National Library of Energy BETA

Sample records for lake field cameron

  1. Recovery Act: Demonstrating The Commercial Feasibility Of Geopressured-Geothermal Power Generation At Sweet Lake Field, Cameron Parish, Louisiana

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Service of Colorado Ponnequin Wind Farm Geothermal Technologies Program 2010 Peer Review Recovery Act: Demonstrating The Commercial Feasibility Of Geopressured-Geothermal Power Generation At Sweet Lake Field, Cameron Parish, Louisiana PI: Steven M. Jordan Presenter: Phillip A. Gayle, Jr. Louisiana Tank, Inc. May 19, 2010 This presentation does not contain any proprietary confidential, or otherwise restricted information. Insert photo of your choice Company Background, Experience & Skills:

  2. FINAL TECHNICAL REPORT, U.S. Department of Energy: Award No. DE-EE0002855 "Demonstrating the Commercial Feasibility of Geopressured-Geothermal Power Development at Sweet Lake Field - Cameron Parish, Louisiana"

    SciTech Connect (OSTI)

    Gayle, Phillip A., Jr.

    2012-01-13

    The goal of the project was to demonstrate the commercial feasibility of geopressured-geothermal power development by exploiting the extraordinarily high pressured hot brines know to exist at depth near the Sweet Lake oil and gas field in Cameron Parish, Louisiana. The existence of a geopressured-geothermal system at Sweet Lake was confirmed in the 1970's and 1980's as part of DOE's Geopressured-Geothermal Program. That program showed that the energy prices at the time could not support commercial production of the resource. Increased electricity prices and technological advancements over the last two decades, combined with the current national support for developing clean, renewable energy and the job creation it would entail, provided the justification necessary to reevaluate the commercial feasibility of power generation from this vast resource.

  3. Cameron Terminal | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cameron Terminal Cameron Terminal Cameron LNG Terminal Long-Term Contract Information and Registrations at U.S. LNG Export Facilities Filing Date Type (1) Description 06/10/13 C (LNG) Cameron LNG, LLC, FE Docket No. 11-145-LNG Long-Term Contract Summaries R = Registration of company; C (LNG) = Contract involving LNG; C (NG)= Contract involving natural gas supply More Documents & Publications Dominion Cove LNG

  4. EIS-0488: Cameron Liquefaction Project, Cameron Parish, Louisiana

    Broader source: Energy.gov [DOE]

    The Federal Energy Regulatory Commission (FERC) prepared an EIS for a proposal to expand the existing Cameron Pipeline by 21 miles (from Calcasieu to Beauregard Parishes, Louisiana, with modifications in Cameron Parish), and expand an existing liquefied natural gas (LNG) import terminal in Cameron Parish, Louisiana, to enable the terminal to liquefy and export LNG. DOE, a cooperating agency, adopted the EIS. DOE, Office of Fossil Energy, has an obligation under Section 3 of the Natural Gas Act to authorize the import and export of natural gas, including LNG, unless it finds that the import or export is not consistent with the public interest. Additional information is available at http://energy.gov/fe/services/natural-gas-regulation.

  5. Cameron LNG LLC - 14-001-CIC | Department of Energy

    Energy Savers [EERE]

    Cameron LNG LLC - 14-001-CIC Cameron LNG LLC - 14-001-CIC Application of Cameron LNG, LLC to Transfer Control of Long-term Authorization to Export LNG to Free Trade Agreement...

  6. Cameron County, Pennsylvania: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Cameron County, Pennsylvania: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.4261564, -78.1564432 Show Map Loading map......

  7. Energy Department Authorizes Cameron LNG and Carib Energy to...

    Broader source: Energy.gov (indexed) [DOE]

    the final authorization to Cameron LNG, LLC (Cameron) and Carib Energy LLC (Carib) to export domestically produced liquefied natural gas (LNG) to countries that do not have a ...

  8. Energy Department Conditionally Authorizes Cameron LNG to Export...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cameron LNG to Export Liquefied Natural Gas Energy Department Conditionally Authorizes Cameron LNG to Export Liquefied Natural Gas February 11, 2014 - 11:15am Addthis WASHINGTON -...

  9. ORDER NO. 3391: CAMERON LNG | Department of Energy

    Energy Savers [EERE]

    91: CAMERON LNG ORDER NO. 3391: CAMERON LNG ORDER CONDITIONALLY GRANTING LONG-TERM MULTI-CONTRACT AUTHORIZATION TO EXPORT LIQUEFIED NATURAL GAS BY VESSEL FROM THE CAMERON LNG TERMINAL IN CAMERON PARISH, LOUISIANA, TO NON-FREE TRADE AGREEMENT NATIONS Based on a review of the complete record and for the reasons set forth below, DOE/FE has concluded that the opponents of the Cameron Application have not demonstrated that the requested authorization will be inconsistent with the public interest and

  10. Field Mapping At Fish Lake Valley Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Fish Lake Valley Area (DOE GTP) Exploration Activity Details Location Fish Lake Valley Area...

  11. Cameron LNG, LLC- FE Dkt. No. 15-90-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an Application filed May 28, 2015, by Cameron LNG, LLC (Cameron), seeking a long-term multi-contract authorization to export domestically...

  12. EIS-0510: Calcasieu Pass Project, Cameron Parish, Louisiana | Department of

    Office of Environmental Management (EM)

    Energy 0: Calcasieu Pass Project, Cameron Parish, Louisiana EIS-0510: Calcasieu Pass Project, Cameron Parish, Louisiana SUMMARY The Federal Energy Regulatory Commission (FERC) is preparing an EIS that analyzes the potential environmental impacts of the Calcasieu Pass Project, a proposed liquefied natural gas (LNG) export terminal in Cameron Parish, Louisiana. DOE is a cooperating agency in preparing the EIS. DOE, Office of Fossil Energy, has an obligation under Section 3 of the Natural Gas

  13. EIS-0510: Calcasieu Pass Project, Cameron Parish, Louisiana ...

    Energy Savers [EERE]

    environmental impacts of the Calcasieu Pass Project, a proposed liquefied natural gas (LNG) export terminal in Cameron Parish, Louisiana. DOE is a cooperating agency in preparing...

  14. Cameron, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":"" Hide Map Cameron is a town in Steuben County, New York.1 References US Census Bureau...

  15. Cameron LNG LLC Final Order | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cameron LNG LLC Final Order Cameron LNG LLC Final Order FE Dkt. No. 11-162-LNG - Order 3391-A The Final Opinion and Order Granting Long-term Multi-contract Authorization to Export Liquefied Natural Gas (LNG) by Vessel from the Cameron LNG Terminal in Cameron Parish, Louisiana, to Non-Free Trade Agreement Nations can be found in the PDF below. PDF icon 1. 09/10/14 - Order 3391-A More Documents & Publications Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC - FE Dkt. No. 10-161-LNG

  16. Cameron County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Island, Texas South Point, Texas Tierra Bonita, Texas Villa Pancho, Texas Villa del Sol, Texas Yznaga, Texas Retrieved from "http:en.openei.orgwindex.php?titleCameronCou...

  17. Recovery Act: Demonstrating The Commercial Feasibility OfGeopressured...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lake Field, Cameron Parish, Louisiana Recovery Act: Demonstrating The Commercial Feasibility Of Geopressured-Geothermal Power Generation At Sweet Lake Field, Cameron Parish, ...

  18. Field Mapping At Fish Lake Valley Area (Deymonaz, Et Al., 2008...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Exploration Activity Details Location Fish...

  19. Cameron LNG LLC - 14-001-CIC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cameron LNG LLC - 14-001-CIC Cameron LNG LLC - 14-001-CIC Application of Cameron LNG, LLC to Transfer Control of Long-term Authorization to Export LNG to Free Trade Agreement Nations and Conditional Long-term Authorization to Export LNG to Non-free Trade Agreement Nations. The Comment Period for this Docket is now closed. Please follow the instructions in the Federal Register Notice of Application to file a protest, comments or a Motion to Intervene or Notice of Intervention. PDF icon

  20. Cameron LNG, LLC- FE Dkt. No. 15-67-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an Application filed on April 3, 2015, by Cameron LNG, LLC seeking long-term, multi-contract authorization to export domestically produced...

  1. Cameron Parish, Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Cameron Parish is a county in Louisiana. Its FIPS County Code is 023. It is classified as...

  2. EIS-0520: Texas LNG Project; Cameron County, Texas | Department...

    Energy Savers [EERE]

    proposal to construct and operate a natural gas liquefaction and export terminal at the Port of Brownsville Ship Channel in Cameron County, Texas. DOE, Office of Fossil Energy, has...

  3. Cameron, North Carolina: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Map This article is a stub. You can help OpenEI by expanding it. Cameron is a town in Moore County, North Carolina. It falls under North Carolina's 6th congressional...

  4. City of Cameron, Missouri (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    index.aspx? Facebook: https:www.facebook.compagesCity-of-Cameron-MO179143034398?refsearch&sid17003869.3524488275..1 Outage Hotline: (816) 632-2177 References: EIA Form...

  5. EIS-0518: Annova LNG Brownsville Project; Cameron County, Texas |

    Office of Environmental Management (EM)

    Department of Energy 18: Annova LNG Brownsville Project; Cameron County, Texas EIS-0518: Annova LNG Brownsville Project; Cameron County, Texas Summary The Federal Energy Regulatory Commission (FERC), with DOE as a cooperating agency, is preparing an EIS that analyzes the potential environmental impacts of a proposal to construct and operate a liquefied natural gas (LNG) production, storage, and export facility on the southern bank of the Brownsville Ship Channel. DOE, Office of Fossil

  6. SEMI-ANNUAL REPORTS FOR CAMERON LNG LLC - DKT. NO. 11-162-LNG...

    Broader source: Energy.gov (indexed) [DOE]

    4 April 2015 October 2015 More Documents & Publications SEMI ANNUAL REPORTS - CAMERON LNG, LLC - FE DKT. NO. 14-204-LNG - ORDER NO. 3620 Semi-annual Reports for Cameron LNG LLC -...

  7. SEMI-ANNUAL REPORTS FOR Cameron LNG, LLC - FE Dkt. No. 15-36...

    Energy Savers [EERE]

    Cameron LNG, LLC - FE Dkt. No. 15-36-LNG - ORDER 3680 SEMI-ANNUAL REPORTS FOR Cameron LNG, LLC - FE Dkt. No. 15-36-LNG - ORDER 3680 NO REPORTS RECEIVED More Documents &...

  8. EA-1983: Sabine Pass Liquefaction Expansion Project, Cameron Parish, Louisiana

    Broader source: Energy.gov [DOE]

    The Federal Energy Regulatory Commission (FERC) is preparing an EA for a proposal to expand the existing Sabine Pass Liquefied Natural Gas Terminal in Cameron Parish, and to extend an associated existing pipeline system in Cameron, Calcasieu, Beauregard, Allen, and Evangeline Parishes in Louisiana. DOE is a cooperating agency in preparing the EA. DOE, Office of Fossil Energy, has an obligation under Section 3 of the Natural Gas Act to authorize the import and export of natural gas, including LNG, unless it finds that the import or export is not consistent with the public interest.

  9. SEMI ANNUAL REPORTS - CAMERON LNG, LLC - FE DKT. NO. 14-204-LNG - ORDER NO.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3620 | Department of Energy SEMI ANNUAL REPORTS - CAMERON LNG, LLC - FE DKT. NO. 14-204-LNG - ORDER NO. 3620 SEMI ANNUAL REPORTS - CAMERON LNG, LLC - FE DKT. NO. 14-204-LNG - ORDER NO. 3620 PDF icon October 2015 More Documents & Publications SEMI-ANNUAL REPORTS FOR Cameron LNG, LLC - FE Dkt. No. 15-36-LNG - ORDER 3680 SEMI-ANNUAL REPORTS FOR CAMERON LNG LLC - DKT. NO. 11-162-LNG - ORDER 3391-A Semi-annual Reports for Cameron LNG LLC - Dk. No. 11-145-LNG - Order 3059

  10. SEMI-ANNUAL REPORTS FOR CAMERON LNG LLC - DKT. NO. 11-162-LNG - ORDER

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3391-A | Department of Energy CAMERON LNG LLC - DKT. NO. 11-162-LNG - ORDER 3391-A SEMI-ANNUAL REPORTS FOR CAMERON LNG LLC - DKT. NO. 11-162-LNG - ORDER 3391-A PDF icon October 2014 PDF icon April 2015 PDF icon October 2015 More Documents & Publications SEMI-ANNUAL REPORTS FOR Cameron LNG, LLC - FE Dkt. No. 15-36-LNG - ORDER 3680 SEMI ANNUAL REPORTS - CAMERON LNG, LLC - FE DKT. NO. 14-204-LNG - ORDER NO. 3620 Semi-annual Reports for Cameron LNG LLC - Dk. No. 11-145-LNG - Order 3059

  11. SEMI-ANNUAL REPORTS FOR Cameron LNG, LLC - FE Dkt. No. 15-36-LNG - ORDER

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3680 | Department of Energy Cameron LNG, LLC - FE Dkt. No. 15-36-LNG - ORDER 3680 SEMI-ANNUAL REPORTS FOR Cameron LNG, LLC - FE Dkt. No. 15-36-LNG - ORDER 3680 PDF icon October 2015 More Documents & Publications SEMI ANNUAL REPORTS - CAMERON LNG, LLC - FE DKT. NO. 14-204-LNG - ORDER NO. 3620 SEMI-ANNUAL REPORTS FOR CAMERON LNG LLC - DKT. NO. 11-162-LNG - ORDER 3391-A Semi-annual Reports for Cameron LNG LLC - Dk. No. 11-145-LNG - Order 3059

  12. From: Cameron Foreman To: Congestion Study Comments Subject:

    Office of Environmental Management (EM)

    Cameron Foreman To: Congestion Study Comments Subject: Nietc Date: Tuesday, September 23, 2014 10:31:04 AM I am opposed to the establishment of National Interest Energy Transmission Corridors (NIETC's) for the following reasons. First, the easements place an undo burden on landowners on and near the transmission lines. The compensation cannot begin to cover the all of the losses, tangible and intangible that landowners would suffer. Second, I believe that condemning private property for

  13. EIS-0520: Texas LNG Project; Cameron County, Texas | Department of Energy

    Office of Environmental Management (EM)

    20: Texas LNG Project; Cameron County, Texas EIS-0520: Texas LNG Project; Cameron County, Texas Summary The Federal Energy Regulatory Commission (FERC), with DOE as a cooperating agency, is preparing an EIS that analyzes the potential environmental impacts of a proposal to construct and operate a natural gas liquefaction and export terminal at the Port of Brownsville Ship Channel in Cameron County, Texas. DOE, Office of Fossil Energy, has an obligation under Section 3 of the Natural Gas Act to

  14. 10 CFR 850, Request for Information- Docket Number: HS-RM-10-CBDPP- Cameron Anderson

    Broader source: Energy.gov [DOE]

    Commenter: Cameron Anderson 10 CFR 850 - Request for Information Docket Number: HS-RM-10-CBDPP Comment Close Date: 2/22/2011

  15. Semi-annual Reports for Cameron LNG LLC - Dk. No. 11-145-LNG - Order 3059 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Semi-annual Reports for Cameron LNG LLC - Dk. No. 11-145-LNG - Order 3059 Semi-annual Reports for Cameron LNG LLC - Dk. No. 11-145-LNG - Order 3059 PDF icon April 2012 PDF icon October 2012 PDF icon April 2013 PDF icon April 2014 PDF icon October 2013 PDF icon October 2014 PDF icon April 2015 PDF icon October 2015 More Documents & Publications SEMI-ANNUAL REPORTS FOR CAMERON LNG LLC - DKT. NO. 11-162-LNG - ORDER 3391-A SEMI-ANNUAL REPORTS FOR Cameron LNG, LLC - FE

  16. CAMERON LNG, LLC - FE DKT. NO. 15-36-LNG (FTA) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CAMERON LNG, LLC - FE DKT. NO. 15-36-LNG (FTA) CAMERON LNG, LLC - FE DKT. NO. 15-36-LNG (FTA) The Office of Fossil Energy gives notice of receipt of an Application filed February 23, 2015, by Cameron LNG, LLC (Cameron), seeking a long-term multi-contract authorization to export domestically produced liquefied natural gas (LNG) up to the equivalent of 515 billion cubic feet of natural gas per year to Free Trade Agreement (FTA) countries. Authorization is for a 20-year period commencing on the

  17. Energy Department Authorizes Cameron LNG and Carib Energy to Export Liquefied Natural Gas

    Broader source: Energy.gov [DOE]

    The Energy Department announced today that it has issued the final authorization to Cameron LNG, LLC (Cameron) and Carib Energy LLC (Carib) to export domestically produced liquefied natural gas (LNG) to countries that do not have a Free Trade Agreement (FTA) with the United States.

