Powered by Deep Web Technologies
Note: This page contains sample records for the topic "lake paiute tribe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

NV-TRIBE-SUMMIT LAKE PAIUTE TRIBE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NV-TRIBE-SUMMIT LAKE PAIUTE TRIBE NV-TRIBE-SUMMIT LAKE PAIUTE TRIBE Location: Tribe NV-TRIBE-SUMMIT NV LAKE PAIUTE TRIBE American Recovery and Reinvestment Act: Proposed Action or Project Description The Summit Lake Paiute Tribe of Nevada will conduct energy building retrofits on several tribal-owned buildings including: Maintenance Shop (insulate walls and cover insulation to keep in place); Bunkhouse (replace single-pane glass windows, and repair or replace two exit doors); Tribal Administrative Office (replace old electric water heater and three air conditioner/heaters, and replace single-pane glass windows): Community Well Shed (install walls, cover insulation, and replace single-pane glass windows); Cabin #1 and Cabin #2 (insulate and/or replace single-pane windows). Conditions: None

2

CA-TRIBE-PAIUTE-SHOSHONE INDIANS OF THE LONE PINE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Department of Energy Categorical Exclusion Determination Form Program or Field Office: Energy Efficiency and Conservation Block Grant Program Project Title CA-TRIBE-PAIUTE-SHOSHONE INDIANS OF THE LONE PINE COMMUNITY Location: Tribe CA-TRIBE-PAIUTE- SHOSHONE INDIANS OF THE LONE PINE COMMUNITY CA American Recovery and Reinvestment Act: Proposed Action or Project Description The Paiute-Shoshone Indians of the Lone Pine Community propose to prepare a feasibility study for

3

CA-TRIBE-BLUE LAKE RANCHERIA  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CA-TRIBE-BLUE LAKE RANCHERIA CA-TRIBE-BLUE LAKE RANCHERIA Location: Tribe CA-TRIBE-BLUE CA LAKE RANCHERIA American Recovery and Reinvestment Act: Proposed Action or Project Description The Blue Lake Rancheria Tribe of California proposes to hire a technical consultant to gather additional information and make recommendations as to the best energy efficiency and conservation project or projects to utilize energy efficiency and conservation block grant funds. Following these recommendations, a decision will be made on building retrofits, and the specific retrofits will be identified and submitted for NEPA review. Conditions: None Categorical Exclusion(s) Applied: A9, A11 *-For the complete DOE National Environmental Policy Act regulations regarding categorical exclusions, see Subpart D of 10 CFR10 21

4

Bishop Paiute Weatherization Training Program  

SciTech Connect

The DOE Weatherization Training Grant assisted Native American trainees in developing weatherization competencies, creating employment opportunities for Bishop Paiute tribal members in a growing field. The trainees completed all the necessary training and certification requirements and delivered high-quality weatherization services on the Bishop Paiute Reservation. Six tribal members received all three certifications for weatherization; four of the trainees are currently employed. The public benefit includes (1) development of marketable skills by low-income Native individuals, (2) employment for low-income Native individuals in a growing industry, and (3) economic development opportunities that were previously not available to these individuals or the Tribe.

Carlos Hernandez

2010-01-28T23:59:59.000Z

5

Pyramid Lake Renewable Energy Project  

DOE Green Energy (OSTI)

The Pyramid Lake Paiute Tribe is a federally recognized Tribe residing on the Pyramid Lake Reservation in western Nevada. The funding for this project was used to identify blind geothermal systems disconnected from geothermal sacred sites and develop a Tribal energy corporation for evaluating potential economic development for profit.

John Jackson

2008-03-14T23:59:59.000Z

6

PYRAMID LAKE RENEWEABLE ENERGY PLAN  

DOE Green Energy (OSTI)

The Pyramid Lake Renewable Energy Plan covers these areas: energy potential (primarily focusing on geothermal resource potential, but also more generally addressing wind energy potential); renewable energy market potential; transmission system development; geothermal direct use potential; and business structures to accomplish the development objectives of the Pyramid Lake Paiute Tribe.

HIGH DESERT GEOCULTURE, LLC

2009-06-06T23:59:59.000Z

7

MI-TRIBE-LAC VIEUX DESERT BAND OF LAKE SUPERIOR CHIPPEWA  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MI-TRIBE-LAC VIEUX DESERT BAND OF LAKE SUPERIOR CHIPPEWA MI-TRIBE-LAC VIEUX DESERT BAND OF LAKE SUPERIOR CHIPPEWA INDIANS Location: Tribe MI-TRIBE-LAC VIEUX DESERT BAND OF LAKE SUPERIOR CHIPPEWA INDIANS MI American Recovery and Reinvestment Act: Proposed Action or Project Description The Lac Vieux Desert Tribe proposes to use funding to help with a current effort that is a collaboration of the Tribe with the Conservation Fund of Michigan, an effort that is funded by the W.K. Kellogg Foundation. The project will be conducting a feasibility study to determine the viability of using wood products from resources found on tribal lands. The study is dedicating a part of the effort to see the feasibility of providing a renewable energy source to the Tribe in the form of wood products and biomass fuels. NEPA

8

Tribe's Headquarters Gets Energy Efficiency Makeover | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tribe's Headquarters Gets Energy Efficiency Makeover Tribe's Headquarters Gets Energy Efficiency Makeover Tribe's Headquarters Gets Energy Efficiency Makeover July 27, 2010 - 3:00pm Addthis Stephen Graff Former Writer & editor for Energy Empowers, EERE With 900 tribal members, a small land base for development and limited access to water, the Paiute Indian Tribe of Utah must prioritize its finances. That means some projects, like fixing the tribal headquarters, with its deteriorating stucco exterior and temperamental HVAC system, had to wait. So when Gaylord Robb, the tribe's economic development director, learned of an Energy Efficiency and Conservation Block Grant from the U.S. Department of Energy, he jumped at the chance. "It's been an uphill battle to do economic development on that land," Robb

9

Tribe's Headquarters Gets Energy Efficiency Makeover | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tribe's Headquarters Gets Energy Efficiency Makeover Tribe's Headquarters Gets Energy Efficiency Makeover Tribe's Headquarters Gets Energy Efficiency Makeover July 27, 2010 - 3:00pm Addthis Stephen Graff Former Writer & editor for Energy Empowers, EERE With 900 tribal members, a small land base for development and limited access to water, the Paiute Indian Tribe of Utah must prioritize its finances. That means some projects, like fixing the tribal headquarters, with its deteriorating stucco exterior and temperamental HVAC system, had to wait. So when Gaylord Robb, the tribe's economic development director, learned of an Energy Efficiency and Conservation Block Grant from the U.S. Department of Energy, he jumped at the chance. "It's been an uphill battle to do economic development on that land," Robb

10

CA-TRIBE-YUROK TRIBE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CA-TRIBE-YUROK TRIBE CA-TRIBE-YUROK TRIBE Location: Tribe CA-TRIBE-YUROK CA TRIBE American Recovery and Reinvestment Act: Proposed Action or Project Description The Yurok Tribe of California proposes to conduct energy efficiency retrofits to the Klamath and Weitchpec Tribal Offices based on the results of the energy audits completed in 2006. The Klamath Office energy efficiency building retrofits would include repair/re-weatherstripping of exterior doors; installation of operable lovers on passive vents in the attic; replacement of double-pane windows; caulking; heating, ventilating, and air conditioning system repair and tuning; installation of check valves in hot water lines; insulation of hot water lines; timer repair; delamping; and occupancy sensors. The Weitchpec Office

11

Comprehensive Evaluation of the Geothermal Resource Potential...  

Open Energy Info (EERE)

this study will allow the Pyramid Lake Paiute Tribe to make informed decisions regarding construction of a geothermal power plant. Additional benefits include the transfer of new...

12

WA-TRIBE-STILLAGUAMISH TRIBE OF INDIANS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WA-TRIBE-STILLAGUAMISH TRIBE OF INDIANS WA-TRIBE-STILLAGUAMISH TRIBE OF INDIANS Energy Efficiency and Conservation Block Grant Program Location: Tribe WA-TRIBE- STILLAGUAMISH TRIBE OF INDIANS WA American Recovery and Reinvestment Act: Proposed Action or Project Description The Stillaguamish Tribe proposes to expand its Stillaguamish Tribe Transit Services (STTS). For the past three years, the STTS has employed 14-passenger buses to transport clients to and from the tribal medical, dental, behavioral health and massage clinics. Often the demand-response requests that come to STTS are for one to three passengers at a time; therefore, funds are being requested to purchase a hybrid sedan to transport clients. Conditions: None Categorical Exclusion(s) Applied: A1, B1.32, B5.1 *-For the complete DOE National Environmental Policy Act regulations regarding categorical exclusions, see Subpart D of 10 CFR10 21

13

OK-TRIBE-ALABAMA QUASSARTE TRIBE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OK-TRIBE-ALABAMA QUASSARTE TRIBE OK-TRIBE-ALABAMA QUASSARTE TRIBE Energy Efficiency and Conservation Block Grant Program Location: Tribe OK-TRIBE- ALABAMA QUASSARTE TRIBE OK American Recovery and Reinvestment Act: Proposed Action or Project Description The Alabama Quassarte Tribe of Oklahoma proposes to 1) hire a consultant to manage the overall energy efficiency and conservation block grant program, hire and monitor outreach staff, and create an energy policy upon completion of building audits; and 2) hire a part-time program coordinator to conduct public education in the current energy efficiency techniques and technologies to enable the community in implementing the correct conservation procedures and conduct seminars on energy efficiency and conservation, consumption of non-renewable items, and recycling, after the coordinator has been trained

14

ICEIWG Participating Tribes  

Energy.gov (U.S. Department of Energy (DOE))

List of participating Tribes in the Indian Country Energy and Infrastructure Working Group (ICEIWG).

15

Energy Efficiency and Conservation Block Grant Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NV-TRIBE-PYRAMID LAKE PAIUTE TRIBE NV-TRIBE-PYRAMID LAKE PAIUTE TRIBE Energy Efficiency and Conservation Block Grant Program Location: Tribe NV-TRIBE- PYRAMID LAKE PAIUTE TRIBE NV American Recovery and Reinvestment Act: Proposed Action or Project Description The Pyramid Lake Paiute Tribe proposes to utilize grant funds to purchase compact fluorescent light bulbs for residents of the Tribe and replace incandescent light bulbs to save energy; purchase water heater blankets for tribal homes; and hire a technician to administer installation of these retrofits. Conditions: None Categorical Exclusion(s) Applied: A9, A11, B2.5, B5.1 *-For the complete DOE National Environmental Policy Act regulations regarding categorical exclusions, see Subpart D of 10 CFR10 21 This action would not: threaten a violation of applicable statutory, regulatory, or permit requirements for environment, safety, and health,

16

Assessment of Biomass Energy Opportunities for the Red Lake Band of Chippewa Indians  

Science Conference Proceedings (OSTI)

Assessment of biomass energy and biobased product manufacturing opportunities for the Red Lake Tribe.

Scott Haase (McNeil Technologies, Inc)

2005-09-30T23:59:59.000Z

17

More Weatherized Homes for Minnesota Tribe | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

More Weatherized Homes for Minnesota Tribe More Weatherized Homes for Minnesota Tribe More Weatherized Homes for Minnesota Tribe April 22, 2010 - 4:51pm Addthis Stephen Graff Former Writer & editor for Energy Empowers, EERE Randy and Dorothy Pittman are cozy now, but for the first few winters in their new home at the Fond du Lac Reservation this was not the case. At first, the couple, who moved from muggy Alabama, thought they needed time to acclimate to the Minnesota cold. It turned out it was the two-story house they constructed that needed adjusting. "I had not built a house in the North," says Dorothy, a tribal member of the Fond du Lac Band of Lake Superior Chippewa, who takes partial blame for a drafty downstairs. "It's a whole different climate here." Everything changed last fall after a weatherization crew from Arrowhead

18

More Weatherized Homes for Minnesota Tribe | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

More Weatherized Homes for Minnesota Tribe More Weatherized Homes for Minnesota Tribe More Weatherized Homes for Minnesota Tribe April 22, 2010 - 4:51pm Addthis Stephen Graff Former Writer & editor for Energy Empowers, EERE Randy and Dorothy Pittman are cozy now, but for the first few winters in their new home at the Fond du Lac Reservation this was not the case. At first, the couple, who moved from muggy Alabama, thought they needed time to acclimate to the Minnesota cold. It turned out it was the two-story house they constructed that needed adjusting. "I had not built a house in the North," says Dorothy, a tribal member of the Fond du Lac Band of Lake Superior Chippewa, who takes partial blame for a drafty downstairs. "It's a whole different climate here." Everything changed last fall after a weatherization crew from Arrowhead

19

Three Affliated Tribes Renewable Energy Feasibility Study  

DOE Green Energy (OSTI)

The Three Affliated Tribes on the Fort Berthold Reservation studied the feasibility of a commercial wind facility on land selected and owned by the Tribes and examined the potential for the development of renewable energy resources on Tribal Lands.

Belvin Pete; Kent Good; Krista Gordon; Ed McCarthy,

2006-05-26T23:59:59.000Z

20

UT-TRIBE-NORTHWESTERN BAND OF SHOSHONE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Department of Energy Categorical Exclusion Determination Form Program or Field Office: Energy Efficiency and Conservation Block Grant Program Project Title UT-TRIBE-NORTHWESTERN BAND OF SHOSHONE Location: Tribe UT-TRIBE- NORTHWESTERN BAND OF SHOSHONE UT American Recovery and Reinvestment Act: Proposed Action or Project Description The Northwestern Band of Shoshone Nation of Utah proposes to perform energy efficiency improvements

Note: This page contains sample records for the topic "lake paiute tribe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

CA-TRIBE-SUSANVILLE INDIAN RANCHERIA, CALIFORNIA  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Department of Energy Categorical Exclusion Determination Form Program or Field Office: Energy Efficiency and Conservation Block Grant Program Project Title CA-TRIBE-SUSANVILLE INDIAN RANCHERIA, CALIFORNIA Location: Tribe CA-TRIBE- SUSANVILLE INDIAN RANCHERIA, CALIFORNIA CA American Recovery and Reinvestment Act: Proposed Action or Project Description The Susanville Indian Racheria proposes to establish the EPA's Portfolio Manager tool to collect key

22

NREL: Technology Deployment - Technical Assistance for Tribes  

NLE Websites -- All DOE Office Websites (Extended Search)

Tribes Tribes NREL provides technical assistance to help tribes build capacity to implement energy efficiency and renewable energy technology projects. We work with tribal communities across the continental United States and Alaska through two U.S. Department of Energy (DOE) programs: the Office of Energy Efficiency and Renewable Energy (EERE) Tribal Energy Program and the Office of Indian Energy Policy and Programs. Village of Venetie Village of Venetie NREL Technical Assistance Leads to Lower Electric Bills for Alaskans Forest County Potawatomi Tribe Renewable Energy Projects Help Tribe Reduce Carbon Footprint Technical Assistance and Capacity Building NREL technical assistance and capacity building on U.S. tribal lands includes: Providing unbiased technical expertise and analysis on potential

23

Workshop Helps Empower Tribes to Make Renewable Energy Project...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Workshop Helps Empower Tribes to Make Renewable Energy Project Development Decisions Workshop Helps Empower Tribes to Make Renewable Energy Project Development Decisions July 16,...

24

Key Renewable Energy Opportunities for Oklahoma Tribes | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Key Renewable Energy Opportunities for Oklahoma Tribes Key Renewable Energy Opportunities for Oklahoma Tribes August 13, 2012 Oklahoma City, Oklahoma Cox Convention Center The...

25

Renewable Energy Opportunities Saginaw Chippewa Indian Tribe  

DOE Green Energy (OSTI)

The Saginaw Chippewa Indian Tribe has a vision to become self-sufficient in its energy needs and to maintain its culture and protect Mother Earth with respect and honor for the next seven generations. To achieve this vision, green energy sources such as solar, wind and biomass energy are the best energy paths to travel. In this feasibility study the Tribe has analyzed and provided data on the nature of the renewable resources available to the Tribe and the costs of implementing these technologies.

Saginaw Chippewa Indian Tribe Planning Department; Smiley, Steve; Bennett, Keith, DOE Project Officer

2008-10-22T23:59:59.000Z

26

AK-TRIBE-NATIVE VILLAGE OF NAPAKIAK  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AK-TRIBE-NATIVE VILLAGE OF NAPAKIAK AK-TRIBE-NATIVE VILLAGE OF NAPAKIAK Energy Efficiency and Conservation Block Grant Program Location: Tribe AK-TRIBE-NATIVE VILLAGE OF NAPAKIAK AK American Recovery and Reinvestment Act: Proposed Action or Project Description The Native Village of Napakiak proposes to renovate/retrofit two buildings (Health Clinic and Community Center [former Transportation Building]) to become more energy efficient. Energy efficiency retrofits would include improvements to lighting systems, supplemental loads, air distribution systems, and/or heating and cooling systems, insulation, and windows/doors. Conditions: None Categorical Exclusion(s) Applied: B2.5, B5.1 *-For the complete DOE National Environmental Policy Act regulations regarding categorical exclusions, see Subpart D of 10 CFR10 21

27

Indian Tribes of the Northwest Territory  

NLE Websites -- All DOE Office Websites (Extended Search)

Tribes of the Northwest Territory Tribes of the Northwest Territory Nature Bulletin No. 388-A September 26, 1970 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation INDIAN TRIBES OF THE NORTHWEST TERRITORY The white men found many tribes inhabiting what became the Northwest Territory in 1787, and all but one belonged to the largest and most important Indian family, the Algonquians. The powerful Shawnee occupied most of the Ohio valley and its tributaries extending south into Kentucky, West Virginia and Tennessee. Tecumseh and his brother, "The Prophet", were Shawnee. The Iliniwek, called 'Illinois" by the French, was an Algonquian confederacy which had, for a long time, occupied most of this state except the northwestern part and the Wabash valley. In addition to several small bands it included the Kaskaskia, Peoria, Cahokia, Moingewena, and the Michigamea. The latter, whom Father Marquette found living in Missouri and Arkansas, were finally forced to move back into southern Illinois.

28

Categorical Exclusion Determinations: Office of Energy Efficiency and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

22: Categorical Exclusion Determination 22: Categorical Exclusion Determination California-Tribe-Paiute-Shoshone Indians of the Lone Pine Community CX(s) Applied: A9, A11 Date: 05/13/2010 Location(s): Lone Pine, California Office(s): Energy Efficiency and Renewable Energy May 13, 2010 CX-002320: Categorical Exclusion Determination North Dakota-Tribe-Turtle Mountain Band of Chippewa CX(s) Applied: A9, A11, B5 Date: 05/13/2010 Location(s): North Dakota Office(s): Energy Efficiency and Renewable Energy May 13, 2010 CX-002317: Categorical Exclusion Determination Nevada-Tribe-Summit Lake Paiute Tribe CX(s) Applied: B2.5, B5.1 Date: 05/13/2010 Location(s): Nevada Office(s): Energy Efficiency and Renewable Energy May 13, 2010 CX-002316: Categorical Exclusion Determination Oklahoma-Tribe-Alabama Quassarte Tribe

29

Categorical Exclusion Determinations: Native American and Alaskan Native  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 13, 2010 May 13, 2010 CX-002322: Categorical Exclusion Determination California-Tribe-Paiute-Shoshone Indians of the Lone Pine Community CX(s) Applied: A9, A11 Date: 05/13/2010 Location(s): Lone Pine, California Office(s): Energy Efficiency and Renewable Energy May 13, 2010 CX-002320: Categorical Exclusion Determination North Dakota-Tribe-Turtle Mountain Band of Chippewa CX(s) Applied: A9, A11, B5 Date: 05/13/2010 Location(s): North Dakota Office(s): Energy Efficiency and Renewable Energy May 13, 2010 CX-002317: Categorical Exclusion Determination Nevada-Tribe-Summit Lake Paiute Tribe CX(s) Applied: B2.5, B5.1 Date: 05/13/2010 Location(s): Nevada Office(s): Energy Efficiency and Renewable Energy May 13, 2010 CX-002316: Categorical Exclusion Determination Oklahoma-Tribe-Alabama Quassarte Tribe

30

Forest County Potawatomi Tribe Cuts Emissions, Promotes Green Growth |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Forest County Potawatomi Tribe Cuts Emissions, Promotes Green Forest County Potawatomi Tribe Cuts Emissions, Promotes Green Growth Forest County Potawatomi Tribe Cuts Emissions, Promotes Green Growth February 23, 2012 - 6:29pm Addthis The Forest County Potawatomi Tribe's solar system is providing heating, cooling, and electricity to the Tribe's administration building in Milwaukee, Wisconsin. Photo from the Forest County Potawatomi Tribe. The Forest County Potawatomi Tribe's solar system is providing heating, cooling, and electricity to the Tribe's administration building in Milwaukee, Wisconsin. Photo from the Forest County Potawatomi Tribe. Project Benefits Produce approximately 35,000 kilowatt-hours of clean electricity annually Reduce carbon dioxide emissions by an estimated 41 tons per year Preserve and increase local jobs for tribal members and others

31

State Government Websites With Indian Tribe Information | Department of  

NLE Websites -- All DOE Office Websites (Extended Search)

State Government Websites With Indian Tribe Information State Government Websites With Indian Tribe Information State Government Websites With Indian Tribe Information This list was compiled by the federal government's Interagency Working Group on Indian Affairs (IWGIA) as an aid to federal agency consultation with federally recognized Indian tribes. It is not intended to be an exhaustive source of information about Indian tribes in each state or about which tribes must be consulted by federal agencies for a proposed action or program within a particular state. The IWGIA has not verified the accuracy of the information. It is intended only to provide possible sources to learn about which tribes may be ancestral to a particular state. If an Indian tribe is not mentioned on a state's website, it cannot be assumed that the tribe has no interest in

32

Lower Brule Sioux Tribe Wind-Pump Storage Feasibility Study Project  

DOE Green Energy (OSTI)

The Lower Brule Sioux Tribe is a federally recognized Indian tribe organized pursuant to the 1934 Wheeler-Howard Act (ôIndian Reorganization Actö). The Lower Brule Sioux Indian Reservation lies along the west bank of Lake Francis Case and Lake Sharpe, which were created by the Fort Randall and Big Bend dams of the Missouri River pursuant to the Pick Sloan Act. The grid accessible at the Big Bend Dam facility operated by the U.S. Army Corps of Engineers is less than one mile of the wind farm contemplated by the Tribe in this response. The low-head hydroelectric turbines further being studied would be placed below the dam and would be turned by the water released from the dam itself. The riverbed at this place is within the exterior boundaries of the reservation. The low-head turbines in the tailrace would be evaluated to determine if enough renewable energy could be developed to pump water to a reservoir 500 feet above the river.

Shawn A. LaRoche; Tracey LeBeau; Innovation Investments, LLC

2007-04-20T23:59:59.000Z

33

CX-004042: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

42: Categorical Exclusion Determination 42: Categorical Exclusion Determination CX-004042: Categorical Exclusion Determination Nevada-Tribe-Pyramid Lake Paiute Tribe CX(s) Applied: A9, A11, B2.5, B5.1 Date: 10/01/2010 Location(s): Nevada Office(s): Energy Efficiency and Renewable Energy Energy Efficiency and Conservation Block Grant Program. The Pyramid Lake Paiute Tribe proposes to utilize grant funds to purchase compact fluorescent light bulbs for residents of the Tribe and replace incandescent light bulbs to save energy; purchase water heater blankets for tribal homes; and hire a technician to administer installation of these retrofits. DOCUMENT(S) AVAILABLE FOR DOWNLOAD CX-004042.pdf More Documents & Publications CX-004375: Categorical Exclusion Determination CX-004822: Categorical Exclusion Determination

34

Federally-Recognized Tribes of the Columbia-Snake Basin.  

Science Conference Proceedings (OSTI)

This is an omnibus publication about the federally-recognized Indian tribes of the Columbia-Snake river basin, as presented by themselves. It showcases several figurative and literal snapshots of each tribe, bits and pieces of each tribe`s story. Each individual tribe or tribal confederation either submitted its own section to this publication, or developed its own section with the assistance of the writer-editor. A federally-recognized tribe is an individual Indian group, or confederation of Indian groups, officially acknowledged by the US government for purposes of legislation, consultation and benefits. This publication is designed to be used both as a resource and as an introduction to the tribes. Taken together, the sections present a rich picture of regional indian culture and history, as told by the tribes.

United States. Bonneville Power Administration

1997-11-01T23:59:59.000Z

35

Cultural Relations of the Gila River and Lower Colorado Tribes  

E-Print Network (OSTI)

OF THE GILA RIVER AND LOWER COLORADO TRIBES Included in theGila River and Lower Colorado Tribes" by Professor Leslieof the Yumans on the Lower Colorado, but that the Pima, at

Gifford, Edward Winslow

1936-01-01T23:59:59.000Z

36

Karuk Tribe Strategic Energy Plan and Energy Options Analysis  

SciTech Connect

Energy planning document to assist the Karuk Tribe in making educated decisions about future energy priorities and implementation.

Ramona Taylor, Karuk Tribe; David Carter, Winzler and Kelly

2009-03-31T23:59:59.000Z

37

Sault Tribe Wind Energy Feasibility Study  

DOE Green Energy (OSTI)

The Sault Tribe conducted a feasibility study on tribal lands in the Upper Peninsula of Michigan to determine the technical and economic feasibility of both small and large-scale wind power development on tribal lands. The study included a wind resource assessment, transmission system analysis, engineering and regulatory analyzes and assessments.

Toni Osterhout; Global Energy Concepts

2005-07-31T23:59:59.000Z

38

Sault Tribe Building Efficiency Energy Audits  

SciTech Connect

The Sault Ste. Marie Tribe of Chippewa Indians is working to reduce energy consumption and expense in Tribally-owned governmental buildings. The Sault Ste. Marie Tribe of Chippewa Indians will conduct energy audits of nine Tribally-owned governmental buildings in three counties in the Upper Peninsula of Michigan to provide a basis for evaluating and selecting the technical and economic viability of energy efficiency improvement options. The Sault Ste. Marie Tribe of Chippewa Indians will follow established Tribal procurement policies and procedures to secure the services of a qualified provider to conduct energy audits of nine designated buildings. The contracted provider will be required to provide a progress schedule to the Tribe prior to commencing the project and submit an updated schedule with their monthly billings. Findings and analysis reports will be required for buildings as completed, and a complete Energy Audit Summary Report will be required to be submitted with the provider?s final billing. Conducting energy audits of the nine governmental buildings will disclose building inefficiencies to prioritize and address, resulting in reduced energy consumption and expense. These savings will allow Tribal resources to be reallocated to direct services, which will benefit Tribal members and families.

Holt, Jeffrey W.

2013-09-26T23:59:59.000Z

39

Community Renewable Energy Deployment: Forest County Potawatomi Tribe |  

Open Energy Info (EERE)

Potawatomi Tribe Potawatomi Tribe Jump to: navigation, search Name Community Renewable Energy Deployment: Forest County Potawatomi Tribe Agency/Company /Organization US Department of Energy Sector Energy Focus Area Energy Efficiency - Central Plant, Economic Development, Forestry, Greenhouse Gas, Renewable Energy, Biomass - Anaerobic Digestion, Biomass, Solar, - Solar Pv, Biomass - Waste To Energy Phase Develop Finance and Implement Projects Resource Type Case studies/examples Availability Publicly available -- Free Publication Date 11/29/2010 Website http://www1.eere.energy.gov/co Locality Forest County Potawatomi Tribe References Community Renewable Energy Deployment: Forest County Potawatomi Tribe[1] Contents 1 Overview 2 Highlights 3 Environmental Aspects 4 References

40

CA-TRIBE-TUOLUMNE BAND OF MEWUK INDIANS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TRIBE-TUOLUMNE BAND OF MEWUK INDIANS TRIBE-TUOLUMNE BAND OF MEWUK INDIANS Location: Tribe CA-TRIBE- TUOLUMNE BAND OF MEWUK INDIANS CA American Recovery and Reinvestment Act: Proposed Action or Project Description The Tuolumne Band of MeWuk Indians proposes to reduce their fossil fuel emissions through increased energy efficiency and the implementation of renewable energy where applicable. Currently, the Tribe has contracted with the Renewable and Appropriate Energy Laboratory (RAEL) of the University of California, Berkeley, to identify the most cost-effective opportunities for increased energy efficiency and renewable energy technologies. The Tribe proposes to use a portion of the funding to allocate funds to RAEL for technical consultant services to assist the Tribe in identifying, prioritizing, and coordinating site specific

Note: This page contains sample records for the topic "lake paiute tribe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

CX-004822: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

22: Categorical Exclusion Determination 22: Categorical Exclusion Determination CX-004822: Categorical Exclusion Determination Ph2 - Resource Confirmation Well - Comprehensive Evaluation of the Geothermal Resource Potential within the Pyramid Lake Paiute Reservation CX(s) Applied: A9, B3.1, B5.1 Date: 12/21/2010 Location(s): Nevada Office(s): Energy Efficiency and Renewable Energy, Golden Field Office Pyramid Lake Paiute Tribe (PLPT) would characterize a geothermal reservoir using novel technologies and would then integrate this information into a numerical model to help determine the viability of future geothermal production at the Astor Pass site within the Pyramid Lake Paiute Reservation. The project includes exploration, drilling, well testing, and analysis. DOCUMENT(S) AVAILABLE FOR DOWNLOAD

42

Comprehensive Evaluation of the Geothermal Resource Potential within the  

Open Energy Info (EERE)

Comprehensive Evaluation of the Geothermal Resource Potential within the Comprehensive Evaluation of the Geothermal Resource Potential within the Pyramid Lake Paiute Reservation Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Comprehensive Evaluation of the Geothermal Resource Potential within the Pyramid Lake Paiute Reservation Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description The proposed project will provide state-of-the-art characterization information and a detailed analysis of the geothermal resource potential at the Astor Pass site. The information gained during this study will allow the Pyramid Lake Paiute Tribe to make informed decisions regarding construction of a geothermal power plant. Additional benefits include the transfer of new technologies and geothermal data to the geothermal industry and to create and preserve nearly three dozen jobs that will serve to stimulate the economy in accordance with the American Recovery and Reinvestment Act of 2009.

43

CX-004375: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

75: Categorical Exclusion Determination 75: Categorical Exclusion Determination CX-004375: Categorical Exclusion Determination Slim Well - Comprehensive Evaluation of the Geothermal Resource Potential within the Pyramid Lake Paiute Reservation CX(s) Applied: A9, B3.1, B5.1 Date: 11/02/2010 Location(s): Nevada Office(s): Energy Efficiency and Renewable Energy, Golden Field Office Pyramid Lake Paiute Tribe would characterize a geothermal reservoir using novel technologies and would then integrate this information into a numerical model to help determine the viability of future geothermal production at the Astor Pass site within the Pyramid Lake Paiute Reservation. The project includes exploration, drilling, well testing, and analysis. DOCUMENT(S) AVAILABLE FOR DOWNLOAD CX-004375.pdf More Documents & Publications

44

North Bar Lake South Bar Lake  

E-Print Network (OSTI)

Traverse Lake Lime Lake Crystal River Sh alda Cr GOOD HARBOR BAY SLEEPING BEAR BAY PLATTE BA Y LAKE South Bar Lake Otter Lake Loon Lake Long Lake Rush Lake Platte Lake Little Platte Lake CRYSTAL LAKE MICHIGAN LAKE MICHIGAN Lake Elevation 580ft (177m) MANITOU PAS S A G E Ott er C reek Pl atte River Platt e

45

Council of Energy Resources Tribes 1993 summer internship report: Nez Perce Tribe  

SciTech Connect

This paper is designed to be a working part of a larger project which would deal with the topic of Tribal interests affected by the DOE Environmental Restoration and Waste Management program and the approaches by which those Tribal interests can be advanced. Topics discussed in this paper include: background history of the Nez Perce Tribe`s relations with the US government; a Nez Perce view of tribal interests affected by DOE activities at Hanford; and a Nez Perce framework for private/governmental/tribal interest.

Crow, J.S.

1993-08-01T23:59:59.000Z

46

CX-002317: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7: Categorical Exclusion Determination 7: Categorical Exclusion Determination CX-002317: Categorical Exclusion Determination Nevada-Tribe-Summit Lake Paiute Tribe CX(s) Applied: B2.5, B5.1 Date: 05/13/2010 Location(s): Nevada Office(s): Energy Efficiency and Renewable Energy Energy Efficiency and Conservation Block Grant Program. The Summit Lake Paiute Tribe of Nevada will conduct energy building retrofits on several tribal-owned buildings including: Maintenance Shop (insulate walls and cover insulation to keep in place); Bunkhouse (replace single-pane glass windows, and repair or replace two exit doors); Tribal Administrative Office (replace old electric water heater and three air conditioner/heaters, and replace single-pane glass windows): Community Well Shed (install walls, cover insulation, and replace single-pane glass

47

Forest County Potawatomi Tribe Cuts Emissions, Promotes Green...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

integrated renewable energy deployment plan that includes the installation of solar, biogas, and biomass energy systems to heat, cool, and power its tribal facilities. The Tribe...

48

Oklahoma Tribe to Install Solar Roof | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oklahoma Tribe to Install Solar Roof Oklahoma Tribe to Install Solar Roof Oklahoma Tribe to Install Solar Roof March 22, 2010 - 6:10pm Addthis Stephen Graff Former Writer & editor for Energy Empowers, EERE What does this project do? The new fully functioning roof and solar energy production plant will save the tribe about $20,000 a year. The Delaware Nation, a federally-recognized tribe of about 1,400 people in Anadarko, Okla., will install solar panel roofs on two tribal government buildings as part of a larger effort to become more sustainable and bring new jobs to an area struggling with high unemployment. "It's the start of a green initiative," says Theda McPheron-Keel, president of Wind Hollow Foundation, a nonprofit organization aimed at helping American Indians improve their lives. "It provides economic

49

New Renewable Energy Development Resources for Tribes | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Renewable Energy Development Resources for Tribes New Renewable Energy Development Resources for Tribes New Renewable Energy Development Resources for Tribes June 7, 2013 - 5:16pm Addthis This map from a newly published DOE Office of Indian Energy white paper shows transmission lines highlighted in red, military bases in green, and tribal lands in purple. Of the Tribes identified in the paper as being in close proximity to military bases, 54% are located in the West, 18% in the Pacific Northwest, and 12% in New England and New York. This map from a newly published DOE Office of Indian Energy white paper shows transmission lines highlighted in red, military bases in green, and tribal lands in purple. Of the Tribes identified in the paper as being in close proximity to military bases, 54% are located in the West, 18% in the

50

Interior Department Solicits Grant Proposals from Tribes | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Interior Department Solicits Grant Proposals from Tribes Interior Department Solicits Grant Proposals from Tribes Interior Department Solicits Grant Proposals from Tribes January 9, 2014 - 11:11am Addthis On December 23, Assistant Secretary-Indian Affairs Kevin K. Washburn announced that the U.S. Department of the Interior's (DOI's) Office of Indian Energy and Economic Development (IEED) is soliciting grant proposals from Indian Tribes and Alaska Native regional and village corporations for projects to 1) build tribal capacity for energy resource development and 2) promote the processing, use, or development of energy and mineral resources on Indian lands. Tribal Energy Development Capacity-Building Grant Proposals Applications Due: February 18, 2014 Eligible Entities: Federally recognized Tribes, including Alaska Native

51

Oklahoma Tribe to Install Solar Roof | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oklahoma Tribe to Install Solar Roof Oklahoma Tribe to Install Solar Roof Oklahoma Tribe to Install Solar Roof March 22, 2010 - 6:10pm Addthis Stephen Graff Former Writer & editor for Energy Empowers, EERE What does this project do? The new fully functioning roof and solar energy production plant will save the tribe about $20,000 a year. The Delaware Nation, a federally-recognized tribe of about 1,400 people in Anadarko, Okla., will install solar panel roofs on two tribal government buildings as part of a larger effort to become more sustainable and bring new jobs to an area struggling with high unemployment. "It's the start of a green initiative," says Theda McPheron-Keel, president of Wind Hollow Foundation, a nonprofit organization aimed at helping American Indians improve their lives. "It provides economic

52

New Renewable Energy Development Resources for Tribes | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Renewable Energy Development Resources for Tribes New Renewable Energy Development Resources for Tribes New Renewable Energy Development Resources for Tribes June 7, 2013 - 5:16pm Addthis This map from a newly published DOE Office of Indian Energy white paper shows transmission lines highlighted in red, military bases in green, and tribal lands in purple. Of the Tribes identified in the paper as being in close proximity to military bases, 54% are located in the West, 18% in the Pacific Northwest, and 12% in New England and New York. This map from a newly published DOE Office of Indian Energy white paper shows transmission lines highlighted in red, military bases in green, and tribal lands in purple. Of the Tribes identified in the paper as being in close proximity to military bases, 54% are located in the West, 18% in the

53

Clean Energy Projects Helping Wisconsin Tribe Achieve Sustainability Goals  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Energy Projects Helping Wisconsin Tribe Achieve Clean Energy Projects Helping Wisconsin Tribe Achieve Sustainability Goals Clean Energy Projects Helping Wisconsin Tribe Achieve Sustainability Goals January 13, 2014 - 11:19am Addthis Before (left) and after photo of historic Wunder Hall, where Milwaukee's Forest County Potawatomi Community completed a major energy upgrade project. The building now serves as the tribe's economic development center. | Courtesy of Forest County Potawatomi Community Before (left) and after photo of historic Wunder Hall, where Milwaukee's Forest County Potawatomi Community completed a major energy upgrade project. The building now serves as the tribe's economic development center. | Courtesy of Forest County Potawatomi Community Lizana Pierce Project Manager, Tribal Energy Program

54

Workshop Helps Empower Tribes to Make Renewable Energy Project Development  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Workshop Helps Empower Tribes to Make Renewable Energy Project Workshop Helps Empower Tribes to Make Renewable Energy Project Development Decisions Workshop Helps Empower Tribes to Make Renewable Energy Project Development Decisions July 16, 2013 - 4:52pm Addthis Workshop guest speaker Bill Cornelius of Oneida Seven Generations Corporation discussed the tribal renewable energy project development and finance process in action. Photo by John De La Rosa, NREL Workshop guest speaker Bill Cornelius of Oneida Seven Generations Corporation discussed the tribal renewable energy project development and finance process in action. Photo by John De La Rosa, NREL Workshop guest speaker Rebecca Kauffman outlined the roles Tribes can play in renewable energy projects, as well as lessons learned based on her experience working on projects for the Southern Ute Tribe. Photo by Amy Glickson, NREL

55

AK-TRIBE-CENTRAL COUNCIL OF TLINGIT AND HAIDA INDIANS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AK-TRIBE-CENTRAL COUNCIL OF TLINGIT AND HAIDA INDIANS AK-TRIBE-CENTRAL COUNCIL OF TLINGIT AND HAIDA INDIANS Location: Tribe AK-TRIBE- CENTRAL COUNCIL OF TLINGIT AND HAIDA INDIANS AK American Recovery and Reinvestment Act: Proposed Action or Project Description The Central Council of the Tlingit and Haida Indian Tribes of Alaska propose to conduct energy audits of tribally owned facilities. Specific retrofit activities will be determined based on the results of the audits, and these retrofit activities will be submitted for appropriate NEPA review. Conditions: None Categorical Exclusion(s) Applied: A9, B5.1 *-For the complete DOE National Environmental Policy Act regulations regarding categorical exclusions, see Subpart D of 10 CFR10 21 This action would not: threaten a violation of applicable statutory, regulatory, or permit requirements for environment, safety, and health,

56

Key Renewable Energy Opportunities for Oklahoma Tribes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TRIBAL LEADER FORUM SERIES TRIBAL LEADER FORUM SERIES KEY RENEWABLE ENERGY OPPORTUNITIES FOR OKLAHOMA TRIBES August 13, 2012 COX CONVENTION CENTER 100 West Sheridan Avenue, Oklahoma City, OK 73102 (405) 602-8500 The fifth in a series of planned U.S. DOE Office of Indian Energy-sponsored strategic energy development & investment forums, this forum is designed to give Oklahoma tribal leaders the opportunity to receive the latest updates on DOE's energy development efforts in Indian Country. The Forum will provide a venue for tribal leaders to discuss best practices in renewable energy development, including project development and finance, issues related to Oklahoma land ownership, and energy planning and energy markets. Tribal leaders will also have the opportunity to directly converse with each other by participating in a roundtable

57

San Carlos Apache Tribe - Energy Organizational Analysis  

SciTech Connect

The San Carlos Apache Tribe (SCAT) was awarded $164,000 in late-2011 by the U.S. Department of Energy (U.S. DOE) Tribal Energy Program's "First Steps Toward Developing Renewable Energy and Energy Efficiency on Tribal Lands" Grant Program. This grant funded: ? The analysis and selection of preferred form(s) of tribal energy organization (this Energy Organization Analysis, hereinafter referred to as "EOA"). ? Start-up staffing and other costs associated with the Phase 1 SCAT energy organization. ? An intern program. ? Staff training. ? Tribal outreach and workshops regarding the new organization and SCAT energy programs and projects, including two annual tribal energy summits (2011 and 2012). This report documents the analysis and selection of preferred form(s) of a tribal energy organization.

