Sample records for lake valley area

  1. Hyperspectral Imaging At Fish Lake Valley Area (Littlefield ...

    Open Energy Info (EERE)

    Fish Lake Valley Area (Littlefield & Calvin, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hyperspectral Imaging At Fish Lake Valley Area...

  2. Compound and Elemental Analysis At Fish Lake Valley Area (Deymonaz...

    Open Energy Info (EERE)

    ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Exploration Activity Details Location Fish...

  3. Geothermal Literature Review At Fish Lake Valley Area (Deymonaz...

    Open Energy Info (EERE)

    Additional References Retrieved from "http:en.openei.orgwindex.php?titleGeothermalLiteratureReviewAtFishLakeValleyArea(Deymonaz,EtAl.,2008)&oldid510804...

  4. Modeling-Computer Simulations At Fish Lake Valley Area (Deymonaz...

    Open Energy Info (EERE)

    Additional References Retrieved from "http:en.openei.orgwindex.php?titleModeling-ComputerSimulationsAtFishLakeValleyArea(Deymonaz,EtAl.,2008)&oldid387627...

  5. Static Temperature Survey At Fish Lake Valley Area (Deymonaz...

    Open Energy Info (EERE)

    Additional References Retrieved from "http:en.openei.orgwindex.php?titleStaticTemperatureSurveyAtFishLakeValleyArea(Deymonaz,EtAl.,2008)&oldid511143...

  6. Thermal And-Or Near Infrared At Fish Lake Valley Area (Deymonaz...

    Open Energy Info (EERE)

    Additional References Retrieved from "http:en.openei.orgwindex.php?titleThermalAnd-OrNearInfraredAtFishLakeValleyArea(Deymonaz,EtAl.,2008)&oldid386621...

  7. Geographic Information System At Fish Lake Valley Area (Deymonaz...

    Open Energy Info (EERE)

    and (5) gravity data. Software for using this data has been installed at the Dyer, NV Fish Lake Green PowerEsmeralda Energy Company office with geologic data being transferred...

  8. GEOTHERMAL EXPLORATION ASSESSMENT AND INTERPRETATION, KLAMATH BASIN, OREGON-SWAN LAKE AND KLAMATH HILLS AREA

    E-Print Network [OSTI]

    Stark, M.

    2011-01-01T23:59:59.000Z

    survey of the Swan Lake Valley area, Oregon: Geonornicssurvey of the Swan Lake Valley Area, Oregon: GeonomicsKLAMATH BASIN, OREGON SWAN LAKE AND KLAMATH HILLS AREA M.

  9. GEOTHERMAL EXPLORATION ASSESSMENT AND INTERPRETATION, KLAMATH BASIN, OREGON-SWAN LAKE AND KLAMATH HILLS AREA

    E-Print Network [OSTI]

    Stark, M.

    2011-01-01T23:59:59.000Z

    KLAMATH BASIN, OREGON SWAN LAKE AND KLAMATH HILLS AREA M.survey of the Swan Lake Valley area, Oregon: Geonornicssurvey of the Swan Lake Valley Area, Oregon: Geonomics

  10. Surprise Valley Electric Co-Op Trinity Shasta Lake

    E-Print Network [OSTI]

    Cove California Electric Utility Service Areas California Energy Commission Systems Assessment-Op PacifiCorp Trinity Shasta Lake Redding PG&E Area served by both Surprise Valley Electric Co-Op & Pacific Vernon Aha MacavAzusa Pasadena Glendale Burbank City and County of S.F. Palo Alto Silicon Valley Power

  11. Core Analysis At Fish Lake Valley Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003) |Cordova Electric Coop, Inc Jump to:1983) | OpenFish Lake

  12. Slim Holes At Fish Lake Valley Area (Deymonaz, Et Al., 2008) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardtonManagement, 2009) |Crump's Hot Springs Area

  13. Static Temperature Survey At Fish Lake Valley Area (Deymonaz, Et Al., 2008)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd JumpGTZHolland,0162112°,St.StanlyEnergy Information Area (Benoit,|

  14. GEOTHERMAL EXPLORATION ASSESSMENT AND INTERPRETATION, KLAMATH BASIN, OREGON-SWAN LAKE AND KLAMATH HILLS AREA

    E-Print Network [OSTI]

    Stark, M.

    2011-01-01T23:59:59.000Z

    KLAMATH BASIN, OREGON SWAN LAKE AND KLAMATH HILLS AREA M.of the Swan Lake-Yonna Valley area, Klamath County, Oregon:

  15. Conceptual Model At Long Valley Caldera Geothermal Area (Farrar...

    Open Energy Info (EERE)

    Conceptual Model At Long Valley Caldera Geothermal Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique...

  16. Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Gradient Holes At Long Valley Caldera Geothermal Area (Conservation, 2009) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Thermal...

  17. Modeling-Computer Simulations At Dixie Valley Geothermal Area...

    Open Energy Info (EERE)

    Modeling-Computer Simulations At Dixie Valley Geothermal Area (Kennedy & Soest, 2006) Exploration Activity Details Location Dixie Valley Geothermal Area Exploration Technique...

  18. Teleseismic-Seismic Monitoring At Dixie Valley Geothermal Area...

    Open Energy Info (EERE)

    Teleseismic-Seismic Monitoring At Dixie Valley Geothermal Area (Iovenitti, Et Al., 2013) Exploration Activity Details Location Dixie Valley Geothermal Area Exploration Technique...

  19. Exploratory Well At Long Valley Caldera Geothermal Area (Smith...

    Open Energy Info (EERE)

    Home Exploration Activity: Exploratory Well At Long Valley Caldera Geothermal Area (Smith & Rex, 1977) Exploration Activity Details Location Long Valley Caldera Geothermal Area...

  20. Geothermometry At Long Valley Caldera Geothermal Area (Farrar...

    Open Energy Info (EERE)

    Home Exploration Activity: Geothermometry At Long Valley Caldera Geothermal Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Geothermal...

  1. Modeling-Computer Simulations At Dixie Valley Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Dixie Valley Geothermal Area (Wisian & Blackwell, 2004) Exploration...

  2. Isotopic Analysis- Gas At Dixie Valley Geothermal Area (Kennedy...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Gas At Dixie Valley Geothermal Area (Kennedy & Soest, 2006) Exploration Activity Details...

  3. Conceptual Model At Dixie Valley Geothermal Area (Okaya & Thompson...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Conceptual Model At Dixie Valley Geothermal Area (Okaya & Thompson, 1985) Exploration Activity Details...

  4. Static Temperature Survey At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Caldera Geothermal Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Static Temperature Survey Activity...

  5. Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Thermal Gradient Holes Activity Date 1998 -...

  6. Facies analysis of the Caballero Formation and the Andrecito Member of the Lake Valley Formation (Mississippian): implications for Waulsortian bioherm inception, Alamo Canyon area, Sacramento Mountains, New Mexico

    E-Print Network [OSTI]

    Byrd, Thomas Martin

    1989-01-01T23:59:59.000Z

    Formation disconformably overlies the Onate Formation and is composed of shale and yellow, nodular, silty limestone and dolomite. The percha Formation is composed of black shale. In most of the immediate study area, the Mississippian disconformably... of nodular limestone and shale. A layer of 1-inch thick, black, phosphatic nodules and fish teeth marks the 21 Laudon and Bowsher, 1949; formal (ibis study) Pray, 1961 (modified) lithology Lane end Ormislon 1982 and DsKeyser, 1983 focnal (proposed...

  7. Field Mapping At Long Valley Caldera Geothermal Area (Sorey ...

    Open Energy Info (EERE)

    Sorey & Farrar, 1998) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Long Valley Caldera Geothermal Area (Sorey & Farrar, 1998)...

  8. Isotopic Analysis- Fluid At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Farrar, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Long Valley Caldera Geothermal Area (Farrar, Et...

  9. Water Sampling At Valley Of Ten Thousand Smokes Region Area ...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Valley Of Ten Thousand Smokes Region Area (Keith, Et Al., 1992)...

  10. Injectivity Test At Long Valley Caldera Geothermal Area (Morin...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Long Valley Caldera Geothermal Area (Morin, Et Al., 1993) Exploration Activity...

  11. Injectivity Test At Long Valley Caldera Geothermal Area (Farrar...

    Open Energy Info (EERE)

    Details Location Long Valley Caldera Geothermal Area Exploration Technique Injectivity Test Activity Date 1999 - 1999 Usefulness not useful DOE-funding Unknown Notes A second...

  12. Ground Gravity Survey At Dixie Valley Geothermal Area (Allis...

    Open Energy Info (EERE)

    Activity Details Location Dixie Valley Geothermal Area Exploration Technique Ground Gravity Survey Activity Date 1999 - 2000 Usefulness not indicated DOE-funding Unknown...

  13. Core Analysis At Long Valley Caldera Geothermal Area (Pribnow...

    Open Energy Info (EERE)

    Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Core Analysis Activity Date - 2003 Usefulness useful DOE-funding Unknown Notes "Here we...

  14. Numerical Modeling At Dixie Valley Geothermal Area (McKenna ...

    Open Energy Info (EERE)

    McKenna & Blackwell, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Numerical Modeling At Dixie Valley Geothermal Area (McKenna &...

  15. Core Holes At Long Valley Caldera Geothermal Area (Eichelberger...

    Open Energy Info (EERE)

    Eichelberger, Et Al., 1988) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Holes At Long Valley Caldera Geothermal Area (Eichelberger, Et...

  16. Electromagnetic Soundings At Dixie Valley Geothermal Area (Mallan...

    Open Energy Info (EERE)

    Mallan, Et Al., 2001) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Electromagnetic Soundings At Dixie Valley Geothermal Area (Mallan, Et Al.,...

  17. Magnetotellurics At Long Valley Caldera Geothermal Area (Hermance...

    Open Energy Info (EERE)

    Hermance, Et Al., 1988) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Long Valley Caldera Geothermal Area (Hermance, Et...

  18. Numerical Modeling At Dixie Valley Geothermal Area (Iovenitti...

    Open Energy Info (EERE)

    Iovenitti, Et Al., 2013) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Numerical Modeling At Dixie Valley Geothermal Area (Iovenitti, Et Al.,...

  19. Modeling-Computer Simulations At Dixie Valley Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Dixie Valley Geothermal Area (Wannamaker, Et Al., 2006) Exploration...

  20. Core Analysis At Long Valley Caldera Geothermal Area (Smith ...

    Open Energy Info (EERE)

    Smith & Suemnicht, 1991) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Core Analysis Activity Date 1985 - 1988 Usefulness useful...

  1. Micro-Earthquake At Long Valley Caldera Geothermal Area (Foulger...

    Open Energy Info (EERE)

    Et Al., 2004) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Micro-Earthquake Activity Date - 2004 Usefulness not indicated...

  2. Ground Gravity Survey At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Battaglia, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Long Valley Caldera Geothermal Area (Battaglia,...

  3. Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Thermal Gradient Holes Activity Date 1978 - 1985 Usefulness useful DOE-funding Unknown...

  4. Compound and Elemental Analysis At Lake City Hot Springs Area...

    Open Energy Info (EERE)

    Lake City Hot Springs Area (Warpinski, Et Al., 2004) Exploration Activity Details Location Lake City Hot Springs Area Exploration Technique Compound and Elemental Analysis Activity...

  5. Compound and Elemental Analysis At Lake City Hot Springs Area...

    Open Energy Info (EERE)

    Lake City Hot Springs Area (Sladek, Et Al., 2004) Exploration Activity Details Location Lake City Hot Springs Area Exploration Technique Compound and Elemental Analysis Activity...

  6. Data Acquisition-Manipulation At Lake City Hot Springs Area ...

    Open Energy Info (EERE)

    Lake City Hot Springs Area (Warpinski, Et Al., 2004) Exploration Activity Details Location Lake City Hot Springs Area Exploration Technique Data Acquisition-Manipulation Activity...

  7. Control on (234 U) in lake water: A study in the Dry Valleys

    E-Print Network [OSTI]

    Henderson, Gideon

    .V. All rights reserved. Keywords: Uranium isotopes; Dry Valleys; Antarctica; Weathering; Lake chemistry 1 isotopes. The supply of 234 U is therefore limited by decay of 238 U, suggesting that the two uranium

  8. Ground Gravity Survey At Lake City Hot Springs Area (Warpinski...

    Open Energy Info (EERE)

    Lake City Hot Springs Area (Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Lake City Hot...

  9. Water Sampling At Long Valley Caldera Geothermal Area (McKenzie...

    Open Energy Info (EERE)

    Water Sampling At Long Valley Caldera Geothermal Area (McKenzie & Truesdell, 1977) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique...

  10. Lualualei Valley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point, Alaska: Energy ResourcesLualualei Valley

  11. Lualualei Valley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point, Alaska: Energy ResourcesLualualei ValleyJump to:

  12. Dixie Valley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1Dering Harbor,DiscountDiversified EnergyDixieDixie Valley

  13. Pumpernickel Valley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration JumpSanyalTempWellheadWahkiakum County Place:PulteGroup JumpValley

  14. Medicine Lake Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories on climateJunoMedanosElectric Co LtdJacksonLake Geothermal Area

  15. MCM LTER METADATA FILE TITLE: Lake ice thickness in the McMurdo Dry Valleys

    E-Print Network [OSTI]

    Priscu, John C.

    MCM LTER METADATA FILE TITLE: Lake ice thickness in the McMurdo Dry Valleys ABSTRACT: Ice thickness was measured from the bottom of the ice cover to the piezometric water level and to the top of the ice cover-2360 achiuchiolo@montana.edu VARIABLES: Location Name, Location Code, Limno Run, Collection Date, z-water, z-ice, z

  16. Hot Lake Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHi GtelHomer, Alaska:Horace, NorthHorvatic JumpOpenHot Lake Area)

  17. Thermal Gradient Holes At Lake City Hot Springs Area (Warpinski...

    Open Energy Info (EERE)

    Warpinski, Et Al., 2004) Exploration Activity Details Location Lake City Hot Springs Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness not indicated...

  18. Static Temperature Survey At Lake City Hot Springs Area (Benoit...

    Open Energy Info (EERE)

    Benoit Et Al., 2005) Exploration Activity Details Location Lake City Hot Springs Area Exploration Technique Static Temperature Survey Activity Date Usefulness useful DOE-funding...

  19. Geothermal Literature Review At Lake City Hot Springs Area (Benoit...

    Open Energy Info (EERE)

    Et Al., 2004) Exploration Activity Details Location Lake City Hot Springs Area Exploration Technique Geothermal Literature Review Activity Date Usefulness not indicated DOE-funding...

  20. A paleoenvironmental analysis of the Mississippian Caballero and Lower Lake Valley Formations, Sacramento Mountains, Otero County, New Mexico

    E-Print Network [OSTI]

    Morey, Erol Dean

    1985-01-01T23:59:59.000Z

    A PALEOENVIRONIUIENTAL ANALYSIS OF THE MISSISSIPPIAN CABALLERO AND LOWER LAKE VALLEY FORMATIONS, SACRAMENTO MOUNTAINS, UTERO COUNTY, NEW MEXICO A Thesis by EROL DEAN MOREY Submitted to the Graduate College of Texas AIM University in partial... fulfillment of the requirements for the degree of MASTER OF SCIENCE May, 1985 Major Subject: Geology A PALEOENVIRONMENTAL ANALYSIS OF THE MISSISSIPPIAN CANAL'LERO AND LOWER LAKE VALLEY FORMATIONS, SACRAMENTO MOUNTAINS. OTERO COUNTYi NEW MEXICO A Thesis...

  1. Pore water chemistry of an alkaline rift valley lake: Lake Turkana, Kenya

    SciTech Connect (OSTI)

    Cerling, T.E.; Johnson, T.C.; Halfman, J.D.; Lister, G.

    1985-01-01T23:59:59.000Z

    Lake Turkana is the largest closed basin lake in the African rift system. It has evolved through the past 5000 years to become a moderately alkaline lake. Previous mass balance argument suggest that sulfate is removed from the lake by sulfate reduction in the sediments, and that the lake is accumulating in chloride, sodium, and alkalinity. Studies of pore water from 12 meter cores collected in November 1984 show that sulfate is reduced in the sediment column with a net production of alkalinity. Some sodium is lost from the lake and diffuses into the sediment to maintain charge balance. At several meters depth, organic matter is destroyed by methanogenic bacteria, as shown by the high delta /sup 13/C values for dissolved inorganic carbon. Magnesium and calcium molar ratios change with depth; chloride, sodium, and alkalinity also change with depth.

  2. Water-Gas Samples At Long Valley Caldera Geothermal Area (Farrar...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water-Gas Samples At Long Valley Caldera Geothermal Area (Farrar, Et Al., 2003) Exploration...

  3. Core Holes At Long Valley Caldera Geothermal Area (Lachenbruch...

    Open Energy Info (EERE)

    Regime of Long Valley Caldera. Journal of Geophysical Research. 81(5):763-768. J.L. Smith,R.W. Rex. 1977. Drilling results from eastern Long Valley Caldera. () : American...

  4. Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Regime of Long Valley Caldera. Journal of Geophysical Research. 81(5):763-768. J.L. Smith,R.W. Rex. 1977. Drilling results from eastern Long Valley Caldera. () : American...

  5. SURVEY AND ASSESSMENT OF THE "ALAMOSA MARSHES" AREA, SAN LUIS VALLEY, COLORADO

    E-Print Network [OSTI]

    SURVEY AND ASSESSMENT OF THE "ALAMOSA MARSHES" AREA, SAN LUIS VALLEY, COLORADO Colorado Natural Heritage Program College of Natural Resources, 8002 Campus Delivery Colorado State University Fort Collins, Colorado 80523-8002 #12;SURVEY AND ASSESSMENT OF THE "ALAMOSA MARSHES" AREA, SAN LUIS VALLEY, COLORADO

  6. Geographic Information System At Dixie Valley Geothermal Area...

    Open Energy Info (EERE)

    over the Dixie Valley hydrothermal convection system, and if so, are they related with soil geochemical, vegetal-spectral, soil spectral, and biogeochemical anomalies. Other goals...

  7. Geothermometry At Long Valley Caldera Geothermal Area (Mariner...

    Open Energy Info (EERE)

    L. Sorey, Robert H. Mariner, Alfred H. Truesdell (1979) Chemical and Isotopic Prediction of Aquifer Temperatures in the Geothermal System at Long Valley, California Michael...

  8. Walker Lake Valley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformationSEDS data JumpWakulla County, Florida:

  9. Walker Lake Valley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformationSEDS data JumpWakulla County, Florida:(Redirected from Walker

  10. Fish Lake Valley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf Jump to:Siting.pdf JumpFirelandsOpen Energy(Redirected from

  11. Fish Lake Valley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vs Actual DataNext 25 Years |

  12. Thermochronometry At Fish Lake Valley Area (DOE GTP) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump JumpAl., 1978) | Open EnergyHot Springs

  13. Emmons Lake Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37. It is classifiedProject) |Emeryville, California:Emmet,Emmons Lake

  14. Analysis of consumer lending problems of the banks in the central Texas Brazos Valley area

    E-Print Network [OSTI]

    Old, William Donald

    1963-01-01T23:59:59.000Z

    to significant new profits for RVA bankers. A oonsuner loan of $1, 000 at seven poroont interest, repaid in twelve nonthly inetallnonto, aotuallr earns interest of 12. 9 yeroont for the lender. Therefore& surplus lendable funds now held hF BVA 1 banks... eonsuaor loanso %hat nininun siss (dollar anount) oonsunor loan Sraaos Vallqf Area bankers oonsider to bo profitable. $. Tho nethods and prooeduros used hf Breaos Valley Area bankers in asking oonsunor loansi 6. Vhat steps Sraaos Valley Area banks oan...

  15. Isotopic Analysis- Gas At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Valley Caldera Michael L. Sorey, B. Mack Kennedy, William C. Evans, Christopher D. Farrar (1990) Increases in 3He4He in Fumarolic Gas Associated with the 1989 Earthquake Swarm...

  16. Water Management Strategies for the San Joaquin Valley and San Francisco Bay Area

    E-Print Network [OSTI]

    Lund, Jay R.

    i Water Management Strategies for the San Joaquin Valley and San Francisco Bay Area: an Engineering in Water Resource Management ............. 3 CALVIN Model Overview ...................................................... 26 Changes in Delivery and Scarcity Costs .................................. 35 Environmental Water

  17. Smith Creek Valley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardtonManagement,SmartestEnergy Ltd Jump to:Creek Valley

  18. Teleseismic-Seismic Monitoring At Dixie Valley Geothermal Area (Iovenitti,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump to:Taos County,Tees Valley BiofuelsEnergyInformation 6Et

  19. Teleseismic-Seismic Monitoring At Long Valley Caldera Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump to:Taos County,Tees Valley(Newman, Et Al., 2006) | Open

  20. Indian Valley Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place: Eden Prairie, Minnesota Zip: 55344ESMAPIndianValley Hot

  1. Valley Of Ten Thousand Smokes Region Geothermal Area | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt Lake City, Utah Zip:Scale Solar IncVairexValles

  2. Cuttings Analysis At Imperial Valley Geothermal Area (1976) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC JumpCrow Lake Wind Jump to:Roadmap2003)Information 1976)

  3. Cuttings Analysis At Long Valley Caldera Geothermal Area (Smith &

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC JumpCrow Lake Wind Jump to:Roadmap2003)Information2003)

  4. Water Sampling At Lualualei Valley Area (Thomas, 1986) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt LakeWashtenaw County,Energy Information

  5. Cotton hedging strategies using prices for Texas High Plains and Rio Grande Valley areas

    E-Print Network [OSTI]

    Howard, John V

    1979-01-01T23:59:59.000Z

    COTTON REDGINC STRATEGIES USING PRICES FO=". TEXAS HIGH PLAINS AND RIO GRANDE VALLEY AREAS A Thesis by JOHN VERNON HOWARD, III Subm tted to the Graduate College of Texas A&M Universi'ty in partial fulfiiiment cf the requirement for the de...-ree o MASTER OP SC'ENCE August 1979 Major Subject: Agricultural Economics COTTON HEDGING STRATEGIES USING PRICES FOR TEXAS HIGH PLAINS AND RIO GRANDE VALLEY AREAS A Thesis JOHN VERNON HOWARD, III Approved as to style and content by: (C irman...

  6. Gas Flux Sampling At Dixie Valley Geothermal Area (Iovenitti...

    Open Energy Info (EERE)

    of the geothermal area. Ultimately for potential development of EGS. Notes A CO2 soil gas flux survey was conducted in areas recognized as geothermal upflow zones within the...

  7. Salt Lake City Area Integrated Projects Power Sales Rate History

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 ResourceAwardsSafeguards and SecuritySafety Salt Lake City Area

  8. Geology of the Normangee Lake area, Leon County, Texas

    E-Print Network [OSTI]

    Anspach, David Harold

    1972-01-01T23:59:59.000Z

    . The back-bar lagoon was invaded by a major delta that advanced from the north and succeeding deposition was that of small delta lobes and crevasses that built into interdistributary bays. The Stone City Formation was deposited during the transition from... of the Claiborne Group across the state of Texas. Location The Normangee Lake area comprises about 30. 7 square miles, partly in southwestern Leon County, Texas, and partly in north- western Madison County, Texas. These counties are located in the eastern part...

  9. Ground Gravity Survey At Dixie Valley Geothermal Area (Iovenitti...

    Open Energy Info (EERE)

    project area. These data were used in conjunction with past gravity data reported in by Smith et al (2001) and Blackwell et al (2005). The analysis of these data had not been...

  10. Gas Flux Sampling At Long Valley Caldera Geothermal Area (Bergfeld...

    Open Energy Info (EERE)

    Unknown Notes "A survey of diffuse CO2 efflux, soil temperature and soil-gas chemistry over areas of localized vegetation-kill on and around the resurgent dome of Long...

  11. azapa valley northern: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dry Valley lakes, Antarctica Environmental Sciences and Ecology Websites Summary: evaluation of silicon biogeochemistry in the Taylor Valley lakes, Southern Victoria Land, was...

  12. Mercury Vapor At Lualualei Valley Area (Thomas, 1986) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowellisMcDonaldInformation Lahaina-Kaanapali Area1979)

  13. Multispectral Imaging At Buffalo Valley Hot Springs Area (Laney, 2005) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3 ClimateSpurr GeothermalCarmelAlum Area (DOE GTP) Jump to:Open

  14. Multispectral Imaging At Long Valley Caldera Geothermal Area (Pickles, Et

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3 ClimateSpurr GeothermalCarmelAlum Area (DOE GTP) JumpOpenAl.,

  15. Remote sensing for groundwater modelling in large semiarid areas: Lake Chad Basin, Africa

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    is lower than 200 mm and the population density does not exceed 0.05 inhabitants per km2 . PreviousRemote sensing for groundwater modelling in large semiarid areas: Lake Chad Basin, Africa Marc.springerlink.com #12;2 Remote sensing for groundwater modelling in large semiarid areas: Lake Chad Basin, Africa Marc

  16. Model for trace metal exposure in filter-feeding flamingos at alkaline Rift Valley Lake, Kenya

    SciTech Connect (OSTI)

    Nelson, Y.M.; DiSante, C.J.; Lion, L.W. [Cornell Univ., Ithaca, NY (United States). School of Civil and Environmental Engineering; Thampy, R.J.; Raini, J.A. [Worldwide Fund for Nature, Nakuru (Kenya). Lake Nakuru Conservation and Development Project; Motelin, G.K. [Egerton Univ., Njoro (Kenya). Dept. of Animal Health

    1998-11-01T23:59:59.000Z

    Toxic trace metals have been implicated as a potential cause of recent flamingo kills at Lake Nakuru, Kenya. Chromium (Cr), copper (Cu), lead (Pb), and zinc (Zn) have accumulated in the lake sediments as a result of unregulated discharges and because this alkaline lake has no natural outlet. Lesser flamingos (Phoeniconaias minor) at Lake Nakuru feed predominantly on the cyanobacterium Spirulina platensis, and because of their filter-feeding mechanism, they are susceptible to exposure to particle-bound metals. Trace metal adsorption isotherms to lake sediments and S. platensis were obtained under simulated lake conditions, and a mathematical model was developed to predict metal exposure via filter feeding based on predicted trace metal phase distribution. Metal adsorption to suspended solids followed the trend Pb {much_gt} Zn > Cr > Cu, and isotherms were linear up to 60 {micro}g/L. Adsorption to S. platensis cells followed the trend Pb {much_gt} Zn > Cu > Cr and fit Langmuir isotherms for Cr, Cu and Zn and a linear isotherm for Pb. Predicted phase distributions indicated that Cr and Pb in Lake Nakuru are predominantly associated with suspended solids, whereas Cu and Zn are distributed more evenly between the dissolved phase and particulate phases of both S. platensis and suspended solids. Based on established flamingo feeding rates and particle size selection, predicted Cr and Pb exposure occurs predominantly through ingestion of suspended solids, whereas Cu and Zn exposure occurs through ingestion of both suspended solids and S. platensis. For the lake conditions at the time of sampling, predicted ingestion rates based on measured metal concentrations in lake suspended solids were 0.71, 6.2, 0.81, and 13 mg/kg-d for Cr, Cu, Pb, and Zn, respectively.