  18. EA-1845: Sabine Pass Liquefaction Project, Cameron County, LA

    Broader source: Energy.gov [DOE]

    DOE participated as a cooperating agency with the Federal Energy Regulatory Commission (FERC) in preparing an EA for the Sabine Pass Liquefaction Project to analyze the potential environmental impacts associated with applications submitted by Sabine Pass Liquefaction, LLC, and Sabine Pass LNG, L.P., to FERC and to DOE’s Office of Fossil Energy (FE) seeking authorization to site, construct, and operate liquefaction and export facilities at the existing Sabine Pass LNG Terminal in Cameron Parish, Louisiana. DOE adopted FERC’s EA and issued a finding of no significant impact on August 7, 2012.

  19. Cameron, LA Liquefied Natural Gas Exports to Japan (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Japan (Million Cubic Feet) Cameron, LA Liquefied Natural Gas Exports to Japan (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,741 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 02/29/2016 Next Release Date: 03/31/2016 Referring Pages: U.S. Liquefied Natural Gas Exports by Point of Exit Cameron, LA Liquefied Natural Gas Exports to Japan

  20. Cameron, LA Liquefied Natural Gas Exports to Spain (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Spain (Million Cubic Feet) Cameron, LA Liquefied Natural Gas Exports to Spain (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,911 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 02/29/2016 Next Release Date: 03/31/2016 Referring Pages: U.S. Liquefied Natural Gas Exports by Point of Exit Cameron, LA Liquefied Natural Gas Exports to Spain

  1. Cameron, LA Liquefied Natural Gas Imports from Egypt (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Egypt (Million Cubic Feet) Cameron, LA Liquefied Natural Gas Imports from Egypt (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,971 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Cameron, LA LNG Imports from Egypt

  2. Cameron.Hardy@rl.doe.gov Hanford Tour Registration Begins March 9

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cameron Hardy, DOE, (509) 376-5365 March 2, 2015 Cameron.Hardy@rl.doe.gov Hanford Tour Registration Begins March 9 Visitors Can Register for Choice of Tours Focused on Cleanup or History RICHLAND, Wash. - The U.S. Department of Energy (DOE) will open online registration for both of its 2015 public tour programs on March 9 at 9 a.m. through the Hanford Site's webpage at www.hanford.gov. The Hanford Site public tours focus on environmental cleanup, while the B Reactor tours focus on Hanford's role

  3. Cameron, LA Liquefied Natural Gas Exports Price (Dollars per Thousand Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Cameron, LA Liquefied Natural Gas Exports Price (Dollars per Thousand Cubic Feet) Cameron, LA Liquefied Natural Gas Exports Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 7.31 -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 02/29/2016 Next Release Date: 03/31/2016 Referring Pages: U.S. Price of Liquefied Natural

  4. Cameron, LA Liquefied Natural Gas Imports from Peru (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Peru (Million Cubic Feet) Cameron, LA Liquefied Natural Gas Imports from Peru (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 3,477 3,368 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Cameron, LA LNG Imports from Peru

  5. Environmental assessment: geothermal energy geopressure subprogram. DOE Sweet Lake No. 1, Cameron Parish, Louisiana

    SciTech Connect (OSTI)

    Not Available

    1980-02-01

    The following are described: the proposed action; existing environment; probable impacts, direct and indirect; probable cumulative and long-term environmental impacts; accidents; coordination with federal, state, and local agencies; and alternatives. (MHR)

  6. Monitoring the Effect of Injection of Fluids from the Lake County Pipeline on Seismicity at The Geysers, California Geothermal Field.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Monitoring the Effect of Injection of Fluids from the Lake County Pipeline on Seismicity at The Geysers, California Geothermal Field Ernest L. Majer LBNL Seismicity and Seismic May 19, 2010 This presentation does not contain any proprietary confidential, or otherwise restricted information. U13 U16 SONOMA U18 U20 CALISTOGA W FORD FLAT U14 U5/6 U7/8 U11 U17 U12 BEAR CN 0 1.0 2.0 MILES Hi Pt Tank Terminal Tank NON-SRGRP INJECTION WELLHEAD SEGEP PIPELINE SRGRP PIPELINE SRGRP INJECTION WELLHEAD

  7. Recovery Act: Demonstrating The Commercial Feasibility Of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geopressured-Geothermal Power Generation At Sweet Lake Field, Cameron Parish, Louisiana | Department of Energy Recovery Act: Demonstrating The Commercial Feasibility Of Geopressured-Geothermal Power Generation At Sweet Lake Field, Cameron Parish, Louisiana Recovery Act: Demonstrating The Commercial Feasibility Of Geopressured-Geothermal Power Generation At Sweet Lake Field, Cameron Parish, Louisiana Project objective: Extensive conceptual and numerical modeling of the reservoir to quantify

  8. Price of Cameron, LA Natural Gas LNG Imports (Nominal Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) (Nominal Dollars per Thousand Cubic Feet) Price of Cameron, LA Natural Gas LNG Imports (Nominal Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- -- 4.78 2010's 5.78 8.13 10.54 -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: U.S. Price of Liquefied Natural Gas

  9. Price of Cameron, LA Natural Gas LNG Imports from Qatar (Nominal Dollars

    U.S. Energy Information Administration (EIA) Indexed Site

    per Thousand Cubic Feet) from Qatar (Nominal Dollars per Thousand Cubic Feet) Price of Cameron, LA Natural Gas LNG Imports from Qatar (Nominal Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- -- 4.51 2010's 5.97 -- -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: U.S.

  10. Cameron, LA Natural Gas Liquefied Natural Gas Imports from Trinidad and

    U.S. Energy Information Administration (EIA) Indexed Site

    Tobago (Million Cubic Feet) Natural Gas Liquefied Natural Gas Imports from Trinidad and Tobago (Million Cubic Feet) Cameron, LA Natural Gas Liquefied Natural Gas Imports from Trinidad and Tobago (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,845 2012 2,825 2,891 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: U.S.

  11. Cameron LNG, LLC- FE Dkt. No. 16-34-LNG- Application for Blanket Authority to Export LNG on a Short-Term Basis to FTA and NFTA Countries

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy (FE) of the Department of Energy (DOE) gives notice of receipt of an application (Application), filed on February 19, 2016, by  Cameron LNG, LLC, seeking blanket...

  12. Andrew Lake

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lake, Martin Swany, Brian Tierney, Matt Zekauskas, "perfSONAR: On-board Diagnostics for Big Data", 1st Workshop on Big Data and Science: Infrastructure and Services Co-located...

  13. Great Lakes

    Office of Environmental Management (EM)

    10 Executive Order 13547-Stewardship of the Ocean, Our Coasts, and the Great Lakes July 19, 2010 By the authority vested in me as President by the Constitution and the laws of the United States of America, it is hereby ordered as follows: Section 1. Purpose. The ocean, our coasts, and the Great Lakes provide jobs, food, energy resources, ecological services, recreation, and tourism opportunities, and play critical roles in our Nation's transportation, economy, and trade, as well as the global

  14. CONTINUITY AND

    Office of Scientific and Technical Information (OSTI)

    ... V. A., Gordon, G. E., Johnson, J., and Lee, C., 1972, Southwest Lake Arthur field, Cameron Parish, Louisiana, in King, R. E., ed., Stratigraphic oil and gas fields-classifi- ...

  15. Red Lake Weatherization Project

    Energy Savers [EERE]

    REVIEW RED LAKE WEATHERIZATION PROJECT BERT VAN WERT ENERGY ACTIVITIES COORDINATOR Project Overview To develop the capacity to conduct energy audits Implement energy efficiency measures into Tribal homes Develop a Tribally administered Energy Efficiency Program and business PROJECT LOCATION Our project is located at Red Lake Housing Authority Red Lake Band of Chippewa Indians Red Lake , MN Red Lake Band of Chippewas Area overview Reservation (Diminished Lands) and Surroundings Red Lake Band of

  16. NETL F 451.1/1-1, Categorical Exclusion Designation Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3919 Univ of Texas-Austin Cameron, TX Field Site: Schlumberger Cameron Well Test Site - Cameron, TX; Previously approved: Ohio State U - Columbus OH; Columbia U (Lamont Doherty...

  17. field

    National Nuclear Security Administration (NNSA)

    09%2A en Ten-Year Site Plans (TYSP) http:www.nnsa.energy.govaboutusouroperationsinfopsinfopstysp

    field field-type-text field-field-page-name">
  18. field

    National Nuclear Security Administration (NNSA)

    09%2A en Ten-Year Site Plans (TYSP) http:nnsa.energy.govaboutusouroperationsinfopsinfopstysp

    field field-type-text field-field-page-name">
  19. Lake Charles CCS Project

    SciTech Connect (OSTI)

    Leib, Thomas; Cole, Dan

    2015-06-30

    In late September 2014 development of the Lake Charles Clean Energy (LCCE) Plant was abandoned resulting in termination of Lake Charles Carbon Capture and Sequestration (CCS) Project which was a subset the LCCE Plant. As a result, the project was only funded through Phase 2A (Design) and did not enter Phase 2B (Construction) or Phase 2C (Operations). This report was prepared relying on information prepared and provided by engineering companies which were engaged by Leucadia Energy, LLC to prepare or review Front End Engineering and Design (FEED) for the Lake Charles Clean Energy Project, which includes the Carbon Capture and Sequestration (CCS) Project in Lake Charles, Louisiana. The Lake Charles Carbon Capture and Sequestration (CCS) Project was to be a large-scale industrial CCS project intended to demonstrate advanced technologies that capture and sequester carbon dioxide (CO2) emissions from industrial sources into underground formations. The Scope of work was divided into two discrete sections; 1) Capture and Compression prepared by the Recipient Leucadia Energy, LLC, and 2) Transport and Sequestration prepared by sub-Recipient Denbury Onshore, LLC. Capture and Compression-The Lake Charles CCS Project Final Technical Report describes the systems and equipment that would be necessary to capture CO2 generated in a large industrial gasification process and sequester the CO2 into underground formations. The purpose of each system is defined along with a description of its equipment and operation. Criteria for selection of major equipment are provided and ancillary utilities necessary for safe and reliable operation in compliance with environmental regulations are described. Construction considerations are described including a general arrangement of the CCS process units within the overall gasification project. A cost estimate is provided, delineated by system area with cost breakdown showing equipment, piping and materials, construction labor, engineering, and other costs. The CCS Project Final Technical Report is based on a Front End Engineering and Design (FEED) study prepared by SK E&C, completed in [June] 2014. Subsequently, Fluor Enterprises completed a FEED validation study in mid-September 2014. The design analyses indicated that the FEED package was sufficient and as expected. However, Fluor considered the construction risk based on a stick-build approach to be unacceptable, but construction risk would be substantially mitigated through utilization of modular construction where site labor and schedule uncertainty is minimized. Fluor’s estimate of the overall EPC project cost utilizing the revised construction plan was comparable to SKE&C’s value after reflecting Fluor’s assessment of project scope and risk characteristic. Development was halted upon conclusion of Phase 2A FEED and the project was not constructed.Transport and Sequestration – The overall objective of the pipeline project was to construct a pipeline to transport captured CO2 from the Lake Charles Clean Energy project to the existing Denbury Green Line and then to the Hastings Field in Southeast Texas to demonstrate effective geologic sequestration of captured CO2 through commercial EOR operations. The overall objective of the MVA portion of the project was to demonstrate effective geologic sequestration of captured CO2 through commercial Enhanced Oil Recovery (EOR) operations in order to evaluate costs, operational processes and technical performance. The DOE target for the project was to capture and implement a research MVA program to demonstrate the sequestration through EOR of approximately one million tons of CO2 per year as an integral component of commercial operations.

