

Elliott, D.; Schwartz, M.; Scott, G.; Haymes, S.; Heimiller, D.; George, R.

2003-07-01T23:59:59.000Z

264

EOS Land Validation Project  

NLE Websites -- All DOE Office Websites (Extended Search)

EOS Land Validation The EOS Land Validation Project Overview EOS Land Validation Logo The objective of the EOS Land Validation Project is to achieve consistency, completeness,...

265

Wind Project Development | Open Energy Information  

Open Energy Info (EERE)

Project Development Project Development Jump to: navigation, search This page provides links to information resources regarding project development steps. Photo from Iberdrola Renewables Inc., NREL 16702 To finance and construct a wind energy project, five areas must be addressed: Detailed wind resource data for the site being developed The right to access and use the land on which the project will be constructed Permission to construct and operate the project from local permitting authorities Rights to interconnect to the transmission or distribution system and to transport (wheel) that energy to its purchaser A power purchase agreement between the project owner (seller) and the power purchaser (buyer). If any of these items are not contractually supported with the proper documentation, the project is unlikely to obtain financing.[1]

266

Wind Farm Recommendation Report  

Science Conference Proceedings (OSTI)

On April 21, 2011, an Idaho National Laboratory (INL) Land Use Committee meeting was convened to develop a wind farm recommendation for the Executive Council and a list of proposed actions for proceeding with the recommendation. In terms of land use, the INL Land Use Committee unanimously agrees that Site 6 is the preferred location of the alternatives presented for an INL wind farm. However, further studies and resolution to questions raised (stated in this report) by the INL Land Use Committee are needed for the preferred location. Studies include, but are not limited to, wind viability (6 months), bats (2 years), and the visual impact of the wind farm. In addition, cultural resource surveys and consultation (1 month) and the National Environmental Policy Act process (9 to 12 months) need to be completed. Furthermore, there is no documented evidence of developers expressing interest in constructing a small wind farm on INL, nor a specific list of expectations or concessions for which a developer might expect INL to cover the cost. To date, INL assumes the National Environmental Policy Act activities will be paid for by the Department of Energy and INL (the environmental assessment has only received partial funding). However, other concessions also may be expected by developers such as roads, fencing, power line installation, tie-ins to substations, annual maintenance, snow removal, access control, down-time, and remediation. These types of concessions have not been documented, as a request, from a developer and INL has not identified the short and long-term cost liabilities for such concessions should a developer expect INL to cover these costs. INL has not identified a go-no-go funding level or the priority this Wind Farm Project might have with respect to other nuclear-related projects, should the wind farm remain an unfunded mandate. The Land Use Committee recommends Legal be consulted to determine what, if any, liabilities exist with the Wind Farm Project and INL’s rights and responsibilities in regards to access to the wind farm once constructed. An expression of interest is expected to go out soon to developers. However, with the potential of 2 years of study remaining for Site 6, the expectation of obtaining meaningful interest from developers should be questioned.

John Reisenauer

2011-05-01T23:59:59.000Z

267

Philippines Wind Energy Resource Atlas Development  

DOE Green Energy (OSTI)

This paper describes the creation of a comprehensive wind energy resource atlas for the Philippines. The atlas was created to facilitate the rapid identification of good wind resource areas and understanding of the salient wind characteristics. Detailed wind resource maps were generated for the entire country using an advanced wind mapping technique and innovative assessment methods recently developed at the National Renewable Energy Laboratory.

Elliott, D.

2000-11-29T23:59:59.000Z

268

Wind energy and power system interconnection, control, and operation for high penetration of wind power .  

E-Print Network (OSTI)

??High penetration of wind energy requires innovations in different areas of power engineering. Methods for improving wind energy and power system interconnection, control, and operation… (more)

Liang, Jiaqi

2012-01-01T23:59:59.000Z

269

Response of Red-Tailed Hawks and Golden Eagles to Topographical Features, Weather, and Abundance of a Dominant Prey Species at the Altamont Pass Wind Resource Area, California: April 1999-December 2000  

SciTech Connect

Studies have shown that raptors flying within the Altamont Pass WRA are vulnerable to fatal turbine collisions, possibly because of their specific foraging and flight behavior. Between June 1999 and June 2000, I conducted 346.5 hours of raptor observations within the Atlamont Pass WRA. Behavior was recorded in relation to characteristics of the topography (slope aspect, elevation, and inclination), the weather, and ground squirrel abundance, as determined by active burrow entrances. The most significant finding of this study revealed that red-tailed hawks and golden eagles flew more in strong winds than in weak winds, particularly along hillsides facing into prevailing winds (as opposed to hillsides shielded from the wind). This is likely a result of the birds' use of declivity currents for lift during flights. These results suggest that certain combinations of topography and weather produce wind currents that are sought out by foraging red-tailed hawks and golden eagles within the Altamont Pass WRA. To decrease raptor mortality, mitigation measures can be targeted to specific areas likely to attract foraging raptors because of their capacity to create particularly favorable wind currents.

Hoover, S.

2002-06-01T23:59:59.000Z

270

National Wind Technology Center to Debut New Dynamometer (Fact Sheet)  

DOE Green Energy (OSTI)

New test facility will be used to accelerate the development and deployment of next-generation offshore and land-based wind energy technologies.

Not Available

2013-05-01T23:59:59.000Z

271

Secretary Chu Announces New Investments in Cutting-Edge Wind...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

support university research and development programs to improve land-based and offshore wind turbine performance and reliability, as well as provide career educational...

272

An Examination of the AGCM Simulated Surface Wind Stress and Low-Level Winds over the Tropical Pacific Ocean  

Science Conference Proceedings (OSTI)

The monthly mean surface wind stress and winds in the lower troposphere for 1986–92 simulated by the Center for Ocean–Land–Atmosphere Studies atmospheric general circulation model (AGCM) forced with observed sea surface temperature (SST) is ...

Bohua Huang; J. Shukla

1997-05-01T23:59:59.000Z

273

AG Land 4 | Open Energy Information  

Open Energy Info (EERE)

AG Land 4 AG Land 4 Facility AG Land 4 Sector Wind energy Facility Type Community Wind Facility Status In Service Owner AG Land Energy LLC Developer AG Land Energy LLC Energy Purchaser Alliant Energy Location Story County IA Coordinates 42.206397°, -93.325714° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.206397,"lon":-93.325714,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

274

AG Land 3 | Open Energy Information  

Open Energy Info (EERE)

Name AG Land 3 Name AG Land 3 Facility AG Land 3 Sector Wind energy Facility Type Community Wind Facility Status In Service Owner AG Land Energy LLC Developer AG Land Energy LLC Energy Purchaser Alliant Energy Location Story County IA Coordinates 42.146061°, -93.428028° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.146061,"lon":-93.428028,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

275

AG Land 2 | Open Energy Information  

Open Energy Info (EERE)

AG Land 2 AG Land 2 Facility AG Land 2 Sector Wind energy Facility Type Community Wind Facility Status In Service Owner AG Land Energy LLC Developer AG Land Energy LLC Energy Purchaser Alliant Energy Location Story County IA Coordinates 41.904231°, -93.354864° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.904231,"lon":-93.354864,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

276

AG Land 6 | Open Energy Information  

Open Energy Info (EERE)

AG Land 6 AG Land 6 Jump to: navigation, search Name AG Land 6 Facility AG Land 6 Sector Wind energy Facility Type Community Wind Facility Status In Service Owner AG Land Energy LLC Developer Enervation LLC Energy Purchaser Alliant Energy Location Hamilton County IA Coordinates 42.335536°, -93.632344° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.335536,"lon":-93.632344,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

277

PJM Interconnection Interview on Wind  

Wind Powering America (EERE)

Vol. 9, No. 5 - December 5, 2007 Vol. 9, No. 5 - December 5, 2007 PJM on wind Wind power is growing rapidly in the United States and in Pennsylvania where 8 wind farms that total 259 megawatts now operate. Those wind farms already generate enough power for about 80,000 homes. Another 4,714 megawatts are in various stages of development within Pennsylvania, which would create enough power for an additional 1.4 mil- lion homes. Just in the Keystone state, wind power is creating thousands of jobs. Across the nation, wind power provides hundreds of millions of dollars of tax payments and rental fees to land- owners, and displaces more and more electricity that would otherwise be made by burning coal, oil, or natural gas. Wind farms create zero air pollution; require no destructive

278

Extreme Winds and Wind Effects on Structures  

Science Conference Proceedings (OSTI)

Extreme Winds and Wind Effects on Structures. The Engineering ... section. I. Extreme Winds: ... II. Wind Effects on Buildings. Database ...

2013-01-17T23:59:59.000Z

279

Land Assemblage Tax Credit Program (Missouri) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assemblage Tax Credit Program (Missouri) Assemblage Tax Credit Program (Missouri) Land Assemblage Tax Credit Program (Missouri) < Back Eligibility Commercial Construction Developer Industrial Installer/Contractor Institutional Systems Integrator Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Missouri Program Type Personal Tax Incentives Provider Missouri Department of Economic Development The Land Assemblage Tax Credit Programs the redevelopment of blighted areas in Missouri into productive use. Redevelopers must incur acquisition costs for at least 50 acres of 75+ acre parcels, enter into redevelopment agreement, and be approved for redevelopment incentives. The maximum aggregate amount of tax credits for all projects is $95 million and while

280

Economic Development Impacts of Community Wind Projects: A Review and Empirical Evaluation; Preprint  

DOE Green Energy (OSTI)

'Community wind' refers to a class of wind energy ownership structures. The extent of local ownership may range from a small minority share to full ownership by persons in the immediate area surrounding the wind project site. Potential project owners include local farmers, businesses, Native American tribes, universities, cooperatives, or any other local entity seeking to invest in wind energy. The opposite of community wind is an 'absentee' project, in which ownership is completely removed from the state and community surrounding the facility. Thus, there is little or no ongoing direct financial benefit to state and local populations aside from salaries for local repair technicians, local property tax payments, and land lease payments. In recent years, the community wind sector has been inhibited by manufacturers' preference for larger turbine orders. This often puts smaller community wind developers and projects at a competitive disadvantage. However, state policies specifically supporting community wind may become a more influential market factor as turbines are now more readily available given manufacturer ramp-ups and the slow-down in the industry that has accompanied the recent economic and financial crises. This report examines existing literature to provide an overview of economic impacts resulting from community wind projects, compares results, and explains variability.

Lantz, E.; Tegen, S.

2009-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "land area wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

NREL: Wind Research - Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities Facilities Our facilities are designed to meet the wind industry's critical research needs with state-of-the-art design and testing facilities. NREL's unique and highly versatile facilities at the National Wind Technology Center offer research and analysis of wind turbine components and prototypes rated from 400 watts to 3 megawatts. Satellite facilities support the growth of wind energy development across the United States. National Wind Technology Center Facilities Our facilities are contained within a 305-acre area that comprises field test sites, test laboratories, industrial high-bay work areas, machine shops, electronics and instrumentation laboratories, and office areas. In addition, there are hundreds of test articles and supporting components such as turbines, meteorological towers, custom test apparatus, test sheds,

282

The Great DOE Land Rush?  

NLE Websites -- All DOE Office Websites (Extended Search)

area manager. co, 1800 ha-about 15% of the lab's land- (NERP), at the Savannah River site in South But some DOE officials argue that could be transferred as early as 2001 to the...

283

Airborne Wind Turbine  

Science Conference Proceedings (OSTI)

Broad Funding Opportunity Announcement Project: Makani Power is developing an Airborne Wind Turbine (AWT) that eliminates 90% of the mass of a conventional wind turbine and accesses a stronger, more consistent wind at altitudes of near 1,000 feet. At these altitudes, 85% of the country can offer viable wind resources compared to only 15% accessible with current technology. Additionally, the Makani Power wing can be economically deployed in deep offshore waters, opening up a resource which is 4 times greater than the entire U.S. electrical generation capacity. Makani Power has demonstrated the core technology, including autonomous launch, land, and power generation with an 8 meter wingspan, 20 kW prototype. At commercial scale, Makani Power aims to develop a 600 kW, 28 meter wingspan product capable of delivering energy at an unsubsidized cost competitive with coal, the current benchmark for low-cost power.

None

2010-09-01T23:59:59.000Z

284

Wind resource assessment: San Nicolas Island, California  

DOE Green Energy (OSTI)

San Nicolas Island (SNI) is the site of the Navy Range Instrumentation Test Site which relies on an isolated diesel-powered grid for its energy needs. The island is located in the Pacific Ocean 85 miles southwest of Los Angeles, California and 65 miles south of the Naval Air Weapons Station (NAWS), Point Mugu, California. SNI is situated on the continental shelf at latitude N33{degree}14` and longitude W119{degree}27`. It is approximately 9 miles long and 3.6 miles wide and encompasses an area of 13,370 acres of land owned by the Navy in fee title. Winds on San Nicolas are prevailingly northwest and are strong most of the year. The average wind speed is 7.2 m/s (14 knots) and seasonal variation is small. The windiest months, March through July, have wind speeds averaging 8.2 m/s (16 knots). The least windy months, August through February, have wind speeds averaging 6.2 m/s (12 knots).

McKenna, E. [National Renewable Energy Lab., Golden, CO (United States); Olsen, T.L. [Timothy L. Olsen Consulting, (United States)

1996-01-01T23:59:59.000Z

285

A Study on the Effect of Nudging on Long-Term Boundary Layer Profiles of Wind and Weibull Distribution Parameters in a Rural Coastal Area  

Science Conference Proceedings (OSTI)

By use of 1 yr of measurements performed with a wind lidar up to 600-m height, in combination with a tall meteorological tower, the impact of nudging on the simulated wind profile at a flat coastal site (Høvsøre) in western Denmark using the ...

S.-E. Gryning; E. Batchvarova; R. Floors

2013-05-01T23:59:59.000Z

286

Application of wind power systems to the Service Area of the Minnesota Power and Light Company. Final report, July 1975--August 1976  

DOE Green Energy (OSTI)

Honeywell, in a joint effort with Minnesota Power and Light Company (MP and L), Boeing Vertol Company, and Dr. C.G. Justus, Georgia Institute of Technology, has conducted a regional application study of wind energy systems. Minnesota Power and Light Company, an investor-owned company with 853-MW owned capacity, has served as the case study subject utility. An initial system definition was developed based on available wind information and near-term wind turbine generator (WTG) technology. The system was tailored to fit MP and L's forecasted generation needs and the company's existing transmission and distribution system. Honeywell developed a WECS simulation to convert wind data to wind energy available for input to the utility's grid. The simulation was used to evaluate the performance of preliminary design wind turbine generators developed for ERDA/NASA by the General Electric Company and Kaman Aerospace Corporation, and to evaluate the performance of a wind turbine optimized for the Northern Minnesota wind regime and developed by the Boeing Vertol Company under subcontract to Honeywell.

Lindquist, O.H.; Malver, F.S.

1976-01-01T23:59:59.000Z

287

MODIS Land Products Subsets  

NLE Websites -- All DOE Office Websites (Extended Search)

Global Subsetting and Visualization Tool Global Subsetting and Visualization Tool The Global Subsetting and Visualization Tool provides customized subsets of MODIS Land products in ASCII format on demand for any location on Earth. Users select a site (either from a picklist or by entering the site's geographic coordinates) and the area surrounding that site, from one pixel up to 201 x 201 km. The tool is expected to take up to 60 minutes to complete the processing, and the tool will send you an email message containing the URL where you can access the output. The tool provides time series plots of the measurement, an ASCII file of the pixel values for the selected product along with quality information, average and standard deviations for the area selected, and a file that can be imported directly into GIS software. In addition we provide a land cover grid (IGBP classification) of the area, along with an estimate of heterogeneity (Shannon richness and evenness).