  17. Opaline cherts associated with sublacustrine hydrothermal springs at Lake Bogoria, Kenya Rift valley

    SciTech Connect (OSTI)

    Renaut, R.W.; Owen, R.B.

    1988-08-01T23:59:59.000Z

    An unusual group of cherts found at saline, alkaline Lake Bogoria in the Kenya Rift differs from the Magadi-type cherts commonly associated with saline, alkaline lakes. The cherts are opaline, rich in diatoms, and formed from a siliceous, probably gelatinous, precursor that precipitated around submerged alkaline hot springs during a Holocene phase of high lake level. Silica precipitation resulted from rapid drop in the temperature of the spring waters and, possibly, pH. Lithification began before subaerial exposure. Ancient analogous cherts are likely to be localized deposits along fault lines.

  18. Structural geology of the Buckville area, Lake Ouachita, Arkansas

    E-Print Network [OSTI]

    Fugitt, David Spencer

    1978-01-01T23:59:59.000Z

    in terbedded sar astones and shales, and Morris (1974) interprets the sandstones as turbi- dites. The boundary between the Mississippian and Pennsylvanian systems probably lies in the basal Jackfork Sandstone (Gordon and Stone, '1977). The Johns Valley...

  19. NOAA Selects Muskegon Lake as Habitat Focus Area

    E-Print Network [OSTI]

    of the lumber era, several other industries were based there including chemical and petrochemical companies, foundries, a coal-fired power plant, and a paper mill. Muskegon Lake has suffered water quality concerns

  20. Glen Canyon National Recreation Area, Lake Powell, Utah | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of diesel fuel per year that has to be barged in over Lake Powell. The potential for environmental damage to the marina in the event of a fuel spill is significant, and the...

  1. GREAT LAKES UNIVERSITY OF KISUMU INTRODUCTION

    E-Print Network [OSTI]

    Petriu, Emil M.

    agriculture, green valleys and hills, and occasional thick forest and mountains. It is situated on Lake

  2. Tracer Testing At Dixie Valley Geothermal Area (Reed, 2007) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,LtdInformation Dixie Valley Geothermal Area (Reed, 2007) Jump to:

  3. Sedimentology, sediment dispersal patterns, and stratigraphic architecture of progradational carbonate sand bodies, lower Lake Valley Formation (Mississippian), Sacramento Mountains, south-central New Mexico

    E-Print Network [OSTI]

    Hoffmann, Michael Francis

    1996-01-01T23:59:59.000Z

    SEDIMENTOLOGY, SEDIMENT DISPERSAL PATTERNS, AND STRATIGRAPHIC ARCHITECTURE OF PROGRADATIONAL CARBONATE SAND BODIES, LOWER LAKE VALLEY FORMATION (MISSISSIPPIAN), SACRAMENTO MOUNTAINS, SOUTH-CENTRAL NEW MEXICO A Thesis by MICHAEL FRANCIS... HOFFMANN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 1996 Major Subject: Geology SEDIMENTOLOGY, SEDIMENT DISPERSAL PATTERNS...

  4. Evidence of the dominance of higher-mode surface waves in the lake-bed zone of the Valley of Mexico

    E-Print Network [OSTI]

    Shapiro, Nikolai

    Evidence of the dominance of higher-mode surface waves in the lake-bed zone of the Valley of Mexico, Coyoacan 04510, Me´xico DF, Mexico. E-mail: krishna@ollin.igeofcu.unam.mx 2 Instituto de Ingeneri´a, UNAM, CU, Coyoacan 04510, Me´xico DF, Mexico Accepted 2001 May 4. Received 2001 April 2; in original form

  5. Microbial Diversity Studies in Sediments of Perennially Ice-covered Lakes, McMurdo Dry Valleys, Antarctica

    E-Print Network [OSTI]

    Tang, Chao

    2009-01-01T23:59:59.000Z

    Microbial Diversity in Sediments of Saline Qinghai Lake,PIRLA project lake sediments core. Journal of paleolimnologyAntarctic paleolake sediments and the search for extinct

  6. Microbial Diversity Studies in Sediments of Perennially Ice-covered Lakes, McMurdo Dry Valleys, Antarctica

    E-Print Network [OSTI]

    Tang, Chao

    2009-01-01T23:59:59.000Z

    Hypersaline Lakes of the Wadi An Natrun, Egypt. MicrobialDimitriu et al. , 2008) and the Wadi An Natrun Lakes (Mesbah

  7. Lake City Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey, Washington: Energy Resources JumpFlorida: Energy Resources JumpNewLake

  8. EIS-0150: Salt Lake City Area Integrated Projects Electric Power Marketing

    Broader source: Energy.gov [DOE]

    The Western Area Power Administration prepared this environmental impact statement to analyze the environmental impacts of its proposal to establish the level of its commitment (sales) of long- term firm electrical capacity and energy from the Salt Lake City Area Integrated Projects hydroelectric power plants.

  9. The structure of a Mesozoic basin beneath the Lake Tana area, Ethiopia, revealed by magnetotelluric imaging

    E-Print Network [OSTI]

    The structure of a Mesozoic basin beneath the Lake Tana area, Ethiopia, revealed by magnetotelluric of Mines, Addis Ababa, Ethiopia c Geological Survey of Ethiopia, Addis Ababa, Ethiopia Received 18 April 2006 Abstract The northwestern Plateau of Ethiopia is almost entirely covered with extensive Tertiary

  10. Density Log at Fish Lake Valley Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1 No38e4011f618bDeer7353872°, -70.1939087° LoadingMoos

  11. Thermal Gradient Holes At Fish Lake Valley Area (DOE GTP) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark JumpDetective Jump to:theEnergy InformationAl., 1974)

  12. Modeling-Computer Simulations At Fish Lake Valley Area (Deymonaz, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte GmbHMilo, Maine:EnergyInformationDecker, 1983) | Open

  13. Compound and Elemental Analysis At Fish Lake Valley Area (DOE GTP) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC Jump to: navigation, search Name:CXD)2010)

  14. Compound and Elemental Analysis At Fish Lake Valley Area (Deymonaz, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC Jump to: navigation, search Name:CXD)2010)2008) | Open Energy

  15. Reflection Survey At Fish Lake Valley Area (DOE GTP) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant of Access Permit5-ID-aRECRaton,RFPs| Open Energy

  16. Geographic Information System At Fish Lake Valley Area (Deymonaz, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeauga County, Ohio: EnergySector:2008) | Open Energy

  17. Geothermal Literature Review At Fish Lake Valley Area (Deymonaz, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeauga County,Information(EC-LEDS)Et Al., 1996)Al., 2012) |2008)

  18. Geothermometry At Fish Lake Valley Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeaugaInformation Mexico - A SurveyInformationEnergyFish

  19. Resistivity Log At Fish Lake Valley Area (DOE GTP) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, searchVirginia Blue Ridge AndREII JumpInformation to

  20. Pressure Temperature Log At Fish Lake Valley Area (DOE GTP) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug Power IncPowderClimate Action Project JumpCoop

  1. Field Mapping At Fish Lake Valley Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 NoSanEnergy Information 4) Jump to:8)2010 Usefulness

  2. Field Mapping At Fish Lake Valley Area (Deymonaz, Et Al., 2008) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 NoSanEnergy Information 4) Jump to:8)2010

  3. Field Mapping At Walker Lake Valley Area (Shoffner, Et Al., 2010) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 NoSanEnergy InformationInformation 4)EnergyEnergy

  4. Flow Test At Fish Lake Valley Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vs

  5. Ground Gravity Survey At Walker Lake Valley Area (Shoffner, Et Al., 2010) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:Photon Place:Net Jump to: navigation,2004)Energy

  6. Thermal And-Or Near Infrared At Fish Lake Valley Area (Deymonaz, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump Jump to:InformationTheInformation 9) Jump to:2008) |

  7. Hyperspectral Imaging At Fish Lake Valley Area (Littlefield & Calvin, 2010)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia: Energythe Second Workshop onDepositedHyperionOpen|

  8. CONFIRMATORY SURVEY REPORT FOR THE SECTION 4 AREA AT THE RIO ALGOM AMBROSIA LAKE FACILITY NEW MEXICO

    SciTech Connect (OSTI)

    W.C. Adams

    2010-02-12T23:59:59.000Z

    The objectives of the confirmatory survey were to verify that remedial actions were effective in meeting established release criteria and that documentation accurately and adequately described the final radiological conditions of the RAM Ambrosia Lake, Section 4 Areas.

  9. Comparison of anuran acoustic communities of two habitat types in the Danum Valley Conservation Area,

    E-Print Network [OSTI]

    Hödl, Walter

    Comparison of anuran acoustic communities of two habitat types in the Danum Valley Conservation frequency and demand acoustic adaptations to increase the signal-to-noise ratio. Selective logging represents a major threat to stream-breeding anurans in Sabah. Pollution of clear water threatens the stream

  10. Closure Report for Corrective Action Unit 366: Area 11 Plutonium Valley Dispersion Sites, Nevada National Security Site, Nevada

    SciTech Connect (OSTI)

    none,

    2013-12-31T23:59:59.000Z

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 366, Area 11 Plutonium Valley Dispersion Sites, and provides documentation supporting the completed corrective actions and confirmation that closure objectives for CAU 366 were met. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996 as amended).

  11. Data Acquisition-Manipulation At Valley Of Ten Thousand Smokes Region Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC JumpCrow Lake Wind107 CXArea (1982) | Open2008) | Open

  12. Water-Gas Samples At Long Valley Caldera Area (Goff & Janik, 2002) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt LakeWashtenawInformation Henkle,

  13. Geothermal exploration assessment and interpretation, Upper Klamah Lake Area, Klamath Basin, Oregon

    SciTech Connect (OSTI)

    Stark, M.; Goldstein, N.E.; Wollenberg, H.A.

    1980-09-01T23:59:59.000Z

    Data from public and private sources on the Klamath Basin geothermal resource are reviewed, synthesized, and reinterpreted. In this, the second and final phase of the work, geological, remote sensing, geochemical, temperature gradient, gravity, aeromagnetic, and electrical resistivity data sets are examined. These data were derived from surveys concentrated on the east and west shores of Upper Klamath Lake. The geological, remote sensing, and potential field data suggest a few northeast-trending discontinuities, which cross the regional north-westerly strike. The near-surface distribution of warm water appears to be related to the intersections of these lineaments and northwest-trending faults. The groundwater geochemical data are reviewed and the various reservoir temperature estimates compared. Particular attention is given to specific electrical conductivities of waters as an interpretational aid to the subsurface resistivity results. A clear trend emerges in the Klamath Falls/Olene Gap area; hotter waters are associated with higher specific conductivities. In the Nuss Lake/Stukel Mountain area the opposite trend prevails, although the relationship is somewhat equivocal.

  14. Cuttings Analysis At Long Valley Caldera Geothermal Area (Pribnow, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC JumpCrow Lake Wind Jump to:Roadmap2003)Information2003) |

  15. Water Sampling At Buffalo Valley Hot Springs Area (Laney, 2005) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt LakeWashtenaw County, Michigan: EnergyEnergy

  16. Water Sampling At Dixie Valley Geothermal Area (Kennedy & Soest, 2006) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt LakeWashtenaw County, Michigan:Open Energy Information

  17. Water Sampling At Little Valley Area (Wood, 2002) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt LakeWashtenaw County,Energy Information Witcher,

  18. Water Sampling At Long Valley Caldera Geothermal Area (Evans, Et Al., 2002)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt LakeWashtenaw County,Energy Information Witcher,| Open

  19. Water Sampling At Long Valley Caldera Geothermal Area (Goff, Et Al., 1991)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt LakeWashtenaw County,Energy Information Witcher,|

  20. Water Sampling At Valley Of Ten Thousand Smokes Region Area (Keith, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt LakeWashtenawInformation Henkle, Et Al.,

  1. Closure Report for Corrective Action Unit 425: Area 9 Main Lake Construction Debris Disposal Area, Tonopah Test Range, Nevada

    SciTech Connect (OSTI)

    K. B. Campbell

    2003-03-01T23:59:59.000Z

    Corrective Action Unit (CAU) 425 is located on the Tonopah Test Range, approximately 386 kilometers (240 miles) northwest of Las Vegas, Nevada. CAU 425 is listed in the Federal Facility Agreement and Consent Order (FFACO, 1996) and is comprised of one Corrective Action Site (CAS). CAS 09-08-001-TA09 consisted of a large pile of concrete rubble from the original Hard Target and construction debris associated with the Tornado Rocket Sled Tests. CAU 425 was closed in accordance with the FFACO and the Nevada Division of Environmental Protection-approved Streamlined Approach for Environmental Restoration Plan for CAU 425: Area 9 Main Lake Construction Debris Disposal Area, Tonopah Test Range, Nevada (U.S. Department of Energy, Nevada Operations Office, 2002). CAU 425 was closed by implementing the following corrective actions: The approved corrective action for this unit was clean closure. Closure activities included: (1) Removal of all the debris from the site. (2) Weighing each load of debris leaving the job site. (3) Transporting the debris to the U.S. Air Force Construction Landfill for disposal. (4) Placing the radioactive material in a U.S. Department of Transportation approved container for proper transport and disposal. (5) Transporting the radioactive material to the Nevada Test Site for disposal. (6) Regrading the job site to its approximate original contours/elevation.

  2. E-Print Network 3.0 - area imperial valley Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Universitt Heidelberg Collection: Biology and Medicine ; Physics 24 Camp Pendleton Kings Canyon Summary: BLM Wilderness BLM Wilderness Study Areas NPS Wilderness USFS...

  3. CONSTRUCTION AND CALIBRATION OF A LARGE-SCALE MICRO-SIMULATION MODEL OF THE SALT LAKE AREA

    E-Print Network [OSTI]

    Rakha, Hesham A.

    CONSTRUCTION AND CALIBRATION OF A LARGE-SCALE MICRO-SIMULATION MODEL OF THE SALT LAKE AREA H. Rakha-scale network using a microscopic simulation model. The requirements of a validated microscopic model for large of Intelligent Transportation System (ITS) applications. Typically, microscopic simulation models have been

  4. Facies architecture of the Bluejacket Sandstone in the Eufaula Lake area, Oklahoma: Implications for the reservoir characterization of the Bartlesville Sandstone

    SciTech Connect (OSTI)

    Ye, Liangmiao; Yang, Kexian [Univ. of Tulsa, OK (United States)

    1997-08-01T23:59:59.000Z

    Outcrop studies of the Bluejacket Sandstone (Middle Pennsylvanian) provide significant insights to reservoir architecture of the subsurface equivalent Bartlesville Sandstone. Quarry walls and road cuts in the Lake Eufaula area offer excellent exposures for detailed facies architectural investigations using high-precision surveying, photo mosaics. Directional minipermeameter measurements are being conducted. Subsurface studies include conventional logs, borehole image log, and core data. Reservoir architectures are reconstructed in four hierarchical levels: multi-storey sandstone, i.e. discrete genetic intervals; individual discrete genetic interval; facies within a discrete genetic interval; and lateral accretion bar deposits. In both outcrop and subsurface, the Bluejacket (Bartlesville) Sandstone comprises two distinctive architectures: a lower braided fluvial and an upper meandering fluvial. Braided fluvial deposits are typically 30 to 80 ft thick, and are laterally persistent filling an incised valley wider than the largest producing fields. The lower contact is irregular with local relief of 50 ft. The braided-fluvial deposits consist of 100-400-ft wide, 5-15-ft thick channel-fill elements. Each channel-fill interval is limited laterally by an erosional contact or overbank deposits, and is separated vertically by discontinuous mudstones or highly concentrated mudstone interclast lag conglomerates. Low-angle parallel-stratified or trough cross-stratified medium- to coarse-grained sandstones volumetrically dominate. This section has a blocky well log profile. Meandering fluvial deposits are typically 100 to 150 ft thick and comprise multiple discrete genetic intervals.

  5. Corrective Action Plan for Corrective Action Unit 366: Area 11 Plutonium Valley Dispersion Sites, Nevada National Security Site, Nevada

    SciTech Connect (OSTI)

    none,

    2013-04-30T23:59:59.000Z

    This Corrective Action Plan has been prepared for Corrective Action Unit (CAU) 366, Area 11 Plutonium Valley Dispersion Sites, in accordance with the Federal Facility Agreement and Consent Order (FFACO, 1996 as amended). CAU 366 consists of the following six Corrective Action Sites (CASs) located in Area 11 of the Nevada National Security Site: CAS 11-08-01, Contaminated Waste Dump #1 CAS 11-08-02, Contaminated Waste Dump #2 CAS 11-23-01, Radioactively Contaminated Area A CAS 11-23-02, Radioactively Contaminated Area B CAS 11-23-03, Radioactively Contaminated Area C CAS 11-23-04, Radioactively Contaminated Area D Site characterization activities were performed in 2011 and 2012, and the results are presented in Appendix A of the Corrective Action Decision Document (CADD) for CAU 366 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2012a). The following closure alternatives were recommended in the CADD: No further action for CAS 11-23-01 Closure in place for CASs 11-08-01, 11-08-02, 11-23-02, 11-23-03, and 11-23-04 The scope of work required to implement the recommended closure alternatives includes the following: Non-engineered soil covers approximately 3 feet thick will be constructed at CAS 11-08-01 over contaminated waste dump (CWD) #1 and at CAS 11-08-02 over CWD #2. FFACO use restrictions (URs) will be implemented for the areas where the total effective dose (TED) exceeds the final action level (FAL) of 25 millirems per Occasional Use Area year (mrem/OU-yr). The FAL is based on an assumption that the future use of the site includes occasional work activities and that workers will not be assigned to the area on a regular basis. A site worker under this scenario is assumed to be on site for a maximum of 80 hours per year for 5 years. The FFACO UR boundaries will encompass the areas where a worker would be exposed to 25 millirems of radioactivity per year if they are present for 80 hours per year. These boundaries will be defined as follows: It is assumed that radiological contaminants are present at CAS 11-08-01 and CAS 11-08-02 within CWDs #1 and #2 at levels exceeding the FAL. Therefore, UR boundaries will be established around the perimeters of the soil covers that will be constructed at CWD #1 and CWD #2. A geophysical survey revealed buried metallic debris outside the fence and adjacent to CWD #1. Therefore, the UR boundary for CWD #1 will be expanded to include the mound containing buried material. It is assumed that radiological contaminants are present at CAS 11-23-02, CAS 11-23-03, and CAS 11-23-04, within the three High Contamination Area (HCA) boundaries associated with the 11b, 11c, and 11d test areas at levels exceeding the FAL. Therefore, the UR boundaries will be established around the perimeters of the HCAs. The TED at an area of soil impacted by radiological debris outside the fence and adjacent to the 11c test area HCA exceeds the FAL of 25 mrem/OU-yr. Because the radiological impact from the debris at this location is visible on the aerial flyover radiological survey, all other areas within this isopleth of the flyover survey are conservatively also assumed to exceed the FAL. Therefore, the UR boundaries for the 11b, 11c, and 11d test areas will be expanded to include the areas within this isopleth. The FFACO URs will all be located within the large Contamination Area (CA) that encompasses Plutonium Valley. Because access to the CA is limited and entry into the CA for post-closure inspections and maintenance would be impractical, UR warning signs will be posted along the existing CA fence. In accordance with the Soils Risk-Based Corrective Action Evaluation Process (NNSA/NSO, 2012b), an administrative UR will be implemented as a best management practice for the areas where the TED exceeds 25 millirems per Industrial Area year. This limit is based on continuous industrial use of the site and addresses exposure to industrial workers who would regularly be assigned to the work area for an entire career (250 days

  6. Mercury Vapor At Long Valley Caldera Geothermal Area (Klusman & Landress,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowellisMcDonaldInformation Lahaina-Kaanapali Area1979) |

  7. InSAR At Dixie Valley Geothermal Area (Laney, 2005) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia:ISIIrrigationDesert Peak Area (Laney, 2005) Jump

  8. Water Sampling At Long Valley Caldera Geothermal Area (McKenzie &

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformationSEDS dataIndiana:CoopWaspa JumpHeber AreaTruesdell, 1977) | Open

  9. Water Sampling At Long Valley Caldera Geothermal Area (Sorey, Et Al., 1991)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformationSEDS dataIndiana:CoopWaspa JumpHeber AreaTruesdell, 1977) | Open|

  10. Multispectral Imaging At Dixie Valley Geothermal Area (Pal & Nash, 2003) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3 ClimateSpurr GeothermalCarmelAlum Area (DOE GTP) JumpOpen Energy

  11. Soil Sampling At Valley Of Ten Thousand Smokes Region Area (Kodosky &

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to:Information Silver Peak Area (Henkle, Et Al., 2005) Jump

  12. Soil Sampling At Valley Of Ten Thousand Smokes Region Area (Kodosky, 1989)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to:Information Silver Peak Area (Henkle, Et Al., 2005) Jump| Open

  13. 2-M Probe At Gabbs Valley Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey Flatshydro Homepowering america Home1021 JumpArea (DOE

  14. Flow Test At Gabbs Valley Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlix SolarBlack Warrior Area (DOE GTP)Flow Test At

  15. Field Mapping At Long Valley Caldera Geothermal Area (Sorey & Farrar, 1998)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 NoSanEnergy Information 4) JumpJemez Pueblo Area (DOE|

  16. Field Mapping At Long Valley Caldera Geothermal Area (Sorey, 1985) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 NoSanEnergy Information 4) JumpJemez Pueblo Area

  17. Flow Test At Dixie Valley Geothermal Area (Desormier, 1987) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vs ActualInformationAlum Area

  18. Flow Test At Long Valley Caldera Geothermal Area (Farrar, Et Al., 2003) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlint Geothermal Area (DOE GTP)Open Energy

  19. Isotopic Analysis- Fluid At Indian Valley Hot Springs Geothermal...

    Open Energy Info (EERE)

    Activity: Isotopic Analysis- Fluid At Indian Valley Hot Springs Geothermal Area (1990) Exploration Activity Details Location Indian Valley Hot Springs Geothermal Area...

  20. Deformation of the Long Valley Caldera, California: Inferences...

    Open Energy Info (EERE)

    Activities (2) Ground Gravity Survey At Long Valley Caldera Geothermal Area (Battaglia, Et Al., 2003) Modeling-Computer Simulations At Long Valley Caldera Geothermal Area...

  1. antarctic dry valley: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    UK b Department of Geological Sciences and Institute.V. All rights reserved. Keywords: Uranium isotopes; Dry Valleys; Antarctica; Weathering; Lake chemistry 1 isotopes. The supply...

  2. antarctic dry valleys: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    UK b Department of Geological Sciences and Institute.V. All rights reserved. Keywords: Uranium isotopes; Dry Valleys; Antarctica; Weathering; Lake chemistry 1 isotopes. The supply...

  3. An Overview of Operational Characteristics of Selected Irrigation Districts in the Texas Lower Rio Grande Valley: Delta Lake Irrigation District

    E-Print Network [OSTI]

    Wolfe, Clint D.; Stubbs, Megan J.; Pennington, Ellen L.; Rister, M. Edward; Sturdivant, Allen W.; Lacewell, Ronald D.; Rogers, Callie S.

    on Environmental Quality 2004). The Watermaster program is funded through flat rate and variable fees charged to water right holders within the Watermaster?s program area. The current annual base assessment fee is $50.00 per water rights holder, plus... an assessment fee that is based on the projected operating budget and the amount of water rights owned by the user (Texas Commission on Environmental Quality 2004). The 2003-2006 variable assessment fees are listed in Table 1. An exception to variable rate...

  4. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 425: Area 9 Main Lake Construction Debris Disposal Area, Tonopah Test Range, Nevada

    SciTech Connect (OSTI)

    K. B. Campbell

    2002-04-01T23:59:59.000Z

    This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the action necessary for the closure of Corrective Action Unit (CAU) 425, Area 9 Main Lake Construction Debris Disposal Area. This CAU is currently listed in Appendix III of the Federal Facility Agreement and Consent Order (FFACO, 1996). This site will be cleaned up under the SAFER process since the volume of waste exceeds the 23 cubic meters (m{sup 3}) (30 cubic yards [yd{sup 3}]) limit established for housekeeping sites. CAU 425 is located on the Tonopah Test Range (TTR) and consists of one Corrective Action Site (CAS) 09-08-001-TA09, Construction Debris Disposal Area (Figure 1). CAS 09-08-001-TA09 is an area that was used to collect debris from various projects in and around Area 9. The site is located approximately 81 meters (m) (265 feet [ft]) north of Edwards Freeway northeast of Main Lake on the TTR. The site is composed of concrete slabs with metal infrastructure, metal rebar, wooden telephone poles, and concrete rubble from the Hard Target and early Tornado Rocket sled tests. Other items such as wood scraps, plastic pipes, soil, and miscellaneous nonhazardous items have also been identified in the debris pile. It is estimated that this site contains approximately 2280 m{sup 3} (3000 yd{sup 3}) of construction-related debris.