  20. Lakes_Elec_You

    Office of Environmental Management (EM)

    Lakes, Electricity & You Why It's So Important That Lakes Are Used To Generate Electricity Why We Can Thank Our Lakes For Electricity Because lakes were made to generate electricity. Back in the mid-1940s, Congress recognized the need for better flood control and navigation. To pay for these services, Congress passed laws that started the building of federal hydroelectric dams, and sold the power from the dams under long-term contracts. Today these dams provide efficient, environmentally

  1. Lake Granbury and Lake Whitney Assessment Initiative Final Scientific/Technical Report Summary

    SciTech Connect (OSTI)

    Harris, B.L.; Roelke, Daniel; Brooks, Bryan; Grover, James

    2010-10-11

    A team of Texas AgriLife Research, Baylor University and University of Texas at Arlington researchers studied the biology and ecology of Prymnesium parvum (golden algae) in Texas lakes using a three-fold approach that involved system-wide monitoring, experimentation at the microcosm and mesocosm scales, and mathematical modeling. The following are conclusions, to date, regarding this organism??s ecology and potential strategies for mitigation of blooms by this organism. In-lake monitoring revealed that golden algae are present throughout the year, even in lakes where blooms do not occur. Compilation of our field monitoring data with data collected by Texas Parks and Wildlife and Brazos River Authority (a period spanning a decade) revealed that inflow and salinity variables affect bloom formations. Thresholds for algae populations vary per lake, likely due to adaptations to local conditions, and also to variations in lake-basin morphometry, especially the presence of coves that may serve as hydraulic storage zones for P. parvum populations. More specifically, our in-lake monitoring showed that the highly toxic bloom that occurred in Lake Granbury in the winter of 2006/2007 was eliminated by increased river inflow events. The bloom was flushed from the system. The lower salinities that resulted contributed to golden algae not blooming in the following years. However, flushing is not an absolute requirement for bloom termination. Laboratory experiments have shown that growth of golden algae can occur at salinities ~1-2 psu but only when temperatures are also low. This helps to explain why blooms are possible during winter months in Texas lakes. Our in-lake experiments in Lake Whitney and Lake Waco, as well as our laboratory experiments, revealed that cyanobacteria, or some other bacteria capable of producing algicides, were able to prevent golden algae from blooming. Identification of this organism is a high priority as it may be a key to managing golden algae blooms. Our numerical modeling results support the idea that cyanobacteria, through allelopathy, control the timing of golden algae blooms in Lake Granbury. The in-lake experiments in Lake Whitney and Lake Waco also revealed that as golden algae blooms develop, there are natural enemies (a species of rotifer, and a virus) that help slow the population growth. Again, better characterization of these organisms is a high priority as it may be key to managing golden algae blooms. Our laboratory and in-lake experiments and field monitoring have shown that nutrient additions will remove toxicity and prevent golden algae from blooming. In fact, other algae displace the golden algae after nutrient additions. Additions of ammonia are particularly effective, even at low doses (much lower than what is employed in fish hatchery ponds). Application of ammonia in limited areas of lakes, such as in coves, should be explored as a management option. The laboratory experiments and field monitoring also show that the potency of toxins produced by P. parvum is greatly reduced when water pH is lower, closer to neutral levels. Application of mild acid to limited areas of lakes (but not to a level where acidic conditions are created), such as in coves, should be explored as a management option. Finally, our field monitoring and mathematical modeling revealed that flushing/dilution at high enough levels could prevent P. parvum from forming blooms and/or terminate existing blooms. This technique could work using deeper waters within a lake to flush the surface waters of limited areas of the same lakes, such as in coves and should be explored as a management option. In this way, water releases from upstream reservoirs would not be necessary and there would be no addition of nutrients in the lake.

  2. Cameron_1977.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

  3. Cameron synthetic fuels report

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    The increasing scarcity of conventional crude oil resources, as well as the sharply higher prices of crude oil, will generate increased interest in heavy oil, tar sands, and oil shale as potential substitutes. For all of these unconventional oil resources, extraction will be much more difficult, time consuming, and costly than for conventional crude oil. Although the inplace resources are vast and exist in many areas including the United States, the USSR, western Europe, Canada, and Latin America, probably only a small fraction of the inplace resources will prove to be economically extractable. These unconventional oil resources are now being developed in several locations around the world, and depending upon the exact definition probably account for less than 1 percent of current world oil supplies. The major current developments include: Canadian tar sands. Heavy oil production at Yarega in the Komi Autonomous Republic in the Soviet Union. The USSR also burns shale for power generation in Estonia. Venezuelan production of heavy oil in the Orinoco Heavy Oil Belt is currently about 15,000 b/d. Oil shale is likely to prove much less important than heavy oil and tar sands over the next 20 years. Further development of these unconventional resources is planned, and many projects are under way or under study. On the basis of current planning, world output of heavy oils and oil from tar sands and shale will be unlikely to exceed 2 million b/d by 1990, roughly five time today's level. However, both of these resources will require the development of new technologies for any large increases in output above what is now planned. The bulk of Canada's tar sands exists at great depths and will require the development of in situ processes for extraction. In the Orinoco, heavy metals contained in the oil make it difficult to refine with existing technology.

  4. Lakes, Electricity and You | Department of Energy

    Energy Savers [EERE]

    Lakes, Electricity and You Lakes, Electricity and You Why It's So Important That Lakes Are Used To Generate Electricity PDF icon Lakes, Electricity and You More Documents &...

  5. CX-001544: Categorical Exclusion Determination | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    44: Categorical Exclusion Determination CX-001544: Categorical Exclusion Determination Recovery Act: Demonstrating the Commercial Feasibility of Geopressured-Geothermal Power Development at the Sweet Lake Field, Cameron Parish, Louisiana CX(s) Applied: B3.1, A9 Date: 04/01/2010 Location(s): Cameron Parish, Louisiana Office(s): Energy Efficiency and Renewable Energy, Golden Field Office Louisiana Tank, Incorporated would use American Recovery and Reinvestment Act funding through the Department of

  6. National Science Foundation, Lake Hoare, Antarctica | Department of Energy

    Office of Environmental Management (EM)

    Science Foundation, Lake Hoare, Antarctica National Science Foundation, Lake Hoare, Antarctica Photo of a Photovoltaic System Located at Lake Hoare, Antarctica Lake Hoare is a scientific research site located in Antarctica. Research at this large field site is conducted all summer and requires an energy source that does not cause pollution or engine noise. The photovoltaic system (PV) that was installed at this site is 1.2 kW PV and was one of 10 PV systems purchased for use in Antarctica. Each

  7. Core Hole Drilling And Testing At The Lake City, California Geothermal...

    Open Energy Info (EERE)

    And Testing At The Lake City, California Geothermal Field Authors Dick Benoit, Joe Moore, Colin Goranson and David Blackwell Published GRC, 2005 DOI Not Provided Check for DOI...

  8. Monitoring the Effect of Injection of Fluids from the Lake County...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Monitoring the Effect of Injection of Fluids from the Lake County Pipeline on Seismicity at The Geysers, California Geothermal Field. Monitoring the Effect of Injection of Fluids ...

  9. Pyramid Lake Paiute Tribe - Pyramid Lake Energy Project - Geothermal Assessment

    Energy Savers [EERE]

    Tribe Pyramid Lake Paiute Tribe Pyramid Lake Energy Project Pyramid Lake Energy Project Geothermal Assessment Geothermal Assessment Pyramid Lake Paiute Reservation 40 miles north of Reno 475,000 acres Pyramid Lake 125,000 surface acres Northern Reservation Needles Area Needles Geyser Needles Geyser Exploration conducted Exploration conducted in 1968 in 1968 Hot water was found Hot water was found at 160 degrees f at 160 degrees f Was not considered Was not considered feasible feasible PLEP

  10. The Lake Charles CCS Project

    SciTech Connect (OSTI)

    Doug Cathro

    2010-06-30

    The Lake Charles CCS Project is a large-scale industrial carbon capture and sequestration (CCS) project which will demonstrate advanced technologies that capture and sequester carbon dioxide (CO{sub 2}) emissions from industrial sources into underground formations. Specifically the Lake Charles CCS Project will accelerate commercialization of large-scale CO{sub 2} storage from industrial sources by leveraging synergy between a proposed petroleum coke to chemicals plant (the LCC Gasification Project) and the largest integrated anthropogenic CO{sub 2} capture, transport, and monitored sequestration program in the U.S. Gulf Coast Region. The Lake Charles CCS Project will promote the expansion of EOR in Texas and Louisiana and supply greater energy security by expanding domestic energy supplies. The capture, compression, pipeline, injection, and monitoring infrastructure will continue to sequester CO{sub 2} for many years after the completion of the term of the DOE agreement. The objectives of this project are expected to be fulfilled by working through two distinct phases. The overall objective of Phase 1 was to develop a fully definitive project basis for a competitive Renewal Application process to proceed into Phase 2 - Design, Construction and Operations. Phase 1 includes the studies attached hereto that will establish: the engineering design basis for the capture, compression and transportation of CO{sub 2} from the LCC Gasification Project, and the criteria and specifications for a monitoring, verification and accounting (MVA) plan at the Hastings oil field in Texas. The overall objective of Phase 2, provided a successful competitive down-selection, is to execute design, construction and operations of three capital projects: (1) the CO{sub 2} capture and compression equipment, (2) a Connector Pipeline from the LLC Gasification Project to the Green Pipeline owned by Denbury and an affiliate of Denbury, and (3) a comprehensive MVA system at the Hastings oil field.

  11. Honey Lake Geothermal Area

    Broader source: Energy.gov [DOE]

    The Honey Lake geothermal area is located in Lassen County, California and Washoe County, Nevada. There are three geothermal projects actively producing electrical power. They are located at Wendel...

  12. DOE - Office of Legacy Management -- Salt_Lake

    Office of Legacy Management (LM)

    Salt_Lake Salt Lake City Sites ut_map Salt Lake City Disposal Site Salt Lake City Processing Site Last Updated: 12/14

  13. Environmental Assessment for Central Power and Light Company`s proposed Military Highway-CFE tie 138/69-kV transmission line project Brownsville, Cameron County, Texas

    SciTech Connect (OSTI)

    Not Available

    1992-04-01

    Central Power and Light Company (CPL) intends to upgrade its existing transmission line ties with the Commision Federal de Electricidad (CFE) system in Mexico. CPL currently has a single 69-kilovolt (kV) transmission line in the Brownsville area which connects CPL`s system with the system of CFE. This existing line runs between the Brownsville Switching Station, located on Laredo Road in Brownsville, Cameron County, Texas, and an existing CFE 69-kV line at the Rusteberg Bend of the Rio Grande in Cameron County. Under current conditions of need, the existing 69-kV line does not possess sufficient capability to engage in appropriate power exchanges. Therefore, CPL is proposing to build a new line to link up with CFE. This proposed line would be a double-circuit line, which would (1) continue (on a slightly relocated route) the existing 69-kV tie from CPL`s Brownsville Switching Station to CFE`s facilities, and (2) add a 138-kV tie from the Military Highway Substation, located on Military Highway (US Highway 281), to CFE`s facilities. The proposed 138/69-kV line, which will be constructed and operated by CPL, will be built primarily on steel single-pole structures within an average 60-foot (ft) wide right-of-way (ROW). It will be approximately 6900--9200 ft (1.3--1.7 miles) in length, depending on the alternative route constructed.

  14. Geological History of Lake Lahontan, a Quaternary Lake of Northwestern...

    Open Energy Info (EERE)

    a Quaternary Lake of Northwestern Nevada Abstract Abstract unavailable. Author Israel C. Russell Organization U.S. Geological Survey Published U.S. Government Printing...

  15. Monitoring the Effect of Injection of Fluids from the Lake County Pipeline

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on Seismicity at The Geysers, California Geothermal Field. | Department of Energy Monitoring the Effect of Injection of Fluids from the Lake County Pipeline on Seismicity at The Geysers, California Geothermal Field. Monitoring the Effect of Injection of Fluids from the Lake County Pipeline on Seismicity at The Geysers, California Geothermal Field. Project objectives: Upgrade and continue operation of a high resolution seismic array for five years at The Geysers as well as expand the array to

  16. Lake Michigan Offshore Wind Feasibility Assessment

    SciTech Connect (OSTI)

    Boezaart, Arnold; Edmonson, James; Standridge, Charles; Pervez, Nahid; Desai, Neel; Williams, Bruce; Clark, Aaron; Zeitler, David; Kendall, Scott; Biddanda, Bopi; Steinman, Alan; Klatt, Brian; Gehring, J. L.; Walter, K.; Nordman, Erik E.

    2014-06-30

    The purpose of this project was to conduct the first comprehensive offshore wind assessment over Lake Michigan and to advance the body of knowledge needed to support future commercial wind energy development on the Great Lakes. The project involved evaluation and selection of emerging wind measurement technology and the permitting, installation and operation of the first mid-lake wind assessment meteorological (MET) facilities in Michigan’s Great Lakes. In addition, the project provided the first opportunity to deploy and field test floating LIDAR and Laser Wind Sensor (LWS) technology, and important research related equipment key to the sitting and permitting of future offshore wind energy development in accordance with public participation guidelines established by the Michigan Great Lakes Wind Council (GLOW). The project created opportunities for public dialogue and community education about offshore wind resource management and continued the dialogue to foster Great Lake wind resource utilization consistent with the focus of the GLOW Council. The technology proved to be effective, affordable, mobile, and the methods of data measurement accurate. The public benefited from a substantial increase in knowledge of the wind resources over Lake Michigan and gained insights about the potential environmental impacts of offshore wind turbine placements in the future. The unique first ever hub height wind resource assessment using LWS technology over water and development of related research data along with the permitting, sitting, and deployment of the WindSentinel MET buoy has captured public attention and has helped to increase awareness of the potential of future offshore wind energy development on the Great Lakes. Specifically, this project supported the acquisition and operation of a WindSentinel (WS) MET wind assessment buoy, and associated research for 549 days over multiple years at three locations on Lake Michigan. Four research objectives were defined for the project including to: 1) test and validate floating LIDAR technology; 2) collect and access offshore wind data; 3) detect and measure bird and bat activity over Lake Michigan; 4) conduct an over water sound propagation study; 5) prepare and offer a college course on offshore energy, and; 6) collect other environmental, bathometric, and atmospheric data. Desk-top research was performed to select anchorage sites and to secure permits to deploy the buoy. The project also collected and analyzed data essential to wind industry investment decision-making including: deploying highly mobile floating equipment to gather offshore wind data; correlating offshore wind data with conventional on-shore MET tower data; and performing studies that can contribute to the advancement and deployment of offshore wind technologies. Related activities included: • Siting, permitting, and deploying an offshore floating MET facility; • Validating the accuracy of floating LWS using near shoreline cup anemometer MET instruments; • Assessment of laser pulse technology (LIDAR) capability to establish hub height measurement of wind conditions at multiple locations on Lake Michigan; • Utilizing an extended-season (9-10 month) strategy to collect hub height wind data and weather conditions on Lake Michigan; • Investigation of technology best suited for wireless data transmission from distant offshore structures; • Conducting field-validated sound propagation study for a hypothetical offshore wind farm from shoreline locations; • Identifying the presence or absence of bird and bat species near wind assessment facilities; • Identifying the presence or absence of benthic and pelagic species near wind assessment facilities; All proposed project activities were completed with the following major findings: • Floating Laser Wind Sensors are capable of high quality measurement and recordings of wind resources. The WindSentinel presented no significant operational or statistical limitations in recording wind data technology at a at a high confidence level as compared to traditional anemometer cup technology. • During storms, mean Turbulent Kinetic Energy (TKE) increases with height above water; • Sufficient wind resources exist over Lake Michigan to generate 7,684 kWh of power using a 850 kW rated turbine at elevations between 90 - 125 meters, a height lower than originally anticipated for optimum power generation; • Based on initial assessments, wind characteristics are not significantly different at distant (thirty-two mile) offshore locations as compared to near-shore (six mile) locations; • Significant cost savings can be achieved in generation wind energy at lower turbine heights and locating closer to shore. • Siting must be sufficiently distant from shore to minimize visual impact and to address public sentiment about offshore wind development; • Project results show that birds and bats do frequent the middle of Lake Michigan, bats more so than birds; • Based on the wind resource assessment and depths of Lake Michigan encountered during the project, future turbine placement will most likely need to incorporate floating or anchored technology; • The most appropriate siting of offshore wind energy locations will enable direct routing of transmission cables to existing generating and transmission facilities located along the Michigan shoreline; • Wind turbine noise propagation from a wind energy generating facility at a five mile offshore location will not be audible at the shoreline over normal background sound levels.