288

Land Use History  

E-Print Network (OSTI)

This study focuses on the cultural-historical environment of the 88,900-acre (35,560-ha) Valles Caldera National Preserve (VCNP) over the past four centuries of Spanish, Mexican, and U.S. governance. It includes a review and synthesis of available published and unpublished historical, ethnohistorical, and ethnographic literature about the human occupation of the area now contained within the VCNP. Documents include historical maps, texts, letters, diaries, business records, photographs, land and mineral patents, and court testimony. This study presents a cultural-historical framework of VCNP land use that will be useful to land managers and researchers in assessing the historical ecology of the property. It provides VCNP administrators and agents the cultural-historical background needed to develop management plans that acknowledge traditional associations with the Preserve, and offers managers additional background for structuring and acting on consultations with affiliated communities.

United States; Forest Service; Kurt F. Anschuetz

2007-01-01T23:59:59.000Z

289

Wind/Water Nexus  

DOE Green Energy (OSTI)

Nobel laureate Richard Smalley cited energy and water as among humanity's top problems for the next 50 years as the world's population increases from 6.3 billion to 9 billion. The U.S. Department of Energy's Wind and Hydropower Program has initiated an effort to explore wind energy's role as a technical solution to this critically important issue in the United States and the world. This four-page fact sheet outlines five areas in which wind energy can contribute: thermoelectric power plant/water processes, irrigation, municipal water supply, desalination, and wind/hydropower integration.

Not Available

2006-04-01T23:59:59.000Z

290

Wellhead Protection Area Act (Nebraska) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wellhead Protection Area Act (Nebraska) Wellhead Protection Area Act (Nebraska) Wellhead Protection Area Act (Nebraska) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Solar Wind Program Info State Nebraska Program Type Environmental Regulations Provider Nebraska Department of Environmental Quality This section regulates activities which can occur on or below the land

291

Optimal wind patterns for biological production in shelf ecosystems driven by coastal upwelling  

E-Print Network (OSTI)

The phytoplankton bloom response to wind events and upwelled0053-5 ORIGINAL PAPER Optimal wind patterns for biologicalto their area. Upwelling winds have the counter- acting

Yokomizo, Hiroyuki; Botsford, Louis W.; Holland, Matthew D.; Lawrence, Cathryn A.; Hastings, Alan

2010-01-01T23:59:59.000Z

292

Impact of Electric Industry Structure on High Wind Penetration Potential  

DOE Green Energy (OSTI)

This paper attempts to evaluate which balancing area (BA) characteristics best accommodate wind energy.

Milligan, M.; Kirby, B.; Gramlich, R.; Goggin, M.

2009-07-01T23:59:59.000Z

293

Future land use plan  

Science Conference Proceedings (OSTI)

The US Department of Energy`s (DOE) changing mission, coupled with the need to apply appropriate cleanup standards for current and future environmental restoration, prompted the need for a process to determine preferred Future Land Uses for DOE-owned sites. DOE began the ``Future Land Use`` initiative in 1994 to ensure that its cleanup efforts reflect the surrounding communities` interests in future land use. This plan presents the results of a study of stakeholder-preferred future land uses for the Brookhaven National Laboratory (BNL), located in central Long Island, New York. The plan gives the Laboratory`s view of its future development over the next 20 years, as well as land uses preferred by the community were BNL ever to cease operations as a national laboratory (the post-BNL scenario). The plan provides an overview of the physical features of the site including its history, topography, geology/hydrogeology, biological inventory, floodplains, wetlands, climate, and atmosphere. Utility systems and current environmental operations are described including waste management, waste water treatment, hazardous waste management, refuse disposal and ground water management. To complement the physical descriptions of the site, demographics are discussed, including overviews of the surrounding areas, laboratory population, and economic and non-economic impacts.

NONE

1995-08-31T23:59:59.000Z

294

2011 Wind Technologies Market Report  

E-Print Network (OSTI)

that region’s peak electricity demand) was frequently usedsome areas; modest electricity demand growth; existing stateto 20% of the nation’s electricity demand coming from wind

Bolinger, Mark

2013-01-01T23:59:59.000Z

295

Solar Land Use | Open Energy Information  

Open Energy Info (EERE)

Land Use Land Use Jump to: navigation, search (The following text is derived from a National Renewable Energy Laboratory report on solar land use in the United States.)[1] One concern regarding large-scale deployment of solar energy is its potentially significant land use. This article summarizes data and analysis of the land use associated with U.S. utility-scale ground-mounted photovoltaic (PV) and concentrating solar power (CSP) facilities. This article presents total and direct land-use results for various solar technologies and system configurations, on both a capacity and an electricity-generation basis. The total area corresponds to all land enclosed by the site boundary. The direct area comprises land directly occupied by solar arrays, access roads, substations, service buildings, and

296

Searchlight Wind Energy Project FEIS Appendix C  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

C C Page | C 19B Appendix C: BLM Wind Energy Development Program Policies and BMPs A-1 ATTACHMENT A BLM WIND ENERGY DEVELOPMENT PROGRAM POLICIES AND BEST MANAGEMENT PRACTICES (BMPS) A-2 ATTACHMENT A BLM WIND ENERGY DEVELOPMENT PROGRAM POLICIES AND BEST MANAGEMENT PRACTICES (BMPS) The BLM's Wind Energy Development Program will establish a number of policies and BMPs, provided below, regarding the development of wind energy resources on BLM- administered public lands. The policies and BMPs will be applicable to all wind energy development projects on BLM-administered public lands. The policies address the administration of wind energy development activities, and the BMPs identify required mitigation measures that would need to be incorporated into project-specific Plans of Development (PODs)

297

State and National Wind Resource Potential at Various Capacity Factor Ranges for 80 and 100 Meters  

Wind Powering America (EERE)

February 4, 2010 (updated April 13, 2011 to add Alaska and Hawaii) February 4, 2010 (updated April 13, 2011 to add Alaska and Hawaii) State Total (km 2 ) Excluded 2 (km 2 ) Available (km 2 ) Available % of State % of Total Windy Land Excluded Installed Capacity 3 (MW) Annual Generation (GWh) Alabama 15.9 13.3 2.6 0.00% 83.4% 13.2 42 Alaska 267,897.7 209,673.4 58,224.3 3.87% 78.3% 291,121.3 1,051,210 Arizona 611.7 417.3 194.4 0.07% 68.2% 972.1 3,100 Arkansas 1,130.0 687.5 442.5 0.32% 60.8% 2,212.5 7,215 C lif i 11 456 4 8 650 1 2 806 3 0 69% 75 5% 14 031 7 49 073 Estimates of Windy 1 Land Area and Wind Energy Potential, by State, for areas >= 35% Capacity Factor at 80m These estimates show, for each of the 50 states and the total U.S., the windy land area with a gross capacity factor (without losses) of 35% and greater at 80-m height above ground and the wind energy potential that could be possible from development of the "available" windy land area

298

land-use | OpenEI  

Open Energy Info (EERE)

land-use land-use Dataset Summary Description This dataset is part of a larger internal dataset at the National Renewable Energy Laboratory (NREL) that explores various characteristics of large solar electric (both PV and CSP) facilities around the United States. This dataset focuses on the land use characteristics for solar facilities that are either under construction or currently in operation. Source Land-Use Requirements for Solar Power Plants in the United States Date Released June 25th, 2013 (5 months ago) Date Updated Unknown Keywords acres area average concentrating solar power csp Density electric hectares km2 land land requirements land use land-use mean photovoltaic photovoltaics PV solar statistics Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon Master Solar Land Use Spreadsheet (xlsx, 1.5 MiB)

299

EERE: Wind  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Buildings The U.S. Department of Energy funds R&D to develop wind energy. Learn about the DOE Wind Program, how to use wind energy and get financial incentives, and access...

300

A Fast and Effective Local Search Algorithm for Optimizing the Placement of Wind Turbines  

E-Print Network (OSTI)

The placement of wind turbines on a given area of land such that the wind farm produces a maximum amount of energy is a challenging optimization problem. In this article, we tackle this problem, taking into account wake effects that are produced by the different turbines on the wind farm. We significantly improve upon existing results for the minimization of wake effects by developing a new problem-specific local search algorithm. One key step in the speed-up of our algorithm is the reduction in computation time needed to assess a given wind farm layout compared to previous approaches. Our new method allows the optimization of large real-world scenarios within a single night on a standard computer, whereas weeks on specialized computing servers were required for previous approaches.

Wagner, Markus; Neumann, Frank

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "land area wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

WIND ENERGY Wind Energ. (2012)  

E-Print Network (OSTI)

WIND ENERGY Wind Energ. (2012) Published online in Wiley Online Library (wileyonlinelibrary since energy production depends non-linearly on wind speed (U ), and wind speed observa- tions for the assessment of future long-term wind supply A. M. R. Bakker1 , B. J. J. M. Van den Hurk1 and J. P. Coelingh2 1

Haak, Hein

302

New England Wind Forum: A Wind Powering America Project - Newsletter #6 - September 2010, (NEWF), Wind and Water Power Program (WWPP)  

Wind Powering America (EERE)

6 - September 2010 6 - September 2010 WIND AND WATER POWER PROGRAM PIX 16204 New England and Northeast Look to the Horizon...and Beyond, for Offshore Wind In early December, Boston hosted the American Wind Energy Association's second annual Offshore Wind Project Workshop. U.S. and European offshore wind stakeholders convened to discuss the emerging U.S. offshore wind industry and provided evidence of a significant increase in activity along the Atlantic Coast from the Carolinas to Maine. The wind power industry and policymakers are looking to offshore for long-term growth, driven by aggressive policy goals, economic develop- ment opportunities, a finite set of attractive land-based wind sites, and immense wind energy potential at a modest distance from major population centers.

303

Condon Wind Project Draft Environmental Impact Statement  

DOE Green Energy (OSTI)

BPA needs to acquire resources to meet its customers' load growth. In meeting that need for power, BPA will consider the following purposes: protecting BPA and its customers against risk by diversifying its resource portfolio; assuring consistency with its responsibilities under the Pacific Northwest Electric Power Planning and Conservation Act to encourage the development of renewable resources; meeting customer demand for renewable resources; assuring consistency with its resource acquisition strategy; and meeting the objectives of its Power Business Line's Strategic Plan. The Draft Environmental Impact Statement (DEIS) evaluates the environmental impacts of the Proposed Action (to execute one or more power purchase and transmission services agreements to acquire and transmit up to the full electric output of the proposed Condon Wind Project) and the No Action Alternative. BPA's preferred alternative is the Proposed Action. BPA has also identified the Proposed Action as the environmentally-preferred alternative. The proposed wind project is located on private agricultural land in Gilliam County, Oregon. The 38-acre project site is located within a 4,200-acre study area located on both sides of Oregon Highway 206, approximately 5 miles northwest of the town of Condon. The project would use modern, efficient 600-kilowatt (kW) wind turbines to convert energy in the winds to electricity that would be transmitted over the existing BPA transmission system. The project would consist of one or two phases: the first phase would use 41 wind turbines to yield a capacity of approximately 24.6 megawatts (MW). A second phase (if built) would use 42 wind turbines to yield a capacity of approximately 25.2 MW. For purposes of this DEIS, the size of the project is assumed to be 49.8 MW, built in two phases. Major components of the wind project include wind turbines and foundations, small pad-mounted transformers, an operation and maintenance building, power collection and communication cables, project access roads, meteorological towers on foundations, and a substation. During construction there would also be temporary equipment storage and construction staging areas. The first phase is proposed for construction in late 2001; the second phase could be constructed during spring/summer 2002 or later.

N /A

2001-06-01T23:59:59.000Z

304

Stakeholder Engagement and Outreach: How Do I Get Wind Power?  

Wind Powering America (EERE)

Education Education Printable Version Bookmark and Share Learn About Wind About Wind Power Locating Wind Power Getting Wind Power Installed Wind Capacity Wind for Schools Project Collegiate Wind Competition School Project Locations Education & Training Programs Curricula & Teaching Materials Resources How do I get Wind Power? Learn how you can own, partner with, host, and support wind power. Construct A Wind Project On Your Own Land There are wind turbines designed for everyone from residential homeowners to utilities, and from private to corporate use. Small wind turbines can be bought with cash, and commercial-scale projects can be financed. To learn more about small projects, such as those for a home or ranch or business that are less than or equal to 100 kilowatts (kW), see the small wind

305

An Autonomous Doppler Sodar Wind Profiling System  

Science Conference Proceedings (OSTI)

An autonomous Doppler sodar wind profiling system has been designed, built, tested, and then deployed for 2 years at a remote site in Coats Land, Antarctica. The system is designed around a commercially available phased-array sodar (a Scintec ...

Philip S. Anderson; Russell S. Ladkin; Ian A. Renfrew

2005-09-01T23:59:59.000Z

306

Sustainable Land Management Through Market-Oriented Commodity...  

Open Energy Info (EERE)

Livestock Research Institute Sector: Land Focus Area: Agriculture Topics: Market analysis, Background analysis Resource Type: Publications, Lessons learnedbest practices...

307

Requirements for Wind Development | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Requirements for Wind Development Requirements for Wind Development Requirements for Wind Development < Back Eligibility Commercial Construction Industrial Installer/Contractor Utility Savings Category Wind Buying & Making Electricity Program Info State Oklahoma Program Type Solar/Wind Permitting Standards In 2010, Oklahoma passed HB 2973, known as The Oklahoma Wind Energy Development Act. The bill becomes effective January 1, 2011. The Act provides sets rules for owners of wind energy facilities related to decommissioning, payments, and insurance. * Within one year of abandonment of a project, equipment from wind energy facilities must be removed and the land must be returned to its condition prior to the facility construction, except for roads. * After 15 years of operation, wind energy facility owners must file an

308

Stakeholder Engagement and Outreach: Wind Resource Maps and Anemometer Loan  

Wind Powering America (EERE)

Maps & Data Maps & Data Printable Version Bookmark and Share Utility-Scale Land-Based Maps Offshore Maps Community-Scale Maps Residential-Scale Maps Anemometer Loan Programs & Data Wind Resource Maps and Anemometer Loan Program Data The Stakeholder Engagement and Outreach initiative provides wind maps and validation to help states and regions build capacity to support and accelerate wind energy deployment. Read about the available wind maps for utility-, community-, and residential-scale wind development. A wind resource map of the United States showing land-based with offshore resources. The Energy Department, the National Renewable Energy Laboratory, and AWS Truepower provide the wind resource map that shows land-based with offshore resources. This map is the first to provide wind developers and policy

309

AG Land 1 | Open Energy Information  

Open Energy Info (EERE)

1 1 Jump to: navigation, search Name AG Land 1 Facility AG Land 1 Sector Wind energy Facility Type Community Wind Facility Status In Service Owner AG Land Energy LLC Developer AG Land Energy LLC Energy Purchaser Alliant Energy Location Story County IA Coordinates 42.145531°, -93.432161° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.145531,"lon":-93.432161,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

310

NREL: Wind Research - News Release Archives  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Management (BOEM) needed a process to delineate the bureau's proposed offshore Wind Energy Areas (WEA) into auctionable leasing areas, the agency turned to the National...

311

Effects of urban land cover modifications in a mesoscale meteorological model on surface temperature and heat fluxes in the Phoenix metropolitan area.  

E-Print Network (OSTI)

and latent heat fluxes and therefore the ground temperature, Tg. Evaporation, E, for each grid cell temperature and heat fluxes in the Phoenix metropolitan area. S. Grossman-Clarke1, J.A. Zehnder2, and W) satellite images [2]. The data were upscaled to a 30-second grid and used to augment and correct

Hall, Sharon J.

312

Fish schooling as a basis for vertical axis wind turbine farm design  

E-Print Network (OSTI)

Most wind farms consist of horizontal axis wind turbines (HAWTs) due to the high power coefficient (mechanical power output divided by the power of the free-stream air through the turbine cross-sectional area) of an isolated turbine. However when in close proximity to neighbouring turbines, HAWTs suffer from a reduced power coefficient. In contrast, previous research on vertical axis wind turbines (VAWTs) suggests that closely-spaced VAWTs may experience only small decreases (or even increases) in an individual turbine's power coefficient when placed in close proximity to neighbours, thus yielding much higher power outputs for a given area of land. A potential flow model of inter-VAWT interactions is developed to investigate the effect of changes in VAWT spatial arrangement on the array performance coefficient, which compares the expected average power coefficient of turbines in an array to a spatially-isolated turbine. A geometric arrangement based on the configuration of shed vortices in the wake of schooli...