  5. Corrective Action Decision Document for Corrective Action Unit 366: Area 11 Plutonium Valley Dispersion Sites Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Patrick Matthews

    2012-09-01T23:59:59.000Z

    CAU 366 comprises six corrective action sites (CASs): 11-08-01, Contaminated Waste Dump #1 11-08-02, Contaminated Waste Dump #2 11-23-01, Radioactively Contaminated Area A 11-23-02, Radioactively Contaminated Area B 11-23-03, Radioactively Contaminated Area C 11-23-04, Radioactively Contaminated Area D The purpose of this CADD is to identify and provide the rationale for the recommendation of corrective action alternatives (CAA) for the six CASs within CAU 366. Corrective action investigation (CAI) activities were performed from October 12, 2011, to May 14, 2012, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 366: Area 11 Plutonium Valley Dispersion Sites.

  6. White Oak Creek Watershed: Melton Valley Area Remedial Investigation Report, Oak Ridge National Laboratory, Oak Ridge, Tennessee: Volume 3 Appendix C

    SciTech Connect (OSTI)

    NONE

    1996-11-01T23:59:59.000Z

    This report provides details on the baseline ecological risk assessment conducted in support of the Remedial Investigation (RI) Report for the Melton Valley areas of the White Oak Creek watershed (WOCW). The RI presents an analysis meant to enable the US Department of Energy (DOE) to pursue a series of remedial actions resulting in site cleanup and stabilization. The ecological risk assessment builds off of the WOCW screening ecological risk assessment. All information available for contaminated sites under the jurisdiction of the US Department of Energy`s Comprehensive Environmental Response, Compensation, and Liability Act Federal Facilities Agreement within the White Oak Creek (WOC) RI area has been used to identify areas of potential concern with respect to the presence of contamination posing a potential risk to ecological receptors within the Melton Valley area of the White Oak Creek watershed. The risk assessment report evaluates the potential risks to receptors within each subbasin of the watershed as well as at a watershed-wide scale. The WOC system has been exposed to contaminant releases from Oak Ridge National Laboratory and associated operations since 1943 and continues to receive contaminants from adjacent waste area groupings.

  7. Relationships between Western Area Power Administration`s power marketing program and hydropower operations at Salt Lake City area integrated projects

    SciTech Connect (OSTI)

    Veselka, T.D.; Folga, S.; Poch, L.A. [and others

    1995-03-01T23:59:59.000Z

    This technical memorandum provides background information on the Western Area Power Administration (Western) and the physical characteristics of the Salt Lake City Area Integrated Projects (SLCA/IP) hydropower plants, which include the Colorado River Storage Project, the Rio Grande Project, and the Collbran Project. In addition, the history, electrical capacity, storage capacity, and flow restrictions at each dam are presented. An overview of Western`s current programs and services, including a review of statutory authorities, agency discretion, and obligations, is also provided. The variability of SLCA/IP hourly generation under various alternative marketing strategies and purchasing programs is discussed. The effects of Western`s services, such as area load control, outage assistance, and transmission, on SLCA/IP power plant operations are analyzed.

  8. AREA

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South Valley ResponsibleSubmissionofDepartmentNo.7-052 ofFocusAREA FAQ #

  9. Salt Lake City Area Integrated Projects Electric Power Marketing. Draft environmental impact statement: Volume 3, Appendix A

    SciTech Connect (OSTI)

    Not Available

    1994-02-01T23:59:59.000Z

    The Salt Lake City Area Office of the Western Area Power Administration (Western) markets electricity produced at hydroelectric facilities operated by the Bureau of Reclamation. The facilities are known collectively as the Salt Lake City Area Integrated Projects (SLCA/IP) and include dams equipped for power generation on the Green, Gunnison, Rio Grande, and Colorado rivers and on Deer and Plateau creeks in the states of Wyoming, Utah, Colorado, Arizona, and New Mexico. Of these facilities, only the Glen Canyon Unit, the Flaming Gorge Unit, and the Aspinall Unit (which includes Blue Mesa, Morrow Point, and Crystal dams;) are influenced by Western power scheduling and transmission decisions. The EIS alternatives, called commitment-level alternatives, reflect combinations of capacity and energy that would feasibly and reasonably fulfill Westerns firm power marketing responsibilities, needs, and statutory obligations. The viability of these alternatives relates directly to the combination of generation capability of the SLCA/IP with energy purchases and interchange. The economic and natural resource assessments in this environmental impact statement (EIS) include an analysis of commitment-level alternatives. Impacts of the no-action alternative are also assessed. Supply options, which include combinations of electrical power purchases and hydropower operational scenarios reflecting different operations of the dams, are also assessed. The EIS evaluates the impacts of these scenarios relative to socioeconomics, air resources, water resources, ecological resources, cultural resources, land use, recreation, and visual resources.

  10. Salt Lake City Area Integrated Projects Electric Power Marketing. Draft environmental impact statement: Volume 2, Sections 1-16

    SciTech Connect (OSTI)

    Not Available

    1994-02-01T23:59:59.000Z

    The Salt Lake City Area Office of the Western Area Power Administration (Western) markets electricity produced at hydroelectric facilities operated by the Bureau of Reclamation. The facilities are known collectively as the Salt Lake City Area Integrated Projects (SLCA/IP) and include dams equipped for power generation on the Green, Gunnison, Rio Grande, and Colorado rivers and on Deer and Plateau creeks in the states of Wyoming, Utah, Colorado, Arizona, and New Mexico. Of these facilities, only the Glen Canyon Unit, the Flaming Gorge Unit, and the Aspinall Unit (which includes Blue Mesa, Morrow Point, and Crystal dams;) are influenced by Western power scheduling and transmission decisions. The EIS alternatives, called commitment-level alternatives, reflect combinations of capacity and energy that would feasibly and reasonably fulfill Westerns firm power marketing responsibilities, needs, and statutory obligations. The viability of these alternatives relates directly to the combination of generation capability of the SLCA/IP with energy purchases and interchange. The economic and natural resource assessments in this environmental impact statement (EIS) include an analysis of commitment-level alternatives. Impacts of the no-action alternative are also assessed. Supply options, which include combinations of electrical power purchases and hydropower operational scenarios reflecting different operations of the dams, are also assessed. The EIS evaluates the impacts of these scenarios relative to socioeconomics, air resources, water resources, ecological resources, cultural resources, land use, recreation, and visual resources.

  11. Class 1 overview of cultural resources for the Western Area Power Administration Salt Lake City Area Integrated Projects electric power marketing environmental impact statement

    SciTech Connect (OSTI)

    Moeller, K.L.; Malinowski, L.M.; Hoffecker, J.F.; Walitschek, D.A.; Shogren, L.; Mathews, J.E.; Verhaaren, B.T.

    1993-11-01T23:59:59.000Z

    Argonne National Laboratory conducted an inventory of known archaeological and historic sites in areas that could be affected by the hydropower operation alternatives under analysis in the power marketing environmental impact statement for the Western Area Power Administration`s Salt Lake City Area Integrated Projects. The study areas included portions of the Green River (Flaming Gorge Dam to Cub Creek) in Utah and Colorado and the Gunnison River (Blue Mesa Reservoir to Crystal Dam) in Colorado. All previous archaeological surveys and previously recorded prehistoric and historic sites, structures, and features were inventoried and plotted on maps (only survey area maps are included in this report). The surveys were classified by their level of intensity, and the sites were classified according to their age, type, and contents. These data (presented here in tabular form) permit a general assessment of the character and distribution of archaeological remains in the study areas, as well as an indication of the sampling basis for such an assessment. To provide an adequate context for the descriptions of the archaeological and historic sites, this report also presents overviews of the environmental setting and the regional prehistory, history, and ethnography for each study area.

  12. Teleseismic-Seismic Monitoring At Clear Lake Area (Skokan, 1993) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump to:Taos County,Tees Valley Biofuels Jump(Foulger,Energy

  13. Telluric Survey At Clear Lake Area (Skokan, 1993) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump to:Taos County,Tees Valley(Newman,Telluric Survey At Clear

  14. Trace metal contamination of waters, sediments, and organisms of the Swan Lake area of Galveston Bay

    E-Print Network [OSTI]

    Park, Junesoo

    1995-01-01T23:59:59.000Z

    facility (Gulf Coast Waste Disposal Authority) is located north of the Wah Chang Ditch. Consequently there have been concerns about possible metal contamination in this area. I determined trace metal concentrations in water, sediments, and organisms (oyster...

  15. Structural geology of the Irons Fork - North Fork Creek area, Lake Ouachita, Arkansas

    E-Print Network [OSTI]

    White, Marjorie Ann

    1980-01-01T23:59:59.000Z

    by the Missouri Mountain shale, which is Silurian in age. The Blaylock sandstone, which is between the Polk Creek and Missouri Mount- ain shales in the southern Ouachitas, is absent in the study area. The Missouri Mountain contains olive brown to buff colored... estimated for the Missouri Mountain (Haley snd others, 1973b). Devonian ? Mississi ian S stem Arkansas Hovaculite. The Arkansas Novaculite overlies the Missouri Mountain shale. It is one of the predominant formations in the study 12 area, the other...

  16. Sedimentology and diagenesis of misoa C-2 reservoir, VLE-305/326 area, block V, Lamar Field, Maracaibe Lake, Venezuela

    SciTech Connect (OSTI)

    Cabrera de Casas, L.; Chacartegui, F. (Maraven S.A., Caracas (Venezuela))

    1993-02-01T23:59:59.000Z

    The main purpose of this study was to characterize the Upper Eocene C-2 reservoir using sedimentological, petrophysical and biostratigraphic parameters. The reservoir quality was evaluated by defining its physical attributes, geometry, areal distribution and orientation, from facies analysis of sedimentary units identified in core samples. In evaluating the sedimentary features of the Misoa C-2 reservoir in VLE 305/326 area, Block V, Lamar Field, Maracaibo Lake, 2,000' of cores from five wells (named VLe-339, VLE-720, VLE -723, VLe-754, LPG-1211) were analyzed. The sedimentary sequence studied represents upper-middle deltaic plain deposits with no marine influence. These deposits were identified as interdistributary channels, crevasse splays and interdistributary bays deposited in a northward prograding system. Seven sedimentary facies were defined from the physical, chemical and biological features observed in all cores. These facies were petrophysically and petrographically characterized then grouped in six sedimentary units which were then correlated over the entire area. One hundred well logs were correlated using sedimentological criteria. Finally, four flow units were identified in the reservoir using the sedimentological parameters, petrophysical data and production behavior. A surface trend analysis program utilizing thickness values resulted in contours, trends, residuals and isometry maps of each unit with a generalized southwest-northeast trend orientation. It was determined that facies distribution in the units controls the reservoir quality. These results are the main input into reservoir simulation. An accurate reservoir modeling is needed to prepare for optimizing secondary oil recovery.

  17. Low temperature geothermal resource evaluation of the Moses Lake-Ritzville-Connell area, Washington

    SciTech Connect (OSTI)

    Widness, S.

    1983-11-01T23:59:59.000Z

    The study area is located in portions of Adams, Grant, Lincoln, and Franklin counties of eastern Washington. The area is representative of a complex stratigraphic and geohydrologic system within the basalt flows of the Columbia River Basalt Group. Fluid temperature data were collected by three different agencies. The Geological Engineering Section (WSU) at Washington State University, runs a continuous fluid temperature (FT) log as part of a complete suite of geophysical logs. The US Geological Survey (USGS) runs a continuous fluid FT log in conjunction with caliper and natural-gamma logs. Southern Methodist University (SMU) and the Washington State Department of Natural Resources, Division of Geology and Earth Resources (DNR), have cooperated in gathering FT data. The DNR-SMU data were collected by taking temperature measurements at 5 m intervals. Bottom-hole temperatures (BHT) and bottom-hole depths (BHD) of selected wells in the study area are given. A technique developed by Biggane (1982) was used to determine the geothermal gradients within the area. A least squares linear regression analysis of the relationship between the BHT and BHD was used to determine the geothermal gradient of a given well data group (WDG).

  18. Low Temperature Geothermal Resource Evaluation of the Moses Lake-Ritzville-Connell Area, Washington

    SciTech Connect (OSTI)

    Widness, Scott

    1983-11-01T23:59:59.000Z

    The study area is located in portions of Adams, Grant, Lincoln, and Franklin counties of eastern Washington. The area is representative of a complex stratigraphic and geohydrologic system within the basalt flows of the Columbia River Basalt Group. The regional piezometric surface and stratigraphic units dip towards the southwest. Fluid temperature data were collected by three different agencies. The Geological Engineering Section (WSU) at Washington State University, runs a continuous fluid temperature (FT) log as part of a complete suite of geophysical logs. The US Geological Survey (USGS) runs a continuous fluid FT log in conjunction with caliper and natural-gamma logs. Southern Methodist University (SMU) and the Washington State Department of Natural Resources, Division of Geology and Earth Resources (DNR), have cooperated in gathering FT data. The DNR-SMU data were collected by taking temperature measurements at 5 m intervals. Bottom-hole temperatures (BHT) and bottom-hole depths (BHD) of selected wells in the study area are given in table 2. Some of the BHT data in table 2 may vary from those previously reported by WSU. These discrepancies are the result of changes in the calibration method of the FT tool. A technique developed by Giggane (1982) was used to determine the geothermal gradients within the area. A least squares linear regression analysis of the relationship between the BHT and BHD was used to determine the geothermal gradient of a given well data group (WDG). Well data groups were selected on the premises of geographic proximity, position within the regional groundwater flow system, land slope azimuth, and land slope dip. Some data points have been excluded from the linear regression analysis on the basis of factors such as duplicate logging of the same hole, down-hole flow, holes not logged to total depth, and questionable FT tool responses.

  19. InSAR At Medicine Lake Area (Poland, Et Al., 2006) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia:ISIIrrigationDesert Peak Area (Laney, 2005)

  20. Aluto-Langano Geothermal Field, Ethiopian Rift Valley- Physical...

    Open Energy Info (EERE)

    the geothermal systems in the Ethiopian Rift Valley. Aluto-Langano is a water-dominated gas-rich geothermal field, with a maximum temperature close to 360C, in the Lakes...

  1. Structural analysis and geologic history of the Cedar Fourche area, Lake Ouachita, Arkansas

    E-Print Network [OSTI]

    Tucker, James William

    1980-01-01T23:59:59.000Z

    of the Arkoma Basin, The deformed Paleozoic rocks to the south are onlapped by the updip exposure of Cretaceous and younger sed1ments of the Coastal Pla1n (Fig. 2}. Exposed Qrdovi c1an through Devonian-Mi ss1 ssippian rocks consist of black shales... Womble shales. The Ordo- v1ci an Bi gfork Formation is probably close to the 195 meter thick- ness reported by Oav1es and W1lliamson (1976), based on cross sections through the northern exposures 1n the study area (Plate 'I). This thi ckness...

  2. Development Wells At Soda Lake Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1Dering Harbor, New York: EnergyEnergyguaGetOpenMaui AreaWells

  3. Water Sampling At Hot Lake Area (Wood, 2002) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformationSEDS dataIndiana:CoopWaspa JumpHeber Area Exploration

  4. Pressure Temperature Log At Soda Lake Area (DOE GTP) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/GeothermalOrangePeru:JobInformation Mccoy Geothermal Area

  5. Flow Test At Lake City Hot Springs Area (Benoit Et Al., 2005) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlint Geothermal Area (DOE GTP) Jump

  6. Flow Test At Lake City Hot Springs Area (Warpinski, Et Al., 2004) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlint Geothermal Area (DOE GTP) JumpEnergy

  7. Flow Test At Soda Lake Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlint Geothermal Area (DOEEnergyEnergyDOESoda

  8. White Oak Creek Watershed: Melton Valley Area Remedial Investigation Report, Oak Ridge National Laboratory, Oak Ridge, Tennessee: Volume 1 Main Text

    SciTech Connect (OSTI)

    NONE

    1996-11-01T23:59:59.000Z

    The purpose of this Remedial Investigation (RI) report is to present an analysis of the Melton Valley portion of the White Oak Creek (WOC) watershed, which will enable the US Department of Energy (DOE) to pursue a series of cost-effective remedial actions resulting in site cleanup and stabilization. In this RI existing levels of contamination and radiological exposure are compared to levels acceptable for future industrial and potential recreational use levels at the site. This comparison provides a perspective for the magnitude of remedial actions required to achieve a site condition compatible with relaxed access restrictions over existing conditions. Ecological risk will be assessed to evaluate measures required for ecological receptor protection. For each subbasin, this report will provide site-specific analyses of the physical setting including identification of contaminant source areas, description of contaminant transport pathways, identification of release mechanisms, analysis of contaminant source interactions with groundwater, identification of secondary contaminated media associated with the source and seepage pathways, assessment of potential human health and ecological risks from exposure to contaminants, ranking of each source area within the subwatershed, and outline the conditions that remedial technologies must address to stop present and future contaminant releases, prevent the spread of contamination and achieve the goal of limiting environmental contamination to be consistent with a potential recreational use of the site.

  9. POST CLOSURE INSPECTION AND MONITORING REPORT FOR CORRECTIVE ACTION UNIT 417: CENTRAL NEVADA TEST AREA - SURFACE, HOT CREEK VALLEY, NEVADA, FOR CALENDAR YEAR 2004

    SciTech Connect (OSTI)

    BECHTEL NEVADA; NNSA NEVADA SITE OFFICE

    2005-04-01T23:59:59.000Z

    This post-closure inspection and monitoring report has been prepared according to the stipulations laid out in the Closure Report (CR) for Corrective Action Unit (CAU) 417, Central Nevada Test Area (CNTA)--Surface (U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office [NNSA/NV], 2001), and the Federal Facility Agreement and Consent Order (FFACO, 1996). This report provides an analysis and summary of site inspections, subsidence surveys, meteorological information, and soil moisture monitoring data for CAU 417, which is located in Hot Creek Valley, Nye County, Nevada. This report covers Calendar Year 2004. Inspections at CAU 417 are conducted quarterly to document the physical condition of the UC-1, UC-3, and UC-4 soil covers, monuments, signs, fencing, and use restricted areas. The physical condition of fencing, monuments, and signs is noted, and any unusual conditions that could impact the integrity of the covers are reported. The objective of the soil moisture monitoring program is to monitor the stability of soil moisture conditions within the upper 1.2 meters (m) (4 feet [ft]) of the UC-1 Central Mud Pit (CMP) cover and detect changes that may be indicative of moisture movement exceeding the cover design performance expectations.

  10. Using EOF Analysis to Identify Important Surface Wind Patterns in Mountain Valleys

    SciTech Connect (OSTI)

    Ludwig, F. L.; Horel, John D.; Whiteman, Charles D.

    2004-07-01T23:59:59.000Z

    Empirical orthogonal functions (EOF) have been determined for three wind data sets from stations in valleys south of the Great Salt Lake in Utah. Two of the data sets were for summer months, with individual days selected from the MesoWest archive to represent conditions conducive to well-developed thermally driven flows. The remaining data set was for the month of October 2000 and was derived from a combination of MesoWest data and data collected during intensive observation periods of the Vertical Transport and Mixing eXperiment (VTMX) conducted in the Salt Lake area in October 2000. This experiment investigated stable atmospheric conditions in the complex urban terrain around Salt Lake City, Utah. In all three data sets, the primary EOFs represented flows that were directed predominantly along valley axes and were caused by channeled or thermally driven flow. Diurnal variations in EOF intensity showed that thermal effects were the most common causal mechanism. These along-valley EOFs accounted for 43 to 58 percent of the variance in the wind component data sets (8 or 10 stations each). The second EOFs accounted for 13 to 18 percent of the variance. In the summer data sets, the second EOF appeared to represent day-night transition periods; there was evidence of side canyon flows and day-night transitional effects in the October data set. The EOF approach has promise for classifying wind patterns and selecting cases for simulation or for further detailed analysis.

  11. Post-Closure Inspection and Monitoring Report for Corrective Action Unit 417: Central Nevada Test Area Surface, Hot Creek Valley, Nevada For Calendar Year 2006

    SciTech Connect (OSTI)

    None

    2007-06-01T23:59:59.000Z

    Corrective Action Unit (CAU) 417, Central Nevada Test Area - Surface, is located in Hot Creek Valley in northern Nye County, Nevada, and consists of three areas commonly referred to as UC-1, UC-3, and UC-4. CAU 417 consists of 34 Corrective Action Sites (CASs) which were closed in 2000 (U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office, 2001). Three CASs at UC-1 were closed in place with administrative controls. At CAS 58-09-01, Central Mud Pit (CMP), a vegetated soil cover was constructed over the mud pit. At the remaining two sites, CAS 58-09-02, Mud Pit, and CAS 58-09-05, Mud Pits (3), aboveground monuments and warning signs were installed to mark the CAS boundaries. Three CASs at UC-3 were closed in place with administrative controls. Aboveground monuments and warning signs were installed to mark the site boundaries at CAS 58-09-06, Mud Pits (5), CAS 58-25-01, Spill, and CAS 58-10-01, Shaker Pad Area. Two CASs that consist of five sites at UC-4 were closed in place with administrative controls. At CAS 58-09-03, Mud Pits (5), an engineered soil cover was constructed over Mud Pit C. At the remaining three sites in CAS 58-09-03 and at CAS 58-10-05, Shaker Pad Area, aboveground monuments and warning signs were installed to mark the site boundaries. The remaining 26 CASs at CAU 417 were either clean-closed or closed by taking no further action.

  12. White Bear Lake Conservation District (Minnesota)

    Broader source: Energy.gov [DOE]

    This statute establishes the White Bear Lake Conservation District, which has the authority to set water and land use regulations for the area around White Bear Lake.

  13. Preliminary Open File Report: Geological and Geophysical Studies in Grass Valley, Nevada

    E-Print Network [OSTI]

    Beyer, H.

    2010-01-01T23:59:59.000Z

    component. The 3 shaded areas in Figure 51 correspond toValley area that is seismically active (Figure 51). The

  14. A paleoenvironmental study of the Lower Mississippian Caballero Formation and Andrecito member of the Lake Valley Formation in the south-central Sacramento Mountains, Otero County, New Mexico

    E-Print Network [OSTI]

    George, Peter Gillham

    1985-01-01T23:59:59.000Z

    Andracito Member Facies Texture Colo Grafn Size Ms 3 el' Calcamous Skeletal Trace Current Strength/ gadding Shale Types Fossils Mater Oepth Other Mackestones to Grainstones light alive gray to olive gray, very light gray gra lnstones very fine... and Osagean age. The Andrecito Member is widespread in south-central New Mexico, whereas, the Caballero Formation is found only in an east- west trending basin. In the study area both units are composed of limestone and calcareous shale. The Caballero...

  15. Identification of Focal Mechanisms of Seisms Occurring in the San Salvador Volcano-Ilopango Lake Area Between 1994 and March 2005

    SciTech Connect (OSTI)

    Maria Mendez Martinez, Luz de; Portillo, Mercy [Salvadoran Association of Physics, University of El Salvador, San Salvador (El Salvador)

    2009-04-19T23:59:59.000Z

    We studied the geographic area located in the central part of El Salvador, between the San Salvador Volcano (Quezaltepec) and Ilopango Lake. Its latitude is between 13 deg. 36' and 13 deg. 54', and longitude is between -89 deg. 18' and -88 deg. 57'. This area is directly affected by the WNW axis, the most prominent weak tectonic system in the region. Our research aimed to determine the focal mechanisms of seisms occurring in the studied area between 1994 and March 2005. Our analysis provided information about displacement types of the geological faults, using the wave impulse P method and computer applications ARCGIS and SEISAN, with the subroutine FOCMEC. Information of the studied seisms was obtained from the National Service of Territorial Studies (SNET) database. Geographic models used in the preparation of maps are from the geographic information system of the School of Physics at the University of El Salvador. The 37 focal mechanisms on the map of faults were identified in digital seismographs to determinate the arrival polarity of the wave P for each seism station. Data from the focal mechanisms were analyzed and correlated with their replications. The analysis allowed us to identify evidences to consider the fault continuity not reported by the last geological mission in El Salvador conducted in the 1970s. The fault continuity is located northwest of the studied geographical area, between San Salvador City and the San Salvador Volcano. The compression and strain axes for this area are two main horizontal force axes. The average orientation for the strain axis is NNE-SSW, and WNW-SEE for the compression axis. There is also important seismic activity in the Ilopango Lake and surrounding area. However, data did not allow us to make any inference. The tensors distribution resulted in a high dispersion corresponding to typical fauces models.