  17. Lake Region State College | Open Energy Information

    Open Energy Info (EERE)

    College Jump to: navigation, search Name Lake Region State College Facility Lake Region State College Sector Wind energy Facility Type Community Wind Facility Status In Service...

  18. Crow Lake Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Crow Lake Wind Facility Crow Lake Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Prairie Winds...

  19. Lake Erie Alternative Power | Open Energy Information

    Open Energy Info (EERE)

    Power Jump to: navigation, search Name Lake Erie Alternative Power Facility Lake Erie Alternative Power Sector Wind energy Facility Type Offshore Wind Facility Status Proposed...

  20. Blue Lake Power | Open Energy Information

    Open Energy Info (EERE)

    Power Jump to: navigation, search Name: Blue Lake Power Place: Redding, California Zip: 96001 Sector: Renewable Energy Product: Blue Lake Power is a wholey owned subsidiary of...

  1. Meadow Lake II | Open Energy Information

    Open Energy Info (EERE)

    II Jump to: navigation, search Name Meadow Lake II Facility Meadow Lake II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Horizon Wind...

  2. Summer Lake Aquaculture Aquaculture Low Temperature Geothermal...

    Open Energy Info (EERE)

    Summer Lake Aquaculture Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Summer Lake Aquaculture Aquaculture Low Temperature Geothermal Facility...

  3. Iowa Lakes Electric Cooperative | Open Energy Information

    Open Energy Info (EERE)

    Iowa Lakes Electric Cooperative Jump to: navigation, search Name: Iowa Lakes Electric Cooperative Place: Estherville, Iowa Zip: 51334 Sector: Wind energy Product: Iowa-based...

  4. FIA-14-0066- In the Matter of Great Lakes Wind Truth

    Broader source: Energy.gov [DOE]

    On November 7,  2014, OHA issued a decision granting an Appeal filed by Great Lakes Wind Truth (the Appellant) of a determination that the DOE’s Golden Field Office issued to it regarding the...

  5. Pyramid Lake Paiute Tribe - Geothermal Energy Assessment

    Energy Savers [EERE]

    Tribe Geothermal Energy Project Donna Marie Noel Project Manager Water Resources Department (775) 574-0101 x16 dnoel@plpt.nsn.us GEOTHERMAL RESOURCES Bonham Ranch Sutcliffe Pyramid Rock Astor Pass Needles Rocks Pyramid Lake Paiute Reservation PYRAMID LAKE PAIUTE TRIBE * Largest Nevada Reservation in land base and population, 2300 members * Reservation encompasses 470,000 acres & 330,000 acres cattle range * Pyramid Lake 115,000 acre lake surface * Terminus lake with Truckee River connector

  6. Fish Lake Valley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Fish Lake Valley Geothermal Area (Redirected from Fish Lake Valley Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Fish Lake Valley Geothermal Area Contents 1...

  7. Iowa Lakes Superior Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    search Name Iowa Lakes Superior Wind Farm Facility Iowa Lakes Superior Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Iowa Lakes...

  8. Iowa Lakes Lakota Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    search Name Iowa Lakes Lakota Wind Farm Facility Iowa Lakes Lakota Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Iowa Lakes...

  9. City of Detroit Lakes, Minnesota (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Lakes, Minnesota (Utility Company) Jump to: navigation, search Name: City of Detroit Lakes Place: Minnesota Website: www.ci.detroit-lakes.mn.usmai Facebook: https:...

  10. Spirit Lake II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Lake School District Energy Purchaser Spirit Lake School District Location Spirit Lake IA Coordinates 43.411412, -95.09914 Show Map Loading map... "minzoom":false,"mappingse...

  11. Hot Lake RV Park Space Heating Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Lake RV Park Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Hot Lake RV Park Space Heating Low Temperature Geothermal Facility Facility Hot Lake...

  12. Soap Lake Pool & Spa Low Temperature Geothermal Facility | Open...

    Open Energy Info (EERE)

    Soap Lake Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Soap Lake Pool & Spa Low Temperature Geothermal Facility Facility Soap Lake Sector...

  13. Spirit Lake Tribe- 1995 Project

    Broader source: Energy.gov [DOE]

    A long-range goal of the Spirit Lake Nation is to develop a tribally owned and operated municipal power company. The tribe has been awarded a Western Area Power Administration (WAPA) allocation starting in the year 2001.

  14. Physical and Chemical Implications of Mid-Winter Pumping of Trunda Lakes - North Slope, Alaska

    SciTech Connect (OSTI)

    Hinzman, Larry D.; Lilly, Michael R.; Kane, Douglas L.; Miller, D. Dan; Galloway, Braden K.; Hilton, Kristie M.; White, Daniel M.

    2005-09-30

    Tundra lakes on the North Slope, Alaska, are an important resource for energy development and petroleum field operations. A majority of exploration activities, pipeline maintenance, and restoration activities take place on winter ice roads that depend on water availability at key times of the winter operating season. These same lakes provide important fisheries and ecosystem functions. In particular, overwintering habitat for fish is one important management concern. This study focused on the evaluation of winter water use in the current field operating areas to provide a better understanding of the current water use practices. It found that under the current water use practices, there were no measurable negative effects of winter pumping on the lakes studied and current water use management practices were appropriately conservative. The study did find many areas where improvements in the understanding of tundra lake hydrology and water usage would benefit industry, management agencies, and the protection of fisheries and ecosystems.

  15. Land O Lakes Inc | Open Energy Information

    Open Energy Info (EERE)

    O Lakes Inc Jump to: navigation, search Name: Land O'Lakes Inc Place: Saint Paul, Minnesota Zip: 55164-0101 Product: Farmer-owned cooperative, marketer of dairy-based products for...

  16. Great Lakes Energy Coop | Open Energy Information

    Open Energy Info (EERE)

    Logo: Great Lakes Energy Coop Name: Great Lakes Energy Coop Address: PO Box 70 Place: Boyne City, MI Zip: 49712 Service Territory: Michigan Phone Number: 1-800-678-0411 Website:...

  17. ORISE Research Team Experiences: Joe Lake

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Joe Lake One-Time Student Intern has 'Second Life' as ORNL Mentor Joe Lake Joe Lake, a full-time software engineer for Oak Ridge National Laboratory's Computational Science and Engineering Division, is doing his part to help foster the next generation of scientists. As a former participant of both the ORISE-administered DOE Science Undergraduate Laboratory Internships (SULI) and Higher Education Research Experiences (HERE) programs, Lake is currently co-mentoring his fourth student. As a former

  18. Modeling the impediment of methane ebullition bubbles by seasonal lake ice

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Greene, S.; Walter Anthony, K. M.; Archer, D.; Sepulveda-Jauregui, A.; Martinez-Cruz, K.

    2014-12-08

    Microbial methane (CH4) ebullition (bubbling) from anoxic lake sediments comprises a globally significant flux to the atmosphere, but ebullition bubbles in temperate and polar lakes can be trapped by winter ice cover and later released during spring thaw. This "ice-bubble storage" (IBS) constitutes a novel mode of CH4 emission. Before bubbles are encapsulated by downward-growing ice, some of their CH4 dissolves into the lake water, where it may be subject to oxidation. We present field characterization and a model of the annual CH4 cycle in Goldstream Lake, a thermokarst (thaw) lake in interior Alaska. We find that summertime ebullition dominatesmore » annual CH4 emissions to the atmosphere. Eighty percent of CH4 in bubbles trapped by ice dissolves into the lake water column in winter, and about half of that is oxidized. The ice growth rate and the magnitude of the CH4 ebullition flux are important controlling factors of bubble dissolution. Seven percent of annual ebullition CH4 is trapped as IBS and later emitted as ice melts. In a future warmer climate, there will likely be less seasonal ice cover, less IBS, less CH4 dissolution from trapped bubbles, and greater CH4 emissions from northern lakes.« less

  19. Modeling the impediment of methane ebullition bubbles by seasonal lake ice

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Greene, S.; Walter Anthony, K. M.; Archer, D.; Sepulveda-Jauregui, A.; Martinez-Cruz, K.

    2014-07-15

    Microbial methane (CH4) ebullition (bubbling) from anoxic lake sediments comprises a globally significant flux to the atmosphere, but ebullition bubbles in temperate and polar lakes can be trapped by winter ice cover and later released during spring thaw. This "ice-bubble storage" (IBS) constitutes a novel mode of CH4 emission. Before bubbles are encapsulated by downward-growing ice, some of their CH4 dissolves into the lake water, where it may be subject to oxidation. We present field characterization and a model of the annual CH4 cycle in Goldstream Lake, a thermokarst (thaw) lake in interior Alaska. We find that summertime ebullition dominatesmore » annual CH4 emissions to the atmosphere. Eighty percent of CH4 in bubbles trapped by ice dissolves into the lake water column in winter, and about half of that is oxidized. The ice growth rate and the magnitude of the CH4 ebullition flux are important controlling factors of bubble dissolution. Seven percent of annual ebullition CH4 is trapped as IBS and later emitted as ice melts. In a future warmer climate, there will likely be less seasonal ice cover, less IBS, less CH4 dissolution from trapped bubbles, and greater CH4 emissions from northern lakes.« less

  20. Late Holocene shoreline behavior in embayments of Lake Michigan: Influence of quasi-periodic lake-level variations and sediment supply

    SciTech Connect (OSTI)

    Thompson, T.A.; Baedke, S.J. (Indiana Univ., Bloomington, IN (United States). Indiana Geological Survey)

    1994-04-01

    Lake Michigan contains numerous former embayments into glacial deposits or bedrock. Many of the embayments contain dunes, spits, and captured lakes, but others contain arcuate strandplains of beach ridges. The strandplains are a geologic record of shoreline behavior and lake-level variation throughout the late Holocene. The larger strandplains show similar long-term patterns of beach-ridge development. The similar patterns are expected because variations in lake level are a primary control on shoreline behavior, and all embayments would have experienced relatively the same lake-level changes. Some variations in the long-term pattern of shoreline development do occur between strandplains. These dissimilarities are primarily a function of different rates of sediment supply to the shoreline of each embayment. Beach-ridge development within embayments can be represented on a rate of water level change versus rate of sediment supply diagram (Curray diagram) as three superimposed ovals on the positive rate of sediment supply side of the diagram. The three stacked ovals represent the three quasi-periodic lake-level variations defined by Thompson (1992) and show the position of the shoreline for a given time within the Curray diagram fields. For shorelines with a high rate of sediment supply, only the 30-year quasi-periodic variation would reach the aggradation line. For shorelines having significantly less sediment supply, rising lake level on the 150- and 600-year variations would force the 30-year oval across the aggradation line and well into the depositional and possibly the erosional transgression fields. Under these conditions erosion would occur that may remove, stack, or at least prevent one or more beach ridges from being developed.

  1. DOE - Office of Legacy Management -- Lake_D

    Office of Legacy Management (LM)

    Disposal Site UMTRCA Title I site laked_map The Lakeview Disposal Site, an Uranium Mill Tailings Radiation Control Act (UMTRCA) Title I disposal site, is licensed to DOE for long-term custody and managed by the Office of Legacy Management. The site transferred to the Office of Legacy Management in 2003 and requires routine inspection and maintenance, records-related activities, and stakeholder support. For more information about the Lakeview site, view the fact sheet. Site Documents and Links

  2. Great Lakes Steel -- PCI facility

    SciTech Connect (OSTI)

    Eichinger, F.T.; Dake, S.H.; Wagner, E.D.; Brown, G.S.

    1997-12-31

    This paper discusses the planning, design, and start-up of the 90 tph PCI facility for National Steel`s Great Lakes Steel Division in River Rouge, MI. This project is owned and operated by Edison Energy Services, and was implemented on a fast-track basis by Raytheon Engineers and Constructors, Babcock Material Handling, and Babcock and Wilcox. This paper presents important process issues, basic design criteria, an the challenges of engineering and building a state-of-the-art PCI facility in two existing plants. Pulverized coal is prepared at the River Rouge Power Plant of Detroit Edison, is pneumatically conveyed 6,000 feet to a storage silo at Great Lakes Steel, and is injected into three blast furnaces.

  3. VEE-0018- In the Matter of Lakes Gas Company

    Broader source: Energy.gov [DOE]

    On March 12, 1996, the Lakes Gas Company (Lakes) of Forest Lake, Minnesota, filed an Application for Exception with the Office of Hearings and Appeals of the Department of Energy. In its...

  4. Medicine Lake Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Page Technique Activity Start Date Activity End Date Reference Material Geothermal Literature Review At Medicine Lake Geothermal Area (1984) Geothermal Literature Review 1984...

  5. Glacial Lakes Energy | Open Energy Information

    Open Energy Info (EERE)

    search Name: Glacial Lakes Energy Place: Watertown, South Dakota Zip: 57201 Product: Bioethanol producer using corn as feedstock Coordinates: 43.197366, -88.720469 Show Map...

  6. Soda Lake Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Facility Add a new Operating Power Plant Developing Power Projects: 1 East Soda Lake Geothermal Project ( MW, Phase I - Resource Procurement and Identification) Add a new...

  7. Spirit Lake Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Minnesota Windpower Energy Purchaser AlliantIES Utilities Location Spirit Lake IA Coordinates 43.411381, -95.10075 Show Map Loading map... "minzoom":false,"mappingse...

  8. Great Lakes Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Great Lakes Biofuels LLC Place: Madison, Wisconsin Zip: 53704 Sector: Services Product: Biodiesel research, consulting, management distribution and services company. Coordinates:...

  9. Lake Pocotopaug, Connecticut: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Lake Pocotopaug, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.5984325, -72.5103654 Show Map Loading map......

  10. Rice Lake Utilities | Open Energy Information

    Open Energy Info (EERE)

    Place: Wisconsin Phone Number: 715-234-7004 Website: www.ricelakeutilities.com Facebook: https:www.facebook.compagesCity-of-Rice-Lake-Utilities162786740407997 Outage...

  11. Lake Country Power | Open Energy Information

    Open Energy Info (EERE)

    Number: 8004219959 Website: www.lakecountrypower.coopinde Twitter: @LakeCountryPowe Facebook: https:www.facebook.comlakecountrypower Outage Hotline: 8004219959 Outage Map:...