Whittlesey, Robert W; Dabiri, John O

2010-01-01T23:59:59.000Z

313

Wind Turbines Electrical and Mechanical Engineering  

E-Print Network (OSTI)

Wind Turbines Electrical and Mechanical Engineering Objective · Introduce students to the concept of alternative energy. · Explain the math and scientific principles behind engineering wind turbines. Standards and how it applies to wind energy · About how surface area and shape effects wind turbine efficiency

Provancher, William

314

Wind-driven sediment suspension controls light availability in a ...  

Science Conference Proceedings (OSTI)

Waves and currents in Hog Island Bay responded strongly to wind forcing, with bottom stresses from wind driven waves dominant for 60% of the modeled area ...

315

UMore Park Wind Turbine Project Loggerhead Shrike Survey, DOE...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

UMore Park Wind Turbine Project Loggerhead Shrike Survey, DOEEA-1791 (June 2010) UMore Park Wind Turbine Project Loggerhead Shrike Survey, DOEEA-1791 (June 2010) The project area...

316

Reconnaissance geochemical assessment of the Clover Mountains Bureau of Land Management Wilderness Study Area (NV-050-139), Lincoln County, Nevada  

SciTech Connect

This report presents the results of a mineral survey of the Clover Mountains Wilderness Study Area, Lincoln County, Nevada. The Clover Mountains Geology-Energy-Minerals (GEM) Resource Area (GRA) includes the Clover Mountains Wilderness Study Area (WSA) NV 050-0139. The GRA is located in south-central Lincoln County, Nevada, near the town of Caliente. There are two mining districts on the periphery of the WSA: (1) the Pennsylvania district, just northwest of the WSA, which is still active and has produced about $50,000 worth of gold, silver, and copper; (2) the Viola district, on the southern boundary of the WSA, the total production of which was less than $400,000, mostly from fluorspar. No patented or unpatented claims exist within the WSA. The rocks exposed in the WSA are almost entirely Tertiary rhyolites; below these rocks are Paleozoic and Mesozoic sedimentary rocks that have been locally mineralized, as in the Pennsylvania district. Stream-sediment and heavy-mineral-concentrate samples were collected and analyzed spectrographically by the US Geological Survey. The analytical results indicate that anomalous concentrations of thorium and barium occur along the western border of the WSA. Minor thorium, barium, and tin anomalies are scattered throughout the WSA. 6 refs., 5 tabs. (ACR)

Hoffman, J.D.; Day, G.W.

1984-01-01T23:59:59.000Z

317

Utility Wind Integration Group Distributed Wind/Solar Interconnection  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utility Wind Integration Group Distributed Wind/Solar Utility Wind Integration Group Distributed Wind/Solar Interconnection Workshop Utility Wind Integration Group Distributed Wind/Solar Interconnection Workshop May 21, 2013 8:00AM MDT to May 22, 2013 5:00PM MDT Golden, Colorado This two-day workshop will answer your questions about interconnecting wind and solar plants and other distributed generation applications to electric distribution systems while providing insight on integrating large-scale renewable generation into the transmission system. Held at the National Renewable Energy Laboratory's (NREL) state-of-the-art Energy Systems Integration Facility (ESIF) on the first day and at the Western Area Power Administration's Electric Power Training Center (EPTC) on the second day, the workshop will provide an overview of wind and solar interconnection

318

Wind Powering America Webinar: Wind Power Economics: Past, Present, and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Powering America Webinar: Wind Power Economics: Past, Present, Wind Powering America Webinar: Wind Power Economics: Past, Present, and Future Trends Wind Powering America Webinar: Wind Power Economics: Past, Present, and Future Trends November 23, 2011 - 1:43pm Addthis Wind turbine prices in the United States have declined, on average, by nearly one-third since 2008, after doubling from 2002 through 2008. Over this entire period, the average nameplate capacity rating, hub height, and rotor swept area of turbines installed in the United States have increased significantly, while other design improvements have also boosted turbine energy production. In combination, these various trends have had a significant-and sometimes surprising-impact on the levelized cost of energy delivered by wind projects. This webinar will feature three related presentations that explore these

319

MODIS Land Products Subsets  

NLE Websites -- All DOE Office Websites (Extended Search)

Introduction Introduction The goal of the MODIS Land Product Subsets project is to provide summaries of selected MODIS Land Products for the community to use for validation of models and remote-sensing products, and to characterize field sites. The MODIS Land Product Subsets are derived from MODIS products that were generated with Collection 4 or later algorithms. Please be advised that these products are subject to continual review and revision. The MODIS land product subsets are provided in ASCII and GeoTIFF format. The subsets are stored as individual text(ASCII) files, each file represents one field site and one MODIS product.The ASCII data covers 7x7 km of the field site. These ASCII files contain comma-delimited rows of parameter values (image bands) for each pixel in the selected area. Each row in the file will contain data from one 8-day, 16-day, or annual period (depending on the temporal frequency of the data product represented).

320

Wind Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FUPWG Meeting FUPWG Meeting NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC Robi Robichaud November 18, 2009 Topics Introduction Review of the Current Wind Market Drivers for Wind Development Siting g Issues Wind Resource Assessment Wind Characteristics Wind Power Potential Basic Wind Turbine Theory Basic Wind Turbine Theory Types of Wind Turbines Facts About Wind Siting Facts About Wind Siting Wind Performance 1. United States: MW 1 9 8 2 1 9 8 3 1 9 8 4 1 9 8 5 1 9 8 6 1 9 8 7 1 9 8 8 1 9 8 9 1 9 9 0 1 9 9 1 1 9 9 2 1 9 9 3 1 9 9 4 1 9 9 5 1 9 9 6 1 9 9 7 1 9 9 8 1 9 9 9 2 0 0 0 2 0 0 1 2 0 0 2 2 0 0 3 2 0 0 4 2 0 0 5 2 0 0 6 2 0 0 7 2 0 0 8 Current Status of the Wind Industry Total Global Installed Wind Capacity Total Global Installed Wind Capacity Total Global Installed Wind Capacity

Note: This page contains sample records for the topic "land area wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Land Conservation (Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Land Conservation (Virginia) Land Conservation (Virginia) Land Conservation (Virginia) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Virginia Program Type Siting and Permitting Provider Virginia Department of Conservation and Recreation The Virginia Department of Conservation and Recreation has developed the

322

Land Division: Uniform Environmental Covenants Program (Alabama) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Land Division: Uniform Environmental Covenants Program (Alabama) Land Division: Uniform Environmental Covenants Program (Alabama) Land Division: Uniform Environmental Covenants Program (Alabama) < Back Eligibility Agricultural Commercial Construction Fed. Government Industrial Local Government Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Alabama Program Type Environmental Regulations These regulations apply to environmental covenants arising from environmental response projects conducted under any of the following Alabama Department of Environmental Management programs: Scrap tire remediation sites, Soil and groundwater remediation sites, Leaking storage tank remediation sites, Solid waste disposal sites, Hazardous waste

323

Acquisition Of Land (Tennessee) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Acquisition Of Land (Tennessee) Acquisition Of Land (Tennessee) Acquisition Of Land (Tennessee) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Tennessee Program Type Siting and Permitting Provider Tennessee Regulatory Authority Every corporation organized under the laws of any state of the United

327

Chesapeake Forest Lands (Maryland) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chesapeake Forest Lands (Maryland) Chesapeake Forest Lands (Maryland) Chesapeake Forest Lands (Maryland) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info Start Date 1999 State Maryland Program Type Siting and Permitting Provider Maryland Department of Natural Resources The Chesapeake Forest Lands are most of the former land holdings of the

328

Land Turtles  

NLE Websites -- All DOE Office Websites (Extended Search)

Turtles Turtles Nature Bulletin No. 157 May 29, 1948 Forest Preserve District of Cook County William N. Erickson, President Roberts Mann, Supt. of Conservation LAND TURTLES Turtles are four-legged reptiles that originated before the dinosaurs appeared, some 175 million years ago. The distinguishing feature of the turtle is its shell, varying in shape and markings with the different species: an arched upper shell grown fast to the backbone, and a flat lower shell grown fast to the breastbone, the two connected on either side by a bony bridge. In some species, like the box turtles, the lower shell is hinged, enabling the animal to completely conceal its head, tail and limbs by closing the two shells together. Most turtles live in water all or part of the time, but all of them lay their eggs on land, and neither the nest nor the young is attended by the parents. Each species has its own method of nest construction, using the hind legs to dig a hole in the ground, but the eggs are covered and left to be hatched by the heat of the sun. The eggs are relished by many animals such as skunks and squirrels; the young, before their armor hardens, are devoured by birds, mammals, fishes and other turtles.

329

PIBS 4709eMinistry of the Environment NOISE GUIDELINES FOR WIND FARMS Interpretation for Applying MOE NPC Publications to Wind Power Generation Facilities  

E-Print Network (OSTI)

This document establishes the sound level limits for land-based wind power generating facilities and describes the information required for noise assessments and submissions under the Environmental

Ministry Of The Environment

2008-01-01T23:59:59.000Z

330

Offshore Wind Farm Layout Optimization (OWFLO) Project: Preliminary Results  

E-Print Network (OSTI)

literature to date has focused on land-based wind farms, rather than on offshore farms. Typically, energy wind energy. The project combines an energy production model--taking into account wake effects the cost of energy while maximizing the energy production of the wind farm. Particular attention has been

Massachusetts at Amherst, University of

331

Alta Wind Energy Center | Open Energy Information  

Open Energy Info (EERE)

Alta Wind Energy Center Alta Wind Energy Center Address 10315 Oak Creek Road Place Mojave, California Zip 93501 Sector Wind energy Phone number 1-877-4WI-ND88 (1-877-494-6388) Website http://altawindenergycenter.co Region Southern CA Area References Alta Wind Energy Center[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! The Alta Wind Energy Center (AWEC) is located in the heart of one of the most proven wind resources in the United States - the Tehachapi-Mojave Wind Resource Area. Terra-Gen is developing the AWEC, California's largest wind energy project, adjacent to existing wind projects between the towns of Mojave and Tehachapi. Due to a welcoming community and the participation of a diverse group of landowners (private and public, local and non-local,

332

Stakeholder Engagement and Outreach: Wind Policy  

Wind Powering America (EERE)

Federal, Federal, State, & Local Printable Version Bookmark and Share Economic Development Policy Cap & Trade State Implementation Plans Supplemental Environmental Projects Resources & Tools Public Lands Public Power Regional Activities State Activities State Lands Siting Wind Policy Federal, state, and local policies play an important role in wind energy development. More than 20 states have established renewable portfolio standards that require electricity providers to obtain a portion of their power from renewable sources. More than 15 states have established renewable energy funds that provide financial incentives and other types of support for wind energy development. In addition, voluntary consumer decisions to purchase green power can provide an important revenue stream

333

Maiden Wind Farm, Final NEPA/SEPA Environmental Impact Statement  

DOE Green Energy (OSTI)

BPA's proposed action is the execution of power purchase and construction and generation interconnection agreements to acquire and transmit up to 50 aMW (up to about 200 MW) of output from the proposed Maiden Wind Farm, which would be developed to generate up to 494 MW. Benton and Yakima Counties' proposed action is to grant Conditional Use Permits (CUPs) and other required permits for full build-out of the project, which would require construction of up to 549 wind turbines for a 494-MW project. The EIS evaluates two alternatives--the Proposed Action (which means that part or all of the proposed project would be built) and No Action. BPA would not purchase or transmit power from the project under the No Action Alternative and it is therefore likely that the project would not be constructed. Washington Winds Inc. proposes to construct and operate up to 494 megawatts (MW) of wind generation on privately- and publicly-owned property in Benton and Yakima Counties, Washington. This EIS evaluates the environmental effects of BPA's Proposed Action to execute power purchase and interconnection agreements for the purpose of acquiring up to 50 average megawatts (aMW) (up to about 200 MW) of the project developer's proposed Maiden Wind Farm. The project developer has requested a CUP for up to 494 MW. Although the full 494 MW of power may or may not be constructed, this EIS evaluates impacts from full buildout of the project. The project would be located about 10 miles northeast of Sunnyside in the Rattlesnake Hills and would occupy approximately 251 acres of land. Approximately 1,063 acres would be temporarily occupied during construction by facilities such as staging areas, equipment laydown areas, and rock quarries. Except for portions of two sections of land owned by the Washington Department of Natural Resources (DNR), the project would be constructed on privately-owned farm and ranch land in Benton and Yakima Counties. The major facilities of the project include up to 549 wind turbines with small transformers at the base of each turbine tower, underground and overhead collector cables, access roads, up to two substations, up to three operation and maintenance buildings, a potential 4-mile 230-kilovolt (kV) transmission line, and up to four meteorological towers (see Figure 2.1-2 in the Draft EIS). Construction of the project could begin in early 2003, with at least partial power generation expected as early as December 2003. Construction of the full project would take about nine months.

N /A

2003-01-03T23:59:59.000Z

334

Wind Energy Ordinances (Fact Sheet)  

SciTech Connect

Due to increasing energy demands in the United States and more installed wind projects, rural communities and local governments with limited or no experience with wind energy now have the opportunity to become involved in this industry. Communities with good wind resources may be approached by entities with plans to develop the resource. Although these opportunities can create new revenue in the form of construction jobs and land lease payments, they also create a new responsibility on the part of local governments to create ordinances to regulate wind turbine installations. Ordinances are laws, often found within municipal codes that provide various degrees of control to local governments. These laws cover issues such as zoning, traffic, consumer protection, and building codes. Wind energy ordinances reflect local needs and wants regarding wind turbines within county or city lines and aid the development of safe facilities that will be embraced by the community. Since 2008 when the National Renewable Energy Laboratory released a report on existing wind energy ordinances, many more ordinances have been established throughout the United States, and this trend is likely to continue in the near future as the wind energy industry grows. This fact sheet provides an overview of elements found in typical wind energy ordinances to educate state and local government officials, as well as policy makers.

2010-08-01T23:59:59.000Z

335

Wind Powering America Initiative (Fact Sheet)  

SciTech Connect

The U.S. Department of Energy's Wind Powering America initiative engages in technology market acceptance, barrier reduction, and technology deployment support activities. This fact sheet outlines ways in which the Wind Powering America team works to reduce barriers to appropriate wind energy deployment, primarily by focusing on six program areas: workforce development, communications and outreach, stakeholder analysis and resource assessment, wind technology technical support, wind power for Native Americans, and federal sector support and collaboration.

2011-01-01T23:59:59.000Z

336

Wind Powering America Initiative (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy's Wind Powering America initiative engages in technology market acceptance, barrier reduction, and technology deployment support activities. This fact sheet outlines ways in which the Wind Powering America team works to reduce barriers to appropriate wind energy deployment, primarily by focusing on six program areas: workforce development, communications and outreach, stakeholder analysis and resource assessment, wind technology technical support, wind power for Native Americans, and federal sector support and collaboration.

Not Available

2011-01-01T23:59:59.000Z

337

EA-1640: Transfer of Land and Facilities within the East Tennessee...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

40: Transfer of Land and Facilities within the East Tennessee Technology Park and Surrounding Area, Oak Ridge, Tennessee EA-1640: Transfer of Land and Facilities within the East...

338

EA-1936: Proposed Changes to Parcel ED-1 Land Uses, Utility Infrastruc...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6: Proposed Changes to Parcel ED-1 Land Uses, Utility Infrastructure, and Natural Area Management Responsibility, Oak Ridge, Tennessee EA-1936: Proposed Changes to Parcel ED-1 Land...

339

Wind Energy Resource Atlas of Sri Lanka and the Maldives  

DOE Green Energy (OSTI)

The Wind Energy Resource Atlas of Sri Lanka and the Maldives, produced by the National Renewable Energy Laboratory's (NREL's) wind resource group identifies the wind characteristics and distribution of the wind resource in Sri Lanka and the Maldives. The detailed wind resource maps and other information contained in the atlas facilitate the identification of prospective areas for use of wind energy technologies, both for utility-scale power generation and off-grid wind energy applications.