  16. POST CLOSURE INSPECTION AND MONITORING REPORT FOR CORRECTIVE ACTION UNIT 417: CENTRAL NEVADA TEST AREA - SURFACE, HOT CREEK VALLEY, NEVADA; FOR CALENDAR YEAR 2005

    SciTech Connect (OSTI)

    NONE

    2006-04-01T23:59:59.000Z

    Corrective Action Unit (CAU) 417, Central Nevada Test Area - Surface, is located in Hot Creek Valley in northern Nye County, Nevada, and consists of three areas commonly referred to as UC-1, UC-3, and UC-4. CAU 417 consists of 34 Corrective Action Sites (CASs) which were closed in 2000 (U. S. Department of Energy, National Nuclear Security Administration Nevada Operations Office, 2001). Three CASs at UC-1 were closed in place with administrative controls. At CAS 58-09-01, Central Mud Pit (CMP), a vegetated soil cover was constructed over the mud pit. At the remaining two sites CAS 58-09-02, Mud Pit and 58-09-05, Mud Pits (3), aboveground monuments and warning signs were installed to mark the CAS boundaries. Three CASs at UC-3 were closed in place with administrative controls. Aboveground monuments and warning signs were installed to mark the site boundaries at CAS 58-09-06, Mud Pits (5), CAS 58-25-01, Spill and CAS 58-10-01, Shaker Pad Area. Two CASs that consist of five sites at UC-4 were closed in place with administrative controls. At CAS 58-09-03, Mud Pits 9, an engineered soil cover was constructed over Mud Pit C. At the remaining three sites in CAS 58-09-03 and at CAS 58-10-05, Shaker Pad Area, aboveground monuments and warning signs were installed to mark the site boundaries. The remaining 26 CASs at CAU 417 were either clean-closed or closed by taking no further action. Quarterly post-closure inspections are performed at the CASs that were closed in place at UC-I, UC-3, and UC-4. During calendar year 2005, site inspections were performed on March 15, June 16, September 22, and December 7. The inspections conducted at the UC-1 CMP documented that the site was in good condition and continued to show integrity of the cover unit. No new cracks or fractures were observed until the December inspection. A crack on the west portion of the cover showed evidence of lateral expansion; however, it is not at an actionable level. The crack will be sealed by filling with bentonite during the first quarter of 2006 and monitored during subsequent inspections. The cover vegetation was healthy and well established. No issues were identified with the CMP fence, gate, or subsidence monuments. No issues were identified with the warning signs and monuments at the other two UC-1 locations. The inspections at UC-3 indicated that the sites are in excellent condition. All monuments and signs showed no displacement, damage, or removal. A small erosion gully from spring rain runoff was observed during the June inspection, but it did not grow to an actionable level during 2005. No other issues or concerns were identified. Inspections performed at UC-4 Mud Pit C cover revealed that erosion rills were formed during March and September exposing the geosynthetic clay liner. Both erosion rills were repaired within 90 days of reporting. Sparse vegetation is present on the cover. The overall condition of the monuments, fence, and gate are in good condition. No issues were identified with the warning signs and monuments at the other four UC-4 locations. Subsidence surveys were conducted at UC-1 CMP and UC-4 Mud Pit C in March and September of 2005. The results of the subsidence surveys indicate that the covers are performing as expected, and no unusual subsidence was observed. The June vegetation survey of the UC-1 CMP cover and adjacent areas indicated that the revegetation has been very successful. The vegetation should continue to be monitored to document any changes in the plant community and identify conditions that could potentially require remedial action in order to maintain a viable vegetative cover on the site. Vegetation surveys should be conducted only as required. Precipitation during 2005 was above average, with an annual rainfall total of 21.79 centimeters (8.58 inches). Soil moisture content data show that the UC-1 CMP cover is performing as designed, with evapotranspiration effectively removing water from the cover. It is recommended to continue quarterly site inspections and the collection of soil moisture data for the UC-1 CMP cove

  17. Data Acquisition-Manipulation At Valley Of Ten Thousand Smokes...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Valley Of Ten Thousand Smokes Region Area (Kodosky & Keith,...

  18. Compound and Elemental Analysis At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    Area (Farrar, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Long Valley Caldera Geothermal...

  19. Modeling-Computer Simulations At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Long Valley Caldera Geothermal Area (Battaglia, Et Al., 2003)...

  20. Modeling-Computer Simulations At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Long Valley Caldera Geothermal Area (Tempel, Et Al., 2011) Exploration...

  1. Origin and Phylogeny of Microbes Living in Permanent Antarctic Lake Ice

    E-Print Network [OSTI]

    Priscu, John C.

    Origin and Phylogeny of Microbes Living in Permanent Antarctic Lake Ice D. A. Gordon,1, * J. Priscu of bacteria and cyanobacteria colonizing sediment particles in the per- manent ice cover of an Antarctic lake collected from a depth of 2.5 m in the 4-m-thick ice cover of Lake Bonney, McMurdo Dry Valleys, Antarctica

  2. Addendum to the remedial investigation report on Bear Creek Valley Operable Unit 2 (Rust Spoil Area, Spoil Area 1, and SY-200 Yard) at the Oak Ridge Y-12 Plant Oak Ridge, Tennessee. Volume 1: Main text

    SciTech Connect (OSTI)

    NONE

    1995-04-01T23:59:59.000Z

    This addendum to the Remedial Investigation (RI) Report on Bear Creek Valley Operable Unit (OU) 2 at the Oak Ridge Y-12 Plant was prepared in accordance with requirements under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) for reporting the results of a site characterization for public review. This addendum is a supplement to a document that was previously issued in January 1995 and that provided the Environmental Restoration Program with information about the results of the 1993 investigation performed at OU 2. The January 1995 D2 version of the RI Report on Bear Creek Valley OU 2 included information on risk assessments that have evaluated impacts to human health and the environment. Information provided in the document formed the basis for the development of the Feasibility Study Report. This addendum includes revisions to four chapters of information that were a part of the document issued in January 1995. Specifically, it includes revisions to Chaps. 2, 3, 4, and 9. Volume 1 of this document is not being reissued in its entirety as a D3 version because only the four chapters just mentioned have been affected by requested changes. Note also that Volume 2 of this RI Report on Bear Creek Valley OU 2 is not being reissued in conjunction with Volume 1 of this document because there have been no changes requested or made to the previously issued version of Volume 2 of this document.

  3. EIS-0005-FS: Bonneville Power Administration Proposed FY 1979 Program, Facility Location on Supplement, Southwest Oregon Area Service, Buckley-Summer Lake 500 kV Line, Supplemental

    Broader source: Energy.gov [DOE]

    This Bonneville Power Administration document assesses the environmental impacts of constructing transmission facilities, which will coordinate with the Midpoint-Malin 500-kV line to be constructed by the Pacific Power and Light (PP&L) Company. The proposed action includes the construction of the 1.56-mile Buckley-Summer Lake 500-kV transmission line; the proposed Buckley Substation near Maupin, Oregon; and the proposed Summer Lake Substation near Silver Lake, Oregon.

  4. Satellite imagery can support water planning in the Central Valley

    E-Print Network [OSTI]

    Zhong, Liheng; Hawkins, Tom; Holland, Kyle; Gong, Peng; Biging, Gregory S

    2009-01-01T23:59:59.000Z

    area, Merced County County Fresno Kings Merced Sutter Timethe study area Merced County. Kings, Merced and Sutter (fig.counties are par- ticularly important to the agricultural economy of the Central Valley: Fresno, Fresno Kings

  5. Pumpernickel Valley Geothermal Project Thermal Gradient Wells

    SciTech Connect (OSTI)

    Z. Adam Szybinski

    2006-01-01T23:59:59.000Z

    The Pumpernickel Valley geothermal project area is located near the eastern edge of the Sonoma Range and is positioned within the structurally complex Winnemucca fold and thrust belt of north-central Nevada. A series of approximately north-northeast-striking faults related to the Basin and Range tectonics are superimposed on the earlier structures within the project area, and are responsible for the final overall geometry and distribution of the pre-existing structural features on the property. Two of these faults, the Pumpernickel Valley fault and Edna Mountain fault, are range-bounding and display numerous characteristics typical of strike-slip fault systems. These characteristics, when combined with geophysical data from Shore (2005), indicate the presence of a pull-apart basin, formed within the releasing bend of the Pumpernickel Valley Edna Mountain fault system. A substantial body of evidence exists, in the form of available geothermal, geological and geophysical information, to suggest that the property and the pull-apart basin host a structurally controlled, extensive geothermal field. The most evident manifestations of the geothermal activity in the valley are two areas with hot springs, seepages, and wet ground/vegetation anomalies near the Pumpernickel Valley fault, which indicate that the fault focuses the fluid up-flow. There has not been any geothermal production from the Pumpernickel Valley area, but it was the focus of a limited exploration effort by Magma Power Company. In 1974, the company drilled one exploration/temperature gradient borehole east of the Pumpernickel Valley fault and recorded a thermal gradient of 160oC/km. The 1982 temperature data from five unrelated mineral exploration holes to the north of the Magma well indicated geothermal gradients in a range from 66 to 249oC/km for wells west of the fault, and ~283oC/km in a well next to the fault. In 2005, Nevada Geothermal Power Company drilled four geothermal gradient wells, PVTG-1, -2, -3, and -4, and all four encountered geothermal fluids. The holes provided valuable water geochemistry, supporting the geothermometry results obtained from the hot springs and Magma well. The temperature data gathered from all the wells clearly indicates the presence of a major plume of thermal water centered on the Pumpernickel Valley fault, and suggests that the main plume is controlled, at least in part, by flow from this fault system. The temperature data also defines the geothermal resource with gradients >100oC/km, which covers an area a minimum of 8 km2. Structural blocks, down dropped with respect to the Pumpernickel Valley fault, may define an immediate reservoir. The geothermal system almost certainly continues beyond the recently drilled holes and might be open to the east and south, whereas the heat source responsible for the temperatures associated with this plume has not been intersected and must be at a depth greater than 920 meters (depth of the deepest well Magma well). The geological and structural setting and other characteristics of the Pumpernickel Valley geothermal project area are markedly similar to the portions of the nearby Dixie Valley geothermal field. These similarities include, among others, the numerous, unexposed en echelon faults and large-scale pull-apart structure, which in Dixie Valley may host part of the geothermal field. The Pumpernickel Valley project area, for the majority of which Nevada Geothermal Power Company has geothermal rights, represents a geothermal site with a potential for the discovery of a relatively high temperature reservoir suitable for electric power production. Among locations not previously identified as having high geothermal potential, Pumpernickel Valley has been ranked as one of four sites with the highest potential for electrical power production in Nevada (Shevenell and Garside, 2003). Richards and Blackwell (2002) estimated the total heat loss and the preliminary production capacity for the entire Pumpernickel Valley geothermal system to be at 35MW. A more conservative estimate, for

  6. PYRAMID LAKE RENEWEABLE ENERGY PLAN

    SciTech Connect (OSTI)

    HIGH DESERT GEOCULTURE, LLC

    2009-06-06T23:59:59.000Z

    The Pyramid Lake Renewable Energy Plan covers these areas: energy potential (primarily focusing on geothermal resource potential, but also more generally addressing wind energy potential); renewable energy market potential; transmission system development; geothermal direct use potential; and business structures to accomplish the development objectives of the Pyramid Lake Paiute Tribe.

  7. NNSS Soils Monitoring: Plutonium Valley (CAU366)

    SciTech Connect (OSTI)

    Miller Julianne J.,Mizell Steve A.,Nikolich George, Campbell Scott

    2012-02-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), Nevada Site Office (NSO), Environmental Restoration Soils Activity has authorized the Desert Research Institute (DRI) to conduct field assessments of potential sediment transport of contaminated soil from Corrective Action Unit (CAU) 366, Area 11 Plutonium Valley Dispersion Sites Contamination Area (CA) during precipitation runoff events.

  8. Temperature analysis for lake Yojoa, Honduras

    E-Print Network [OSTI]

    Chokshi, Mira (Mira K.)

    2006-01-01T23:59:59.000Z

    Lake Yojoa is the largest freshwater lake in Honduras, located in the central west region of the country (1405' N, 88 W). The lake has a surface area of 82 km2, a maximum depth of 26 m. and an average depth of 16 m. The ...

  9. Remedial investigation work plan for Bear Creek Valley Operable Unit 2 (Rust Spoil Area, SY-200 Yard, Spoil Area 1) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Environmental Restoration Program

    SciTech Connect (OSTI)

    Not Available

    1993-05-01T23:59:59.000Z

    The enactment of the Resource Conservation and Recovery Act (RCRA) in 1976 and the Hazardous and Solid Waste Amendments (HSWA) to RCRA in 1984 created management requirements for hazardous waste facilities. The facilities within the Oak Ridge Reservation (ORR) were in the process of meeting the RCRA requirements when ORR was placed on the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) National Priorities List (NPL) on November 21, 1989. Under RCRA, the actions typically follow the RCRA Facility Assessment (RFA)/RCRA Facility Investigation (RFI)/Corrective Measures Study (CMS)/Corrective Measures implementation process. Under CERCLA the actions follow the PA/SI/Remedial Investigation (RI)/Feasibility Study (FS)/Remedial Design/Remedial Action process. The development of this document will incorporate requirements under both RCRA and CERCLA into an RI work plan for the characterization of Bear Creek Valley (BCV) Operable Unit (OU) 2.

  10. Bethel Valley Watershed

    Broader source: Energy.gov (indexed) [DOE]

    study to find soluble contamination sources that contribute to the contamination of surface and ground waters. Once the remediation activities required by the Bethel Valley...

  11. Melton Valley Watershed

    Broader source: Energy.gov (indexed) [DOE]

    watershed. Wastes disposed in Melton Valley reside at a variety of locations, including solid waste landfills, trenches, liquid waste tanks and pipelines, surface structures,...

  12. Developing a Great Lakes remote sensing community Marie C. Colton

    E-Print Network [OSTI]

    in the West Basin area of Lake Erie (Lekki et al., 2009). Satellite synthetic aperture radar imagery fromCommentary Developing a Great Lakes remote sensing community Marie C. Colton NOAA Great Lakes Introduction Observational data collection of the Laurentian Great Lakes has ad- vanced during the past decade

  13. VERTEBRATES OF FISH LAKE

    E-Print Network [OSTI]

    Minnesota, University of

    VERTEBRATES OF FISH LAKE CAUTION! FISH LAKE SCAVANGER HUNT RED HEADED is another majestic bird of Fish Lake. These birds can be seen perched at Fish Lake. CLUB-TAIL DRAGONFLY INSECTS OF FISH LAKE There are A LOT

  14. Valley View Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt Lake City, Utah Zip:Scale Solar IncVairexVallesValley View

  15. A test of the Garreau model for edge city development using GIS-based shift-share analysis: a case study for the Clear Lake-NASA Area, Texas

    E-Print Network [OSTI]

    Crate, Frances Margaret

    1997-01-01T23:59:59.000Z

    the Sector Model which depicted the socio-economic segments as wedges radiating out from the CBD. The land-use pattern for capital outlay or rent was basically determined by transportation routes and land quality with the wealthy controlling optimum... Shift-share Analysis: Local vs Regional by Decade. . . . . 62 5. 4 Shift-share Analysis: Local vs Regional from 1960 to 1990. . . . . 62 5. 5 Total Leaseable Office Space for the Clear Lake Area. . 64 6. 1 Houston Area Edge Cities. 81 6. 2 Example...

  16. Lake Survey DETROIT, MICH.

    E-Print Network [OSTI]

    . DEPARTMENT OF' COMMERCE National Ouanic and Atmospheric Admlnl,trltion National OeUII SUI"II, Great Lakes Ice ................. .... ............. . $l'.iUllary ice charts ...................................... Area ice charts - winter 1971-72 ......... . ,, Table Tabl e l.--Ice 2.--Key to ice chart sy

  17. Corrective Action Investigation Plan for Corrective Action Unit 366: Area 11 Plutonium Valley Dispersion Sites, Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Patrick Matthews

    2011-09-01T23:59:59.000Z

    Corrective Action Unit 366 comprises the six corrective action sites (CASs) listed below: (1) 11-08-01, Contaminated Waste Dump No.1; (2) 11-08-02, Contaminated Waste Dump No.2; (3) 11-23-01, Radioactively Contaminated Area A; (4) 11-23-02, Radioactively Contaminated Area B; (5) 11-23-03, Radioactively Contaminated Area C; and (6) 11-23-04, Radioactively Contaminated Area D. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed July 6, 2011, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 366. The presence and nature of contamination at CAU 366 will be evaluated based on information collected from a field investigation. Radiological contamination will be evaluated based on a comparison of the total effective dose (TED) at sample locations to the dose-based final action level (FAL). The TED will be calculated by summing the estimates of internal and external dose. Results from the analysis of soil samples collected from sample plots will be used to calculate internal radiological dose. Thermoluminescent dosimeters placed at each sample location will be used to measure external radiological dose. Based on historical documentation of the releases associated with the nuclear tests, it was determined that CASs 11-23-02, 11-23-03, and 11-23-04 will be investigated as one release site. The three test areas associated with these CASs are in close proximity; the devices tested were all composed of plutonium and enriched uranium; and the ground zeroes are all posted high contamination areas (HCAs). Because the device tested at CAS 11-23-01 was composed primarily of enriched uranium and the ground zero is not a posted HCA, the CAS will be investigated as a separate release. The DQO process also resulted in an assumption that TED within the HCAs and contaminated waste dumps exceeds the FAL and requires corrective action. A field investigation will be performed to define where TED exceeds the FAL and to determine whether other contaminants of concern are present at the site associated with other activities that took place at the site or from spills or waste discovered during the investigation. The presence and nature of contamination from other types of releases (such as migration and any potential releases discovered during the investigation) will be evaluated using soil samples collected from the locations most likely containing contamination, if present. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS.

  18. Post-Closure Inspection and Monitoring Report for Corrective Action Unit 417: Central Nevada Test Area Surface, Hot Creek Valley, Nevada

    SciTech Connect (OSTI)

    None

    2013-03-01T23:59:59.000Z

    This report presents results of data collected during the annual post-closure site inspections conducted at the Central Nevada Test Area surface Corrective Action Unit (CAU) 417 in May 2011 and July 2012. The annual post-closure site inspections included inspections of the UC-1, UC-3, and UC-4 sites in accordance with the Post-Closure Monitoring Plan provided in the CAU 417 Closure Report (NNSA/NV 2001). The annual inspections conducted at the UC-1 Central Mud Pit (CMP) indicated that the site and soil cover were in good condition. No new fractures or extension of existing fractures were observed and no issues with the fence or gate were identified. The vegetation on the cover continues to look healthy, but the biennial vegetation survey conducted during the 2012 inspection indicated that the total foliar cover was slightly higher in 2009 than in 2012. This may be indicative of a decrease in precipitation observed during the 2-year monitoring period. The precipitation totaled 9.9 inches from July 1, 2010, through June 30, 2011, and 5 inches from July 1, 2011, through June 30, 2012. This decrease in precipitation is also evident in the soil moisture data obtained from the time domain reflectometry sensors. Soil moisture content data show that the UC-1 cover is performing as designed, and evapotranspiration is effectively removing water from the cover.

  19. New River Geothermal Research Project, Imperial Valley, California...

    Open Energy Info (EERE)

    Share 9,339,420.00 Total Project Cost 14,339,420.00 Principal Investigator(s) Stuart Johnson Location of Project Imperial Valley, CA About the Area The shallow New River thermal...

  20. Green Valley Galaxies

    E-Print Network [OSTI]

    Salim, Samir

    2015-01-01T23:59:59.000Z

    The "green valley" is a wide region separating the blue and the red peaks in the ultraviolet-optical color magnitude diagram, first revealed using GALEX UV photometry. The term was coined by Christopher Martin in 2005. Green valley highlights the discriminating power of UV to very low relative levels of ongoing star formation, to which the optical colors, including u-r, are insensitive. It corresponds to massive galaxies below the star-forming "main" sequence, and therefore represents a critical tool for the study of the quenching of star formation and its possible resurgence in otherwise quiescent galaxies. This article reviews the results pertaining to morphology, structure, environment, dust content and gas properties of green valley galaxies in the local universe. Their relationship to AGN is also discussed. Attention is given to biases emerging from defining the "green valley" using optical colors. We review various evolutionary scenarios and we present evidence for a new, quasi-static view of the green ...

  1. Supersaturated N2O in a perennially ice-covered Antarctic lake: Molecular and stable isotopic evidence for a biogeochemical relict

    E-Print Network [OSTI]

    Priscu, John C.

    Supersaturated N2O in a perennially ice-covered Antarctic lake: Molecular and stable isotopic Abstract The east lobe of Lake Bonney, a permanently ice-covered lake in the McMurdo Dry Valleys2O was produced via incomplete nitrification and has undergone virtually no subsequent consumption

  2. Lake George Park Commission: Stormwater Management (New York)

    Broader source: Energy.gov [DOE]

    The Lake George Park Commission is a quasi-independent commission within the Department of Environmental Protection that is responsible for environmental conservation in the Lake George Park area....

  3. ORIGINAL ARTICLE The paleolimnology of Haynes Lake, Oak Ridges Moraine,

    E-Print Network [OSTI]

    Patterson, Timothy

    ORIGINAL ARTICLE The paleolimnology of Haynes Lake, Oak Ridges Moraine, Ontario, Canada is a small kettle lake located on the Oak Ridges Moraine, and is within the Greater metropolitan area

  4. MAGNETOTELLURIC MEASUREMENTS

    E-Print Network [OSTI]

    Clarke, J.

    2010-01-01T23:59:59.000Z

    line A-A', Swan Lake Valley, Klamath Comty, Oregon. A 2-D fn the Swan Lake Valley area, Klamath Comty, Oregon. ? lgure

  5. Remedial Investigation Report on Bear Creek Valley Operable Unit 2 (Rust Spoil Area, Spoil Area 1, and SY-200 Yard) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 1, Main text

    SciTech Connect (OSTI)

    NONE

    1995-01-01T23:59:59.000Z

    This report on the BCV OU 2 at the Y-12 Plant, was prepared in accordance with requirements under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) for reporting the results of a site characterization for public review. It provides the Environmental Restoration Program with information about the results of the 1993 investigation. It includes information on risk assessments that have evaluated impacts to human health and the environment. Field activities included collection of subsurface soil samples, groundwater and surface water samples, and sediments and seep at the Rust Spoil Area (RSA), SY-200 Yard, and SA-1.

  6. Little Valley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(Monaster And Coolbaugh, 2007)isLithologically

  7. Little Valley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:KeystoneSolarList

  8. Imperial Valley Geothermal Area | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietipDepartment of Energy MediaRequirements ofPaulThe

  9. Dixie Valley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1Dering Harbor,DiscountDiversified EnergyDixie

  10. Jersey Valley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories on climate compatibleInformationNortheast AsiaMountains

  11. Sierra Valley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to: navigation,Pvt LtdShrub Oak, New York:Siemens SA51.Map:

  12. Railroad Valley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant of Access Permit5-ID-aREC SolarRadium HotRail Splitter

  13. Gabbs Valley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, search Equivalent URIFrontier,Jump to:Wilmette,TransportYuasaGV1

  14. Grass Valley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio: Energy ResourcesGordon,Granite6459146°, -79.9872866°(Redirected

  15. Gabbs Valley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (TheEtelligence (SmartHomeFremont,usingGEO2GHGeniusFinance

  16. Grass Valley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power BasicsGermany: Energy Resources JumpEnergyGoltryOhio: Energy ResourcesJump

  17. Indra Prasad Paneru Livelihood strategy and occupational vulnerability of street ice cream vendors in Kathmandu Valley

    E-Print Network [OSTI]

    Richner, Heinz

    Indra Prasad Paneru Livelihood strategy and occupational vulnerability of street ice cream vendors in Kathmandu Valley Livelihood strategy and occupational vulnerability of street ice cream vendors in Kathmandu-cream vendors of Kathmandu valley, Case study of Jawalakhel, Ratnapark area and Balaju area' explores

  18. Seismicity related to geothermal development in Dixie Valley, Nevada

    SciTech Connect (OSTI)

    Ryall, A.S.; Vetter, U.R.

    1982-07-08T23:59:59.000Z

    A ten-station seismic network was operated in and around the Dixie Valley area from January 1980 to November 1981; three of these stations are still in operation. Data from the Dixie Valley network were analyzed through 30 Jun 1981, and results of analysis were compared with analysis of somewhat larger events for the period 1970-1979. The seismic cycle in the Western Great Basic, the geologic structural setting, and the instrumentation are also described.

  19. Potential hydrologic characterization wells in Amargosa Valley

    SciTech Connect (OSTI)

    Lyles, B.; Mihevc, T.

    1994-09-01T23:59:59.000Z

    More than 500 domestic, agricultural, and monitoring wells were identified in the Amargosa Valley. From this list, 80 wells were identified as potential hydrologic characterization wells, in support of the US Department of Energy (DOE) Underground Test Area/Remedial Investigation and Feasibility Study (UGTA/RIFS). Previous hydrogeologic studies have shown that groundwater flow in the basin is complex and that aquifers may have little lateral continuity. Wells located more than 10 km or so from the Nevada Test Site (NTS) boundary may yield data that are difficult to correlate to sources from the NTS. Also, monitoring well locations should be chosen within the guidelines of a hydrologic conceptual model and monitoring plan. Since these do not exist at this time, recompletion recommendations will be restricted to wells relatively close (approximately 20 km) to the NTS boundary. Recompletion recommendations were made for two abandoned agricultural irrigation wells near the town of Amargosa Valley (previously Lathrop Wells), for two abandoned wildcat oil wells about 10 km southwest of Amargosa Valley, and for Test Well 5 (TW-5), about 10 km east of Amargosa Valley.

  20. Snake River Sockeye Salmon Sawtooth Valley Project Conservation and Rebuilding Program : Supplemental Fnal Environmental Assessment.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1995-03-01T23:59:59.000Z

    This document announces Bonneville Power Administration`s (BPA) proposal to fund three separate but interrelated actions which are integral components of the overall Sawtooth Valley Project to conserve and rebuild the Snake River Sockeye salmon run in the Sawtooth Valley of south-central Idaho. The three actions are as follows: (1) removing a rough fish barrier dam on Pettit Lake Creek and constructing a weir and trapping facilities to monitor future sockeye salmon adult and smolt migration into and out of Pettit Lake; (2) artificially fertilizing Readfish Lake to enhance the food supply for Snake River sockeye salmon juveniles released into the lake; and (3) trapping kokanee fry and adults to monitor the fry population and to reduce the population of kokanee in Redfish Lake. BPA has prepared a supplemental EA (included) which builds on an EA compled in 1994 on the Sawtooth Valley Project. Based on the analysis in this Supplemental EA, BPA has determined that the proposed actions are not major Federal actions significantly affecting the quality of the human environment. Therefore an Environmental Impact Statement is not required.