  12. Obama Administration Hosts Great Lakes Offshore Wind Workshop in Chicago

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with Great Lakes Wind Collaborative | Department of Energy Hosts Great Lakes Offshore Wind Workshop in Chicago with Great Lakes Wind Collaborative Obama Administration Hosts Great Lakes Offshore Wind Workshop in Chicago with Great Lakes Wind Collaborative October 28, 2010 - 12:00am Addthis WASHINGTON - The White House Council on Environmental Quality and the U.S. Department of Energy hosted a workshop with the Great Lakes Wind Collaborative in Chicago on October 26 - 27, 2010, focused on the

  13. Similarities in shoreline response to Late Holocene lake-level variations in Lake Michigan

    SciTech Connect (OSTI)

    Thompson, T.A.; Baedke, S.J. )

    1992-01-01

    Beach ridges dating back to 2600 B.P. occur in embayments throughout Lake Michigan. Similarities in their geomorphic development are interpreted to be the product of three scales of lake-level variation. The largest of these embayments is roughly coincident with the Indiana shore of Lake Michigan known as the Toleston Beach. In the western part of the Toleston Beach, more than 150 beach ridges have formed in response to short-term variations in lake level occurring at a quasi-periodic interval of about 30 years. Bundles of five of these ridges merge eastward to form higher relief beach ridges that record an intermediate-term lake-level variation of about 150 years. Both the 30-year and 150-year lake-level events are superimposed on a longer term lake-level variation of about 600 years. Beach-ridge development in northern Lake Michigan reflects a similar response to late Holocene lake-level variations. For example, the southern embayment of the Platte Bay Unit of the Sleeping Bear Dunes National Lakeshore also contains a series of beach ridges that record three scales of lake-level variation. In this area, most of the beach ridges formed between 2600 and 1200 B.P., with individual ridges forming about every 29 years. Also recorded in this embayment are the time equivalent groupings of beach ridges every 150 and 600 years. Although embayments containing beach ridges in Lake Michigan may record different short-term lake-level variations in response to local depositional conditions within the embayment, the 150-year and 600-year variations appear to be represented throughout the lake. Relative lake-level curves for the Toleston Beach and the Platte Bay embayment are displaced by approximately 1.5 m. This displacement is accounted for under current models of isostasy for Lake Michigan.

  14. Mercury Vapor At Medicine Lake Area (Kooten, 1987) | Open Energy...

    Open Energy Info (EERE)

    Medicine Lake Area (Kooten, 1987) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Medicine Lake Area (Kooten, 1987) Exploration...

  15. Overview Of The Lake City, California Geothermal System | Open...

    Open Energy Info (EERE)

    : GRC; p. () Related Geothermal Exploration Activities Activities (1) Geothermal Literature Review At Lake City Hot Springs Area (Benoit, Et Al., 2004) Areas (1) Lake City Hot...

  16. Ground Gravity Survey At Clear Lake Area (Skokan, 1993) | Open...

    Open Energy Info (EERE)

    Ground Gravity Survey At Clear Lake Area (Skokan, 1993) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Clear Lake Area...

  17. Salt Lake City, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Salt Lake City, Utah: Energy Resources (Redirected from Salt Lake City, UT) Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.7607793, -111.8910474 Show Map...

  18. Summer Lake Hot Springs Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Summer Lake Hot Springs Space Heating Low Temperature Geothermal Facility Facility Summer Lake...

  19. City of Mountain Lake, Minnesota (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Lake, Minnesota (Utility Company) Jump to: navigation, search Name: City of Mountain Lake Place: Minnesota Phone Number: (507) 427-2999 Website: www.mountainlakemn.comindex.a...

  20. Pressure Temperature Log At Fish Lake Valley Area (DOE GTP) ...

    Open Energy Info (EERE)

    Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Pressure Temperature Log At Fish Lake Valley Area (DOE GTP)...

  1. Thermochronometry At Fish Lake Valley Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermochronometry At Fish Lake Valley Area (DOE GTP) Exploration...

  2. Static Temperature Survey At Fish Lake Valley Area (Deymonaz...

    Open Energy Info (EERE)

    Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Static Temperature Survey At Fish Lake Valley Area...

  3. Hyperspectral Imaging At Fish Lake Valley Area (Littlefield ...

    Open Energy Info (EERE)

    Fish Lake Valley Area (Littlefield & Calvin, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hyperspectral Imaging At Fish Lake Valley Area...

  4. Geothermometry At Fish Lake Valley Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Fish Lake Valley Area (DOE GTP) Exploration...

  5. Compound and Elemental Analysis At Fish Lake Valley Area (DOE...

    Open Energy Info (EERE)

    ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Fish Lake Valley Area (DOE GTP) Exploration Activity Details Location Fish Lake Valley Area...

  6. Geographic Information System At Fish Lake Valley Area (Deymonaz...

    Open Energy Info (EERE)

    Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Fish Lake Valley...

  7. Fish Lake Valley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Fish Lake Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Fish Lake Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure...

  8. Modeling-Computer Simulations At Fish Lake Valley Area (Deymonaz...

    Open Energy Info (EERE)

    Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Fish Lake Valley...

  9. Geothermal Literature Review At Fish Lake Valley Area (Deymonaz...

    Open Energy Info (EERE)

    Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Fish Lake Valley...

  10. Lake Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Gas Recovery Biomass Facility Jump to: navigation, search Name Lake Gas Recovery Biomass Facility Facility Lake Gas Recovery Sector Biomass Facility Type Landfill Gas Location Cook...

  11. Lake County, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    North Chicago, Illinois Old Mill Creek, Illinois Palatine, Illinois Park City, Illinois Port Barrington, Illinois Riverwoods, Illinois Round Lake Beach, Illinois Round Lake...

  12. Wall Lake Municipal Utilities Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Municipal Utilities Energy Purchaser Wall Lake Municipal Utilities Location Wall Lake IA Coordinates 42.281965, -95.094098 Show Map Loading map... "minzoom":false,"mappings...

  13. Lake County Ag Park Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Ag Park Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Lake County Ag Park Greenhouse Low Temperature Geothermal Facility Facility Lake County Ag...

  14. HERO BX formerly Lake Erie Biofuels | Open Energy Information

    Open Energy Info (EERE)

    HERO BX formerly Lake Erie Biofuels Jump to: navigation, search Name: HERO BX (formerly Lake Erie Biofuels) Place: Erie, Pennsylvania Product: Pennsylvania-based project developer...

  15. Lake County, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    2 Climate Zone Subtype A. US Recovery Act Smart Grid Projects in Lake County, Florida City of Leesburg, Florida Smart Grid Project Energy Generation Facilities in Lake County,...

  16. Lake County, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Zone Subtype B. Places in Lake County, Oregon Crump Geyser, Oregon Lakeview, Oregon Paisley, Oregon Retrieved from "http:en.openei.orgwindex.php?titleLakeCounty,Oregon&ol...

  17. Great Lakes Science Center Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Science Center Wind Farm Jump to: navigation, search Name Great Lakes Science Center Wind Farm Facility Great Lakes Science Center Sector Wind energy Facility Type Community Wind...

  18. Lake Elsinore Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Elsinore Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Lake Elsinore Pool & Spa Low Temperature Geothermal Facility Facility Lake Elsinore Sector...

  19. Lake Charles, LA Natural Gas LNG Imports from Equatorial Guinea...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lake Charles, LA Natural Gas LNG Imports from Equatorial Guinea (Dollars per Thousand Cubic Feet) Lake Charles, LA Natural Gas LNG Imports from Equatorial Guinea (Dollars per ...

  20. EA-1996: Glass Buttes Radio Station, Lake County, Oregon | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6: Glass Buttes Radio Station, Lake County, Oregon EA-1996: Glass Buttes Radio Station, Lake County, Oregon SUMMARY The Bureau of Land Management (BLM), with DOE's Bonneville Power...

  1. Flow tests of the Gladys McCall well. Appendix A, Gladys McCall Site (Cameron Parish, LA): Final report, October 1985--October 1990

    SciTech Connect (OSTI)

    Randolph, P.L.; Hayden, C.G.; Rogers, L.A.

    1992-04-01

    This report pulls together the data from all of the geopressured-geothermal field research conducted at the Gladys McCall well. The well produced geopressured brine containing dissolved natural gas from the Lower Miocene sands at a depth of 15,150 to 16,650 feet. More than 25 million barrels of brine and 727 million standard cubic feet of natural gas were produced in a series of flow tests between December 1982 and October 1987 at various brine flow rates up to 28,000 barrels per day. Initial short-term flow tests for the Number 9 Sand found the permeability to be 67 to 85 md (millidarcies) for a brine volume of 85 to 170 million barrels. Initial short-term flow tests for the Number 8 Sand found a permeability of 113 to 132 md for a reservoir volume of 430 to 550 million barrels of brine. The long-term flow and buildup test of the Number 8 Sand found that the high-permeability reservoir connected to the wellbore (measured by the short-term flow test) was connected to a much larger, low-permeability reservoir. Numerical simulation of the flow and buildup tests required this large connected reservoir to have a volume of about 8 billion barrels (two cubic miles of reservoir rock) with effective permeabilities in the range of 0.2 to 20 md. Calcium carbonate scale formation in the well tubing and separator equipment was a problem. During the first 2 years of production, scale formation was prevented in the surface equipment by injection of an inhibitor upstream of the choke. Starting in 1985, scale formation in the production tubing was successfully prevented by injecting inhibitor ``pills`` directly into the reservoir. Corrosion and/or erosion of surface piping and equipment, as well as disposal well tubing, was also significant.

  2. NBP RFI: Communications Requirements- Comments of Lake Region Electric

    Office of Environmental Management (EM)

    Cooperative- Minnesota | Department of Energy Lake Region Electric Cooperative- Minnesota NBP RFI: Communications Requirements- Comments of Lake Region Electric Cooperative- Minnesota Comments of Lake Region Electric Cooperative- Minnesota on Implementing the National Broadband Plan by Studying the Communications Requirements of Electric Utilities to Inform Federal Smart Grid Policy PDF icon NBP RFI: Communications Requirements- Comments of Lake Region Electric Cooperative- Minnesota More

  3. Klamath and Lake Counties Agricultural Industrial Park | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Klamath and Lake Counties Agricultural Industrial Park Klamath and Lake Counties Agricultural Industrial Park Engineered Geothermal Systems, Low Temp, Exploration Demonstration Projects. Project goal: to attract new businesses to Klamath and Lake counties for the purpose of capitalizing on our abundant geothermal resources. PDF icon egs_riley_klamath_lake.pdf More Documents & Publications Klamath and Lake Counties Agricultural Industrial Park; 2010 Geothermal Technology Program

  4. Cameron Ridge Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    on":"","group":"","inlineLabel":"","visitedicon":"" Hide Map Generating Capacity (MW) 5656 MW 56,000 kW 56,000,000 W 56,000,000,000 mW 0.056 GW Number of Units 80 Commercial...

  5. Cameron, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.8758285, -111.4129207 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  6. Measurement and prediction of copper ion activity in Lake Orta, Italy

    SciTech Connect (OSTI)

    Camusso, M.; Tartari, G. ); Zirino, A. )

    1991-04-01

    A commercial Cu ion selective electrode (ISE) mounted on a field conductivity, temperature, depth probe (CTD) equipped with pH and oxygen sensors was used to measure a profile of Cu ion activity ({alpha}(Cu{sup 2+})) in Lake Orta, Italy. Lake Orta water contains approximately 32-34 {mu}g L{sup {minus}1} Cu from anthropogenic sources. Below the mixed layer, {alpha}-(Cu{sup 2+}) was directly related to the pH of the lake water. In the body of the hypolimnion, measurements of {alpha}(Cu{sup 2+}) obtained from total Cu concentrations. The pH dependence of the activity/concentration of free Cu{sup 2+} was modeled with a simple ion association model of the lake water. The results of the model were verified by a potentiometric titration of a sample of lake water using Cu, pH, and NH{sub 3} ISEs. The titration simulated a forthcoming chemical treatment now in progress.

  7. Clear Lake Cogeneration LP | Open Energy Information

    Open Energy Info (EERE)

    Cogeneration LP Jump to: navigation, search Name: Clear Lake Cogeneration LP Place: Idaho Phone Number: 281-474-7611 Outage Hotline: 281-474-7611 References: EIA Form EIA-861 Final...

  8. Salt Lake City- High Performance Buildings Requirement

    Broader source: Energy.gov [DOE]

    Salt Lake City's mayor issued an executive order in July 2005 requiring that all public buildings owned and controlled by the city be built or renovated to meet the requirements of LEED "silver"...

  9. Lake Mills Light & Water | Open Energy Information

    Open Energy Info (EERE)

    Light & Water Jump to: navigation, search Name: Lake Mills Light & Water Place: Wisconsin Phone Number: (920) 648-4026 Website: www.lakemillslw.com Outage Hotline: (920) 648-4026...

  10. Dry lake reveals evidence of Southwestern 'megadroughts'

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dry lake reveals evidence of Southwestern 'megadroughts' Dry lake reveals evidence of Southwestern 'megadroughts' A portion of the research indicates that an ancient period of warming may be analogous to natural present-day climate conditions. February 28, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma

  11. Energy and water in the Great Lakes.

    SciTech Connect (OSTI)

    Tidwell, Vincent Carroll

    2011-11-01

    The nexus between thermoelectric power production and water use is not uniform across the U.S., but rather differs according to regional physiography, demography, power plant fleet composition, and the transmission network. That is, in some regions water demand for thermoelectric production is relatively small while in other regions it represents the dominate use. The later is the case for the Great Lakes region, which has important implications for the water resources and aquatic ecology of the Great Lakes watershed. This is today, but what about the future? Projected demographic trends, shifting lifestyles, and economic growth coupled with the threat of global climate change and mounting pressure for greater U.S. energy security could have profound effects on the region's energy future. Planning for such an uncertain future is further complicated by the fact that energy and environmental planning and regulatory decisionmaking is largely bifurcated in the region, with environmental and water resource concerns generally taken into account after new energy facilities and technologies have been proposed, or practices are already in place. Based on these confounding needs, the objective of this effort is to develop Great Lakes-specific methods and tools to integrate energy and water resource planning and thereby support the dual goals of smarter energy planning and development, and protection of Great Lakes water resources. Guiding policies for this planning are the Great Lakes and St. Lawrence River Basin Water Resources Compact and the Great Lakes Water Quality Agreement. The desired outcome of integrated energy-water-aquatic resource planning is a more sustainable regional energy mix for the Great Lakes basin ecosystem.

  12. THERMODYNAMICS OF PARTIALLY FROZEN COOLING LAKES

    SciTech Connect (OSTI)

    Garrett, A.; Casterline, M.; Salvaggio, C.