Elliott, D.; Schwartz, M.; Scott, G.; Haymes, S.; Heimiller, D.; George, R.

2003-08-01T23:59:59.000Z

340

(The Spanish version of Wind Energy Resource Atlas of Oaxaca)  

DOE Green Energy (OSTI)

The Oaxaca Wind Resource Atlas, produced by the National Renewable Energy Laboratory's (NREL's) wind resource group, is the result of an extensive mapping study for the Mexican State of Oaxaca. This atlas identifies the wind characteristics and distribution of the wind resource in Oaxaca. The detailed wind resource maps and other information contained in the atlas facilitate the identification of prospective areas for use of wind energy technologies, both for utility-scale power generation and off-grid wind energy applications.

Elliott, D.; Schwartz, M.; Scott, G.; Haymes, S.; Heimiller, D.; George, R.

2004-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "land area wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Wind Energy Resource Atlas of Armenia (CD-ROM)  

DOE Green Energy (OSTI)

This wind energy resource atlas identifies the wind characteristics and distribution of the wind resource in the country of Armenia. The detailed wind resource maps and other information contained in the atlas facilitate the identification of prospective areas for use of wind energy technologies for utility-scale power generation and off-grid wind energy applications. The maps portray the wind resource with high-resolution (1-km2) grids of wind power density at 50-m above ground. The wind maps were created at the National Renewable Energy Laboratory (NREL) using a computerized wind mapping system that uses Geographic Information System (GIS) software.

Elliott, D.; Schwartz, M.; Scott, G.; Haymes, S.; Heimiller, D.; George, R.

2003-07-01T23:59:59.000Z

342

Mexico Wind Resource Assessment Project  

Science Conference Proceedings (OSTI)

A preliminary wind energy resource assessment of Mexico that produced wind resource maps for both utility-scale and rural applications was undertaken as part of the Mexico-U.S. Renewable Energy Cooperation Program. This activity has provided valuable information needed to facilitate the commercialization of small wind turbines and windfarms in Mexico and to lay the groundwork for subsequent wind resource activities. A surface meteorological data set of hourly data in digital form was utilized to prepare a more detailed and accurate wind resource assessment of Mexico than otherwise would have been possible. Software was developed to perform the first ever detailed analysis of the wind characteristics data for over 150 stations in Mexico. The hourly data set was augmented with information from weather balloons (upper-air data), ship wind data from coastal areas, and summarized wind data from sources in Mexico. The various data were carefully evaluated for their usefulness in preparing the wind resource assessment. The preliminary assessment has identified many areas of good-to-excellent wind resource potential and shows that the wind resource in Mexico is considerably greater than shown in previous surveys.

Schwartz, M.N.; Elliott, D.L.

1995-05-01T23:59:59.000Z

343

ANALYSIS OF THE PERFORMANCE AND COST EFFECTIVENESS OF NINE SMALL WIND ENERGY CONVERSION SYSTEMS FUNDED BY THE DOE SMALL GRANTS PROGRAM  

E-Print Network (OSTI)

W.R. (May 1977), Wind Energy tics for Large Arrays Statis-land-use related permits. Wind Energy Report (May 1981) p.2.R. Cappelli, B. Dawley, I. Wind Energy Conversion System

Kay, J.

2009-01-01T23:59:59.000Z

344

Ashe County- Wind Energy System Ordinance  

Energy.gov (U.S. Department of Energy (DOE))

In 2007 Ashe County adopted a wind ordinance to regulate the use of wind-energy systems in unincorporated areas of the county and to describe the conditions by which a permit for installing such a...

345

The Need for Open Lands  

NLE Websites -- All DOE Office Websites (Extended Search)

Need for Open Lands Need for Open Lands Nature Bulletin No. 742 February 8, 1964 Forest Preserve District of Cook County Seymour .Simon, President Roberts Mann, Conservation Editor THE NEED FOR OPEN LANDS There is an old saying: The proof of the pudding is the eating . In other words, if it's good, people enjoy it and beg for more. The proof of the need for open lands -- publicly owned areas for recreational uses and open spaces undisturbed -- is the tremendous and ever-increasing use of those we have. We need more now. Year after year we will need more and more. It is imperative that areas desirable for future use be acquired now or as soon as possible, regardless of cost and even though they may stand idle ' -- vacant and undeveloped -- until more funds become available. Otherwise they may be gone, or the asking price may be a hundred times greater. Open spaces such as farm lands and prairies may have been occupied by residential, commercial or industrial developments. Woodlands may have been cut, stream channels dredged and wetlands drained, destroying all but a memory of their beauty and recreational values. There are compelling reasons for our need of open lands and why we should waste no time in providing more. Those reasons have been confirmed and emphasized by exhaustive studies and statistical analyses nationwide in scope.

346

MSU-Wind Applications Center: Wind Resource Worksheet Theoretical Power Calculation  

E-Print Network (OSTI)

MSU-Wind Applications Center: Wind Resource Worksheet Theoretical Power Calculation Equations: A= swept area = air density v= velocity R= universal gas constant Steps: 1. Measure wind speed from fan. = ___________/(________*________)= _________kg/m3 5. Theoretical Power a. Low Setting Theoretical Wind Power i. Power= ½*______*______*______*.59

Dyer, Bill

347

AG Land 5 | Open Energy Information  

Open Energy Info (EERE)

5 5 Jump to: navigation, search Name AG Land 5 Facility AG Land 5 Sector Wind energy Facility Type Community Wind Facility Status In Service Owner AG Land Energy LLC Developer Enervation LLC Energy Purchaser Alliant Energy Location Hamilton County IA Coordinates 42.335544°, -93.636953° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.335544,"lon":-93.636953,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

348

Applied wind energy research at the National Wind Technology Center  

DOE Green Energy (OSTI)

Applied research activities at the National Wind Technology Center are divided into several technical disciplines. Not surprisingly, these engineering and science disciplines highlight the technology similarities between aircraft and wind turbine design requirements. More often than not, wind turbines are assumed to be a subset of the much larger and more comprehensive list of well understood aerospace engineering accomplishments and it is difficult for the general public to understand the poor performance history of wind turbines in sustained operation. Often overlooked are the severe environmental conditions and operational demands placed on turbine designs which define unique requirements beyond typical aerospace applications. It is the role of the National Wind Technology Center to investigate and quantify the underlying physical phenomena which make the wind turbine design problem unique and to provide the technology advancements necessary to overcome current operational limitations. This paper provides a brief overview of research areas involved with the design of wind turbines.

Robinson, M C; Tu, P

1996-06-01T23:59:59.000Z

349

Wind Power Finance and Investment Workshop 2004  

Science Conference Proceedings (OSTI)

The workshop had 33 presentations by the leading industry experts in the wind finance and investment area. The workshop presented wind industry opportunities and advice to the financial community. The program also included two concurrent sessions, Wind 100, which offered wind energy novices a comprehensive introduction to wind energy fundamentals, and Transmission Policy and Regulations. Other workshop topics included: Bringing environmental and other issues into perspective; Policy impacts on wind financing; Technical/wind issues; Monetizing green attributes (Sale of green tags); Contractual issues; Debt issues; and Equity issues. There were approximately 230 attendees.

anon.

2004-11-01T23:59:59.000Z

350

Long-Term Wind Power Variability  

DOE Green Energy (OSTI)

The National Renewable Energy Laboratory started collecting wind power data from large commercial wind power plants (WPPs) in southwest Minnesota with dedicated dataloggers and communication links in the spring of 2000. Over the years, additional WPPs in other areas were added to and removed from the data collection effort. The longest data stream of actual wind plant output is more than 10 years. The resulting data have been used to analyze wind power fluctuations, frequency distribution of changes, the effects of spatial diversity, and wind power ancillary services. This report uses the multi-year wind power data to examine long-term wind power variability.

Wan, Y. H.

2012-01-01T23:59:59.000Z

351

EIA: Wind  

U.S. Energy Information Administration (EIA)

Technical information and data on the wind energy industry from the U.S. Energy Information Administration (EIA).

352

EIA - Greenhouse Gas Emissions - Land use  

Gasoline and Diesel Fuel Update (EIA)

6. Land use 6. Land use 6.1. Total land use, land use change, and forests This chapter presents estimates of carbon sequestration (removal from the atmosphere) and emissions (release into the atmosphere) from forests, croplands, grasslands, and residential areas (urban trees, grass clippings, and food scraps) in the United States. In 2008, land use, land use change, and forests were responsible for estimated net carbon sequestration of 940 MMTCO2e (Table 31), representing 16 percent of total U.S. CO2 emissions. The largest sequestration category in 2008 was forest lands and harvested wood pools,49 with estimated sequestration increasing from 730 MMTCO2e in 1990 to 792 MMTCO2e in 2008. The second-largest carbon sequestration category was urban trees,50 responsible for 57 MMTCO2e in 1990 and 94

353

Manzanita Wind Energy Feasibility Study  

DOE Green Energy (OSTI)

The Manzanita Indian Reservation is located in southeastern San Diego County, California. The Tribe has long recognized that the Reservation has an abundant wind resource that could be commercially utilized to its benefit. Manzanita has explored the wind resource potential on tribal land and developed a business plan by means of this wind energy feasibility project, which enables Manzanita to make informed decisions when considering the benefits and risks of encouraging large-scale wind power development on their lands. Technical consultant to the project has been SeaWest Consulting, LLC, an established wind power consulting company. The technical scope of the project covered the full range of feasibility assessment activities from site selection through completion of a business plan for implementation. The primary objectives of this feasibility study were to: (1) document the quality and suitability of the Manzanita Reservation as a site for installation and long-term operation of a commercially viable utility-scale wind power project; and, (2) develop a comprehensive and financeable business plan.

Trisha Frank

2004-09-30T23:59:59.000Z

354

NREL: Wind-Wildlife Impacts Literature Database (WILD) Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind-Wildlife Impacts Literature Database (WILD) Wind Research WILD WILD Wind-Wildlife Impacts Literature Database (WILD) Wind Research WILD WILD Browse By Reset All Geography Africa (11) Apply Africa filter Asia (12) Apply Asia filter Australia and Oceania (10) Apply Australia and Oceania filter Europe (219) Apply Europe filter Global (7) Apply Global filter North America (217) Apply North America filter Technology Land-Based Wind (280) Apply Land-Based Wind filter Marine Energy (58) Apply Marine Energy filter Offshore Wind (161) Apply Offshore Wind filter Power Lines (66) Apply Power Lines filter Towers (23) Apply Towers filter Animal Birds (334) Apply Birds filter Fish (71) Apply Fish filter Invertebrates (44) Apply Invertebrates filter Mammals (185) Apply Mammals filter Reptiles (10) Apply Reptiles filter Publication Year 2013 (92) Apply 2013 filter

355

An interactive land use VRML application (ILUVA) with servlet assist  

Science Conference Proceedings (OSTI)

We summarize progress achieved on an interactive land use VRML application (ILUVA) with servlet assist. The purpose of this application is to enable one to take a virtual land area and add buildings, roadways, landscaping and other features. The application ...

Lee A. Belfore, II; Suresh Chitithoti

2000-12-01T23:59:59.000Z

356

Wind Energy Ordinances | Open Energy Information  

Open Energy Info (EERE)

Wind Energy Ordinances Wind Energy Ordinances Jump to: navigation, search Photo from First Wind, NREL 17545 Due to increasing energy demands in the United States and more installed wind projects, rural communities and local governments with limited or no experience with wind energy now have the opportunity to become involved in this industry. Communities with good wind resources may be approached by entities with plans to develop the resource. Although these opportunities can create new revenue in the form of construction jobs and land lease payments, they also create a new responsibility on the part of local governments to create ordinances to regulate wind turbine installations. Ordinances are laws, often found within municipal codes that provide various degrees of control to local governments. These laws cover issues

357

Solar and Wind Rights | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Wind Rights and Wind Rights Solar and Wind Rights < Back Eligibility Commercial Fed. Government General Public/Consumer Industrial Local Government Nonprofit Residential Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Solar Heating Buying & Making Electricity Water Heating Wind Program Info State Wisconsin Program Type Solar/Wind Access Policy Provider Public Service Commission of Wisconsin Wisconsin has several laws that protect a resident's right to install and operate a solar or wind energy system. These laws cover zoning restrictions by local governments, private land use restrictions, and system owner rights to unobstructed access to resources. Wisconsin permitting rules and model policy for small wind can be found [http://dsireusa.org/incentives/incentive.cfm?Incentive_Code=WI16R&re=1&ee=1

358

INL Wind Farm Project Description Document  

DOE Green Energy (OSTI)

The INL Wind Farm project proposes to install a 20 MW to 40 MW wind farm on government property, consisting of approximately ten to twenty full-sized (80-meter hub height) towers with 2 MW turbines, and access roads. This includes identifying the optimal turbine locations, building access roads, and pouring the tower foundations in preparation for turbine installation. The project successfully identified a location on INL lands with commercially viable wind resources (i.e., greater than 11 mph sustained winds) for a 20 to 40 MW wind farm. Additionally, the proposed Wind Farm was evaluated against other General Plant Projects, General Purpose Capital Equipment projects, and Line Item Construction Projects at the INL to show the relative importance of the proposed Wind Farm project.

Gary Siefert

2009-07-01T23:59:59.000Z

359

Session: Wind industry project development  

DOE Green Energy (OSTI)

This first session at the Wind Energy and Birds/Bats workshop consisted of two presentations followed by a question and answer period. The session was intended to provide a general overview of wind energy product development, from the industry's perspective. Tom Gray of AWEA presented a paper titled ''State of the Wind Energy Industry in 2004'', highlighting improved performance and lower cost, efforts to address avian impacts, a status of wind energy in comparison to other energy-producing sources, and ending on expectations for the near future. Sam Enfield of Atlantic Renewable Energy Corporation presented a paper titled ''Key Factors for Consideration in Wind Plant Siting'', highlighting factors that wind facility developers must consider when choosing a site to build wind turbines and associated structures. Factors covered include wind resources available, ownership and land use patterns, access to transmission lines, accessibility and environmental impacts. The question and answer sum mary included topics related to risk taking, research and development, regulatory requirements, and dealing with utilities.

Gray, Tom; Enfield, Sam

2004-09-01T23:59:59.000Z

360

Using land value capture to fund rail transit extensions in Mexico City and Santiago de Chile  

E-Print Network (OSTI)

The effects of rail rapid transit on land uses and land values are discussed. Rail transit can enhance accessibility, and can raise the demand for locating in areas around stations, increasing land value, and in some cases ...