Rapp, James; Albert, Steve

2012-04-01T23:59:59.000Z

58

District Date(s) Tribe(s) State(s) Program/Project Tribal Issues/Concerns Status Lakes & Rivers  

E-Print Network (OSTI)

.................................................................19 Blackfeet Tribal Education Grant

US Army Corps of Engineers

59

Wisconsin Tribe Performing State-Wide Audits on 'Energy Wasters' |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wisconsin Tribe Performing State-Wide Audits on 'Energy Wasters' Wisconsin Tribe Performing State-Wide Audits on 'Energy Wasters' Wisconsin Tribe Performing State-Wide Audits on 'Energy Wasters' August 24, 2010 - 11:00am Addthis Ho-Chunk Nation is conducting audits throughout Wisconsin to find energy wasters such as decrepit HVAC units. | File photo Ho-Chunk Nation is conducting audits throughout Wisconsin to find energy wasters such as decrepit HVAC units. | File photo Stephen Graff Former Writer & editor for Energy Empowers, EERE What are the key facts? Ho-Chunk Nation received a $392,200 block grant under Recovery Act for energy audits. 30 tribal buildings will be audited across Nation's lands and audit recommendations could save tribes up to 30 percent on energy bills. Drive through Wisconsin, and you're bound to catch a glimpse of one of the

60

NM-TRIBE-PUEBLO OF POJOAQUE HOUSING CORPORATION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NM-TRIBE-PUEBLO OF POJOAQUE HOUSING CORPORATION NM-TRIBE-PUEBLO OF POJOAQUE HOUSING CORPORATION Location: Tribe NM-TRIBE- PUEBLO OF POJOAQUE HOUSING CORPORATION NM American Recovery and Reinvestment Act: Proposed Action or Project Description The Pueblo of Pojoaque Housing Corporation plans to improve the energy efficiency of six tribal homes located in White Sands Village by removing and replacing inefficient single-pane windows with double- pane, metal-clad wood windows. Conditions: None Categorical Exclusion(s) Applied: B2.5, B5.1 *-For the complete DOE National Environmental Policy Act regulations regarding categorical exclusions, see Subpart D of 10 CFR10 21 This action would not: threaten a violation of applicable statutory, regulatory, or permit requirements for environment, safety, and health,

Note: This page contains sample records for the topic "lake paiute tribe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

WI-TRIBE-STOCKBRIDGE-MUNSEE BAND OF MOHICAN INDIANS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WI-TRIBE-STOCKBRIDGE-MUNSEE BAND OF MOHICAN INDIANS WI-TRIBE-STOCKBRIDGE-MUNSEE BAND OF MOHICAN INDIANS Location: Tribe WI-TRIBE- STOCKBRIDGE- MUNSEE BAND OF MOHICAN INDIANS WI American Recovery and Reinvestment Act: Proposed Action or Project Description The Stockbridge-Munsee Band of Mohican Indians proposes to conduct energy efficient audits of residential and commerical buildings. Conditions: None Categorical Exclusion(s) Applied: A9, B5.1 *-For the complete DOE National Environmental Policy Act regulations regarding categorical exclusions, see Subpart D of 10 CFR10 21 This action would not: threaten a violation of applicable statutory, regulatory, or permit requirements for environment, safety, and health, including DOE and/or Executive Orders; require siting, construction, or major expansion of waste storage, disposal, recovery, or

62

Fuel from Waste Helps Power Two Tribes | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel from Waste Helps Power Two Tribes Fuel from Waste Helps Power Two Tribes Fuel from Waste Helps Power Two Tribes September 6, 2013 - 2:01pm Addthis The Eastern Band of Cherokee Indians and the Mississippi Band of Choctaw Indians are converting waste vegetable oil and grease to biofuel in an effort to reduce the environmental impact of their energy use. The Eastern Band of Cherokee Indians and the Mississippi Band of Choctaw Indians are converting waste vegetable oil and grease to biofuel in an effort to reduce the environmental impact of their energy use. Fuel from Waste Helps Power Two Tribes The Eastern Band of Cherokee Indians and the Mississippi Band of Choctaw Indians are converting waste vegetable oil and grease to biofuel in an effort to reduce the environmental impact of their energy use.

63

ND-TRIBE-TURTLE MOUNTAIN BAND OF CHIPPEWA  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ND-TRIBE-TURTLE MOUNTAIN BAND OF CHIPPEWA ND-TRIBE-TURTLE MOUNTAIN BAND OF CHIPPEWA Energy Efficiency and Conservation Block Grant Program Location: Tribe ND-TRIBE-TURTLE MOUNTAIN BAND OF CHIPPEWA ND American Recovery and Reinvestment Act: Proposed Action or Project Description The Turtle Mountain Band of Chippewa Indians of North Dakota propose to 1) explore the potential for wind energy development on the Reservation by soliciting expertise from an engineering company to determine the best option for tapping wind energy on the reservation for its public buildings and seek legal expertise to study legal barriers that may exist; 2) conduct energy audits and a feasibility study to determine if several sizeable public buildings have the potential to be sites for either district heating or a

64

Upper Skagit Indian Tribe Strategic Energy Planning Final Report  

SciTech Connect

The Upper Skagit Indian Tribe was honored with a grant through the DOE's Tribal Energy Program - Golden Field Office to develop a Strategic Energy Plan for the Tribal Lands.

Lauren Rich

2008-02-06T23:59:59.000Z

65

Upper Skagit Indian Tribe Strategic Energy Planning Final Report  

SciTech Connect

The Upper Skagit Indian Tribe was honored with a grant through the DOE's Tribal Energy Program - Golden Field Office to develop a Strategic Energy Plan for the Tribal Lands.

Lauren Rich

2008-02-06T23:59:59.000Z

66

American Indian tribes and electric industry restructuring: Issues and opportunities  

Science Conference Proceedings (OSTI)

The US electric utility industry is undergoing a period of fundamental change that has significant implications for Native American tribes. Although many details remain to be determined, the future electric power industry will be very different from that of the present. It is anticipated that the new competitive electric industry will be more efficient, which some believe will benefit all participants by lowering electricity costs. Recent developments in the industry, however, indicate that the restructuring process will likely benefit some parties at the expense of others. Given the historical experience and current situation of Native American tribes in the US, there is good reason to pay attention to electric industry changes to ensure that the situation of tribes is improved and not worsened as a result of electric restructuring. This paper provides a review of electricity restructuring in the US and identifies ways in which tribes may be affected and how tribes may seek to protect and serve their interests. Chapter 2 describes the current status of energy production and service on reservations. Chapter 3 provides an overview of the evolution of the electric industry to its present form and introduces the regulatory and structural changes presently taking place. Chapter 4 provides a more detailed discussion of changes in the US electric industry with a specific focus on the implications of these changes for tribes. Chapter 5 presents a summary of the conclusions reached in this paper.

Howarth, D. [Morse, Richard, and Weisenmiller, and Associates Inc., Oakland, CA (United States); Busch, J. [Lawrence Berkeley National Lab., CA (United States); Starrs, T. [Kelso, Starrs, and Associates LLC, Vashon, WA (United States)

1997-07-01T23:59:59.000Z

67

A Step Towards Conservation for Interior Alaska Tribes  

SciTech Connect

This project includes a consortium of tribes. The tribes include Hughes (representing the consortium) Birch Creek, Huslia, and Allakaket. The project proposed by Interior Regional Housing Authority (IRHA) on behalf of the villages of Hughes, Birch Creek, Huslia and Allakaket is to develop an energy conservation program relevant to each specific community, educate tribe members and provide the tools to implement the conservation plan. The program seeks to achieve both energy savings and provide optimum energy requirements to support each tribe's mission. The energy management program will be a comprehensive program that considers all avenues for achieving energy savings, from replacing obsolete equipment, to the design and construction of energy conservation measures, the implementation of energy saving operation and maintenance procedures, the utilization of a community-wide building energy management system, and a commitment to educating the tribes on how to decrease energy consumption. With the implementation of this program and the development of an Energy Management Plan, these communities can then work to reduce the high cost of living in rural Alaska.

Kimberly Carlo

2012-07-07T23:59:59.000Z

68

A Step Towards Conservation for Interior Alaska Tribes  

SciTech Connect

This project includes a consortium of tribes. The tribes include Hughes (representing the consortium) Birch Creek, Huslia, and Allakaket. The project proposed by Interior Regional Housing Authority (IRHA) on behalf of the villages of Hughes, Birch Creek, Huslia and Allakaket is to develop an energy conservation program relevant to each specific community, educate tribe members and provide the tools to implement the conservation plan. The program seeks to achieve both energy savings and provide optimum energy requirements to support each tribe's mission. The energy management program will be a comprehensive program that considers all avenues for achieving energy savings, from replacing obsolete equipment, to the design and construction of energy conservation measures, the implementation of energy saving operation and maintenance procedures, the utilization of a community-wide building energy management system, and a commitment to educating the tribes on how to decrease energy consumption. With the implementation of this program and the development of an Energy Management Plan, these communities can then work to reduce the high cost of living in rural Alaska.

Kimberly Carlo

2012-07-07T23:59:59.000Z

69

How Power Marketing Administrations Market Power and Work with Tribes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

How Power Marketing Administrations Market Power and Work with How Power Marketing Administrations Market Power and Work with Tribes Webinar How Power Marketing Administrations Market Power and Work with Tribes Webinar April 24, 2013 11:00AM MDT Webinar The U.S. Department of Energy (DOE) Office of Indian Energy Policy and Programs, Office of Energy Efficiency and Renewable Energy Tribal Energy Program, and Western Area Power Administration (WAPA) are pleased to continue their sponsorship of the Tribal Renewable Energy Webinar Series. The country's federal Power Marketing Administrations (PMAs) have valuable generation and transmission assets and have the potential to promote renewable energy development within their respective footprints. Get information on PMA assets and operations, examples of past cooperation with Tribes, and how to work with PMAs to promote future economic growth

70

EM's Top Official Underscores Commitment to Meet with Tribes | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Top Official Underscores Commitment to Meet with Tribes Top Official Underscores Commitment to Meet with Tribes EM's Top Official Underscores Commitment to Meet with Tribes November 29, 2012 - 12:00pm Addthis Senior Advisor for Environmental Management David Huizenga, center, speaks with Pilar Thomas, deputy director of the Office of Indian Energy Policy and Programs, left, and John Moon, acting principal deputy director of the Office of Economic Impact and Diversity, at DOE's event this week recognizing contributions of Native Americans. Senior Advisor for Environmental Management David Huizenga, center, speaks with Pilar Thomas, deputy director of the Office of Indian Energy Policy and Programs, left, and John Moon, acting principal deputy director of the Office of Economic Impact and Diversity, at DOE's event this week

71

AK-TRIBE-ASSOCIATION OF VILLAGE COUNCIL PRESIDENTS, INC  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Department of Energy U.S. Department of Energy Categorical Exclusion Determination Form Program or Field Office: Energy Efficiency and Conservation Block Grant Program Project Title AK-TRIBE-ASSOCIATION OF VILLAGE COUNCIL PRESIDENTS, INC Location: Tribe AK-TRIBE- ASSOCIATION OF VILLAGE COUNCIL PRESIDENTS, INC AK American Recovery and Reinvestment Act: Proposed Action or Project Description: The Association of Village Council Presidents, Inc., (AVCP) proposes to renovate a steel-constructed building, built circa 1990 (First Avenue Building, US Survey 1002 Parcel 1, Lot 1), located in Bethel, Alaska, to an office building. Proposed building retrofits would include installation of an (EPA certified) wood-fired central boiler, a conventional (household size) energy efficient oil-fired boiler, a heat distribution

72

Nez Perce Tribe Energy Efficient Facilities Installation Project  

Science Conference Proceedings (OSTI)

Although Idaho's electrical rates are among the lowest in the country, the Nez Perce Tribe's electrical bills take a large bite out of the operating budget every year. Tribal programs are located in forty some buildings, in six counties, in two states. Ninety-five percent, or more, are heated electrically. The age of the Tribal office buildings located in Lapwai, Idaho vary from forty to over a hundred years old. Only sporadic updates, in the buildings themselves, have been made over the years. Working with the Tribe's electrical provider (Avista Corporation), it was determine that a minimum financial commitment could reap large rewards in the form of lower operating costs.

Terry Kinder

2012-11-12T23:59:59.000Z

73

U.S. Department of Energy Categorical Exclusion Determination Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NV-TRIBE-WALKER RIVER PAIUTE TRIBE NV-TRIBE-WALKER RIVER PAIUTE TRIBE Energy Efficiency and Conservation Block Grant Program Location: Tribe NV-TRIBE-WALKER RIVER PAIUTE TRIBE NV American Recovery and Reinvestment Act: Proposed Action or Project Description The Walker River Paiute Tribe proposes to install an 18 kW (standard test conditions) ground-level, grid- tied photovoltaic solar system on the tribally owned and operated arsenic treatment plant located on the Walker River Paiute Reservation. The photovoltaic system would be installed on the southeast area of the treatment plant building. Conditions: None Categorical Exclusion(s) Applied: B3.6, B5.1 *-For the complete DOE National Environmental Policy Act regulations regarding categorical exclusions, see Subpart D of 10 CFR10 21

74

Energy Efficiency and Conservation Block Grant Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AZ-TRIBE-KAIBAB BAND OF PAIUTE INDIAN TRIBE AZ-TRIBE-KAIBAB BAND OF PAIUTE INDIAN TRIBE Energy Efficiency and Conservation Block Grant Program Location: Tribe AZ-TRIBE-KAIBAB BAND OF PAIUTE INDIAN TRIBE AZ American Recovery and Reinvestment Act: Proposed Action or Project Description The Kaibab Band of Paiute Indian Tribe of Arizona proposes to install energy efficient appliances and perform energy efficient retrofits to homes on the Kaibab Paiute Indian Reservation. These retrofits would include siding, roofing, windows, doors, and other areas of the home losing heat, using excess water, or other non-efficient areas (e.g., replace/upgrade/install water efficient appliances, water saving taps, other water fixtures [low-flow shower heads, low-flow faucet aerators, low-flow toilets]).

75

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

11 - 19920 of 26,764 results. 11 - 19920 of 26,764 results. Download CX-002316: Categorical Exclusion Determination Oklahoma-Tribe-Alabama Quassarte Tribe CX(s) Applied: A9, A11, B5.1 Date: 05/13/2010 Location(s): Quassarte Tribe, Oklahoma Office(s): Energy Efficiency and Renewable Energy http://energy.gov/nepa/downloads/cx-002316-categorical-exclusion-determination Download CX-002317: Categorical Exclusion Determination Nevada-Tribe-Summit Lake Paiute Tribe CX(s) Applied: B2.5, B5.1 Date: 05/13/2010 Location(s): Nevada Office(s): Energy Efficiency and Renewable Energy http://energy.gov/nepa/downloads/cx-002317-categorical-exclusion-determination Download CX-002218: Categorical Exclusion Determination St. Landry's Energy Retrofits CX(s) Applied: A9, A11, B2.5, B5.1 Date: 05/11/2010 Location(s): St. Landry Parish, Louisiana

76

MHK Projects/Passamaquoddy Tribe Hydrokinetic Project | Open Energy  

Open Energy Info (EERE)

Passamaquoddy Tribe Hydrokinetic Project Passamaquoddy Tribe Hydrokinetic Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.0234,"lon":-67.0672,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

77

CX-002125: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

125: Categorical Exclusion Determination 125: Categorical Exclusion Determination CX-002125: Categorical Exclusion Determination Recovery Act: Geothermal Technologies Program CX(s) Applied: B3.1, A9 Date: 05/05/2010 Location(s): Nevada Office(s): Energy Efficiency and Renewable Energy, Golden Field Office Pyramid Lake Paiute Tribe (PLPT) would characterize the geothermal reservoir using novel technologies and integrating this information into a numerical model to help determine the viability of future geothermal production at the Astor Pass site within the Pyramid Lake Paiute Reservation. The project includes exploration, drilling, well testing, and analysis. DOCUMENT(S) AVAILABLE FOR DOWNLOAD CX-002125.pdf More Documents & Publications CX-004822: Categorical Exclusion Determination CX-008229: Categorical Exclusion Determination

78

U.S. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NFPA DETERMINATION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pyramid Lake Paiute Tribe Page 1 of2 STATE: NV PROJECf TITLE: Ph2 - Resource Confirmation Well - Comprehensive Evaluation of the Geothermal Resource Potential within the Pyramid Lake Paiute Reservation .' unding Opportunity Announcement Number DE-FOA-OOOO-109 Procurtmentlnsfrumenf Number DE-EEOOO2B42 NEPA Control Number em Number GF0-0002842-OO3 G02842 Based on my review oftbe Information concerning the proposed action, as NEPA Compllaru:e Officer (authorized under OOE Order 4SI.IA),1 have made the following determination: ex, EA, EIS APPENDIX AND NUMBER: Description: A9 Information gathering (including. but not limited to, literature surveys, inventories, audits), data analysis (including romputer modeling), document preparation (such as conceptual design or feasibility studies, analytical energy supply

79

Lake Roosevelt Fisheries Monitoring Program; 1988-1989 Annual Report.  

DOE Green Energy (OSTI)

In the Northwest Power Planning Council's 1987 Columbia River Basin Fish and Wildlife Program (NPPC 1987), the Council directed the Bonneville Power Administration (BPA) to construct two kokanee salmon (Oncorhynchus nerka) hatcheries as partial mitigation for the loss of anadromous salmon and steelhead incurred by construction of Grand Coulee Dam [Section 903 (g)(l)(C)]. The hatcheries will produce kokanee salmon for outplanting into Lake Roosevelt as well as rainbow trout (Oncorhynchus mykiss) for the Lake Roosevelt net-pen program. In section 903 (g)(l)(E), the Council also directed BPA to fund a monitoring program to evaluate the effectiveness of the kokanee hatcheries. The monitoring program included the following components: (1) a year-round, reservoir-wide, creel survey to determine angler use, catch rates and composition, and growth and condition of fish; (2) assessment of kokanee, rainbow, and walleye (Stizostedion vitreum) feeding habits and densities of their preferred prey, and; (3) a mark and recapture study designed to assess the effectiveness of different locations where hatchery-raised kokanee and net pen reared rainbow trout are released. The above measures were adopted by the Council based on a management plan, developed by the Upper Columbia United Tribes Fisheries Center, Spokane Indian Tribe, Colville Confederated Tribes, Washington Department of Wildlife, and National Park Service, that examined the feasibility of restoring and enhancing Lake Roosevelt fisheries (Scholz et al. 1986). In July 1988, BPA entered into a contract with the Spokane Indian Tribe to initiate the monitoring program. The projected duration of the monitoring program is through 1995. This report contains the results of the monitoring program from August 1988 to December 1989.

Peone, Tim L.; Scholz, Allan T.; Griffith, James R.

1990-10-01T23:59:59.000Z

80

DOE Categorical Exclusion Determination Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Department of Energy Categorical Exclusion Determination Form Program or Field Office: TRIBAL ENERGY PROGRAM NV Project Title NV-TEP-FALLON PAIUTE-SHOSHONE Location: Tribal FALLON PAIUTE-SHOSHONE American Recovery and Reinvestment Act: Proposed Action or Project Description The Fallon Paiute-Shoshone Tribe proposes to develop a sustainable energy park utilizing renewable energy resources at the Tribe's Reservation in Churchill County, Nevada. This proposed energy park

Note: This page contains sample records for the topic "lake paiute tribe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Eleven Tribes Jump START Clean Energy Projects, Summer 2012 (Newsletter)  

DOE Green Energy (OSTI)

This newsletter describes key activities of the DOE Office of Indian Energy Policy and Programs for Summer 2012. The U.S. Department of Energy Office of Indian Energy Policy and Programs (DOE-IE) has selected 11 Tribes - five in Alaska and six in the contiguous United States - to receive on-the-ground technical support for community-based energy efficiency and renewable energy projects as part of DOE-IE's Strategic Technical Assistance Response Team (START) Program. START finalists were selected based on the clarity of their requests for technical assistance and the ability of START to successfully work with their projects or community. Technical experts from DOE and its National Renewable Energy Laboratory (NREL) will work directly with community-based project teams to analyze local energy issues and assist the Tribes in moving their projects forward. In Alaska, the effort will be bolstered by DOE-IE's partnership with the Denali Commission, which will provide additional assistance and expertise, as well as funding to fuel the Alaska START initiative.

Not Available

2012-06-01T23:59:59.000Z

82

Umatilla Tribes to Grow Native Plants for Hanford | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Umatilla Tribes to Grow Native Plants for Hanford Umatilla Tribes to Grow Native Plants for Hanford Umatilla Tribes to Grow Native Plants for Hanford January 2, 2012 - 12:00pm Addthis The Confederated Tribes of the Umatilla Indian Reservation’s field station, located in Mission, Ore., will be home to one-of-a-kind research and development for revegetation efforts. The Confederated Tribes of the Umatilla Indian Reservation's field station, located in Mission, Ore., will be home to one-of-a-kind research and development for revegetation efforts. Tribal construction workers stand in front of the hexagonal greenhouse dome structure that will house the seeds for revegetation efforts. Tribal construction workers stand in front of the hexagonal greenhouse dome structure that will house the seeds for revegetation efforts.

83

Lake Roosevelt Rainbow Trout : Habitat/Passage Improvement Project Annual Report 1999.  

DOE Green Energy (OSTI)

Lake Franklin D. Roosevelt was created with the completion of the Grand Coulee Dam in 1942. The lake stretches 151 miles up-stream to the International border between the United States and Canada at the 49th parallel. Increased recreational use, subsistence and sport fishing has resulted in intense interest and possible exploitation of the resources within the lake. Previous studies of the lake and its fishery have been limited. Early studies indicate that natural reproduction within the lake and tributaries are not sufficient to support a rainbow trout (Onchoryhnchus mykiss) fishery (Scholz et. al., 1988). These studies indicate that the rainbow trout population may be limited by lack of suitable habitat for spawning and rearing (Scholz et. al., 1988). The initial phase of this project (Phase I, baseline data collection- 1990-91) was directed at the assessment of limiting factors such as quality and quantity of available spawning gravel, identification of passage barriers, and assessment of other limiting factors. Population estimates were conducted using the Seber/LeCren removal/depletion method. After the initial assessment of stream parameters, several streams were selected for habitat/passage improvement projects (Phase II, implementation-1992-96). At the completion of project habitat improvements, the final phase (Phase III, monitoring) began. This phase will assess changes and gauge the success achieved through the improvements. The objective of the project is to correct passage barriers and improve habitat conditions of selected tributaries to Lake Roosevelt for adfluvial rainbow trout that utilize tributary streams for spawning and rearing. Streams with restorable habitats were selected for improvements. Completion of improvement efforts should increase the adfluvial rainbow trout contribution to the resident fishery in Lake Roosevelt. Three co-operating agencies, the Confederated Tribes of the Colville Reservation (CCT), the Spokane Tribe of Indians (STI) and the Washington Department of Fish and Wildlife initiated the project fieldwork in 1990. Phase II included only the Confederated Tribes of the Colville Reservation and the Spokane Tribe of Indians. Phase III is being completed by the Confederated Tribes of the Colville Reservation.

Jones, Charles D.

2000-02-01T23:59:59.000Z

84

Exploration 3-D Seismic Field Test/Native Tribes Initiative  

SciTech Connect

To determine current acquisition procedures and costs and to further the goals of the President's Initiative for Native Tribes, a seismic-survey project is to be conducted on Osage tribal lands. The goals of the program are to demonstrate the capabilities, costs, and effectiveness of 3-D seismic work in a small-operator setting and to determine the economics of such a survey. For these purposes, typical small-scale independent-operator practices are being followed and a shallow target chose in an area with a high concentration of independent operators. The results will be analyzed in detail to determine if there are improvements and/or innovations which can be easily introduced in field-acquisition procedures, in processing, or in data manipulation and interpretation to further reduce operating costs and to make the system still more active to the small-scale operator.

Carroll, Herbert B.; Chen, K.C.; Guo, Genliang; Johnson, W.I.; Reeves,T.K.; Sharma,Bijon

1999-04-27T23:59:59.000Z

85

Implementation of Fisheries Enhancement Opportunities on the Coeur d'Alene Reservation; Coeur d'Alene Tribe Fish, Water, and Wildlife Program, REVISED 2002 Annual Report.  

DOE Green Energy (OSTI)

Historically, the Coeur d'Alene Indian Tribe depended on runs of anadromous salmon and steelhead along the Spokane River and Hangman Creek, as well as resident and adfluvial forms of trout and char in Coeur d'Alene Lake, for survival. Dams constructed in the early 1900s on the Spokane River in the City of Spokane and at Little Falls (further downstream) were the first dams that initially cut-off the anadromous fish runs from the Coeur d'Alene Tribe. These fisheries were further removed by the construction of Chief Joseph and Grand Coulee Dams on the Columbia River. Together, these actions forced the Tribe to rely solely on the resident fish resources of Coeur d'Alene Lake (Staff Communication). The Coeur d'Alene Tribe is estimated to have historically harvested around 42,000 westslope cutthroat trout (Oncorhynchus clarki) per year (Scholz et al. 1985). In 1967, Mallet (1969) reported that 3,329 cutthroat were harvested from the St. Joe River, and a catch of 887 was reported from Coeur d'Alene Lake. This catch is far less than the 42,000 fish per year the tribe harvested historically. Today, only limited opportunities exist to harvest cutthroat trout in the Coeur d'Alene Basin. The declines in native salmonid fish populations, particularly cutthroat and bull trout (Salvelinus confluentus), in the Coeur d'Alene basin have been the focus of study by the Coeur d' Alene Tribe's Fisheries and Water Resources programs since 1990. It appears that there are a number of factors contributing to the decline of resident salmonid stocks within Coeur d'Alene Lake and its tributaries (Ellis 1932; Oien 1957; Mallet 1969; Scholz et. al. 1985, Lillengreen et. al. 1993). These factors include: construction of Post Falls Dam in 1906; major changes in land cover types, agricultural activities and introduction of exotic fish species. Over 100 years of mining activities in the Coeur d'Alene River drainage have had devastating effects on the quality of the water in the Coeur d'Alene River and Coeur d'Alene Lake. Effluents from tailings and mining waste have contributed vast quantities of trace heavy metals to the system. Poor agricultural and forest practices have also contributed to the degradation of water quality and habitat suitability for resident salmonids. Increased sediment loads from agricultural runoff and recent and recovering clearcuts, and increases in water temperature due to riparian canopy removal may be two of the most important problems currently affecting westslope cutthroat trout. Increases in water temperature have reduced the range of resident salmonids to a fraction of its historic extent. Within this new range, sediment has reduced the quality of both spawning and rearing habitats. Historically, municipal waste contributed large quantities of phosphates and nitrogen that accelerated the eutrophication process in Coeur d'Alene Lake. However, over the last 25 years work has been completed to reduce the annual load of these materials. Wastewater treatment facilities have been established near all major municipalities in and around the basin. Species interactions with introduced exotics as well as native species are also acting to limit cutthroat trout populations. Two mechanisms are at work: interspecific competition, and species replacement. Competition occurs when two species utilize common resources, the supply of which is short; or if the resources are not in short supply, they harm each other in the process of seeking these resources. Replacement occurs when some environmental or anthropogenic change (e.g., habitat degradation, fishing pressure, etc.) causes the decline or elimination of one species and another species, either native or introduced, fills the void left by the other. In 1994, the Northwest Power Planning Council adopted the recommendations set forth by the Coeur d'Alene Tribe to improve the Reservation fishery. These recommended actions included: (1) Implement habitat restoration and enhancement measures in Alder, Benewah, Evans, and Lake Creeks; (2) Purchase critical watershed areas for protection of fis

Vitale, Angelo; Lamb, Dave; Scott, Jason

2004-04-01T23:59:59.000Z

86

Lake Ecology  

NLE Websites -- All DOE Office Websites (Extended Search)

Lake Ecology Lake Ecology Name: Jody Location: N/A Country: N/A Date: N/A Question: We have a partically natural/ partially man-dug lake in our back yard. It is approximately 3 acres in size. The fish in this tiny like are plentiful and HUGE :) Bass up to 20" s (so far) and blue gill up to 10"s (so far). My question is this... we appear to have a heavy goose population and I was wondering if they are the cause of the green slimmy stuff that is all over the top of the water as well as the lighter green slime on the plants growing under the water? Are the fish being harmed by waste from the geese and if so, what can I put in the water to ensure their health? Additionally, I noticed hundreds of frogs during the mating period yet I've yet to see even one tad pole and I am at the lake atleast 5 out of the 7 days in a week. Is there a reason for this. The frogs are two toned.. light green with patches of darker shades of green on the head and body. I've never seen frogs like these before but then again, I've never lived in wet lands prior. The frogs are also very agressive... tend to attack fishing line and even leap up to 4' in the air to attack a fishing rod. Thank heavens they don't have teeth! . We do not keep the fish we catch, we always release.

87

Lake Roosevelt Fisheries Evaluation Program; Meadow Creek vs. Lake Whatcom Stock Kokanee Salmon Investigations in Lake Roosevelt, Annual Report 2002.  

DOE Green Energy (OSTI)

Lake Whatcom, Washington kokanee have been stocked in Lake Roosevelt since 1987 with the primary objective of creating a self-sustaining fishery. Success has been limited by low recruitment to the fishery, low adult returns to hatcheries, and a skewed sex ratio. It was hypothesized that a stock native to the upper Columbia River might perform better than the coastal Lake Whatcom stock. Kokanee from Meadow Creek, a tributary of Kootenay Lake, British Columbia were selected as an alternative stock. Post smolts from each stock were released from Sherman Creek Hatchery in late June 2000 and repeated in 2001. Stock performance was evaluated using three measures; (1) number of returns to Sherman Creek, the primary egg collection facility, (2) the number of returns to 86 tributaries sampled and, (3) the number of returns to the creel. In two repeated experiments, neither Meadow Creek or Lake Whatcom kokanee appeared to be capable of providing a run of three-year old spawners to sustain stocking efforts. Less than 10 three-years olds from either stock were collected during the study period. Chi-square analysis indicated age two Meadow Creek kokanee returned to Sherman Creek and to other tributaries in significantly higher numbers when compared to the Lake Whatcom stock in both 2000 and 2001. However, preliminary data from the Spokane Tribe of Indians indicated that a large number of both stocks were precocial before they were stocked. The small number of hatchery three-year olds collected indicated that the current hatchery rearing and stocking methods will continue to produce a limited jacking run largely composed of precocious males and a small number of three-year olds. No kokanee from the study were collected during standard lake wide creel surveys. Supplemental creel data, including fishing derbies, test fisheries, and angler diaries, indicated anglers harvested two-year-old hatchery kokanee a month after release. The majority of the two-year old kokanee harvested were from a direct stock at the Fort Spokane boat launch. Only Lake Whatcom kokanee were stocked from the boat launch, therefore stock performance was not evaluated, however the high success of the stocking location will likely increase harvest of hatchery kokanee in the future. Despite low numbers of the targeted three-year olds, Meadow Creek kokanee should be stocked when possible to promote fish native to the upper Columbia River.

McLellan, Holly

2003-03-01T23:59:59.000Z

88

The Lake Trout  

NLE Websites -- All DOE Office Websites (Extended Search)

Conservation THE LAKE TROUT Until thirty years ago, the Lake Trout was the choice food fish as well as the most highly prized game fish in the Great Lakes. Before that time,...

89

Lake Roosevelt Fisheries Monitoring Program; 1990 Annual Report.  

DOE Green Energy (OSTI)

As partial mitigation for the loss of anadromous salmon and steelhead incurred by construction of Grand Coulee Dam, the Northwest Power Planning Council directed Bonneville Power Administration (BPA) to construct two kokanee salmon (Oncorhynchus nerka) hatcheries on Lake Roosevelt (NPPC 1987 [Section 903 (g)(l)(C)]). The hatcheries are to produce 8 million kokanee salmon fry or 3.2 million adults for outplanting into Lake Roosevelt as well as 500,000 rainbow trout (Oncorhynchus mykiss) for the Lake Roosevelt net-pen programs. In section 903 (g)(l)(E), the Council also directed BPA to fund a monitoring program to evaluate the effectiveness of the kokanee hatcheries. The monitoring program included the following components: (1) conduction of a year-round creel census survey to determine angler pressure, catch rates and composition, growth and condition of fish caught by anglers, and economic value of the fishery. Comparisons will be made before and after hatcheries are on-line to determine hatchery effectiveness; (2) conduct an assessment of kokanee, rainbow trout, and walleye feeding habits, growth rates, and densities of their preferred prey at different locations in the reservoir and how reservoir operations affect population dynamics of preferred prey organisms. This information will be used to determine kokanee and rainbow trout stocking locations, stocking densities and stocking times; (3) conduct a mark-recapture study designed to assess effectiveness of various release times and locations for hatchery-raised kokanee and net-pen raised rainbow so fish-loss over Grand Coulee Dam will be minimized, homing to egg collection sites will be improved and angler harvest will be increased. The above measures were adopted by the Council based on a management plan developed by Upper Columbia United Tribes Fisheries Center, Spokane Indian Tribe, Colville Confederated Tribes, Washington Department of Wildlife, and the National Park Service. This plan examined the feasibility of restoring and enhancing Lake Roosevelt fisheries (Scholz et al. 1986). In July 1988, BPA entered into a contract with the Spokane Indian Tribe to initiate the monitoring program and continue research through 1995. This report contains the results of the monitoring program from January to December 1990.

Griffith, Janelle R.; Scholz, Allan T. (Eastern Washington University, Upper Columbia United Tribes Fisheries Research Center, Cheney, WA)

1991-09-01T23:59:59.000Z

90

Energy Department Makes $2.5 Million Available for Native American Tribes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Makes $2.5 Million Available for Native American Makes $2.5 Million Available for Native American Tribes to Develop Renewable Energy Resources Energy Department Makes $2.5 Million Available for Native American Tribes to Develop Renewable Energy Resources June 14, 2005 - 4:54pm Addthis WASHINGTON, DC - The U. S. Department of Energy (DOE) announced today that it is making nearly $2.5 million available to 18 Native American tribes to advance the use of renewable energy and energy efficient technologies on tribal lands. "DOE is committed to helping Native American tribes develop their energy resources," said Secretary of Energy Samuel W. Bodman. "Renewable energy and energy efficiency technologies can play a significant role in encouraging tribal self-sufficiency, creating jobs and improving

91

Energy Department Makes $2.5 Million Available for Native American Tribes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Makes $2.5 Million Available for Native American Makes $2.5 Million Available for Native American Tribes to Develop Renewable Energy Resources Energy Department Makes $2.5 Million Available for Native American Tribes to Develop Renewable Energy Resources June 14, 2005 - 4:54pm Addthis WASHINGTON, DC - The U. S. Department of Energy (DOE) announced today that it is making nearly $2.5 million available to 18 Native American tribes to advance the use of renewable energy and energy efficient technologies on tribal lands. "DOE is committed to helping Native American tribes develop their energy resources," said Secretary of Energy Samuel W. Bodman. "Renewable energy and energy efficiency technologies can play a significant role in encouraging tribal self-sufficiency, creating jobs and improving

92

Webinar for Tribes: Overview of U.S. Department of Energy Power Marketing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Webinar for Tribes: Overview of U.S. Department of Energy Power Webinar for Tribes: Overview of U.S. Department of Energy Power Marketing Administrations Webinar for Tribes: Overview of U.S. Department of Energy Power Marketing Administrations November 18, 2011 - 2:45pm Addthis The U.S. Department of Energy (DOE) - Office of Indian Energy Policy and Programs, the DOE Tribal Energy Program, and the Western Area Power Administration (Western) are conducting a webinar to provide tribes with an overview of power marketing administrations (PMAs), including their service territories, their power resources, their role in delivering federal power to customers, and the methods of determining power rates. The webinar will also include a discussion of preference customer qualifications. More Addthis Related Articles April 24 Webinar to Explore How Power Marketing Administrations Work with

93

DOE-Supported Education and Training Programs Help Crow Tribe Promote  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-Supported Education and Training Programs Help Crow Tribe DOE-Supported Education and Training Programs Help Crow Tribe Promote Energy Independence and Education DOE-Supported Education and Training Programs Help Crow Tribe Promote Energy Independence and Education July 30, 2012 - 4:02pm Addthis Two Department of Energy-supported programs are helping the Crow Tribe in Montana produce energy with minimal environmental impact, educate future generations and prepare its community for future jobs in energy fields. At the heart of the Work Readiness Program and the Cultivation and Characterization of Oil Producing Algae Internship are 6-week intensive courses of study that teach real-world skills and provide opportunities for academic and industrial advancement in science, math and energy. The programs are supported in part by the National Energy Technology

94

DOE-Supported Education and Training Programs Help Crow Tribe Promote  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Education and Training Programs Help Crow Tribe Education and Training Programs Help Crow Tribe Promote Energy Independence and Education DOE-Supported Education and Training Programs Help Crow Tribe Promote Energy Independence and Education May 23, 2012 - 1:00pm Addthis Amanda Not Afraid (front) and another student in the DOE-sponsored algae internship program work on cultivating and characterizing oil-producing algae. Amanda Not Afraid (front) and another student in the DOE-sponsored algae internship program work on cultivating and characterizing oil-producing algae. Washington, DC -Two Department of Energy (DOE)-supported programs are helping the Crow Tribe in Montana produce energy with minimal environmental impact, educate future generations, and prepare its community for future jobs in energy fields.

95

DOE-Supported Education and Training Programs Help Crow Tribe Promote  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-Supported Education and Training Programs Help Crow Tribe DOE-Supported Education and Training Programs Help Crow Tribe Promote Energy Independence and Education DOE-Supported Education and Training Programs Help Crow Tribe Promote Energy Independence and Education May 23, 2012 - 1:00pm Addthis Amanda Not Afraid (front) and another student in the DOE-sponsored algae internship program work on cultivating and characterizing oil-producing algae. Amanda Not Afraid (front) and another student in the DOE-sponsored algae internship program work on cultivating and characterizing oil-producing algae. Washington, DC -Two Department of Energy (DOE)-supported programs are helping the Crow Tribe in Montana produce energy with minimal environmental impact, educate future generations, and prepare its community for future jobs in energy fields.

96

Colville Confederated Tribes' Performance Project Wildlife Mitigation Acquisitions, Annual Report 2006.  

DOE Green Energy (OSTI)

The Colville Confederated Tribes Wildlife Mitigation Project is protecting lands as partial mitigation for hydropower's share of the wildlife losses resulting from Chief Joseph and Grand Coulee Dams. The Mitigation Project protects and manages 54,606 acres for the biological requirements of managed wildlife species that are important to the Colville Tribes. With the inclusion of 2006 acquisitions, the Colville Tribes have acquired approximately 32,018 habitat units (HUs) towards a total 35,819 HUs lost from original inundation due to hydropower development. This annual report for 2006 briefly describes that four priority land acquisitions that were considered for enrollment into the Colville Tribes Mitigation Project during the 2006 contract period.

Whitney, Richard; Berger, Matthew; Tonasket, Patrick

2006-12-01T23:59:59.000Z

97

Renewable Energy Development in Indian Country: A Handbook for Tribes  

SciTech Connect

This handbook is designed to be an accessible reference for those who are new to tribal energy project development or seek a refresher on key development issues as they navigate the project development process. It builds upon the wealth of feedback and experiences shared by tribal and other participants in the National Renewable Energy Laboratory's tribal energy training sessions to provide tribal leaders, tribal economic and energy enterprises, and those supporting them with a general overview of the renewable energy project development process as well as detailed guidance on the following: how to structure a renewable energy project transaction to protect tribal interests, with an emphasis on joint project development efforts undertaken with nontribal parties; key energy development agreements, including power sale agreements, transmission and interconnection agreements, and land leases; and ways tribes can finance renewable energy projects, including the sources of funding or financing that may be available, the types of investors that may be available, and federal tax incentives for renewable energy projects.

MacCourt, D. C.

2010-06-01T23:59:59.000Z

98

EM's New Project of the Month Focuses on Tribes' Work with Native  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Project of the Month Focuses on Tribes' Work with New Project of the Month Focuses on Tribes' Work with Native Plants for Hanford Site EM's New Project of the Month Focuses on Tribes' Work with Native Plants for Hanford Site January 17, 2012 - 12:00pm Addthis WASHINGTON, D.C. - EM is highlighting important work by the Confederated Tribes of the Umatilla Indian Reservation in a new Project of the Month on EM's public Web site, www.em.doe.gov. With the help of EM funding, the Umatilla Tribes have been building a tribal field station and two greenhouses for researching and reproducing native plants to revegetate the Hanford site. Habitat at the site has been disturbed by EM's Cold War cleanup and subsequent restoration, as well as natural forces such as wildfires. Addthis Related Articles The Confederated Tribes of the Umatilla Indian Reservation's field station, located in Mission, Ore., will be home to one-of-a-kind research and development for revegetation efforts.

99

Coordinating and promoting effective  

E-Print Network (OSTI)

state fish and wildlife agencies and tribes during any amendment process. In developing amendments's federal, state, and tribal fish and wildlife agencIes. If an amendment process to develop biological agencies: Bums Paiute Tribe Coeur d'Alene Tribe Confederated Salish and Kootenai Tribes of the Flathead

100

Lakes_Elec_You  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lakes, Lakes, Electricity & You Why It's So Important That Lakes Are Used To Generate Electricity Why We Can Thank Our Lakes For Electricity Because lakes were made to generate electricity. Back in the mid-1940s, Congress recognized the need for better flood control and navigation. To pay for these services, Congress passed laws that started the building of federal hydroelectric dams, and sold the power from the dams under long-term contracts. Today these dams provide efficient, environmentally safe electricity for our cities and rural areas. And now these beautiful lakes are ours to enjoy. There are now 22 major man-made lakes all across the Southeast built under these federal programs and managed by the U.S. Army Corps of Engineers - lakes that help prevent flooding and harness the renewable power of water to generate electricity. Power produced at these lakes is marketed by the Elberton,

Note: This page contains sample records for the topic "lake paiute tribe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Bright Skies Ahead for Moapa | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bright Skies Ahead for Moapa Bright Skies Ahead for Moapa Bright Skies Ahead for Moapa March 1, 2013 - 7:19pm Addthis In addition to the planned 250-MW solar farm set to begin construction in June 2013, the Moapa Band of Paiutes is working on a second 150-MW project that would use both PV and concentrated solar technologies to generate power for the Tribe. Photo from Moapa Band of Paiutes. In addition to the planned 250-MW solar farm set to begin construction in June 2013, the Moapa Band of Paiutes is working on a second 150-MW project that would use both PV and concentrated solar technologies to generate power for the Tribe. Photo from Moapa Band of Paiutes. Photo from Moapa Band of Paiutes. Photo from Moapa Band of Paiutes. Moapa Band of Paiutes Chairman William Anderson. In addition to the planned 250-MW solar farm set to begin construction in June 2013, the Moapa Band of Paiutes is working on a second 150-MW project that would use both PV and concentrated solar technologies to generate power for the Tribe. Photo from Moapa Band of Paiutes.