    2010-01-05

    The Rochester Institute of Technology (RIT) collected visible, SWIR, MWIR and LWIR imagery of the Midland (Michigan) Cogeneration Ventures Plant from aircraft during the winter of 2008-2009. RIT also made ground-based measurements of lake water and ice temperatures, ice thickness and atmospheric variables. The Savannah River National Laboratory (SRNL) used the data collected by RIT and a 3-D hydrodynamic code to simulate the Midland cooling lake. The hydrodynamic code was able to reproduce the time distribution of ice coverage on the lake during the entire winter. The simulations and data show that the amount of ice coverage is almost linearly proportional to the rate at which heat is injected into the lake (Q). Very rapid melting of ice occurs when strong winds accelerate the movement of warm water underneath the ice. A snow layer on top of the ice acts as an insulator and decreases the rate of heat loss from the water below the ice to the atmosphere above. The simulated ice cover on the lake was not highly sensitive to the thickness of the snow layer. The simplicity of the relationship between ice cover and Q and the weak responses of ice cover to snow depth over the ice are probably attributable to the negative feedback loop that exists between ice cover and heat loss to the atmosphere.

  13. City of Lake Crystal, Minnesota (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Name: City of Lake Crystal Place: Minnesota Phone Number: (605)256-6536 Website: www.ci.lake-crystal.mn.usinde Outage Hotline: (800)520-4746 References: EIA Form EIA-861 Final...

  14. City of Shasta Lake, California (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Name: City of Shasta Lake Place: California Phone Number: 530-275-7400 Website: www.ci.shasta-lake.ca.usindex Outage Hotline: 530-275-7400 References: EIA Form EIA-861 Final...

  15. Cooperative L&P Assn Lake Cnty | Open Energy Information

    Open Energy Info (EERE)

    Cooperative L&P Assn Lake Cnty Jump to: navigation, search Name: Cooperative L&P Assn Lake Cnty Place: Minnesota Phone Number: 800-580-5881 Website: www.clpower.com Facebook:...

  16. JW Great Lakes Wind LLC | Open Energy Information

    Open Energy Info (EERE)

    JW Great Lakes Wind LLC Jump to: navigation, search Name: JW Great Lakes Wind LLC Place: Cleveland, Ohio Zip: 44114-4420 Sector: Wind energy Product: Ohio based subsidiary of Juwi...

  17. City of Wall Lake, Iowa (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    City of Wall Lake, Iowa (Utility Company) Jump to: navigation, search Name: City of Wall Lake Place: Iowa Phone Number: (712) 664-2216 Website: walllake.com?pageid40 Outage...

  18. Lake Benton II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    II Wind Farm Jump to: navigation, search Name Lake Benton II Wind Farm Facility Lake Benton II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  19. Meadow Lake II (3Q10) | Open Energy Information

    Open Energy Info (EERE)

    II (3Q10) Jump to: navigation, search Name Meadow Lake II (3Q10) Facility Meadow Lake II (3Q10) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  20. Dry Lake II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    II Wind Farm Jump to: navigation, search Name Dry Lake II Wind Farm Facility Dry Lake II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  1. Red Lake Electric Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    Red Lake Electric Coop, Inc Jump to: navigation, search Name: Red Lake Electric Coop, Inc Place: Minnesota Phone Number: 218-253-2168 or 800-245-6068 Website: www.redlakeelectric.c...

  2. Soda Lake, Nevada: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    This article is a stub. You can help OpenEI by expanding it. Soda Lake is a lake in Churchill County, Nevada. References USGS GNIS Retrieved from "http:en.openei.orgw...

  3. Montana Joint Application for Proposed Work in Streams, Lakes...

    Open Energy Info (EERE)

    Streams, Lakes and Wetlands Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Joint Application for Proposed Work in Streams, Lakes and...

  4. Lake Roosevelt Fisheries Evaluation Program; Meadow Creek vs. Lake Whatcom Stock Kokanee Salmon Investigations in Lake Roosevelt, 2001 Annual Report.

    SciTech Connect (OSTI)

    McLellan, Holly; Scholz, Allan

    2002-03-01

    Lake Roosevelt has been stocked with Lake Whatcom stock kokanee since 1989 with the primary objective of creating a self-sustaining recreational fishery. Due to low return numbers, it was hypothesized a stock of kokanee, native to the upper Columbia River, might perform better than the coastal Lake Whatcom strain. Kokanee from Meadow Creek, a tributary of Kootenay Lake, British Columbia were selected as an alternative stock. Matched pair releases of Lake Whatcom and Meadow Creek kokanee were made from Sherman Creek Hatchery in late June 2000 and repeated in 2001. Stock performance between Lake Whatcom and Meadow Creek kokanee was evaluated using three performance measures; (1) the number of returns to Sherman Creek, the primary egg collection facility, (2) the number of returns to other tributaries and (3) the number of returns to the creel. Kokanee were collected during five passes through the reservoir via electrofishing, which included 87 tributary mouths during the fall of 2000 and 2001. Chi-square analysis indicated age two Meadow Creek kokanee returned to Sherman Creek in significantly higher numbers when compared to the Whatcom stock in 2000 ({chi}{sup 2} = 736.6; d.f. = 1; P < 0.01) and 2001 ({chi}{sup 2} = 156.2; d.f. = 1; P < 0.01). Reservoir wide recoveries of age two kokanee had similar results in 2000 ({chi}{sup 2} = 735.3; d.f. = 1; P < 0.01) and 2001 ({chi}{sup 2} = 150.1; d.f. = 1; P < 0.01). Six Lake Whatcom and seven Meadow Creek three year olds were collected in 2001. The sample size of three year olds was too small for statistical analysis. No kokanee were collected during creel surveys in 2000, and two (age three kokanee) were collected in 2001. Neither of the hatchery kokanee collected were coded wire tagged, therefore stock could not be distinguished. After two years of monitoring, neither Meadow Creek or Lake Whatcom kokanee appear to be capable of providing a run of three-year-old spawners to sustain stocking efforts. The small number of hatchery three-year-olds collected indicated that the current stocking methods will continue to produce a limited jacking run largely composed of precocious males and a small number of three-year-olds. However, supplemental creel data indicated anglers harvested two-year-old hatchery kokanee 30-45 days after release. Supplemental creel data should continue to be collected to accurately evaluate hatchery contributions to the creel.

  5. Lake Roosevelt Fisheries Evaluation Program; Meadow Creek vs. Lake Whatcom Stock Kokanee Salmon Investigations in Lake Roosevelt, Annual Report 2002.

    SciTech Connect (OSTI)

    McLellan, Holly

    2003-03-01

    Lake Whatcom, Washington kokanee have been stocked in Lake Roosevelt since 1987 with the primary objective of creating a self-sustaining fishery. Success has been limited by low recruitment to the fishery, low adult returns to hatcheries, and a skewed sex ratio. It was hypothesized that a stock native to the upper Columbia River might perform better than the coastal Lake Whatcom stock. Kokanee from Meadow Creek, a tributary of Kootenay Lake, British Columbia were selected as an alternative stock. Post smolts from each stock were released from Sherman Creek Hatchery in late June 2000 and repeated in 2001. Stock performance was evaluated using three measures; (1) number of returns to Sherman Creek, the primary egg collection facility, (2) the number of returns to 86 tributaries sampled and, (3) the number of returns to the creel. In two repeated experiments, neither Meadow Creek or Lake Whatcom kokanee appeared to be capable of providing a run of three-year old spawners to sustain stocking efforts. Less than 10 three-years olds from either stock were collected during the study period. Chi-square analysis indicated age two Meadow Creek kokanee returned to Sherman Creek and to other tributaries in significantly higher numbers when compared to the Lake Whatcom stock in both 2000 and 2001. However, preliminary data from the Spokane Tribe of Indians indicated that a large number of both stocks were precocial before they were stocked. The small number of hatchery three-year olds collected indicated that the current hatchery rearing and stocking methods will continue to produce a limited jacking run largely composed of precocious males and a small number of three-year olds. No kokanee from the study were collected during standard lake wide creel surveys. Supplemental creel data, including fishing derbies, test fisheries, and angler diaries, indicated anglers harvested two-year-old hatchery kokanee a month after release. The majority of the two-year old kokanee harvested were from a direct stock at the Fort Spokane boat launch. Only Lake Whatcom kokanee were stocked from the boat launch, therefore stock performance was not evaluated, however the high success of the stocking location will likely increase harvest of hatchery kokanee in the future. Despite low numbers of the targeted three-year olds, Meadow Creek kokanee should be stocked when possible to promote fish native to the upper Columbia River.

  6. Geothermal Literature Review At Medicine Lake Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Medicine Lake Geothermal Area (1984) Exploration Activity Details Location...

  7. Great Lakes Water Scarcity and Regional Economic Development

    ScienceCinema (OSTI)

    Cameron Davis; Tim Eder; David Ulrich; David Naftzger; Donald J. Wuebbles; Mark C. Petri

    2013-06-06

    Great Lakes Water Scarcity and Regional Economic Development panel at Northwestern University on 10/10/2012

  8. Workplace Charging Challenge Partner: College of Lake County | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy College of Lake County Workplace Charging Challenge Partner: College of Lake County Workplace Charging Challenge Partner: College of Lake County The College of Lake County is committed to sustainability and strives to both reduce its carbon emissions and provide learning opportunities for students and members of the community. Plug-in electric vehicle (PEV) charging stations help the College to meet both aspects of this goal. The College installed its first charging station in the

  9. Great Lakes Water Scarcity and Regional Economic Development

    SciTech Connect (OSTI)

    Cameron Davis; Tim Eder; David Ulrich; David Naftzger; Donald J. Wuebbles; Mark C. Petri

    2012-10-10

    Great Lakes Water Scarcity and Regional Economic Development panel at Northwestern University on 10/10/2012

  10. Leading the Charge: Jana Ganion Advances Blue Lake Rancheria's Climate

    Office of Environmental Management (EM)

    Action Agenda | Department of Energy Jana Ganion Advances Blue Lake Rancheria's Climate Action Agenda Leading the Charge: Jana Ganion Advances Blue Lake Rancheria's Climate Action Agenda February 27, 2015 - 10:38am Addthis Jana Ganion is the Energy Director for the Blue Lake Rancheria. Jana Ganion is the Energy Director for the Blue Lake Rancheria. Change doesn't happen on its own. It's led by dedicated and passionate people who are committed to empowering Indian Country to energize future

  11. Ambrosia Lake, New Mexico, Disposal Site Fact Sheet

    Office of Legacy Management (LM)

    Ambrosia Lake, New Mexico, Disposal Site This fact sheet provides information about the Uranium Mill Tailings Radiation Control Act of 1978 Title I disposal site located at Ambrosia Lake, New Mexico. The site is managed by the U.S. Department of Energy Office of Legacy Management. Location of the Ambrosia Lake Disposal Site Site Description and History The Ambrosia Lake disposal site is a former uranium-ore processing facility in McKinley County, approximately 25 miles north of Grants, New

  12. DOE - Office of Legacy Management -- West Lake Landfill - MO 05

    Office of Legacy Management (LM)

    Lake Landfill - MO 05 FUSRAP Considered Sites Site: West Lake Landfill (MO.05) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see http://www.epa.gov/oerrpage/superfund/sites/npl/nar1289.htm Documents Related to West Lake Landfill

  13. Climate Action Champions: Salt Lake City, UT | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Salt Lake City, UT Climate Action Champions: Salt Lake City, UT Salt Lake City, the capital of Utah, blends snowy mountain ranges with an urban downtown. Known historically as the “Crossroads of the West,” Salt Lake City today is a major economic center in the Great Basin and a hub of tourism. │ Photo courtesy of University of Utah Department of Mathematics. Salt Lake City, the capital of Utah, blends snowy mountain ranges with an urban downtown. Known historically as the

  14. Glen Canyon National Recreation Area, Lake Powell, Utah | Department of

    Office of Environmental Management (EM)

    Energy Glen Canyon National Recreation Area, Lake Powell, Utah Glen Canyon National Recreation Area, Lake Powell, Utah Photo of the Photovoltaic System at Lake Powell, Utah Lake Powell is part of Utah's Glen Canyon National Recreation Area. The Dangling Rope Marina operates by using diesel generators to supply power. They use 65,000 gallons of diesel fuel per year that has to be barged in over Lake Powell. The potential for environmental damage to the marina in the event of a fuel spill is

  15. Lake Roosevelt Fisheries Monitoring Program; Artificial Imprinting and Smoltification in Juvenile Kokanee Salmon Implications for Operating Lake Roosevelt Kokanee Salmon Hatcheries; 1994 Supplement Report.

    SciTech Connect (OSTI)

    Tilson, Mary Beth; Scholz, Allan T.; White, Ronald J.

    1995-02-01

    At the kokanee salmon hatcheries on Lake Roosevelt, constructed as partial mitigation for effects from Grand Coulee Dam, adult returns have been poor. The reason may be in the imprinting or in the smoltification. A study was initiated in 1992 to determine if there was a critical period for thyroxine induced alfactory imprinting in kokanee salmon; experiments were conducted on imprinting to morpholine and phenethyl alcohol. Other results showed that chemical imprinting coincided with elevated thyroxine levels in 1991 kokanee exposed to synthetic chemicals in 1992. In this report, imprinting experiments were repeated; results showed that imprinting occurred concomitant with elevated thyroxine levels in 1991 kokanee exposed to synthetic chemicals in 1992 and tested in 1994 as age 3 spawners. Imprinting also occurred at the same time as thyroxine peaks in 1992 kokanee exposed to synthetic chemicals in 1993 and tested as age 2 spawners. In both groups fish that had the highest whole body thyroxine content (swimup stage) also had the highest percentage of fish that were attracted to their exposure odor in behavioral tests. So, kokanee salmon imprinted to chemical cues during two sensitive periods during development, at the alevin/swimup and smolt stages. A field test was conducted in Lake Roosevelt on coded wire tagged fish. Smoltification experiments were conducted from 1992 to 1994. Recommendations are made for the Lake Roosevelt kokanee hatcheries.

  16. Stochastic Forecasting of Algae Blooms in Lakes

    SciTech Connect (OSTI)

    Wang, Peng; Tartakovsky, Daniel M.; Tartakovsky, Alexandre M.

    2013-01-15

    We consider the development of harmful algae blooms (HABs) in a lake with uncertain nutrients inflow. Two general frameworks, Fokker-Planck equation and the PDF methods, are developed to quantify the resultant concentration uncertainty of various algae groups, via deriving a deterministic equation of their joint probability density function (PDF). A computational example is examined to study the evolution of cyanobacteria (the blue-green algae) and the impacts of initial concentration and inflow-outflow ratio.