Covarrubias, Alvaro, 1973-

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "land area wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

DOE Hydrogen Program Record 5011 - Hydrogen Potential from Solar and Wind Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Hydrogen Program Record Record #: 5011 Date: December 15, 2005 Title: Hydrogen Potential from Solar and Wind Resources Items: - Data/resource maps indicate that the potential exists to use wind and solar resources to produce more than 15 times the amount of hydrogen needed to displace the petroleum used by light duty vehicles in 2040. - About one billion metric tons of hydrogen could be produced by renewable electrolysis annually, based upon solar and wind resource potential. - The other three solar pathways - thermochemical, photoelectrochemical, and photobiological - would have similar or possibly higher productivity per unit of land area. Data: Figure 1: Hydrogen Potential from Solar Resources Note: Map shows total kilograms of hydrogen per county, normalized by

362

Wind Blog  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

wind-blog Office of Energy Efficiency & Renewable wind-blog Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Two Facilities, One Goal: Advancing America's Wind Industry http://energy.gov/eere/articles/two-facilities-one-goal-advancing-america-s-wind-industry wind-industry" class="title-link">Two Facilities, One Goal: Advancing America's Wind Industry

363

New England Wind Forum; A Wind Powering America Project, Volume 1, Issue 4 - May 2008 (Newsletter)  

Wind Powering America (EERE)

4 - May 2008 4 - May 2008 New England Wind Takes a Wild Ride The past several months have been full of news on the regional wind power development front. The Stetson Ridge and Kibby Mountain Wind Projects in Maine received approvals from the Land Use Regulation Commission (these projects would constitute the two largest wind farms in New England). Under development since 1989, the Maine Mountain wind project was denied the same approval despite substantially downsizing the proposed project in an attempt to address objections. While the Lempster (New Hampshire) Wind Project weathered an appeal and construction has begun, key permits granted are now under appeal for the Sheffield (Vermont) and Hoosac (Massachusetts) wind projects. The Berkshire Wind project (under development

364

Offshore Wind Potential Tables  

Wind Powering America (EERE)

Offshore wind resource by state and wind speed interval within 50 nm of shore. Offshore wind resource by state and wind speed interval within 50 nm of shore. Wind Speed at 90 m (m/s) 7.0 - 7.5 7.5 - 8.0 8.0 - 8.5 8.5 - 9.0 9.0 - 9.5 9.5 - 10.0 >10.0 Total >7.0 State Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) California 11,439 (57,195) 24,864 (124,318) 23,059 (115,296) 22,852 (114,258) 13,185 (65,924) 15,231 (76,153) 6,926 (34,629) 117,555 (587,773) Connecticut 530 (2,652) 702 (3,508) 40 (201) 0 (0) 0 (0) 0 (0) 0 (0) 1,272 (6,360) Delaware 223 (1,116) 724 (3,618) 1,062 (5,310) 931 (4,657) 0 (0) 0 (0) 0 (0) 2,940 (14,701) Georgia 3,820 (19,102) 7,741 (38,706) 523 (2,617) 0 (0) 0 (0) 0 (0) 0 (0) 12,085 (60,425) Hawaii 18,873 (94,363) 42,298 (211,492)

365

MODIS Land Products Subsets  

NLE Websites -- All DOE Office Websites (Extended Search)

Shaaf, and the FLUXNET validation communities to choose sites and to identify the land products needed for validation. We also worked with MODAPS on subsetting the Land...

366

Africa Land Use (1980)  

NLE Websites -- All DOE Office Websites (Extended Search)

Africa Land Use (1980) image Brown, S., and G. Gaston. 1996. Tropical Africa: Land Use, Biomass, and Carbon Estimates For 1980. ORNLCDIAC-92, NDP-055. Carbon Dioxide Information...

367

Land Validation web site  

NLE Websites -- All DOE Office Websites (Extended Search)

web site A web site is now available for the Land Validation project. It was created with the purpose of facilitating communication among MODIS Land Validation Principal...

368

Wind Resources in Alaska | OpenEI  

Open Energy Info (EERE)

Resources in Alaska Resources in Alaska Dataset Summary Description Wind resource data for Alaska and southeast Alaska, both high resolution wind resource maps and gridded wind parameters. The two high resolution wind maps are comprised of a grid of cells each containing a single value of average wind speed (m/s) at a hub height of 30, 50, 70, and 100 meters and wind power density (W/m^2) at a hub height of 50 meters for a 40,000 square meter area. The additional gridded wind parameter data includes data for points spaced 2 kilometers apart, and include: predicted wind speed frequency distribution as well as speed and energy in 16 directions (the information needed to produce a wind rose image at a given point). Data included here as .kml files (for viewing in Google Earth). GIS shape files available for the gridded wind parameters datasets from AEDI (http://akenergyinventory.org/data.shtml).

369

Wind Resource Map: Mexico | Open Energy Information  

Open Energy Info (EERE)

Wind Resource Map: Mexico Wind Resource Map: Mexico Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Wind Resource Map: Mexico Focus Area: Renewable Energy Topics: Potentials & Scenarios Website: www.altestore.com/howto/Reference-Materials/Wind-Resource-Map-Mexico/a Equivalent URI: cleanenergysolutions.org/content/wind-resource-map-mexico,http://clean Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This is on-shore wind resource map for rural power applications in Mexico. The map can be used to aid in appropriate siting of wind power installations. Please note that the wind speed classes are taken at 30 m (100 feet [ft]), instead of the usual 10 m (33 ft). Each wind power class should span two power densities. For example, Wind Power Class = 3

370

Offshore Wind Research (Fact Sheet)  

SciTech Connect

This 2-page fact sheet describes NREL's offshore wind research and development efforts and capabilities. The National Renewable Energy Laboratory is internationally recognized for offshore wind energy research and development (R&D). Its experience and capabilities cover a wide spectrum of wind energy disciplines. NREL's offshore wind R&D efforts focus on critical areas that address the long-term needs of the offshore wind energy industry and the Department of Energy (DOE). R&D efforts include: (1) Developing offshore design tools and methods; (2) Collaborating with international partners; (3) Testing offshore systems and developing standards; (4) Conducting economic analyses; (5) Characterizing offshore wind resources; and (6) Identifying and mitigating offshore wind grid integration challenges and barriers. NREL has developed and maintains a robust, open-source, modular computer-aided engineering (CAE) tool, known as FAST. FAST's state-of-the-art capabilities provide full dynamic system simulation for a range of offshore wind systems. It models the coupled aerodynamic, hydrodynamic, control system, and structural response of offshore wind systems to support the development of innovative wind technologies that are reliable and cost effective. FAST also provides dynamic models of wind turbines on offshore fixed-bottom systems for shallow and transitional depths and floating-platform systems in deep water, thus enabling design innovation and risk reduction and facilitating higher performance designs that will meet DOE's cost of energy, reliability, and deployment objectives.

2011-10-01T23:59:59.000Z

371

Offshore Wind Research (Fact Sheet)  

DOE Green Energy (OSTI)

This 2-page fact sheet describes NREL's offshore wind research and development efforts and capabilities. The National Renewable Energy Laboratory is internationally recognized for offshore wind energy research and development (R&D). Its experience and capabilities cover a wide spectrum of wind energy disciplines. NREL's offshore wind R&D efforts focus on critical areas that address the long-term needs of the offshore wind energy industry and the Department of Energy (DOE). R&D efforts include: (1) Developing offshore design tools and methods; (2) Collaborating with international partners; (3) Testing offshore systems and developing standards; (4) Conducting economic analyses; (5) Characterizing offshore wind resources; and (6) Identifying and mitigating offshore wind grid integration challenges and barriers. NREL has developed and maintains a robust, open-source, modular computer-aided engineering (CAE) tool, known as FAST. FAST's state-of-the-art capabilities provide full dynamic system simulation for a range of offshore wind systems. It models the coupled aerodynamic, hydrodynamic, control system, and structural response of offshore wind systems to support the development of innovative wind technologies that are reliable and cost effective. FAST also provides dynamic models of wind turbines on offshore fixed-bottom systems for shallow and transitional depths and floating-platform systems in deep water, thus enabling design innovation and risk reduction and facilitating higher performance designs that will meet DOE's cost of energy, reliability, and deployment objectives.

Not Available

2011-10-01T23:59:59.000Z

372

Validation of the Coupled NCEP Mesoscale Spectral Model and an Advanced Land Surface Model over the Hawaiian Islands. Part I: Summer Trade Wind Conditions and a Heavy Rainfall Event  

Science Conference Proceedings (OSTI)

Validations of the 10-km operational Regional Spectral Model (RSM) and the coupled Mesoscale Spectral Model (MSM) with an advanced land surface model (LSM) forecasts during a 1-month period from 20 May through 20 June 2002 are performed at three ...

Yongxin Zhang; Yi-Leng Chen; Song-You Hong; Hann-Ming Henry Juang; Kevin Kodama

2005-12-01T23:59:59.000Z

373

U.S. Offshore Wind Manufacturing and Supply Chain Development  

SciTech Connect

The objective of the report is to provide an assessment of the domestic supply chain and manufacturing infrastructure supporting the U.S. offshore wind market. The report provides baseline information and develops a strategy for future development of the supply chain required to support projected offshore wind deployment levels. A brief description of each of the key chapters includes: » Chapter 1: Offshore Wind Plant Costs and Anticipated Technology Advancements. Determines the cost breakdown of offshore wind plants and identifies technical trends and anticipated advancements in offshore wind manufacturing and construction. » Chapter 2: Potential Supply Chain Requirements and Opportunities. Provides an organized, analytical approach to identifying and bounding the uncertainties associated with a future U.S. offshore wind market. It projects potential component-level supply chain needs under three demand scenarios and identifies key supply chain challenges and opportunities facing the future U.S. market as well as current suppliers of the nation’s land-based wind market. » Chapter 3: Strategy for Future Development. Evaluates the gap or competitive advantage of adding manufacturing capacity in the U.S. vs. overseas, and evaluates examples of policies that have been successful . » Chapter 4: Pathways for Market Entry. Identifies technical and business pathways for market entry by potential suppliers of large-scale offshore turbine components and technical services. The report is intended for use by the following industry stakeholder groups: (a) Industry participants who seek baseline cost and supplier information for key component segments and the overall U.S. offshore wind market (Chapters 1 and 2). The component-level requirements and opportunities presented in Section 2.3 will be particularly useful in identifying market sizes, competition, and risks for the various component segments. (b) Federal, state, and local policymakers and economic development agencies, to assist in identifying policies with low effort and high impact (Chapter 3). Section 3.3 provides specific policy examples that have been demonstrated to be effective in removing barriers to development. (c) Current and potential domestic suppliers in the offshore wind market, in evaluating areas of opportunity and understanding requirements for participation (Chapter 4). Section 4.4 provides a step-by-step description of the qualification process that suppliers looking to sell components into a future U.S. offshore wind market will need to follow.

Hamilton, Bruce Duncan [Navigant Consulting, Inc.

2013-02-22T23:59:59.000Z

374

Landed Costs of Imported Crude by Area  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: See Definitions ...

375

National Wind Technology Center (Fact Sheet)  

SciTech Connect

This overview fact sheet is one in a series of information fact sheets for the National Wind Technology Center (NWTC). Wind energy is one of the fastest growing electricity generation sources in the world. NREL's National Wind Technology Center (NWTC), the nation's premier wind energy technology research facility, fosters innovative wind energy technologies in land-based and offshore wind through its research and testing facilities and extends these capabilities to marine hydrokinetic water power. Research and testing conducted at the NWTC offers specialized facilities and personnel and provides technical support critical to the development of advanced wind energy systems. From the base of a system's tower to the tips of its blades, NREL researchers work side-by-side with wind industry partners to increase system reliability and reduce wind energy costs. The NWTC's centrally located research and test facilities at the foot of the Colorado Rockies experience diverse and robust wind patterns ideal for testing. The NWTC tests wind turbine components, complete wind energy systems and prototypes from 400 watts to multiple megawatts in power rating.

2011-12-01T23:59:59.000Z

376

National Wind Technology Center (Fact Sheet)  

DOE Green Energy (OSTI)

This overview fact sheet is one in a series of information fact sheets for the National Wind Technology Center (NWTC). Wind energy is one of the fastest growing electricity generation sources in the world. NREL's National Wind Technology Center (NWTC), the nation's premier wind energy technology research facility, fosters innovative wind energy technologies in land-based and offshore wind through its research and testing facilities and extends these capabilities to marine hydrokinetic water power. Research and testing conducted at the NWTC offers specialized facilities and personnel and provides technical support critical to the development of advanced wind energy systems. From the base of a system's tower to the tips of its blades, NREL researchers work side-by-side with wind industry partners to increase system reliability and reduce wind energy costs. The NWTC's centrally located research and test facilities at the foot of the Colorado Rockies experience diverse and robust wind patterns ideal for testing. The NWTC tests wind turbine components, complete wind energy systems and prototypes from 400 watts to multiple megawatts in power rating.

Not Available

2011-12-01T23:59:59.000Z

377

Commercial Scale Wind Incentive Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Scale Wind Incentive Program Commercial Scale Wind Incentive Program Commercial Scale Wind Incentive Program < Back Eligibility Agricultural Commercial Local Government Nonprofit Residential Schools State Government Savings Category Wind Buying & Making Electricity Maximum Rebate Project Development Assistance: $40,000 Program Info State Oregon Program Type State Rebate Program Rebate Amount Varies Provider Energy Trust of Oregon Energy Trust of Oregon's Commercial Scale Wind offering provides resources and cash incentives to help communities, businesses land owners, and government entities install wind turbine systems up to 20 megawatts (MW) in capacity. Projects may consist of a single turbine or a small group of turbines. A variety of ownership models are allowed. Incentive programs

378

International Workshop on Small Scale Wind Energy for Developing Countries  

Open Energy Info (EERE)

Scale Wind Energy for Developing Countries Scale Wind Energy for Developing Countries Jump to: navigation, search Name International Workshop on Small Scale Wind Energy for Developing Countries Agency/Company /Organization Risoe DTU Sector Energy Focus Area Renewable Energy, Wind Topics Implementation, Technology characterizations Resource Type Workshop, Training materials, Lessons learned/best practices Website http://www.risoe.dtu.dk/~/medi References International Workshop on Small Scale Wind Energy for Developing Countries[1] Background "The workshop covers the following main themes: Wind energy technologies, their perspectives and applications in developing countries. Reliability of wind turbines, lifetime and strength of wind turbine components. Low cost and natural materials for wind turbines.

379

Energy Basics: Wind Turbines  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Wind Wind Turbines Wind Resources Wind Turbines...

380

Standards for Municipal Small Wind Regulations and Small Wind...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Standards for Municipal Small Wind Regulations and Small Wind Model Wind Ordinance Standards for Municipal Small Wind Regulations and Small Wind Model Wind Ordinance Eligibility...

Note: This page contains sample records for the topic "land area wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

USGS-Land Cover Institute (LCI) | Open Energy Information  

Open Energy Info (EERE)

USGS-Land Cover Institute (LCI) USGS-Land Cover Institute (LCI) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: USGS-Land Cover Institute (LCI) Agency/Company /Organization: United States Geological Survey Sector: Land Focus Area: Land Use Topics: Resource assessment Resource Type: Maps User Interface: Website Website: landcover.usgs.gov/landcoverdata.php Cost: Free USGS-Land Cover Institute (LCI) Screenshot References: USGS-Land Cover Institute (LCI)[1] "Welcome to the U.S Geological Survey (USGS) Land Cover Institute (LCI). The USGS currently houses the institute at the Center for Earth Resources Observation and Science (EROS) in Sioux Falls, South Dakota. The LCI will address land cover topics from local to global scales, and in both domestic and international settings. The USGS through the Land Cover Institute

382

Economic Impacts of Wind Turbine Development in U.S. Counties  

DOE Green Energy (OSTI)

The objective is to address the research question using post-project construction, county-level data, and econometric evaluation methods. Wind energy is expanding rapidly in the United States: Over the last 4 years, wind power has contributed approximately 35 percent of all new electric power capacity. Wind power plants are often developed in rural areas where local economic development impacts from the installation are projected, including land lease and property tax payments and employment growth during plant construction and operation. Wind energy represented 2.3 percent of the U.S. electricity supply in 2010, but studies show that penetrations of at least 20 percent are feasible. Several studies have used input-output models to predict direct, indirect, and induced economic development impacts. These analyses have often been completed prior to project construction. Available studies have not yet investigated the economic development impacts of wind development at the county level using post-construction econometric evaluation methods. Analysis of county-level impacts is limited. However, previous county-level analyses have estimated operation-period employment at 0.2 to 0.6 jobs per megawatt (MW) of power installed and earnings at $9,000/MW to $50,000/MW. We find statistically significant evidence of positive impacts of wind development on county-level per capita income from the OLS and spatial lag models when they are applied to the full set of wind and non-wind counties. The total impact on annual per capita income of wind turbine development (measured in MW per capita) in the spatial lag model was $21,604 per MW. This estimate is within the range of values estimated in the literature using input-output models. OLS results for the wind-only counties and matched samples are similar in magnitude, but are not statistically significant at the 10-percent level. We find a statistically significant impact of wind development on employment in the OLS analysis for wind counties only, but not in the other models. Our estimates of employment impacts are not precise enough to assess the validity of employment impacts from input-output models applied in advance of wind energy project construction. The analysis provides empirical evidence of positive income effects at the county level from cumulative wind turbine development, consistent with the range of impacts estimated using input-output models. Employment impacts are less clear.