102

Comprehensive Renewable Energy Feasibility Study for the Makah Indian Tribe  

DOE Green Energy (OSTI)

The purpose of this project was to determine the technical feasibility, economic viability, and potential impacts of installing and operating a wind power station and/or small hydroelectric generation plants on the Makah reservation. The long-term objective is to supply all or a portion of Tribe's electricity from local, renewable energy sources in order to reduce costs, provide local employment, and reduce power outages. An additional objective was for the Tribe to gain an understanding of the requirements, costs, and benefits of developing and operating such plants on the reservation. The Makah Indian Reservation, with a total land area of forty-seven square miles, is located on the northwestern tip of the Olympic Peninsula in Washington State. Four major watersheds drain the main Reservation areas and the average rainfall is over one hundred inches per year. The reservation's west side borders the Pacific Ocean, but mostly consists of rugged mountainous terrain between 500 and 1,900 feet in elevation. Approximately 1,200 tribal members live on the Reservation and there is an additional non-Indian residential population of about 300. Electric power is provided by the Clallam County PUD. The annual usage on the reservation is approximately 16,700 mWh. Project Work Wind Energy--Two anemometer suites of equipment were installed on the reservation and operated for a more than a year. An off-site reference station was identified and used to project long-term wind resource characteristics at the two stations. Transmission resources were identified and analyzed. A preliminary financial analysis of a hypothetical wind power station was prepared and used to gauge the economic viability of installation of a multi-megawatt wind power station. Small Hydroelectric--Two potential sites for micro/small-hydro were identified by analysis of previous water resource studies, topographical maps, and conversations with knowledgeable Makah personnel. Field trips were conducted to collect preliminary site data. A report was prepared by Alaska Power & Telephone (Larry Coupe) including preliminary layouts, capacities, potential environmental issues, and projected costs. Findings and Conclusions Wind Energy The average wind resources measured at both sites were marginal, with annual average wind speeds of 13.6-14.0 mph at a 65-meter hub height, and wind shears of 0.08-0.13. Using GE 1.5 MW wind turbines with a hub height of 65 meters, yields a net capacity factor of approximately 0.19. The cost-of-energy for a commercial project is estimated at approximately 9.6 cents per kWh using current costs for capital and equipment prices. Economic viability for a commercial wind power station would require a subsidy of 40-50% of the project capital cost, loans provided at approximately 2% rate of interest, or a combination of grants and loans at substantially below market rates. Recommendations: Because the cost-of-energy from wind power is decreasing, and because there may be small pockets of higher winds on the reservation, our recommendation is to: (1) Leave one of the two anemometer towers, preferably the 50-meter southern unit MCC, in place and continue to collect data from this site. This site would serve as an excellent reference anemometer for the Olympic Peninsula, and, (2) If funds permit, relocate the northern tower (MCB) to a promising small site closer to the transmission line with the hope of finding a more energetic site that is easier to develop. Small Hydroelectric There are a very limited number of sites on the reservation that have potential for economical hydroelectric development, even in conjunction with water supply development. Two sites emerged as the most promising and were evaluated: (1) One utilizing four creeks draining the north side of the Cape Flattery peninsula (Cape Creeks), and (2) One on the Waatch River to the south of Neah Bay. The Cape Creeks site would be a combination water supply and 512 kW power generation facility and would cost a approximately $11,100,000. Annual power generation would be approximately 1,300,0

RobertLynette; John Wade; Larry Coupe

2005-03-31T23:59:59.000Z

103

Human Capacity Building in Energy Efficiency and Renewable Energy System Maintenance for the Yurok Tribe  

DOE Green Energy (OSTI)

From July 2005 to July 2007, the Schatz Energy Research Center (SERC) assisted the Yurok Tribe in the implementation of a program designed to build the Tribeĺs own capacity to improve energy efficiency and maintain and repair renewable energy systems in Tribal homes on the Yurok Reservation. Funding for this effort was provided by the U.S. Department of Energyĺs Tribal Program under First Steps grant award #DE-FG36-05GO15166. The programĺs centerpiece was a house-by-house needs assessment, in which Tribal staff visited and conducted energy audits at over fifty homes. The visits included assessment of household energy efficiency and condition of existing renewable energy systems. Staff also provided energy education to residents, evaluated potential sites for new household renewable energy systems, and performed minor repairs as needed on renewable energy systems.

Engel, R. A.' Zoellick, J J.

2007-07-31T23:59:59.000Z

104

VERTEBRATES OF FISH LAKE  

E-Print Network (OSTI)

VERTEBRATES OF FISH LAKE CAUTION! FISH LAKE SCAVANGER HUNT RED HEADED in large dead trees. Males and females both have the majestic red head the mound. Damselflies sit with their wings folded down, which differs them

Minnesota, University of

105

Lake-Effect Snowfall over Lake Michigan  

Science Conference Proceedings (OSTI)

Aircraft measurements of snow particle size spectra from 36 flights on 26 snowy days are used to estimate snow precipitation rates over Lake Michigan. Results show that average rates during 14 wind-parallel-type lake-effect storms increased from ...

Roscoe R. Braham Jr.; Maureen J. Dungey

1995-05-01T23:59:59.000Z

106

The 1997 Water Rights Settlement between the State of Montana and the Chippewa Cree Tribe of the Rocky Boy's Reservation: The Role of Community and of the Trustee  

E-Print Network (OSTI)

Ct. Mont. ), asserting the claims of the Blackfeet Tribeof the Blackfeet Reservation, the Chippewa Cree Tribe of theAsserting the claims of the Blackfeet Tribe of the Black-

Cosens, Barbara A.

1998-01-01T23:59:59.000Z

107

Lakes, Electricity and You | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lakes, Electricity and You Lakes, Electricity and You Why It's So Important That Lakes Are Used To Generate Electricity Lakes, Electricity and You More Documents & Publications A...

108

Developing Clean Energy Projects on Tribal Lands: Data and Resources for Tribes (Book)  

SciTech Connect

This is a outreach brochure (booklet) for the DOE Office of Indian Energy summarizing the renewable energy technology potential on tribal lands. The booklet features tech potential maps for various technologies, information about the activities of DOE-IE, and resources for Tribes.

Not Available

2012-12-01T23:59:59.000Z

109

Tribal Energy Program, Assisting Tribes to Realize Their Energy Visions (Brochure), Energy Efficiency & Renewable Energy (EERE)  

SciTech Connect

This 12-page brochure provides an overview of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy's Tribal Energy Program and describes the financial, technical, and educational assistance it provides to help tribes develop their renewable energy resources and reduce their energy consumption.

Not Available

2013-06-01T23:59:59.000Z

110

Tribal Energy Program, Assisting Tribes to Realize Their Energy Visions (Brochure), Energy Efficiency & Renewable Energy (EERE)  

SciTech Connect

This 12-page brochure provides an overview of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy's Tribal Energy Program and describes the financial, technical, and educational assistance it provides to help tribes develop their renewable energy resources and reduce their energy consumption.

2013-06-01T23:59:59.000Z

111

FY 2007 Progress Report for Upper Columbia United Tribes' Regional Coordination.  

DOE Green Energy (OSTI)

This report is a summary of activities conducted over the fiscal year 2007 contract period to fulfill requirements to coordinate Upper Columbia United Tribes (UCUT) interests within the Columbia River Basin. This coordination was specific to the implementation of portions of the Integrated Fish and Wildlife Program within the purview of the Northwest Power and Conservation Council and Bonneville Power Administration.

Michel, D.R.

2008-12-15T23:59:59.000Z

112

Climatology of Lake-Effect Precipitation Events over Lake Champlain  

Science Conference Proceedings (OSTI)

This study provides the first long-term climatological analysis of lake-effect precipitation events that developed in relation to a small lake (having a surface area of ?1500 km2). The frequency and environmental conditions favorable for Lake ...

Neil F. Laird; Jared Desrochers; Melissa Payer

2009-02-01T23:59:59.000Z

113

Geological History of Lake Lahontan, a Quaternary Lake of Northwestern...  

Open Energy Info (EERE)

Monograph M11 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Geological History of Lake Lahontan, a Quaternary Lake of Northwestern...

114

Lake-Effect Rain Events  

Science Conference Proceedings (OSTI)

Seven years of autumnal (SeptemberľNovember) precipitation data are examined to determine the characteristics of lake-effect precipitation downwind of Lake Erie. Atmospheric conditions for each lake-effect event are compiled and the mean ...

Todd J. Miner; J. M. Fritsch

1997-12-01T23:59:59.000Z

115

Coeur d'Alene Tribe Fisheries Program Research, Monitoring and Evaluation Plan; Implementation of Fisheries Enhancement Opportunities on the Coeur d'Alene Reservation, 1997-2002 Technical Report.  

DOE Green Energy (OSTI)

Westslope cutthroat trout (Oncorhynchus clarki lewisi) and bull trout (Salvelinus confluentus) are currently of special concern regionally and are important to the culture and subsistence needs of the Coeur d'Alene Tribe. The mission of the Coeur d'Alene Tribe Fisheries Program is to restore and maintain these native trout and the habitats that sustain them in order to provide subsistence harvest and recreational fishing opportunities for the Reservation community. The adfluvial life history strategy exhibited by westslope cutthroat and bull trout in the Lake Coeur d'Alene subbasin makes these fish susceptible to habitat degradation and competition in both lake and stream environments. Degraded habitat in Lake Coeur d'Alene and its associated streams and the introduction of exotic species has lead to the decline of westslope cutthroat and listing of bull trout under the endangered species act (Peters et al. 1998). Despite the effects of habitat degradation, several streams on the Reservation still maintain populations of westslope cutthroat trout, albeit in a suppressed condition (Table 1). The results of several early studies looking at fish population status and habitat condition on the Reservation (Graves et al. 1990; Lillengreen et al. 1993, 1996) lead the Tribe to aggressively pursue funding for habitat restoration under the Northwest Power Planning Council's (NWPPC) resident fish substitution program. Through these efforts, habitat restoration needs were identified and projects were initiated. The Coeur d'Alene Tribe Fisheries Program is currently involved in implementing stream habitat restoration projects, reducing the transport of sediment from upland sources, and monitoring fish populations in four watersheds on the Coeur d'Alene Reservation (Figure 1). Restoration projects have included riparian plantings, addition of large woody debris to streams, and complete channel reconstruction to restore historical natural channel forms. In addition, ponds have been constructed to trap sediment from rill and gully erosion associated with agricultural practices, and to provide flow enhancement and ameliorate elevated stream temperatures during the summer base flow period. The implementation of restoration efforts that target the key habitats and lifestages for resident westslope cutthroat trout on the Coeur d'Alene Reservation is one means the Tribe is using to partially mitigate for lost anadromous fisheries. In this context, restoration is consistent with the definition provided by Ebersole et al. (1997), who described stream restoration as the reexpression of habitat capacity in a stream system. At the reach scale, habitat capacity is affected by biotic (e.g., riparian vegetation) and physical (e.g., flooding) processes. Superimposed on the natural biotic and physical processes are anthropogenic stressors (e.g., logging, roads and grazing) that suppress habitat capacity and can result in simplified, degraded stream reaches. The effectiveness of habitat restoration, measured as an increase in native trout abundance, is dependent on reducing limiting factors (e.g., passage barriers, high water temperatures, sediment transport from source areas) in areas that are critical for spawning and rearing lifestages. This plan outlines a monitoring strategy to help determine the effectiveness of specific restoration/enhancement treatments and to track the status of trout populations in four target watersheds.

Vitale, Angelo; Lamb, Dave; Peters, Ronald

2002-11-01T23:59:59.000Z

116

Categorical Exclusion Determinations: B5.1 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

, 2010 , 2010 CX-004054: Categorical Exclusion Determination Strategy to Accelerate United States Transition to Electric Vehicles CX(s) Applied: B5.1 Date: 10/01/2010 Location(s): Charlotte, North Carolina Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory October 1, 2010 CX-004052: Categorical Exclusion Determination Strategy to Accelerate United States Transition to Electric Vehicles CX(s) Applied: A1, B5.1 Date: 10/01/2010 Location(s): Detroit, Michigan Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory October 1, 2010 CX-004042: Categorical Exclusion Determination Nevada-Tribe-Pyramid Lake Paiute Tribe CX(s) Applied: A9, A11, B2.5, B5.1 Date: 10/01/2010 Location(s): Nevada Office(s): Energy Efficiency and Renewable Energy

117

Microsoft Word - CSKT_Lake_County_AcquisitionsCreek-CX.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8, 2011 8, 2011 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Cecilia Brown Project Manager - KEWM-4 Proposed Action: Provision of funds to the Confederated Salish and Kootenai Tribes (CSKT) for purchase of Lake County properties. Fish and Wildlife Project No.: 2002-003-00, Contract 49933 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.25 Transfer, lease, disposition or acquisition of interests in uncontaminated land for habitat preservation or wildlife management, and only associated buildings that support these purposes. Uncontaminated means that there would be no potential for release of substances at a level, or in a form, that would pose a threat to public health or the environment.

118

U.S. Department of Energy Office of Energy Efficiency and Renewable Energy NEPA categorical exclusion determination  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CA-TRIBE-U TU UTU GWAITU PAIUTE TRIBE Energy Efficiency and Conservation Block Grant Program Location: Tribe CA-TRIBE-U TU UTU GWAITU PAIUTE TRIBE CA American Recovery and Reinvestment Act: Proposed Action or Project Description 1) The U tu Utu Gwaitu Paiute Tribe proposes to prepare an energy and conservation strategy and implementation plan, 2) assess the energy efficiency of Tribally-owned/operated buildings on and off the Reservation and of private residences on the Reservation and develop a weatherization program aimed at energy conservation and develop a strategy for retrofitting homes and buildings to ensure energy efficiency and conservation, and 3) conduct energy efficiency building retrofits which includes developing a list that will identify those elderly and low-income residents most in need of weatherization/retrofit activities,

119

Workshop Provides Hands-On Project Development Training for 26 Tribes |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Workshop Provides Hands-On Project Development Training for 26 Workshop Provides Hands-On Project Development Training for 26 Tribes Workshop Provides Hands-On Project Development Training for 26 Tribes September 30, 2013 - 6:25pm Addthis The Office of Indian Energy's Community- and Facility-Scale Tribal Renewable Energy Project Development and Finance workshop was held September 18-20 at the National Renewable Energy Laboratory in Golden, Colorado. Photo by John De La Rosa, NREL The Office of Indian Energy's Community- and Facility-Scale Tribal Renewable Energy Project Development and Finance workshop was held September 18-20 at the National Renewable Energy Laboratory in Golden, Colorado. Photo by John De La Rosa, NREL Workshop attendees reviewed renewable energy resource maps to identify the best sites for potential projects based on available resources. Photo by John De La Rosa, NREL

120

MHK Projects/Colorado River Indian Tribes IRR DI | Open Energy Information  

Open Energy Info (EERE)

Colorado River Indian Tribes IRR DI Colorado River Indian Tribes IRR DI < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.9825,"lon":-113.394,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "lake paiute tribe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Workshop Provides Hands-On Project Development Training for 26 Tribes |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Workshop Provides Hands-On Project Development Training for 26 Workshop Provides Hands-On Project Development Training for 26 Tribes Workshop Provides Hands-On Project Development Training for 26 Tribes September 30, 2013 - 6:25pm Addthis The Office of Indian Energy's Community- and Facility-Scale Tribal Renewable Energy Project Development and Finance workshop was held September 18-20 at the National Renewable Energy Laboratory in Golden, Colorado. Photo by John De La Rosa, NREL The Office of Indian Energy's Community- and Facility-Scale Tribal Renewable Energy Project Development and Finance workshop was held September 18-20 at the National Renewable Energy Laboratory in Golden, Colorado. Photo by John De La Rosa, NREL Workshop attendees reviewed renewable energy resource maps to identify the best sites for potential projects based on available resources. Photo by John De La Rosa, NREL

122

Clearwater Focus Watershed; Nez Perce Tribe, 2003-2004 Annual Report.  

DOE Green Energy (OSTI)

The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division, approaches watershed restoration with a goal to protect, restore, and enhance a connected network of functioning habitat types capable of supporting all fish life stages. Its goal is also to re-establish normal patterns of production, dispersal, and exchange of genetic information within the 1855 Treaty Area. The Nez Perce Tribe began watershed restoration projects within the Clearwater River Subbasin in 1996. Progress has been made in restoring the sub-basin by excluding cattle from critical riparian areas through fencing, stabilizing stream banks, decommissioning roads, and upgrading culverts. Coordination of these projects is critical to the success of the restoration of the sub-basin. Coordination activities also includes: inter and intra-department coordination, sub-basin assessment and planning, involving government and private organizations, and treaty area coordination.

Jones, Ira (Nez Perce Tribe, Lapwai, ID)

2004-06-01T23:59:59.000Z

123

Clearwater Focus Watershed; Nez Perce Tribe, 2002-2003 Annual Report.  

DOE Green Energy (OSTI)

The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division, approaches watershed restoration with a goal to protect, restore, and enhance a connected network of functioning habitat types capable of supporting all fish life stages. Its goal is also to re-establish normal patters of production, dispersal, and exchange of genetic information within the 1855 Treaty Area. The Nez Perce Tribe began watershed restoration projects within the Clearwater River Subbasin in 1996. Progress has been made in restoring the sub-basin by excluding cattle from critical riparian areas through fencing, stabilizing streambanks, decommissioning roads, and upgrading culverts. Coordination of these projects is critical to the success of the restoration of the sub-basin. Coordination includes: within department coordination, sub-basin assessment and planning, and treaty area coordination.

Jones, Ira (Nez Perce Tribe, Department of Fisheries Resource Management, Lapwai, ID)

2004-01-01T23:59:59.000Z

124

Kalispel Tribe of Indians Wildlife Mitigation and Restoration for Albeni Falls Dam: Flying Goose Ranch Phase I.  

DOE Green Energy (OSTI)

This report is a recommendation from the Kalispel Tribe to the Northwest Power Planning Council (NPPC) for wildlife habitat mitigation for the extensive habitat losses caused by Albeni Falls Dam on and near the Kalispel Indian Reservation.

Merker, Christopher

1993-02-01T23:59:59.000Z

125

Clearwater Focus Watershed; Nez Perce Tribe, 2005-2006 Annual Report.  

DOE Green Energy (OSTI)

The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division, approaches watershed restoration with a goal to protect, restore, and enhance a connected network of functioning habitat types capable of supporting all fish life stages. The key objective of the Nez Perce Tribe Focus Coordinator position is to overcome fragmentation within the basin by managing communications with the subbasin, providing an overall framework and process for coordinated fisheries restoration and managing the planning, assessment, implementation, and monitoring and evaluation process. The Nez Perce Tribe began watershed restoration projects within the Clearwater River Subbasin in 1996. Progress has been made in restoring the sub-basin by excluding cattle from critical riparian areas through fencing, stabilizing stream banks, decommissioning roads, restoring fish passage, as well as other watershed restoration projects. Coordination of these projects is critical to the success of the restoration of the sub-basin. Coordination activities also includes: inter and intra-department coordination, sub-basin assessment and planning, involving government and private organizations, and treaty area coordination.

Jones, Ira; McRoberts, Heidi (Nez Perce Tribe, Department of Fisheries Resource Management, Lapwai, ID)

2006-12-01T23:59:59.000Z

126

Clearwater Focus Watershed; Nez Perce Tribe, 2004-2005 Annual Report.  

DOE Green Energy (OSTI)

The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division, approaches watershed restoration with a goal to protect, restore, and enhance a connected network of functioning habitat types capable of supporting all fish life stages. The key objective of the Nez Perce Tribe Focus Coordinator position is to overcome fragmentation within the basin by managing communications with the subbasin, providing an overall framework and process for coordinated fisheries restoration and managing the planning, assessment, implementation, and monitoring and evaluation process. The Nez Perce Tribe began watershed restoration projects within the Clearwater River Subbasin in 1996. Progress has been made in restoring the sub-basin by excluding cattle from critical riparian areas through fencing, stabilizing stream banks, decommissioning roads, restoring fish passage, as well as other watershed restoration projects. Coordination of these projects is critical to the success of the restoration of the sub-basin. Coordination activities also includes: inter and intra-department coordination, sub-basin assessment and planning, involving government and private organizations, and treaty area coordination.

Jones, Ira (Nez Perce Tribe, Department of Fisheries Resource Management, Lapwai, ID)

2006-02-01T23:59:59.000Z

127

The Behavior of Lakes  

NLE Websites -- All DOE Office Websites (Extended Search)

Behavior of Lakes Behavior of Lakes Nature Bulletin No, 320-A November 9, 1968 Forest Preserve District of Cook County Richard B. Ogilvie, President Roland F. Eisenbeis, Supt. of Conservation THE BEHAVIOR OF LAKES In many ways lakes are like living things -- especially a tree. A lake breathes and has a circulation; it is warmed and fed; it harbors many other living things; and in cold weather it goes into a winter sleep. If it were not for the special character of a body of standing water which we call a lake, the things that live in it would be radically different or, perhaps, not exist at all. Water is a very strange substance in many ways. For example, it is remarkable because it expands, becomes lighter and floats when it freezes into ice. If, like most substances, water shrank when it changed from a liquid to a solid, it would sink. Then, ponds and lakes would freeze from the bottom up and become solid blocks of ice. This would make life impossible for most kinds of aquatic plants and animals and indirectly affect all living things. Further, water is a poor conductor of heat -- otherwise lakes would freeze much deeper and, again most living things in it would perish.

128

Evaluation of an Experimental Re-introduction of Sockeye Salmon into Skaha Lake; Year 1 of 3, 2000 Technical Report.  

DOE Green Energy (OSTI)

Historical records indicate that sockeye salmon were once found in most of the lakes in the Okanagan River Basin. Currently, the only sockeye population within the Okanagan River Basin is found in Osoyoos Lake. Abundance of this stock has declined significantly in the last fifty years. The Okanagan Nation and tribes in the U.S. have proposed re-introducing the species into Okanagan Lake, which has a large rearing capacity. However, assessing the potential benefits and risks associated with a reintroduction of sockeye salmon into Okanagan Lake is difficult because of uncertainties about factors that determine production of Okanagan sockeye, and potential interactions with other species in Okanagan Lake. Associated with this proposal are the potential risks of re-introduction of sockeye salmon into Okanagan Lake. One of these is the effects of sockeye on the resident Okanagan Lake kokanee population, which has declined significantly in the past several years because of habitat loss due to human encroachment, competition with introduced mysid shrimp, and the reduction of biological productivity in the lake as municipalities have moved to more complete effluent treatment. Another concern is the possibility of the transmission of diseases that are currently not found in Okanagan and Skaha lakes from re-introduced sockeye to resident fish. An additional concern is the risk that exotic species (e.g. tench, largemouth bass), that have become established in southern Okanagan Lakes (principally as a result of purposeful introductions in the US Columbia/Okanagan river system), may be able to extend their range to Skaha and Okanagan Lakes, through fish ladders provided at the outlets of Vaseaux (McIntyre Dam) and Skaha Lakes (Okanagan Falls Dam), for natural upstream migration of sockeye. A transboundary multi-agency workshop was hosted in November of 1997 to discuss the potential risks and benefits of reintroducing sockeye salmon into Okanagan Lake. These discussions were summarized into a Draft Action Plan that recommended that sockeye be re-introduced to Skaha Lake as an experimental management strategy to resolve some of these uncertainties (Peters et al. 1998). The purpose of this project is to assess the risks and benefits of an experimental reintroduction of sockeye salmon into Skaha Lake. The assessment will be accomplished by completing the following six objectives over three years: (1) Disease Risk Assessment; (2) Exotic species Re-introduction risk Assessment; (3) Inventory of Existing Habitat and Opportunities for Habitat Enhancement; (4) Development of a life-cycle model of Okanagan salmonids, including interaction with resident kokanee; (5) Development of an experimental design and; (6) Finalize a plan for experimental re-introduction of sockeye salmon into Skaha Lake and associated monitoring programs.

Hammell, Larry (University of Prince Edward Island, Atlantic Veterinary College, Charlottetown, PE, Canada); Machin, Deanna; Long, Karilyn (Okanagan National Fisheries Commission, Westbank, BC, Canada)

2001-06-01T23:59:59.000Z

129

Geological History of Lake Lahontan, a Quaternary Lake of Northwestern  

Open Energy Info (EERE)

History of Lake Lahontan, a Quaternary Lake of Northwestern History of Lake Lahontan, a Quaternary Lake of Northwestern Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geological History of Lake Lahontan, a Quaternary Lake of Northwestern Nevada Abstract Abstract unavailable. Author Israel C. Russell Organization U.S. Geological Survey Published U.S. Government Printing Office, 1885 Report Number Monograph M11 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Geological History of Lake Lahontan, a Quaternary Lake of Northwestern Nevada Citation Israel C. Russell (U.S. Geological Survey). 1885. Geological History of Lake Lahontan, a Quaternary Lake of Northwestern Nevada. Washington, District of Columbia: U.S. Government Printing Office. Report No.:

130

Identifying Oil Exploration Leads using Intergrated Remote Sensing and Seismic Data Analysis, Lake Sakakawea, Fort Berthold Indian Reservation, Willistion Basin  

SciTech Connect

The Fort Berthold Indian Reservation, inhabited by the Arikara, Mandan and Hidatsa Tribes (now united to form the Three Affiliated Tribes) covers a total area of 1530 mi{sup 2} (980,000 acres). The Reservation is located approximately 15 miles east of the depocenter of the Williston basin, and to the southeast of a major structural feature and petroleum producing province, the Nesson anticline. Several published studies document the widespread existence of mature source rocks, favorable reservoir/caprock combinations, and production throughout the Reservation and surrounding areas indicating high potential for undiscovered oil and gas resources. This technical assessment was performed to better define the oil exploration opportunity, and stimulate exploration and development activities for the benefit of the Tribes. The need for this assessment is underscored by the fact that, despite its considerable potential, there is currently no meaningful production on the Reservation, and only 2% of it is currently leased. Of particular interest (and the focus of this study) is the area under the Lake Sakakawea (formed as result of the Garrison Dam). This 'reservoir taking' area, which has never been drilled, encompasses an area of 150,000 acres, and represents the largest contiguous acreage block under control of the Tribes. Furthermore, these lands are Tribal (non-allotted), hence leasing requirements are relatively simple. The opportunity for exploration success insofar as identifying potential leads under the lake is high. According to the Bureau of Land Management, there have been 591 tests for oil and gas on or immediately adjacent to the Reservation, resulting in a total of 392 producing wells and 179 plugged and abandoned wells, for a success ratio of 69%. Based on statistical probability alone, the opportunity for success is high.

Scott R. Reeves; Randal L. Billingsley

2004-02-26T23:59:59.000Z

131

Wind Generation Feasibility Study for Sac & Fox Tribe of the Mississippi in Iowa (Meskwaki Nation)  

SciTech Connect

1.2 Overview The Meskwaki Nation will obtain an anemometer tower. Install the tower at the site that has been pre-qualified as the site most likely to produce maximum electric power from the wind. It will collect meteorological data from the tower├ó┬?┬?s sensors for a one year period, as required for due diligence to identify the site as appropriate for the installation of a wind turbine to provide electric power for the community. Have the collected data analyzed by a meteorologist and a professionally certified wind engineer to produce the reports of expected power generation at the site, for the specific wind turbine(s) under consideration for installation. 1.2.1 Goals of the Tribe The feasibility study reports, including technical and business analyses will be used to obtain contracts and financing required to develop and implement a wind turbine project on the Meskwaki Settlement. Our goal is to produce two (2) mega watts of power and to reduce the cost for electricity currently being paid by the Meskwaki Casino. 1.2.2 Project Objectives Meet the energy needs of the community with clean energy. Bring renewable energy to the settlement in a responsible, affordable manner. Maximize both the economic and the spiritual benefits to the tribe from energy independence. Integrate the Tribe├ó┬?┬?s energy policies with its economic development goals. Contribute to achieving the Tribe├ó┬?┬?s long-term goals of self-determination and sovereignty. 1.2.3 Project Location The precise location proposed for the tower is at the following coordinates: 92 Degrees, 38 Minutes, 46.008 Seconds West Longitude 41 Degrees, 59 Minutes, 45.311 Seconds North Latitude. A circle of radius 50.64 meters, enclosing and area of 1.98 acres in PLSS Township T83N, Range R15W, in Iowa. In relative directions, the site is 1,650 feet due west of the intersection of Highway 30 and 305th Street in Tama, Iowa, as approached from the direction of Toledo, Iowa. It is bounded on the north by Highway 30 and on the south by 305th Street, a street which runs along a meandering west-south-west heading from this intersection with Highway 30. In relation to Settlement landmarks, it is 300 meters west of the Meskwaki water tower found in front of the Meskwaki Public Works Department, and is due north of the athletic playing fields of the Meskwaki Settlement School. The accompanying maps (in the Site Resource Maps File) use a red pushpin marker to indicate the exact location, both in the overview frames and in the close-up frame. 1.2.4 Long Term Energy Vision The Meskwaki Tribe is committed to becoming energy self-sufficient, improving the economic condition of the tribe, and maintaining Tribal Values of closeness with Grandmother Earth. The details of the Tribe├ó┬?┬?s long-term vision continues to evolve. A long term vision exists of: 1) a successful assessment program; 2) a successful first wind turbine project reducing the Tribe├ó┬?┬?s cost of electricity; 3) creation of a Meskwaki Tribal Power Utility/Coop under the auspices of the new tribal Corporation, as we implement a master plan for economic and business development; 4), and opening the doors for additional wind turbines/renewable energy sources on the community. The additional turbines could lead directly to energy self-sufficiency, or might be the one leg of a multi-leg approach using multiple forms of renewable energy to achieve self-sufficiency. We envision current and future assessment projects providing the data needed to qualify enough renewable energy projects to provide complete coverage for the entire Meskwaki Settlement, including meeting future economic development projects├ó┬?┬? energy needs. While choosing not to engage in excessive optimism, we can imagine that in the future the Iowa rate-setting bodies will mandate that grid operators pay fair rates (tariffs) to renewable suppliers. We will be ready to expand renewable production of electricity for export, when that time comes. The final report includes the Wind

Lasley, Larry C. [Sac & Fox Tribe of the Mississippi in Iowa

2013-03-19T23:59:59.000Z

132

Lake-Effect Thunderstorms in the Lower Great Lakes  

Science Conference Proceedings (OSTI)

Cloud-to-ground (CG) lightning, radar, and radiosonde data were examined to determine how frequently lake-effect storms (rain/snow) with lightning occurred over and near the lower Great Lakes region (Lakes Erie and Ontario) from September 1995 ...

Scott M. Steiger; Robert Hamilton; Jason Keeler; Richard E. Orville

2009-05-01T23:59:59.000Z

133

Black Hawk Lake Fresno River  

E-Print Network (OSTI)

Black Hawk Lake Fresno River R D 4 0 0 RD 415 HWY41 RD 207 REVISRD YO SEM ITE SP RINGS P KY LILLEY County Rosedale Ranch Revis Mountain Daulton Spring Red Top Lookout Buford Mountain Black Hawk Lake

Wang, Zhi

134

Habitat Evaluation Procedures (HEP) Report; Beaver Lake, Technical Report 2005.  

DOE Green Energy (OSTI)

On August 14, 2003, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the Beaver Lake property, an acquisition completed by the Kalispel Tribe of Indians in November 2002. Evaluation species and appropriate models include bald eagle, black-capped chickadee, Canada goose, mallard, muskrat, yellow warbler, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The Beaver Lake Project provides a total of 232.26 Habitat Units (HUs) for the species evaluated. Conifer forest habitat provides 136.58 HUs for bald eagle, black-capped chickadee, mallard, and white-tailed deer. Forested wetland habitat provides 20.02 HUs for bald eagle, black-caped chickadee, mallard, and white-tailed deer. Scrub-shrub wetland habitat provides 7.67 HUs for mallard, yellow warbler, and white-tailed deer. Grassland meadow provides 22.69 HUs for Canada goose and mallard. Emergent wetlands provide 35.04 HUs for Canada goose, mallard, and muskrat. Open water provided 10.26 HUs for Canada goose, mallard, and muskrat. The objective of using HEP at the Beaver Lake Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

Entz, Ray

2005-05-01T23:59:59.000Z

135

Habitat Evaluation Procedures (HEP) Report; Gamblin Lake, Technical Report 2005.  

DOE Green Energy (OSTI)

On August 12, 2003, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the Gamblin Lake property, an acquisition completed by the Kalispel Tribe of Indians in December 2002. Evaluation species and appropriate models include bald eagle, black-capped chickadee, mallard, muskrat, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The Gamblin Lake Project provides a total of 273.28 Habitat Units (HUs) for the species evaluated. Conifer forest habitat provides 127.92 HUs for bald eagle, black-capped chickadee, mallard, and white-tailed deer. Forested wetland habitat provides 21.06 HUs for bald eagle, black-caped chickadee, mallard, and white-tailed deer. Wet meadow provides 78.05 HUs for Canada goose and mallard. Emergent wetland habitat provides 46.25 HUs for mallard, muskrat, and Canada goose. The objective of using HEP at the Gamblin Lake Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

Entz, Ray

2005-05-01T23:59:59.000Z

136

Obama Administration Hosts Great Lakes Offshore Wind Workshop...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hosts Great Lakes Offshore Wind Workshop in Chicago with Great Lakes Wind Collaborative Obama Administration Hosts Great Lakes Offshore Wind Workshop in Chicago with Great Lakes...

137

Lake Improvement District Law and County Lake Improvement Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lake Improvement District Law and County Lake Improvement Program Lake Improvement District Law and County Lake Improvement Program (Minnesota) Lake Improvement District Law and County Lake Improvement Program (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Minnesota Program Type Siting and Permitting Lake Improvement Districts may be established by county boards in order to

138

Hungry Horse Mitigation : Flathead Lake : Annual Progress Report 2008.  

DOE Green Energy (OSTI)

The Confederated Salish and Kootenai Tribes (CSKT) and Montana Fish Wildlife and Parks (MFWP) wrote the 'Fisheries Mitigation Plan for Losses Attributable to the Construction and Operation of Hungry Horse Dam' in March 1991 to define the fisheries losses, mitigation alternatives and recommendations to protect, mitigate and enhance resident fish and aquatic habitat affected by Hungry Horse Dam. On November 12, 1991, the Northwest Power Planning Council (NPPC) approved the mitigation plan with minor modifications, called for a detailed implementation plan, and amended measures 903(h)(1) through (7). A long-term mitigation plan was submitted in August 1992, was approved by the Council in 1993, and the first contract for this project was signed on November 11, 1993. The problem this project addresses is the loss of habitat, both in quality and quantity, in the Flathead Lake and River basin resulting from the construction and operation of Hungry Horse Dam. The purpose of the project is to both implement mitigation measures and monitor the biological responses to those measures including those implemented by Project Numbers 9101903 and 9101904. Goals and objectives of the 1994 Fish and Wildlife Program (Section 10.1) addressed by this project are the rebuilding to sustainable levels weak, but recoverable, native populations injured by the hydropower system. The project mitigates the blockage of spawning runs by Hungry Horse Dam by restoring and even creating spawning habitats within direct drainages to Flathead Lake. The project also addresses the altered habitat within Flathead Lake resulting from species shifts and consequent dominance of new species that restricts the potential success of mitigation measures. Specific goals of this project are to create and restore habitat and quantitatively monitor changes in fish populations to verify the efficacy of our mitigation measures. The project consists of three components: monitoring, restoration and research. Monitoring, for example, includes a spring gillnetting series conducted annually in Flathead Lake and builds on an existing data set initiated in 1981. Monitoring of the experimental kokanee reintroduction was a primary activity of this project between 1992 and 1997. Lake trout, whose high densities have precluded successful mitigation of losses of other species in Flathead Lake, have been monitored since 1996 to measure several biological parameters. Results of this work have utility in determining the population status of this key predator in Flathead Lake. The project has also defined the baseline condition of the Flathead Lake fishery in 1992-1993 and has conducted annual lakewide surveys since 1998. The restoration component of the project has addressed several stream channel, riparian, and fish passage problems, and suppression of non-native fish. The research component of the project began in FY 2000 and measured trophic linkages between M. relicta and other species to assist in predicting the results of our efforts to suppress lake trout. Only Work Element A in the Statement of Work is funded entirely by Hungry Horse Mitigation funds. Additional funds are drawn from other sources to assist in completion of all remaining Work Elements.

Hansen, Barry; Evarts, Les [Confederated Salish and Kootenai Tribes

2009-08-06T23:59:59.000Z

139

Hungry Horse Mitigation : Flathead Lake : Annual Progress Report 2007.  

DOE Green Energy (OSTI)

The Confederated Salish and Kootenai Tribes (CSKT) and Montana Fish Wildlife and Parks (MFWP) wrote the 'Fisheries Mitigation Plan for Losses Attributable to the Construction and Operation of Hungry Horse Dam' in March 1991 to define the fisheries losses, mitigation alternatives and recommendations to protect, mitigate and enhance resident fish and aquatic habitat affected by Hungry Horse Dam. On November 12, 1991, the Northwest Power Planning Council (NPPC) approved the mitigation plan with minor modifications, called for a detailed implementation plan, and amended measures 903(h)(1) through (7). A long-term mitigation plan was submitted in August 1992, was approved by the Council in 1993, and the first contract for this project was signed on November 11, 1993. The problem this project addresses is the loss of habitat, both in quality and quantity, in the Flathead Lake and River basin resulting from the construction and operation of Hungry Horse Dam. The purpose of the project is to both implement mitigation measures and monitor the biological responses to those measures including those implemented by Project Numbers 9101903 and 9101904. Goals and objectives of the 1994 Fish and Wildlife Program (Section 10.1) addressed by this project are the rebuilding to sustainable levels weak, but recoverable, native populations injured by the hydropower system. The project mitigates the blockage of spawning runs by Hungry Horse Dam by restoring and even creating spawning habitats within direct drainages to Flathead Lake. The project also addresses the altered habitat within Flathead Lake resulting from species shifts and consequent dominance of new species that restricts the potential success of mitigation measures. Specific goals of this project are to create and restore habitat and quantitatively monitor changes in fish populations to verify the efficacy of our mitigation measures. The project consists of three components: monitoring, restoration and research. Monitoring, for example, includes a spring gillnetting series conducted annually in Flathead Lake and builds on an existing data set initiated in 1981. Monitoring of the experimental kokanee reintroduction was a primary activity of this project between 1992 and 1997. Lake trout, whose high densities have precluded successful mitigation of losses of other species in Flathead Lake, have been monitored since 1996 to measure several biological parameters. Results of this work have utility in determining the population status of this key predator in Flathead Lake. The project has also defined the baseline condition of the Flathead Lake fishery in 1992-1993 and has conducted annual lakewide surveys since 1998. The restoration component of the project has addressed several stream channel, riparian, and fish passage problems, and suppression of non-native fish. The research component of the project began in FY 2000 and measured trophic linkages between M. relicta and other species to assist in predicting the results of our efforts to suppress lake trout. Only Work Element A in the Statement of Work is funded entirely by Hungry Horse Mitigation funds. Additional funds are drawn from other sources to assist in completion of all remaining Work Elements.

Hansen, Barry; Evarts, Les [Confederated Salish and Kootenai Tribes

2008-12-22T23:59:59.000Z

140

Hungry Horse Mitigation; Flathead Lake, 2004-2005 Annual Report.  

DOE Green Energy (OSTI)

The Confederated Salish and Kootenai Tribes (CSKT) and Montana Fish Wildlife and Parks (MFWP) wrote the ''Fisheries Mitigation Plan for Losses Attributable to the Construction and Operation of Hungry Horse Dam'' in March 1991 to define the fisheries losses, mitigation alternatives and recommendations to protect, mitigate and enhance resident fish and aquatic habitat affected by Hungry Horse Dam. On November 12, 1991, the Northwest Power Planning Council (NPPC) approved the mitigation plan with minor modifications, called for a detailed implementation plan, and amended measures 903(h)(1) through (7). A long-term mitigation plan was submitted in August 1992, was approved by the Council in 1993, and the first contract for this project was signed on November 11, 1993. The problem this project addresses is the loss of habitat, both in quality and quantity, in the Flathead Lake and River basin resulting from the construction and operation of Hungry Horse Dam. The purpose of the project is to both implement mitigation measures and monitor the biological responses to those measures including those implemented by Project Numbers 9101903 and 9101904. Goals and objectives of the 1994 Fish and Wildlife Program (Section 10.1) addressed by this project are the rebuilding to sustainable levels weak, but recoverable, native populations injured by the hydropower system. The project mitigates the blockage of spawning runs by Hungry Horse Dam by restoring and even creating spawning habitats within direct drainages to Flathead Lake. The project also addresses the altered habitat within Flathead Lake resulting from species shifts and consequent dominance of new species that restricts the potential success of mitigation measures. Specific goals of this project are to create and restore habitat and quantitatively monitor changes in fish populations to verify the efficacy of our mitigation measures. The project consists of three components: monitoring, restoration and research. Monitoring, for example, includes a spring gillnetting series conducted annually in Flathead Lake and builds on an existing data set initiated in 1981. Monitoring of the experimental kokanee reintroduction was a primary activity of this project between 1992 and 1997. Lake trout, whose high densities have precluded successful mitigation of losses of other species in Flathead Lake, have been monitored since 1996 to measure several biological parameters. Results of this work have utility in determining the population status of this key predator in Flathead Lake. The project has also defined the baseline condition of the Flathead Lake fishery in 1992-1993 and has conducted annual lakewide surveys since 1998. The restoration component of the project has addressed several stream channel, riparian, and fish passage problems, and suppression of non-native fish. The research component of the project began in FY 2000 and measured trophic linkages between M. relicta and other species to assist in predicting the results of our efforts to suppress lake trout. Only Work Element A in the Statement of Work is funded entirely by Hungry Horse Mitigation funds. Additional funds are drawn from other sources to assist in completion of all remaining Work Elements.

Hansen, Barry; Evarts, Les (Confederated Salish and Kootenai Tribes of the Flathead Nation, Pablo, MT)

2006-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "lake paiute tribe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Hungry Horse Mitigation; Flathead Lake, 2003-2004 Annual Report.  

DOE Green Energy (OSTI)

The Confederated Salish and Kootenai Tribes (CSKT) and Montana Fish Wildlife and Parks (MFWP) wrote the ''Fisheries Mitigation Plan for Losses Attributable to the Construction and Operation of Hungry Horse Dam'' in March 1991 to define the fisheries losses, mitigation alternatives and recommendations to protect, mitigate and enhance resident fish and aquatic habitat affected by Hungry Horse Dam. On November 12, 1991, the Northwest Power Planning Council (NPPC) approved the mitigation plan with minor modifications, called for a detailed implementation plan, and amended measures 903(h)(1) through (7). A long-term mitigation plan was submitted in August 1992, was approved by the Council in 1993, and the first contract for this project was signed on November 11, 1993. The problem this project addresses is the loss of habitat, both in quality and quantity, in the Flathead Lake and River basin resulting from the construction and operation of Hungry Horse Dam. The purpose of the project is to both implement mitigation measures and monitor the biological responses to those measures including those implemented by Project Numbers 9101903 and 9101904. Goals and objectives of the 1994 Fish and Wildlife Program (Section 10.1) addressed by this project are the rebuilding to sustainable levels weak, but recoverable, native populations injured by the hydropower system. The project mitigates the blockage of spawning runs by Hungry Horse Dam by restoring and even creating spawning habitats within direct drainages to Flathead Lake. The project also addresses the altered habitat within Flathead Lake resulting from species shifts and consequent dominance of new species that restricts the potential success of mitigation measures. Specific goals of this project are to create and restore habitat and quantitatively monitor changes in fish populations to verify the efficacy of our mitigation measures. The project consists of three components: monitoring, restoration and research. Monitoring, for example, includes a spring gillnetting series conducted annually in Flathead Lake and builds on an existing data set initiated in 1981. Monitoring of the experimental kokanee reintroduction was a primary activity of this project between 1992 and 1997. Lake trout, whose high densities have precluded successful mitigation of losses of other species in Flathead Lake, have been monitored since 1996 to measure several biological parameters. Results of this work have utility in determining the population status of this key predator in Flathead Lake. The project has also defined the baseline condition of the Flathead Lake fishery in 1992-1993 and has conducted annual lakewide surveys since 1998. The restoration component of the project has addressed several stream channel, riparian, and fish passage problems, and suppression of non-native fish. The research component of the project began in FY 2000 and measured trophic linkages between M. relicta and other species to assist in predicting the results of our efforts to suppress lake trout. Only Objective 1 in the workplan is funded entirely by Hungry Horse Mitigation funds. Additional funds are drawn from other sources to assist in completion of Objectives 2-8.