  1. MICROSEISMS IN GEOTHERMAL EXPLORATION: STUDIES IN GRASS VALLEY, NEVADA

    E-Print Network [OSTI]

    Liaw, A.L.C.

    2011-01-01T23:59:59.000Z

    period seismic noise (T>30 sec) . . . 2.5 Geothermal ground226. Clacy, G.R.T. ? 1968, Geothermal ground noise amplitudestudies at the Cos0 geothermal area, China Lake, California:

  2. NOAA Technical Memorandum ERL GLERL-58 LAKE SUPERIOR COOLING SEASON TEMPERATURE CLIMATOLOGY

    E-Print Network [OSTI]

    and extreme temperatures over period of record. Table 51. Summary of Lake Superior, area 8, temperature period of record. Table 51. Summary of Lake Superior, area 11, temperature climatology and extreme profiles. Survey route and lake area locations. Mean survey temperature climatology and stages in cooling

  3. About Kings Area Rural Transit The Kings County Area Public Transit Agency operates the Kings

    E-Print Network [OSTI]

    Greenberg, Albert

    Case Study About Kings Area Rural Transit The Kings County Area Public Transit Agency operates's Central Valley. In the middle is Kings County, home to diverse communities of rural workers. The county the Kings Area Rural Transit (KART) vanpool program in California's San Joaquin Valley. Part of KART

  4. E-Print Network 3.0 - area west-central utah Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandy UT Eclipse Marketing Area Manager... Lake City UT Spillman Technologies, Inc. IT Help Desk Support Salt Lake City UT State of ... Source: Utah, University of - State of...

  5. Pennsylvania Nuclear Profile - Beaver Valley

    U.S. Energy Information Administration (EIA) Indexed Site

    Beaver Valley" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  6. Case Study - Sioux Valley Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    periods. This detailed billing cannot be done with conventional meters. Critical Peak Pricing Lowers Peak Demands and Electric Bills in South Dakota and Minnesota Sioux Valley...

  7. Songs From Happy Valley and Other Stories

    E-Print Network [OSTI]

    Nagel, Lisa W.

    2013-01-01T23:59:59.000Z

    RIVERSIDE Songs From Happy Valley and Other Stories A Thesisv TABLE OF CONTENTS Songs From Happy Valley The X-Ray SpecsMatch Game vi Songs From Happy Valley Thursday, October 13,

  8. Andrew Lake

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone by E-mail ShareRedAndreas E Vasdekis AndreasAndrew Lake About

  9. Thanksgiving Goodwill: West Valley Demonstration Project Food...

    Broader source: Energy.gov (indexed) [DOE]

    Goodwill: West Valley Demonstration Project Food Drive Provides 640 Turkeys to People in Need Thanksgiving Goodwill: West Valley Demonstration Project Food Drive Provides...

  10. Enforcement Documents - West Valley Demonstration Project | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Services - EA-1999-09 Issued to West Valley Nuclear Services, related to a High-Level Radioactive Waste Contamination Event at the West Valley Demonstration...

  11. Great Lakes RESTORATION

    E-Print Network [OSTI]

    ). Microcystis, the most common blue-green algae in the Great Lakes, produces the toxin Microcystin. This toxin runoff) into lake watersheds contributes to these blooms. While Lake Erie's Western Basin is best knownGreat Lakes RESTORATION NATIONALOCEAN IC AND ATMOSPHERIC ADMINISTRATION U.S. D EPARTMENT OF COMM E

  12. Valley Forge Corporate Center

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012Nuclear Guide Remote55 Jefferson Ave. Valley Forge

  13. Valley Forge Corporate Center

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012Nuclear Guide Remote55 Jefferson Ave. Valley Forge April

  14. Search for ancient microorganisms in Lake Baikal

    SciTech Connect (OSTI)

    Hunter-Cevera, Jennie C.; Repin, Vladimir E.; Torok, Tamas

    2000-06-14T23:59:59.000Z

    Lake Baikal in Russia, the world's oldest and deepest continental lake lies in south central Siberia, near the border to Mongolia. The lake is 1,643 m deep and has an area of about 46,000 km2. It holds one-fifth of all the terrestrial fresh water on Earth. Lake Baikal occupies the deepest portion of the Baikal Rift Zone. It was formed some 30-45 million years ago. The isolated Lake Baikal ecosystem represents a unique niche in nature based on its historical formation. The microbial diversity present in this environment has not yet been fully harvested or examined for products and processes of commercial interest and value. Thus, the collection of water, soil, and sub-bottom sediment samples was decided to characterize the microbial diversity of the isolated strains and to screen the isolates for their biotechnological value.

  15. Distribution, relative abundance and species composition of shrimp, crabs and fish in the intake area, discharge canal and cooling lake of the Cedar Bayou generating station, Baytown, Texas

    E-Print Network [OSTI]

    St. Clair, Lou Ann

    2012-06-07T23:59:59.000Z

    area and discharge waters of Houston Lighting S Power Company's Cedar Bayou Generating Station, Baytown, Texas. Hydrological data were taken at each sampling station. A total of 12 species of crustaceans and 53 species of fish was captured. The 10... juvenile stages risk entrainment through the plant (Mihursky and Kennedy 1967; Bascom 1974) or impingement on the intake screens. As Landry (1977) found, the impact of either entrainment or impingement depends mainly on the season of recruitment...

  16. Robinson Rancheria Strategic Energy Plan; Middletown Rancheria Strategic Energy Plan, Scotts Valley Rancheria Strategic Energy Plan, Elem Indian Colony Strategic Energy Plan, Upperlake Rancheria Strategic Energy Plan, Big Valley Rancheria Strategic Energy Plan

    SciTech Connect (OSTI)

    McGinnis and Associates LLC

    2008-08-01T23:59:59.000Z

    The Scotts Valley Band of Pomo Indians is located in Lake County in Northern California. Similar to the other five federally recognized Indian Tribes in Lake County participating in this project, Scotts Valley Band of Pomo Indians members are challenged by generally increasing energy costs and undeveloped local energy resources. Currently, Tribal decision makers lack sufficient information to make informed decisions about potential renewable energy resources. To meet this challenge efficiently, the Tribes have committed to the Lake County Tribal Energy Program, a multi Tribal program to be based at the Robinson Rancheria and including The Elem Indian Colony, Big Valley Rancheria, Middletown Rancheria, Habematolel Pomo of Upper Lake and the Scotts Valley Pomo Tribe. The mission of this program is to promote Tribal energy efficiency and create employment opportunities and economic opportunities on Tribal Lands through energy resource and energy efficiency development. This program will establish a comprehensive energy strategic plan for the Tribes based on Tribal specific plans that capture economic and environmental benefits while continuing to respect Tribal cultural practices and traditions. The goal is to understand current and future energy consumption and develop both regional and Tribe specific strategic energy plans, including action plans, to clearly identify the energy options for each Tribe.

  17. California Valley Solar Ranch Biological Assessment

    Broader source: Energy.gov [DOE]

    Biological Assessment for the California Valley Solar Ranch Project San Luis Obispo County, California

  18. Commercial production of ethanol in the San Luis Valley, Colorado. Final report

    SciTech Connect (OSTI)

    Hewlett, E.M.; Erickson, M.V.; Ferguson, C.D.; Boswell, B.S.; Walter, K.M.; Hart, M.L.; Sherwood, P.B.

    1983-07-01T23:59:59.000Z

    The commercial feasibility of producing between 76 and 189 million liters (20 to 50 million gallons) of ethanol annually in the San Luis Valley, Colorado using geothermal energy as the primary heat source was assessed. The San Luis Valley is located in south-central Colorado. The valley is a high basin situated approximately 2316 meters (7600 feet) above sea level which contains numerous warm water wells and springs. A known geothermal resource area (IGRA) is located in the east-central area of the valley. The main industry in the valley is agriculture, while the main industry in the surrounding mountains is lumber. Both of these industries can provide feedstocks for the production of ethanol.

  19. Star Lakes and Rivers (Minnesota)

    Broader source: Energy.gov [DOE]

    An association organized for the purpose of addressing issues on a specific lake or river, a lake improvement district, or a lake conservation district may apply to the Star Lake Board for...

  20. Environmental Assessment : Happy Valley [Substation Project].

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1982-05-01T23:59:59.000Z

    The proposed Happy Valley project consists of construction of a new BPA customer service 69-kV substation south of Sequim in Clallam County, Washington. A tie line, to be constructed by the customer as part of this project, will link the new BPA facility to the existing customer's transmission system in the area. This project responds to rapid load growth in the Olympic Peninsula, and will strengthen the existing BPA system and interconnected utility systems. It will reduce transmission losses presently incurred, especially on the BPA system supplying power to the Olympic Peninsula. This report describes the potential environmental impact of the proposed actions. 2 figs., 1 tab.

  1. All Valley Solar | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitecAWSAgri-Energy Focus AreaValley Solar Jump to:

  2. Minnesota Valley Electric Coop | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocus Area Energy Efficiency,Grid RenewableMini-GridAgencyValley

  3. MAGNETOTELLURIC MEASUREMENTS

    E-Print Network [OSTI]

    Clarke, J.

    2010-01-01T23:59:59.000Z

    pretation, Klamath Basin, Oregon Swan Lake and Klamath B i lline A-A', Swan Lake Valley, Klamath Comty, Oregon. A 2-D fA-A', Swan Lake Valley area, Mantath County, Oregon. For

  4. MAGNETOTELLURIC MEASUREMENTS

    E-Print Network [OSTI]

    Clarke, J.

    2010-01-01T23:59:59.000Z

    Klamath Basin, Oregon Swan Lake and Klamath B i l l s Tuea,line A-A', Swan Lake Valley, Klamath Comty, Oregon. A 2-D fn the Swan Lake Valley area, Klamath Comty, Oregon. ? lgure

  5. Valley Electric Association- Net Metering

    Broader source: Energy.gov [DOE]

    The Board of Directors for Valley Electric Association (VEA) approved net metering in April 2008. The rules apply to systems up to 30 kW, though owners of larger systems may be able to negotiate...

  6. Retrofitting the Tennessee Valley Authority

    E-Print Network [OSTI]

    Zeiber, Kristen (Kristen Ann)

    2013-01-01T23:59:59.000Z

    As the flagship of the New Deal, the Tennessee Valley Authority (TVA) was a triumph of regional and environmental design that has since fallen on hard times. When writer James Agee toured the region in 1935, he described ...

  7. West Valley Demonstration Project site environmental report, calendar year 1999

    SciTech Connect (OSTI)

    None Available

    2000-06-01T23:59:59.000Z

    This report represents a single, comprehensive source of off-site and on-site environmental monitoring data collected during 1999 by environmental monitoring personnel for the West Valley Demonstration Project (WVDP), West Valley, New York. The environmental monitoring program and results are discussed in the body of this report. The monitoring data are presented in the appendices. The data collected provide an historical record of radionuclide and radiation levels from natural and manmade sources in the survey area and document the quality of the groundwater on and around the WVDP and the quality of the air and water discharged by the WVDP.

  8. West Valley Demonstration Project site environmental report, calendar year 1997

    SciTech Connect (OSTI)

    None

    1998-06-01T23:59:59.000Z

    This report represents a single, comprehensive source of off-site and on-site environmental monitoring data collected during 1997 by environmental monitoring personnel for the West Valley Demonstration Project (WVDP), West Valley, New York. The environmental monitoring program and results are discussed in the body of this report. The monitoring data are presented in the appendices. The data collected provide an historical record of radionuclide and radiation levels from natural and manmade sources in the survey area and document the quality of the groundwater on and around the WVDP and the quality of the air and water discharged by the WVDP.

  9. West Valley Demonstration Project site environmental report calendar year 1998

    SciTech Connect (OSTI)

    NONE

    1999-06-01T23:59:59.000Z

    This report represents a single, comprehensive source of off-site and on-site environmental monitoring data collected during 1998 by environmental monitoring personnel for the West Valley Demonstration Project (WVDP), West Valley, New York. The environmental monitoring program and results are discussed in the body of this report. The monitoring data are presented in the appendices. The data collected provide an historical record of radionuclide and radiation levels from natural and manmade sources in the survey area and document the quality of the groundwater on and around the WVDP and the quality of the air and water discharged by the WVDP.

  10. Lake Granbury and Lake Whitney Assessment Initiative Final Scientific/Technical Report Summary

    SciTech Connect (OSTI)

    Harris, B.L.; Roelke, Daniel; Brooks, Bryan; Grover, James

    2010-10-11T23:59:59.000Z

    A team of Texas AgriLife Research, Baylor University and University of Texas at Arlington researchers studied the biology and ecology of Prymnesium parvum (golden algae) in Texas lakes using a three-fold approach that involved system-wide monitoring, experimentation at the microcosm and mesocosm scales, and mathematical modeling. The following are conclusions, to date, regarding this organism??s ecology and potential strategies for mitigation of blooms by this organism. In-lake monitoring revealed that golden algae are present throughout the year, even in lakes where blooms do not occur. Compilation of our field monitoring data with data collected by Texas Parks and Wildlife and Brazos River Authority (a period spanning a decade) revealed that inflow and salinity variables affect bloom formations. Thresholds for algae populations vary per lake, likely due to adaptations to local conditions, and also to variations in lake-basin morphometry, especially the presence of coves that may serve as hydraulic storage zones for P. parvum populations. More specifically, our in-lake monitoring showed that the highly toxic bloom that occurred in Lake Granbury in the winter of 2006/2007 was eliminated by increased river inflow events. The bloom was flushed from the system. The lower salinities that resulted contributed to golden algae not blooming in the following years. However, flushing is not an absolute requirement for bloom termination. Laboratory experiments have shown that growth of golden algae can occur at salinities ~1-2 psu but only when temperatures are also low. This helps to explain why blooms are possible during winter months in Texas lakes. Our in-lake experiments in Lake Whitney and Lake Waco, as well as our laboratory experiments, revealed that cyanobacteria, or some other bacteria capable of producing algicides, were able to prevent golden algae from blooming. Identification of this organism is a high priority as it may be a key to managing golden algae blooms. Our numerical modeling results support the idea that cyanobacteria, through allelopathy, control the timing of golden algae blooms in Lake Granbury. The in-lake experiments in Lake Whitney and Lake Waco also revealed that as golden algae blooms develop, there are natural enemies (a species of rotifer, and a virus) that help slow the population growth. Again, better characterization of these organisms is a high priority as it may be key to managing golden algae blooms. Our laboratory and in-lake experiments and field monitoring have shown that nutrient additions will remove toxicity and prevent golden algae from blooming. In fact, other algae displace the golden algae after nutrient additions. Additions of ammonia are particularly effective, even at low doses (much lower than what is employed in fish hatchery ponds). Application of ammonia in limited areas of lakes, such as in coves, should be explored as a management option. The laboratory experiments and field monitoring also show that the potency of toxins produced by P. parvum is greatly reduced when water pH is lower, closer to neutral levels. Application of mild acid to limited areas of lakes (but not to a level where acidic conditions are created), such as in coves, should be explored as a management option. Finally, our field monitoring and mathematical modeling revealed that flushing/dilution at high enough levels could prevent P. parvum from forming blooms and/or terminate existing blooms. This technique could work using deeper waters within a lake to flush the surface waters of limited areas of the same lakes, such as in coves and should be explored as a management option. In this way, water releases from upstream reservoirs would not be necessary and there would be no addition of nutrients in the lake.

  11. Recreation as a factor in home site development on Lake Livingston, Texas -- a comparative study

    E-Print Network [OSTI]

    DeLoney, James A

    1973-01-01T23:59:59.000Z

    . INTRODUCTION Purpose and Scope of Study Literature Review The Study Area Geographic Location and Accessibility of Lake Livingston Natural Resources of Lake Livingston Topography in Polk County Soils in Polk County Climatic Conditions in Polk County... Wildlife in Polk County History of Lak Livingston Area Lake Livingston Construction and Development I I . METHODS AND PROCEDURES 10 13 13 16 16 17 18 19 20 24 Selection of Study Area Parameters of Study Area Population 25 25 TITLE...

  12. Effects of valley meteorology on forest pesticide spraying

    SciTech Connect (OSTI)

    Whiteman, C.D.

    1990-04-01T23:59:59.000Z

    Pacific Northwest Laboratory conducted this study for the Missoula Technology and Development Center of the US Department of Agriculture's Forest Service. The purpose of the study was to summarize recent research on valley meteorology during the morning transition period and to qualitatively evaluate the effects of the evolution of valley temperature inversions and wind systems on the aerial spraying of pesticides in National Forest areas of the western United States. Aerial spraying of pesticides and herbicides in forests of the western United States is usually accomplished in the morning hour after first light, during the period known to meteorologists as the morning transition period.'' This document describes the key physical processes that occur during the morning transition period on undisturbed days and the qualitative effects of these processes on the conduct of aerial spraying operations. Since the timing of valley meteorological events may be strongly influenced by conditions that are external to the valley, such as strong upper-level winds or the influence of clouds on the receipt of solar energy in the valley, some remarks are made on the qualitative influence of these processes. Section 4 of this report suggests ways to quantify some of the physical processes to provide useful guidance for the planning and conduct of spraying operations. 12 refs., 9 figs.

  13. West Valley facility spent fuel handling, storage, and shipping experience

    SciTech Connect (OSTI)

    Bailey, W.J.

    1990-11-01T23:59:59.000Z

    The result of a study on handling and shipping experience with spent fuel are described in this report. The study was performed by Pacific Northwest Laboratory (PNL) and was jointly sponsored by the US Department of Energy (DOE) and the Electric Power Research Institute (EPRI). The purpose of the study was to document the experience with handling and shipping of relatively old light-water reactor (LWR) fuel that has been in pool storage at the West Valley facility, which is at the Western New York Nuclear Service Center at West Valley, New York and operated by DOE. A subject of particular interest in the study was the behavior of corrosion product deposits (i.e., crud) deposits on spent LWR fuel after long-term pool storage; some evidence of crud loosening has been observed with fuel that was stored for extended periods at the West Valley facility and at other sites. Conclusions associated with the experience to date with old spent fuel that has been stored at the West Valley facility are presented. The conclusions are drawn from these subject areas: a general overview of the West Valley experience, handling of spent fuel, storing of spent fuel, rod consolidation, shipping of spent fuel, crud loosening, and visual inspection. A list of recommendations is provided. 61 refs., 4 figs., 5 tabs.

  14. Assessment of the geothermal resources of Carson-Eagle valleys and Big Smoky Valley, Nevada. First annual report, May 1, 1979-May 30, 1980

    SciTech Connect (OSTI)

    Trexler, D.T.; Koenig, B.A.; Flynn, T.; Bruce, J.L.

    1980-01-01T23:59:59.000Z

    Two geothermal investigations were completed in three Nevada locations. The regions studied were selected from areas outlined as having direct utilization potential (Trexler and others, 1979) and included the Carson-Eagle Valley, Bis Smoky Valley and Caliente. Studies were organized around the completion of a group of tasks in each area. These tasks included: geologic reconnaissance, gravity surveys, aerial photography, fluid sampling and analysis, shallow depth temperature probe surveys, soil mercury surveys, shallow electrical resistivity measurements, and temperature gradient hole drilling. Goals of the project were to provide regional information about the nature and extent of the resources and to offer a critical evaluation of the techniques employed. Results from the work in the Carson-Eagle Valley and Big Smoky Valley are presented. (MHR)

  15. National Science Foundation, Lake Hoare, Antarctica | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Science Foundation, Lake Hoare, Antarctica National Science Foundation, Lake Hoare, Antarctica Photo of a Photovoltaic System Located at Lake Hoare, Antarctica Lake Hoare...

  16. The precipitation response to the desiccation of Lake Chad

    SciTech Connect (OSTI)

    Lauwaet D.; VanWeverberg K.; vanLipzig, N. P. M., Weverberg, K. V., Ridderb, K. D., and Goyens, C.

    2012-04-01T23:59:59.000Z

    Located in the semi-arid African Sahel, Lake Chad has shrunk from a surface area of 25000 km2 in 1960 to about 1350 km2 due to a series of droughts and anthropogenic influences. The disappearance of such a large open-water body can be expected to have a noticeable effect on the meteorology in the surroundings of the lake. The impact could extend even further to the west as westward propagating convective systems pass Lake Chad in the rainfall season. This study examines the sensitivity of the regional hydrology and convective processes to the desiccation of the lake using a regional atmospheric model. Three Lake Chad scenarios are applied reflecting the situation in 1960, the current situation and a potential future scenario in which the lake and the surrounding wetlands have disappeared. The model simulations span the months July-September in 2006, which includes the rainfall season in the Lake Chad area. Total precipitation amounts and the components of the hydrological cycle are found to be hardly affected by the existence of the lake. A filled Lake Chad does, however, increase the precipitation at the east side of the lake. The model results indicate that the boundary layer moisture and temperature are significantly altered downwind of the lake. By investigating a mesoscale convective system (MCS) case, this is found to affect the development and progress of the system. At first, the MCS is intensified by the more unstable boundary layer air but the persistence of the system is altered as the cold pool propagation becomes less effective. The proposed mechanism is able to explain the differences in the rainfall patterns nearby Lake Chad between the scenarios. This highlights the local sensitivity to the desiccation of Lake Chad whereas the large-scale atmospheric processes are not affected.

  17. Dr. Brian White is the Superintendent of Schools for the Chartiers Valley School District. Shortly after beginning at Chartiers Valley in August 2010, Dr. White implemented a strategic planning process that engaged the members of

    E-Print Network [OSTI]

    Sibille, Etienne

    Dr. Brian White is the Superintendent of Schools for the Chartiers Valley School District. Shortly after beginning at Chartiers Valley in August 2010, Dr. White implemented a strategic planning process, Dr. White held several positions at the Beaver Area School District. He began as an assistant

  18. Lake Granbury and Lake Whitney Assessment Initiative

    E-Print Network [OSTI]

    Harris, B.L.; Roelke, Daniel; Grover, James; Brooks, Bryan

    bloom level, occurred when 7-day accumulated inflows were <10 x 106 m3 for Lake Possum Kingdom, <20 x 106 m3 for Lake Granbury and conservatively <40 x 106 m3 for Lake Whitney. These bloom inflow-thresholds corresponded to system flushing rates of 0...-24 h at -20? C. Extracts were filtered (0.2 ?m) and injected (300 ul) into an HPLC system equipped with reverse-phase C18 columns in series (Rainin Microsorb-MV, 0.46 x 10 cm, 3mm, Vydac 201TP, 0.46 x 25cm, 5mm). A nonlinear binary gradient...

  19. Lake Charles Urbanized Area MTP 2034

    E-Print Network [OSTI]

    Lake Charles Urbanized Area Metropolitan Planning Organization

    2009-08-04T23:59:59.000Z

    demand at both the regional and corridor levels. ? Invest in a public transit system that meets the existing and projected needs of the region by developing coordinated routes and schedules through the establishment of a coordinated region transit...

  20. Oakland Sub-Area Folsom Lake

    E-Print Network [OSTI]

    FORESTHILL MT. QUARRIES BELL Auburn FLINT WISE AUBURN NEWCASTLE PENRYN RIO BRAVO ROCKLIN PLEASANT GROVE

  1. Honey Lake Geothermal Area | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietip sheetK-4In 2013 many|HumansDepartment of

  2. Harney Lake Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:Greer County is8584°,Hardy County, West Virginia:HarmonJump to:

  3. Clear Lake Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreisVolcanicPower Address: 13615Boulder Jump

  4. Soda Lake Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to: navigation,PvtSouthInformation

  5. Soda Lake Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to: navigation,PvtSouthInformation

  6. Medicine Lake Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowellisMcDonald is aElectric Coop, IncxmlEditEnergyOpenMedicine

  7. Clear Lake Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy Resources JumpSouthSolar TypeCleanstar Energy

  8. Hot Lake Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:PhotonHolyName HousingIII Wind Farm Facility

  9. Lake Improvement District Law and County Lake Improvement Program (Minnesota)

    Broader source: Energy.gov [DOE]

    Lake Improvement Districts may be established by county boards in order to improve the quality of water in lakes; provide for reasonable assurance of water quantity in lakes, where feasible and...

  10. Geological History of Lake Lahontan, a Quaternary Lake of Northwestern...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geological History of Lake Lahontan, a Quaternary Lake of Northwestern Nevada Abstract Abstract...

  11. Alaska Open-file Report 144 Assessment of Thermal Springs Sites Aleutian Arc, Atka Island to Becherof Lake -- Preliminary Results and Evaluation

    SciTech Connect (OSTI)

    Motyka, R.J.; Moorman, M.A.; Liss, S.A.

    1981-12-01T23:59:59.000Z

    Twenty of more than 30 thermal spring areas reported to exist in the Aleutian arc extending from Atka Island to Becherof Lake were investigated during July and August, 1980. Thermal activity of three of these sites had diminished substantially or no longer existed. At least seven more sites where thermal-spring activity is probable or certain were not visited because of their remoteness or because of time constraints. The existence of several other reported thermal spring sites could not be verified; these sites are considered questionable. On the basis of geothermometry, subsurface reservoir temperatures in excess of 150 C are estimated for 10 of the thermal spring sites investigated. These sites all occur in or near regions of Recent volcanism. Five of the sites are characterized by fumaroles and steaming ground, indicating the presence of at least a shallow vapor-dominated zone. Two, the Makushin Valley and Glacier Valley thermal areas, occur on the flanks of active Mukushin Volcano located on Unalaska Island, and may be connected to a common source of heat. Gas geothermometry suggests that the reservoir feeding the Kliuchef thermal field, located on the flanks of Kliuchef volcano of northeast Atka Island, may be as high as 239 C.