J., Brown; B., Hoen; E., Lantz; J., Pender; R., Wiser

2011-07-25T23:59:59.000Z

383

NREL: Wind Research - Mariah Power's Windspire Wind Turbine Testing and  

NLE Websites -- All DOE Office Websites (Extended Search)

Mariah Power's Windspire Wind Turbine Testing and Results Mariah Power's Windspire Wind Turbine Testing and Results A video of Mariah Power's Windspire wind turbine. Text Version As part of the National Renewable Energy Laboratory and U.S. Department of Energy (NREL/DOE) Independent Testing project, NREL tested Mariah Power's Windspire Giromill small wind turbine at the National Wind Technology Center (NWTC) through January 14, 2009 when NREL terminated its testing. Read a chronology of events and letter from Mariah Power to NREL. The Windspire is a 1.2-kilowatt (kW) vertical-axis small wind turbine. The turbine tower is 9.1 meters tall, and its rotor area is 1.2 by 6.1 meters. The turbine has a permanent-magnet generator with a single-phase output at 120 volts AC. Testing Summary Testing was terminated January 14, 2009. Published test reports include

384

Wind Turbines  

Energy.gov (U.S. Department of Energy (DOE))

Although all wind turbines operate on similar principles, several varieties are in use today. These include horizontal axis turbines and vertical axis turbines.

385

Delaware Land Protection Act (Delaware) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Delaware Land Protection Act (Delaware) Delaware Land Protection Act (Delaware) Delaware Land Protection Act (Delaware) < Back Eligibility Utility Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Municipal/Public Utility Local Government Rural Electric Cooperative Tribal Government Nonprofit Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info Start Date 1990 State Delaware Program Type Environmental Regulations Provider Delaware Department of Natural Resources and Environmental Control The Land Protection Act requires the Department of Natural Resources and Environmental Control to work with the Delaware Open Space Council to develop standards and criteria for determining the existence and location

386

Metropolitan Land Use Planning (Minnesota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Land Use Planning (Minnesota) Land Use Planning (Minnesota) Metropolitan Land Use Planning (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Minnesota Program Type Environmental Regulations This statute establishes the Metropolitan Land Use Advisory Committee within the Metropolitan Council to coordinate plans, programs, and controls

387

Management and Use of Public Lands (Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Management and Use of Public Lands (Virginia) Management and Use of Public Lands (Virginia) Management and Use of Public Lands (Virginia) < Back Eligibility Commercial Construction Developer Industrial Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Systems Integrator Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Virginia Program Type Leasing Program Siting and Permitting Provider Virginia Department of Conservation and Recreation The Virginia Department of Conservation and Recreation may elect to lease its lands for the development of mineral interests (defined herein as petroleum, natural gas, coal, ore, rock and any other solid chemical

388

NREL: Wind Research - Large Wind Turbine Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Research Search More Search Options Site Map Printable Version Large Wind Turbine Research NREL's utility scale wind system research addresses performance and...

389

Wind Farm Power System Model Development: Preprint  

DOE Green Energy (OSTI)

In some areas, wind power has reached a level where it begins to impact grid operation and the stability of local utilities. In this paper, the model development for a large wind farm will be presented. Wind farm dynamic behavior and contribution to stability during transmission system faults will be examined.

Muljadi, E.; Butterfield, C. P.

2004-07-01T23:59:59.000Z

390

Monitoring of landscape change for waste land rehabilitation in Haizhou opencast coal mine  

Science Conference Proceedings (OSTI)

Land rehabilitation is being carried out throughout the whole country. But in many areas, the main purpose of land rehabilitation is to increase the overall cultivated land area which neglects the eco-construction. Important tasks of modern landscape ... Keywords: land rehabilitation, landscape ecology, monitoring, opencast coal mine

Yingyi Chen; Daoliang Li

2009-03-01T23:59:59.000Z

391

Renewable Hydrogen From Wind in California  

E-Print Network (OSTI)

wind energy electrolytic hydrogen fueling station. Proposaland Their  Suitability for Hydrogen Production in the Area” September  2004, Hydrogen and Fuel Cells Conference 

Bartholomy, Obadiah

2005-01-01T23:59:59.000Z

392

Wind tunnel model testing of offshore platforms.  

E-Print Network (OSTI)

?? The purpose of this thesis is to highlight some of the areas of interest when it comes to wind tunnel experimenting of offshore platforms… (more)

Abrahamsen, Ida Sinnes

2012-01-01T23:59:59.000Z

393

Importance of Thermal Effects and Sea Surface Roughness for Offshore Wind Resource Assessment  

E-Print Network (OSTI)

The economic feasibility of offshore wind power utilisation depends on the favourable wind conditions offshore as compared to sites on land. The higher wind speeds have to compensate the additional cost of offshore developments. However, not only the mean wind speed is different, but the whole flow regime, as can e.g. be seen in the vertical wind speed profile. The commonly used models to describe this profile have been developed mainly for land sites. Their applicability for wind power prediction at offshore sites is investigated using data from the measurement program Rdsand, located in the Danish Baltic Sea.

Bernhard Lange; Søren Larsen; Jørgen Højstrup Rebecca Barthelmie; Jørgen Højstrup; Rebecca Barthelmie; Bernhard Lange

2004-01-01T23:59:59.000Z

394

Wind Resource Assessment Report: Mille Lacs Indian Reservation, Minnesota  

DOE Green Energy (OSTI)

The U.S. Environmental Protection Agency (EPA) launched the RE-Powering America's Land initiative to encourage development of renewable energy on potentially contaminated land and mine sites. EPA collaborated with the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) and the Mille Lacs Band of Chippewa Indians to evaluate the wind resource and examine the feasibility of a wind project at a contaminated site located on the Mille Lacs Indian Reservation in Minnesota. The wind monitoring effort involved the installation of a 60-m met tower and the collection of 18 months of wind data at multiple heights above the ground. This report focuses on the wind resource assessment, the estimated energy production of wind turbines, and an assessment of the economic feasibility of a potential wind project sited this site.

Jimenez, A. C.

2013-12-01T23:59:59.000Z

395

2011 Wind Technologies Market Report  

E-Print Network (OSTI)

Proposed Tariff Revisions RE Westar Energy, Inc. under ER09-a wind energy balancing charge in its transmission tariffEnergy balancing area, equivalent to about $0.7/MWh; this interim tariff

Bolinger, Mark

2013-01-01T23:59:59.000Z

396

2009 Wind Technologies Market Report  

E-Print Network (OSTI)

proposed tariff revisions re Westar Energy, Inc. under ER09-a wind energy balancing charge in its transmission tariffEnergy balancing area equivalent to about $0.80/MWh; this tariff

Wiser, Ryan

2010-01-01T23:59:59.000Z

397

Harnessing the wind  

Science Conference Proceedings (OSTI)

Wind power is now recognized as the one renewable-energy source on the verge of being economically viable. For developing countries, in fact, the technology is already practical for bringing pollution-free electricity to areas off the power grid. The ...

J. Jayadev

1995-11-01T23:59:59.000Z

398

The Convective System Area Expansion over Amazonia and Its Relationships with Convective System Life Duration and High-Level Wind Divergence  

Science Conference Proceedings (OSTI)

The relationships between the initial area expansion rate of tropical convective systems and their total life duration are analyzed during the period of the Wet Season Amazon Mesoscale Campaign/Large-Scale Biosphere–Atmosphere (WETAMC/LBA) ...

Luiz Augusto T. Machado; Henri Laurent

2004-03-01T23:59:59.000Z

399

Meteorological and topographical indicators of wind energy for regional assessments  

SciTech Connect

Techniques using meteorological and topographical indicators of wind energy, developed by PNL and applied to the Northwest wind resource assessment, improved the reliability of the analysis of the geographical distribution of wind energy. The identification and application of these indicators led to an improved understanding of the conditions associated with high and low wind energy. Furthermore, these indicators are especially useful in complex terrain and wind-data-sparse areas for obtaining a somewhat realistic estimate of the wind energy resource.

Elliott, D. L.

1979-12-01T23:59:59.000Z

400

Wind Powering America: Wind Events  

Wind Powering America (EERE)

calendar.asp Lists upcoming wind calendar.asp Lists upcoming wind power-related events. en-us julie.jones@nrel.gov (Julie Jones) http://www.windpoweringamerica.gov/images/wpa_logo_sm.jpg Wind Powering America: Wind Events http://www.windpoweringamerica.gov/calendar.asp Pennsylvania Wind for Schools Educator Workshop https://www.regonline.com/builder/site/Default.aspx?EventID=1352684 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4068 Wed, 4 Dec 2013 00:00:00 MST 2014 Joint Action Workshop http://www.windpoweringamerica.gov/filter_detail.asp?itemid=3996 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=3996 Mon, 21 Oct 2013 00:00:00 MST AWEA Wind Project Operations and Maintenance and Safety Seminar http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4009 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4009 Mon, 21

Note: This page contains sample records for the topic "land area wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Definition: Community Wind | Open Energy Information  

Open Energy Info (EERE)

Wind Wind Jump to: navigation, search Dictionary.png Community Wind A community owned wind project. The asset can be owned by one or several types of community groups, including: farmers, small business, local groups and organizations, schools and local electric cooperatives and municipal utilities.[1] View on Wikipedia Wikipedia Definition Community wind projects are locally owned by farmers, investors, businesses, schools, utilities, or other public or private entities who utilize wind energy to support and reduce energy costs to the local community. The key feature is that local community members have a significant, direct financial stake in the project beyond land lease payments and tax revenue. Projects may be used for on-site power or to generate wholesale power for sale, usually on a commercial-scale greater

402

Stakeholder Engagement and Outreach: Regional Wind Activities  

Wind Powering America (EERE)

Regional Activities Regional Activities State Activities State Lands Siting Regional Wind Activities Learn more about regional activities in New England. New England Wind Forum The New England Wind Forum has its own website with information particular to the region and its own unique circumstances. Find regional events, news, projects, and information about wind technology, economics, markets for wind energy, siting considerations, policies and public acceptance issues as they all pertain to the New England region. The site was launched in 2005 to provide a single comprehensive source of up-to-date, Web-based information on a broad array of wind-energy-related issues pertaining to New England. Contacts | Website Policies | U.S. Department of Energy | USA.gov Content Last Updated: 9/2

403

NREL: National Wind Technology Center Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

National Wind Technology Center National Wind Technology Center National Wind Technology Center NREL's National Wind Technology Center (NWTC) is the nation's premier wind energy technology research facility. The NWTC advances the development of innovative land-based and offshore wind energy technologies through its research and testing facilities. Researchers draw on years of experience and their wealth of expertise in fluid dynamics and structural testing to also advance marine and hydrokinetic water power technologies. At the NWTC researchers work side-by-side with industry partners to develop new technologies that can compete in the global market and to increase system reliability and reduce costs. Learn more about the facilities and capabilities at the NWTC by viewing our fact sheet.

404

Small Wind Electric Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Small Wind Electric Systems Small Wind Electric Systems Small Wind Electric Systems July 15, 2012 - 5:22pm Addthis Wind power is the fastest growing source of energy in the world -- efficient, cost effective, and non-polluting. What does this mean for me? Small wind electric systems can be one of the most efficient ways of producing electricity for your home. Wind energy is a fast growing market, because it is effective and cost efficient. If you have enough wind resource in your area and the situation is right, small wind electric systems are one of the most cost-effective home-based renewable energy systems -- with zero emissions and pollution. Small wind electric systems can: Lower your electricity bills by 50%-90% Help you avoid the high costs of having utility power lines extended

405

Wind LCA Harmonization (Fact Sheet), NREL (National Renewable...  

NLE Websites -- All DOE Office Websites (Extended Search)

(30% for land-based and 40% for offshore systems). 2. Operating lifetime of the wind turbine and its components (20 years). 3. System boundary. 4. Global warming potentials...

406

Critical Areas of State Concern (Maryland) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of State Concern (Maryland) of State Concern (Maryland) Critical Areas of State Concern (Maryland) < Back Eligibility Construction Developer Industrial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maryland Program Type Siting and Permitting Provider Maryland Department of the Environment This legislation designates the Chesapeake Bay, other Atlantic Coastal Bays, and their tributaries and adjacent lands as critical areas of state concern. It is state policy to protect these areas and to prevent the further degradation of water quality. Further development of non-water dependent structures and increase in lot coverage in these areas is presumed to be contrary to the policy of the state, and construction is

407

Wind: wind speed and wind power density GIS data at 10m and 50m above  

Open Energy Info (EERE)

10m and 50m above 10m and 50m above surface and 0.25 degree resolution for global oceans from NREL Dataset Summary Description (Abstract): Raster GIS ASCII data files of wind speed and wind power density at 10 and 50 m heights. Global data of offshore wind resource as generated by NASA's QuikScat SeaWinds scatterometer. (Purpose): To provide information on the wind resource potential of offshore areas. Source NREL Date Released December 31st, 2005 (9 years ago) Date Updated November 01st, 2007 (7 years ago) Keywords GEF GIS NASA NREL ocean offshore QuikScat SWERA UNEP wind Data application/msword icon Download Documentation (doc, 53.8 KiB) application/zip icon Download Data (zip, 41 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period 01/01/2000 - 12/31/2004

408

Wind: wind speed and wind power density maps at 10m and 50m above surface  

Open Energy Info (EERE)

maps at 10m and 50m above surface maps at 10m and 50m above surface and 0.25 degree resolution for global oceans from NREL Dataset Summary Description (Abstract): Raster GIS ASCII data files of wind speed and wind power density at 10 and 50 m heights. Global data of offshore wind resource as generated by NASA's QuikSCAT SeaWinds scatterometer. (Purpose): To provide information on the wind resource potential of offshore areas. Source NREL Date Released December 31st, 2005 (9 years ago) Date Updated November 01st, 2007 (7 years ago) Keywords GEF GIS NASA NREL SWERA UNEP wind Data application/zip icon Download Maps (zip, 36.3 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period 2000 - 2004 License License Other or unspecified, see optional comment below

409

Wind Energy Resource Atlas of Southeast China  

DOE Green Energy (OSTI)

This wind energy resource atlas identifies the wind characteristics and distribution of the wind resource in two regions of southeast China. The first region is the coastal area stretching from northern Fujian south to eastern Guangdong and extending approximately 100 km inland. The second region is centered on the Poyang Lake area in northern Jiangxi. This region also includes parts of two other provinces-Anhui and Hubei-and extends from near Anqing in Anhui south to near Nanchang in Jiangxi. The detailed wind resource maps and other information contained in the atlas facilitate the identification of prospective areas for use of wind energy technologies, both for utility-scale power generation and off-grid wind energy applications. We created the high-resolution (1-km2) maps in 1998 using a computerized wind resource mapping system developed at the National Renewable Energy Laboratory (NREL). The mapping system uses software known as a Geographical Information System (GIS).

Elliott, D.; Schwartz, M.; Scott, G.; Haymes, S.; Heimiller, D.; George, R.

2002-11-01T23:59:59.000Z

410

Application for State Land Use Lease: Miscellaneous Easement...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Reference Material: Application for State Land Use Lease: Miscellaneous EasementROW Details Activities (0) Areas (0) Regions...

411

Application for State Land Use Lease: Commercial/Multi-Family...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Reference Material: Application for State Land Use Lease: CommercialMulti-Family Details Activities (0) Areas (0) Regions (0)...

412

MODIS Land Product Subsets  

NLE Websites -- All DOE Office Websites (Extended Search)

Validation > MODIS Land Subsets Validation > MODIS Land Subsets MODIS Land Product Subsets Overview Earth, Western Hemisphere The goal of the MODIS Land Product Subsets project is to provide summaries of selected MODIS Land Products for the community to use for validation of models and remote-sensing products and to characterize field sites. Output files contain pixel values of MODIS land products in text format and in GeoTIFF format. In addition, data visualizations (time series plots and grids showing single composite periods) are available. MODIS Land Product Subsets Resources The following MODIS Land Product Subsets resources are maintained by the ORNL DAAC: MODIS Land Products Offered Background Citation Policy Methods and formats MODIS Sinusoidal Grid - Google Earth KMZ Classroom Exercises

413

Agriculture and Land Use National Greenhouse Gas Inventory Software | Open  

Open Energy Info (EERE)

Agriculture and Land Use National Greenhouse Gas Inventory Software Agriculture and Land Use National Greenhouse Gas Inventory Software Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Agriculture and Land Use National Greenhouse Gas Inventory Software Agency/Company /Organization: Colorado State University Partner: United States Agency for International Development, United States Forest Service, United States Environmental Protection Agency Sector: Land Focus Area: Forestry, Agriculture Topics: GHG inventory Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.nrel.colostate.edu/projects/ghgtool/index.php Cost: Free Agriculture and Land Use National Greenhouse Gas Inventory Software Screenshot References: Agriculture and Land Use National Greenhouse Gas Inventory Software[1]

414

Extreme Winds and Wind Effects on Structures  

Science Conference Proceedings (OSTI)

Extreme Winds and Wind Effects on Structures. Description/Summary: The Building and Fire Research Laboratory has an ...