Hansen, Barry; Evarts, Les (Confederated Salish and Kootenai Tribes of the Flathead Nation, Pablo, MT)

2005-06-01T23:59:59.000Z

142

Texas Originals Introduction: We are not the first people to Walk Across Texas. Many of the nomadic tribes of Texas  

E-Print Network (OSTI)

Texas Originals Introduction: We are not the first people to Walk Across Texas. Many of the nomadic tribes of Texas were doing this long before we got here. Before Europeans introduced horses to the Native Level and Subject: Seventh Grade Texas History TEKS: TH 2a, 9b, 9c, 10a, 11a, 20a, 21a, 22a, 22b, 22c

Wilkins, Neal

143

Sharp-tailed Grouse Restoration; Colville Tribes Restore Habitat for Sharp-tailed Grouse, Annual Report 2002-2003.  

DOE Green Energy (OSTI)

Columbian Sharp-Tailed Grouse (Tympanuchus phasianellus columbianus) (CSTG) are an important traditional and cultural species to the Colville Confederated Tribes (CCT), Spokane Tribe of Indians (STOI), and other Tribes in the Region. They were once the most abundant upland bird in the Region. Currently, the largest remaining population in Washington State occurs on the CCT Reservation in Okanogan County. Increasing agricultural practices and other land uses has contributed to the decline of sharp-tail habitat and populations putting this species at risk. The decline of this species is not new (Yokum, 1952, Buss and Dziedzic, 1955, Zeigler, 1979, Meints 1991, and Crawford and Snyder 1994). The Tribes (CCT and STOI) are determined to protect, enhance and restore habitat for this species continued existence. When Grand Coulee and Chief Joseph Hydro-projects were constructed, inundated habitat used by this species was lost forever adding to overall decline. To compensate and prevent further habitat loss, the CCT proposed a project with Bonneville Power Administration (BPA) funding to address this species and their habitat requirements. The projects main focus is to address habitat utilized by the current CSTG population and determine ways to protect, restore, and enhance habitats for the conservation of this species over time. The project went through the NPPC Review Process and was funded through FY03 by BPA. This report addresses part of the current CCT effort to address the conservation of this species on the Colville Reservation.

Whitney, Richard

2004-01-01T23:59:59.000Z

144

Strategic Energy Planning (Area 1) Consultants Reports to Citizen Potawatomi Nation Federally Recognized Indian Tribe  

DOE Green Energy (OSTI)

The assets that Citizen Potawatomi Nation holds were evaluated to help define the strengths and weaknesses to be used in pursuing economic prosperity. With this baseline assessment, a Planning Team will create a vision for the tribe to integrate into long-term energy and business strategies. Identification of energy efficiency devices, systems and technologies was made, and an estimation of cost benefits of the more promising ideas is submitted for possible inclusion into the final energy plan. Multiple energy resources and sources were identified and their attributes were assessed to determine the appropriateness of each. Methods of saving energy were evaluated and reported on and potential revenue-generating sources that specifically fit the tribe were identified and reported. A primary goal is to create long-term energy strategies to explore development of tribal utility options and analyze renewable energy and energy efficiency options. Associated goals are to consider exploring energy efficiency and renewable economic development projects involving the following topics: (1) Home-scale projects may include construction of a home with energy efficiency or renewable energy features and retrofitting an existing home to add energy efficiency or renewable energy features. (2) Community-scale projects may include medium to large scale energy efficiency building construction, retrofit project, or installation of community renewable energy systems. (3) Small business development may include the creation of a tribal enterprise that would manufacture and distribute solar and wind powered equipment for ranches and farms or create a contracting business to include energy efficiency and renewable retrofits such as geothermal heat pumps. (4) Commercial-scale energy projects may include at a larger scale, the formation of a tribal utility formed to sell power to the commercial grid, or to transmit and distribute power throughout the tribal community, or hydrogen production, and propane and natural-gas distribution systems.

Smith, Marvin; Bose, James; Beier, Richard; Chang, Young Bae

2004-12-01T23:59:59.000Z

145

Historical Memory and Ethnographic Perspectives on the Southern Paiute Homeland  

E-Print Network (OSTI)

were fed with "wheat & seed flour porridge & berries" andwheat from the husks and thus prepare it for grinding into flour

Stoffle, Richard W; Zedeno, Maria Nieves

2001-01-01T23:59:59.000Z

146

Hungry Horse Mitigation; Flathead Lake, 2001-2002 Annual Report.  

DOE Green Energy (OSTI)

The Confederated Salish and Kootenai Tribes (CSKT) and Montana Fish Wildlife and Parks (MFWP) wrote ''Fisheries Mitigation Plan for Losses Attributable to the Construction and Operation of Hungry Horse Dam'' in March 1991 to define the fisheries losses, mitigation alternatives and recommendations to protect, mitigate and enhance resident fish and aquatic habitat affected by Hungry Horse Dam. On November 12, 1991, the Northwest Power Planning Council (NPPC) approved the mitigation plan with minor modifications, called for a detailed implementation plan, and amended measures 903(h)(1) through (7). A long-term mitigation plan was submitted in August 1992, was approved by the Council in 1993, and the first contract for this project was signed on November 11, 1993. The problem this project addresses is the loss of habitat, both in quality and quantity, in the interconnected Flathead Lake and River basin resulting from the construction and operation of Hungry Horse Dam. The purpose of the project is to both implement mitigation measures and monitor the biological responses to those measures including those implemented by Project Numbers 9101903 and 9101904. Goals and objectives of the 1994 Fish and Wildlife Program (Section 10.1) addressed by this project are the rebuilding to sustainable levels weak, but recoverable, native populations injured by the hydropower system. The project mitigates the blockage of spawning runs by Hungry Horse Dam by restoring and even creating spawning habitats within direct drainages to Flathead Lake. The project also addresses the altered habitat within Flathead Lake resulting from species shifts and consequent dominance of new species that restricts the potential success of mitigation measures. Specific goals of this project are to create and restore habitat and quantitatively monitor changes in fish populations to verify the efficacy of our mitigation measures. The project consists of three components: monitoring, restoration and research. Monitoring, for example, includes a spring gillnetting series conducted annually in Flathead Lake and builds on an existing data set initiated in 1981. Monitoring of the experimental kokanee reintroduction was a primary activity of this project between 1992 and 1997. Lake trout, whose high densities have precluded successful mitigation of losses of other species in Flathead Lake, have been monitored since 1996 to measure several biological parameters. Results of this work have utility in determining the population status of this key predator in Flathead Lake. The project has also defined the baseline condition of the Flathead Lake fishery in 1992-1993 and has conducted annual lakewide surveys since 1998. The restoration component of the project has addressed several stream channel, riparian, and fish passage problems. The research component of the project began in FY 2000 and measured trophic linkages between M. relicta and other species to assist in predicting the results of potential mitigation strategies. Only Objective 1 in the workplan is funded entirely by Hungry Horse Mitigation funds. Additional funds are drawn from other sources to assist in completion of Objectives 2-6.

Hansen, Barry (Confederated Salish and Kootenai Tribes of the Flathead Nation, Pablo, MT)

2003-06-09T23:59:59.000Z

147

salt lake city.cdr  

Office of Legacy Management (LM)

Locations of the Salt Lake City Processing and Disposal Sites Locations of the Salt Lake City Processing and Disposal Sites This fact sheet provides information about the Uranium Mill Tailings Radiation Control Act of 1978 Title I processing site and disposal site at Salt Lake City, Utah. These sites are managed by the U.S. Department of Energy Office of Legacy Management. Salt Lake City, Utah, Processing and Disposal Sites Site Descriptions and History Regulatory Setting The former Salt Lake City processing site is located about 4 miles south-southwest of the center of Salt Lake City, Utah, at 3300 South and Interstate 15. The Vitro Chemical Company processed uranium and vanadium ore at the site from 1951 until 1968. Milling operations conducted at the processing site created radioactive tailings, a predominantly sandy material.

148

Habitat Evaluation Procedures (HEP) Report : West Beaver Lake, 2004-2005 Technical Report.  

DOE Green Energy (OSTI)

On September 7, 2004, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the West Beaver Lake property, an acquisition completed by the Kalispel Tribe of Indians in September 2004. Evaluation species and appropriate models include bald eagle, black-capped chickadee, mallard, muskrat, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The West Beaver Lake Project provides a total of 103.08 Habitat Units (HUs) for the species evaluated. Emergent wetland habitat provides 7.17 HUs for mallard and muskrat. Conifer forest habitat provides 95.91 HUs for bald eagle, black-capped chickadee, mallard, and white-tailed deer. The objective of using HEP at the West Beaver Lake Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

Entz, Ray

2005-02-01T23:59:59.000Z

149

Method for lake restoration  

DOE Patents (OSTI)

A process for removing pollutants or minerals from lake, river or ocean sediments or from mine tailings is disclosed. Magnetically attractable collection units containing an ion exchange or sorbent media with an affinity for a chosen target substance are distributed in the sediments or tailings. After a period of time has passed sufficient for the particles to bind up the target substances, a magnet drawn through the sediments or across the tailings retrieves the units along with the target substance.

Dawson, Gaynor W. (Richland, WA); Mercer, Basil W. (Pasco, WA)

1979-01-01T23:59:59.000Z

150

Why Sequence Lake Vostok accretion ice?  

NLE Websites -- All DOE Office Websites (Extended Search)

Sequence Lake Vostok accretion ice? Lake Vostok is the largest known subglacial lake in central Antarctica, though it's been buried under 4 kilometers (nearly 2.5 miles) of ice for...

151

Implementation of Fisheries Enhancement Opportunities on the Coeur d'Alene Reservation; Coeur d'Alene Tribe Fish, Water, and Wildlife Program, Progress Report 1996-1998.  

DOE Green Energy (OSTI)

As part of an ongoing project to restore fisheries resources in tributaries located on the Coeur d'Alene Indian Reservation, this report details the activities of the Coeur d'Alene Tribe's Fisheries Program for FY 1997 and 1998. This report (1) analyses the effect introduced species and water quality have on the abundance of native trout in Coeur d'Alene Lake and selected target tributaries; (2) details results from an ongoing mark-recapture study on predatory game fish; (3) characterizes spawning habitats in target tributaries and evaluates the effects of fine sediment on substrate composition and estimated emergence success; and (4) provides population estimates for westslope cutthroat trout in target tributaries. Low dissolved oxygen values in the hypolimnion of Coeur d'Alene Lake continue to be a cause for concern with regard to available fisheries habitat. Four sample sites in 1997 and eight sample sites in 1998 had measured levels of dissolved oxygen below what is considered optimum (6.0 mg/L) for cutthroat trout. As well, two sample points located north of the Coeur d'Alene River showed hypolimnetic dissolved oxygen deficits. This could lead to a more serious problem associated with the high concentration of heavy metals bound up in the sediment north of the Coeur d'Alene River. Most likely these oxygen deficits are a result of allochthonous input of organic matter and subsequent decomposition. Sediment loading from tributaries continues to be a problem in the lake. The build up of sediments at the mouths of all incoming tributaries results in the modification of existing wetlands and provides ideal habitat for predators of cutthroat trout, such as northern pike and largemouth bass. Furthermore, increased sediment deposition provides additional substrate for colonization by aquatic macrophytes, which serve as forage and habitat for other non-native species. There was no significant difference in the relative abundance of fishes in Coeur d'Alene Lake from 1997 to 1998. Four out of the six most commonly sampled species are non-native. Northern pikeminnow and largescale suckers are the only native species among the six most commonly sampled. Northern pikeminnow comprise 8-9% of the electroshocking catch and 18-20% of the gillnet catch. Largescale suckers comprise 24-28% of the electroshocking catch and 9-21% of the gillnet catch. Cutthroat trout and mountain whitefish, on the other hand, comprise less than 1% of the catch when using electroshocking methods and about 1.4% of the gillnet catch. Since 1994, the Coeur d'Alene Tribe Fish, Water and Wildlife Program has conducted an extensive mark-recapture study (Peters et al. 1999). To date, 636 fish have been tagged and 23 fish have been recaptured. We are finding that northern pike have a tendency to migrate from the original sampling site, while largemouth bass appear very territorial, rarely moving from the site where they were tagged. Both species are most commonly associated with shallow, near-shore habitats, where the potential for encountering seasonal migrations of cutthroat trout is maximized. Low-order tributaries provide the most important spawning habitat for cutthroat trout on the Reservation. The mapped distribution of potentially suitable spawning gravel was patchy and did not vary considerably within reaches or between watersheds. Furthermore, the quantity of spawning gravel was low, averaging just 4.1% of measured stream area. The lack of a strong association between spawning gravel abundance and several reach characteristics (gradient, proportion of gravel and pea gravel) corroborates the findings of other authors who suggest that local hydrologic features influence spawning gravel availability. Although the distribution of spawning substrate was patchy within the target watersheds, there is probably adequate habitat to support resident and adfluvial spawners because of currently depressed numbers. Spawning gravels in target tributaries of the Reservation contained proportions of fine sediments comparable to those in egg pockets of salmonid redds in th

Vitale, Angelo; Bailey, Dee; Peters, Ron

2003-06-01T23:59:59.000Z

152

u.s. DEPARUIENT OF ENERGY EE RE PROJECT MANAG EM ENT CENTER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

p .* p .* *. O!, u.s. DEPARUIENT OF ENERGY EE RE PROJECT MANAG EM ENT CENTER NEPA DETERl\IINATION RECIPIENT:Pyramid Lake Paiute Tribe PROJECT TITLE: Recovery Act: Geothermal Technologies Program STATE: NV Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Numbu CID Number DE~FOA-OOOO-109 DE-EEOOO2842 GF0-10-336 G02642 Based on my review orcbe information concerning the proposed adion, as NEPA Compliance omcer (auCboriud under DOE Order 4SI.1A), I have made the following determination: ex, EA, EIS APPENDIX AND NUMBER: Description: A9 Information gathering (including, but not limited to. literature surveys, inventories, audits), data analysis (including computer modeling), document preparation (such as conceptual design or feasibility studies, analytical energy supply

153

Great Lakes Bioenergy Research Center Technologies Available ...  

Great Lakes Bioenergy Research Center Technologies Available for Licensing Established by the Department of Energy (DOE) in 2007, the Great Lakes Bioenergy Research ...

154

The Asa┬Écarsarmiut Tribe proposes to conduct energy efficient building retrofits to tribal homes which  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NATIVE VILLAGE OF CHENEGA BAY NATIVE VILLAGE OF CHENEGA BAY Energy Efficiency and Conservation Block Grant Program Location: Tribe AK-TRIBE-NATIVE VILLAGE OF CHENEGA BAY AK American Recovery and Reinvestment Act: Proposed Action or Project Description The Native Village of Chenega Bay of Alaska proposes to purchase and install materials and equipment needed to replace three electrical transformers, including pedestals and pads, which are part of the power system which provides electricity to residential properties in the Native Village of Chenega Bay, Alaska. These transformer upgrades will provide uninterrupted electrical power to twenty-three existing residential structures. Conditions: None Categorical Exclusion(s) Applied: B2.5, B5.1 *-For the complete DOE National Environmental Policy Act regulations regarding categorical exclusions, see Subpart D of 10 CFR10 21

155

Lake Michigan Lake Breezes: Climatology, Local Forcing, and Synoptic Environment  

Science Conference Proceedings (OSTI)

A method was developed to identify the occurrence of lake-breeze events along the eastern, western, and both shores of Lake Michigan during a 15-yr period (1982ľ96). Comparison with detailed observations from May through September of 1996ľ97 ...

Neil F. Laird; David A. R. Kristovich; Xin-Zhong Liang; Raymond W. Arritt; Kenneth Labas

2001-03-01T23:59:59.000Z

156

FEASIBILITY STUDY FOR A PETROLEUM REFINERY FOR THE JICARILLA APACHE TRIBE  

Science Conference Proceedings (OSTI)

A feasibility study for a proposed petroleum refinery for the Jicarilla Apache Indian Reservation was performed. The available crude oil production was identified and characterized. There is 6,000 barrels per day of crude oil production available for processing in the proposed refinery. The proposed refinery will utilize a lower temperature, smaller crude fractionation unit. It will have a Naphtha Hydrodesulfurizer and Reformer to produce high octane gasoline. The surplus hydrogen from the reformer will be used in a specialized hydrocracker to convert the heavier crude oil fractions to ultra low sulfur gasoline and diesel fuel products. The proposed refinery will produce gasoline, jet fuel, diesel fuel, and a minimal amount of lube oil. The refinery will require about $86,700,000 to construct. It will have net annual pre-tax profit of about $17,000,000. The estimated return on investment is 20%. The feasibility is positive subject to confirmation of long term crude supply. The study also identified procedures for evaluating processing options as a means for American Indian Tribes and Native American Corporations to maximize the value of their crude oil production.

John D. Jones

2004-10-01T23:59:59.000Z

157

Why Sequence Great Salt Lake?  

NLE Websites -- All DOE Office Websites (Extended Search)

Great Salt Lake? Great Salt Lake? On average, the Great Salt Lake is four times saltier than the ocean and also has heavy metals, high concentrations of sulfur and petroleum seeps. In spite of all this, the lake is the saltiest body of water to support life. The lake hosts brine shrimp, algae and a diverse array of microbes, not to mention the roughly 5 million birds that migrate there annually. The secret to these microbes' ability to survive under such harsh conditions might be revealed in their genes. Researchers expect the genetic data will provide insight into how the microorganisms tolerate pollutants such as sulfur and detoxify pollutants such as sulfur and heavy metals like mercury. The information could then be used to develop bioremediation techniques. Researchers also expect that sequencing microorganisms sampled

158

Atlanta TEC Meeting -- Tribal Group Summary 3-6-07  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Atlanta, GA - January 31, 2007 Atlanta, GA - January 31, 2007 Session Chaired by: Jay Jones (DOE, Office of Civilian Radioactive Waste Management, OCRWM) Regular Members in Attendance: Kenny Anderson (Las Vegas Paiute Tribe), Richard Arnold (Las Vegas Indian Center/Pahrump Paiute Tribe), Tony Boyd (Pueblo of Acoma), Rob Burnside (Confederated Tribes of the Umatilla Indian Reservation, CTUIR), Floyd Chaney (Mohegan Tribe), Sandra Covi (Union Pacific Railroad), Martha Crosland (DOE/Office of General Counsel, GC), Kristen Ellis (DOE/Intergovernmental and External Affairs, CI), Frank Gavigan (Mohegan Tribe), Ed Gonzales (ELG Engineering/Pueblo de San Ildefonso), Robert Gruenig (National Tribal Environmental Council, NTEC), Paloma Hill (OCRWM Intern), Judith Holm (OCRWM), Gayl Honanie (Hopi Tribe), Lisa Janairo

159

The Lake Effect of the Great Salt Lake: Overview and Forecast Problems  

Science Conference Proceedings (OSTI)

A lake-effect snow phenomenon along the shore of the Great Salt Lake (GSL) in Utah is documented and related to a similar, well-documented lake effect along the shores of the Great Lakes. Twenty-eight cases of GSL lake-effect snowfall are ...

David M. Carpenter

1993-06-01T23:59:59.000Z

160

TEC/WG Tribal Topic Group  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Meeting Meeting September 22, 2005 - Pueblo, CO Group Chair: Jay Jones (DOE/OCRWM) Tribal Topic Group Members Present: Richard Arnold (Southern Paiute/CGTO), Vicki Best (Bechtel SAIC-YMP), Kevin Blackwell (DOT/FRA), Sandra Covi (UPRR), Barbara Durham (Timbisha Shoshone Tribe), Greg Fasano (Bechtel SAIC-YMP), Elizabeth Helvey (BSC), Angela Hill (DOE/OCRWM), Judith Holm (DOE/OCRWM), Marsha Keister (INL), Dan King (Oneida Nation), Gary Lanthrum (DOE/OCRWM), Corinne Macaluso (DOE/OCRWM), Calvin Meyers (Moapa Band of Paiutes), Michele Titto Moses (CTUIR), Ellen Ott (DOE/GC), Wilda Portner (SAIC), Willie Preacher (Shoshone-Bannock Tribes), Linda Sikkema (NCSL), Lora Tom (Paiute Indian Tribe of Utah), Christopher Wells (SSEB), Edward Wilds (CT Dept. of Environmental

Note: This page contains sample records for the topic "lake paiute tribe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Lake Roosevelt Rainbow Trout Habitat/Passage Improvement Project, Annual Report 2001-2002.  

DOE Green Energy (OSTI)

The construction of Chief Joseph and Grand Coulee Dams completely and irrevocably blocked anadromous fish migrations to the Upper Columbia River. Historically this area hosted vast numbers of salmon returning to their natal waters to reproduce and die. For the native peoples of the region, salmon and steelhead were a principle food source, providing physical nourishment and spiritual sustenance, and contributing to the religious practices and the cultural basis of tribal communities. The decaying remains of spawned-out salmon carcasses contributed untold amounts of nutrients into the aquatic, aerial, and terrestrial ecosystems of tributary habitats in the upper basin. Near the present site of Kettle Falls, Washington, the second largest Indian fishery in the state existed for thousands of years. Returning salmon were caught in nets and baskets or speared on their migration to the headwater of the Columbia River in British Columbia. Catch estimates at Kettle Falls range from 600,000 in 1940 to two (2) million around the turn of the century (UCUT, Report No.2). The loss of anadromous fish limited the opportunities for fisheries management and enhancement exclusively to those actions addressed to resident fish. The Lake Roosevelt Rainbow Trout Habitat/Passage Improvement Project is a mitigation project intended to enhance resident fish populations and to partially mitigate for anadromous fish losses caused by hydropower system impacts. This substitution of resident fish for anadromous fish losses is considered in-place and out-of-kind mitigation. Upstream migration and passage barriers limit the amount of spawning and rearing habitat that might otherwise be utilized by rainbow trout. The results of even limited stream surveys and habitat inventories indicated that a potential for increased natural production exists. However, the lack of any comprehensive enhancement measures prompted the Upper Columbia United Tribes Fisheries Center (UCUT), Colville Confederated Tribes (CCT), Spokane Tribe of Indians (STI) and Washington Department of Fish and Wildlife (WDFW) to develop and propose a comprehensive fishery management plan for Lake Roosevelt. The Rainbow Trout Habitat/Passage Improvement Project (LRHIP) was designed with goals directed towards increasing natural production while maintaining genetic integrity among current tributary stocks. The initial phase of the Lake Roosevelt Habitat Improvement Project (Phase I, baseline data collection: 1990-91) was focused on the assessment of limiting factors, including the quality and quantity of available spawning gravel, identification of passage barriers, and assessment of other constraints. After the initial assessment of stream parameters, five streams meeting specific criteria were selected for habitat/passage improvement projects (Phase II, implementation -1992-1995). Four of these projects were on the Colville Indian Reservation South Nanamkin, North Nanamkin, Louie and Iron Creeks and one Blue Creek was on the Spokane Indian Reservation. At the completion of project habitat improvements, the final phase (Phase III, monitoring-1996-2000) began. This phase assessed the changes and determined the success achieved through the improvements. Data analysis showed that passage improvements are successful for increasing habitat availability and use. The results of in-stream habitat improvements were inconclusive. Project streams, to the last monitoring date, have shown increases in fish density following implementation of the improvements. In 2000 Bridge Creek, on the Colville Reservation was selected for the next phase of improvements. Data collection, including baseline stream survey and population data collection, was carried out during 2001 in preparation for the design and implementation of stream habitat/passage improvements. Agencies cooperating on the project include the Colville Confederated Tribes (CCT), Natural Resource Conservation Service (NRCS, Ferry County District), Ferry County Conservation District, and Ferry County. The Bonneville Power Administration (BPA) provided

Sears, Sheryl

2003-01-01T23:59:59.000Z

162

Lake Roosevelt Rainbow Trout Habitat/Passage Improvement Project, Annual Report 2002-2003.  

DOE Green Energy (OSTI)

The construction of Chief Joseph and Grand Coulee Dams completely and irrevocably blocked anadromous fish migrations to the Upper Columbia River. Historically this area hosted vast numbers of salmon returning to their natal waters to reproduce and die. For the native peoples of the region, salmon and steelhead were a principle food source, providing physical nourishment and spiritual sustenance, and contributing to the religious practices and the cultural basis of tribal communities. The decaying remains of spawned-out salmon carcasses contributed untold amounts of nutrients into the aquatic, aerial, and terrestrial ecosystems of tributary habitats in the upper basin. Near the present site of Kettle Falls, Washington, the second largest Indian fishery in the state existed for thousands of years. Returning salmon were caught in nets and baskets or speared on their migration to the headwater of the Columbia River in British Columbia. Catch estimates at Kettle Falls range from 600,000 in 1940 to two (2) million around the turn of the century (UCUT, Report No.2). The loss of anadromous fish limited the opportunities for fisheries management and enhancement exclusively to those actions addressed to resident fish. The Lake Roosevelt Rainbow Trout Habitat/Passage Improvement Project is a mitigation project intended to enhance resident fish populations and to partially mitigate for anadromous fish losses caused by hydropower system impacts. This substitution of resident fish for anadromous fish losses is considered in-place and out-of-kind mitigation. Upstream migration and passage barriers limit the amount of spawning and rearing habitat that might otherwise be utilized by rainbow trout. The results of even limited stream surveys and habitat inventories indicated that a potential for increased natural production exists. However, the lack of any comprehensive enhancement measures prompted the Upper Columbia United Tribes Fisheries Center (UCUT), Colville Confederated Tribes (CCT), Spokane Tribe of Indians (STI) and Washington Department of Fish and Wildlife (WDFW) to develop and propose a comprehensive fishery management plan for Lake Roosevelt. The Rainbow Trout Habitat/Passage Improvement Project (LRHIP) was designed with goals directed towards increasing natural production while maintaining genetic integrity among current tributary stocks. The initial phase of the Lake Roosevelt Habitat Improvement Project (Phase I, baseline data collection: 1990-91) was focused on the assessment of limiting factors, including the quality and quantity of available spawning gravel, identification of passage barriers, and assessment of other constraints. After the initial assessment of stream parameters, five streams meeting specific criteria were selected for habitat/passage improvement projects (Phase II, implementation -1992-1995). Four of these projects were on the Colville Indian Reservation South Nanamkin, North Nanamkin, Louie and Iron Creeks and one Blue Creek was on the Spokane Indian Reservation. At the completion of project habitat improvements, the final phase (Phase III, monitoring-1996-2000) began. This phase assessed the changes and determined the success achieved through the improvements. Data analysis showed that passage improvements are successful for increasing habitat availability and use. The results of in-stream habitat improvements were inconclusive. Project streams, to the last monitoring date, have shown increases in fish density following implementation of the improvements. In 2000 Bridge Creek, on the Colville Reservation was selected for the next phase of improvements. Data collection, including baseline stream survey and population data collection, was carried out during 2001 in preparation for the design and implementation of stream habitat/passage improvements. Agencies cooperating on the project include the Colville Confederated Tribes (CCT), Natural Resource Conservation Service (NRCS, Ferry County District), Ferry County Conservation District, and Ferry County. The Bonneville Power Administration (BPA) provided

Sears, Sheryl

2004-01-01T23:59:59.000Z

163

NBP RFI: Communications Requirements- Comments of Lake Region...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lake Region Electric Cooperative- Minnesota NBP RFI: Communications Requirements- Comments of Lake Region Electric Cooperative- Minnesota Comments of Lake Region Electric...

164

Evaluation of the CLM4 Lake Model at a Large and Shallow Freshwater Lake  

Science Conference Proceedings (OSTI)

Models of lake physical processes provide the lower flux boundary conditions for numerical predictions of weather and climate in lake basins. So far, there have been few studies on evaluating lake model performance at the diurnal time scale and ...

Bin Deng; Shoudong Liu; Wei Xiao; Wei Wang; Jiming Jin; Xuhui Lee

2013-04-01T23:59:59.000Z

165

Orographic Effects in Simulated Lake-Effect Snowstorms over Lake Michigan  

Science Conference Proceedings (OSTI)

Numerical simulations of lake-effect snowstorms over Lake Michigan show that orography enhances precipitation rates and mesoscale updrafts and strengthens the land breeze. The mild orographic changes east of Lake Michigan as modeled with an 8-km ...

Mark R. Hjelmfelt

1992-02-01T23:59:59.000Z

166

Fish of the Great Lakes  

NLE Websites -- All DOE Office Websites (Extended Search)

of Cook County Richard B. Ogilvie, President Roland F. Eisenbeis, Supt. of Conservation FISH OF THE GREAT LAKES As you stand at the top of one of the tallest buildings in downtown...

167

Recent Great Lakes Ice Trends  

Science Conference Proceedings (OSTI)

Analysis of ice observations made by cooperative observers from shoreline stations reveals significant changes in the ice season on the North American Great Lakes over the past 35years. Although the dataset is highly inhomogeneous and year-to-...

Howard P. Hanson; Claire S. Hanson; Brenda H. Yoo

1992-05-01T23:59:59.000Z

168

Management Plan for Experimental Reintroduction of Sockeye into Skaha Lake; Proposed Implementation, Monitoring, and Evaluation, 2004 Technical Report.  

DOE Green Energy (OSTI)

Okanagan River sockeye salmon, which spawn near the town of Oliver, B.C., have their farther upstream migration limited by several water control and diversion dams. Stock numbers have been declining for many years and the Okanagan Native Alliance Fisheries Department (ONAFD) has been the principal advocate of a program to restore their numbers and range by reintroducing them into upstream waters where they may once have occurred in substantial numbers Some investigators have warned that without effective intervention Okanagan sockeye are at considerable risk of extinction. Among a host of threats, the quality of water in the single nursery areas in Osoyoos Lake. is deteriorating and a sanctuary such as that afforded in larger lakes higher in the system could be essential. Because the proposed reintroduction upstream has implications for other fish species, (particularly kokanee, the so-called ''landlocked sockeye'' which reside in many Okanagan lakes), the proponents undertook a three-year investigation, with funding from the Bonneville Power Administration and the Confederated Tribes of the Colville Reservation, to identify possible problem areas, and they committed to an interim experimental reintroduction to Skaha Lake where any problems could be worked out before a more ambitious reintroduction, (e.g. to Okanagan Lake) could be formally considered. The three-year investigation was completed in the spring of 2003. It included an assessment of risks from disease or the possible introduction of unwanted exotic species. It also considered the present quality and quantity of sockeye habitat, and opportunities for expanding or improving it. Finally ecological complexity encouraged the development of a life history model to examine interactions of sockeye with other fishes and their food organisms. While some problem areas were exposed in the course of these studies, they appeared to be manageable and the concept of an experimental reintroduction was largely supported but with the proviso that there should be a thorough evaluation and reporting of progress and results. A 2004 start on implementation and monitoring has now been proposed.

Wright, Howie; Smith, Howard (Okanagan Nation Alliance, Fisheries Department, Westbank, BC, Canada)

2004-01-01T23:59:59.000Z

169

HOME GLOBAL NATIONAL POLITICS BUSINESS LIVING OPINION YOUR ICT NORTHEAST SOUTHEAST GREAT LAKES MIDWEST PLAINS SOUTHWEST NORTHWEST ALASKA/HAWAII  

E-Print Network (OSTI)

, Blackfeet Tribe of Montana and Canada, director of the Rocky Mountain Indian Chamber of Commerce; Donna

Neff, Jason

170

Contributions of Lake-Effect Periods to the Cool-Season Hydroclimate of the Great Salt Lake Basin  

Science Conference Proceedings (OSTI)

Although smaller lakes are known to produce lake-effect precipitation, their influence on the precipitation climatology of lake-effect regions remains poorly documented. This study examines the contribution of lake-effect periods (LEPs) to the ...

Kristen N. Yeager; W. James Steenburgh; Trevor I. Alcott

2013-02-01T23:59:59.000Z

171

Lake and reservoir restoration guidance manual: first edition  

SciTech Connect

This manual provides guidance to lake managers, homeowners, lake associations, and laypersons on lake and reservoir restoration, management and protection. It also provides information on how to identify lake problems, evaluate practices for restoring and protection lakes, watershed management, and creating a lake-management plan.

Moore, L.; Thornton, K.

1988-02-01T23:59:59.000Z

172

Evaluation of an Experimental Re-introduction of Sockeye Salmon into Skaha Lake; Year 2 of 3, 2001 Technical Report.  

SciTech Connect

This report summarizes the findings from YEAR 2 of a three-year disease risk assessment. The Okanagan Nation Fisheries Commission (ONFC) and the Colville Confederated Tribes (CCT) are investigating the risks involved in re-introducing sockeye salmon into Skaha Lake, part of their historical range (Ernst and Vedan 2000). The disease risk assessment compares the disease and infection status of fish above and below McIntyre Dam (the present limit of sockeye migration). The disease agents identified that are of a particular concern are: infectious pancreatic necrosis virus (IPNV), infectious haematopoietic necrosis virus type 2 (IHNV type2), erythrocytic inclusion body syndrome virus (EIBSV), the whirling disease agent (Myxobolus cerebralis), and the ceratomyxosis agent (Ceratomyxa shasta).

Fisher, Christopher (Colville Confederated Tribes, Omak Community Center, Omak, WA); Machin, Deanna; Wright, Howie (Okanagan National Fisheries Commission, Westbank, BC, Canada)

2002-04-01T23:59:59.000Z

173

Journeys within the Leucophoropterini: Revision of the Tribe, Genera and Species, and Description of New Genera and Species from Australia and the Indo-Pacific  

E-Print Network (OSTI)

The tribe Leucophoropterini (Miridae: Phylinae) is a diverse assemblage of primarily Indo-Pacific and Australian bugs which are united by simple, small genitalia and a trend towards ant-mimetic body forms. Previous to this work, the relationship of the Leucophoropterini to the other tribes of Phylinae, as well as the generic relationships within the lineage, was unresolved. Further, the characters initially proposed to unite the tribe are brought into question with the addition of several recently discovered taxa from Australia. The Leucophoropterini is first re-evaluated within a phylogenetic analysis of the subfamily Phylinae, using a combined molecular and morphological dataset to test the monophyly of the lineage, re-test the character synapomorphies supporting it, and to determine the closest relatives to the tribe. The molecular dataset includes 4 genes (COII, 16S, 28S, and 18S), and 123 morphological characters for 104 taxa, which is analyzed in a parsimony analysis using Tree analysis using New Technology [TNT], a model-based analysis in RAxML, and a Bayesian analysis in Mr. Bayes. All three methods resulted in phylogenetic trees with nearly identical generic and tribal groupings, and a lineage containing Pseudophylus Yasunaga, Decomia Poppius and Tuxedo Schuh being sister-group to the Leucophoropterini. With the closest relatives to the Leucophoropterini determined for outgroup selection, a generic revision of the tribe including both Australian and Indo-Pacific taxa is accomplished using 137 morphological characters and is analyzed in an un-weighted and implied weighted parsimony analysis using TNT for 86 leucophoropterine taxa. The Indo-Pacific taxa of Leucophoropterini are found to be related to the Australian Leucophoropterini, and at least two genera within the tribe (Sejanus Distant, Leucophoroptera Poppius) were found to be paraphyletic. Lastly, taxa are revised within the context of the generic-level phylogenetic analysis, with new genera and species from Australia and the Indo-Pacific being described.

Menard, Katrina Louise

2011-05-01T23:59:59.000Z

174

Category:Salt Lake City, UT | Open Energy Information  

Open Energy Info (EERE)

UT UT Jump to: navigation, search Go Back to PV Economics By Location Media in category "Salt Lake City, UT" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant Salt Lake City UT Moon Lake Electric Assn Inc (Utah).png SVFullServiceRestauran... 57 KB SVHospital Salt Lake City UT Moon Lake Electric Assn Inc (Utah).png SVHospital Salt Lake C... 57 KB SVLargeHotel Salt Lake City UT Moon Lake Electric Assn Inc (Utah).png SVLargeHotel Salt Lake... 55 KB SVLargeOffice Salt Lake City UT Moon Lake Electric Assn Inc (Utah).png SVLargeOffice Salt Lak... 57 KB SVMediumOffice Salt Lake City UT Moon Lake Electric Assn Inc (Utah).png SVMediumOffice Salt La... 62 KB SVMidriseApartment Salt Lake City UT Moon Lake Electric Assn Inc (Utah).png

175

Man-Made Lakes and Ponds  

NLE Websites -- All DOE Office Websites (Extended Search)

MAN-MADE LAKES AND PONDS Conservation is on the march. Slowly, we are stopping the pollution of our streams by sewage and industrial wastes; we are restoring many lakes and...

176

Lake Region Electric Cooperative - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Region Electric Cooperative - Residential Energy Efficiency Rebate Program Lake Region Electric Cooperative - Residential Energy Efficiency Rebate Program Eligibility Residential...

177

Habitat Evaluation Procedures (HEP) Report; West Beaver Lake Project, Technical Report 2005  

DOE Green Energy (OSTI)

On September 7, 2004, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the West Beaver Lake property, an acquisition completed by the Kalispel Tribe of Indians in September 2004. Evaluation species and appropriate models include bald eagle, black-capped chickadee, mallard, muskrat, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The West Beaver Lake Project provides a total of 82.69 Habitat Units (HUs) for the species evaluated. Emergent wetland habitat provides 8.80 HUs for mallard, muskrat, and Canada goose. Conifer forest habitat provides 70.33 HUs for bald eagle, black-capped chickadee, mallard, and white-tailed deer. Open water provides 3.30 HUs for mallard, muskrat, and Canada goose. The objective of using HEP at the West Beaver Lake Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

Entz, Ray

2005-05-01T23:59:59.000Z

178

Habitat Evaluation Procedures (HEP) Report; North Eaton Lake, Technical Report 2005.  

DOE Green Energy (OSTI)

On July 6, 2005, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the North Eaton Lake property, an acquisition completed by the Kalispel Tribe of Indians in November 2004. Evaluation species and appropriate models include bald eagle, black-capped chickadee, Canada goose, mallard, muskrat, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The North Eaton Lake Project provides a total of 235.05 Habitat Units (HUs) for the species evaluated. Open water habitat provides 9.38 HUs for Canada goose, mallard and muskrat. Emergent wetland habitat provides 11.36 HUs for Canada goose, mallard and muskrat. Forested wetland provides 10.97 HUs for bald eagle, black-capped chickadee, mallard and white-tailed deer. Conifer forest habitat provides 203.34 HUs for bald eagle, black-capped chickadee, mallard, and white-tailed deer. The objective of using HEP at the North Eaton Lake Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

Entz, Ray

2005-11-01T23:59:59.000Z

179

Temperature analysis for lake Yojoa, Honduras  

E-Print Network (OSTI)

Lake Yojoa is the largest freshwater lake in Honduras, located in the central west region of the country (1405' N, 88░ W). The lake has a surface area of 82 km2, a maximum depth of 26 m. and an average depth of 16 m. The ...

Chokshi, Mira (Mira K.)

2006-01-01T23:59:59.000Z

180

RECIPIENT:Lake County, FL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lake County, FL Lake County, FL u.s. DEPARTIIIEN T OF ENERGY EERE PROJECT MANAGEMENT CEN T ER NEPA DETERlIJJNATION PROJECf TITLE: Lake County, FL EECBG SOW (S) Page lof2 STATE: FL Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Numbcr CID Numbtr OE┬ĚFOA-OOOOO13 DE┬ĚEE00Q0786.001 0 Based on my review of the information concerning the proposed adion, as NEPA Compliance Officer (authorized undtr DOE Order 451.IA), I have made the following determination: ex. EA, EIS APPENDIX AND NUMBER: Description: 65.1 Actions to conserve energy, demonstrate potential energy conserva tion, and promote energy-efficiency that do not increase the indoor concentrations of potentially harmful substances. These actions may involve financial and technical

Note: This page contains sample records for the topic "lake paiute tribe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Salt Lake Community College | .EDUconnections  

NLE Websites -- All DOE Office Websites (Extended Search)

SLCC Partners with DOE's Rocky Mountain Solar Training Program This program is a joint partnership between DOE's Solar Energy Technogies Program, Salt Lake Community College, Solar Energy International, and the Utah Solar Energy Association that works to accelerate use of solar electric technologies, training and facilities at community and technical college solar training programs within a 15 western United States region. DOE Solar Instructor Training Network Salt Lake City, Utah DOE Applauds SLCC's Science and Technical Programs Architectural Technology Biology Biotechnology Biomanufacturing Chemistry Computer Science Electric Sector Training Energy Management Engineering Geographic Information Sciences Geosciences InnovaBio Manufacturing & Mechanical Engineering Technology

182

Lake-Breeze Fronts in the Salt Lake Valley  

Science Conference Proceedings (OSTI)

Winds at the Salt Lake City International Airport (SLC) during the AprilľOctober period from 1948 to 2003 have been observed to shift to the north (up-valley direction) between late morning and afternoon on over 70% of the days without ...

Daniel E. Zumpfe; John D. Horel

2007-02-01T23:59:59.000Z

183

Microsoft Word - ProvisionsFundsColvilleConfederatedTribesPurchaseLoupLoupCreekAeneasCreekProperties_CX.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7, 2011 7, 2011 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Dave Roberts Project Manager - KEWU-4 Proposed Action: Provisions of funds to the Colville Confederated Tribes for purchase of the Loup Loup Creek and Aeneas Creek properties. Fish and Wildlife Project No.: 2008-104-00 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.25 Transfer, lease, disposition or acquisition of interests in uncontaminated land for habitat preservation or wildlife management, and only associated buildings that support these purposes. Uncontaminated means that there would be no potential for release of substances at a level, or in a form, that would pose a threat to public health or the environment.

184

The Lake Thunderbird Micronet Project  

Science Conference Proceedings (OSTI)

The Lake Thunderbird Micronet is a dense network of environmental sensors and a meteorological tower situated on 10 acres of rural land in central Oklahoma. The Micronet was established in the spring of 2002 as part of a grassroots effort by a ...