  17. Salt Lake City | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Salt Lake City | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA

  18. Energy Efficient Buildings, Salt Lake County, Utah

    SciTech Connect (OSTI)

    Barnett, Kimberly

    2012-04-30

    Executive Summary Salt Lake County's Solar Photovoltaic Project - an unprecedented public/private partnership Salt Lake County is pleased to announce the completion of its unprecedented solar photovoltaic (PV) installation on the Calvin R. Rampton Salt Palace Convention Center. This 1.65 MW installation will be one the largest solar roof top installations in the country and will more than double the current installed solar capacity in the state of Utah. Construction is complete and the system will be operational in May 2012. The County has accomplished this project using a Power Purchase Agreement (PPA) financing model. In a PPA model a third-party solar developer will finance, develop, own, operate, and maintain the solar array. Salt Lake County will lease its roof, and purchase the power from this third-party under a long-term Power Purchase Agreement contract. In fact, this will be one of the first projects in the state of Utah to take advantage of the recent (March 2010) legislation which makes PPA models possible for projects of this type. In addition to utilizing a PPA, this solar project will employ public and private capital, Energy Efficiency and Conservation Block Grants (EECBG), and public/private subsidized bonds that are able to work together efficiently because of the recent stimulus bill. The project also makes use of recent changes to federal tax rules, and the recent re-awakening of private capital markets that make a significant public-private partnership possible. This is an extremely innovative project, and will mark the first time that all of these incentives (EECBG grants, Qualified Energy Conservation Bonds, New Markets tax credits, investment tax credits, public and private funds) have been packaged into one project. All of Salt Lake County's research documents and studies, agreements, and technical information is available to the public. In addition, the County has already shared a variety of information with the public through webinars, site tours, presentations, and written correspondence.

  19. Great Lakes Bioenergy Research Center Technology Marketing Summaries -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Great Lakes Bioenergy Research Center Technology Marketing Summaries Here you'll find marketing summaries for technologies available for licensing from the Great Lakes Bioenergy Research Center (GLBRC). The summaries provide descriptions of the technologies including their benefits, applications and industries, and development stage. Great Lakes Bioenergy Research Center 43 Technology Marketing Summaries Category Title and Abstract Laboratories Date Biomass and

  20. Salt Lake County Residential Solar Financing Study | Department of Energy

    Energy Savers [EERE]

    Salt Lake County Residential Solar Financing Study Salt Lake County Residential Solar Financing Study As part of our engagement with the National Renewable Energy Laboratories conducting the Salt Lake County Solar America Residential Finance Study, we have drafted this report summarizing the tools and mechanisms available for residential solar projects. These include the financial incentives available, possible financing models that could be used in the County, and a review of the

  1. Climate Action Champions: Blue Lake Rancheria Tribe, CA | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Blue Lake Rancheria Tribe, CA Climate Action Champions: Blue Lake Rancheria Tribe, CA The Blue Lake Rancheria, California, a federally recognized Native American tribal Government and community, is located on over 100 acres of land spanning the scenic Mad River in northwestern California. In its operational strategy, the Tribe has implemented the ‘seven generations’ philosophy, where actions taken today will have a positive impact for seven generations to come. This results

  2. EIS-0498: Magnolia LNG and Lake Charles Expansion Projects; Calcasieu

    Office of Environmental Management (EM)

    Parish, Louisiana | Department of Energy 8: Magnolia LNG and Lake Charles Expansion Projects; Calcasieu Parish, Louisiana EIS-0498: Magnolia LNG and Lake Charles Expansion Projects; Calcasieu Parish, Louisiana Summary The Federal Energy Regulatory Commission prepared an EIS that analyzes the potential environmental impacts of constructing and operating the proposed Magnolia LNG Project, an on-land liquefied natural gas (LNG) terminal and associated facilities near Lake Charles, Louisiana.

  3. Paleoclimatic significance of lake level fluctuations in the Lahontan Basin. [Pyramid Lake, Nevada

    SciTech Connect (OSTI)

    Benson, L.V.

    1980-08-01

    An energy flux balance model has been developed which treats evaporation as a function of air temperature, surface water temperature, precipitable water aloft, the amount, height, and type of sky cover, and the optical air mass. The model has been used to estimate the mean historical evaporation rate for Pyramid Lake, Nevada, using as input climatic data from the Reno area averaged over the period 1950 to 1975. Estimated and measured values of the mean annual evaporation rate were found to be in good agreement. The model was used to simulate changes in the level, the surface area and the volume of paleo Lake Lahontan. In particular, possible climatic states responsible for past high stands (1270 and 1330 m) were investigated. A conservative range of discharge values was used in the calculations. Results of the simulations indicate the fundamental importance of sky cover in the creation and destruction of large lake systems.

  4. Facies distributions within contrasting structural components of a rift lake: Lake Tanganyika, Africa

    SciTech Connect (OSTI)

    Soreghan, M.J.; Cohen, A.S. )

    1991-03-01

    Lake Tanganyika is the most widely cited modern analog for interpreting ancient rift lakes; thus, understanding controls on its facies distribution is critical for refining stratigraphic models for rifts. Four recurrent margin types occur along the alternating half-graben structure of the lake: rift axes, platforms, escarpments, and accommodation zones. Data from study sites in the northern part of the lake suggest that predictable facies differences exist between these structural margin types. The rift axis site comprises a low-gradient, clastic (wave/current)-dominated deltaic system, with strong facies asymmetry and minor carbonate accumulations on raised benches. The platform margin site comprises a series of structurally controlled benches over which long, continuous facies tracts occur. Carbonate sands, muds, and shell gravel dominate; clastics are limited to moderate-sized silty deltas and long, narrow shoreface sands. The escarpment margin site is a steep-gradient system along which small ({lt}1 km{sup 2}) fan deltas alternate with cemented talus. The accommodation zone margin sites are also dominated by rugged structural relief, generally small fan deltas, and semicontinuous shoreface sand belts ({gt}5 km) onshore and poorly sorted silts offshore. TOC from fine-grained samples reflects the contrast in margin types. TOC values for the platform and rift axis range from 0.4 - 2.1 wt. % (avg. 1.3%), whereas accommodation zone and escarpment margin values range from 0.5-5.5% (avg. 3.0%). Acid insoluble sulfur shows a similar trend. Although all data are significantly correlated with depth, the relative area of the lake margin above and below the oxicline is directly controlled by the structural style of the lake margin.

  5. EIS-0498: Magnolia LNG and Lake Charles Expansion Projects; Calcasieu...

    Energy Savers [EERE]

    with the public interest. EIS-0498: Magnolia LNG and Lake Charles Expansion Projects Public Comment Opportunities No public comment opportunities available at this time....

  6. Static Temperature Survey At Medicine Lake Area (Warpinski, Et...

    Open Energy Info (EERE)

    GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Static Temperature Survey At Medicine Lake Area (Warpinski, Et Al., 2002) Exploration Activity Details Location Medicine...

  7. Lake Hart, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Lake Hart, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 28.3927849, -81.2406232 Show Map Loading map... "minzoom":false,"mappingser...

  8. Blue Lake Plant Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    National Map Retrieved from "http:en.openei.orgwindex.php?titleBlueLakePlantBiomassFacility&oldid397215" Feedback Contact needs updating Image needs updating...

  9. Geothermal Literature Review At Lake City Hot Springs Area (Benoit...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lake City Hot Springs Area (Benoit, Et Al., 2004) Exploration Activity...

  10. Compound and Elemental Analysis At Lake City Hot Springs Area...

    Open Energy Info (EERE)

    Date Usefulness useful DOE-funding Unknown References Chris Sladek, Greg B. Arehart, Walter R. Benoit (2004) Geochemistry Of The Lake City Geothermal System, California, Usa...

  11. Lake Encroachment Permit Application, Abutting Land Owner Addendum...

    Open Energy Info (EERE)

    Lake Encroachment Permit Application, Abutting Land Owner Addendum Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- Permit ApplicationPermit...

  12. The Great Lakes Insitute for Energy Innovation | Open Energy...

    Open Energy Info (EERE)

    Insitute for Energy Innovation Jump to: navigation, search Name: The Great Lakes Insitute for Energy Innovation Place: Cleveland, Ohio Zip: 44106 Website: energy.case.edu...

  13. Salt Lake City, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Salt Lake City, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.7607793, -111.8910474 Show Map Loading map... "minzoom":false,"mapping...

  14. City of Lake Park, Iowa (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    City of Place: Iowa Phone Number: (712) 832-3667 Website: www.lakeparkia.comindex.phpl Facebook: https:www.facebook.compagesLake-Park-Iowa104075932961159 Outage Hotline:...

  15. Isotopic Analysis At Clear Lake Area (Thompson, Et Al., 1992...

    Open Energy Info (EERE)

    Exploration Activity Details Location Clear Lake Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness useful DOE-funding Unknown Notes Deuterium and...

  16. Hush Lake, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hush Lake, Minnesota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.4494204, -92.1031839 Show Map Loading map... "minzoom":false,"mappings...

  17. Mountain Lakes, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Mountain Lakes, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.8948212, -74.4329314 Show Map Loading map......

  18. Obama Administration and Great Lakes States Announce Agreement...

    Broader source: Energy.gov (indexed) [DOE]

    wind resources in the Great Lakes. This effort underscores the President's commitment to American made energy, ... increased oil and gas production, the safe development of ...

  19. Compound and Elemental Analysis At Fish Lake Valley Area (Deymonaz...

    Open Energy Info (EERE)

    ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Exploration Activity Details Location Fish...

  20. Groundwater recharge from Long Lake, Indiana Dunes National Lakeshore

    SciTech Connect (OSTI)

    Isiorho, S.A.; Beeching, F.M. (Indiana Univ., Fort Wayne, IN (United States). Geosciences Dept.); Whitman, R.L.; Stewart, P.M. (National Park Services, Porter, IN (United States). Indiana Dunes National Lakeshore); Gentleman, M.A.

    1992-01-01

    Long Lake, located between Lake Michigan and the Dune-complexes of Indiana Dunes, was formed during Pleistocene and Holocene epochs. The lake is currently being studied to understand the detailed hydrology. One of the objective of the study is to understand the hydrologic relationship between the lake and a water treatment holding pond to the northeast. Understanding the water movement between the two bodies of water, if any, would be very important in the management and protection of nature preserves in the area. Seepage measurement and minipiezometric tests indicate groundwater recharge from Long Lake. The groundwater recharge rate is approximately 1.40 to 22.28 x 10[sup [minus]4] m/day. An estimate of the amount of recharge of 7.0 x 10[sup 6] m[sup 3]/y may be significant in terms of groundwater recharge of the upper aquifer system of the Dunes area. The water chemistry of the two bodies of water appears to be similar, however, the pH of the holding pond is slightly alkaline (8.5) while that of Long Lake is less alkaline (7.7). There appears to be no direct contact between the two bodies of water (separated by approximately six meters of clay rich sediment). The geology of the area indicates a surficial aquifer underlying Long Lake. The lake should be regarded as a recharge area and should be protected from pollutants as the degradation of the lake would contaminate the underlying aquifer.

  1. Time-Domain Electromagnetics At Soda Lake Area (Combs 2006) ...

    Open Energy Info (EERE)

    Time-Domain Electromagnetics At Soda Lake Area (Combs 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Time-Domain Electromagnetics At Soda...

  2. Compound and Elemental Analysis At Clear Lake Area (Thompson...

    Open Energy Info (EERE)

    Details Location Clear Lake Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness useful DOE-funding Unknown Notes Based on the above discussion,...

  3. Geothermometry At Clear Lake Area (Thompson, Et Al., 1992) |...

    Open Energy Info (EERE)

    Activity Details Location Clear Lake Area Exploration Technique Geothermometry Activity Date Usefulness useful DOE-funding Unknown Notes Based on the above discussion,...

  4. Lake Forest, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Lake Forest, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.6469661, -117.689218 Show Map Loading map... "minzoom":false,"mappi...

  5. Lake Forest, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Lake Forest, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 30.3980165, -81.6737085 Show Map Loading map... "minzoom":false,"mappings...

  6. Marion Lake, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Marion Lake, Minnesota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.1383694, -91.9960581 Show Map Loading map... "minzoom":false,"mappin...

  7. EIS-0498: Magnolia LNG and Lake Charles Expansion Projects; Calcasieu...

    Broader source: Energy.gov (indexed) [DOE]

    which would reconfigure an existing pipeline system to serve the LNG terminal site. ... EIS-0498: Magnolia LNG and Lake Charles Expansion Projects Public Comment Opportunities No ...

  8. Seismic Structure And Seismicity Of The Cooling Lava Lake Of...

    Open Energy Info (EERE)

    Of The Cooling Lava Lake Of Kilauea Iki, Hawaii Abstract The use of multiple methods is indispensable for the determination of the seismic properties of a complex body...

  9. Ground Gravity Survey At Lake City Hot Springs Area (Warpinski...

    Open Energy Info (EERE)

    Exploration Activity Details Location Lake City Hot Springs Area Exploration Technique Ground Gravity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes The...

  10. Heat flow studies, Coso Geothermal Area, China Lake, California...

    Open Energy Info (EERE)

    Heat flow studies in the Coso Geothermal Area were conducted at China Lake, California. Temperature measurements were completed in nine of the heat flow boreholes. Temperatures...

  11. Iowa Lakes Community College Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Community College Energy Purchaser Iowa Lakes Community College Location Esterville IA Coordinates 43.397912, -94.81768 Show Map Loading map... "minzoom":false,"mappingse...

  12. Palmer Lake, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    district.12 Registered Energy Companies in Palmer Lake, Colorado American Electric Vehicles Inc References US Census Bureau Incorporated place and minor civil...

  13. Angola on the Lake, New York: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Angola on the Lake, New York: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.6547811, -79.0489273 Show Map Loading map......

  14. Taylor Lake Village, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    dataset (All States, all geography) US Census Bureau Congressional Districts by Places. Retrieved from "http:en.openei.orgwindex.php?titleTaylorLakeVillage,Texas&oldid...

  15. Star Lake, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Lake, New York: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.159785, -75.0315825 Show Map Loading map... "minzoom":false,"mappingservice"...

  16. Cordes Lakes, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Lakes, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.3078074, -112.1034912 Show Map Loading map... "minzoom":false,"mappingservic...

  17. Green Lake County, Wisconsin: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Mackford, Wisconsin Markesan, Wisconsin Marquette, Wisconsin Princeton, Wisconsin St. Marie, Wisconsin Retrieved from "http:en.openei.orgwindex.php?titleGreenLakeCounty,W...

  18. Salt Lake County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Creek Valley, Utah Magna, Utah Midvale, Utah Millcreek, Utah Mount Olympus, Utah Murray, Utah Riverton, Utah Salt Lake City, Utah Sandy, Utah South Jordan, Utah South Salt...

  19. Acomita Lake, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Acomita Lake, New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.0703192, -107.6136628 Show Map Loading map... "minzoom":false,"map...

  20. Stepout-Deepening Wells At Medicine Lake Area (Warpinski, Et...

    Open Energy Info (EERE)

    2) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Stepout-Deepening Wells At Medicine Lake Area (Warpinski, Et Al., 2002) Exploration Activity...