2010-10-04T23:59:59.000Z

415

Klondike III/Biglow Canyon Wind Integration Project; Final Environmental Impact Statement, September 2006.  

DOE Green Energy (OSTI)

BPA has been asked by PPM Energy, Inc. to interconnect 300 megawatts (MW) of electricity generated from the proposed Klondike III Wind Project to the Federal Columbia River Transmission System. Orion Energy LLC has also asked BPA to interconnect 400 MW of electricity from its proposed Biglow Canyon Wind Farm, located north and east of the proposed Klondike III Wind Project. (Portland General Electric recently bought the rights to develop the proposed Biglow Canyon Wind Farm from Orion Energy, LLC.) Both wind projects received Site Certificates from the Oregon Energy Facility Siting Council on June 30, 2006. To interconnect these projects, BPA would need to build and operate a 230-kV double-circuit transmission line about 12 miles long, expand one substation and build one new substation. The wind projects would require wind turbines, substation(s), access roads, and other facilities. Two routes for the transmission line are being considered. Both begin at PPM's Klondike Schoolhouse Substation then travel north (Proposed Action) or north and westerly (Middle Alternative) to a new BPA 230-kV substation next to BPA's existing John Day 500-kV Substation. BPA is also considering a No Action Alternative in which BPA would not build the transmission line and would not interconnect the wind projects. The proposed BPA and wind projects would be located on private land, mainly used for agriculture. If BPA decides to interconnect the wind projects, construction of the BPA transmission line and substation(s) could commence as early as the winter of 2006-07. Both wind projects would operate for much of each year for at least 20 years. The proposed projects would generally create no or low impacts. Wildlife resources and local visual resources are the only resources to receive an impact rating other than ''none'' or ''low''. The low to moderate impacts to wildlife are from the expected bird and bat mortality and the cumulative impact of this project on wildlife when combined with other proposed wind projects in the region. The low to high impacts to visual resources reflect the effect that the transmission line and the turbine strings from both wind projects would have on viewers in the local area, but this impact diminishes with distance from the project.

United States. Bonneville Power Administration

2006-09-01T23:59:59.000Z

416

Effects of Prior Precipitation and Source Area Characteristics on Threshold Wind Velocities for Blowing Dust Episodes, Sonoran Desert 1948–78  

Science Conference Proceedings (OSTI)

A better understanding of the effects of precipitation and source area on blowing dust in the Sonoran Desert has been sought through the study of 1190 dust episodes occurring during the 1948–78 time period at Blythe, California, and Yuma, ...

Troy Leon Holcombe; Trevor Ley; Dale A. Gillette

1997-09-01T23:59:59.000Z

417

Wind Energy Leasing Handbook  

E-Print Network (OSTI)

Wind Energy Leasing Handbook Wind Energy Leasing Handbook E-1033 Oklahoma Cooperative Extension?..................................................................................................................... 31 What do wind developers consider in locating wind energy projects?............................................................................................ 37 How do companies and individuals invest in wind energy projects?....................................................................

Balasundaram, Balabhaskar "Baski"

418

U.S. Landed Costs of Crude Oil (Dollars per Barrel)  

U.S. Energy Information Administration (EIA)

98.51: 95.72: 97.41: 96.90: 101.03: 102.86 ... Landed Costs of Imported Crude by Area; Landed Costs of Imported Crude by Area ...

419

U.S. Landed Costs of Canada Crude Oil (Dollars per Barrel)  

U.S. Energy Information Administration (EIA)

Release Date: 9/3/2013: Next Release Date: 10/1/2013: Referring Pages: Landed Costs of Imported Crude by Area; Landed Costs of Imported Crude by Area

420

Wind Resource Atlas of Oaxaca | Open Energy Information  

Open Energy Info (EERE)

Resource Atlas of Oaxaca Resource Atlas of Oaxaca Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Wind Resource Atlas of Oaxaca Focus Area: Renewable Energy Topics: Potentials & Scenarios Website: www.nrel.gov/wind/pdfs/34519.pdf Equivalent URI: cleanenergysolutions.org/content/wind-resource-atlas-oaxaca,http://cle Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This wind resource atlas identifies wind characteristics and distribution of wind resources in Oaxaca, Mexico, at a wind power density of 50 meters above ground. The detailed wind resource maps contained in the atlas facilitate the identification of prospective areas for use of wind energy technologies for utility-scale power generation, village power, and off-grid wind energy applications. The wind maps were created using a

Note: This page contains sample records for the topic "land area wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

MODIS Land Products Subsets  

NLE Websites -- All DOE Office Websites (Extended Search)

Data for Selected Field Sites (n=1147) Data for Selected Field Sites (n=1147) Obtain MODIS data for areas centered on selected field sites or flux towers from around the world. The goal of the MODIS Subsets for Selected Field Sites is to prepare summaries of selected MODIS Land Products for the community to use for validation of models and remote sensing products and to characterize field sites. Search for data: By Site from a Map Server from Google Earth (Install Google Earth) From FTP site (ASCII) Methods Data products were first subsetted from one or more 1200x1200-km MODIS tiles to 25 x 25-km arrays by the MODIS Science Data Support Team (MODAPS). These products were further subsetted (7x7) and reformatted from their native HDF-EOS to ASCII using version 2.2 of the MODIS Reprojection Tool (MRT) in combination with code developed at the ORNL DAAC.

422

Wind Powering America: New England Wind Forum  

Wind Powering America (EERE)

About the New England Wind Forum About the New England Wind Forum New England Wind Energy Education Project Historic Wind Development in New England State Activities Projects in New England Building Wind Energy in New England Wind Resource Wind Power Technology Economics Markets Siting Policy Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share The New England Wind Forum was conceived in 2005 as a platform to provide a single, comprehensive and objective source of up-to-date, Web-based information on a broad array of wind-energy-related issues pertaining to New England. The New England Wind Forum provides information to wind energy stakeholders through Web site features, periodic newsletters, and outreach activities. The New England Wind Forum covers the most frequently discussed wind energy topics.

423

Coastal Public Lands Management Act (Texas) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coastal Public Lands Management Act (Texas) Coastal Public Lands Management Act (Texas) Coastal Public Lands Management Act (Texas) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility Industrial Construction Municipal/Public Utility Local Government Rural Electric Cooperative Tribal Government Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Texas Program Type Siting and Permitting Provider Texas General Land Office The coastal public lands of the state are managed in accordance with the following principles: (a) The natural resources of the surface land, including their aesthetic value and their ability to support and nurture all types of marine life and wildlife, shall be preserved. (b) Preference

424

Wind Shear Characteristics at Central Plains Tall Towers (presentation)  

SciTech Connect

The objectives of this report are: (1) Analyze wind shear characteristics at tall tower sites for diverse areas in the central plains (Texas to North Dakota)--Turbines hub heights are now 70-100 m above ground and Wind measurements at 70-100+ m have been rare. (2) Present conclusions about wind shear characteristics for prime wind energy development regions.

Schwartz, M.; Elliott, D.

2006-06-05T23:59:59.000Z

425

NREL-International Wind Resource Maps | Open Energy Information  

Open Energy Info (EERE)

International Wind Resource Maps International Wind Resource Maps Jump to: navigation, search Tool Summary Name: NREL-International Wind Resource Maps Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Wind Topics: Resource assessment Website: www.nrel.gov/wind/international_wind_resources.html NREL-International Wind Resource Maps Screenshot References: International Wind Resource Maps [1] Logo: NREL-International Wind Resource Maps This resource provides access to NREL-developed wind resource maps and atlases for several countries. NREL's wind mapping projects have been supported by the U.S. Department of Energy, U.S. Agency for International Development, and United Nations International Programme. "NREL is helping to develop high-resolution projections of wind resources

426

Land animal sizes  

NLE Websites -- All DOE Office Websites (Extended Search)

Land animal sizes Name: tamar c Status: NA Age: NA Location: NA Country: NA Date: Around 1993 Question: Why are today's land mammals so much smaller than prehistoric mammals?...

427

The Common Land Model  

Science Conference Proceedings (OSTI)

The Common Land Model (CLM) was developed for community use by a grassroots collaboration of scientists who have an interest in making a general land model available for public use and further development. The major model characteristics include ...

Yongjiu Dai; Xubin Zeng; Robert E. Dickinson; Ian Baker; Gordon B. Bonan; Michael G. Bosilovich; A. Scott Denning; Paul A. Dirmeyer; Paul R. Houser; Guoyue Niu; Keith W. Oleson; C. Adam Schlosser; Zong-Liang Yang

2003-08-01T23:59:59.000Z

428

School Land Board (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

The School Land Board oversees the use of land owned by the state or held in trust for use and benefit by the state or one of its departments, boards, or agencies. The Board is responsible for...

429

Wind News  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

news Office of Energy Efficiency & Renewable news Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en New Report Shows Trend Toward Larger Offshore Wind Systems, with 11 Advanced Stage Projects Proposed in U.S. Waters http://energy.gov/eere/articles/new-report-shows-trend-toward-larger-offshore-wind-systems-11-advanced-stage-projects wind-systems-11-advanced-stage-projects" class="title-link">New Report Shows Trend Toward Larger Offshore Wind Systems, with 11 Advanced Stage Projects Proposed in U.S. Waters

430

Wind Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Power As the accompanying map of New Mexico shows, the best wind power generation potential near WIPP is along the Delaware Mountain ridge line of the southern Guadalupe Mountains,...

431

NREL Software Aids Offshore Wind Turbine Designs (Fact Sheet)  

DOE Green Energy (OSTI)

NREL researchers are supporting offshore wind power development with computer models that allow detailed analyses of both fixed and floating offshore wind turbines. While existing computer-aided engineering (CAE) models can simulate the conditions and stresses that a land-based wind turbine experiences over its lifetime, offshore turbines require the additional considerations of variations in water depth, soil type, and wind and wave severity, which also necessitate the use of a variety of support-structure types. NREL's core wind CAE tool, FAST, models the additional effects of incident waves, sea currents, and the foundation dynamics of the support structures.

Not Available

2013-10-01T23:59:59.000Z

432

Wind Powering America  

DOE Green Energy (OSTI)

At the June 1999 Windpower Conference, the Secretary of Energy launched the Office of Energy Efficiency and Renewable Energy's Wind Powering America (WPA) initiative. The goals of the initiative are to meet 5% of the nation's energy needs with wind energy by 2020 (i.e., 80,000 megawatts installed), to double the number of states that have more than 20 megawatts (MW) of wind capacity to 16 by 2005 and triple it to 24 by 2010, and to increase wind's contribution to Federal electricity use to 5% by 2010. To achieve the Federal government's goal, DOE would take the leadership position and work with its Federal partners. Subsequently, the Secretary accelerated the DOE 5% commitment to 2005. Achieving the 80,000 MW goal would result in approximately $60 billion investment and $1.5 billion of economic development in our rural areas (where the wind resources are the greatest). The purpose of this paper is to provide an update on DOE's strategy for achieving its goals and the activities it has undertaken since the initiative was announced.

Flowers, L. (NREL); Dougherty, P. J. (DOE)

2001-07-07T23:59:59.000Z

433

ISET-Wind-Index Assessment of the Annual Available Wind Energy  

E-Print Network (OSTI)

Particularly in years with wind speeds that are clearly below average, dissatisfaction of operators and even liquidity problems are sparked through the unexpected low annual power production. An objective standard for the evaluation of the respective “wind year ” is required for the internal estimation of the performance of wind farms, and for justification to share owners and banks. The annual wind conditions are composed from such a multitude of meteorological situations, differing from location to location, that the available wind energy at every individual location develops totally differently. A single code is therefore not sufficient to describe the “wind year ” in Germany and, moreover, the evaluation of annual available wind energy must be carried out separately for the smallest areas possible. With the support of the Gothaer Rückversicherungen AG, a procedure has been developed at ISET which provides the proportion of the respective annual available wind energy, in relation to the long-term average available wind energy, for each 10 km x 10 km sized plan area in Germany. This amount, the ISET-Wind-Index, is founded on wind measurements at locations that are typical for wind energy use and therefore presents an objective standard. The measurement grid is part of the “Scientific Measurement and Evaluation Programme ” (WMEP), which accompanies the “250 MW Wind ” project of the German Federal Ministry for Economy and Labour. The ISET-Wind-Index, which will be regularly updated, provides an objective standard for the estimation of annual available

Berthold Hahn; Kurt Rohrig

2003-01-01T23:59:59.000Z

434

LBA Land Use and Land Cover Data Set Released  

NLE Websites -- All DOE Office Websites (Extended Search)

Land Use and Land Cover Data Set Released The ORNL DAAC announces the release of an image data set from the Land Use and Land Cover science theme, a component of the LBA-ECO Large...

435

The Diagnosis of Upper Tropospheric Divergence and Ageostrophic Wind Using Profiler Wind Observations  

Science Conference Proceedings (OSTI)

Wind fields derived from a network of three VHF Doppler radars are used to calculate the mean kinematic properties of the wind field over Colorado and an area-averaged geostrophic and ageostrophic wind. A numerical technique that is equivalent to ...

R. J. Zamora; M. A. Shapiro; C. A. Doswell III

1987-04-01T23:59:59.000Z

436

The Influence of Unsteady Wind on the Performance and Aerodynamics of Vertical Axis Wind Turbines.  

E-Print Network (OSTI)

??Interest in small–scale wind turbines as energy sources in the built environment has increased due to the desire of consumers in urban areas to reduce… (more)

Danao, Louis Angelo

2012-01-01T23:59:59.000Z

437

Wind: wind power density GIS data at 50m above ground and 400m...  

Open Energy Info (EERE)

Sri Lanka

(Purpose):  To provide information on the wind resource potential within Sri Lanka and selected offshore areas
<...

438

20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply  

Energy.gov (U.S. Department of Energy (DOE))

The report considers some associated challenges, estimates the impacts and considers specific needs and outcomes in various areas associated with a 20% Wind Scenario.

439

2011 Cost of Wind Energy Review  

SciTech Connect

This report describes the levelized cost of energy (LCOE) for a typical land-based wind turbine installed in the United States in 2011, as well as the modeled LCOE for a fixed-bottom offshore wind turbine installed in the United States in 2011. Each of the four major components of the LCOE equation are explained in detail, such as installed capital cost, annual energy production, annual operating expenses, and financing, and including sensitivity ranges that show how each component can affect LCOE. These LCOE calculations are used for planning and other purposes by the U.S. Department of Energy's Wind Program.

Tegen, S.; Lantz, E.; Hand, M.; Maples, B.; Smith, A.; Schwabe, P.

2013-03-01T23:59:59.000Z

440

2011 Cost of Wind Energy Review  

DOE Green Energy (OSTI)

This report describes the levelized cost of energy (LCOE) for a typical land-based wind turbine installed in the United States in 2011, as well as the modeled LCOE for a fixed-bottom offshore wind turbine installed in the United States in 2011. Each of the four major components of the LCOE equation are explained in detail, such as installed capital cost, annual energy production, annual operating expenses, and financing, and including sensitivity ranges that show how each component can affect LCOE. These LCOE calculations are used for planning and other purposes by the U.S. Department of Energy's Wind Program.

Tegen, S.; Lantz, E.; Hand, M.; Maples, B.; Smith, A.; Schwabe, P.