Alan Shapiro; Petra M. Klein; Sean C. Arms; David Bodine; Matthew Carney

2009-06-01T23:59:59.000Z

185

Practical Estimates of Lake Evaporation  

Science Conference Proceedings (OSTI)

Practical estimates of lake evaporation must rely on data that can be observed in the land environment. This requires the ability to take into account the changes in the temperature and humidity that occur when the air passes from the land to the ...

F. I. Morton

1986-03-01T23:59:59.000Z

186

Contaminant Monitoring Strategy for Henrys Lake, Idaho  

Science Conference Proceedings (OSTI)

Henrys Lake, located in southeastern Idaho, is a large, shallow lake (6,600 acres, {approx} 17.1 feet maximum depth) located at 6,472 feet elevation in Fremont Co., Idaho at the headwaters of the Henrys Fork of the Snake River. The upper watershed is comprised of high mountains of the Targhee National Forest and the lakeshore is surrounded by extensive flats and wetlands, which are mostly privately owned. The lake has been dammed since 1922, and the upper 12 feet of the lake waters are allocated for downriver use. Henrys Lake is a naturally productive lake supporting a nationally recognized ''Blue Ribbon'' trout fishery. There is concern that increasing housing development and cattle grazing may accelerate eutrophication and result in winter and early spring fish kills. There has not been a recent thorough assessment of lake water quality. However, the Department of Environmental Quality (DEQ) is currently conducting a study of water quality on Henrys Lake and tributary streams. Septic systems and lawn runoff from housing developments on the north, west, and southwest shores could potentially contribute to the nutrient enrichment of the lake. Many houses are on steep hillsides where runoff from lawns, driveways, etc. drain into wetland flats along the lake or directly into the lake. In addition, seepage from septic systems (drainfields) drain directly into the wetlands enter groundwater areas that seep into the lake. Cattle grazing along the lake margin, riparian areas, and uplands is likely accelerating erosion and nutrient enrichment. Also, cattle grazing along riparian areas likely adds to nutrient enrichment of the lake through subsurface flow and direct runoff. Stream bank and lakeshore erosion may also accelerate eutrophication by increasing the sedimentation of the lake. Approximately nine streams feed the lake (see map), but flows are often severely reduced or completely eliminated due to irrigation diversion. In addition, subsurface flows can occur as a result of severe cattle grazing along riparian areas and deltas. Groundwater and springs also feed the lake, and are likely critical for oxygen supply during winter stratification. During the winter of 1991, Henrys Lake experienced low dissolved oxygen levels resulting in large fish kills. It is thought that thick ice cover combined with an increase in nutrient loads created conditions resulting in poor water quality. The Idaho Department of Health and Welfare, DEQ is currently conducting a study to determine the water quality of Henrys Lake, the sources contributing to its deterioration, and potential remedial actions to correct problem areas.

John S. Irving; R. P. Breckenridge

1992-12-01T23:59:59.000Z

187

Lake Ontario Maritime Cultural Landscape  

E-Print Network (OSTI)

The goal of the Lake Ontario Maritime Cultural Landscape project was to investigate the nature and distribution of archaeological sites along the northeast shoreline of Lake Ontario while examining the environmental, political, and cultural factors that influenced the position of these sites. The primary method of investigation was a combined archaeological and historical survey of the shoreline within seven 1-km square areas. The archaeological component of the survey covered both the terrestrial and submerged portions of the shore through marine remote sensing (side-scan sonar and magnetometer), diving surveys, pedestrian surveys, and informant interviews. A total of 39 sites and 51 isolated finds were identified or further analyzed as a result of this project. These sites ranged from the Middle Archaic period (ca. 5500-2500 B.C.) through the 19th century and included habitation, military, transportation, and recreational sites. Analysis of these findings was conducted at two scales: the individual survey area and Lake Ontario as a whole. By treating each survey area as a distinct landscape, it was possible to discuss how various cultures and groups used each space and to identify instances of both dynamism and continuity in the landscapes. Results of these analyses included the continuous occupation of several locations from pre-Contact times to the present, varying uses of the same environment in response to political and economic shifts, the formation of communities around transportation nodes, and recurring settlement patterns. The survey data was also combined to explore regional-scale trends that manifest themselves in the historical Lake Ontario littoral landscape including ephemeral landscapes, permeable boundaries, danger in the lake, and factors of change.

Ford, Benjamin L.

2009-08-01T23:59:59.000Z

188

Climatic Effects on Lake Basins. Part I: Modeling Tropical Lake Levels  

Science Conference Proceedings (OSTI)

The availability of satellite estimates of rainfall and lake levels offers exciting new opportunities to estimate the hydrologic properties of lake systems. Combined with simple basin models, connections to climatic variations can then be explored ...

Martina Ricko; James A. Carton; Charon Birkett

2011-06-01T23:59:59.000Z

189

Convective Evolution across Lake Michigan during a Widespread Lake-Effect Snow Event  

Science Conference Proceedings (OSTI)

Lake-effect snowstorms generally develop within convective boundary layers, which are induced when cold air flows over relatively warm lakes in fall and winter. Mesoscale circulations within the boundary layers largely control which communities ...

David A. R. Kristovich; Neil F. Laird; Mark R. Hjelmfelt

2003-04-01T23:59:59.000Z

190

Numerical Study of the Influence of Environmental Conditions on Lake-Effect Snowstorms over Lake Michigan  

Science Conference Proceedings (OSTI)

Numerical simulations are used to examine the influence of environmental parameters on the morphology of lake effect snowstorms over Lake Michigan. A series of model sensitivity studies are performed using the Colorado State University mesoscale ...

Mark R. Hjelmfelt

1990-01-01T23:59:59.000Z

191

Real-Time Prediction of the Lake Breeze on the Western Shore of Lake Michigan  

Science Conference Proceedings (OSTI)

A forecast verification study of the occurrence and inland penetration of the lake breeze on the western shore of Lake Michigan was conducted. A real-time version of The Pennsylvania State UniversityľNational Center for Atmospheric Research fifth-...

Paul J. Roebber; Mark G. Gehring

2000-06-01T23:59:59.000Z

192

Climatological Conditions of Lake-Effect Precipitation Events Associated with the New York State Finger Lakes  

Science Conference Proceedings (OSTI)

A climatological analysis was conducted of the environmental and atmospheric conditions that occurred during 125 identified lake-effect (LE) precipitation events in the New York State Finger Lakes region for the 11 winters (OctoberľMarch) from ...

Neil Laird; Ryan Sobash; Natasha Hodas

2010-05-01T23:59:59.000Z

193

Microsoft Word - Tribal Topic Group Summary March 06 final _3_.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Formatted: Position: Horizontal: Formatted: Position: Horizontal: Right, Relative to: Margin, Vertical: 0", Relative to: Paragraph, Wrap Around Summary TEC Tribal Topic Group Meeting Tuesday, March 14, 2006 Washington, DC Participants: Jay Jones, Department of Energy (DOE)/Office of Civilian Radioactive Waste Management (OCRWM), chaired the session. Other Topic Group members included Richard Arnold (Pahrump Paiute Tribe/Consolidated Group of Tribes and Organizations), James Baranski (NY State Emergency Management Office), Vicki Best (Bechtel SAIC Company [BSC]), Rob Burnside (Umatilla Confederated Tribes), David Conrad (National Tribal Environmental Council), Earl Easton (Nuclear Regulatory Commission), Kristen Ellis (DOE/Office of Congressional and Intergovernmental Affairs), Atef Elzeftawy (Las Vegas Paiute Tribe), Greg Fasano (BSC), Robert Gisch

194

Green Bay TEC Meeting -- Tribal Group Summary 10-26-06  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Green Bay, Wisconsin - September 14, 2006 Green Bay, Wisconsin - September 14, 2006 Session Chaired by: Jay Jones, DOE, Office of Civilian Radioactive Waste Management, OCRWM Regular Members in Attendance: Sandra Alexander (Confederated Tribes of the Umatilla Indian Reservation, CTUIR); Kenny Anderson, Las Vegas Paiute Tribe; Richard Arnold, Las Vegas Indian Center/Pahrump Paiute Tribe); Kevin Tafoya, Santa Clara Pueblo; Christina Nelson, National Conference of State Legislatures; Ed Gonzales, ELG Engineering/Pueblo de San Ildefonso; Judith Holm, OCRWM; Marsha Keister, Idaho National Laboratory; Joe Kennedy, Timbisha Shoshone Tribe; Daniel King, Oneida Nation of Wisconsin; Sue Loudner, Pueblo of Acoma; Bob Lupton, DOE Yucca Mountain Project; Corinne Macaluso, OCRWM; Kevin Mariano, Pueblo of Acoma; Calvin Meyers, Moapa

195

Spirit Lake Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Spirit Lake Wind Farm Spirit Lake Wind Farm Jump to: navigation, search Name Spirit Lake Wind Farm Facility Spirit Lake Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Spirit Lake School Developer Minnesota Windpower Energy Purchaser Alliant/IES Utilities Location Spirit Lake IA Coordinates 43.411381┬░, -95.10075┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.411381,"lon":-95.10075,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

196

Lake Region State College | Open Energy Information  

Open Energy Info (EERE)

College College Jump to: navigation, search Name Lake Region State College Facility Lake Region State College Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Lake Region State College Developer Lake Region State College Energy Purchaser Lake Region State College Location Devils Lake ND Coordinates 48.166071┬░, -98.864529┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.166071,"lon":-98.864529,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

197

NAWS-China Lake Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

g g y g y S S C C NAWS NAWS - - China Lake China Lake Working with the Local Utility Working with the Local Utility Mark Shvartzman Mark Shvartzman Project Manager, Southern California Edison Project Manager, Southern California Edison Presented at the November FUPWG Meeting Presented at the November FUPWG Meeting November 18, 2009 November 18, 2009 1 1 g E t bli h d i 1998 d Ad i Fili 1358 E History of SCE's UESC Program History of SCE's UESC Program History of SCE s UESC Program History of SCE s UESC Program * Background - Edison developed Energy Related Services (ERS) to assist Federal customers in identifying and implementing energy efficiency and renewable energy projects at government owned and/or managed facilities within Southern California Edison service territory - Established in 1998 under Advice Filing 1358-E

198

Lake Winds | Open Energy Information  

Open Energy Info (EERE)

Winds Winds Jump to: navigation, search Name Lake Winds Facility Lake Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Consumers Energy Developer Consumers Energy Energy Purchaser Consumers Energy Location Ludington MI Coordinates 43.83972728┬░, -86.38154984┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.83972728,"lon":-86.38154984,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

199

M&V Guidelines: Measurement and  

E-Print Network (OSTI)

1. Bruneau Project Team Name Affiliation Position Darin Saul Ecovista project coordinator, tech-Paiute Tribes wildlife biologist Pat Barclay ICIE public involvement coordinator 1.2.5 Planning Team The Bruneau) coordinated public meeting announcements and logistics for the Bruneau Subbasin. Public meeting outreach

200

NAWS-China Lake Project | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NAWS-China Lake Project NAWS-China Lake Project Presentation covers the NAWS-China Lake Project at the Federal Utility Partnership Working Group (FUPWG) meeting, held on November...

Note: This page contains sample records for the topic "lake paiute tribe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Association between Winter Precipitation and Water Level Fluctuations in the Great Lakes and Atmospheric Circulation Patterns  

Science Conference Proceedings (OSTI)

Atmospheric precipitation in the Great Lakes basin, as a major mediating variable between atmospheric circulation and lake levels, is analyzed relative to both. The effect of cumulative winter precipitation on lake levels varies from lake to lake ...

Sergei N. Rodionov

1994-11-01T23:59:59.000Z

202

Why sequence Bacteria from Lake Washington?  

NLE Websites -- All DOE Office Websites (Extended Search)

bacteria from Lake Washington? bacteria from Lake Washington? Previous collaborations between the University of Washington team and the DOE JGI involving both single genome and metagenomic sequencing have greatly enhanced the community's ability to explore the diversity of bacteria functionally active in metabolism of single carbon compounds, known as methylotrophs, isolated from Lake Washington (Seattle, Washington) sediment. Sequencing genomes of 50 methylotroph isolates from the Lake Washington will further enhance the methylotroph community knowledge database providing a much higher level of resolution of global (meta)transcriptomic and (meta)proteomic analyses, as well as species interaction studies, informing a better understanding of biogeochemical cycling of carbon and nitrogen.

203

great_lakes_90mwindspeed_off  

NLE Websites -- All DOE Office Websites (Extended Search)

GISDataTechnologySpecificUnitedStatesWindHighResolutionGreatLakes90mWindspeedOffshoreWindHighResolution.zip> Description: Abstract: Annual average offshore wind...

204

Nacimiento Reservoir San Antonio Reservoir Searles Lake  

E-Print Network (OSTI)

Lake (Dry) TRONA WE ST END MCG EN SE ARLE S 190 395 RANDS BURG BA RREN RIDG E PINE T REE WIND FA RM LO

205

Lake Region Electric Cooperative - Commercial Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

details Lake Region Electric Cooperative (LREC) offers grants to commercial customers for electric energy efficiency improvements, audits, and engineering and design assistance for...

206

Clear Lake Cogeneration LP | Open Energy Information  

Open Energy Info (EERE)

Cogeneration LP Jump to: navigation, search Name Clear Lake Cogeneration LP Place Idaho Utility Id 3775 References EIA Form EIA-861 Final Data File for 2010 - File220101...

207

Glacial Lakes Energy | Open Energy Information  

Open Energy Info (EERE)

search Name Glacial Lakes Energy Place Watertown, South Dakota Zip 57201 Product Bioethanol producer using corn as feedstock Coordinates 43.197366, -88.720469 Loading...

208

Lake Region Electric Cooperative | Open Energy Information  

Open Energy Info (EERE)

Cooperative Jump to: navigation, search Name Lake Region Electric Cooperative Place Minnesota Utility Id 10618 Utility Location Yes Ownership C NERC Location MRO NERC MRO Yes...

209

Model Simulations Examining the Relationship of Lake-Effect Morphology to Lake Shape, Wind Direction, and Wind Speed  

Science Conference Proceedings (OSTI)

Idealized model simulations with an isolated elliptical lake and prescribed winter lake-effect environmental conditions were used to examine the influences of lake shape, wind speed, and wind direction on the mesoscale morphology. This study ...

Neil F. Laird; John E. Walsh; David A. R. Kristovich

2003-09-01T23:59:59.000Z

210

Lake Charles, LA Natural Gas LNG Imports from Equatorial Guinea...  

Annual Energy Outlook 2012 (EIA)

Lake Charles, LA Natural Gas LNG Imports from Equatorial Guinea (Dollars per Thousand Cubic Feet) Lake Charles, LA Natural Gas LNG Imports from Equatorial Guinea (Dollars per...

211

Compound and Elemental Analysis At Fish Lake Valley Area (DOE...  

Open Energy Info (EERE)

ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Fish Lake Valley Area (DOE GTP) Exploration Activity Details Location Fish Lake Valley Area...

212

Obama Administration and Great Lakes States Announce Agreement...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Great Lakes States Announce Agreement to Spur Development of Offshore Wind Projects Obama Administration and Great Lakes States Announce Agreement to Spur Development of...

213

Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from...  

Gasoline and Diesel Fuel Update (EIA)

Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from Trinidad and Tobago (Million Cubic Feet) Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from Trinidad...

214

Division of Water, Part 675: Great Lakes Water Withdrawal Registration...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

75: Great Lakes Water Withdrawal Registration Regulations (New York) Division of Water, Part 675: Great Lakes Water Withdrawal Registration Regulations (New York) Eligibility...

215

HERO BX formerly Lake Erie Biofuels | Open Energy Information  

Open Energy Info (EERE)

Page Edit with form History Facebook icon Twitter icon HERO BX formerly Lake Erie Biofuels Jump to: navigation, search Name HERO BX (formerly Lake Erie Biofuels) Place Erie,...

216

VALUE DISTRIBUTION ASSESSMENT OF GEOTHERMAL DEVELOPMENT IN LAKE COUNTY, CA  

E-Print Network (OSTI)

Eleven: Lake County Geothermal Energy Resource. . . .by t h e Report of t h e State Geothermal Task Force WDISTRIBUTION ASSESSMENT OF GEOTHERMAL DEVELOP~NTIN LAKE

Churchman, C.W.

2011-01-01T23:59:59.000Z

217

Geothermometry At Fish Lake Valley Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Fish Lake Valley Area (DOE GTP) Exploration...

218

Thermochronometry At Fish Lake Valley Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Thermochronometry At Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermochronometry At Fish Lake Valley Area...

219

Financial assistance to states and tribes to support emergency preparedness and response and the safe transportation of hazardous shipments: 1996 Update  

Science Conference Proceedings (OSTI)

This report revises and updates the 1995 report Financial Assistance to States and Tribes to Support Emergency Preparedness and Response and the Safe Transportation of Hazardous Shipments, PNL-10260 (UC-620). The presentation of data and some of the data reported have been changed; these data supersede those presented in the earlier publication. All data have been updated to fiscal year 1995, with the exception of FEMA data that are updated to fiscal year 1994 only. The report identifies and summarizes existing sources of financial assistance to States and Tribes in preparing and responding to transportation emergencies and ensuring the safe transportation of hazardous shipments through their jurisdictions. It is intended for use as an information resource for the U.S. Department of Energy`s Office of Environmental Management (EM), Office of Transportation, Emergency Management, and Analytical Services (EM-76).

Bradbury, J.A.; Leyson, J.; Lester, M.K.

1996-07-01T23:59:59.000Z

220

Categorical Exclusion Determinations: B2.5 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 17, 2010 May 17, 2010 CX-002578: Categorical Exclusion Determination Maine-County-Kennebec CX(s) Applied: B2.5, A9, A11, B5.1 Date: 05/17/2010 Location(s): Maine Office(s): Energy Efficiency and Renewable Energy May 17, 2010 CX-002582: Categorical Exclusion Determination Colorado-City-Thornton CX(s) Applied: B2.5, A9, A11, B5.1 Date: 05/17/2010 Location(s): Thornton, Colorado Office(s): Energy Efficiency and Renewable Energy May 17, 2010 CX-002425: Categorical Exclusion Determination Municipal Building Energy Efficiency Retrofits CX(s) Applied: B2.5, B1.4, B5.1 Date: 05/17/2010 Location(s): Attleboro, Massachusetts Office(s): Energy Efficiency and Renewable Energy May 13, 2010 CX-002317: Categorical Exclusion Determination Nevada-Tribe-Summit Lake Paiute Tribe CX(s) Applied: B2.5, B5.1

Note: This page contains sample records for the topic "lake paiute tribe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

EIS-0312: Record of Decision for the 2008 Columbia Basin Fish Accord MOA with the Shoshone-Banock Tribes (11/06/08)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MOA WITH THE SHOSHONE-BANNOCK TRIBES November 6, 2008 i TABLE OF CONTENTS 1.0 INTRODUCTION...................................................................................................... 1 2.0 BACKGROUND ........................................................................................................ 2 2.1 Litigation Leads to Collaborative Remand ....................................................... 2 2.2 Collaboration Leads to Negotiations ................................................................ 2 3.0 MUTUAL COMMITMENTS OF THE SHO-BAN MOA..................................... 4 3.1 Purpose and Principles..................................................................................... 4 3.2 Hydro Commitments.........................................................................................

222

The Lake Charles CCS Project  

SciTech Connect

The Lake Charles CCS Project is a large-scale industrial carbon capture and sequestration (CCS) project which will demonstrate advanced technologies that capture and sequester carbon dioxide (CO{sub 2}) emissions from industrial sources into underground formations. Specifically the Lake Charles CCS Project will accelerate commercialization of large-scale CO{sub 2} storage from industrial sources by leveraging synergy between a proposed petroleum coke to chemicals plant (the LCC Gasification Project) and the largest integrated anthropogenic CO{sub 2} capture, transport, and monitored sequestration program in the U.S. Gulf Coast Region. The Lake Charles CCS Project will promote the expansion of EOR in Texas and Louisiana and supply greater energy security by expanding domestic energy supplies. The capture, compression, pipeline, injection, and monitoring infrastructure will continue to sequester CO{sub 2} for many years after the completion of the term of the DOE agreement. The objectives of this project are expected to be fulfilled by working through two distinct phases. The overall objective of Phase 1 was to develop a fully definitive project basis for a competitive Renewal Application process to proceed into Phase 2 - Design, Construction and Operations. Phase 1 includes the studies attached hereto that will establish: the engineering design basis for the capture, compression and transportation of CO{sub 2} from the LCC Gasification Project, and the criteria and specifications for a monitoring, verification and accounting (MVA) plan at the Hastings oil field in Texas. The overall objective of Phase 2, provided a successful competitive down-selection, is to execute design, construction and operations of three capital projects: (1) the CO{sub 2} capture and compression equipment, (2) a Connector Pipeline from the LLC Gasification Project to the Green Pipeline owned by Denbury and an affiliate of Denbury, and (3) a comprehensive MVA system at the Hastings oil field.

Doug Cathro

2010-06-30T23:59:59.000Z

223

Why sequence novel haloarchaea from Deep Lake?  

NLE Websites -- All DOE Office Websites (Extended Search)

novel haloarchaea from Deep Lake? novel haloarchaea from Deep Lake? Antarctica's Deep Lake was isolated from the ocean by glaciers long ago, creating a salt water lake with a unique ecosystem for studying the evolution of marine microorganisms in harsh extremes. Among these microorganisms are haloarchaea, members of the halophile community which need high salt concentrations in order to grow. Haloarchaea are a distinct evolutionary branch of the Archaea, and are considered extremophiles. The haloarchaea from Deep Lake are naturally adapted to cold, nutrient-limited and high saline level conditions that would kill almost any other life. The enzymes in these naturally adapted microorganisms can provide insight into bioprospecting and bioengineering cold active and salt-adapted enzymes. Understanding how haloarchaea

224

Bingham Lake Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Lake Wind Farm Lake Wind Farm Jump to: navigation, search Name Bingham Lake Wind Farm Facility Bingham Lake Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Edison Mission Group owns majority Developer Edison Mission Group Energy Purchaser Alliant Energy Location Bingham Lake MN Coordinates 43.909┬░, -95.0464┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.909,"lon":-95.0464,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

225

Investment in Lake States Timberland June 24, 2008  

E-Print Network (OSTI)

┬ş Lake States Region Scott Henker, Senior Resource Manager Pete Coutu, Marketing Manager Our foresters

226

Lake Roosevelt Fisheries Evaluation Program; Assessment of the Lake Roosevelt Walleye Population: Compilation of 1997-1999 Data, 1999-2000 Annual Report.  

DOE Green Energy (OSTI)

A walleye mark-recapture study was conducted on Lake Roosevelt between 1997 and 1999. The primary objective of the study was to describe the status and biological characteristics of the walleye population in Lake Roosevelt by determining its abundance, movement patterns, age structure, growth, condition, and mortality. The abundance estimates were also to be used to estimate the consumptive impact of walleye on stocked kokanee and rainbow trout. Walleye were collected by electrofishing and angling. Each walleye was tagged with an individually numbered Floy tag. The Jolly-Seber model was used to estimate the size of the walleye population in 1999, using each year of the study as a mark-recapture occasion. Mark-recapture data collected in 1998 was re-analyzed in 1999 with the data pooled in various combinations, using closed and open population models, in an attempt to provide an estimate of walleye abundance that was unbiased, accurate, and more precise. Minimum distances traveled between mark and recapture location by tagged walleye were determined from tag returns. Over the three study years, a total of 12,343 walleye {ge} 150 mm TL were collected by Eastern Washington University (EWU), Spokane Tribe of Indians, and Washington Department of Fish and Wildlife, and of those, 10,770 were tagged and released. Of the 10,770 walleye marked and released, 775 were recaptured and returned to EWU. The 1999 abundance estimate ({+-} standard error) for walleye {ge} 150 mm TL was 129,183 ({+-} 45,578) and the estimated abundance ({+-} standard error) of walleye {ge} 200 mm TL was 101,508 ({+-} 35,603). A total of 38 population estimates were calculated for 1998. The estimates of the abundance of walleye {ge} 150 mm TL in Lake Roosevelt ranged from 84,335 to 180,568 fish. Estimates of the size of the walleye population {ge} 200 mm TL ranged from 14,971 to 173,702. The 1999 estimate, which used each study year as a mark-recapture occasion, was biased due to unequal capture probabilities. If biases were eliminated, the annual sampling strategy may be the most cost-effective. Of the reanalyzed 1998 estimates, the Schnabel corrected for tag loss and recruitment and the Jolly-Seber estimate, both calculated with the 200 mm minimum length, were recommended for modeling walleye consumption. Minimum distances traveled between mark and recapture location by tagged walleye marked on the spawning run ranged from 0 to 245 km over a range of 11 to 486 days. Minimum distances traveled between mark and recapture location by tagged walleye marked during the summer/fall ranged from 0 to 217 km over a range of 8 to 788 days. Walleye exhibited seasonal movement trends that included a migration to the spawning area in the upper Spokane River Arm in the spring, with peak spawning occurring in April and May, and a migration following spawning to summer habitats. Once at the summer habitat, walleye appeared to establish summer home ranges (SHR). Walleye collected in Lake Roosevelt in 1999 ranged in age from 0 to 8. Mean instantaneous and mean annual mortality were estimated at 0.62% and 46%. Mean condition factor (K{sub TL}) of the 343 walleye measured and weighed in 1999 was 0.83 (SD = 0.13). Walleye mortality rates appeared to be relatively stable. Mortality and growth were average when compared to other walleye producing waters. Walleye condition was low when compared to condition factors in 1980-83, 1988, 1989, and 1990. The K{sub TL}'s of walleye from Lake Roosevelt were slightly below average when compared to other walleye populations.

McLellan, Jason; McLellan, Holly; Scholz, Allan

2002-03-01T23:59:59.000Z

227

Category:Houghton-Lake, MI | Open Energy Information  

Open Energy Info (EERE)

Houghton-Lake, MI Houghton-Lake, MI Jump to: navigation, search Go Back to PV Economics By Location Media in category "Houghton-Lake, MI" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant Houghton-Lake MI Detroit Edison Co.png SVFullServiceRestauran... 64 KB SVHospital Houghton-Lake MI Detroit Edison Co.png SVHospital Houghton-La... 64 KB SVLargeHotel Houghton-Lake MI Detroit Edison Co.png SVLargeHotel Houghton-... 61 KB SVLargeOffice Houghton-Lake MI Detroit Edison Co.png SVLargeOffice Houghton... 64 KB SVMediumOffice Houghton-Lake MI Detroit Edison Co.png SVMediumOffice Houghto... 61 KB SVMidriseApartment Houghton-Lake MI Detroit Edison Co.png SVMidriseApartment Hou... 65 KB SVOutPatient Houghton-Lake MI Detroit Edison Co.png SVOutPatient Houghton-...

228

Observations of the Cross-Lake Cloud and Snow Evolution in a Lake-Effect Snow Event  

Science Conference Proceedings (OSTI)

While the total snowfall produced in lake-effect storms can be considerable, little is known about how clouds and snow evolve within lake-effect boundary layers. Data collected over Lake Michigan on 10 January 1998 during the Lake-Induced ...

Faye E. Barthold; David A. R. Kristovich

2011-08-01T23:59:59.000Z

229

Lac du Flambeau Band of Lake Superior Chippewa Indians Strategic Energy Plan  

SciTech Connect

This plan discusses the current energy use on the Lac du Flambeau Reservation, the current status of the Tribe's energy program, as well as the issues and concerns with energy on the reservation. This plan also identifies and outlines energy opportunities, goals, and objectives for the Tribe to accomplish. The overall goal of this plan is to address the energy situation of the reservation in a holistic manner for the maximum benefit to the Tribe. This plan is an evolving document that will be re-evaluated as the Tribe's energy situation changes.

Bryan Hoover

2009-11-16T23:59:59.000Z

230

Lac du Flambeau Band of Lake Superior Chippewa Indians Strategic Energy Plan  

SciTech Connect

This plan discusses the current energy use on the Lac du Flambeau Reservation, the current status of the Tribe's energy program, as well as the issues and concerns with energy on the reservation. This plan also identifies and outlines energy opportunities, goals, and objectives for the Tribe to accomplish. The overall goal of this plan is to address the energy situation of the reservation in a holistic manner for the maximum benefit to the Tribe. This plan is an evolving document that will be re-evaluated as the Tribe's energy situation changes.

Bryan Hoover

2009-11-16T23:59:59.000Z

231

Hydrological and solute budgets of Lake Qinghai, the largest lake on the Tibetan Plateau  

Science Conference Proceedings (OSTI)

Water level and chemistry of Lake Qinghai are sensitive to climate changes and are important for paleoclimatic implications. An accurate understanding of hydrological and chemical budgets is crucial for quantifying geochemical proxies and carbon cycle. Published results of water budget are firstly reviewed in this paper. Chemical budget and residence time of major dissolved constituents in the lake are estimated using reliable water budget and newly obtained data for seasonal water chemistry. The results indicate that carbonate weathering is the most important riverine process, resulting in dominance of Ca2+ and DIC for river waters and groundwater. Groundwater contribution to major dissolved constituents is relatively small (4.2 ▒ 0.5%). Wet atmospheric deposition contributes annually 7.4ľ44.0% soluble flux to the lake, resulting from eolian dust throughout the seasons. Estimates of chemical budget further suggest that (1) the Buha-type water dominates the chemical components of the lake water, (2) Na+, Cl?, Mg2+, and K+ in lake water are enriched owing to their conservative behaviors, and (3) precipitation of authigenic carbonates (low-Mg calcite, aragonite, and dolomite) transits quickly dissolved Ca2+ into the bottom sediments of the lake, resulting in very low Ca2+ in the lake water. Therefore, authigenic carbonates in the sediments hold potential information on the relative contribution of different solute inputs to the lake and the lake chemistry in the past.

Jin, Zhangdong; You, Chen-Feng; Wang, Yi; Shi, Yuewei

2010-05-01T23:59:59.000Z

232

Dewatering of Ambrosia Lake Mines  

SciTech Connect

The paper discusses the design of an aquifer depressurisation system using wells at Mt. Taylor Mine, Ambrosia Lake, New Mexico. The concepts discussed should be valid for any shaft of mine in a sandstone aquifer with predominantly matrix permeability. The system uses a number of wells surrounding the mine shaft to reduce the aquifer pressure in the vicinity of the shaft. The effect of various parameters such as number of wells, wellbore diameter, time and well location are considered. It is concluded that, with a properly designed system, the aquifer pressure and water inflow rate to the shaft may be reduced to less than 15% of their potential values in the absence of wells.

Juvkam-Wold, H.C.

1982-09-01T23:59:59.000Z

233

Sandia Lake Facility | Open Energy Information  

Open Energy Info (EERE)

Sandia Lake Facility Sandia Lake Facility Jump to: navigation, search Basic Specifications Facility Name Sandia Lake Facility Overseeing Organization Sandia National Laboratories Hydrodynamics Hydrodynamic Testing Facility Type Wave Basin Length(m) 57.3 Beam(m) 36.6 Depth(m) 15.2 Water Type Freshwater Cost(per day) $5000-15000 Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 15.2 Length of Effective Tow(m) 45.7 Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.9 Maximum Wave Height(m) at Wave Period(s) 3.0 Maximum Wave Length(m) 4.57 Wave Period Range(s) 3.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Values listed are for a conceptual design yet to be implemented for the Sandia Lake facility.

234

Vortex Modes in Southern Lake Michigan  

Science Conference Proceedings (OSTI)

Current velocities and water temperatures were observed in southern Lake Michigan with an array of AMF vector-averaging current meters during late spring, summer and fall 1976. Analyses of the recorded current data have revealed that persistent ...

James H. Saylor; Joseph C. K. Huang; Robert O. Reid

1980-11-01T23:59:59.000Z

235

Control of Mississippi Headwater Lakes (Minnesota)  

Energy.gov (U.S. Department of Energy (DOE))

The lakes at the headwaters of the Mississippi River are subject to joint federal and state control, and the Commissioner of the Department of Natural Resources is responsible for establishing a...

236

Meadow Lake III | Open Energy Information  

Open Energy Info (EERE)

Lake III Lake III Jump to: navigation, search Name Meadow Lake III Facility Meadow Lake III Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Horizon Wind Energy Developer EDP Renewables Location Brookston IN Coordinates 40.601111┬░, -86.864167┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.601111,"lon":-86.864167,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

237

Lake View Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon ┬╗ Lake View Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Lake View Geothermal Facility General Information Name Lake View Geothermal Facility Facility Lake View Sector Geothermal energy Location Information Location The Geysers, California Coordinates 38.823527148671┬░, -122.78173327446┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.823527148671,"lon":-122.78173327446,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

238

Lake Erie Alternative Power | Open Energy Information  

Open Energy Info (EERE)

Erie Alternative Power Erie Alternative Power Jump to: navigation, search Name Lake Erie Alternative Power Facility Lake Erie Alternative Power Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Developer Lake Erie Alternative Power LLC Location Lake Erie PA Coordinates 42.265┬░, -80.642┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.265,"lon":-80.642,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

239

Lost Lakes Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Lakes Wind Farm Lakes Wind Farm Jump to: navigation, search Name Lost Lakes Wind Farm Facility Lost Lakes Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Horizon-EDPR Developer Horizon-EDPR Energy Purchaser Market Location Dickinson County IA Coordinates 43.32401┬░, -95.264354┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.32401,"lon":-95.264354,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

240

Salt Lake City- High Performance Buildings Requirement  

Energy.gov (U.S. Department of Energy (DOE))

Salt Lake City's mayor issued an executive order in July 2005 requiring that all public buildings owned and controlled by the city be built or renovated to meet the requirements of LEED "silver"...

Note: This page contains sample records for the topic "lake paiute tribe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Geology of the Soda Lake geothermal area  

DOE Green Energy (OSTI)

The Soda Lake geothermal area is located in the Carson Desert, west-central Nevada. Hot springs activity has occurred in the Soda Lake area in the past, resulting in surface deposits which have motivated present geothermal exploration. The geothermal anomaly is in Quaternary clastic sediments which are as much as 4600 feet thick. The sediments consist of interbedded deltaic, lacustrine, and alluvial sediments. Quaternary basaltic igneous activity has produced cinder cones, phreatic explosions that formed the maar occupied by Soda Lake, and possible dikes. Opal deposition and soil alteration are restricted to a small area two miles north of Soda Lake. The location of hot springs activity and the surface thermal anomaly may be partially controlled by north-northeast-trending faults.

Sibbett, B.S.

1979-12-01T23:59:59.000Z

242

Synthetic ecology : revisiting Mexico City's lakes project  

E-Print Network (OSTI)

Mexico City was founded 700 years ago on man made islets in the middle of a lake. Today, it faces a contradictory situation were water is running scarce, but simultaneously the city runs the risk of drowning in its own ...

Daou, Daniel (Daou Ornelas)

2011-01-01T23:59:59.000Z

243

TTG Telecon 9_6_07  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9-18-07 9-18-07 1 Summary Tribal Topic Group Teleconference September 6, 2007 Participants Call Lead: Corinne Macaluso (Department of Energy [DOE], Office of Civilian Radioactive Waste Management [OCRWM]) Other Callers: Amy Alesch (Ysleta del Sur Pueblo), Richard Arnold (Pahrump Paiute Tribe/Consolidated Group of Tribes and organizations [CGTO], Cathy Bohan (DOE/West Valley Demonstration Project), Vicki Best (BSC), Grayden Brown (Pinoleville Pomo), Mike Coplin (Chickasaw Nation), Deanna Domingo (Moapa Band of Paiutes), David Edmunds (Pinoleville Pomo), Greg Fasano (BSC), Bob Fry (NCSL), Jason Garcia (TeMoak Tribe - Wells Band), Josh Garcia (Ysleta del Sur Pueblo), Steve Grey (Lawrence Livermore National Laboratory [ LLNL]/Navajo Nation), Elizabeth Helvey (BSC), Paloma Hill (DOE/OCRWM),

244

Great Lakes fish and the greenhouse effect  

SciTech Connect

This short article discusses data presented at the Second North American Conference on Preparing for Climate Change, held in Washington, D.C. Magnuson and Regier predicted that Great Lakes fish productivity may increase as a result of the increased water temperatures caused by the greenhouse effect. However, they also predicted that other indirect alterations could do more harm than good; for example, the effects of warming on lake oxygen levels, or wind, which affects the mixing of warm, cool, and cold water.

Mlot, C.

1989-03-01T23:59:59.000Z

245

Lake Granbury and Lake Whitney Assessment Initiative Final Scientific/Technical Report Summary  

SciTech Connect

A team of Texas AgriLife Research, Baylor University and University of Texas at Arlington researchers studied the biology and ecology of Prymnesium parvum (golden algae) in Texas lakes using a three-fold approach that involved system-wide monitoring, experimentation at the microcosm and mesocosm scales, and mathematical modeling. The following are conclusions, to date, regarding this organismÔ??s ecology and potential strategies for mitigation of blooms by this organism. In-lake monitoring revealed that golden algae are present throughout the year, even in lakes where blooms do not occur. Compilation of our field monitoring data with data collected by Texas Parks and Wildlife and Brazos River Authority (a period spanning a decade) revealed that inflow and salinity variables affect bloom formations. Thresholds for algae populations vary per lake, likely due to adaptations to local conditions, and also to variations in lake-basin morphometry, especially the presence of coves that may serve as hydraulic storage zones for P. parvum populations. More specifically, our in-lake monitoring showed that the highly toxic bloom that occurred in Lake Granbury in the winter of 2006/2007 was eliminated by increased river inflow events. The bloom was flushed from the system. The lower salinities that resulted contributed to golden algae not blooming in the following years. However, flushing is not an absolute requirement for bloom termination. Laboratory experiments have shown that growth of golden algae can occur at salinities ~1-2 psu but only when temperatures are also low. This helps to explain why blooms are possible during winter months in Texas lakes. Our in-lake experiments in Lake Whitney and Lake Waco, as well as our laboratory experiments, revealed that cyanobacteria, or some other bacteria capable of producing algicides, were able to prevent golden algae from blooming. Identification of this organism is a high priority as it may be a key to managing golden algae blooms. Our numerical modeling results support the idea that cyanobacteria, through allelopathy, control the timing of golden algae blooms in Lake Granbury. The in-lake experiments in Lake Whitney and Lake Waco also revealed that as golden algae blooms develop, there are natural enemies (a species of rotifer, and a virus) that help slow the population growth. Again, better characterization of these organisms is a high priority as it may be key to managing golden algae blooms. Our laboratory and in-lake experiments and field monitoring have shown that nutrient additions will remove toxicity and prevent golden algae from blooming. In fact, other algae displace the golden algae after nutrient additions. Additions of ammonia are particularly effective, even at low doses (much lower than what is employed in fish hatchery ponds). Application of ammonia in limited areas of lakes, such as in coves, should be explored as a management option. The laboratory experiments and field monitoring also show that the potency of toxins produced by P. parvum is greatly reduced when water pH is lower, closer to neutral levels. Application of mild acid to limited areas of lakes (but not to a level where acidic conditions are created), such as in coves, should be explored as a management option. Finally, our field monitoring and mathematical modeling revealed that flushing/dilution at high enough levels could prevent P. parvum from forming blooms and/or terminate existing blooms. This technique could work using deeper waters within a lake to flush the surface waters of limited areas of the same lakes, such as in coves and should be explored as a management option. In this way, water releases from upstream reservoirs would not be necessary and there would be no addition of nutrients in the lake.

Harris, B.L.; Roelke, Daniel; Brooks, Bryan; Grover, James

2010-10-11T23:59:59.000Z

246

Numerical Simulation of the Airflow over Lake Michigan for a Major Lake-Effect Snow Event  

Science Conference Proceedings (OSTI)

A mesoscale model is used to simulate the airflow over Lake Michigan for the major lake-effect snowstorm of 10 December 1977. This storm was characterized by a land breeze circulation and a narrow shore-parallel radar reflectivity band. The model ...

Mark R. Hjelmfelt; Roscoe R. Braham Jr.

1983-01-01T23:59:59.000Z

247

Parameterization of Lakes and Wetlands for Energy and Water Balance Studies in the Great Lakes Region  

Science Conference Proceedings (OSTI)

Lakes and wetlands are prevalent around the Great Lakes and play an important role in the regional water and energy cycle. However, simulating their impacts on regional-scale hydrology is still a major challenge and not widely attempted. In the ...

Vimal Mishra; Keith A. Cherkauer; Laura C. Bowling

2010-10-01T23:59:59.000Z

248

Mesoscale Lake-effect Snowstorms in the Vicinity of Lake Michigan: Linear Theory and Numerical Simulations  

Science Conference Proceedings (OSTI)

Mesoscale lake-effect snowstorms in the vicinity of Lake Michigan are studied by a linear steady-state analytic model and a nonlinear time-dependent numerical model with parameterized subgrid-scale physics. The solutions of the linear model show ...

Hsiao-ming Hsu

1987-04-01T23:59:59.000Z

249

Numerical Study of the 10 January 1998 Lake-Effect Bands Observed during Lake-ICE  

Science Conference Proceedings (OSTI)

This paper presents the results of a series of idealized cloud resolving simulations of the evolution of moist roll convection observed as part of the Lake-Induced Convection Experiment (Lake-ICE) that took place during the 1997/98 winter over ...

Gregory J. Tripoli

2005-09-01T23:59:59.000Z

250

Lake-atmosphere feedbacks associated with paleolakes Bonneville and Lahontan  

SciTech Connect

A high-resolution, regional climate model nested within a general circulation model was used to study the interactions between the atmosphere and the large Pleistocene lakes in the Great Basin of the United States. Simulations for January and July 18,000 years ago indicate that moisture provided by synoptic-scale atmospheric circulation features was the primary component of the hydrologic budgets of Lakes Lahontan and Bonneville. In addition, lake-generated precipitation was a substantial component of the hydrologic budget of Lake Bonneville at that time. This local lake-atmosphere interaction may help explain differences in the relative size of these lakes 18,000 years ago.

Hostetler, S.W. (Geological Survey, Boulder, CO (United States)); Giorgi, F.; Bates, G.T. (National Center for Atmospheric Research, Boulder, CO (United States)); Bartlein, P.J. (Univ. of Oregon, Eugene, OR (United States))

1994-02-04T23:59:59.000Z

251

Hyperspectral Mineral Mapping For Geothermal Exploration On The Pyramid  

Open Energy Info (EERE)

Hyperspectral Mineral Mapping For Geothermal Exploration On The Pyramid Hyperspectral Mineral Mapping For Geothermal Exploration On The Pyramid Lake Paiute Reservation, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Hyperspectral Mineral Mapping For Geothermal Exploration On The Pyramid Lake Paiute Reservation, Nevada Details Activities (2) Areas (1) Regions (0) Abstract: Over 2000 km2 (772 mi2) of 5 m resolution Hymap hyperspectral data was acquired over the Pyramid Lake Paiute Reservation in the Fall of 2004. Subsequent image processing and data analysis has identified reflectance spectra for alunite, kaolinite/halloysite, illite, gypsum, vegetation, and carbonate. A portable spectrometer is being used for in situ validation, along with laboratory measurements and X-ray diffraction analyses of samples collected in the field. We are in the process of

252

Energy and water in the Great Lakes.  