  12. Valley County Secondary Data Analysis

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    Infarction prevalence (Heart Attack) 5.5% 4.1% 6.0% All Sites Cancer 472.3 455.5 543.2 1 Community Montana1,2 Nation2 1. Heart Disease 2. Cancer 3. Diabetes 1. Cancer 2. Heart Disease 3.CLRD* 1. Heart Disease 2. Cancer 3. CLRD* #12; Valley County Secondary Data Analysis July 23, 2012 2

  13. Regional Gravity Survey of the Northern Great Salt Lake Desert...

    Open Energy Info (EERE)

    navigation, search OpenEI Reference LibraryAdd to library Journal Article: Regional Gravity Survey of the Northern Great Salt Lake Desert and Adjacent Areas in Utah, Nevada, and...

  14. Geothermal systems of the Mono Basin-Long Valley region, eastern California and western Nevada

    SciTech Connect (OSTI)

    Higgins, C.T.; Flynn, T.; Chapman, R.H.; Trexler, D.T.; Chase, G.R.; Bacon, C.F.; Ghusn, G. Jr.

    1985-01-01T23:59:59.000Z

    The region that includes Mono Basin, Long Valley, the Bridgeport-Bodie Hills area, and Aurora, in eastern California and western Nevada was studied to determine the possible causes and interactions of the geothermal anomalies in the Mono Basin-Long Valley region as a whole. A special goal of the study was to locate possible shallow bodies of magma and to determine their influence on the hydrothermal systems in the region. (ACR)

  15. Passive solar homes in Delaware Valley

    SciTech Connect (OSTI)

    Kendig, J. [New Jersey Inst. of Tech., Princeton, NJ (United States)

    1997-12-31T23:59:59.000Z

    This paper examines ten single family residences in the Delaware Valley area which include passive solar design features. The study identifies successful and failed solar features of the houses, evaluates solar performance of a few houses, and examines occupants satisfaction with their houses. The study described in this paper includes the following: description of the overall passive solar design and listing of solar features used in each house, survey of each house in its present condition documenting changes to the original design (if any), summary of occupant questionnaire and interviews of house owners regarding their evaluation of house performance. Owners in this study retained positive attitude to their homes in spite of the problems with some solar features. Modifications to the solar features have been significant, but in no case was the solar aspect abandoned.

  16. Guide for Citrus Production in the Lower Rio Grande Valley.

    E-Print Network [OSTI]

    Maxwell, Norman P. (Norman Paul); Bailey, Morris A.

    1963-01-01T23:59:59.000Z

    8-1002 December 1963 CONTENTS 3 VALLEY CITRUS AND ITS POTENTIAL 4 Comparison to Other Areas 4 General Description of Climate 6 SELECTING A SITE 6 Soil Factors 6 Water Quality 7 Water Availability 7 Topography Factors 8 IRRIGATION..., SALINITY, AND DRAINAGE 8 lrrigation Systems for Citrus Groves 10 Salinity Problems 10 Drainage Problems 12 KINDS OF CITRUS AND THEIR VALUE 12 Grapefruit Varieties 12 Orange Varieties 13 Tangerines and Tangelos 13 Limes, Lemons and Miscellaneous...

  17. NGEN Partners LLC (Silicon Valley) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocus Area EnergyMohawkaccrediationNASA-SurfaceNEPA HomeValley)

  18. National Park Service- Lake Powell, Utah

    Broader source: Energy.gov [DOE]

    Lake Powell is part of Utah's Glen Canyon National Recreation Area. The Dangling Rope Marina operates by using diesel generators to supply power. They use 65,000 gallons of diesel fuel per year that has to be barged in over Lake Powell. The potential for environmental damage to the marina in the event of a fuel spill is significant, and the cost to the National Park Service (NPS) for transporting each fuel delivery is considerable. Consequently, the installation of a photovoltaic (PV) system presented many advantages.

  19. Mechanically and optically controlled graphene valley filter

    SciTech Connect (OSTI)

    Qi, Fenghua; Jin, Guojun, E-mail: gjin@nju.edu.cn [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China)

    2014-05-07T23:59:59.000Z

    We theoretically investigate the valley-dependent electronic transport through a graphene monolayer modulated simultaneously by a uniform uniaxial strain and linearly polarized light. Within the Floquet formalism, we calculate the transmission probabilities and conductances of the two valleys. It is found that valley polarization can appear only if the two modulations coexist. Under a proper stretching of the sample, the ratio of the light intensity and the light frequency squared is important. If this quantity is small, the electron transport is mainly contributed by the valley-symmetric central band and the conductance is valley unpolarized; but when this quantity is large, the valley-asymmetric sidebands also take part in the transport and the valley polarization of the conductance appears. Furthermore, the degree of the polarization can be tuned by the strain strength, light intensity, and light frequency. It is proposed that the detection of the valley polarization can be realized utilizing the valley beam splitting. Thus, a graphene monolayer can be used as a mechanically and optically controlled valley filter.

  20. Remote sensing survey of the Coso geothermal area, Inyo county...

    Open Energy Info (EERE)

    Naval Weapons Center, China Lake, Calif., is an area of granitic rock exposure and fracture-controlled explosion breccias and perlitic domes. Fumarolic and hot springs activity...

  1. Quaternary Science Reviews 26 (2007) 26312643 Charcoal and fly-ash particles from Lake Lucerne sediments (Central

    E-Print Network [OSTI]

    Gilli, Adrian

    Quaternary Science Reviews 26 (2007) 2631­2643 Charcoal and fly-ash particles from Lake Lucerne emitted in the area of Lake Lucerne (Central Europe) throughout the last 7200 years. Charcoal navigation on Lake Lucerne. The successive burning of wood (after AD 1838), coal (after AD 1862), and diesel

  2. SECTION 45 Table of Contents 45 Lake Rufus Woods Subbasin Overview.......................................................2

    E-Print Network [OSTI]

    Subbasin Description 45.2.1 General Location Lake Rufus Woods is a 51-mile long Columbia River mainstem of which are located on the Colville Indian Reservation. 45.2.2 Drainage Area The Lake Rufus Woods Subbasin the warmest month and January being the coldest. The annual precipitation for the area is 27 cm (10.5 inches

  3. Innovation and Social Capital in Silicon Valley

    E-Print Network [OSTI]

    Kenney, Martin; Patton, Donald

    2003-01-01T23:59:59.000Z

    Innovation and Social Capital in Silicon Valley * BRIEpath from social capital to innovation has been identified.social capital has for economic development and innovation.

  4. Valley Electric Association- Solar Water Heating Program

    Broader source: Energy.gov [DOE]

    Valley Electric Association (VEA), a nonprofit member owned cooperative, developed the domestic solar water heating program to encourage energy efficiency at the request of the membership. VEA...

  5. Enterprise Assessments Review, West Valley Demonstration Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    conducted an independent oversight review of activity-level implementation of the radiation protection program at the West Valley Demonstration Project. The onsite review was...

  6. Independent Oversight Review, West Valley Demonstration Project...

    Office of Environmental Management (EM)

    West Valley Demonstration Project - December 2014 3Q CY2005 (PDF), Facility Representative Program Performance Indicators Quarterly Report EA-1552: Final Environmental Assessment...

  7. Roaring Fork Valley- Energy Efficient Appliance Program

    Broader source: Energy.gov [DOE]

    The Aspen Community Office for Resource Efficiency (CORE) promotes renewable energy, energy efficiency and green building techniques in western Colorado's Roaring Fork Valley. For customers who...

  8. Independent Activity Report, West Valley Demonstration Project...

    Broader source: Energy.gov (indexed) [DOE]

    July 2012 Operational Awareness Oversight of the West Valley Demonstration Project HIAR WVDP-2012-07-30 This Independent Activity Report documents an operational awareness...

  9. A simulation of the Neolithic transition in the Indus valley

    E-Print Network [OSTI]

    Lemmen, Carsten

    2011-01-01T23:59:59.000Z

    The Indus Valley Civilization (IVC) was one of the first great civilizations in prehistory. This bronze age civilization flourished from the end of the the fourth millennium BC. It disintegrated during the second millennium BC, this decline is despite much research effort not yet well understood. Less research has been devoted on the becoming of this great civilization which shows continuous cultural precursors at least since the seventh millennium BC. To understand the decline, we believe it is necessary to investigate better the precursors and the rise of the IVC, i.e. the establishment of agriculture, dense populations and technological developments between 8000 and 3000 years BC. We employ a huge dataset of $>10000$ archaeologically typed artifacts, still our capability to investigate the system is hindered by poorly resolved chronology, and by a lack of field work in the intermediate areas between the Indus valley and Mesopotamia. We thus employ a complementary, numerical simulation based approach to dev...

  10. LAKE COLUSA SAN JOAQUIN

    E-Print Network [OSTI]

    DORADO AMADOR SONOMA NAPA YOLO CALAVERAS SAN JOAQUIN TUOLUMNE MONO ALPINE MARIPOSA MERCED MADERA FRESNO LAKE COLUSA SUTTER YUBA NEVADA SIERRA PLACER EL DORADO AMADOR SONOMA NAPA YOLO CALAVERAS SAN JOAQUIN

  11. Santa Clara Valley Transportation Authority and San Mateo County...

    Energy Savers [EERE]

    Santa Clara Valley Transportation Authority and San Mateo County Transit District -- Fuel Cell Transit Buses: Evaluation Results Santa Clara Valley Transportation Authority and San...

  12. A Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal...

    Open Energy Info (EERE)

    A Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal System Abstract Fluids from springs, fumaroles, and wells throughout Dixie Valley, NV were analyzed for noble...

  13. Silicon Valley Power and Oklahoma Municipal Power Authority Win...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Silicon Valley Power and Oklahoma Municipal Power Authority Win 2014 Public Power Wind Awards Silicon Valley Power and Oklahoma Municipal Power Authority Win 2014 Public Power Wind...

  14. AMF Deployment, Ganges Valley, India

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011Astudies smartHistory:CONTR.l\CTIndia Ganges Valley

  15. Union Valley | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwo New EnergyofDEVELOPMENTEnergy 1n n d d e eUnion Valley

  16. Climate controls on Valley Fever incidence in Kern County, California, USA Charlie Zender , Department of Earth System Science, University of California at Irvine

    E-Print Network [OSTI]

    Zender, Charles

    America. Figure 1: Areas endemic to Valley fever, after Kirkland and Fierer [1996]: Objectives: · Identify for outbreaks Motivation: In 1991­1995 a valley fever epidemic increased incidence N 10-fold to about 3,000­1995), Hanford Forecast data (2001­2002). We analyze climatological means ¯x, anomalies xn, of monthly time

  17. Town of Portola Valley 765 Portola Roac

    E-Print Network [OSTI]

    , Ca 95814-5514 Re: Town of Portola Valley Green Building Ordinance No. 2010-386 and the Building Efficiency Standards as part of the implementation of our local green building energy ordinance. As the town to the Portola Valley Town Council, the Green Building Ordinance and the Energy Cost Effective Study as explained

  18. Atmospheric dispersion in mountain valleys and basins

    SciTech Connect (OSTI)

    Allwine, K.J.

    1992-01-01T23:59:59.000Z

    The primary goal of the research is to further characterize and understand dispersion in valley and basin atmospheres. A secondary, and related goal, is to identify and understand the dominant physical processes governing this dispersion. This has been accomplished through a review of the current literature, and analyses of recently collected data from two field experiments. This work should contribute to an improved understanding of material transport in the atmospheric boundary layer. It was found that dispersion in a freely draining valley (Brush Creek valley, CO) atmosphere is much greater than in an enclosed basin (Roanoke, VA) atmosphere primarily because of the greater wind speeds moving past the release point and the greater turbulence levels. The development of a cold air pool in the Roanoke basin is the dominant process governing nighttime dispersion in the basin, while the nighttime dispersion in the Brush Creek valley is dominated by turbulent diffusion and plume confinement between the valley sidewalls. The interaction between valley flows and above ridgetops flows is investigated. A ventilation rate'' of material transport between the valley and above ridgetop flows is determined. This is important in regional air pollution modeling and global climate modeling. A simple model of dispersion in valleys, applicable through a diurnal cycle, is proposed.

  19. Atmospheric dispersion in mountain valleys and basins

    SciTech Connect (OSTI)

    Allwine, K.J.

    1992-01-01T23:59:59.000Z

    The primary goal of the research is to further characterize and understand dispersion in valley and basin atmospheres. A secondary, and related goal, is to identify and understand the dominant physical processes governing this dispersion. This has been accomplished through a review of the current literature, and analyses of recently collected data from two field experiments. This work should contribute to an improved understanding of material transport in the atmospheric boundary layer. It was found that dispersion in a freely draining valley (Brush Creek valley, CO) atmosphere is much greater than in an enclosed basin (Roanoke, VA) atmosphere primarily because of the greater wind speeds moving past the release point and the greater turbulence levels. The development of a cold air pool in the Roanoke basin is the dominant process governing nighttime dispersion in the basin, while the nighttime dispersion in the Brush Creek valley is dominated by turbulent diffusion and plume confinement between the valley sidewalls. The interaction between valley flows and above ridgetops flows is investigated. A ``ventilation rate`` of material transport between the valley and above ridgetop flows is determined. This is important in regional air pollution modeling and global climate modeling. A simple model of dispersion in valleys, applicable through a diurnal cycle, is proposed.

  20. A geochemical study of Lakes Bonney and Vanda, Victoria Land, Antarctica

    E-Print Network [OSTI]

    Armitage, Kenneth

    1963-01-01T23:59:59.000Z

    active consideration. tent of the monimolimnoin of Lake Bonney suggests either a sea-water origin or salt water contamination. It is also possible that the waters are a magnesian brine resulting from extensive past concentration either by a freezing... molluscan faunas of the Illinois Valley region: Illinois Geol. Survey Circ. 304, 32 p. OLSON, E . A., and BROECKER, W. S., 1958, Sample contamination and reliability of radiocarbon dates: New York Acad. Sci. Trans., ser. II , v. 20, p. 593-604. RUBIN...

  1. Chemical Logging At Dixie Valley Geothermal Area (Los Alamos...

    Open Energy Info (EERE)

    all the sites. Gas samples were collected from fumaroles, gas vents, gaseous springs, and gas rich wells. Rocks, scales, and hot spring deposits were also collected and analyzed...

  2. Development Wells At Long Valley Caldera Geothermal Area (Holt...

    Open Energy Info (EERE)

    Ben Holt, Richard G. Campbell (1984) Mammoth Geothermal Project Environmental Science Associates (1987) Mammoth Pacific Geothermal Development Projects: Units II and III...

  3. Mercury Vapor At Long Valley Caldera Geothermal Area (Klusman...

    Open Energy Info (EERE)

    Activity Date - 1979 Usefulness useful DOE-funding Unknown Exploration Basis A1-horizon soil samples collected in the vicinity of the resurgent dome and a known geothermal source...

  4. Gas Flux Sampling At Long Valley Caldera Geothermal Area (Lewicki...

    Open Energy Info (EERE)

    statistical regression of EC energy fluxes (sensible and latent heat) against available energy (net radiation, less soil heat flux). While incomplete (R2 0.77 for 1:1 line),...

  5. Soil Sampling At Long Valley Caldera Geothermal Area (Klusman...

    Open Energy Info (EERE)

    Activity Date - 1979 Usefulness useful DOE-funding Unknown Exploration Basis A1-horizon soil samples collected in the vicinity of the resurgent dome and a known geothermal source...

  6. Trace Element Analysis At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Activity Date - 1979 Usefulness useful DOE-funding Unknown Exploration Basis A1-horizon soil samples collected in the vicinity of the resurgent dome and a known geothermal source...

  7. Isotopic Analysis- Fluid At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Fluid Activity Date 1983 - 1986 Usefulness useful DOE-funding Unknown Notes Fumarolic CO2 sampled at Casa Diablo reportedly contained deltaC13 values of -5.6 to -5.7 (Taylor and...

  8. Isotopic Analysis At Long Valley Caldera Geothermal Area (Evans...

    Open Energy Info (EERE)

    but also may provide additional insight to subsurface conditions. For example, CO2-rich groundwaters that are cold and dilute may be a general indicator that a volcano...

  9. Water Sampling At Long Valley Caldera Geothermal Area (Evans...

    Open Energy Info (EERE)

    but also may provide additional insight to subsurface conditions. For example, CO2-rich groundwaters that are cold and dilute may be a general indicator that a volcano...

  10. Geographic Information System At Dixie Valley Geothermal Area...

    Open Energy Info (EERE)

    Pared favorability and trust maps were made to show EGS favorability as well as data reliability. The drilling targets are be based on key EGS parameters: temperature, rock type...

  11. Isotopic Analysis- Gas At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    -6.4 %o (delta C13 in dissolved inorganic carbon). These values resemble those of thermal water equilibrated with a magmatic gas input (Sorey et al., 1998; Evans et al., 2002), and...

  12. Geodetic Survey At Long Valley Caldera Geothermal Area (Newman...

    Open Energy Info (EERE)

    and components of two continuous GPS time series. Additionally, the model explains the spatial extent of deformation observed by InSAR data covering the 1997-98 inflation...

  13. Hyperspectral Imaging At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    aircraft and much in the same way more familiar geophysics are flown. The hyperspectral data records a continuous spatial record of the earth's surface, as well as measuring a...

  14. Development Wells At Long Valley Caldera Geothermal Area (Associates...

    Open Energy Info (EERE)

    the Casa Diablo field are relatively shallow - about 137 m deep. Pumps are used to move water flowing in the western portion of the fields to the power plants. The average...

  15. The Lower Mississippi Valley as a Language Area

    E-Print Network [OSTI]

    Kaufman, David Vincent

    2014-08-31T23:59:59.000Z

    ) the LMV is a Sprachbund on par with other well known Sprachbnde of the world such as the Balkans and South Asia; (2) there are possibly three different overlapping Sprachbnde spanning the northern Gulf from northeastern Mexico to the Atlantic seaboard...

  16. Isotopic Analysis- Fluid At Dixie Valley Geothermal Area (Kennedy...

    Open Energy Info (EERE)

    permeable fluid flow pathways and the helium Isotopic composition of the surface fluids. The authors suggest that helium isotopes are the best and possibly the only...

  17. Development Wells At Long Valley Caldera Geothermal Area (Suemnicht...

    Open Energy Info (EERE)

    of the Basalt Canyon Pipeline later in 2005 to support the MP-I plant with additional fluids from wells 57-22 and 66-25 near Shady Rest to the east (completed in 2006 to approx....

  18. Exploratory Boreholes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Exploration Technique Exploratory Boreholes Activity Date 1992 - 2002 Usefulness useful DOE-funding Unknown Exploration Basis Mammoth Pacific LP drilled several...

  19. Cuttings Analysis At Long Valley Caldera Geothermal Area (Pribnow...

    Open Energy Info (EERE)

    Cuttings Analysis Activity Date - 2003 Usefulness useful DOE-funding Unknown Notes "Here we present a detailed thermal conductivity profile for LVEW (Fig. 5a). Measurements were...

  20. Compound and Elemental Analysis At Dixie Valley Geothermal Area...

    Open Energy Info (EERE)

    Unknown Exploration Basis The goal of this project was to create a database of rare earth elements found in exploration for geothermal resources. Notes Geothermal fluids from...

  1. Geothermometry At Long Valley Caldera Geothermal Area (McKenzie...

    Open Energy Info (EERE)

    1971) prior to analysis by mass spectrometry. Water samples were analyzed for their oxygen isotope ratios using the carbon dioxide-equilibration method. Waters analyzed from the...

  2. Isotopic Analysis-Fluid At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    1971) prior to analysis by mass spectrometry. Water samples were analyzed for their oxygen isotope ratios using the carbon dioxide-equilibration method. Waters analyzed from the...

  3. Isotopic Analysis At Long Valley Caldera Geothermal Area (Goff...

    Open Energy Info (EERE)

    studies, and seem to prove useful in most cases (Flexser, 1991; Goff et al., 1991; Smith and Suemnicht, 1991). Results from these studies are also summarized in Sorey et al....

  4. Ground Gravity Survey At Dixie Valley Geothermal Field Area ...

    Open Energy Info (EERE)

    be described in Blackwell et al. (2010)." References David D. Blackwell, Richard P. Smith, Al Waibel, Maria C. Richards, Patrick Stepp (2009) Why Basin and Range Systems are...

  5. Isotopic Analysis- Fluid At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    studies, and seem to prove useful in most cases (Flexser, 1991; Goff et al., 1991; Smith and Suemnicht, 1991). Results from these studies are also summarized in Sorey et al....

  6. Water Sampling At Long Valley Caldera Geothermal Area (Sorey...

    Open Energy Info (EERE)

    studies, and seem to prove useful in most cases (Flexser, 1991; Goff et al., 1991; Smith and Suemnicht, 1991). Results from these studies are also summarized in Sorey et al....

  7. Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    studies, and seem to prove useful in most cases (Flexser, 1991; Goff et al., 1991; Smith and Suemnicht, 1991). Results from these studies are also summarized in Sorey et al....

  8. Geothermometry At Long Valley Caldera Geothermal Area (Sorey...

    Open Energy Info (EERE)

    studies, and seem to prove useful in most cases (Flexser, 1991; Goff et al., 1991; Smith and Suemnicht, 1991). Results from these studies are also summarized in Sorey et al....

  9. Aerial Photography At Dixie Valley Geothermal Area (Wesnousky...

    Open Energy Info (EERE)

    Field And Other Geothermal Fields Of The Basin And Range David D. Blackwell, Richard P. Smith, Al Waibel, Maria C. Richards, Patrick Stepp (2009) Why Basin and Range Systems are...

  10. Modeling-Computer Simulations At Dixie Valley Geothermal Area...

    Open Energy Info (EERE)

    vein structure associated with ore deposits. References David D. Blackwell, Richard P. Smith, Al Waibel, Maria C. Richards, Patrick Stepp (2009) Why Basin and Range Systems are...

  11. Reflection Survey At Dixie Valley Geothermal Area (Blackwell...

    Open Energy Info (EERE)

    David D. Blackwell, Kenneth W. Wisian, Maria C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis and Structure of Basin and Range...

  12. Conceptual Model At Long Valley Caldera Geothermal Area (Sorey...

    Open Energy Info (EERE)

    studies, and seem to prove useful in most cases (Flexser, 1991; Goff et al., 1991; Smith and Suemnicht, 1991). Results from these studies are also summarized in Sorey et al....

  13. Analytical Modeling At Long Valley Caldera Geothermal Area (White...

    Open Energy Info (EERE)

    studies, and seem to prove useful in most cases (Flexser, 1991; Goff et al., 1991; Smith and Suemnicht, 1991). Results from these studies are also summarized in Sorey et al....

  14. Ground Gravity Survey At Dixie Valley Geothermal Area (Blackwell...

    Open Energy Info (EERE)

    David D. Blackwell, Kenneth W. Wisian, Maria C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis and Structure of Basin and Range...

  15. Aerial Photography At Dixie Valley Geothermal Area (Blackwell...

    Open Energy Info (EERE)

    David D. Blackwell, Kenneth W. Wisian, Maria C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis and Structure of Basin and Range...

  16. Static Temperature Survey At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    the caldera in response to volcanic activity, large earthquakes, andor geothermal production. These U.S. Geological Survey temperature measurements, in addition to past...

  17. Exploratory Well At Long Valley Caldera Geothermal Area (Sorey...

    Open Energy Info (EERE)

    395. Notes Among these wells were exploration and monitoring wells drilled near the Fish Hatchery Springs in preparation for the siting of a second binary geothermal power...