2013-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "land area wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Penobscot Indian Nation's Strategic Energy Planning Efficiency on tribal Lands  

DOE Green Energy (OSTI)

The energy grant provided the resources to evaluate the wind, hydro, biomass, geothermal and solar resource potential on all Penobscot Indian Naiton's Tribal lands. The two objectives address potential renewable energy resources available on tribal lands and energy efficiency measures to be taken after comprehensive energy audits of commercial facilities. Also, a Long Term Strategic Energy Plan was developed along with a plan to reduce high energy costs.

Sockalexis, Mike; Fields, Brenda

2006-11-30T23:59:59.000Z

442

LIDAR Wind Speed Measurements of Evolving Wind Fields  

Science Conference Proceedings (OSTI)

Light Detection and Ranging (LIDAR) systems are able to measure the speed of incoming wind before it interacts with a wind turbine rotor. These preview wind measurements can be used in feedforward control systems that are designed to reduce turbine loads. However, the degree to which such preview-based control techniques can reduce loads by reacting to turbulence depends on how accurately the incoming wind field can be measured. Past studies have assumed the validity of physicist G.I. Taylor's 1938 frozen turbulence hypothesis, which implies that turbulence remains unchanged as it advects downwind at the mean wind speed. With Taylor's hypothesis applied, the only source of wind speed measurement error is distortion caused by the LIDAR. This study introduces wind evolution, characterized by the longitudinal coherence of the wind, to LIDAR measurement simulations using the National Renewable Energy Laboratory's (NREL's) 5-megawatt turbine model to create a more realistic measurement model. A simple model of wind evolution was applied to a frozen wind field that was used in previous studies to investigate the effects of varying the intensity of wind evolution. LIDAR measurements were also evaluated using a large eddy simulation (LES) of a stable boundary layer that was provided by the National Center for Atmospheric Research. The LIDAR measurement scenario investigated consists of a hub-mounted LIDAR that scans a circle of points upwind of the turbine in order to estimate the wind speed component in the mean wind direction. Different combinations of the preview distance that is located upwind of the rotor and the radius of the scan circle were analyzed. It was found that the dominant source of measurement error for short preview distances is the detection of transverse and vertical wind speeds from the line-of-sight LIDAR measurement. It was discovered in previous studies that, in the absence of wind evolution, the dominant source of error for large preview distances is the spatial averaging caused by the LIDAR's sampling volume. However, by introducing wind evolution, the dominant source of error for large preview distances was found to be the coherence loss caused by evolving turbulence. Different measurement geometries were compared using the bandwidth for which the measurement coherence remained above 0.5 and also the area under the measurement coherence curve. Results showed that, by increasing the intensity of wind evolution, the measurement coherence decreases. Using the coherence bandwidth metric, the optimal preview distance for a fixed-scan radius remained almost constant for low and moderate amounts of wind evolution. For the wind field with the simple wind evolution model introduced, the optimal preview distance for a scan radius of 75% blade span (47.25 meters) was found to be 80 meters. Using the LES wind field, the optimal preview distance was 65 meters. When comparing scan geometries using the area under the coherence curve, results showed that, as the intensity of wind evolution increases, the optimal preview distance decreases.

Simley, E.; Pao, L. Y.; Kelley, N.; Jonkman, B.; Frehlich, R.

2012-01-01T23:59:59.000Z

443

Wind resource assessment and wind energy system cost analysis: Fort Huachuca, Arizona  

DOE Green Energy (OSTI)

The objective of this joint DOE and National Renewable Energy Laboratory (NREL) Strategic Environmental Research and Development Program (SERDP) project is to determine whether wind turbines can reduce costs by providing power to US military facilities in high wind areas. In support of this objective, one year of data on the wind resources at several Fort Huachuca sites was collected. The wind resource data were analyzed and used as input to an economic study for a wind energy installation at Fort Huachuca. The results of this wind energy feasibility study are presented in the report.

Olsen, T.L. [Tim Olsen Consulting, Denver, CO (United States); McKenna, E. [National Renewable Energy Lab., Golden, CO (United States)

1997-12-01T23:59:59.000Z

444

ERCOT Wind Scraper | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » ERCOT Wind Scraper Jump to: navigation, search Tool Summary Name: ERCOT Wind Scraper Agency/Company /Organization: Prof. Mack Grady, Baylor University Sector: Energy Focus Area: Wind Resource Type: Software/modeling tools User Interface: Desktop Application Website: web.ecs.baylor.edu/faculty/grady/ OpenEI Keyword(s): Community Generated ERCOT Wind Scraper Screenshot References: W. Mack Grady[1] ERCOT Wind Scraper retrieves, displays, and logs minute-by-minute system generation, load, and wind generation from ERCOT's public web site. ERCOT Wind Scraper retrieves, displays, and logs minute-by-minute system generation, load, and wind generation from ERCOT's public web site. Instructions are included in a zipped file along with the program.

445

County Wind Ordinance Standards | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

County Wind Ordinance Standards County Wind Ordinance Standards County Wind Ordinance Standards < Back Eligibility Agricultural Commercial Industrial Local Government Residential Savings Category Wind Buying & Making Electricity Program Info State California Program Type Solar/Wind Permitting Standards Provider California Energy Commission [http://www.leginfo.ca.gov/pub/09-10/bill/asm/ab_0001-0050/ab_45_bill_200... Assembly Bill 45] of 2009 authorized counties to adopt ordinances to provide for the installation of small wind systems (50 kW or smaller) outside urbanized areas but within the county's jurisdiction. The bill also addressed specific aspects of a typical wind ordinance and established the limiting factors by which a county's wind ordinance can be no more restrictive. Counties may freely make more lenient ordinances, but AB 45

446

European Wind Atlas: Offshore | Open Energy Information  

Open Energy Info (EERE)

European Wind Atlas: Offshore European Wind Atlas: Offshore Jump to: navigation, search Tool Summary LAUNCH TOOL Name: European Wind Atlas: Offshore Focus Area: Renewable Energy Topics: Potentials & Scenarios Website: www.windatlas.dk/Europe/oceanmap.html Equivalent URI: cleanenergysolutions.org/content/european-wind-atlas-offshore,http://c Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This is a European offshore wind resources over open sea map developed by Riso National Laboratory in 1989. The map shows the so-called generalised wind climate over Europe, also sometimes referred to as the regional wind climate or simply the wind atlas. In such a map, the influences of local topography have been removed and only the variations on the large scale are

447

Siting Wind Energy | Open Energy Information  

Open Energy Info (EERE)

Siting Wind Energy Siting Wind Energy Jump to: navigation, search Wind turbines at the Forward Wind Energy Center in Fond du Lac and Dodge Counties, Wisconsin. Photo from Ruth Baranowski/NREL, NREL 21207 The following resources provide information about siting wind energy projects. Some are specific to a state or region but may still contain information applicable to other areas. Wind project siting tools, such as calculators and databases, can be found here. Resources American Wind Energy Association. (Updated 2011). Siting, Health, and the Environment. Accessed August 13, 2013. This fact sheet provides an overview of siting myths and facts. Environmental Law Institute. Siting Wind Energy Facilities: What Do Local Elected Officials Need to Know?. Accessed November 29, 2013.

448

European Wind Atlas: Onshore | Open Energy Information  

Open Energy Info (EERE)

European Wind Atlas: Onshore European Wind Atlas: Onshore Jump to: navigation, search Tool Summary LAUNCH TOOL Name: European Wind Atlas: Onshore Focus Area: Renewable Energy Topics: Potentials & Scenarios Website: www.windatlas.dk/Europe/landmap.html Equivalent URI: cleanenergysolutions.org/content/european-wind-atlas-onshore,http://cl Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This is a European on-shore wind resources at 50 meters of altitude map, developed by Riso National Laboratory in 1989. The map shows the so-called generalised wind climate over Europe, also sometimes referred to as the regional wind climate or simply the wind atlas. In such a map, the influences of local topography have been removed and only the variations on

449

Wind Resource Assessment Overview | Open Energy Information  

Open Energy Info (EERE)

Wind Resource Assessment Overview Wind Resource Assessment Overview Jump to: navigation, search Maps.jpg The first step in developing a wind project is to locate and quantify the wind resource. The magnitude of the wind and the characteristics of the resource are the largest factors in determining a potential site's economic and technical viability. There are three basic steps to identifying and characterizing the wind resource: prospecting, validating, and micrositing. The process of locating sites for wind energy development is similar to exploration for other resources, such as minerals and petroleum. Thus, the term prospecting is often used to describe the identification and preliminary evaluation of a wind resource area. Prospecting includes identifying potentially windy sites within a fairly large region - such

450

Community Wind Development Handbook | Open Energy Information  

Open Energy Info (EERE)

Community Wind Development Handbook Community Wind Development Handbook Jump to: navigation, search Tool Summary Name: Community Wind Development Handbook Agency/Company /Organization: Windustry Partner: AURI AG Innovations, The Minnesota Project, MC&PC, Clean Energy Resource Teams, Southwest Initiative Foundation Sector: Energy Focus Area: Wind, Economic Development Phase: Evaluate Options, Develop Goals, Prepare a Plan, Create Early Successes Resource Type: Guide/manual User Interface: Other Website: www.auri.org/research/Community%20Wind%20Handbook.pdf Cost: Free References: Community Wind Development Handbook[1] Provides developers practical knowledge of what to expect when developing commercial-scale community wind energy projects in the range of 2 to 50 Megawatts. Overview The Community Wind Development Handbook "is designed to give developers of

451

Wind River Watershed Restoration 2004-2005 Annual Report.  

DOE Green Energy (OSTI)

During 2004, researchers from U.S. Geological Survey's Columbia River Research Laboratory (USGS-CRRL) collected temperature, flow, and habitat data to characterize physical habitat condition and variation within and among tributaries and mainstem sections in the Wind River subbasin. Juvenile salmonid population surveys were conducted within select study areas throughout the subbasin. We expanded our survey coverage of the mainstem Wind River to a reach in the vicinity of Carson National Fish Hatchery to assess effects of non-indigenous Chinook on native steelhead. These efforts add to a database of habitat and fish data collected in the Wind River since 1996. This research contributes to the Wind River Restoration Project, which includes active stream habitat restoration and monitoring of adult and juvenile steelhead populations. We maintained a network of 32 thermographs in the Wind River subbasin during 2004. Additionally, Underwood Conservation District provided us with data from seven thermographs that they maintained during 2004. Thermograph data are identifying areas with chronic high water temperatures and stream sections where high rates of warming are occurring. During 2004, water temperatures at 26 thermograph sites exceeded the 16 C limit for surface waters set by the Washington Department of Ecology. Water temperatures exceeded 20 C at five sites in the Trout Creek watershed. Our thermograph dataset includes information from as early as 1996 at some sites and has become a valuable long-term dataset, which will be crucial in determining bioenergetic relationships with habitat and life-histories. We have monitored salmonid populations throughout the Wind River subbasin by electrofishing and snorkeling. We electrofished four stream sections for population estimates during 2004. In these sections, and others where we simply collected fish without a population estimate, we tagged juvenile steelhead and Chinook salmon with Passive Integrated Transponder (PIT) tags to track growth and movement of individuals. We snorkeled nine stream sections during 2004. Juvenile steelhead populations have varied greatly between streams and between years. Numbers of age-0 steelhead have increased substantially since 2000 within the MINE reach (rkm 35.0-40.0) section of the upper Wind River. Because of potential negative interactions with steelhead, naturally spawned populations of introduced juvenile Chinook salmon are of concern in the mainstem of the Wind River. During 2004, we deployed over 3,000 PIT tags in the Wind River subbasin, primarily in juvenile steelhead, but also in juvenile Chinook. We are compiling a dataset of recapture information on these tagged fish as well as interrogation information from Bonneville Dam and other sites. The habitat and fish data collected have been used in Ecosystem Diagnosis and Treatment modeling efforts, the Wind River Subbasin Plan, and the Total Maximum Daily Load report from Washington Department of Ecology. Continued monitoring of changes in habitat, combined with data on fish populations, will help guide planning efforts of land and fish managers. As long-term active and passive restoration actions are implemented in the Wind River and its tributaries, these data will provide the ability to measure change. Because the Wind River subbasin has no steelhead hatchery or supplementation, these data will be useful to compare population trends in subbasins with hatchery or supplementation management.

Connolly, Patrick J.; Jezorek, Ian G. [U.S. Geological Survey

2008-11-10T23:59:59.000Z

452

Program on Technology Innovation: Materials Degradation in Wind Turbines  

Science Conference Proceedings (OSTI)

The materials used for the construction of wind turbine systems can affect the economics of these systems for a variety of reasons. For instance, improvements in such materials properties as strength, stiffness, and fatigue life can lead to more efficient and more reliable wind turbines and to reductions in operation and maintenance costs. This report provides a comprehensive summary of the state of knowledge of materials used in major wind turbine components for both land-based and offshore applications...

2006-08-09T23:59:59.000Z

453

Small Business Innovation Research Grant Helps Propel Innovative Wind  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Small Business Innovation Research Grant Helps Propel Innovative Small Business Innovation Research Grant Helps Propel Innovative Wind Energy Small Business Small Business Innovation Research Grant Helps Propel Innovative Wind Energy Small Business March 11, 2011 - 10:32am Addthis Link to image of Wind Tower System's Space Frame Tower™ Link to image of Wind Tower System's Space Frame Tower(tm) Mark Higgins Operations Supervisor, Wind & Water Power Technologies Office Wind Tower Systems, a subsidiary of Wasatch Wind, was founded in 2002 to research, develop and commercialize new ways to make lighter, taller and easier- to-assemble land-based wind turbines. Since then, the Park City, Utah-based small business received early funding from the Department of Energy, which catalyzed investment from the California Energy Commission

454

New England Wind Forum: Historic Wind Development in New England  

Wind Powering America (EERE)

First Large Scale Windmill First Large Scale Windmill 1970s OPEC Oil Embargo Sparks Renewed Interest Age of PURPA Spawns the Wind Farm An Industry in Transition More New England Wind Farms Modern Wind Turbines History Wrap Up State Activities Projects in New England Building Wind Energy in New England Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share Historic Wind Development in New England Wind has been an important energy source for centuries. In the United States, mechanical windmills provided as much as 25% of all non-transportation energy by the end of the 1800s. New England has relied on the wind from its early days, from powering seafaring commerce to grinding grain in the windmills of Cape Cod, several of which still stand. Some 6 million windmills across the nation were used for small-scale generation of electricity from the 1920s until the 1950s, when the U.S. government's rural electrification programs successfully reached remote areas. By the early 1970s, the number of windmills operating in the U.S. had dwindled to 150,000 - used mostly for watering livestock in remote areas of the western United States - although their widespread use continued elsewhere in the world.

455

Landowners' Frequently Asked Questions about Wind Development  

Wind Powering America (EERE)

Landowners' Frequently Asked Questions Landowners' Frequently Asked Questions about Wind Development 1 Landowners' Frequently Asked Questions about Wind Development Jay Haley, P.E. 1. How much money can I make? Based on wind projects in southern Minnesota and northern Iowa, landowners can expect to receive annual land-lease payments ranging from $2,000 to more than $4,000 per turbine. The amount depends on the size of the wind turbine and how much electricity it produces as well as the selling price of the electricity. The same turbine will produce more in one location than another depending on the annual average wind speed at the site. The payments typically represent from 2% to 4% of the annual gross revenue of the turbine. 2. How many turbines can be placed on a section of

456

Searchlight Wind Energy Project FEIS Appendix F  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

F F Page | F 22B Appendix F: Literature Review of Socioeconomic Effects of Wind Project and Transmission Lines Searchlight Wind Energy Project FEIS Appendix F Page | 1 Prepared for" The Bureau of Land Management For the Searchlight Wind Energy Project Prepared by Bootstrap Solutions 752 E. Braemere Road Boise, ID 83702 Literature on Property Value Impacts of Wind Projects The economic effects of wind energy projects have been well documented. Several studies that have evaluated potential property value impacts are highlighted below (organized chronologically). No clear inference can be drawn from these studies and available research as the analyses vary in terms of rigor; methodology (e.g., survey sampling, statistical analysis, and expert opinion); size, location and site

457