Science Conference Proceedings (OSTI)

The nexus between thermoelectric power production and water use is not uniform across the U.S., but rather differs according to regional physiography, demography, power plant fleet composition, and the transmission network. That is, in some regions water demand for thermoelectric production is relatively small while in other regions it represents the dominate use. The later is the case for the Great Lakes region, which has important implications for the water resources and aquatic ecology of the Great Lakes watershed. This is today, but what about the future? Projected demographic trends, shifting lifestyles, and economic growth coupled with the threat of global climate change and mounting pressure for greater U.S. energy security could have profound effects on the region's energy future. Planning for such an uncertain future is further complicated by the fact that energy and environmental planning and regulatory decisionmaking is largely bifurcated in the region, with environmental and water resource concerns generally taken into account after new energy facilities and technologies have been proposed, or practices are already in place. Based on these confounding needs, the objective of this effort is to develop Great Lakes-specific methods and tools to integrate energy and water resource planning and thereby support the dual goals of smarter energy planning and development, and protection of Great Lakes water resources. Guiding policies for this planning are the Great Lakes and St. Lawrence River Basin Water Resources Compact and the Great Lakes Water Quality Agreement. The desired outcome of integrated energy-water-aquatic resource planning is a more sustainable regional energy mix for the Great Lakes basin ecosystem.

Tidwell, Vincent Carroll

2011-11-01T23:59:59.000Z

253

Energy Budget Processes of a Small Northern Lake  

Science Conference Proceedings (OSTI)

There is a paucity of information on the energy budget of Canada's northern lakes. This research determines processes controlling the magnitude of energy fluxes between a small Canadian Shield lake and the atmosphere. Meteorological instruments ...

Christopher Spence; Wayne R. Rouse; Devon Worth; Claire Oswald

2003-08-01T23:59:59.000Z

254

Obama Administration Hosts Great Lakes Offshore Wind Workshop in Chicago  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hosts Great Lakes Offshore Wind Workshop in Hosts Great Lakes Offshore Wind Workshop in Chicago with Great Lakes Wind Collaborative Obama Administration Hosts Great Lakes Offshore Wind Workshop in Chicago with Great Lakes Wind Collaborative October 28, 2010 - 12:00am Addthis WASHINGTON - The White House Council on Environmental Quality and the U.S. Department of Energy hosted a workshop with the Great Lakes Wind Collaborative in Chicago on October 26 - 27, 2010, focused on the siting of offshore wind power in the Great Lakes. The two day workshop brought together wind developers, Federal and state regulators, environmental advocates, and other regional stakeholders to discuss methods for ensuring greater clarity, certainty and coordination of Federal and state decision-making for offshore wind development in the Great Lakes.

255

Simulations of the Summer Hydrometeorological Processes of Lake Kinneret  

Science Conference Proceedings (OSTI)

Lake Kinneret is a 168-km2 lake located in northern Israel. It provides about 50% of the drinking water consumed in this arid country. To manage correctly this vital water resource, it is essential to understand the various hydrometeorological ...

Roni Avissar; Hai Pan

2000-02-01T23:59:59.000Z

256

The Frequency and Intensity of Great Lake Cyclones  

Science Conference Proceedings (OSTI)

Cyclones are an important feature of the Great Lakes region that can have important impacts on shipping, lake temperature profiles, ice cover, and shoreline property damages. The objective of this research is to analyze the frequency and ...

James R. Angel; Scott A. Isard

1998-01-01T23:59:59.000Z

257

Simulating Upwelling in a Large Lake Using Slippery Sacks  

Science Conference Proceedings (OSTI)

A Lagrangian numerical model is used to simulate upwelling in an idealized large lake. This simulation is carried out to test the model's potential for simulating lake and ocean circulations.

Patrick T. Haertel; David A. Randall; Tommy G. Jensen

2004-01-01T23:59:59.000Z

258

Influence of the Laurentian Great Lakes on Regional Climate  

Science Conference Proceedings (OSTI)

The influence of the Laurentian Great Lakes on climate is assessed by comparing two decade-long simulations, with the lakes either included or excluded, using the Abdus Salam International Centre for Theoretical Physics Regional Climate Model, ...

Michael Notaro; Kathleen Holman; Azar Zarrin; Elody Fluck; Steve Vavrus; Val Bennington

2013-02-01T23:59:59.000Z

259

Relations between Meteorology and Ozone in the Lake Michigan Region  

Science Conference Proceedings (OSTI)

The field program phase of the Lake Michigan Ozone Study (LMOS) took place during the summer of 1991. Observed ozone concentrations and weather variables have been analyzed for the Lake Michigan region and the eastern United States for four 1991 ...

Steven R. Hanna; Joseph C. Chang

1995-03-01T23:59:59.000Z

260

The Role of Northern Lakes in a Regional Energy Balance  

Science Conference Proceedings (OSTI)

There are many lakes of widely varying morphometry in northern latitudes. For this study region, in the central Mackenzie River valley of western Canada, lakes make up 37% of the landscape. The nonlake components of the landscape are divided into ...

Wayne R. Rouse; Claire J. Oswald; Jacqueline Binyamin; Christopher Spence; William M. Schertzer; Peter D. Blanken; Normand BussiŔres; Claude R. Duguay

2005-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "lake paiute tribe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Wind Equipment: Creating Jobs Along the Lake Erie Shore | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Equipment: Creating Jobs Along the Lake Erie Shore Wind Equipment: Creating Jobs Along the Lake Erie Shore August 16, 2012 - 9:36am Addthis 1 of 3 Finished wind tower sections...

262

Pine Lake Corn Processors LLC | Open Energy Information  

Open Energy Info (EERE)

Farmer owned investment and management team which developed and manages the Pine Lake ethanol plant. References Pine Lake Corn Processors LLC1 LinkedIn Connections CrunchBase...

263

Interpreting Annual Rainfall from the Levels of Lake Victoria  

Science Conference Proceedings (OSTI)

This paper presents a water balance model for Lake Victoria that can be inverted to estimate annual rainfall over the lake. The model is calibrated using a fixed value of evaporation and the regression expressions for inflow, discharge, and ...

Xungang Yin; Sharon E. Nicholson

2002-08-01T23:59:59.000Z

264

The evolution of human diversity A phylogenetic approach-  

E-Print Network (OSTI)

in winter and wind generated waves in summer, or the raising and lowering of lake levels, in places removing Mountain Band of the Chippewa Tribe and its THPO; Blackfeet Tribe; Chippewa Cree Tribe; Crow Nation

Blandford, Ann

265

Crow Lake Wind | Open Energy Information  

Open Energy Info (EERE)

Crow Lake Wind Crow Lake Wind Jump to: navigation, search Name Crow Lake Wind Facility Crow Lake Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Prairie Winds SD 1 Inc. (100) Mitchell Technical Institute (1) South Dakota Wind Partners (7) Developer Prairie Winds SD 1 Inc. Energy Purchaser Basin Electric Power Cooperative Location White Lake SD Coordinates 43.920959┬░, -98.7282157┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.920959,"lon":-98.7282157,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

266

THERMODYNAMICS OF PARTIALLY FROZEN COOLING LAKES  

SciTech Connect

The Rochester Institute of Technology (RIT) collected visible, SWIR, MWIR and LWIR imagery of the Midland (Michigan) Cogeneration Ventures Plant from aircraft during the winter of 2008-2009. RIT also made ground-based measurements of lake water and ice temperatures, ice thickness and atmospheric variables. The Savannah River National Laboratory (SRNL) used the data collected by RIT and a 3-D hydrodynamic code to simulate the Midland cooling lake. The hydrodynamic code was able to reproduce the time distribution of ice coverage on the lake during the entire winter. The simulations and data show that the amount of ice coverage is almost linearly proportional to the rate at which heat is injected into the lake (Q). Very rapid melting of ice occurs when strong winds accelerate the movement of warm water underneath the ice. A snow layer on top of the ice acts as an insulator and decreases the rate of heat loss from the water below the ice to the atmosphere above. The simulated ice cover on the lake was not highly sensitive to the thickness of the snow layer. The simplicity of the relationship between ice cover and Q and the weak responses of ice cover to snow depth over the ice are probably attributable to the negative feedback loop that exists between ice cover and heat loss to the atmosphere.

Garrett, A.; Casterline, M.; Salvaggio, C.

2010-01-05T23:59:59.000Z

267

Energy Efficiency and Conservation Block Grant Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AK-TRIBE-HEALY LAKE TRADITIONAL COUNCIL AK-TRIBE-HEALY LAKE TRADITIONAL COUNCIL Location: Tribe AK-TRIBE-HEALY LAKE TRADITIONAL COUNCIL AK American Recovery and Reinvestment Act: Proposed Action or Project Description The Healy Lake Traditional Council of Alaska proposes to conduct building retrofits on Community Hall-install arctic-grade doors, install windows, and purchase energy efficient refrigerator, cooking stove, and freezer; Healy Lake Rental Units-install windows, install arctic-grade doors, and purchase energy

268

Lake Roosevelt Fisheries Evaluation Program; Meadow Creek vs. Lake Whatcom Stock Kokanee Salmon Investigations in Lake Roosevelt, 2001 Annual Report.  

DOE Green Energy (OSTI)

Lake Roosevelt has been stocked with Lake Whatcom stock kokanee since 1989 with the primary objective of creating a self-sustaining recreational fishery. Due to low return numbers, it was hypothesized a stock of kokanee, native to the upper Columbia River, might perform better than the coastal Lake Whatcom strain. Kokanee from Meadow Creek, a tributary of Kootenay Lake, British Columbia were selected as an alternative stock. Matched pair releases of Lake Whatcom and Meadow Creek kokanee were made from Sherman Creek Hatchery in late June 2000 and repeated in 2001. Stock performance between Lake Whatcom and Meadow Creek kokanee was evaluated using three performance measures; (1) the number of returns to Sherman Creek, the primary egg collection facility, (2) the number of returns to other tributaries and (3) the number of returns to the creel. Kokanee were collected during five passes through the reservoir via electrofishing, which included 87 tributary mouths during the fall of 2000 and 2001. Chi-square analysis indicated age two Meadow Creek kokanee returned to Sherman Creek in significantly higher numbers when compared to the Whatcom stock in 2000 ({chi}{sup 2} = 736.6; d.f. = 1; P < 0.01) and 2001 ({chi}{sup 2} = 156.2; d.f. = 1; P < 0.01). Reservoir wide recoveries of age two kokanee had similar results in 2000 ({chi}{sup 2} = 735.3; d.f. = 1; P < 0.01) and 2001 ({chi}{sup 2} = 150.1; d.f. = 1; P < 0.01). Six Lake Whatcom and seven Meadow Creek three year olds were collected in 2001. The sample size of three year olds was too small for statistical analysis. No kokanee were collected during creel surveys in 2000, and two (age three kokanee) were collected in 2001. Neither of the hatchery kokanee collected were coded wire tagged, therefore stock could not be distinguished. After two years of monitoring, neither Meadow Creek or Lake Whatcom kokanee appear to be capable of providing a run of three-year-old spawners to sustain stocking efforts. The small number of hatchery three-year-olds collected indicated that the current stocking methods will continue to produce a limited jacking run largely composed of precocious males and a small number of three-year-olds. However, supplemental creel data indicated anglers harvested two-year-old hatchery kokanee 30-45 days after release. Supplemental creel data should continue to be collected to accurately evaluate hatchery contributions to the creel.

McLellan, Holly; Scholz, Allan

2002-03-01T23:59:59.000Z

269

A parameterized model of heat storage by lake sediments  

Science Conference Proceedings (OSTI)

A model of seasonal heat storage by lake sediments is proposed oriented at applications in climate modeling and at lake parameterization in numerical weather prediction. The computational efficiency is achieved by reformulating of the heat transfer problem ... Keywords: Bulk model, Climate modeling, Lake temperature, Sediment processes, Temperature wave, Water-sediment exchange

Sergey Golosov; Georgiy Kirillin

2010-06-01T23:59:59.000Z

270

Medicine Lake Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Medicine Lake Geothermal Area Medicine Lake Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Medicine Lake Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (9) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.57,"lon":-121.57,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

271

Harney Lake Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Lake Geothermal Area Lake Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Harney Lake Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.18166667,"lon":-119.0533333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

272

Lake Palmdale Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Lake Palmdale Wind Farm Lake Palmdale Wind Farm Facility Lake Palmdale Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Palmdale Water District Developer Palmdale Water District Energy Purchaser Palmdale Water District Location Palmdale CA Coordinates 34.555932┬░, -118.118307┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.555932,"lon":-118.118307,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

273

Meadow Lake IV | Open Energy Information  

Open Energy Info (EERE)

Meadow Lake IV Meadow Lake IV Facility Meadow Lake IV Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Horizon Wind Energy Developer EDP Renewables Location Brookston IN Coordinates 40.601111┬░, -86.864167┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.601111,"lon":-86.864167,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

274

Why sequence metagenomics in freshwater lakes?  

NLE Websites -- All DOE Office Websites (Extended Search)

metagenomics in freshwater lakes? metagenomics in freshwater lakes? Aquatic microbial communities represent one of the largest reservoirs of genetic and biochemical diversity on the planet, and metagenomic studies have led to the discovery of novel gene families and a deeper understanding of how microbial communities mediate the flow of carbon and energy. However, most of these studies have been based on a static 'snap shot' of genetic diversity found under a particular set of environmental conditions. This study involves a metagenomic time-series to better understand how microbial communities control carbon cycling in freshwater systems. Principal Investigators: Katherine McMahon, University of Wisconsin Program: CSP 2011 Home > Sequencing > Why sequence metagenomics in freshwater lakes

275

Emmons Lake Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Lake Geothermal Area Lake Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Emmons Lake Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":55.3333,"lon":-162.14,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

276

Meadow Lake II | Open Energy Information  

Open Energy Info (EERE)

Meadow Lake II Meadow Lake II Facility Meadow Lake II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Horizon Wind Energy Developer EDP Renewables Location Brookston IN Coordinates 40.601111┬░, -86.864167┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.601111,"lon":-86.864167,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

277

Rice Lake Utilities | Open Energy Information  

Open Energy Info (EERE)

Rice Lake Utilities Rice Lake Utilities Jump to: navigation, search Name Rice Lake Utilities Place Wisconsin Utility Id 15938 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cp-1 Small Power Service Industrial Cp-1 Small Power Service with Parallel Generation(20kW or less) Industrial Cp-1 TOD Small Power Optional Time-of-Day Service Primary Metering Discount Industrial Cp-1 TOD Small Power Optional Time-of-Day Service Primary Metering Discount with Parallel Generation(20kW or less) Industrial

278

Great Lakes | OpenEI  

Open Energy Info (EERE)

Lakes Lakes Dataset Summary Description This dataset is a geographic shapefile generated from the original raster data. The original raster data resolution is a 200-meter cell size. Source National Renewable Energy Laboratory (NREL) Date Released August 19th, 2010 (4 years ago) Date Updated August 23rd, 2010 (4 years ago) Keywords GIS Great Lakes NREL offshore wind shapefile U.S. wind windspeed Data application/zip icon Download Shapefile (zip, 11.8 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Other or unspecified, see optional comment below Comment DISCLAIMER NOTICE This GIS data was developed by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy, LLC for the U.S. Department of Energy ("DOE"). The user is granted the right, without any fee or cost, to use, copy, modify, alter, enhance and distribute this data for any purpose whatsoever, provided that this entire notice appears in all copies of the data. Further, the user of this data agrees to credit NREL in any publications or software that incorporate or use the data. Access to and use of the GIS data shall further impose the following obligations on the User. The names DOE/NREL may not be used in any advertising or publicity to endorse or promote any product or commercial entity using or incorporating the GIS data unless specific written authorization is obtained from DOE/NREL. The User also understands that DOE/NREL shall not be obligated to provide updates, support, consulting, training or assistance of any kind whatsoever with regard to the use of the GIS data. THE GIS DATA IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL DOE/NREL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO CLAIMS ASSOCIATED WITH THE LOSS OF DATA OR PROFITS, WHICH MAY RESULT FROM AN ACTION IN CONTRACT, NEGLIGENCE OR OTHER TORTIOUS CLAIM THAT ARISES OUT OF OR IN CONNECTION WITH THE ACCESS OR USE OF THE GIS DATA. The User acknowledges that access to the GIS data is subject to U.S. Export laws and regulations and any use or transfer of the GIS data must be authorized under those regulations. The User shall not use, distribute, transfer, or transmit GIS data or any products incorporating the GIS data except in compliance with U.S. export regulations. If requested by DOE/NREL, the User agrees to sign written assurances and other export-related documentation as may be required to comply with U.S. export regulations. DISCLAIMER NOTICE This GIS data was developed by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy, LLC for the U.S. Department of Energy ("DOE"). The user is granted the right, without any fee or cost, to use, copy, modify, alter, enhance and distribute this data for any purpose whatsoever, provided that this entire notice appears in all copies of the data. Further, the user of this data agrees to credit NREL in any publications or software that incorporate or use the data. Access to and use of the GIS data shall further impose the following obligations on the User. The names DOE/NREL may not be used in any advertising or publicity to endorse or promote any product or commercial entity using or incorporating the GIS data unless specific written authorization is obtained from DOE/NREL. The User also understands that DOE/NREL shall not be obligated to provide updates, support, consulting, training or assistance of any kind whatsoever with regard to the use of the GIS data. THE GIS DATA IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL DOE/NREL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO CLAIMS ASSOCIATED WITH THE LOSS OF DATA OR PROFITS, WHICH MAY RESULT FROM AN ACTION IN CONTRACT, NEGLIGENCE OR OTHER TORTIOUS CLAIM THAT ARISES OUT OF OR IN CONNECTION WITH THE ACCESS OR USE OF THE GIS DATA. The User acknowledges that access to the GIS data is subject to U.S. Export laws and regulations and any use or transfer of the GIS data must be authorized under those regulations. The User shall not use, distribute, transfer, or transmit GIS data or any products incorporating the GIS data except in compliance with U.S. export regulations. If requested by DOE/NREL, the User agrees to sign written assurances and other export-related documentation as may be required to comply with U.S. export regulations.

279

Kangley - Echo Lake Transmission Line Project Supplemental Draft Environmental Impact Statement  

SciTech Connect

Bonneville Power Administration (BPA) is proposing to build a new transmission line to accommodate increasing demand for electricity and address reliability concerns in the Puget Sound area. The Proposed Action would construct a new line that would connect to an existing transmission line near the community of Kangley, and then connect with BPA's existing Echo Lake Substation. The major purpose of this proposal is to improve system reliability in the King County area. An outage on an existing line during times of heavy use, such as during a winter cold snap, could cause voltage instability and a loss of power in the King County area. System planners have projected total system load using normal growth in demand and determined that system instability could develop as early as the winter of 2002-03. Besides meeting this need for system reliability, this project would enhance the United States' delivery of power to Canada as required under the Columbia River Treaty of 1961. BPA described and analyzed transmission route alternatives in a draft environmental impact statement (DEIS) released in June 2001. The DEIS identified a preferred alternative that would parallel an existing BPA transmission line through the Cedar River Municipal Watershed. BPA received over 700 comments from landowners, agencies, tribes and special interest groups on the DEIS. Many of the comments suggested BPA re-evaluate the range of alternatives considered and prepare a supplemental draft environmental impact statement (SDEIS). After reviewing the comments and refining the cost estimates associated with BPA's preferred alternative, BPA decided to prepare this SDEIS to re-evaluate alternatives not analyzed in detail in the DEIS. The added transmission alternatives, all located outside of the Cedar River Watershed, were initially considered but dropped from detailed analysis. They are identified as Alternatives A, B, C, and D. Alternatives A and C are located to the west of the Cedar River Watershed boundary. Alternatives B and D cross the Mt. Baker-Snoqualmie and Okanogan-Wenatchee National Forests. Under all transmission alternatives, Echo Lake Substation would be expanded about three acres to the east and new equipment to accommodate the new line would be installed. BPA is also considering a Non-Transmission Alternative and the No Action Alternative.

N /A

2003-01-10T23:59:59.000Z

280

The Confederated Tribes of the Warm Springs Indian Reservation of Oregon John Day Basin Office : Watershed Restoration Projects : 2002 Annual Report.  

DOE Green Energy (OSTI)

The John Day is the nation's second longest free-flowing river in the contiguous United States and the longest containing entirely unsupplemented runs of anadromous fish. Located in eastern Oregon, the basin drains over 8,000 square miles, Oregon's fourth largest drainage basin, and incorporates portions of eleven counties. Originating in the Strawberry Mountains near Prairie City, the John Day River flows 284 miles in a northwesterly direction, entering the Columbia River approximately four miles upstream of the John Day dam. With wild runs of spring Chinook salmon and summer steelhead, westslope cutthroat, and redband and bull trout, the John Day system is truly a basin with national significance. The majority of the John Day basin was ceded to the Federal government in 1855 by the Confederated Tribes of the Warm Springs Reservation of Oregon (Tribes). In 1997, the Tribes established an office in the basin to coordinate restoration projects, monitoring, planning and other watershed activities on private and public lands. Once established, the John Day Basin Office (JDBO) formed a partnership with the Grant Soil and Water Conservation District (GSWCD), also located in the town of John Day, who contracts the majority of the construction implementation activities for these projects from the JDBO. The GSWCD completes the landowner contact, preliminary planning, engineering design, permitting, construction contracting, and construction implementation phases of most projects. The JDBO completes the planning, grant solicitation/defense, environmental compliance, administrative contracting, monitoring, and reporting portion of the program. Most phases of project planning, implementation, and monitoring are coordinated with the private landowners and basin agencies, such as the Oregon Department of Fish and Wildlife and Oregon Water Resources Department. In 2002, the JDBO and GSWCD proposed continuation of their successful partnership between the two agencies and basin landowners to implement an additional twelve (12) watershed conservation projects. The types of projects include off channel water developments, riparian fencing, juniper control, permanent diversions, pump stations, infiltration galleries and return-flow cooling systems. Project costs in 2002 totaled $423,198.00 with a total amount of $345,752.00 (81%) provided by the Bonneville Power Administration (BPA) and the remainder coming from other sources such as the Bureau of Reclamation (BOR), Oregon Watershed Enhancement Board, the U.S. Fish & Wildlife Service Partners in Wildlife Program and individual landowners.

Confederated Tribes of the Warm Springs Reservation of Oregon. John Day Basin Office.

2003-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "lake paiute tribe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

The Confederated Tribes of the Warm Springs Indian Reservation of Oregon John Day Basin Office : Watershed Restoration Projects : 2003 Annual Report.  

DOE Green Energy (OSTI)

The John Day is the nation's second longest free-flowing river in the contiguous United States and the longest containing entirely unsupplemented runs of anadromous fish. Located in eastern Oregon, the basin drains over 8,000 square miles, Oregon's fourth largest drainage basin, and incorporates portions of eleven counties. Originating in the Strawberry Mountains near Prairie City, the John Day River flows 284 miles in a northwesterly direction, entering the Columbia River approximately four miles upstream of the John Day dam. With wild runs of spring Chinook salmon and summer steelhead, westslope cutthroat, and redband and bull trout, the John Day system is truly a basin with national significance. The majority of the John Day basin was ceded to the Federal government in 1855 by the Confederated Tribes of the Warm Springs Reservation of Oregon (Tribes). In 1997, the Tribes established an office in the basin to coordinate restoration projects, monitoring, planning and other watershed activities on private and public lands. Once established, the John Day Basin Office (JDBO) formed a partnership with the Grant Soil and Water Conservation District (GSWCD), which contracts the majority of the construction implementation activities for these projects from the JDBO. The GSWCD completes the landowner contact, preliminary planning, engineering design, permitting, construction contracting, and construction implementation phases of most projects. The JDBO completes the planning, grant solicitation/defense, environmental compliance, administrative contracting, monitoring, and reporting portion of the program. Most phases of project planning, implementation, and monitoring are coordinated with the private landowners and basin agencies, such as the Oregon Department of Fish and Wildlife and Oregon Water Resources Department. In 2003, the JDBO and GSWCD proposed continuation of their successful partnership between the two agencies and basin landowners to implement an additional twelve (12) watershed conservation projects. The types of projects include off channel water developments, juniper control, permanent diversions, pump stations, and return-flow cooling systems. Due to funding issues and delays, permitting delays, fire closures and landowner contracting problems, 2 projects were canceled and 7 projects were rescheduled to the 2004 construction season. Project costs in 2003 totaled $115,554.00 with a total amount of $64,981.00 (56%) provided by the Bonneville Power Administration (BPA) and the remainder coming from other sources such as the Bureau of Reclamation (BOR), Oregon Watershed Enhancement Board, the U.S. Fish & Wildlife Service Partners in Wildlife Program and individual landowners.

Confederated Tribes of the Warm Springs Reservation of Oregon. John Day Basin Office.

2004-02-27T23:59:59.000Z

282

The Confederated Tribes of the Warm Springs Indian Reservation of Oregon John Day Basin Office : Watershed Restoration Projects : Annual Report, 2000.  

DOE Green Energy (OSTI)

The John Day is the second longest free-flowing river in the contiguous United States and the longest containing entirely unsupplemented runs of anadromous fish. Located in eastern Oregon, the basin drains over 8,000 square miles--Oregon's third largest drainage basin--and incorporates portions of eleven counties. Originating in the Strawberry Mountains near Prairie City, the John Day River flows 284 miles in a northwesterly direction, entering the Columbia River approximately four miles upstream of the John Day dam. With wild runs of spring Chinook salmon and summer steelhead, red band, westslope cutthroat, and redband trout, the John Day system is truly a basin with national significance. Most all of the entire John Day basin was ceded to the Federal government in 1855 by the Confederated Tribes of the Warm Springs Reservation of Oregon (Tribes). In 1997, the Tribes established an office in the Basin to coordinate restoration projects, monitoring, planning and other watershed activities on private and public lands. Using funding from the Bonneville Power Administration, Bureau of Reclamation, and others, the John Day Basin Office (JDBO) subcontracts the majority of its construction implementation activities with the Grant Soil and Water Conservation District (GSWCD), also located in the town of John Day. The GSWCD completes the landowner contact, preliminary planning, engineering design, permitting, construction contracting, and construction implementation phases of most projects. The JDBO completes the planning, grant solicitation/review, environmental compliance, administrative contracting, monitoring, and reporting portion of the program. Most phases of project planning, implementation, and monitoring are coordinated with the private landowners and basin agencies, such as the Oregon Department of Fish and Wildlife and Oregon Water Resources Department. In 2000, the JDBO and GSWCD proposed continuation of a successful partnership between the two agencies and basin landowners to implement an additional six watershed conservation projects funded by the BPA. The types of projects include permanent diversions, pump stations, and return-flow cooling systems. Project costs in 2000 totaled $533,196.00 with a total amount of $354,932.00 (67%) provided by the Bonneville Power Administration and the remainder coming from other sources such as the BOR, Oregon Watershed Enhancement Board, and individual landowners.

Confederated Tribes of the Warm Springs Reservation of Oregon. John Day Basin Office.

2001-03-01T23:59:59.000Z

283

The Confederated Tribes of the Warm Springs Indian Reservation of Oregon John Day Basin Office : Watershed Restoration Projects : Annual Report, 2001.  

DOE Green Energy (OSTI)

The John Day River is the nation's second longest free-flowing river in the contiguous United States, which is entirely unsupplemented for it's runs of anadromous fish. Located in eastern Oregon, the John Day Basin drains over 8,000 square miles, is Oregon's fourth largest drainage basin, and the basin incorporates portions of eleven counties. Originating in the Strawberry Mountains near Prairie City, the mainstem John Day River flows 284 miles in a northwesterly direction entering the Columbia River approximately four miles upstream of the John Day dam. With wild runs of spring Chinook salmon, summer steelhead, westslope cutthroat, and redband and bull trout, the John Day system is truly a basin with national significance. The Majority of the John Day Basin was ceded to the Federal government in 1855 by the Confederated Tribes of the Warm Springs Reservation of Oregon (Tribes). In 1997, the Tribes established an office in John Day to coordinate basin restoration projects, monitoring, planning, and other watershed restoration activities on private and public lands. Once established, the John Day Basin Office (JDBO) formed a partnership with the Grant Soil and Water Conservation District (GSWCD), also located in John Day, who subcontracts the majority of the construction implementation activities for these restoration projects from the JDBO. The GSWCD completes the landowner contact, preliminary planning, engineering design, permitting, construction contracting, and construction implementation phases of most projects. The JDBO completes the planning, grant solicitation/defense, environmental compliance, administrative contracting, monitoring, and reporting portion of the program. Most phases of project planning, implementation, and monitoring are coordinated with the private landowners and basin agencies, such as the Oregon Department of Fish and Wildlife and Oregon Water Resources Department. In 2001, the JDBO and GSWCD continued their successful partnership between the two agencies and basin landowners to implement an additional ten (10) watershed conservation projects. The project types include permanent lay flat diversions, pump stations, and return-flow cooling systems. Project costs in 2001 totaled $572,766.00 with $361,966.00 (67%) provided by the Bonneville Power Administration (BPA) and the remainder coming from other sources, such as the Bureau of Reclamation (BOR), Oregon Watershed Enhancement Board (OWEB), and individual landowners.

Confederated Tribes of the Warm Springs Reservation of Oregon. John Day Basin Office.

2002-12-01T23:59:59.000Z

284

Impacts of Climate Variation and Catchment Area on Water Balance and Lake Hydrologic Type in Groundwater-Dominated Systems: A Generic Lake Model  

Science Conference Proceedings (OSTI)

Lakes are a major geologic feature in humid regions, and multiple lake hydrologic types exist with varying physical and chemical characteristics, connections among lakes, and relationships to the landscape. The authors developed a model of water ...

Jeffrey Cardille; Michael T. Coe; Julie A. Vano

2004-12-01T23:59:59.000Z

285

Convective Structures in a Cold Air Outbreak over Lake Michigan during Lake-ICE  

Science Conference Proceedings (OSTI)

The Lake-Induced Convection Experiment provided special field data during a westerly flow cold air outbreak (CAO) on 13 January 1998, which has afforded the opportunity to examine in detail an evolving convective boundary layer. Vertical cross ...

Suzanne M. Zurn-Birkhimer; Ernest M. Agee; Zbigniew Sorbjan

2005-07-01T23:59:59.000Z

286

Patterns of Local Circulation in the Itaipu Lake Area: Numerical Simulations of Lake Breeze  

Science Conference Proceedings (OSTI)

The lake-breeze circulation in the Itaipu region was investigated numerically using a nonhydrostatic version of the Topographic Vorticity Model. The area of study corresponds to a 100 km Î 180 km rectangle, located on the BrazilľParaguay border, ...

S˘nia M. S. Stivari; Amauri P. de Oliveira; Hugo A. Karam; Jacyra Soares

2003-01-01T23:59:59.000Z

287

Spatiotemporal Trends in Lake Effect and Continental Snowfall in the Laurentian Great Lakes, 1951ľ1980  

Science Conference Proceedings (OSTI)

A new raster-based monthly snowfall climatology was derived from 1951ľ1980 snowfall station data for the Laurentian Great Lakes. An automated methodology was used to obtain higher spatial resolution than previously obtained. The increase in ...

D. C. Norton; S. J. Bolsenga

1993-10-01T23:59:59.000Z

288

Eleven Tribes Jump START Clean Energy Projects, Summer 2012 (Newsletter), U.S. Department of Energy (DOE) Office of Indian Energy (OIE), Indian Energy Beat  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BUILDING BUILDING BRIDGES . . . . . . . . . . . . . . . . . . . . . . . 3 SHARING KNOWLEDGE . . . . . . . . . . . . . . . . . . . . . 3 WINNING THE FUTURE . . . . . . . . . . . . . . . . . . . . . . 3 ON THE HORIZON . . . . . . . . . . . . . . . . . . . . . . . . . 4 LEADING THE CHARGE . . . . . . . . . . . . . . . . . . . . . 4 "Tribal communities, entrepreneurs, and small businesses will benefit greatly from the technical resources and expertise provided by DOE. START will help Native American and Alaska Native communities increase local generation capacity, enhance energy efficiency and conservation measures, and create job opportunities in the new clean energy economy." -DOE-IE Director Tracey A. LeBeau The U.S. Department of Energy Office of Indian Energy Policy and Programs (DOE-IE) has selected 11 Tribes-five in Alaska and six in the contiguous United States-to receive on-the-ground technical support for community-based energy efficiency and renewable

289

Spring Chinook Salmon Production for Confederated Tribes of the Umatilla Indian Reservation, Little White Salmon National Fish Hatchery, Annual Report 2006.  

DOE Green Energy (OSTI)

This annual report covers the period from January 1, 2006 through December 31, 2006. Work completed supports the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) effort to restore a locally-adapted stock of spring Chinook to the Umatilla River Basin. During the year, staff at the Little White Salmon/Willard National Fish Hatchery Complex have completed the rearing of 218,764 Brood Year 2004 spring Chinook salmon for release into the Umatilla River during spring 2006 and initiated production of approximately 220,000 Brood Year 2005 spring Chinook for transfer and release into the Umatilla River during spring 2007. All work under this contract is performed at the Little White Salmon and Willard National Fish Hatcheries (NFH), Cook, WA.

Doulas, Speros

2007-01-01T23:59:59.000Z

290

Geothermal Exploration Using Aviris Remote Sensing Data Over Fish Lake  

Open Energy Info (EERE)

Using Aviris Remote Sensing Data Over Fish Lake Using Aviris Remote Sensing Data Over Fish Lake Valley, Nv Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Geothermal Exploration Using Aviris Remote Sensing Data Over Fish Lake Valley, Nv Details Activities (1) Areas (1) Regions (0) Abstract: Fish Lake Valley, in Esmeralda County, Nevada, sits at the southern end of the Mina Deflection where the very active Death Valley-Furnace Creek-Fish Lake Valley fault system makes a right step to transfer slip northward into the Walker Lane. Northern Fish Lake Valley has been pulling part since ca. 6 Ma, primarily along the Emigrant Peak normal fault zone (Stockli et al., 2003). Elevated tectonic activity in Fish Lake Valley suggests there may be increased fracture permeability to facilitate

291

Medicine Lake Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Medicine Lake Geothermal Area Medicine Lake Geothermal Area (Redirected from Medicine Lake Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Medicine Lake Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (9) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.57,"lon":-121.57,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

292

FINAL REPORT WIND POWER WARM SPRINGS RESERVATION TRIBAL LANDS DOE GRANT NUMBER DE-FG36-07GO17077 SUBMITTED BY WARM SPRINGS POWER & WATER ENTERPRISES A CORPORATE ENTITY OF THE CONFEDERATED TRIBES OF WARM SPRINGS WARM SPRINGS, OREGON  

SciTech Connect

Wind Generation Feasibility Warm Springs Power and Water Enterprises (WSPWE) is a corporate entity owned by the Confederated Tribes of the Warm Springs Reservation, located in central Oregon. The organization is responsible for managing electrical power generation facilities on tribal lands and, as part of its charter, has the responsibility to evaluate and develop renewable energy resources for the Confederated Tribes of Warm Springs. WSPWE recently completed a multi-year-year wind resource assessment of tribal lands, beginning with the installation of wind monitoring towers on the Mutton Mountains site in 2003, and collection of on-site wind data is ongoing. The study identified the Mutton Mountain site on the northeastern edge of the reservation as a site with sufficient wind resources to support a commercial power project estimated to generate over 226,000 MWh per year. Initial estimates indicate that the first phase of the project would be approximately 79.5 MW of installed capacity. This Phase 2 study expands and builds on the previously conducted Phase 1 Wind Resource Assessment, dated June 30, 2007. In order to fully assess the economic benefits that may accrue to the Tribes through wind energy development at Mutton Mountain, a planning-level opinion of probable cost was performed to define the costs associated with key design and construction aspects of the proposed project. This report defines the Mutton Mountain project costs and economics in sufficient detail to allow the Tribes to either build the project themselves or contract with a developer under the most favorable terms possible for the Tribes.

Jim Manion; Michael Lofting; Wil Sando; Emily Leslie; Randy Goff

2009-03-30T23:59:59.000Z

293

EIS-0246-SA-36: Supplement Analysis | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EIS-0246-SA-36: Supplement Analysis EIS-0246-SA-36: Supplement Analysis EIS-0246-SA-36: Supplement Analysis Wildlife Mitigation Program, Grant County, Oregon The compliance checklist for this project was originally completed by the Burns Paiute Tribe in 2000, and meets the standards and guidelines for the Wildlife Mitigation Program Environmental Impact Statement (EIS) and Record of Decision (ROD), as well as the Watershed Management Program Environmental Impact Statement (EIS) and Record of Decision (ROD). The Logan Valley Wildlife Mitigation Plan, now being implemented, continues to be consistent with the aboved mentioned EISs and RODs. DOE/EIS-0246, Bonneville Power Administration and Burns Paiute Tribe, Supplement Analysis for the Wildlife Mitigation Program EIS, Grant County, Oregon (October 2003)

294

CX-003185: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

85: Categorical Exclusion Determination 85: Categorical Exclusion Determination CX-003185: Categorical Exclusion Determination Fallon Paiute-Shoshone CX(s) Applied: A9, A11, B5.1 Date: 07/22/2010 Location(s): Nevada Office(s): Energy Efficiency and Renewable Energy Tribal Energy Program. The Fallon Paiute-Shoshone Tribe proposes to develop a sustainable energy park utilizing renewable energy resources at the Tribe's Reservation in Churchill County, Nevada. This proposed energy park would demonstrate the potential contributions of joint ventures between Native Americans and business/corporate entities involved in renewable energy innovation and generation, in support of the larger United States goal of energy independence. The initial primary focus proposed is for planning and engineering. The specific proposed tasks include: base

295

CX-002175: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

75: Categorical Exclusion Determination 75: Categorical Exclusion Determination CX-002175: Categorical Exclusion Determination U tu Utu Gwaitu Paiute Tribe Energy and Conservation Strategy and Implementation Plan CX(s) Applied: B2.5, A9, A11, B5.1 Date: 04/28/2010 Location(s): California Office(s): Energy Efficiency and Renewable Energy Energy Efficiency and Conservation Block Grant Program. 1) The U tu Utu Gwaitu Paiute Tribe proposes to prepare an energy and conservation strategy and implementation plan, 2) assess the energy efficiency of Tribally-owned/operated buildings on and off the Reservation and of private residences on the Reservation and develop a weatherization program aimed at energy conservation and develop a strategy for retrofitting homes and buildings to ensure energy efficiency and conservation, and 3) conduct

296

EIS-0246-SA-36: Supplement Analysis | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6: Supplement Analysis 6: Supplement Analysis EIS-0246-SA-36: Supplement Analysis Wildlife Mitigation Program, Grant County, Oregon The compliance checklist for this project was originally completed by the Burns Paiute Tribe in 2000, and meets the standards and guidelines for the Wildlife Mitigation Program Environmental Impact Statement (EIS) and Record of Decision (ROD), as well as the Watershed Management Program Environmental Impact Statement (EIS) and Record of Decision (ROD). The Logan Valley Wildlife Mitigation Plan, now being implemented, continues to be consistent with the aboved mentioned EISs and RODs. DOE/EIS-0246, Bonneville Power Administration and Burns Paiute Tribe, Supplement Analysis for the Wildlife Mitigation Program EIS, Grant County, Oregon (October 2003)

297

Hood River Fish Habitat Project; Confederated Tribes of the Warm Springs Reservation of Oregon, Annual Report 2002-2003.  