  18. Numerical Modeling At Dixie Valley Geothermal Area (Benoit, 1999) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company)ReferencesNuiqsut, Alaska: Energy Resources JumpEnergy

  19. Numerical Modeling At Dixie Valley Geothermal Area (Iovenitti, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company)ReferencesNuiqsut, Alaska: Energy Resources JumpEnergy2013) |

  20. Long Valley Caldera Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(Monaster AndLittletown, Arizona:Lockland,LIPA Jump to:866298°,Long

  1. Magnetotellurics At Dixie Valley Geothermal Area (Laney, 2005) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay(Held & Henderson, 2012)Information Dixie

  2. Magnetotellurics At Dixie Valley Geothermal Area (Wannamaker, Et Al., 2006)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay(Held & Henderson, 2012)Information Dixie|

  3. Compound and Elemental Analysis At Dixie Valley Geothermal Area (Wood,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy,(EC-LEDS)ColumbusDHeat Ltd2002) | Open Energy

  4. Compound and Elemental Analysis At Long Valley Caldera Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy,(EC-LEDS)ColumbusDHeat Ltd2002) |Al.,

  5. Compound and Elemental Analysis At Long Valley Caldera Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy,(EC-LEDS)ColumbusDHeat Ltd2002) |Al.,(Evans, Et Al.,

  6. Compound and Elemental Analysis At Long Valley Caldera Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy,(EC-LEDS)ColumbusDHeat Ltd2002) |Al.,(Evans, Et

  7. Compound and Elemental Analysis At Long Valley Caldera Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy,(EC-LEDS)ColumbusDHeat Ltd2002) |Al.,(Evans, Et(McKenzie

  8. Conceptual Model At Dixie Valley Geothermal Area (Benoit, 1999) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy,(EC-LEDS)ColumbusDHeatGeothermalEastOpen EnergyEnergy

  9. Conceptual Model At Dixie Valley Geothermal Area (Waibel, 1987) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy,(EC-LEDS)ColumbusDHeatGeothermalEastOpenOpenOpen

  10. Data Acquisition-Manipulation At Imperial Valley Geothermal Area (1982) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to: navigation, searchIllinois: Energy Resources(Blackwell, Et Al.,Open

  11. Buffalo Valley Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuo FengBoulder, CO) JumpNREL BiofuelsBrowseJump

  12. Valley Of Ten Thousand Smokes Region Geothermal Area | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformation UC 19-6-401UpsonUtahTechnology

  13. Ground Gravity Survey At Dixie Valley Geothermal Area (Schaefer, 1983) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:Greer County is a county in Oklahoma.GroomInformation| Open2013)

  14. Buffalo Valley Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBoston Areais a villageBucyrus, North Dakota:(Redirected from Buffalo

  15. Long Valley Caldera Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories on climateJuno Beach,October,Lighthouse SolarListLockhartLongTrip

  16. Thermal Gradient Holes At Long Valley Caldera Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark JumpDetective Jump to:theEnergyEnergyOpen Energy1978)

  17. Modeling-Computer Simulations At Dixie Valley Geothermal Area (Blackwell,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte GmbHMilo, Maine:EnergyInformation Lewicki(Blackwell,Et Al.,

  18. Modeling-Computer Simulations At Dixie Valley Geothermal Area (Wannamaker,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte GmbHMilo, Maine:EnergyInformation Lewicki(Blackwell,EtEt Al.,

  19. Modeling-Computer Simulations At Long Valley Caldera Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte GmbHMilo, Maine:EnergyInformationDecker, 1983) |

  20. Modeling-Computer Simulations At Long Valley Caldera Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte GmbHMilo, Maine:EnergyInformationDecker, 1983) |(Farrar, Et

  1. Modeling-Computer Simulations At Long Valley Caldera Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte GmbHMilo, Maine:EnergyInformationDecker, 1983) |(Farrar,

  2. Modeling-Computer Simulations At Long Valley Caldera Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: EnergyMithun Jump to: navigation, searchGritto

  3. Modeling-Computer Simulations At Long Valley Caldera Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: EnergyMithun Jump to: navigation, searchGritto(Tempel, Et Al.,

  4. Multispectral Imaging At Buffalo Valley Hot Springs Area (Littlefield &

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: EnergyMithun Jump to:MoeInformation MulkCalvin, 2009) | Open

  5. Resistivity studies of the Imperial Valley geothermal area, California |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant of Access(CaliforniaProductionKGRA, Idaho. Final report |

  6. Magnetotellurics At Dixie Valley Geothermal Area (Iovenitti, Et Al., 2013)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point,ECO Auger11.Spain: EnergyMagnet MotorEnergyEnergy|

  7. Magnetotellurics At Dixie Valley Geothermal Area (Wannamaker, Et Al., 2007)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point,ECO Auger11.Spain: EnergyMagnet MotorEnergyEnergy||

  8. Magnetotellurics At Grass Valley Area (Morrison, Et Al., 1979) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point,ECO Auger11.Spain: EnergyMagnet

  9. Magnetotellurics At Long Valley Caldera Geothermal Area (Hermance, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point,ECO Auger11.Spain: EnergyMagnetJemez Pueblo1988) |

  10. Magnetotellurics At Long Valley Caldera Geothermal Area (Nordquist, 1987) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point,ECO Auger11.Spain: EnergyMagnetJemez Pueblo1988)

  11. West Valley Reservoir Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: SaltTroyer & AssociatesWest CentralUkinrek Maar

  12. Geographic Information System At Dixie Valley Geothermal Area (Iovenitti,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeauga County, Ohio: EnergySector: SolarGenoa2005)(Blewitt,EnergyEt

  13. Geothermal Literature Review At Dixie Valley Geothermal Area (Iovenitti, Et

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeauga County,Information(EC-LEDS)Et Al., 1996)Al., 2012) | Open

  14. Geothermal Literature Review At Long Valley Caldera Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeauga County,Information(EC-LEDS)Et1957) | Open2008) |

  15. Geothermal Literature Review At Long Valley Caldera Geothermal Area (Sorey,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeauga County,Information(EC-LEDS)Et1957) | Open2008) |Et Al.,

  16. Geothermometry At Buffalo Valley Hot Springs Area (Laney, 2005) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeaugaInformation Mexico - A Survey ofJumpEnergyOpen

  17. Geothermometry At Long Valley Caldera Geothermal Area (Farrar, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeaugaInformation Mexico - AInformation Hot2010) |

  18. Geothermometry At Long Valley Caldera Geothermal Area (Mariner & Willey,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeaugaInformation Mexico - AInformation Hot2010) |1976) |

  19. Geothermometry At Lualualei Valley Area (Thomas, 1986) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeaugaInformation Mexico - AInformation Hot2010)

  20. Resistivity Log At Long Valley Caldera Geothermal Area (Nordquist, 1987) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, searchVirginia Blue Ridge AndREII JumpInformation toOpen Energy

  1. Development Wells At Long Valley Caldera Geothermal Area (Associates, 1987)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 No revision has Type Term Title AuthorEnergyCosoOpen Energy|

  2. Development Wells At Long Valley Caldera Geothermal Area (Suemnicht, Et

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 No revision has Type Term Title AuthorEnergyCosoOpenAl.,

  3. Exploratory Boreholes At Long Valley Caldera Geothermal Area (Suemnicht, Et

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 NoSan Leandro,Law andEnergyEvogy IncEnergy| Open| OpenAl.,

  4. Exploratory Well At Long Valley Caldera Geothermal Area (Sorey, 1985) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 NoSan Leandro,Law andEnergyEvogy IncEnergy|Open Energy

  5. Isotopic Analysis- Fluid At Indian Valley Hot Springs Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen Energy2005) | Open Energy Information(1990) | Open

  6. Isotopic Analysis- Fluid At Rose Valley Geothermal Area (1990) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen Energy2005) | Open Energy Information(1990)Energy

  7. Isotopic Analysis- Fluid At Sierra Valley Geothermal Area (1990) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen Energy2005) | Open Energy Information(1990)EnergyEnergy

  8. Aerial Photography At Dixie Valley Geothermal Area (Blackwell, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasil Jump to:IowaResource Evaluation AndwebsiteLtd, 2003) |2003)

  9. Aerial Photography At Dixie Valley Geothermal Area (Wesnousky, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasil Jump to:IowaResource Evaluation AndwebsiteLtd, 2003)2003) |

  10. Aeromagnetic Survey At Dixie Valley Geothermal Area (Grauch, 2002) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasil Jump to:IowaResource(Nannini, 1986) JumpEnergy

  11. Analytical Modeling At Long Valley Caldera Geothermal Area (White &

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300Algoil JumpAltergyExperiments | OpenThe Tomoves Active| Open EnergyPeterson,

  12. Field Mapping At Lualualei Valley Area (Thomas, 1986) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 NoSanEnergy Information 4) JumpJemez Pueblo

  13. Chemical Logging At Dixie Valley Geothermal Area (Los Alamos National

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:Energy Information on PV2009Information17.3180919°,Faults In

  14. Static Temperature Survey At Long Valley Caldera Geothermal Area (Farrar,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd JumpGTZHolland,0162112°,St.StanlyEnergy InformationEpp, 1983) |2005)Et

  15. Static Temperature Survey At Long Valley Caldera Geothermal Area (Farrar,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd JumpGTZHolland,0162112°,St.StanlyEnergy InformationEpp, 1983)

  16. Surprise Valley Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen, Minnesota:36052°,Sunfield,FarmsSupport| Open Energy

  17. Thermal Gradient Holes At Long Valley Caldera Geothermal Area (Lachenbruch,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump Jump to:InformationTheInformationAl.,OpenEt Al.,

  18. Time-Domain Electromagnetics At Long Valley Caldera Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump JumpAl., 1978)Tillman County, Oklahoma:Open(Nordquist, 1987)

  19. Hydroprobe At Gabbs Valley Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia: Energy ResourcesPark,isHydroHydrogenHydrophen

  20. Hyperspectral Imaging At Dixie Valley Geothermal Field Area (Laney, 2005) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia: Energythe Second Workshop onDepositedHyperionOpen

  1. Electromagnetic Soundings At Dixie Valley Geothermal Area (Mallan, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37. It is classifiedProject) | Open Energy Information(Redirected

  2. Exploratory Well At Long Valley Caldera Geothermal Area (Suemnicht, 1987) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37. It isInformationexplains a4Evendale, -EnergySonarOpen| OpenOpen Energy

  3. Hyperspectral Imaging At Long Valley Caldera Geothermal Area (Martini, Et

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:PhotonHolyName HousingIIIDrive Ltd Jump to:Al., 2003) |

  4. Isotopic Analysis At Long Valley Caldera Geothermal Area (Smith &

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place: EdenOverview OfIowa/Incentives

  5. Effects of complex effluents on photosynthesis in Lake Erie and Lake Huron

    SciTech Connect (OSTI)

    Bridgham, S.D.; McNaught, D.C.; Meadows, C.

    1988-01-01T23:59:59.000Z

    Phytoplankton are the base of the food chain in most large lake ecosystems; if affected by environmental pollutants, significant ecosystem changes can result with potential impact on higher trophic levels. The research determined the effects of a complex effluent discharge from the River Raisin in Monroe County, Michigan, on the Lake Erie ecosystem. The river flows through southern Michigan and has large nutrient and industrial inputs, especially in the Monroe Harbor area. The functional parameters measured were bacterial uptake rate of acetate, zooplankton feeding and reproduction rates, and primary production. The results of the effects of complex effluents on gross photosynthesis, measured as carbon-14 ((14)C) uptake, are presented in the paper.

  6. Fish mercury distribution in Massachusetts, USA lakes

    SciTech Connect (OSTI)

    Rose, J.; Hutcheson, M.S.; West, C.R.; Pancorbo, O.; Hulme, K.; Cooperman, A.; DeCesare, G.; Isaac, R.; Screpetis, A.

    1999-07-01T23:59:59.000Z

    The sediment, water, and three species of fish from 24 of Massachusetts' (relatively) least-impacted water bodies were sampled to determine the patterns of variation in edible tissue mercury concentrations and the relationships of these patterns to characteristics of the water, sediment, and water bodies (lake, wetland, and watershed areas). Sampling was apportioned among three different ecological subregions and among lakes of differing trophic status. The authors sought to partition the variance to discover if these broadly defined concepts are suitable predictors of mercury levels in fish. Average muscle mercury concentrations were 0.15 mg/kg wet weight in the bottom-feeding brown bullheads (Ameriurus nebulosus); 0.31 mg/kg in the omnivorous yellow perch (Perca flavescens); and 0.39 mg/kg in the predaceous largemouth bass (Micropterus salmoides). Statistically significant differences in fish mercury concentrations between ecological subregions in Massachusetts, USA, existed only in yellow perch. The productivity level of the lakes (as deduced from Carlson's Trophic Status Index) was not a strong predictor of tissue mercury concentrations in any species. pH was a highly (inversely) correlated environmental variable with yellow perch and brown bullhead tissue mercury. Largemouth bass tissue mercury concentrations were most highly correlated with the weight of the fish (+), lake size (+), and source area sizes (+). Properties of individual lakes appear more important for determining fish tissue mercury concentrations than do small-scale ecoregional differences. Species that show major mercury variation with size or trophic level may not be good choices for use in evaluating the importance of environmental variables.

  7. Lake Ontario Maritime Cultural Landscape

    E-Print Network [OSTI]

    Ford, Benjamin L.

    2010-10-12T23:59:59.000Z

    The goal of the Lake Ontario Maritime Cultural Landscape project was to investigate the nature and distribution of archaeological sites along the northeast shoreline of Lake Ontario while examining the environmental, political, and cultural factors...

  8. Aquaculture in the Imperial Valley -- A geothermal success story

    SciTech Connect (OSTI)

    Rafferty, K. [Geo-Heat Center, Klamath Falls, OR (United States)

    1999-03-01T23:59:59.000Z

    The Salton Sea and Imperial Valley area of southern California has long been recognized as a hot spot of geothermal development. In the geothermal industry, this area has for some time been synonymous with electric power generation projects. Starting with the first plant in East Mesa in 1979, geothermal power has increased over the years to the present 400+ MW of installed capacity in the three primary areas of Salton Sea, Heber and East Mesa. Although most in the industry are aware of the millions of kilowatt-hours annually produced in this desert oasis of development, they remain surprisingly uninformed about the Valley`s other geothermal industry -- aquaculture. At present, there are approximately 15 fish farming (or aquaculture) operations clustered, for the most part, around the Salton Sea. All of these farms use geothermal fluids to control the temperature of the fish culture facilities so as to produce larger fish in a shorter period of time and to permit winter production which would otherwise not be possible. In aggregate, these farms produce on the order of 10,000,000 lbs of fish per year most of which is sold into the California market. Principle species are catfish, striped bass and tilapia. For the past several years, tilapia has been the fastest growing part of the aquaculture industry. In 1996, the total US consumption of tilapia was 62,000 lbs. Of this, only 16,000,000 lbs (26%) was domestically produced and the balance imported. The primary market for the fish on the West Coast is among the Asian-American populations in the major cities. Fish are shipped and sold liver at the retail level.

  9. West Valley Demonstration Project Site Environmental Report Calendar Year 2000

    SciTech Connect (OSTI)

    NONE

    2001-08-31T23:59:59.000Z

    The annual site environmental monitoring report for the West Valley Demonstration Project nuclear waste management facility.

  10. Tracer Testing at Dixie Valley, Nevada, Using Pyrene Tetrasulfonate Amino

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,LtdInformation Dixie Valley Geothermal Area (Reed, 2007) JumpG,

  11. A LIMNOLOGICAL STUDY OF THE FINGER LAKES OF NEW YORK

    E-Print Network [OSTI]

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 569 Heat supply of the smaller lakes

  12. MERCURY CYCLING IN LAKE GORDON AND LAKE PEDDER, TASMANIA (AUSTRALIA). I: IN-LAKE PROCESSES

    E-Print Network [OSTI]

    Canberra, University of

    MERCURY CYCLING IN LAKE GORDON AND LAKE PEDDER, TASMANIA (AUSTRALIA). I: IN-LAKE PROCESSES KARL C; accepted 2 December 2002) Abstract. The processes affecting the concentrations of total mercury (total Hg- vestigated. Surface concentrations of total mercury (total Hg) were temporally and spatially uniform in both

  13. EA-1697: San Joaquin Valley Right-of-Way Project, California

    Broader source: Energy.gov [DOE]

    DOEs Western Area Power Administration is preparing this EA to evaluate the environmental impacts of right-of-way maintenance (including facility inspection and repair, vegetation management, and equipment upgrades for transmission lines and associated rights-or-way, access roads, substations, and a maintenance facility) in the San Joaquin Valley in California.

  14. Impacts of Irrigation on Citrus in the Lower Rio Grande Valley

    E-Print Network [OSTI]

    Enciso, Juan; Sauls, Julian W.; Wiedenfeld, Robert P.; Nelson, Shad D.

    2008-07-11T23:59:59.000Z

    Citrus is an important crop in the Lower Rio Grande Valley, but reduced water supplies in the area mean irrigation must be used. Citrus farmers can use different irrigation methods and practices to get the most from the available water supply....

  15. Valley and electric photocurrents in 2D silicon and graphene

    SciTech Connect (OSTI)

    Tarasenko, S. A.; Ivchenko, E. L. [Ioffe Physical-Technical Institute, Russian Academy of Sciences, St. Petersburg 194021 (Russian Federation); Olbrich, P.; Ganichev, S. D. [Terahertz Center, University of Regensburg, 93040 Regensburg (Germany)

    2013-12-04T23:59:59.000Z

    We show that the optical excitation of multi-valley systems leads to valley currents which depend on the light polarization. The net electric current, determined by the vector sum of single-valley contributions, vanishes for some peculiar distributions of carriers in the valley and momentum spaces forming a pure valley current. We report on the study of this phenomenon, both experimental and theoretical, for graphene and 2D electron channels on the silicon surface.

  16. Geothermal resource assessment of the Animas Valley, Colorado. Resource Series 17

    SciTech Connect (OSTI)

    McCarthy, K.P.; Zacharakis, T.G.; Ringrose, C.D.

    1982-01-01T23:59:59.000Z

    The Colorado Geological Survey, has been engaged in assessing the nature and extent of Colorado's geothermal resources. The program has included geologic and hydrogeologic reconnaissance, and geophysical and geochemical surveys. In the Animas Valley, in southwestern Colorado, two groups of thermal springs exist: Pinkerton Springs to the north, and Tripp-Trimble-Stratten Springs about 5 miles (8.1 Km) south of Pinkerton. The geothermal resources of the Animas Valley were studied. Due to terrain problems in the narrow valley, a soil mercury survey was conducted only at Tripp-Trimble Stratten, while an electrical D.C. resistivity survey was limited to the vicinity of Pinkerton. Although higher mercury values tended to be near a previously mapped fault, the small extent of the survey ruled out conclusive results. Consistent low resistivity zones interpreted from the geophysical data were mapped as faults near Pinkerton, and compared well with aerial photo work and spring locations. This new information was added to reconnaissance geology and hydrogeology to provide several clues regarding the geothermal potential of the valley. Hydrothermal minerals found in faults in the study area are very similar to ore mined in a very young mountain range, nearby. Groundwater would not need to circulate very deeply along faults to attain the estimated subsurface temperatures present in the valley. The water chemistry of each area is unique. Although previously incompletely manned, faulting in the area is extensive. The geothermal resources in the Animas Valley are fault controlled. Pinkerton and Tripp-Trimble-Stratten are probably not directly connected systems, but may have the same source at distance. Recharge to the geothermal system comes from the needle and La Plata Mountains, and the latter may also be a heat source. Movement of the thermal water is probably primarily horizontal, via the Leadville Limestone aquifer.

  17. The Peachtree Valley and Valley Town mission : a baptist recategorization of a Cherokee landscape.

    E-Print Network [OSTI]

    Owen, James Anthony

    2012-01-01T23:59:59.000Z

    ??Peachtree Valley in Clay county, North Carolina has a long history of diversity in plant, animal, and human habitation. The Cherokee, who have inhabited the (more)

  18. GREAT LAKES ENVIRONMENTAL RESEARCH

    E-Print Network [OSTI]

    or product does not constitute an endorsement by NOANERL. Use for publicity or advertising purposes & Global Change in Large Lakes ................" ... 7 Pollutant Effects and effects of pollutants, the cycling and through-put of nutrients and energy within the food chain, water

  19. NNSS Soils Monitoring: Plutonium Valley (CAU366) FY2012

    SciTech Connect (OSTI)

    Julianne J Miller, Steve A. Mizell, George Nikolich, Greg McCurdy, and Scott Campbell

    2013-01-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), Nevada Site Office (NSO), Environmental Restoration Soils Activity has authorized the Desert Research Institute (DRI) to conduct field assessments of potential sediment transport of contaminated soil from Corrective Action Unit (CAU) 366, Area 11 Plutonium Valley Dispersion Sites Contamination Area (CA) during precipitation runoff events. Field measurements at the T-4 Atmospheric Test Site (CAU 370) suggest that radionuclide-contaminated soils may have migrated along a shallow ephemeral drainage that traverses the site (NNSA/NSO, 2009). (It is not entirely clear how contaminated soils got into their present location at the T-4 Site, but flow to the channel has been redirected and the contamination does not appear to be migrating at present.) Aerial surveys in selected portions of the Nevada National Security Site (NNSS) also suggest that radionuclide-contaminated soils may be migrating along ephemeral channels in Areas 3, 8, 11, 18, and 25 (Colton, 1999). In Area 11, several low-level airborne surveys of the Plutonium Valley Dispersion Sites (CAU 366) show plumes of Americium 241 (Am-241) extending along ephemeral channels (Figure 1, marker numbers 5 and 6) below Corrective Action Site (CAS) 11-23-03 (marker number 3) and CAS 11 23-04 (marker number 4) (Colton, 1999). Plutonium Valley in Area 11 of the NNSS was selected for the study because of the aerial survey evidence suggesting downstream transport of radionuclide-contaminated soil. The aerial survey (Figure 1) shows a well defined finger of elevated radioactivity (marker number 5) extending to the southwest from the southernmost detonation site (marker number 4). This finger of contamination overlies a drainage channel mapped on the topographic base map used for presentation of the survey data suggesting surface runoff as a likely cause of the contaminated area. Additionally, instrumenting sites strongly suspected of conveying soil from areas of surface contamination offers the most efficient means to confirm that surface runoff may transport radioactive contamination as a result of ambient precipitation/runoff events. Closure plans being developed for the CAUs on the NNSS may include post-closure monitoring for possible release of radioactive contaminants. Determining the potential for transport of radionuclide-contaminated soils under ambient meteorological conditions will facilitate an appropriate closure design and post-closure monitoring program.

  20. VALMET-A valley air pollution model

    SciTech Connect (OSTI)

    Whiteman, C.D.; Allwine, K.J.

    1983-09-01T23:59:59.000Z

    Following a thorough analysis of meteorological data obtained from deep valleys of western Colorado, a modular air-pollution model has been developed to simulate the transport and diffusion of pollutants released from an elevated point source in a well-defined mountain valley during the nighttime and morning transition periods. This initial version of the model, named VALMET, operates on a valley cross section at an arbitrary distance down-valley from a continuous point source. The model has been constructed to include parameterizations of the major physical processes that act to disperse pollution during these time periods. The model has not been fully evaluated. Further testing, evaluations, and development of the model are needed. Priorities for further development and testing are provided.

  1. SAVE THE DATE!!! The Silicon Valley

    E-Print Network [OSTI]

    Su, Xiao

    SAVE THE DATE!!! The Silicon Valley 3rd Annual Social Innovation Leadership Forum 2014 (SILF 2014 towards a better tomorrow... Register for the event today! The Social Innovation Leadership Forum (SILF

  2. 25055 W. Valley Parkway Olathe, Kansas 66061

    E-Print Network [OSTI]

    Dyer, Bill

    25055 W. Valley Parkway Suite 106 Olathe, Kansas 66061 Evans Enterprises is growing, or a person we need to reach out to. Our company website is below, and I am happy to answer any questions you

  3. Poudre Valley REA- Photovoltaic Rebate Program

    Broader source: Energy.gov [DOE]

    Poudre Valley REC is providing rebates to their residential customers who install photovoltaic (PV) systems on their homes. This rebate program was timed to coincide with the Colorado Governor's...

  4. City of Sunset Valley- PV Rebate Program

    Broader source: Energy.gov [DOE]

    The City of Sunset Valley offers rebates to local homeowners who install photovoltaic (PV) systems on their properties. The local rebate acts as an add-on to the PV rebates that are offered by...

  5. Evolution of supra-glacial lakes across the Greenland Ice Sheet

    E-Print Network [OSTI]

    Sundal, Aud

    2008-12-05T23:59:59.000Z

    We used 268 cloud-free Moderate-resolution Imaging Spectroradiometer (MODIS) images spanning the melt seasons 2003 and 2005-2007 to study the seasonal evolution of supra-glacial lakes in three different regions of the Greenland ice sheet. Lake area...

  6. Lagrangian and Control Volume Models for Prediction of Cooling Lake Performance at SRP

    SciTech Connect (OSTI)

    Garrett, A.J.

    2001-06-26T23:59:59.000Z

    The model validation described in this document indicates that the methods described here and by Cooper (1984) for predicting the performance of the proposed L-Area cooling lake are reliable. Extensive observations from the Par Pond system show that lake surface temperatures exceeding 32.2 degrees C (90 degrees F) are attained occasionally in the summer in areas where there is little or no heating from the P-Area Reactor. Regulations which restrict lake surface temperatures to less than 32.2 degrees C should be structured to allow for these naturally-occurring thermal excursions.

  7. E-Print Network 3.0 - area sierra leone Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fresno RiverFresno River Project AreaProject Area Sampling sitesSampling sites Landscape... ;12;12;12;12;12;12;12;12;12;CraneValleyRd 12;Oakhurst WWTP 12;May 28...

  8. A High-Resolution Aeromagnetic Survey to Identify Buried Faults at Dixie Valley, Nevada

    SciTech Connect (OSTI)

    Smith, Richard Paul; Grauch, V. J. S.; Blackwell, David D.

    2002-09-01T23:59:59.000Z

    Preliminary results from a high-resolution aeromagnetic survey (200m line spacing) acquired in Dixie Valley early in 2002 provide confirmation of intra-basin faulting based on subtle surface indications. In addition the data allow identification of the locations and trends of many faults that have not been recognized at the surface, and provide a picture of intrabasin faulting patterns not possible using other techniques. The data reveal a suite of northeasterly-trending curving and branching faults that surround a relatively coherent block in the area of Humboldt Salt Marsh, the deepest part of the basin. The producing reservoir occurs at the north end of this coherent block, where rampart faults from the northwest side of the valley merge with anthithetic faults from the central and southeast parts of the valley.

  9. Texas' Natural Lake

    E-Print Network [OSTI]

    Wythe, Kathy

    2006-01-01T23:59:59.000Z

    Geomorphology: ? Estimate sediment budget and develop better characterization of sediment composition along entire creek ? Collect baseline geomorphological data to better assess the responses during and following flow Aquatic Ecology: ? Determine how... in Texas A&M?s Department of Wildlife and Fisheries Sciences, said the summary report synthesizes the ?state of knowl- edge? about the geography, hydrology, ecology and environmental impacts affecting Caddo Lake and Big Cypress Creek. At the second...

  10. Exploration ofr geothermal resources in Dixie Valley, Nevada

    SciTech Connect (OSTI)

    Parchman, W.L.; Knox, J.W.