DOE Green Energy (OSTI)

This report summarizes the project implementation and monitoring of all habitat activities in the Hood River basin that occurred over the October 1, 2002 to September 30, 2003 period (FY 03). Some of the objectives in the corresponding statement of work for this contract were not completed within FY 03. A description of the progress during FY 03 and reasoning for deviation from the original tasks and timeline are provided. OBJECTIVE 1 - Provide coordination of all activities, administrative oversight and assist in project implementation and monitoring activities. Administrative oversight and coordination of the habitat statement of work, budget, subcontracts, personnel, implementation, and monitoring was provided. OBJECTIVE 2 - Continue to coordinate, implement, and revise, as needed, the Hood River Fish Habitat Protection, Restoration, and Monitoring Plan. The Hood River Fish Habitat Protection, Restoration, and Monitoring Plan was completed in 2000 (Coccoli et al., 2000). This document was utilized for many purposes including: drafting the Watershed Action Plan (Coccoli, 2002), ranking projects for funding, and prioritizing projects to target in the future. This document has been reviewed by many, including stakeholders, agencies, and interested parties. The Hood River Watershed Group Coordinator and author of the Hood River Fish Habitat Protection, Restoration, and Monitoring Plan, Holly Coccoli, has updated and revised the plan. Changes will be reflected in the Hood River Subbasin Plan, and after submission of the Subbasin Plan, a formally revised version of the Monitoring Plan will be put out for review. This will more specifically address changes in the Hood River subbasin since 2000, and reflect changes to fish habitat and needs in the Hood River subbasin regarding monitoring. OBJECTIVE 3 - Evaluate and monitor the habitat, accessibility, and presence of winter steelhead, coho salmon, and resident trout upstream of the Middle Fork Irrigation District water sources on Evans Creek. Through this project, BPA funded the Middle Fork Irrigation District (MFID) a total of $194,000 in FY 03 for the Glacier Ditch- Evans Creek project. BPA funds accounted for approximately 30% of the project while the remaining 70% was cost-shared by the MFID, the US Forest Service, and the Oregon Watershed Enhancement Board. The MFID operated irrigation diversions on Evans Creek (Hutson pond RM 4.0 and the Evans Creek diversion RM 5.5), a tributary to the East Fork Hood River. Both diversions had inadequate upstream fish passage, and utilized Evans Creek to transport Eliot Branch water to distribute irrigation water lower in the basin. This project consisted of: piping a portion of the Glacier ditch to create a pressurized irrigation pipeline system, piping the Hutson extension, removing the culvert on Evans Creek near the Glacier ditch, removing the culvert above the Hutson pond, revegetating the disturbed areas, and providing adequate and approved fish passage on Evans Creek. Prior to any work, Brian Connors with MFID completed a NEPA checklist. Some of the key regulatory points of this project included wetland delineations, a cultural resources survey, and consultations with NOAA Fisheries, U.S. Fish and Wildlife, Oregon Department of Fish and Wildlife (ODFW), and the U.S. Army Corps of Engineers. This project will eliminate the overflow of silty water into Evans Creek and West Fork Evans Creek. Upon completion of this project, access to 2.5 miles of winter steelhead, coho salmon, and resident trout habitat will be restored. Elimination of the interbasin transfer of water will discontinue the conveyance of silty Eliot Branch water into clear East Fork tributaries. Additionally, less water taken from Coe Branch, Eliot Branch, and Laurance Lake which will benefit listed steelhead and bull trout. The Glacier Ditch provided irrigation water from the Eliot Branch to upper valley orchards and agriculture for more than 100 years. The Glacier Ditch served approximately 1,438 acres with 18 cfs of water. The Glacier Ditch portion of this project

Vaivoda, Alexis

2004-02-01T23:59:59.000Z

298

Great Lakes Energy - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Great Lakes Energy - Residential Energy Efficiency Rebate Program Great Lakes Energy - Residential Energy Efficiency Rebate Program Great Lakes Energy - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Program Info State Michigan Program Type Utility Rebate Program Rebate Amount Air-Source Heat Pumps: $250 Geothermal Heat Pumps: $500 Provider Great Lakes Energy Great Lakes Energy offers rebates to residential customers for the purchase of efficiency air-source heat pumps or geothermal heat pumps. A rebate of $250 is available for air-source heat pumps, and a $500 rebate is available for geothermal heat pumps. View the program website listed above to view program and efficiency specifics. A variety of rebates may also be available to Great Lake Energy residential

299

Mapping Fractures In The Medicine Lake Geothermal System | Open Energy  

Open Energy Info (EERE)

Fractures In The Medicine Lake Geothermal System Fractures In The Medicine Lake Geothermal System Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Mapping Fractures In The Medicine Lake Geothermal System Details Activities (1) Areas (1) Regions (0) Abstract: A major challenge to energy production in the region has been locating high-permability fracture zones in the largely impermeable volcanic host rock. An understanding of the fracture networks will be a key to harnessing geothermal resources in the Cascades Author(s): Steven Clausen, Michal Nemcok, Joseph Moore, Jeffrey Hulen, John Bartley Published: GRC, 2006 Document Number: Unavailable DOI: Unavailable Core Analysis At Medicine Lake Area (Clausen Et Al, 2006) Medicine Lake Geothermal Area Retrieved from "http://en.openei.org/w/index.php?title=Mapping_Fractures_In_The_Medicine_Lake_Geothermal_System&oldid=388927

300

National Park Service - Lake Powell, Utah | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lake Powell, Utah Lake Powell, Utah National Park Service - Lake Powell, Utah October 7, 2013 - 9:58am Addthis Photo of the Photovoltaic System at Lake Powell, Utah Lake Powell is part of Utah's Glen Canyon National Recreation Area. The Dangling Rope Marina operates by using diesel generators to supply power. They use 65,000 gallons of diesel fuel per year that has to be barged in over Lake Powell. The potential for environmental damage to the marina in the event of a fuel spill is significant, and the cost to the National Park Service (NPS) for transporting each fuel delivery is considerable. Consequently, the installation of a photovoltaic (PV) system presented many advantages. This is the largest PV system the NPS has installed with 115 kilowatts of energy being produced. A 59% improvement in energy efficiency has been

Note: This page contains sample records for the topic "lake paiute tribe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Spirit Lake II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

II Wind Farm II Wind Farm Jump to: navigation, search Name Spirit Lake II Wind Farm Facility Spirit Lake II Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Spirit Lake School Dist Developer Spirit Lake School District Energy Purchaser Spirit Lake School District Location Spirit Lake IA Coordinates 43.411412┬░, -95.09914┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.411412,"lon":-95.09914,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

302

Lake Lahontan: Geology of Southern Carson Desert, Nevada | Open Energy  

Open Energy Info (EERE)

Lake Lahontan: Geology of Southern Carson Desert, Nevada Lake Lahontan: Geology of Southern Carson Desert, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Lake Lahontan: Geology of Southern Carson Desert, Nevada Abstract This report presents a stratigraphic study of an area of about 860 square miles in the southern part of the Carson Desert, near Fallen, Churchill County, Nev. The exposed rocks and surficial sediments range in age from early Tertiary (?) to Recent. The late Quaternary sediments and soils were especially studied: they furnish a detailed history of the fluctuations of Lake Lahontan (a huge but intermittent late Pleistocene lake) and of younger lakes, as well as a history of late Quaternary sedimentation, erosion, soil development, and climatic change that probably is

303

Star Lakes and Rivers (Minnesota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Star Lakes and Rivers (Minnesota) Star Lakes and Rivers (Minnesota) Star Lakes and Rivers (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Minnesota Program Type Siting and Permitting An association organized for the purpose of addressing issues on a specific lake or river, a lake improvement district, or a lake conservation district

304

Iowa Lakes Superior Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Lakes Superior Wind Farm Lakes Superior Wind Farm Jump to: navigation, search Name Iowa Lakes Superior Wind Farm Facility Iowa Lakes Superior Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Iowa Lakes Electric Cooperative Developer Iowa Lakes Electric Cooperative Location West of Superior IA Coordinates 43.447756┬░, -94.980719┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.447756,"lon":-94.980719,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

305

Lake Region Electric Cooperative | Open Energy Information  

Open Energy Info (EERE)

Cooperative Cooperative (Redirected from Lake Region Coop Elec Assn) Jump to: navigation, search Name Lake Region Electric Cooperative Place Minnesota Utility Id 10618 Utility Location Yes Ownership C NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 2013 Residential and Farm Rates Residential Interruptible Heating(Domestic Use) Interruptible Heating(Non-Domestic Use) Residential Irrigation Rate Commercial Large Commercial Commercial Offpeak Storage Residential Simultaneous Purchase and Sale Small Commercial Commercial

306

Iowa Lakes Electric Cooperative | Open Energy Information  

Open Energy Info (EERE)

Iowa Lakes Electric Cooperative Iowa Lakes Electric Cooperative Place Estherville, Iowa Zip 51334 Sector Wind energy Product Iowa-based consumer-owned electric cooperative. The entity is a project developer for two wind farms. Coordinates 43.401935┬░, -94.838594┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.401935,"lon":-94.838594,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

307

Mercury in the Lake Powell ecosystem  

SciTech Connect

Flameless atomic absorption analyses of samples from Lake Powell yield the following mercury levels (in mean parts per billion): 0.01 in lake water, 30 in bottom sediments, 10 in shoreline substrates, 34 in plant leaves, 145 in plant debris, 28 in algae, 10 in crayfish, and 232 in fish muscle. Bioamplification and the association of mercury with organic matter are evident in this recently created, relatively unpolluted reservoir. Formulation of an estimated mercury budget suggests that the restriction of outflow in the impounded Colorado River leads to mercury accumulation, and that projected regional coal-fired power generation may produce sufficient amounts of mercury to augment significantly the mercury released by natural weathering.

Standiford, D.R.; Potter, L.D.; Kidd, D.E.

1973-06-01T23:59:59.000Z

308

Carson Lake Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Carson Lake Geothermal Project Carson Lake Geothermal Project Project Location Information Coordinates 39.321111111111┬░, -118.70388888889┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.321111111111,"lon":-118.70388888889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

309

Great Lakes Biofuels LLC | Open Energy Information  

Open Energy Info (EERE)

Great Lakes Biofuels LLC Great Lakes Biofuels LLC Place Madison, Wisconsin Zip 53704 Sector Services Product Biodiesel research, consulting, management distribution and services company. Coordinates 43.07295┬░, -89.386694┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.07295,"lon":-89.386694,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

310

Dry Lake Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind Farm Wind Farm Jump to: navigation, search Name Dry Lake Wind Farm Facility Dry Lake Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Iberdrola Renewables Developer Iberdrola Renewables Energy Purchaser Iberdrola Renewables Location Navajo County AZ Coordinates 34.635651┬░, -110.357351┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.635651,"lon":-110.357351,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

311

Kilauea Iki lava lake experiment plans  

DOE Green Energy (OSTI)

Twelve experimental studies are proposed to complete field laboratory work at Kilauea Iki lava lake. Of these twelve experiments, eleven do not require the presence of melt. Some studies are designed to use proven techniques in order to expand our existing knowledge, while others are designed to test new concepts. Experiments are grouped into three main categories: geophysics, energy extraction, and drilling technology. Each experiment is described in terms of its location, purpose, background, configuration, operation, and feasibility.

Dunn, J.C.; Hills, R.G.

1981-01-01T23:59:59.000Z

312

Energy Efficient Buildings, Salt Lake County, Utah  

SciTech Connect

Executive Summary Salt Lake County's Solar Photovoltaic Project - an unprecedented public/private partnership Salt Lake County is pleased to announce the completion of its unprecedented solar photovoltaic (PV) installation on the Calvin R. Rampton Salt Palace Convention Center. This 1.65 MW installation will be one the largest solar roof top installations in the country and will more than double the current installed solar capacity in the state of Utah. Construction is complete and the system will be operational in May 2012. The County has accomplished this project using a Power Purchase Agreement (PPA) financing model. In a PPA model a third-party solar developer will finance, develop, own, operate, and maintain the solar array. Salt Lake County will lease its roof, and purchase the power from this third-party under a long-term Power Purchase Agreement contract. In fact, this will be one of the first projects in the state of Utah to take advantage of the recent (March 2010) legislation which makes PPA models possible for projects of this type. In addition to utilizing a PPA, this solar project will employ public and private capital, Energy Efficiency and Conservation Block Grants (EECBG), and public/private subsidized bonds that are able to work together efficiently because of the recent stimulus bill. The project also makes use of recent changes to federal tax rules, and the recent re-awakening of private capital markets that make a significant public-private partnership possible. This is an extremely innovative project, and will mark the first time that all of these incentives (EECBG grants, Qualified Energy Conservation Bonds, New Markets tax credits, investment tax credits, public and private funds) have been packaged into one project. All of Salt Lake County's research documents and studies, agreements, and technical information is available to the public. In addition, the County has already shared a variety of information with the public through webinars, site tours, presentations, and written correspondence.

Barnett, Kimberly

2012-04-30T23:59:59.000Z

313

The Lake Baikal neutrino experiment: selected results  

E-Print Network (OSTI)

We review the present status of the lake Baikal Neutrino Experiment and present selected physical results gained with the consequetive stages of the stepwise increasing detector: from NT-36 to NT-96. Results cover atmospheric muons, neutrino events, very high energy neutrinos, search for neutrino events from WIMP annihilation, search for magnetic monopoles and environmental studies. We also describe an air Cherenkov array developed for the study of angular resolution of NT-200.

BAIKAL Collaboration; V. Balkanov

2000-01-10T23:59:59.000Z

314

Regional factors governing performance and sustainability of wastewater treatment plants in Honduras : Lake Yojoa Subwatershed  

E-Print Network (OSTI)

Lake Yojoa, the largest natural lake in Honduras, is currently experiencing eutrophication from overloading of nutrients, in part due to inadequate wastewater treatment throughout the Lake Yojoa Subwatershed. Some efforts ...

Walker, Kent B. (Kent Bramwell)

2011-01-01T23:59:59.000Z

315

Mesoscale Boundary Layer and Heat Flux Variations over Pack IceľCovered Lake Erie  

Science Conference Proceedings (OSTI)

The development of extensive pack ice fields on the Great Lakes significantly influences lake-effect storms and local airmass modification, as well as the regional hydrologic cycle and lake water levels. The evolution of the ice fields and their ...

Mathieu R. Gerbush; David A. R. Kristovich; Neil F. Laird

2008-02-01T23:59:59.000Z

316

Numerical Simulation of Transitions in Boundary Layer Convective Structures in a Lake-Effect Snow Event  

Science Conference Proceedings (OSTI)

Numerical simulations are used to study transitions between boundary layer rolls and more cellular convective structures observed during a lake-effect snow event over Lake Michigan on 17 December 1983. Weak lake-effect nonroll convection was ...

Kevin A. Cooper; Mark R. Hjelmfelt; Russell G. Derickson; David A. R. Kristovich; Neil F. Laird

2000-09-01T23:59:59.000Z

317

Supporting Water, Ecological, and Transportation Systems in the Great Lakes Basin Ecosystem  

E-Print Network (OSTI)

8-9, 2004. Ann Arbor, Michigan. Great Lakes InformationKeystone, Colorado. Lake Michigan (MI) Lakewide ManagementOffice (GLNPO) Lake Michigan Lakewide Management Plan (LaMP)

Beck, Judy; Kamke, Sherry; Majerus, Kimberly

2007-01-01T23:59:59.000Z

318

Temporal and Spatial Variability of Great Lakes Ice Cover, 1973ľ2010  

Science Conference Proceedings (OSTI)

In this study, temporal and spatial variability of ice cover in the Great Lakes are investigated using historical satellite measurements from 1973 to 2010. The seasonal cycle of ice cover was constructed for all the lakes, including Lake St. ...

Jia Wang; Xuezhi Bai; Haoguo Hu; Anne Clites; Marie Colton; Brent Lofgren

2012-02-01T23:59:59.000Z

319

The Effect of Groundwater Inflow on Evaporation from a Saline Lake  

Science Conference Proceedings (OSTI)

A decade study of the hydrometeorology of Big Quill Lake in Saskatchewan, a saline prairie lake, has effectively used remote sensing to delineate groundwater inflow. The lake covers an area of 250 square kilometers with the groundwater seeping ...

Jeffrey M. Whiting

1984-02-01T23:59:59.000Z

320

Increasing Great LakeľEffect Snowfall during the Twentieth Century: A Regional Response to Global Warming?  

Science Conference Proceedings (OSTI)

The influence of the Laurentian Great Lakes on the climate of surrounding regions is significant, especially in leeward settings where lake-effect snowfall occurs. Heavy lake-effect snow represents a potential natural hazard and plays important ...

Adam W. Burnett; Matthew E. Kirby; Henry T. Mullins; William P. Patterson

2003-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "lake paiute tribe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Lake Titicaca - Physics of an Inherited Hydropower Macroproject Proposal  

E-Print Network (OSTI)

Shared almost evenly by Peru and Bolivia, Lake Titicaca is situated on an Altiplano endorheic region of the northern Andes Mountains. Rio Desaguadero is the lake only outlet. From 1908, several macro-engineers speculated on the creation of a second, completely artificial, outlet for Lake Titicaca freshwater. Here we reconsider several 20th Century macroproject proposals, with the goal of examining and enhancing this technically interesting South American 21st Century Macro-engineering inheritance.

R. Cathcart; A. Bolonkin

2007-03-19T23:59:59.000Z

322

Clear Lake Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon ┬╗ Clear Lake Geothermal Area (Redirected from Clear Lake Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Clear Lake Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.01666667,"lon":-122.65,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

323

Soda Lake Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Soda Lake Geothermal Area Soda Lake Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Soda Lake Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (3) 9 Exploration Activities (9) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.56666667,"lon":-118.85,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

324

Clear Lake Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Clear Lake Geothermal Area Clear Lake Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Clear Lake Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.01666667,"lon":-122.65,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

325

Soda Lake Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon ┬╗ Soda Lake Geothermal Area (Redirected from Soda Lake Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Soda Lake Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (3) 9 Exploration Activities (9) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.56666667,"lon":-118.85,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

326

Hot Lake Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Hot Lake Geothermal Area Hot Lake Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Hot Lake Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.33333333,"lon":-118.6,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

327

Circulations, Bounded Weak Echo Regions, and Horizontal Vortices Observed within Long-Lake-Axis-ParallelľLake-Effect Storms by the Doppler on Wheels  

Science Conference Proceedings (OSTI)

The eastern Great Lakes (Erie and Ontario) are often affected by intense lake-effect snowfalls. Lake-effect storms that form parallel to the major axes of these lakes can strongly impact communities by depositing more than 100 cm of snowfall in ...

Scott M. Steiger; Robert Schrom; Alfred Stamm; Daniel Ruth; Keith Jaszka; Timothy Kress; Brett Rathbun; Jeffrey Frame; Joshua Wurman; Karen Kosiba

2013-08-01T23:59:59.000Z

328

Lake George Park Commission: Stormwater Management (New York) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lake George Park Commission: Stormwater Management (New York) Lake George Park Commission: Stormwater Management (New York) Lake George Park Commission: Stormwater Management (New York) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State New York Program Type Environmental Regulations Provider Lake George Park Commission

329

EIS-0491: Lake Charles Liquefaction Project, Calcasieu Parish, Louisiana |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

91: Lake Charles Liquefaction Project, Calcasieu Parish, 91: Lake Charles Liquefaction Project, Calcasieu Parish, Louisiana EIS-0491: Lake Charles Liquefaction Project, Calcasieu Parish, Louisiana SUMMARY The Federal Energy Regulatory Commission (FERC) is preparing, with DOE as a cooperating agency, an EIS to analyze the potential environmental impacts of a proposal to expand an existing liquefied natural gas (LNG) import terminal in Calcasieu Parish, Louisiana, by constructing and operating natural gas liquefaction and exportation capabilities. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD March 28, 2013 EIS-0491: Supplemental Notice of Intent to Prepare an Environmental Impact Statement Lake Charles Liquefaction Project, Calcasieu Parish, Louisiana September 25, 2012

330

Natural Lakes: Drainage: Diversion: Application (Nebraska) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lakes: Drainage: Diversion: Application (Nebraska) Lakes: Drainage: Diversion: Application (Nebraska) Natural Lakes: Drainage: Diversion: Application (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Nebraska Program Type Siting and Permitting Provider Natural Resources This section provides limitations on water withdrawals and diversions from natural lakes. Any such activity requires a permit from the Department of Natural Resources

331

Data Acquisition-Manipulation At Lake City Hot Springs Area ...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Lake City Hot Springs Area (Warpinski, Et Al., 2004)...

332

Stepout-Deepening Wells At Medicine Lake Area (Warpinski, Et...  

Open Energy Info (EERE)

Page Edit History Facebook icon Twitter icon Stepout-Deepening Wells At Medicine Lake Area (Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home...

333

White Bear Lake Conservation District (Minnesota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

White Bear Lake Conservation District (Minnesota) White Bear Lake Conservation District (Minnesota) White Bear Lake Conservation District (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Minnesota Program Type Siting and Permitting This statute establishes the White Bear Lake Conservation District, which

334

Recreational Lake and Water Quality Districts (Iowa) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recreational Lake and Water Quality Districts (Iowa) Recreational Lake and Water Quality Districts (Iowa) Recreational Lake and Water Quality Districts (Iowa) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Iowa Program Type Environmental Regulations Territory contiguous to a recreational lake may be incorporated into a

335

Exploration And Discovery In Yellowstone Lake- Results From High...  

Open Energy Info (EERE)

volcanic, and sedimentary processes. Detailed bathymetric, seismic reflection, and magnetic evidence reveals that rhyolitic lava flows underlie much of Yellowstone Lake and...

336

Geographic Information System At Fish Lake Valley Area (Deymonaz...  

Open Energy Info (EERE)

Area (Deymonaz, Et Al., 2008) Exploration Activity Details Location Fish Lake Valley Area Exploration Technique Geographic Information System Activity Date Usefulness useful...

337

Geothermal Literature Review At Fish Lake Valley Area (Deymonaz...  

Open Energy Info (EERE)

Search Page Edit History Facebook icon Twitter icon Geothermal Literature Review At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL...

338

Compound and Elemental Analysis At Fish Lake Valley Area (Deymonaz...  

Open Energy Info (EERE)

ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Exploration Activity Details Location Fish...

339

Hyperspectral Imaging At Fish Lake Valley Area (Littlefield ...  

Open Energy Info (EERE)

Hyperspectral Imaging At Fish Lake Valley Area (Littlefield & Calvin, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hyperspectral Imaging...

340

Cedar Lake, Indiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Edit with form History Share this page on Facebook icon Twitter icon Cedar Lake, Indiana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

Note: This page contains sample records for the topic "lake paiute tribe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Shamrock Lakes, Indiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

with form History Share this page on Facebook icon Twitter icon Shamrock Lakes, Indiana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

342

Bass Lake, Indiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Edit with form History Share this page on Facebook icon Twitter icon Bass Lake, Indiana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

343

Thermal Waters Along The Konocti Bay Fault Zone, Lake County...  

Open Energy Info (EERE)

Thermal Waters Along The Konocti Bay Fault Zone, Lake County, California- A Re-Evaluation Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Thermal...

344

Thermal Gradient Holes At Lake City Hot Springs Area (Warpinski...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Lake City Hot Springs Area (Warpinski, Et Al., 2004) Exploration...

345

Ground Gravity Survey At Lake City Hot Springs Area (Warpinski...  

Open Energy Info (EERE)

to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Lake City Hot Springs Area (Warpinski, Et Al., 2004) Exploration Activity...

346

Ground Gravity Survey At Walker Lake Valley Area (Shoffner, Et...  

Open Energy Info (EERE)

to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Walker Lake Valley Area (Shoffner, Et Al., 2010) Exploration Activity...

347

DOE - Office of Legacy Management -- Ambrosia Lake Mill Site...  

Office of Legacy Management (LM)

2009 Ambrosia Lake, New Mexico Long-Term Surveillance and Maintenance Plan (LTSP) and NRC Concurrence: Acceptance of Final Long Term Surveillance Plan (LTSP) for the Ambrosia...

348

Price of Lake Charles, LA Liquefied Natural Gas Total Imports...  

Annual Energy Outlook 2012 (EIA)

Liquefied Natural Gas Total Imports (Dollars per Thousand Cubic Feet) Price of Lake Charles, LA Liquefied Natural Gas Total Imports (Dollars per Thousand Cubic Feet) Decade Year-0...

349

Big Lake, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Congressional Districts by Places. Retrieved from "http:en.openei.orgwindex.php?titleBigLake,Texas&oldid227762" Categories: Places Stubs Cities What links here Related...

350

Big Lake, Missouri: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Congressional Districts by Places. Retrieved from "http:en.openei.orgwindex.php?titleBigLake,Missouri&oldid227761" Categories: Places Stubs Cities What links here Related...

351

Big Lake, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Geographic Relationship Tables Retrieved from "http:en.openei.orgwindex.php?titleBigLake,Alaska&oldid227759" Categories: Places Stubs Cities What links here Related...

352

Big Lake, Washington: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Bureau 2005 Place to 2006 CBSA Retrieved from "http:en.openei.orgwindex.php?titleBigLake,Washington&oldid227763" Categories: Places Stubs Cities What links here Related...

353

EA-1937: Pacific Direct Intertie Upgrade Project, Lake, Jefferson...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lake, Jefferson, Crook, Deschutes, and Wasco Co, OR SUMMARY This project would replace aging equipment at BPA's Celilo converter station and to upgrade equipment on the...

354

Magnetotellurics At Soda Lake Area (Combs 2006) | Open Energy...  

Open Energy Info (EERE)

Lake Area Exploration Technique Magnetotellurics Activity Date Usefulness not indicated DOE-funding Unknown Notes "EM sounding, MT, CSAMT, dipole-dipole resistivity; reservoir...

355

Regional Gravity Survey of the Northern Great Salt Lake Desert...  

Open Energy Info (EERE)

of the Northern Great Salt Lake Desert and Adjacent Areas in Utah, Nevada, and Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Regional Gravity...

356

Southwestern Petroleum Corporation (SWEPCO) and the City of Lake...  

NLE Websites -- All DOE Office Websites (Extended Search)

resources Small business resources State and local government resources Southwestern Petroleum Corporation (SWEPCO) and the City of Lake Alfred, Florida: SPP Success Story SWEPCO...

357

Modeling-Computer Simulations At Fish Lake Valley Area (Deymonaz...  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit History Facebook icon Twitter icon Modeling-Computer Simulations At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation,...

358

Lake Region Electric Cooperative- Commercial Energy Efficiency Grant Program  

Energy.gov (U.S. Department of Energy (DOE))

Lake Region Electric Cooperative (LREC) offers grants to commercial customers for electric energy efficiency improvements, audits, and engineering and design assistance for new and existing...

359

PADD IV PADD II lakes PADD V - PADD II - inland  

U.S. Energy Information Administration (EIA)

228 U.S. Energy Information Administration Annual Energy Outlook 2013 Regional maps Source Maritime Canada Caribbean PADD V - other PADD II lakes PADD V -

360

Heat flow studies, Coso Geothermal Area, China Lake, California...  

Open Energy Info (EERE)

studies, Coso Geothermal Area, China Lake, California. Technical report Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Heat flow studies, Coso Geothermal...

Note: This page contains sample records for the topic "lake paiute tribe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Lake Country Wind Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Country Wind Energy LLC Jump to: navigation, search Name Lake Country Wind Energy LLC Place Minnesota Zip 56209 Sector Renewable Energy, Wind energy Product Minnesota-based wind...

362

Alturas Lake Creek Flow Augmentation, 1986 Final Report.  

DOE Green Energy (OSTI)

Two alternatives were outlined in the first statement of work as possibilities for flow augmentation in Alturas Lake Creek. The alternatives were to raise the level of Alturas Lake and to acquire necessary water rights in Alturas Lake Creek. The first alternative considered in the study was raising the water level at Alturas Lake with a low head dam. Raising Alturas Lake, appeared feasible in that it provided the necessary fish flows in Alturas Lake Creek. However, raising the level of Alturas Lake has adverse effects to other resources and forced pursuing the second alternative as defined in this report. Some of these effects included: flooding Smokey Bear boat ramp, inundation of recreation beaches for extended periods, flooding of the campground and some of the road system, potentially contaminating the quality of lake water from flooded toilet vaults, and destroying the conifer canopy around the lake. Maintenance and operation costs of the dam, along with the need to have a watermaster to distribute flows over the course of the irrigation season, raised additional concerns that detracted from this alternative. The second alternative considered was the acquisition of water rights. This led to an appraisal of the water right values which was completed by BPA with a comparison appraisal done by the Forest Service.

Andrews, John; Lloyd, John; Webster, Bert (Sawtooth National Forest, Twin Falls, ID)

1987-04-01T23:59:59.000Z

363

TTG Telecon Summary 10 3 07  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Summary Summary TEC Tribal Topic Group Teleconference October 3, 2007 Participants Call Lead: Corinne Macaluso (Department of Energy [DOE], Office of Civilian Radioactive Waste Management [OCRWM]) Other Callers: Amy Alesch (Ysleta del Sur Pueblo), Marlene Analla (Pueblo of Laguna), Richard Arnold (Pahrump Paiute Tribe/Consolidated Group of Tribes and Organizations [CGTO]), Greg Fasano (BSC), Bob Fry (NCSL), Josh Garcia (Ysleta del Sur Pueblo), Paloma Hill (DOE/OCRWM), Vernon Jensen (Winnebago Tribe of Nebraska), Dan King (Oneida Nation of Wisconsin), Sue Loudner (Pueblo of Acoma), Lonny Macy (Confederated Tribes of Warm Springs Reservation), Emanuel Morgan (Thlopthlocco Tribal Town), Titto Moses (Confederated Tribes of the Umatilla Indian Reservation), Christina Nelson (NCSL), Jennifer Patric (BAH),

364

Coeur d'Alene Tribe Fish and Wildlife Program Habitat Protection Plan; Implementation of Fisheries Enhancement Opportunities on the Coeur d'Alene Reservation, 1997-2002 Technical Report.  

DOE Green Energy (OSTI)

Throughout the last century, the cumulative effects of anthropogenic disturbances have caused drastic watershed level landscape changes throughout the Reservation and surrounding areas (Coeur d'Alene Tribe 1998). Changes include stream channelization, wetland draining, forest and palouse prairie conversion for agricultural use, high road density, elimination of old growth timber stands, and denuding riparian communities. The significance of these changes is manifested in the degradation of habitats supporting native flora and fauna. Consequently, populations of native fish, wildlife, and plants, which the Tribe relies on as subsistence resources, have declined or in some instances been extirpated (Apperson et al. 1988; Coeur d'Alene Tribe 1998; Lillengreen et al. 1996; Lillengreen et al. 1993; Gerry Green Coeur d'Alene Tribe wildlife Biologist, personal communication 2002). For example, bull trout (Salvelinus confluentus) are not present at detectable levels in Reservation tributaries, westslope cutthroat trout (Oncorhynchus clarki lewisi) are not present in numbers commensurate with maintaining harvestable fisheries (Lillengreen et al. 1993, 1996), and the Sharp-tailed grouse (Tympanuchus phasianellus) are not present at detectable levels on the Reservation (Gerry Green, Coeur d'Alene Tribe wildlife biologist, personal communication). The Coeur d'Alene Tribe added Fisheries and Wildlife Programs to their Natural Resources Department to address these losses and protect important cultural, and subsistence resources for future generations. The Tribal Council adopted by Resolution 89(94), the following mission statement for the Fisheries Program: 'restore, protect, expand and re-establish fish populations to sustainable levels to provide harvest opportunities'. This mission statement, focused on fisheries restoration and rehabilitation, is a response to native fish population declines throughout the Tribe's aboriginal territory, including the Coeur d'Alene Indian Reservation (Coeur d'Alene Tribe 1998). Implicit in this statement is a commitment to provide native subsistence resources in the present and near future as well as the long-term by employing all the mitigation and conservation measures available to them. The development of this Habitat Protection Plan is intended to provide additional planning level guidance as the implementation of conservation measures moves forward. The purpose of this plan is to develop a systematic approach to habitat restoration that will ultimately lead to self-perpetuating, harvestable populations of native fish, wildlife and botanical species. Specifically, it is our intention to apply the principles and analyses presented in this plan to prioritize future restoration efforts that receive funding under the Northwest Power Planning Council's Resident Fish and Wildlife Mitigation Programs. Using an ecosystem restoration approach based on landscape ecology concepts (Primack 1993), the basic premise of the plan is to (1) protect functioning habitat conditions and (2) restore degraded habitat conditions. This plan focuses on habitat conditions at the watershed scale (macrohabitat) rather than on the needs of single species and/or species guilds. By focusing restoration efforts at a macrohabitat level, restoration efforts target all native species inhabiting that area. This approach marks a paradigm shift that emphasizes ecological based restoration rather than species-specific restoration. Traditionally, fish managers and wildlife managers have approached restoration independently, often dedicating resources to a single species by focusing on specific habitat types on a small spatial scale (microhabitat) (Robinson and Bolen 1989, Marcot et al. 2002). This management technique has done little to curb declines despite large budgets (Pianka 1994). Restoration on a landscape level has shown promising results (Holling 1992) and many riparian and wetland restoration projects throughout the northwest have inadvertently improved habitats for non-targeted species. Landscape level restoration addresses

Vitale, Angelo; Roberts, Frank; Peters, Ronald

2002-06-01T23:59:59.000Z

365

Core Analysis At Fish Lake Valley Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Analysis At Fish Lake Valley Area (DOE GTP) Exploration...

366

Flow Test At Fish Lake Valley Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Fish Lake Valley Area (DOE GTP) Exploration Activity...

367

Reflection Survey At Fish Lake Valley Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Reflection Survey At Fish Lake Valley Area (DOE GTP) Exploration...

368

Field Mapping At Fish Lake Valley Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Fish Lake Valley Area (DOE GTP) Exploration...

369

InSAR At Medicine Lake Area (Poland, Et Al., 2006) | Open Energy...  

Open Energy Info (EERE)

Medicine Lake Area (Poland, Et Al., 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: InSAR At Medicine Lake Area (Poland, Et Al., 2006)...

370

Flow Test At Soda Lake Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Soda Lake Area (DOE GTP) Exploration Activity Details Location Soda Lake...

371

Development Wells At Soda Lake Area (DOE GTP) | Open Energy Informatio...  

Open Energy Info (EERE)

Soda Lake Area (DOE GTP) Exploration Activity Details Location Soda Lake Area Exploration Technique Development Wells Activity Date Usefulness not indicated DOE-funding Unknown...

372

U.S. Department of Energy National Environmental Policy Act (NEPA) Categorical Exclusion Determination  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MN-TRIBE-MINNESOTA CHIPPEWA TRIBE (Leech Lake Tribe) MN-TRIBE-MINNESOTA CHIPPEWA TRIBE (Leech Lake Tribe) Energy Efficiency and Conservation Block Grant Program Location: Tribe MN-TRIBE- MINNESOTA CHIPPEWA TRIBE MN American Recovery and Reinvestment Act: Proposed Action or Project Description The Minnesota Chippewa Tribe (Leech Lake Tribe) proposes to hire a recycling project manager which will enhance the recycling program; educate members of the public on the importance of waste management; contract with developers, restaurants, businesses, etc., for waste removal needs and recycling components; contact regional recycling plants for pickup and deliveries of recycling materials; and purchase of equipment and materials to enhance and expand the existing solid waste/recycling program. Conditions: None

373

Wall Lake Municipal Utilities Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wall Lake Municipal Utilities Wind Farm Wall Lake Municipal Utilities Wind Farm Jump to: navigation, search Name Wall Lake Municipal Utilities Wind Farm Facility Wall Lake Municipal Utilities Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Wall Lake Municipal Utilities Developer Wall Lake Municipal Utilities Energy Purchaser Wall Lake Municipal Utilities Location Wall Lake IA Coordinates 42.281965┬░, -95.094098┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.281965,"lon":-95.094098,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

374

The Potential Impacts of Climate Change on the Great Lakes  

Science Conference Proceedings (OSTI)

Global climate change could have a significant impact on the Great Lakes. A number of studies of the potential effects of climate change on the Great Lakes were commissioned by the U.S. Environmental Protection Agency, using common scenarios of ...

Joel B. Smith

1991-01-01T23:59:59.000Z

375

Further Studies of a Lake Breeze Part I: Observational Study  

Science Conference Proceedings (OSTI)

The three-dimensional structure and behavior of a lake-land breeze circulation system induced by Lake Ontario for a selected 24 h period is presented. The structure is determined from observations made during the International Field Year of the ...

Mariano A. Estoque

1981-03-01T23:59:59.000Z

376

Further Studies of a Lake Breeze Part ll: Theoretical Study  

Science Conference Proceedings (OSTI)

The three-dimensional structure and behavior of the lake-land breeze circulation which is induced by Lake Ontario is studied by means of a numerical model. The model is a primitive equation model which incorporates the effects of orography and ...

Mariano A. Estoque; James M. Gross

1981-03-01T23:59:59.000Z

377

Yukon Southern Lakes Nest Box Project Report, 2000  

E-Print Network (OSTI)

this report with permission of the photographers and the credited photographer retains copyright on all photos. Reference this report as: Eckert, C.D., Rousseau, A., and T. Davey. 2001. Yukon Southern Lakes Nest Box Project Report, 2000. Yukon Bird Club & Yukon Conservation Society. Whitehorse, Yukon. Yukon Southern Lakes Nest Box Project ii CONTENTS 1. EXECUTIVE SUMMARY...................................................................................................................................... 1 2.

Cameron Eckert Amlie; Cameron D. Eckert; Tanis Davey; Tanis Davey; Yukon Fish; Wildlife Enhancement; Trust Fund; AmÚlie Rousseau; AmÚlie Rousseau; Cameron Eckert; Cameron Eckert; Jeanette Mccrie; Heidi Hehn

2000-01-01T23:59:59.000Z

378

Determining Photosynthesis Rate Constants in Lake Harapan Penang  

Science Conference Proceedings (OSTI)

Lake Harapan was created in 1990 to serve as a runoff detention pond in Universiti Sains Malaysia USM. The lake is eutrophic with occasional high levels of 300 ug/l chl a, with dissolved oxygen reaching 12 - 16 mg/l in the late afternoon and near anaerobic ... Keywords: Photosynthesis, Rate Constants, Dissolved Oxygen

Teh Su Yean; Koh Hock Lye; Ahmad Izani Md Ismail; Mashhor Mansor

2008-05-01T23:59:59.000Z

379

Energy Efficient Buildings, Salt Lake County, Utah  

DOE Green Energy (OSTI)

Salt Lake County is pleased to announce the completion of its unprecedented solar photovoltaic (PV) installation on the Calvin R. Rampton Salt Palace Convention Center. This 1.65 MW installation will be one the largest solar roof top installations in the country and will more than double the current installed solar capacity in the state of Utah. Construction is complete and the system will be operational in May 2012. The County has accomplished this project using a Power Purchase Agreement (PPA) financing model. In a PPA model a third-party solar developer will finance, develop, own, operate, and maintain the solar array. Salt Lake County will lease its roof, and purchase the power from this third-party under a long-term Power Purchase Agreement contract. In fact, this will be one of the first projects in the state of Utah to take advantage of the recent (March 2010) legislation which makes PPA models possible for projects of this type. In addition to utilizing a PPA, this solar project will employ public and private capital, Energy Efficiency and Conservation Block Grants (EECBG), and public/private subsidized bonds that are able to work together efficiently because of the recent stimulus bill. The project also makes use of recent changes to federal tax rules, and the recent re-awakening of private capital markets that make a significant public-private partnership possible. This is an extremely innovative project, and will mark the first time that all of these incentives (EECBG grants, Qualified Energy Conservation Bonds, New Markets tax credits, investment tax credits, public and private funds) have been packaged into one project. All of Salt Lake County's research documents and studies, agreements, and technical information is available to the public. In addition, the County has already shared a variety of information with the public through webinars, site tours, presentations, and written correspondence.

Barnett, Kimberly

2012-04-30T23:59:59.000Z

380

National Science Foundation - Lake Hoare, Antarctica | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Science Foundation - Lake Hoare, Antarctica National Science Foundation - Lake Hoare, Antarctica National Science Foundation - Lake Hoare, Antarctica October 7, 2013 - 9:57am Addthis Photo of a Photovoltaic System Located at Lake Hoare, Antarctica Lake Hoare is a scientific research site located in Antarctica. Research at this large field site is conducted all summer and requires an energy source that does not cause pollution or engine noise. The photovoltaic system (PV) that was installed at this site is 1.2 kW PV and was one of 10 PV systems purchased for use in Antarctica. Each system has eight 55 W panels that use a manual tracking system to optimize performance and provide power to the site. The system includes 1,000 amp-hours of deep-cycled gel batteries. The site operates all summer using only PV energy except for a three-day cloudy period when scientists

Note: This page contains sample records for the topic "lake paiute tribe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Summer Lake Hot Springs Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Summer Lake Hot Springs Space Heating Low Temperature Geothermal Facility Summer Lake Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Summer Lake Hot Springs Space Heating Low Temperature Geothermal Facility Facility Summer Lake Hot Springs Sector Geothermal energy Type Space Heating Location Summer Lake, Oregon Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

382

Heat flow and microearthquake studies, Coso Geothermal Area, China Lake,  

Open Energy Info (EERE)

and microearthquake studies, Coso Geothermal Area, China Lake, and microearthquake studies, Coso Geothermal Area, China Lake, California. Final report Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Book: Heat flow and microearthquake studies, Coso Geothermal Area, China Lake, California. Final report Details Activities (2) Areas (1) Regions (0) Abstract: The present research effort at the Coso Geothermal Area located on the China Lake Naval Weapons Center, China Lake, California, was concerned with: (1) heat flow studies and (2) microearthquake studies associated with the geothermal phenomena in the Coso Hot Springs area. The sites for ten heat flow boreholes were located primarily using the available seismic ground noise and electrical resistivity data. Difficulty was encountered in the drilling of all of the holes due to altered, porous,

383

Soda Lake I Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Soda Lake I Geothermal Facility Soda Lake I Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Soda Lake I Geothermal Facility General Information Name Soda Lake I Geothermal Facility Facility Soda Lake I Sector Geothermal energy Location Information Location Fallon, Nevada Coordinates 39.4727622┬░, -118.778963┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.4727622,"lon":-118.778963,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

384

Lakes and Rivers Improvement Act (Ontario, Canada) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lakes and Rivers Improvement Act (Ontario, Canada) Lakes and Rivers Improvement Act (Ontario, Canada) Lakes and Rivers Improvement Act (Ontario, Canada) < Back Eligibility Construction Developer Investor-Owned Utility Municipal/Public Utility Utility Savings Category Water Buying & Making Electricity Home Weatherization Program Info State Ontario Program Type Environmental Regulations Safety and Operational Guidelines Siting and Permitting Provider Ontario Ministry of Natural Resources The Lakes and Rivers Improvement Act proscribes the management, protection, preservation and use of the waters of the lakes and rivers of Ontario and the land under them. The Act also details regulations for the protection of persons and property by ensuring that dams are suitably located, constructed, operated and maintained and are of an appropriate nature. The

385

Iowa Lakes Lakota Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Iowa Lakes Lakota Wind Farm Iowa Lakes Lakota Wind Farm Facility Iowa Lakes Lakota Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Iowa Lakes Electric Cooperative Developer Iowa Lakes Electric Cooperative Location West of Lakota IA Coordinates 43.377021┬░, -94.139493┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.377021,"lon":-94.139493,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

386

Soda Lake II Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Soda Lake II Geothermal Facility Soda Lake II Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Soda Lake II Geothermal Facility General Information Name Soda Lake II Geothermal Facility Facility Soda Lake II Sector Geothermal energy Location Information Location Fallon, Nevada Coordinates 39.4727622┬░, -118.778963┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.4727622,"lon":-118.778963,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

387

Lake Worth Utilities - Residential Solar Water Heating Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lake Worth Utilities - Residential Solar Water Heating Rebate Lake Worth Utilities - Residential Solar Water Heating Rebate Program Lake Worth Utilities - Residential Solar Water Heating Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate $450 Rebates must not exceed purchase price Program Info State Florida Program Type Utility Rebate Program Rebate Amount $450 per system Provider City of Lake Worth Utilities The City of Lake Worth Utilities (CLWU), in conjunction with Florida Municipal Power Agency, offers rebates to customers who purchase and install a solar water heating system for residential use. A rebate of $450 per system is available to eligible applicants. Eligible equipment must be located on customer premises within the CLWU service territory, and must

388

Lake Region Electric Cooperative - Residential Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lake Region Electric Cooperative - Residential Energy Efficiency Lake Region Electric Cooperative - Residential Energy Efficiency Rebate Program Lake Region Electric Cooperative - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Maximum Rebate Limit one rebate per appliance Geothermal Heat Pumps: 20 tons Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount Refrigerator: $75 with recycling of old unit Freezer: $75 with recycling of old unit Ductless Air-Source Heat Pump: $300 Air-Source Heat Pump: $330 - $630 Central AC: $50 - $200 Geothermal Heat Pump: $100 - $400/ton CFLs: Free Recycling Provider Lake Region Electric Cooperative Lake Region Electric Cooperative (LREC) offers a variety of rebates for

389

Aeromagnetic Survey At Clear Lake Area (Skokan, 1993) | Open Energy  

Open Energy Info (EERE)

Clear Lake Area (Skokan, 1993) Clear Lake Area (Skokan, 1993) Exploration Activity Details Location Clear Lake Area Exploration Technique Aeromagnetic Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes USGS aeromagnetic data (Rapolla and Keller, 1984) were acquired at an elevation of 4500 feet and flown with one-mile spacings. These data were dominated by patterns of highs that coincide with serpentinite outcrops. Serpentinite is one component of the complex Franciscan melange. Fracturing within the Franciscan provides the porosity needed for collection of hot water characteristic of the Geysers Field. The Clear Lake Volcanics overlie the Franciscan formation. These in turn, are overlain by the Great Valley Sequence. The susceptibilities of both the Clear Lake Volcanics and Great

390

Blue Lake Plant Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Blue Lake Plant Biomass Facility Blue Lake Plant Biomass Facility Jump to: navigation, search Name Blue Lake Plant Biomass Facility Facility Blue Lake Plant Sector Biomass Location Blue Lake, California Coordinates 40.8829072┬░, -123.9839488┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.8829072,"lon":-123.9839488,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

391

Great Lakes Surface Environmental Analysis | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Great Lakes Surface Environmental Analysis Great Lakes Surface Environmental Analysis Agriculture Community Menu DATA APPS EVENTS DEVELOPER STATISTICS COLLABORATE ABOUT Agriculture You are here Data.gov ┬╗ Communities ┬╗ Agriculture ┬╗ Data Great Lakes Surface Environmental Analysis Dataset Summary Description The Great Lakes Surface Environmental Analysis (GLSEA2) is a digital map of the Great Lakes surface water temperature and ice cover which is produced daily at the NOAA Great Lakes Environmental Research Laboratory (GLERL) in Ann Arbor, Michigan through the NOAA CoastWatch program. The GLSEA is stored as a 1024x1024 pixel map in PNG or ASCII format, suitable for viewing on PCs and workstations with readily available software. The lake surface temperatures are derived from NOAA polar-orbiting satellite imagery obtained through the Great Lakes CoastWatch program. The addition of ice cover information was implemented in early 1999, using data provided by the National Ice Center (NIC). Lake surface temperatures are updated daily with information from the cloud-free portions of the previous day's satellite imagery. If no imagery is available, a smoothing algorithm is applied to the previous day's map. Ice information will then be added, using the most recent Great Lakes Ice Analysis produced by NIC, currently daily during the ice season. GLERL is currently receiving a product suite of an average of 108 enhanced digital images including satellite-derived surface temperature (Fig. 1.1), visible and near-infrared reflectance, brightness temperatures, cloud masks, and satellite/solar zenith angle data from the NOAA/AVHRR (Advanced Very High Resolution Radiometer).

392

Evaluation of a Cooling Lake Fishery, Volume 4: Fish Food Resource Studies  

Science Conference Proceedings (OSTI)

This volume documents the assessment of benthic communities, zooplankton, and algae in Lake Sangchris (a cooling lake) and in Lake Shelbyville (a nearby ambient flood control reservoir). Samples of each group of organisms were collected in each lake to obtain information on changes in species composition, relative abundance, density, biomass, and species diversity. Data were compiled and analyzed statistically.

1980-07-01T23:59:59.000Z

393

Supporting Water, Ecological, and Transportation Systems in the Great Lakes Basin Ecosystem  

E-Print Network (OSTI)

office. Participants included transportation and environmental professionals involved with stormwater managementEnvironmental Protection Agency (USEPA), Great Lakes National Program Office (GLNPO) Lake Michigan Lakewide ManagementEnvironmental Protection Agency (USEPA), Great Lakes National Program Office (GLNPO) Lake Michigan Lakewide Management

Beck, Judy; Kamke, Sherry; Majerus, Kimberly

2007-01-01T23:59:59.000Z

394

Alternative Fuels Data Center: Salt Lake City Fuels Vehicles With Natural  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Salt Lake City Fuels Salt Lake City Fuels Vehicles With Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Salt Lake City Fuels Vehicles With Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Salt Lake City Fuels Vehicles With Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Salt Lake City Fuels Vehicles With Natural Gas on Google Bookmark Alternative Fuels Data Center: Salt Lake City Fuels Vehicles With Natural Gas on Delicious Rank Alternative Fuels Data Center: Salt Lake City Fuels Vehicles With Natural Gas on Digg Find More places to share Alternative Fuels Data Center: Salt Lake City Fuels Vehicles With Natural Gas on AddThis.com... May 14, 2011 Salt Lake City Fuels Vehicles With Natural Gas W atch how Salt Lake City fuels vehicles with liquefied and compressed

395

Lake Roosevelt Fisheries and Limnological Research : 1996 Annual Report.  

DOE Green Energy (OSTI)

The Lake Roosevelt Monitoring/Data Collection Program resulted from a merger between the Lake Roosevelt Monitoring Program and the Lake Roosevelt Data Collection Project. This project will model biological responses to reservoir operations, evaluate the effects of releasing hatchery origin kokanee salmon and rainbow trout on the fishery, and evaluate the success of various stocking strategies. In 1996, limnological, reservoir operation, zooplankton, and tagging data were collected. Mean reservoir elevation, storage volume and water retention time were reduced in 1996 relative to the last five years. In 1996, Lake Roosevelt reached a yearly low of 1,227 feet above mean sea level in April, a yearly high of 1,289 feet in July, and a mean yearly reservoir elevation of 1,271.4 feet. Mean monthly water retention times in Lake Roosevelt during 1996 ranged from 15.7 days in May to 49.2 days in October. Average zooplankton densities and biomass were lower in 1996 than 1995. Daphnia spp. and total zooplankton densities peaked during the summer, whereas minimum densities occurred during the spring. Approximately 300,000 kokanee salmon and 400,000 rainbow trout were released into Lake Roosevelt in 1996. The authors estimated 195,628 angler trips to Lake Roosevelt during 1996 with an economic value of $7,629,492.

Cichosz, Thomas A.; Underwood, Keith D.; Shields, John; Scholz, Allan; Tilson, Mary Beth

1997-05-01T23:59:59.000Z

396

Evaluation of a Cooling Lake Fishery, Volume 3: Fish Population Studies  

Science Conference Proceedings (OSTI)

Surveys were conducted in Lake Sangchris, a cooling lake, and Lake Shelbyville, a nearby flood control reservoir, to compare the size and composition of the fish populations and to determine the effects, if any, of the thermal discharge from the power plant on the fish community. Quantitative samples of fishes were collected (by electrofishing, gillnetting, and seining) bimonthly from Lake Sangchris and quarterly from Lake Shelbyville. Preferred temperatures and movements of fishes were studied by radiot...

1980-07-01T23:59:59.000Z

397

Lake Worth Utilities - Energy Conservation Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lake Worth Utilities - Energy Conservation Rebate Program Lake Worth Utilities - Energy Conservation Rebate Program Lake Worth Utilities - Energy Conservation Rebate Program < Back Eligibility Commercial Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Heat Pumps Commercial Lighting Lighting Maximum Rebate Limit one of each type of equipment per customer account Program Info State Florida Program Type Utility Rebate Program Rebate Amount Residential Energy Savings Kit: Free AC/Heat Pump: $250 Clothes Washer: $100 Dishwasher: $75 Freezer: $100 Refrigerator: $100 Programmable Thermostat: $25 Room AC: $100 Insulation Upgrade: up to $300 Commercial Commercial Lighting: up to $1,000 Insulation Upgrade: up to $1,000

398

Mercury Vapor At Medicine Lake Area (Kooten, 1987) | Open Energy  

Open Energy Info (EERE)

Kooten, 1987) Kooten, 1987) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Medicine Lake Area (Kooten, 1987) Exploration Activity Details Location Medicine Lake Area Exploration Technique Mercury Vapor Activity Date Usefulness could be useful with more improvements DOE-funding Unknown References Gerald K. Van Kooten (1987) Geothermal Exploration Using Surface Mercury Geochemistry Retrieved from "http://en.openei.org/w/index.php?title=Mercury_Vapor_At_Medicine_Lake_Area_(Kooten,_1987)&oldid=386431" Category: Exploration Activities What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation:

399

Comparative analysis of discharges into Lake Michigan, Phase I - Southern Lake Michigan.  

SciTech Connect

BP Products North America Inc. (BP) owns and operates a petroleum refinery located on approximately 1,700 acres in Whiting, East Chicago, and Hammond, Indiana, near the southern tip of Lake Michigan. BP provided funding to Purdue University-Calumet Water Institute (Purdue) and Argonne National Laboratory (Argonne) to conduct studies related to wastewater treatment and discharges. Purdue and Argonne are working jointly to identify and characterize technologies that BP could use to meet the previous discharge permit limits for total suspended solids (TSS) and ammonia after refinery modernization. In addition to the technology characterization work, Argonne conducted a separate project task, which is the subject of this report. In Phase I of a two-part study, Argonne estimated the current levels of discharge to southern Lake Michigan from significant point and nonpoint sources in Illinois, Indiana, and portions of Michigan. The study does not consider all of the chemicals that are discharged. Rather, it is narrowly focused on a selected group of pollutants, referred to as the 'target pollutants'. These include: TSS, ammonia, total and hexavalent chromium, mercury, vanadium, and selenium. In Phase II of the study, Argonne will expand the analysis to cover the entire Lake Michigan drainage basin.

Veil, J. A.; Elcock, D.; Gasper, J. R.; Environmental Science Division

2008-06-30T23:59:59.000Z

400

Mineralogy and geochemistry of Mariano Lake uranium deposit, Smith Lake district  

Science Conference Proceedings (OSTI)

The Mariano Lake uranium deposit is located on the west side of the Smith Lake district in the Grants mineral belt. Mineralization is restricted to a basal arkosic sandstone of the Brushy Basin Member of the Morrison Formation (Upper Jrassic). This sandstone is equivalent to the Poison Canyon sandstone of the Ambrosia Lake district and contains a series of paleochannels that have been mineralized. The ore displays a roll-type geometry and is located at an iron-sulfur redox interface. The deposit is chemically different from other deposits of the grants mineral belt. It is characterized by low total carbon dioxide, calcium, molybdenum, and selenium, whereas sulfur and vanadium are enriched. Arsenic and zinc exhibit regular zoning patterns across the deposit. The deposit contains an ubiquitous assemblage of pyrite, kaolinite, chlorite, illite, and illite-montmorillonite associated with vanadiferous ore mixed with organic carbon. No primary uranium minerals have been identified. Gypsum (variety selenite) is present, but calcite is absent. The age of mineralization is unknown. The ore has been remobilized, perhaps more than once, and mineralization may have occurred during mid-Cretaceous, Laramide, or post-Laramide time. Based on existing data, polygenetic models are as reasonable as a single stage of remobilization.

Place, J. (Gulf Oil Corp., Casper, WY); Della Valle, R.S.; Brookins, D.G.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "lake paiute tribe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Comparative analysis of discharges into Lake Michigan, Phase I - Southern Lake Michigan.  

SciTech Connect

BP Products North America Inc. (BP) owns and operates a petroleum refinery located on approximately 1,700 acres in Whiting, East Chicago, and Hammond, Indiana, near the southern tip of Lake Michigan. BP provided funding to Purdue University-Calumet Water Institute (Purdue) and Argonne National Laboratory (Argonne) to conduct studies related to wastewater treatment and discharges. Purdue and Argonne are working jointly to identify and characterize technologies that BP could use to meet the previous discharge permit limits for total suspended solids (TSS) and ammonia after refinery modernization. In addition to the technology characterization work, Argonne conducted a separate project task, which is the subject of this report. In Phase I of a two-part study, Argonne estimated the current levels of discharge to southern Lake Michigan from significant point and nonpoint sources in Illinois, Indiana, and portions of Michigan. The study does not consider all of the chemicals that are discharged. Rather, it is narrowly focused on a selected group of pollutants, referred to as the 'target pollutants'. These include: TSS, ammonia, total and hexavalent chromium, mercury, vanadium, and selenium. In Phase II of the study, Argonne will expand the analysis to cover the entire Lake Michigan drainage basin.

Veil, J. A.; Elcock, D.; Gasper, J. R.; Environmental Science Division

2008-06-30T23:59:59.000Z

402

Crystal Lake II | Open Energy Information  

Open Energy Info (EERE)

II II Facility Crystal Lake II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Location Hancock/Winnebago Counties IA Coordinates 43.16151┬░, -93.855786┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.16151,"lon":-93.855786,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

403

Great Lakes Energy Coop | Open Energy Information  

Open Energy Info (EERE)

Energy Coop Energy Coop Jump to: navigation, search Name Great Lakes Energy Coop Place Michigan Utility Id 38084 Utility Location Yes Ownership C NERC Location MRO NERC RFC Yes Operates Generating Plant Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Alternative - Residential Residential Commercial and Industrial Loads Automated Power Monitoring Commercial Commercial and Industrial Loads Automated Power Monitoring - 200kW Commercial Commercial and industrial Loads Automated Power Monitoring Industrial Controlled Heating Commercial Controlled Water Heater - Opt 1 Commercial

404

Lake Effect Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Effect Energy LLC Effect Energy LLC Jump to: navigation, search Name Lake Effect Energy LLC Place Buffalo, New York Sector Wind energy Product Wind Project Developer in New York State. Coordinates 42.88544┬░, -78.878464┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.88544,"lon":-78.878464,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

405

Crystal Lake III | Open Energy Information  

Open Energy Info (EERE)

III III Facility Crystal Lake III Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Location Hancock/Winnebago Counties IA Coordinates 43.304401┬░, -93.824029┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.304401,"lon":-93.824029,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

406

Lake Country Power | Open Energy Information  

Open Energy Info (EERE)

Power Power Jump to: navigation, search Name Lake Country Power Place Minnesota Utility Id 10697 Utility Location Yes Ownership C NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cycled/Interruptible Air Conditioning Cycled Air (metered) Residential Cycled/Interruptible Air Conditioning Cycled Air (unmetered) Residential Heat Pumps Air-Source if Cycled Residential Heat Pumps Duel Fuel Residential Heat Pumps Ground Source Residential Residential Service Residential Space Heating Duel Fuel Residential

407

Meadow Lake Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind Farm Wind Farm Facility Meadow Lake Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Horizon Wind Energy Developer EDP Renewables Location Brookston IN Coordinates 40.601111┬░, -86.864167┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.601111,"lon":-86.864167,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

408

Obama Administration and Great Lakes States Announce Agreement to Spur  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Great Lakes States Announce Agreement to and Great Lakes States Announce Agreement to Spur Development of Offshore Wind Projects Obama Administration and Great Lakes States Announce Agreement to Spur Development of Offshore Wind Projects March 30, 2012 - 12:00pm Addthis Washington, D.C. - As part of President Obama's all of the above approach to energy, the Obama Administration today joined with the governors of Illinois, Michigan, Minnesota, New York and Pennsylvania to announce the signing of a Memorandum of Understanding (MOU) that will streamline the efficient and responsible development of offshore wind resources in the Great Lakes. This effort underscores the President's commitment to American made energy, increasing energy independence, and creating jobs. "President Obama is focused on leveraging American energy sources,

409

Pierre's Prototype for Wind and Solar - Capitol Lake Plaza | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pierre's Prototype for Wind and Solar - Capitol Lake Plaza Pierre's Prototype for Wind and Solar - Capitol Lake Plaza Pierre's Prototype for Wind and Solar - Capitol Lake Plaza June 3, 2010 - 3:22pm Addthis Lindsay Gsell What are the key facts? 80 photovoltaic (PV) solar energy system and two vertical wind turbines will produce up to 40 percent of the building's total energy usage Capitol Lake Plaza sits centrally on Pierre, S.D.'s government plaza. Originally built in 1974, the building has been undergoing major energy renovations since being purchased by the state two years ago. Two major components of the renovation are about to appear at the building's highest point: solar panels and wind turbines are being installed on the roof. The 80 photovoltaic (PV) solar energy system and two vertical wind turbines will produce up to 40 percent of the building's total energy usage, says

410

Geochemistry Of The Lake City Geothermal System, California, Usa | Open  

Open Energy Info (EERE)

Geochemistry Of The Lake City Geothermal System, California, Usa Geochemistry Of The Lake City Geothermal System, California, Usa Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Geochemistry Of The Lake City Geothermal System, California, Usa Details Activities (2) Areas (1) Regions (0) Abstract: Lake City hot springs and geothermal wells chemically fall into a narrow compositional group. This indicates that, with the exception of a few hot springs, mixing with shallow cold ground waters does not have a significant influence on the chemistry of the hot springs. Narrow ranges in plots of F, B and Li versus Cl, and _D to _18O values indicate minimal mixing. Because of this, the compositions of the natural hot spring waters are fairly representative of the parent geothermal water. The average

411

Winnemucca Dry Lake Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Winnemucca Dry Lake Geothermal Area Winnemucca Dry Lake Geothermal Area (Redirected from Winnemucca Dry Lake Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Winnemucca Dry Lake Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

412

Simulation and Verification of Lake Ontario's Mean State  

Science Conference Proceedings (OSTI)

A numerical dynamic model based on primitive equations has been developed for Lake Ontario. Many experimental tests for parameter selections and alternative formulations of physical processes in the model were carried out. Two simulations, both ...

Joseph Chi Kan Huang; Peter W. Sloss

1981-11-01T23:59:59.000Z

413

Dry Lake II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Dry Lake II Wind Farm Dry Lake II Wind Farm Jump to: navigation, search Name Dry Lake II Wind Farm Facility Dry Lake II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Iberdrola Renewables Developer Iberdrola Renewables Energy Purchaser Salt River Project Location Northwest of Snowflake AZ Coordinates 34.635651┬░, -110.357351┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.635651,"lon":-110.357351,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

414

Mallard Lake Electric Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Mallard Lake Electric Biomass Facility Mallard Lake Electric Biomass Facility Jump to: navigation, search Name Mallard Lake Electric Biomass Facility Facility Mallard Lake Electric Sector Biomass Facility Type Landfill Gas Location Du Page County, Illinois Coordinates 41.8243831┬░, -88.0900762┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.8243831,"lon":-88.0900762,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

415

NPP Tundra: Toolik Lake, Alaska [U.S.A.]  

NLE Websites -- All DOE Office Websites (Extended Search)

Toolik Lake, Alaska, 1982 Toolik Lake, Alaska, 1982 Data Citation Cite this data set as follows: Shaver, G. R. 2001. NPP Tundra: Toolik Lake, Alaska, 1982. Data set. Available on-line [http://www.daac.ornl.gov] from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A. Description Productivity of four contrasting vegetation types was studied during 1982 near Toolik Lake, Alaska, U.S.A. Above-ground biomass and below-ground stem/ rhizome biomass were measured on three occasions during the growing season; for (1) a "tussock" tundra containing graminoids, deciduous shrubs and evergreen shrubs, (2) a "shrub" tundra dominated by deciduous willow shrubs, (3) a "heath" tundra of evergreen shrubs, and (4) a "wet" tundra

416

Crystal Lake - Clipper (09) Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Lake - Clipper (09) Wind Farm Lake - Clipper (09) Wind Farm Jump to: navigation, search Name Crystal Lake - Clipper (09) Wind Farm Facility Crystal Lake - Clipper (09) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Location IA Coordinates 41.8780025┬░, -93.097702┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.8780025,"lon":-93.097702,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

417

Mesoscale Vortices over the Great Lakes in Wintertime  

Science Conference Proceedings (OSTI)

The occasional occurrence of wintertime mesoscale lake vortices is documented. The vortices are readily discernible in satellite imagery, in which they take one of three forms: a miniature comma cloud, a swirl of cloud bands (resembling a ...

Gregory S. Forbes; Jonathan H. Merritt

1984-02-01T23:59:59.000Z

418

Sea, Lake, and Overland Surges from Hurricanes (SLOSH) ...  

Science Conference Proceedings (OSTI)

... 0 60 0 87ö After: ô :p:ps2:ps2:Matagorda Bay Texas New:-1ö ... to a lake value (3). 2. The number of Intermediate (8) and ... 13325 East West HWY SSMC ...

2010-12-13T23:59:59.000Z

419

Lake Charles, LA Liquefied Natural Gas Total Imports (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquefied Natural Gas Total Imports (Million Cubic Feet) Lake Charles, LA Liquefied Natural Gas Total Imports (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

420

Comparison Between Polluted and Clean Air Masses over Lake Michigan  

Science Conference Proceedings (OSTI)

Clean and polluted air masses, advected over Lake Michigan, were studied using instrumented aircraft during the summers of 1976 and 1978. The results show that regardless of the degree of pollution, the particle size distribution is bimodal. The ...

A. J. Alkezweeny; N. S. Laulainen

1981-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "lake paiute tribe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Trend Reversal in Lake Michigan Contribution to Snowfall  

Science Conference Proceedings (OSTI)

One of the most notable ways the Laurentian Great Lakes impact the regionĺs climate is by augmenting snowfall in downwind locations during autumn and winter months. Among many negative consequences, this surplus of snow can cause substantial ...

Luke Bard; David A. R. Kristovich

2012-11-01T23:59:59.000Z

422

Climatological Observations and Predicted Sublimation Rates at Lake Hoare, Antarctica  

Science Conference Proceedings (OSTI)

In December 1985, an automated meteorological station was established at Lake Hoare in the dry valley region of Antarctica. Here, we report on the first year-round observations available for any site in Taylor Valley. This dataset augments the ...

Gary D. Clow; Christopher P. McKay; George M. Simmons Jr.; Robert A. Wharton Jr.

1988-07-01T23:59:59.000Z

423

Coastal Boundary Layer Characteristics during Summer Stratification in Lake Ontario  

Science Conference Proceedings (OSTI)

Simultaneous measurements of Eulerian and Lagrangian currents along the north shore of Lake Ontario are analyzed to provide the mean flow properties and horizontal turbulent exchange characteristics in the coastal boundary layer (CBL). The summer ...

Y. R. Rao; C. R. Murthy

2001-04-01T23:59:59.000Z

424

Lake Aggregate Mesoscale Disturbances. Part I: Linear Analysis  

Science Conference Proceedings (OSTI)

The steady boundary-layer responses that occur over the Great Lakes region during wintertime cold air outbreaks are examined using a two-dimensional, linear, analytic model. The planetary boundary layer (PBL) is modeled as an idealized, ...

Peter J. Sousounis; Hampton N. Shirer

1992-01-01T23:59:59.000Z

425

Chilean glacial lake outburst flood impacts on dam construction  

E-Print Network (OSTI)

Four Glacial Lake Outburst Floods (GLOF) occurred in the Colonia Glacier (Northern Patagonia Icefield, Chile) from April 2008 to March 2009. Lago Cachet 2 emptied four times producing a maximum excess discharge in the ...

Tauro, Flavia

2009-01-01T23:59:59.000Z

426

Improving 30-Day Great Lakes Ice Cover Outlooks  

Science Conference Proceedings (OSTI)

Prediction of Great Lakes ice cover is important for winter operations and planning activities. Current 30-day forecasts use accumulated freezing degree-days (AFDDs) to identify similar historical events and associated ice cover. The authors ...

Raymond Assel; Sheldon Drobot; Thomas E. Croley II

2004-08-01T23:59:59.000Z

427

Measurements of the Skin Temperature on Small Lakes  

Science Conference Proceedings (OSTI)

An apparatus to measure the skin temperature and related variables on inland lakes is described. The apparatus is a transparent frame with sensors to measure the skin and bulk water temperature, the wind velocity, and the air temperature and ...

Robert Kurzeja; Malcolm Pendergast; Eliel Villa-Aleman

2005-09-01T23:59:59.000Z

428

Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from...  

U.S. Energy Information Administration (EIA) Indexed Site

Malaysia (Million Cubic Feet) Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from Malaysia (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

429

Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from...  

U.S. Energy Information Administration (EIA) Indexed Site

Oman (Million Cubic Feet) Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from Oman (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

430

Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from...  

U.S. Energy Information Administration (EIA) Indexed Site

Algeria (Million Cubic Feet) Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from Algeria (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

431

Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from...  

U.S. Energy Information Administration (EIA) Indexed Site

Equatorial Guinea (Million Cubic Feet) Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from Equatorial Guinea (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

432

Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from...  

U.S. Energy Information Administration (EIA) Indexed Site

Nigeria (Million Cubic Feet) Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from Nigeria (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

433

Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from...  

U.S. Energy Information Administration (EIA) Indexed Site

Brunei (Million Cubic Feet) Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from Brunei (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

434

Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from...  

U.S. Energy Information Administration (EIA) Indexed Site

Qatar (Million Cubic Feet) Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from Qatar (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

435

Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from...  

U.S. Energy Information Administration (EIA) Indexed Site

Indonesia (Million Cubic Feet) Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from Indonesia (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

436

Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from...  

U.S. Energy Information Administration (EIA) Indexed Site

United Arab Emirates (Million Cubic Feet) Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from United Arab Emirates (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

437

Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from...  

U.S. Energy Information Administration (EIA) Indexed Site

Other Countries (Million Cubic Feet) Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from Other Countries (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

438

Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from...  

U.S. Energy Information Administration (EIA) Indexed Site

Australia (Million Cubic Feet) Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from Australia (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

439

Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from...  

U.S. Energy Information Administration (EIA) Indexed Site

Egypt (Million Cubic Feet) Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from Egypt (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

440

Heat flow studies, Coso Geothermal Area, China Lake, California. Technical  

Open Energy Info (EERE)

studies, Coso Geothermal Area, China Lake, California. Technical studies, Coso Geothermal Area, China Lake, California. Technical report Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Heat flow studies, Coso Geothermal Area, China Lake, California. Technical report Details Activities (1) Areas (1) Regions (0) Abstract: Heat flow studies in the Coso Geothermal Area were conducted at China Lake, California. Temperature measurements were completed in nine of the heat flow boreholes. Temperatures were measured at five meter intervals from the ground surface to the deepest five meter interval. Subsequently, temperatures were remeasured two or three times in each borehole in order to demonstrate that equilibrium thermal conditions existed. The maximum difference in temperature, at any of the five meter intervals, was 0.03 deg

Note: This page contains sample records for the topic "lake paiute tribe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Walker Lake Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Walker Lake Valley Geothermal Area Walker Lake Valley Geothermal Area (Redirected from Walker Lake Valley Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Walker Lake Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

442

On the Net Cyclonic Circulation in Large Stratified Lakes  

Science Conference Proceedings (OSTI)

This paper proposes a possible explanation for the mean cyclonic circulation in large stratified lakes The condition of no heat flux through the bottom boundary causes the isotherms to dip near the shores to intersect the sloping bottom ...

David J. Schwab; William P. O'Connor; George L. Mellor

1995-06-01T23:59:59.000Z

443

Lake Pend Oreille Predation Research, Annual Report 2002-2003.  

DOE Green Energy (OSTI)

During August 2002 we conducted a hydroacoustic survey to enumerate pelagic fish >406 mm in Lake Pend Oreille, Idaho. The purpose of this survey was to determine a collective lakewide biomass estimate of pelagic bull trout Salvelinus confluentus, rainbow trout Oncorhynchus mykiss, and lake trout S. namaycush and compare it to pelagic prey (kokanee salmon O. nerka) biomass. By developing hydroacoustic techniques to determine the pelagic predator to prey ratio, we can annually monitor their balance. Hydroacoustic surveys were also performed during December 2002 and February 2003 to investigate the effectiveness of autumn and winter surveys for pelagic predators. The inherent problem associated with hydroacoustic sampling is the inability to directly identify fish species. Therefore, we utilized sonic tracking techniques to describe rainbow trout and lake trout habitat use during our winter hydroacoustic survey to help identify fish targets from the hydroacoustic echograms. During August 2002 we estimated there were 39,044 pelagic fish >406 mm in Lake Pend Oreille (1.84 f/ha). Based on temperature and depth utilization, two distinct groups of pelagic fish >406 mm were located during August; one group was located between 10 and 35 m and the other between 40 and 70 m. The biomass for pelagic fish >406 mm during August 2002 was 73 t (metric ton). This would account for a ratio of 1 kg of pelagic predator for every 2.63 kg of kokanee prey, assuming all pelagic fish >406 mm are predators. During our late fall and winter hydroacoustic surveys, pelagic fish >406 mm were observed at lake depths between 20 and 90 m. During late fall and winter, we tracked three rainbow trout (168 habitat observations) and found that they mostly occupied pelagic areas and predominantly stayed within the top 10 m of the water column. During late fall (one lake trout) and winter (four lake trout), we found that lake trout (184 habitat observations) utilized benthic-nearshore areas 65% of the time and were found in the pelagic area only 35% of the time. Lake trout were found at depths between 10 and 90 m (average was approximately 30 m). Based on hydroacoustic surveys of pelagic fish >406 mm and habitat use of sonic tagged rainbow trout and lake trout during late fall and winter, we conclude that hydroacoustic sampling during those times would be ineffective at acquiring an accurate pelagic predator population estimate and recommend conducting abundance estimates for pelagic predators when Lake Pend Oreille is thermally stratified (i.e. August).

Bassista, Thomas

2004-02-01T23:59:59.000Z

444

Duck Valley Reservoirs Fish Stocking and Operation and Maintenance, 2005-2006 Annual Progress Report.  

DOE Green Energy (OSTI)

The Duck Valley Reservoirs Fish Stocking and Operations and Maintenance (DV Fisheries) project is an ongoing resident fish program designed to enhance both subsistence fishing, educational opportunities for Tribal members of the Shoshone-Paiute Tribes, and recreational fishing facilities for non-Tribal members. In addition to stocking rainbow trout (Oncorhynchus mykiss) in Mountain View, Lake Billy Shaw, and Sheep Creek Reservoirs, the program also intends to afford and maintain healthy aquatic conditions for fish growth and survival, to provide superior facilities with wilderness qualities to attract non-Tribal angler use, and to offer clear, consistent communication with the Tribal community about this project as well as outreach and education within the region and the local community. Tasks for this performance period are divided into operations and maintenance plus monitoring and evaluation. Operation and maintenance of the three reservoirs include fences, roads, dams and all reservoir structures, feeder canals, water troughs and stock ponds, educational signs, vehicles and equipment, and outhouses. Monitoring and evaluation activities included creel, gillnet, wildlife, and bird surveys, water quality and reservoir structures monitoring, native vegetation planting, photo point documentation, control of encroaching exotic vegetation, and community outreach and education. The three reservoirs are monitored in terms of water quality and fishery success. Sheep Creek Reservoir was the least productive as a result of high turbidity levels and constraining water quality parameters. Lake Billy Shaw trout were in poorer condition than in previous years potentially as a result of water quality or other factors. Mountain View Reservoir trout exhibit the best health of the three reservoirs and was the only reservoir to receive constant flows of water.

Sellman, Jake; Dykstra, Tim [Shoshone-Paiute Tribes

2009-05-11T23:59:59.000Z

445

Duck Valley Reservoirs Fish Stocking and Operation and Maintenance, 2006-2007 Annual Progress Report.  

DOE Green Energy (OSTI)

The Duck Valley Reservoirs Fish Stocking and Operations and Maintenance (DV Fisheries) project is an ongoing resident fish program that serves to partially mitigate the loss of anadromous fish that resulted from downstream construction of the hydropower system. The project's goals are to enhance subsistence fishing and educational opportunities for Tribal members of the Shoshone-Paiute Tribes and provide resident fishing opportunities for non-Tribal members. In addition to stocking rainbow trout (Oncorhynchus mykiss) in Mountain View, Lake Billy Shaw, and Sheep Creek Reservoirs, the program is also designed to maintain healthy aquatic conditions for fish growth and survival, to provide superior facilities with wilderness qualities to attract non-Tribal angler use, and to offer clear, consistent communication with the Tribal community about this project as well as outreach and education within the region and the local community. Tasks for this performance period are divided into operations and maintenance plus monitoring and evaluation. Operation and maintenance of the three reservoirs include fences, roads, dams and all reservoir structures, feeder canals, water troughs and stock ponds, educational signs, vehicles and equipment, and outhouses. Monitoring and evaluation activities included creel, gillnet, wildlife, and bird surveys, water quality and reservoir structures monitoring, native vegetation planting, photo point documentation, control of encroaching exotic vegetation, and community outreach and education. The three reservoirs are monitored in terms of water quality and fishery success. Sheep Creek Reservoir was very unproductive this year as a fishery. Fish morphometric and water quality data indicate that the turbidity is severely impacting trout survival. Lake Billy Shaw was very productive as a fishery and received good ratings from anglers. Mountain View was also productive and anglers reported a high number of quality sized fish. Water quality (specifically dissolved oxygen and temperature) is the main limiting factor in our fisheries.

Sellman, Jake; Dykstra, Tim [Shoshone-Paiute Tribes

2009-05-11T23:59:59.000Z

446

Core Hole Drilling And Testing At The Lake City, California Geothermal  

Open Energy Info (EERE)

Hole Drilling And Testing At The Lake City, California Geothermal Hole Drilling And Testing At The Lake City, California Geothermal Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Core Hole Drilling And Testing At The Lake City, California Geothermal Field Details Activities (4) Areas (1) Regions (0) Abstract: Unavailable Author(s): Dick Benoit, Joe Moore, Colin Goranson, David Blackwell Published: GRC, 2005 Document Number: Unavailable DOI: Unavailable Core Analysis At Lake City Hot Springs Area (Benoit Et Al., 2005) Core Holes At Lake City Hot Springs Area (Benoit Et Al., 2005) Flow Test At Lake City Hot Springs Area (Benoit Et Al., 2005) Static Temperature Survey At Lake City Hot Springs Area (Benoit Et Al., 2005) Lake City Hot Springs Geothermal Area Retrieved from "http://en.openei.org/w/index.php?title=Core_Hole_Drilling_And_Testing_At_The_Lake_City,_California_Geothermal_Field&oldid=389996

447

Geophysical study of the Clear Lake region, California  

DOE Green Energy (OSTI)

Results of geophysical studies in the Clear Lake region of California, north of San Francisco, have revealed a prominent, nearly circular negative gravity anomaly with an amplitude of more than 25 milligals (mgal) and an areal extent of approximately 250 square miles and, in addition, a number of smaller positive and negative anomalies. The major negative gravity anomaly is closely associated with the Clear Lake volcanic field and with an area characterized by hot springs and geothermal fields. However, the anomaly cannot be explained by mapped surface geologic features of the area. Aeromagnetic data in the Clear Lake region show no apparent correlation with the major negative gravity anomaly; the local magnetic field is affected principally by serpentine. An electrical resistivity low marks the central part of the gravity minimum, and a concentration of earthquake epicenters characterizes the Clear Lake volcanic field area. The primary cause of the major negative gravity anomaly is believed to be a hot intrusive mass, possibly a magma chamber, that may underlie the Clear Lake volcanic field and vicinity. This mass may serve as a source of heat for the geothermal phenomena in the area. Other smaller gravity anomalies in the Clear Lake region are apparently caused by near-surface geologic features, including relatively dense units of the Franciscan Formation and less dense Cenozoic sedimentary and volcanic rock units.

Chapman, R.H.

1975-01-01T23:59:59.000Z

448

Moses Lake Fishery Restoration Project; Factors Affecting the Recreational Fishery in Moses Lake Washington, Annual Report 2002-2003.  

DOE Green Energy (OSTI)

This annual report is a precursor to the final technical report we will be writing the next contract period. Consequently, this report, covering the period between September 27, 2002, and September 26, 2003, represents a progress report towards the final technical report we anticipate completing by September 26, 2004. Sample analysis and field work have progressed well and we anticipate no further delays. There are 4 objectives: (1) To quantify secondary production Moses Lake; (2) To quantify the influence of predation on target fishes in Moses Lake; (3) To quantify mortality of selected fished in Moses Lake; and (4) To assess effects of habitat changes from shoreline development and carp on the fish community in Moses Lake.

Burgess, Dave

2003-11-01T23:59:59.000Z

449

Over-Lake Meteorology and Estimated Bulk Heat Exchange of Great Slave Lake in 1998 and 1999  

Science Conference Proceedings (OSTI)

Meteorological and thermistor moorings were deployed in Great Slave Lake during the Canadian Global Energy and Water Cycle Experiment (GEWEX) Enhanced Study (CAGES) in 1998 and 1999. Large-scale meteorology included influence from a record ENSO ...

William M. Schertzer; Wayne R. Rouse; Peter D. Blanken; Anne E. Walker

2003-08-01T23:59:59.000Z

450

Paleo-Storminess in the Southern Lake Michigan Basin, as Recorded by Eolian Sand Downwind of Dunes.  

E-Print Network (OSTI)

??Eolian sand deposited in lakes downwind of coastal sand dunes record a history of paleoclimatic fluctuations. Studies from embayed lakes along the east-central coast ofů (more)

Hanes, Barbara E.

2010-01-01T23:59:59.000Z

451

Great Lakes WIND Network | Open Energy Information  

Open Energy Info (EERE)

WIND Network WIND Network Jump to: navigation, search Name Great Lakes WIND Network Address 4855 W 130th Place Cleveland, Ohio Zip 44135 Sector Wind energy Product Business and legal services;Consulting; Energy provider: energy transmission and distribution; Investment/finances;Maintenance and repair;Manufacturing; Research and development; Trainining and education Phone number 215-588-1440 Website http://www.glwn.org Coordinates 41.4228056┬░, -81.7801592┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.4228056,"lon":-81.7801592,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

452

Seismic imaging of the Medicine Lake Caldera  

DOE Green Energy (OSTI)

Medicine Lake Volcano, a broad shield volcano about 50 km east of Mount Shasta in northern California, produced rhylotic eruptions as recently as 400 years ago. Because of this recent activity it is of considerable interest to producers of geothermal energy. The USGS and LLNL conducted an active seismic experiment designed to explore the area beneath and around the caldera. This experiment had two purposes: To produce high-quality velocity and attenuation images of the young magma body presumed to be the source for the young volcanic features, and to collect a dataset that can be used to develop and test seismic imaging methods that may be useful for understanding other geothermal systems. Eight large explosions were detonated in a 50 km radius circle around the volcano, a distance chosen to produce strong upward traveling signals through the area of interest. The data were inverted using Aki's method to produce three-dimensional velocity and attenuation images of the sub-surface. Preliminary interpretation shows low velocity and attenuation on the flanks of the volcano, and coincident high attenuation values and low velocities (-20%) from 3 to 5 km beneath the center of the caldera. This zone may be a region of partial melt which fed the youngest eruptions.

Zucca, J.J.; Evans, J.R.; Kasameyer, P.W.

1987-04-01T23:59:59.000Z

453

White Sturgeon Management Plan in the Snake River between Lower Granite and Hells Canyon Dams; Nez Perce Tribe, 1997-2005 Final Report.  

DOE Green Energy (OSTI)

White sturgeon in the Hells Canyon reach (HCR) of the Snake River are of cultural importance to the Nez Perce Tribe. However, subsistence and ceremonial fishing opportunities have been severely limited as a result of low numbers of white sturgeon in the HCR. Hydrosystem development in the Columbia River Basin has depressed numbers and productivity of white sturgeon in the HCR by isolating fish in impounded reaches of the basin, restricting access to optimal rearing habitats, reducing the anadromous forage base, and modifying early life-history habitats. Consequently, a proactive management plan is needed to mitigate for the loss of white sturgeon production in the HCR, and to identify and implement feasible measures that will restore and rebuild the white sturgeon population to a level that sustains viability and can support an annual harvest. This comprehensive and adaptive management plan describes the goals, objectives, strategies, actions, and expected evaluative timeframes for restoring the white sturgeon population in the HCR. The goal of this plan, which is to maintain a viable, persistent population that can support a sustainable fishery, is supported by the following objectives: (1) a natural, stable age structure comprising both juveniles and a broad spectrum of spawning age-classes; (2) stable or increasing numbers of both juveniles and adults; (3) consistent levels of average recruitment to ensure future contribution to reproductive potential; (4) stable genetic diversity comparable to current levels; (5) a minimum level of abundance of 2,500 adults to minimize extinction risk; and (6) provision of an annual sustainable harvest of 5 kg/ha. To achieve management objectives, potential mitigative actions were developed by a Biological Risk Assessment Team (BRAT). Identified strategies and actions included enhancing growth and survival rates by restoring anadromous fish runs and increasing passage opportunities for white sturgeon, reducing mortality rates of early life stages by modifying flows in the HCR, reducing mortality imposed by the catch and release fishery, augmenting natural production through translocation or hatchery releases, and assessing detrimental effects of contaminants on reproductive potential. These proposed actions were evaluated by assessing their relative potential to affect population growth rate and by determining the feasibility of their execution, including a realistic timeframe (short-term, mid-term, long-term) for their implementation and evaluation. A multi-pronged approach for management was decided upon whereby various actions will be implemented and evaluated under different timeframes. Priority management actions include: Action I- Produce juvenile white sturgeon in a hatchery and release into the management area; Action G- Collect juvenile white sturgeon from other populations in the Snake or Columbia rivers and release them into the management area; and Action D- Restore white sturgeon passage upriver and downriver at Lower Snake and Idaho Power dams. An integral part of this approach is the continual monitoring of performance measures to assess the progressive response of the population to implemented actions, to evaluate the actions efficacy toward achieving objectives, and to refine and redirect strategies if warranted.

Nez Perce Tribe Resources Management Staff, (Nez Perce Tribe, Department of Fisheries Resource Management, Lapwai, ID)

2005-09-01T23:59:59.000Z

454

Simulated Physical Mechanisms Associated with Climate Variability over Lake Victoria Basin in East Africa  

Science Conference Proceedings (OSTI)

A fully coupled regional climate, 3D lake modeling system is used to investigate the physical mechanisms associated with the multiscale variability of the Lake Victoria basin climate. To examine the relative influence of different processes on ...

Richard O. Anyah; Fredrick H. M. Semazzi; Lian Xie

2006-12-01T23:59:59.000Z

455

Modeling the Effects of Lakes and Wetlands on the Water Balance of Arctic Environments  

Science Conference Proceedings (OSTI)

Lakes, ponds, and wetlands are common features in many low-gradient arctic watersheds. Storage of snowmelt runoff in lakes and wetlands exerts a strong influence on both the interannual and interseasonal variability of northern rivers. This ...

Laura C. Bowling; Dennis P. Lettenmaier

2010-04-01T23:59:59.000Z

456

Comparison between Two Extreme NAO Winters and Consequences on the Thermal Regime of Lake Vendyurskoe, Karelia  

Science Conference Proceedings (OSTI)

For 10 consecutive winters, measurements were carried out in Lake Vendyurskoe, Karelia, Russia. The aim of these measurements was to investigate some of the physical processes in this small shallow lake during its ice-covered period. Detailed ...

Osama Ali Maher; Cintia Bertacchi Uvo; Lars Bengtsson

2005-10-01T23:59:59.000Z

457

Lake-Effect Snowstorms in Northern Utah and Western New York with and without Lightning  

Science Conference Proceedings (OSTI)

Lake-effect snowstorms in northern Utah and western New York with and without lightning/thunder are examined. Lake-effect snowstorms with lig