    1981-06-01T23:59:59.000Z

    A case history of SUNEDCO's exploratory efforts, which ultimately led to the drilling and discovery of the Dixie Valley goethermal field, is presented. The geochemistry from three active lot springs in the area: Dixie Hot Springs, South Hot Springs, and Hyder Hot Springs, was examined. Two heat flow drilling programs were conducted at Dixie Hot Springs consisting of 45 temperature gradient holes ranging in depth from 30 to 1500 ft. From this program a heat-flow anomaly was mapped extending along the Stillwater Range front in which temperature gradients are greater than 100/sup 0/c/Km. in 1978, the number 1 SW Lamb well was drilled on a 152 acre farmout from Chevron. The well was completed as a geothermal producer in a zone of fractured volcanic rocks. Since then, five additional geothermal producing wells were completed within the anomalous area. (MJF)

  11. E-Print Network 3.0 - area karelian isthmus Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Littorina Sea transgressions based on stratigraphic studies in coastal lakes of NW Russia Summary: Sweden; IN - Ingermanland area, NW Russia; KA - Karelian Isthmus, NW Russia....

  12. E-Print Network 3.0 - altares-las plumas area Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the planning area for the PEV Readiness PON. However... , Colusa, Glenn, Imperial, Kings, Lake, Lassen, Madera, Mariposa, Mendocino, Merced, Modoc, Nevada, Plumas Source:...

  13. NAWS-China Lake Project

    Broader source: Energy.gov [DOE]

    Presentation covers the NAWS-China Lake Project at the Federal Utility Partnership Working Group (FUPWG) meeting, held on November 18-19, 2009.

  14. The Pahrump Valley Museum Yucca Mountain History Exhibit - 12389

    SciTech Connect (OSTI)

    Voegele, Michael; McCracken, Robert [Consultant, Nye County Nuclear Waste Repository Project Office (United States); Herrera, Troy [Sambooka Group, Reno, NV. (United States)

    2012-07-01T23:59:59.000Z

    As part of its management of the Yucca Mountain project, the Department of Energy maintained several information centers to provide public access to information about the status of the Yucca Mountain project. Those information centers contained numerous displays, historical information, and served as the location for the Department's outreach activities. As the Department of Energy dealt with reduced budgets in 2009 following the Obama Administration's intent to terminate the program, it shut down its information centers. Nye County considered it important to maintain a public information center where people would be able to find information about what was happening with the Yucca Mountain project. Initially the Nye County assumed responsibility for the information center in Pahrump; eventually the County made a decision to move that information center into an expansion of the existing Pahrump Valley Museum. Nye County undertook an effort to update the information about the Yucca Mountain project and modernize the displays. A parallel effort to create a source of historical information where people could find out about the Yucca Mountain project was undertaken. To accompany the Yucca Mountain exhibits in the Pahrump Valley Museum, Nye County also sponsored a series of interviews to document, through oral histories, as much information about the Yucca Mountain project as could be found in these interviews. The paper presents an overview of the Yucca Mountain exhibits in the Pahrump Valley Museum, and the accompanying oral histories. An important conclusion that can be drawn from the interviews is that construction of a repository in Nevada should have been conceptualized as but the first step in transforming the economy of central Nevada by turning part of the Nevada National Security Site and adjoining area into a world-class energy production and energy research center. (authors)

  15. Phase I Archaeological Survey of Parcel ED-3 and Historic Assessement of the Happy Valley Worker Camp Roane County, Tennessee

    SciTech Connect (OSTI)

    New South Associates

    2009-08-17T23:59:59.000Z

    Parcel ED-3 was the location of a portion of 'Happy Valley', a temporary worker housing area occupied from 1943 to 1947 during the construction of the K-25 Oak Ridge Gaseous Diffusion Plant. The project was carried out under subcontract for the Department of Energy. The survey report will be used in the preparation of an Environmental Assessment under the National Environmental Policy Act (NEPA). New South Associates conducted a Phase I Archaeological Survey of Parcel ED-3 at the US Department of Energy's Oak Ridge Reservation in Roane County, Tennessee. The survey was conducted in two parts. The first survey was carried out in 2008 and covered an area measuring approximately 110 acres. The second survey took place in 2009 and focused on 72 acres west of the first survey area. The objective of the surveys was to identify any archaeological remains associated with Happy Valley and any additional sites on the property and to assess these sites for National Register eligibility. New South Associates also conducted a historic assessment to gather information on Happy Valley. This historic assessment was used in conjunction with the archaeological survey to evaluate the significance of the Happy Valley site. Archaeological remains of Happy Valley were located throughout the parcel, but no additional sites were located. The official state site number for Happy Valley is 40RE577. During the two surveys a total of 13 artifact concentrations, 14 isolated finds, and 75 structural features were located. Due to the Happy Valley's stron gassociation with the Manhattan Project, the site is recommended eligible for the National Register of Historic Places under Criterion A.

  16. Tuesday, March 13, 2007 POSTER SESSION I: MARS VALLEY NETWORKS

    E-Print Network [OSTI]

    Rathbun, Julie A.

    Regions and Multiple Water Release Events in Valley Networks of the Libya Montes Region on Mars [#1729] We investigate a valley network in the western Libya Montes region, which originates in a highland mountain

  17. A Home for Everyone San Joaquin Valley Housing

    E-Print Network [OSTI]

    Tipple, Brett

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 C. Kings County . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 D. Madera related to growth and development and lead to improved outcomes for California's cities and counties Joaquin Valley . . . . . . . . . . . . . . . . . . . . . 53 APPENDICES: DATA TABLES FOR VALLEY COUNTIES A

  18. Valley wins High School Science Bowl | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Valley wins High School Science Bowl West Des Moines Valley defeated Bettendorf 72-32 in the championship match to win the 25th Ames LaboratoryIowa State University Regional High...

  19. Tesla Demonstration for Happy Valley Elementary Tuesday, November 20th

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    Tesla Demonstration for Happy Valley Elementary Tuesday, November 20th Schedule Load Time: 11: ___________________________________________________________ Contact: Chris McGriff, cmcgriff@santacruz.k12.ca.us Address: Happy Valley Elementary School, Branciforte

  20. The Lower Rio Grande Valley Regional Public Transportation Coordination Plan

    E-Print Network [OSTI]

    Lower Rio Grande Valley Development Council

    2006-11-30T23:59:59.000Z

    KFH GROUP, INC. THE LOWER RIO GRANDE VALLEY REGIONAL PUBLIC TRANSPORTATION COORDINATION PLAN Developed for: Lower Rio Grande Valley Regional Transportation Coordination Plan Committee By: KFH Group, Incorporated... Page BACKGROUND..............................................................................................................................1 PLAN PROCESS...

  1. Global Energy Partners, LLC 500 Ygnacio Valley Road, Suite 450

    E-Print Network [OSTI]

    Global Energy Partners, LLC 500 Ygnacio Valley Road, Suite 450 Walnut Creek, CA 94596 P: 925. This report was prepared by Global Energy Partners, LLC 500 Ygnacio Valley Blvd., Suite 450 Walnut Creek, CA

  2. Forecasting the Vulnerability of Lakes to Aquatic Plant Invasions

    E-Print Network [OSTI]

    Olden, Julian D.

    water, hull fouling), aquarium and ornamental trades, angling (discharging live bait, trailer boats.g., public boat launch, urban land use) and physical­chemical conditions (e.g., lake area, elevation crispus L. PTMCR. Key words: Aquarium trade, ecological niche models, exotic plants, nursery plants

  3. WEST VALLEY DEMONSTRATION PROJECT SITE ENVIRONMENTAL REPORT CALENDARY YEAR 2001

    SciTech Connect (OSTI)

    NONE

    2002-09-30T23:59:59.000Z

    THE ANNUAL (CALENDAR YEAR 2001) SITE ENVIRONMENTAL MONITORING REPORT FOR THE WEST VALLEY DEMONSTRATION PROJECT NUCLEAR WASTE MANAGEMENT FACILITY.

  4. Silicon Valley Power- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Silicon Valley Power offers rebates to residential customers for the purchase of a variety of energy efficient products including:

  5. Pyramid Lake Renewable Energy Project

    SciTech Connect (OSTI)

    John Jackson

    2008-03-14T23:59:59.000Z

    The Pyramid Lake Paiute Tribe is a federally recognized Tribe residing on the Pyramid Lake Reservation in western Nevada. The funding for this project was used to identify blind geothermal systems disconnected from geothermal sacred sites and develop a Tribal energy corporation for evaluating potential economic development for profit.

  6. The Valley Fever Corridor Year 2 Fundraising Status

    E-Print Network [OSTI]

    Arizona, University of

    Marianne Stephens Ray Thurston Valley of the Sun Boston Terrier Club Mark Whitaker Nickel $500The Valley Fever Corridor Year 2 Fundraising Status Goal = $85,000 Updated: 2/15/2011 *The Valley Fever Clinic Titanium $5,000 or more: Anonymous Shirley and Ken Cole Heller Foundation

  7. San Joaquin Valley Unified Air Pollution Control District

    E-Print Network [OSTI]

    #12;San Joaquin Valley Unified Air Pollution Control District Best Available Control Technology.4.2 #12;San Joaquin Valley Air Pollution Control Distri RECEIVED ~ 2 ED ECEIVED www.valleyalr.org SJVAPCD-2370·(661)326-6900"FAX(661)326-6985 #12;San Joaquin Valley Unified Air Pollution Control District TITLE V MODIFICATION

  8. Lakes_Elec_You

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10 DOEWashington,LM-04-XXXX Office ofDConditionersLake

  9. Late-summer phytoplankton in western Lake Erie (Laurentian Great Lakes): bloom distributions, toxicity,

    E-Print Network [OSTI]

    Late-summer phytoplankton in western Lake Erie (Laurentian Great Lakes): bloom distributions to environmental parameters in western Lake Erie during late-summer (2003­2005). Spatially explicit distributions on earth and are an invaluable natural resource. Lake Erie, the shallowest and smallest of the Lakes

  10. J. Great Lakes Res. 29(4):681704 Internat. Assoc. Great Lakes Res., 2003

    E-Print Network [OSTI]

    , lake level rise. Schematic reconstructions illustrate changing paleogeography and a Holocene lake level Postglacial Lake Level History Based on New Detailed Bathymetry Troy L. Holcombe1,*, Lisa A. Taylor1, David F. Holocene lake level history and paleogeography of Lake Erie are re-interpreted with the aid of new

  11. Golden Valley County Secondary Data Analysis

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    Infarction prevalence (Heart Attack) 4.3% 4.1% 6.0% All Sites Cancer 510.8 455.5 543.2 1 Community County1 Montana1,2 Nation2 1. Heart Disease 2. Cancer 3. Unintentional Injuries** 1. Cancer 2. Heart Disease 3.CLRD* 1. Heart Disease 2. Cancer 3. CLRD* #12; Golden Valley County Secondary Data

  12. Quantum pumping of valley current in strain engineered graphene

    SciTech Connect (OSTI)

    Wang, Jing [Department of Physics, University of Science and Technology of China, Hefei (China) [Department of Physics, University of Science and Technology of China, Hefei (China); Department of Physics and Materials Science and Centre for Functional Photonics, City University of Hong Kong, Hong Kong and City University of Hong Kong Shenzhen Research Institute, Shenzhen (China); Chan, K. S., E-mail: apkschan@cityu.edu.hk, E-mail: zjlin@ustc.edu.cn [Department of Physics and Materials Science and Centre for Functional Photonics, City University of Hong Kong, Hong Kong and City University of Hong Kong Shenzhen Research Institute, Shenzhen (China); Lin, Zijing, E-mail: apkschan@cityu.edu.hk, E-mail: zjlin@ustc.edu.cn [Department of Physics, University of Science and Technology of China, Hefei (China)] [Department of Physics, University of Science and Technology of China, Hefei (China)

    2014-01-06T23:59:59.000Z

    We studied the generation of valley dependent current by adiabatic quantum pumping in monolayer graphene in the presence of electric potential barriers, ferromagnetic field and strain. The pumped currents in the two valleys have same magnitudes and opposite directions; thus, a pure valley current is generated. The oscillation of the pumped pure valley current is determined by the Fabry-Perot resonances formed in the structure. In our calculation, the pumped pure valley current can be as high as 50?nA, which is measurable using present technologies. The proposed device is useful for the development of graphene valleytronic devices.

  13. Assessing Naturalness in Northern Great Lakes Forests Based on Historical Land-Cover and Vegetation Changes

    E-Print Network [OSTI]

    was developed to assess to what degree landscapes represent a natural state. Protected areas are often regarded Land-use history Land-use change Naturalness Logging Great Lakes Protected areas Introduction the question to what degree protected areas represent a natural state. To assess this question conservation

  14. Changes in the fish species composition of all Austrian lakes >50 ha during the last 150 years

    E-Print Network [OSTI]

    Filzmoser, Peter

    Changes in the fish species composition of all Austrian lakes >50 ha during the last 150 years D for Limnology, Mondsee, Austria Abstract The fish communities of all Austrian natural lakes (n ¼ 43) larger than 50 ha in surface area were assessed and the historical fish communities in c. 1850 were reconstructed

  15. Aspects of the natural history of freshwater turtles within the lower Rio Grande Valley of Texas

    E-Print Network [OSTI]

    Grosmaire, Eric Kevin

    2012-06-07T23:59:59.000Z

    ) reported on food preferences of captives from Texas. Mahmoud (1960, 1967, 1968, 1969) studied the ecology of this species in Oklahoma. THE STUDY AREA This study was conducted during the months of June-November, 1976, in the lower Rio Grande Valley (Rio... is found from Indiana south through Alabama, western Georgia, and the Florida Panhandle to the Gulf of Mexico; west through Missouri, Kansas, Oklahoma, and Texas into eastern New Nexico and northeastern Mexico (Conant, 1975). This form was caught in all...

  16. Assessment Of Bacterial Sources Impacting Lake Waco And Belton Lake

    E-Print Network [OSTI]

    Giovanni, G.

    time for sample delivery to the laboratory and initiation of analysis was maintained. Following incubation and enumeration using USEPA Method 1603, the Assessment of Bacterial Sources Impacting Lake Waco & Belton Lake Executive Summary J:\\742... of Contents J:\\742\\742880_TX_Farm_Bureau\\Reports\\Final_Report_2-2006\\TXFB_ReportFinal_020806.doc i February 2006 TABLE OF CONTENTS EXECUTIVE SUMMARY ........................................................................................ ES-1 SECTION 1...

  17. Ecology of Owens Valley vole

    E-Print Network [OSTI]

    Nelson, Fletcher Chris

    2005-08-29T23:59:59.000Z

    in currently unoccupied sites. In wet years with high plant production, these sites may be occupied by OVV dispersing from adjacent areas. Beatley (1969) and Ernest et al. (2000) noted that drought resulted in depressed small mammal populations in arid... of Washington 12:85?90. _____. 1900. Revision of American voles of genus Microtus. North American Fauna 17:1?88. _____. 1915. Revision of pocket gophers of the genus Thomomys. North American Fauna 39:1?136. Beatley, J. C. 1969. Dependence of desert...

  18. Dixie Valley Bottoming Binary Cycle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent(CRADA and DOW AreaJune 2015 < prev next >

  19. Phase 2 drilling operations at the Long Valley Exploratory Well (LVF 51--20)

    SciTech Connect (OSTI)

    Finger, J.T.; Jacobson, R.D.

    1992-06-01T23:59:59.000Z

    This report describes the second drilling phase, completed to a depth of 7588 feet in November 1991, of the Long Valley Exploratory Well near Mammoth Lakes, California. The well in Long Valley Caldera is planned to reach an ultimate depth of 20,000 feet or a bottomhole temperature of 500{degrees}C (whichever comes first). There will be four drilling phases, at least a year apart with scientific experiments in the wellbore between active drilling periods. Phase 1 drilling in 1989 was completed with 20 in. casing from surface to a depth of 2558 ft., and a 3.8 in. core hole was drilled below the shoe to a depth of 2754 in. Phase 2 included a 17-{1/2} in. hole out of the 20 in. shoe, with 13-3/8 in. casing to 6825 ft., and continuous wireline coring below that to 7588 ft. This document comprises a narrative log of the daily activities, the daily drilling reports, mud logger's reports, summary of drilling fluids used, and other miscellaneous records.

  20. Global Change and Mountain Lakes: Establishing Nutrient Criteria and Critical Loads for Sierra Nevada Lakes

    E-Print Network [OSTI]

    Heard, ANDREA Michelle

    2013-01-01T23:59:59.000Z

    the summer and fall of 2011 at Emerald Lake (EML) and Marblethe summer and fall of 2011 at Emerald Lake (EML) and Marble

  1. Death Valley Lower Carbonate Aquifer Monitoring Program Wells Down gradient of the Proposed Yucca Mountain Nuclear Waste Repository

    SciTech Connect (OSTI)

    Inyo County

    2006-07-26T23:59:59.000Z

    Inyo County has participated in oversight activities associated with the Yucca Mountain Nuclear Waste Repository since 1987. The overall goal of these studies are the evaluation of far-field issues related to potential transport, by ground water, or radionuclides into Inyo County, including Death Valley, and the evaluation of a connection between the Lower Carbonate Aquifer (LCA) and the biosphere. Our oversight and completed Cooperative Agreement research, and a number of other investigators research indicate that there is groundwater flow between the alluvial and carbonate aquifers both at Yucca Mountain and in Inyo County. In addition to the potential of radionuclide transport through the LCA, Czarnecki (1997), with the US Geological Survey, research indicate potential radionuclide transport through the shallower Tertiary-age aquifer materials with ultimate discharge into the Franklin Lake Playa in Inyo County. The specific purpose of this Cooperative Agreement drilling program was to acquire geological, subsurface geology, and hydrologic data to: (1) establish the existence of inter-basin flow between the Amargosa Basin and Death Valley Basin; (2) characterize groundwater flow paths in the LCA through Southern Funeral Mountain Range, and (3) Evaluation the hydraulic connection between the Yucca Mountain repository and the major springs in Death Valley through the LCA.

  2. Paleoenvironmental analysis of biohermal facies, Mississippian Lake Valley formation, northern Sacramento Mountains, New Mexico

    E-Print Network [OSTI]

    Reed, Roy Edwin

    1982-01-01T23:59:59.000Z

    ones indicate near static conditions or when sedimentation exceeded subsidence. The long axes of bioherms lie parallel to current directions suggesting that currents influenced growth. ACKNOWLEDGEMENT S There are many people I would like to thank.... Texture Composition Grain Orientation Andrecito Formation. Texture Composition Grain Orientation Biohermal Strata Texture Composition Grain Orientation 27 27 27 34 35 35 35 36 36 36 36 38 FACIES. PALEOTOPOGRAPHY Page 39 47...

  3. Spawning sockeye salmon fossils in Pleistocene lake beds of Skokomish Valley, Washington

    E-Print Network [OSTI]

    Montgomery, David R.

    , WA 98195-1310, USA c Forest and Channel Metrics, Inc., 606 Columbia Street NW, Suite 221, Olympia, WA and chum salmon, are known from late Miocene sediments of the Chalk Hills Formation of Oregon and Idaho

  4. Physical and Chemical Implications of Mid-Winter Pumping of Trunda Lakes - North Slope, Alaska

    SciTech Connect (OSTI)

    Hinzman, Larry D. (University of Alaska Fairbanks, Water and Environmental Research Center); Lilly, Michael R. (Geo-Watersheds Scientific); Kane, Douglas L. (University of Alaska Fairbanks, Water and Environmental Research Center); Miller, D. Dan (University of Alaska Fairbanks, Water and Environmental Research Center); Galloway, Braden K. (University of Alaska Fairbanks, Water and Environmental Research Center); Hilton, Kristie M. (Geo-Watersheds Scientific); White, Daniel M. (University of Alaska Fairbanks, Water and Environmental Research Center)

    2005-09-30T23:59:59.000Z

    Tundra lakes on the North Slope, Alaska, are an important resource for energy development and petroleum field operations. A majority of exploration activities, pipeline maintenance, and restoration activities take place on winter ice roads that depend on water availability at key times of the winter operating season. These same lakes provide important fisheries and ecosystem functions. In particular, overwintering habitat for fish is one important management concern. This study focused on the evaluation of winter water use in the current field operating areas to provide a better understanding of the current water use practices. It found that under the current water use practices, there were no measurable negative effects of winter pumping on the lakes studied and current water use management practices were appropriately conservative. The study did find many areas where improvements in the understanding of tundra lake hydrology and water usage would benefit industry, management agencies, and the protection of fisheries and ecosystems.

  5. Hudson Valley Clean Energy Office and Warehouse

    High Performance Buildings Database

    Rhinebeck, NY Hudson Valley Clean Energy's new head office and warehouse building in Rhinebeck, New York, achieved proven net-zero energy status on July 2, 2008, upon completing its first full year of operation. The building consists of a lobby, meeting room, two offices, cubicles for eight office workers, an attic space for five additional office workers, ground- and mezzanine-level parts and material storage, and indoor parking for three contractor trucks.

  6. Sequachee Valley Electric Coop | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar PowerstoriesNrelPartnerTypePonsa, Mallorca: EnergySecondarySequachee Valley

  7. North Valley Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company) JumpNorth Haven, Maine:Ohio:Pole,NorthNorth Valley Geothermal

  8. Melton Valley Watershed | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of EnergyDevelopmentTechnologies | DepartmentADVISORYFinalMelton Valley

  9. Clean Cities: Rogue Valley Clean Cities coalition

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmerging FuelsRelated4Rogue Valley Clean Cities Coalition

  10. Characterization of a geothermal system in the Upper Arkansas Valley, CO Thomas Blum*, Kasper van Wijk and Lee Liberty, Boise State University

    E-Print Network [OSTI]

    Characterization of a geothermal system in the Upper Arkansas Valley, CO Thomas Blum*, Kasper van a geothermal system in the Mt. Princeton area. We conclude that a shallow orthogonal fault system in this area appears to be responsible for the local geothermal signature at and near the surface. The extent to which

  11. CONTRIBUTIONS TO 'fHE BIOLOGY OF THE GREAT LAKES. THE PLANKTON ALG~ OF LAKE ERIE, WITH SPECIAL REFERENCE TO

    E-Print Network [OSTI]

    OF THE GREAT LAKES. THE PLANKTON ALGA3 OF LAKE ERIE, WITH SPECIAL REFERENCE TO THE CHLOROPHYCEA3. By JULIA WCONTRIBUTIONS TO 'fHE BIOLOGY OF THE GREAT LAKES. THE PLANKTON ALG~ OF LAKE ERIE, WITH SPECIAL

  12. Alluvial deposition and lake-level fluctuations forced by Late Quaternary climate change: the Dead Sea case example

    E-Print Network [OSTI]

    Klinger, Yann

    -level fluctuations, alluvial deposition and river entrenchment in the Dead SeaWadi Araba area. The bulk of alluvium in the northern Wadi Araba was probably deposited before the Lisan period of lake transgression that started

  13. VALMET: a valley air pollution model. Final report. Revision 1

    SciTech Connect (OSTI)

    Whiteman, C.D.; Allwine, K.J.

    1985-04-01T23:59:59.000Z

    An air quality model is described for predicting air pollution concentrations in deep mountain valleys arising from nocturnal down-valley transport and diffusion of an elevated pollutant plume, and the fumigation of the plume on the valley floor and sidewalls after sunrise. Included is a technical description of the model, a discussion of the model's applications, the required model inputs, sample calculations and model outputs, and a full listing of the FORTRAN computer program. 55 refs., 27 figs., 6 tabs.

  14. Citrus Production in the Lower Rio Grande Valley of Texas.

    E-Print Network [OSTI]

    Traub, Hamilton Paul; Friend, W. H. (William Heartsill)

    1930-01-01T23:59:59.000Z

    LIE?ARY, A t r: COLLEGE, CAvrus. TEXAS AGRICULTURAL EXPERIMENT STATION A. B. CONNER, DIRECTOR COLLEGE STATION, BRAZOS COUNTY, TEXAS - BULLETIN NO. 419 DIVISION OF HORTICULTURE Citrus Production in the Lower Rio Grande Valley of Texas... of Agriculture. . Citrus fruit production in the Lower Rio Grande Valley, especially grapefruit, has increased at a rather rapid rate dur- ing the past few years. More than 5,000,000 citrus trees were set in orchard form in the Lower Rio Grande Valley up...

  15. Evidence from lake sediments, marine sediments, and ice cores

    E-Print Network [OSTI]

    Sengun, Mehmet Haluk

    Evidence from lake sediments, marine sediments, and ice cores #12;Outline · Archives · Proxies and glaciers #12;Archive: Lake sediments #12;Lake sediments - sampling #12;Lake sediments - proxies Lake sediments: age Wohlfarth et al. Geology 2008 #12;Lake sediments - proxies Wohlfarth et al. Geology 2008 #12

  16. Santa Clara Valley Transportation Authority and San Mateo County...

    Energy Savers [EERE]

    Santa Clara Valley Transportation Authority and San Mateo County Transit District Fuel Cell Transit Buses: Preliminary Evaluation Results vtaprelimevalresults.pdf More...

  17. Verdigris Valley Electric Cooperative- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Verdigris Valley Electric Cooperative (VVEC) offers rebates for residential customers who purchase energy efficient home equipment. Rebates are available for room air conditioners, electric water...

  18. West Valley Demonstration Project - North Plateau Strontium-90...

    Office of Environmental Management (EM)

    Demonstration Project - North Plateau Strontium-90 West Valley Demonstration Project - North Plateau Strontium-90 January 1, 2014 - 12:00pm Addthis US Department of Energy...

  19. Non-Double-Couple Microearthquakes At Long Valley Caldera, California...

    Open Energy Info (EERE)

    Microearthquakes At Long Valley Caldera, California, Provide Evidence For Hydraulic Fracturing Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  20. Water geochemistry study of Indian Wells Valley, Inyo and Kern...

    Open Energy Info (EERE)

    Final report Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Water geochemistry study of Indian Wells Valley, Inyo and Kern Counties, California....