  1. Moose Lake Water & Light Comm | Open Energy Information

    Open Energy Info (EERE)

    Website: www.mooselakepower.com Facebook: https:www.facebook.compagesMoose-Lake-Water-Light-Commission445326012175319?frefts Outage Hotline: (218) 485-4100 References:...

  2. East Soda Lake Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    ","group":"","inlineLabel":"","visitedicon":"" Hide Map Location Fallon, NV County Churchill County, NV Geothermal Area Soda Lake Geothermal Area Geothermal Region Northwest...

  3. Lazy Lake, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    it. Lazy Lake is a village in Broward County, Florida. It falls under Florida's 20th congressional district.12 References US Census Bureau Incorporated place and...

  4. Lauderdale Lakes, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    it. Lauderdale Lakes is a city in Broward County, Florida. It falls under Florida's 20th congressional district and Florida's 23rd congressional district.12 References ...

  5. Lake Country Wind Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    Wind Energy LLC Jump to: navigation, search Name: Lake Country Wind Energy LLC Place: Minnesota Zip: 56209 Sector: Renewable Energy, Wind energy Product: Minnesota-based wind...

  6. Lake County- Energy Smart Colorado Renewable Energy Rebate Program

    Broader source: Energy.gov [DOE]

    Residents of Roaring Fork Valley and Eagle, Gunnison, Lake, and Summit Counties are eligible for energy efficiency and renewable energy assistance, rebates, and financing through the Energy Smart...

  7. Lake County- Energy Smart Colorado Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Residents of Roaring Fork Valley and Eagle, Gunnison, Lake, and Summit Counties are eligible for energy efficiency and renewable energy assistance, rebates, and financing through the Energy Smart...

  8. Data Acquisition-Manipulation At Lake City Hot Springs Area ...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Lake City Hot Springs Area (Warpinski, Et Al., 2004)...

  9. Lake of the Woods County, Minnesota: Energy Resources | Open...

    Open Energy Info (EERE)

    in Lake of the Woods County, Minnesota Baudette, Minnesota Roosevelt, Minnesota Williams, Minnesota Retrieved from "http:en.openei.orgwindex.php?titleLakeoftheWoodsC...

  10. Salt Lake City, Utah, Processing and Disposal Sites Fact Sheet

    Office of Legacy Management (LM)

    Salt Lake City, Utah, Processing and Disposal Sites This fact sheet provides information about the Uranium Mill Tailings Radiation Control Act of 1978 Title I processing site and disposal site at Salt Lake City, Utah. These sites are managed by the U.S. Department of Energy Office of Legacy Management. Locations of the Salt Lake City Processing and Disposal Sites Site Descriptions and History The former Salt Lake City processing site is located about 4 miles south-southwest of the center of Salt

  11. China Lake South Range Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: China Lake South Range Geothermal Project Project Location Information Coordinates 35.65,...

  12. Lake Charles Liquefaction Project Final Environmental Impact Statement

    Office of Environmental Management (EM)

    Lake Charles Liquefaction Project Final Environmental Impact Statement Trunkline Gas Company, LLC, Lake Charles LNG Company, LLC, and Lake Charles LNG Export Company, LLC FERC Docket Nos. CP14-119-000, CP14-120-000, and CP14-122-000 DOE Docket Nos. 11-59-LNG and 13-04-LNG FERC/EIS-0258F, DOE/EIS-0491 Cooperating Agencies: U.S. Coast Guard U.S. Department of Energy U.S. Department of Transportation Lake Charles Liquefaction Project Final Environmental Impact Statement FERC/EIS-0258F Docket Nos.

  13. Cloud Lake, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Cloud Lake, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 26.6761772, -80.0739308 Show Map Loading map... "minzoom":false,"mappingse...

  14. Fond du Lac Band Leads Climate Resilience Efforts on Lake Superior...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fond du Lac Band Leads Climate Resilience Efforts on Lake Superior Chippewa Indian Reservation Fond du Lac Band Leads Climate Resilience Efforts on Lake Superior Chippewa Indian ...

  15. Reflection Survey At Fish Lake Valley Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Reflection Survey At Fish Lake Valley Area (DOE GTP) Exploration...

  16. Density Log at Fish Lake Valley Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Density Log at Fish Lake Valley Area (DOE GTP) Exploration...

  17. Thermal Gradient Holes At Fish Lake Valley Area (DOE GTP) | Open...

    Open Energy Info (EERE)

    Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Fish Lake Valley Area (DOE GTP)...

  18. Slim Holes At Fish Lake Valley Area (Deymonaz, Et Al., 2008)...

    Open Energy Info (EERE)

    Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Slim Holes At Fish Lake Valley Area (Deymonaz, Et...

  19. Core Analysis At Fish Lake Valley Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Analysis At Fish Lake Valley Area (DOE GTP) Exploration...

  20. Flow Test At Fish Lake Valley Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Fish Lake Valley Area (DOE GTP) Exploration Activity...

  1. Resistivity Log At Fish Lake Valley Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Resistivity Log At Fish Lake Valley Area (DOE GTP) Exploration...

  2. Thermal And-Or Near Infrared At Fish Lake Valley Area (Deymonaz...

    Open Energy Info (EERE)

    Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal And-Or Near Infrared At Fish Lake Valley...

  3. Water Sampling At Hot Lake Area (Wood, 2002) | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Hot Lake Area (Wood, 2002) Exploration Activity Details Location Hot Lake...

  4. Development Wells At Soda Lake Area (DOE GTP) | Open Energy Informatio...

    Open Energy Info (EERE)

    Soda Lake Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Development Wells At Soda Lake Area (DOE GTP) Exploration Activity...

  5. Flow Test At Soda Lake Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Soda Lake Area (DOE GTP) Exploration Activity Details Location Soda Lake Area...

  6. Pressure Temperature Log At Soda Lake Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Pressure Temperature Log At Soda Lake Area (DOE GTP) Exploration Activity Details Location Soda Lake...

  7. Reflection Survey At Soda Lake Area (DOE GTP) | Open Energy Informatio...

    Open Energy Info (EERE)

    Soda Lake Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Reflection Survey At Soda Lake Area (DOE GTP) Exploration Activity...

  8. Fate of hazardous waste derived organic compounds in Lake Ontario

    SciTech Connect (OSTI)

    Jaffe, R.; Hites, R.A.

    1986-03-01

    Dated sediment cores from Lake Ontario's four sedimentation basins and sedentary fish from tributaries and embayments were analyzed by gas chromatographic, methane-enhanced, negative ion mass spectrometry for a group of fluorinated aromatic compounds. The historical record of these chemicals in Lake Ontario sediments agrees well with the use of the Hyde Park dump in the city of Niagara Falls, NY. These compounds first appeared in sediments in 1958 and rapidly increased until 1970. These dates coincide with the onset of dumping at Hyde Park and remedial action undertaken when this dump was closed, respectively. Chemicals introduced into Lake Ontario by the Niagara River distribute throughout the lake rapidly and uniformly and accumulate in sedentary fish taken from remote locations in the lake. 24 references, 9 figures, 4 tables.

  9. Assessment of Biomass Energy Opportunities for the Red Lake Band of Chippewa Indians

    SciTech Connect (OSTI)

    Scott Haase

    2005-09-30

    Assessment of biomass energy and biobased product manufacturing opportunities for the Red Lake Tribe.

  10. DOE Tour of Zero Floorplans: Mutual Housing at Spring Lake by Mutual

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Housing California | Department of Energy DOE Tour of Zero Floorplans: Mutual Housing at Spring Lake by Mutual Housing California DOE Tour of Zero Floorplans: Mutual Housing at Spring Lake by Mutual Housing California DOE Tour of Zero Floorplans: Mutual Housing at Spring Lake by Mutual Housing California DOE Tour of Zero Floorplans: Mutual Housing at Spring Lake by Mutual Housing California DOE Tour of Zero Floorplans: Mutual Housing at Spring Lake by Mutual Housing California DOE Tour of

  11. Alternative Fuels Data Center: Salt Lake City Fuels Vehicles With Natural

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Gas Salt Lake City Fuels Vehicles With Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Salt Lake City Fuels Vehicles With Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Salt Lake City Fuels Vehicles With Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Salt Lake City Fuels Vehicles With Natural Gas on Google Bookmark Alternative Fuels Data Center: Salt Lake City Fuels Vehicles With Natural Gas on Delicious Rank Alternative Fuels Data

  12. U.S. Natural Gas Imports by Pipeline from Mexico

    Gasoline and Diesel Fuel Update (EIA)

    LNG Imports from Canada Champlain, NY Highgate Springs, VT Sumas, WA LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake...

  13. U.S. LNG Imports from Canada

    Gasoline and Diesel Fuel Update (EIA)

    LNG Imports from Canada Champlain, NY Highgate Springs, VT Sumas, WA LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake...

  14. City of Lake City, Minnesota (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Place: Minnesota Phone Number: (651) 345 - 5383 (8am to 4:30pm weekdays) Website: www.ci.lake-city.mn.usindex.a Outage Hotline: After Hours: (651) 345 - 4711 or (651) 345 -...

  15. Medicine Lake, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Medicine Lake is a city in Hennepin County, Minnesota. It falls under Minnesota's 3rd...

  16. White Meadow Lake, New Jersey: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. White Meadow Lake is a census-designated place in Morris County, New Jersey.1 References...

  17. Spring Lake, Michigan: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Spring Lake is a village in Ottawa County, Michigan. It falls under Michigan's 2nd...

  18. Spring Lake, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Spring Lake is a census-designated place in Utah County, Utah.1 References US Census...

  19. Sky Lake, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Sky Lake is a census-designated place in Orange County, Florida.1 References US...

  20. Category:Salt Lake City, UT | Open Energy Information

    Open Energy Info (EERE)

    UT Jump to: navigation, search Go Back to PV Economics By Location Media in category "Salt Lake City, UT" The following 16 files are in this category, out of 16 total....

  1. City of Shasta Lake Electric Utility- PV Rebate Program

    Broader source: Energy.gov [DOE]

    City of Shasta Lake Electric Utility is providing rebates to their customers for the purchase of photovoltaic (PV) systems. The rebate levels will decrease annually over the life of the program. ...

  2. Lake Nacimiento, California: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    You can help OpenEI by expanding it. Lake Nacimiento is a census-designated place in San Luis Obispo County, California.1 References US Census Bureau 2005 Place to 2006...

  3. Lake Quivira, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    This article is a stub. You can help OpenEI by expanding it. Lake Quivira is a city in Johnson County and Wyandotte County, Kansas. It falls under Kansas's 3rd congressional...

  4. MHK Projects/Lake Huron | Open Energy Information

    Open Energy Info (EERE)

    during July-August 2005 in Lake Huron. The rest of the rig was developed to mimic the action of the hydraulic system and provide the opportunity to take various measurements to...

  5. Cottage Lake, Washington: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    stub. You can help OpenEI by expanding it. Cottage Lake is a census-designated place in King County, Washington.1 References US Census Bureau 2005 Place to 2006 CBSA...

  6. Ames Lake, Washington: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    a stub. You can help OpenEI by expanding it. Ames Lake is a census-designated place in King County, Washington.1 References US Census Bureau 2005 Place to 2006 CBSA...

  7. Lake Marcel-Stillwater, Washington: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    can help OpenEI by expanding it. Lake Marcel-Stillwater is a census-designated place in King County, Washington.1 References US Census Bureau 2005 Place to 2006 CBSA...

  8. Lake Forest Park, Washington: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    article is a stub. You can help OpenEI by expanding it. Lake Forest Park is a city in King County, Washington. It falls under Washington's 1st congressional district and...

  9. Lake Morton-Berrydale, Washington: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    can help OpenEI by expanding it. Lake Morton-Berrydale is a census-designated place in King County, Washington.1 References US Census Bureau 2005 Place to 2006 CBSA...

  10. Maple Heights-Lake Desire, Washington: Energy Resources | Open...

    Open Energy Info (EERE)

    help OpenEI by expanding it. Maple Heights-Lake Desire is a census-designated place in King County, Washington.1 References US Census Bureau 2005 Place to 2006 CBSA...

  11. Lake Lahontan: Geology of Southern Carson Desert, Nevada | Open...

    Open Energy Info (EERE)

    with the soil of pre-Tahoe age (of Blackwelder, 1931) in the Sierra Nevada; the Churchill soil is correlated with the middle Lake Bonneville soil and with the soil of inter-Tahoe...

  12. Seven Lakes, North Carolina: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    stub. You can help OpenEI by expanding it. Seven Lakes is a census-designated place in Moore County, North Carolina.1 References US Census Bureau 2005 Place to 2006 CBSA...

  13. Static Temperature Survey At Lake City Hot Springs Area (Benoit...

    Open Energy Info (EERE)

    Notes Two deeper wells encountered temps of 327 and 329 oF References Dick Benoit, Joe Moore, Colin Goranson, David Blackwell (2005) Core Hole Drilling And Testing At The Lake...

  14. Storm Lake, Iowa: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    article is a stub. You can help OpenEI by expanding it. Storm Lake is a city in Buena Vista County, Iowa. It falls under Iowa's 5th congressional district.12 Registered...

  15. Blue Lake, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Blue Lake is a city in Humboldt County, California. It falls under California's 1st...

  16. Egypt Lake-Leto, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Egypt Lake-Leto is a census-designated place in Hillsborough County, Florida.1 References...

  17. Lake Meade, Pennsylvania: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    a stub. You can help OpenEI by expanding it. Lake Meade is a census-designated place in Adams County, Pennsylvania.1 References US Census Bureau 2005 Place to 2006 CBSA...

  18. Lake Heritage, Pennsylvania: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    You can help OpenEI by expanding it. Lake Heritage is a census-designated place in Adams County, Pennsylvania.1 References US Census Bureau 2005 Place to 2006 CBSA...

  19. Big Bear Lake, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Big Bear Lake is a city in San Bernardino County, California. It falls under California's...

  20. Red Feather Lakes, Colorado: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Red Feather Lakes is a census-designated place in Larimer County, Colorado.1 References...

  1. Red Lake County, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Red Lake County is a county in Minnesota. Its FIPS County Code is 125. It is classified as...

  2. Moon Lake Electric Assn Inc (Utah) | Open Energy Information

    Open Energy Info (EERE)

    search Name: Moon Lake Electric Assn Inc Place: Utah Phone Number: ALTAMONT OFFICE (435) 454-3611 -- DUCHESNE OFFICE (435) 738-5322 -- RANGELY OFFICE (970) 675-2291 --...

  3. West Lake Hills, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. West Lake Hills is a city in Travis County, Texas. It falls under Texas's 10th congressional...

  4. Vermont Individual Lake Encroachment Permit | Open Energy Information

    Open Energy Info (EERE)

    Abstract Submission of this application required for notice of intent to encroach beyond the mean water level of a lake or pond, and certify that the project will comply with...

  5. Avon Lake, Ohio: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Avon Lake is a city in Lorain County, Ohio. It falls under Ohio's 13th congressional...

  6. Changing Weather and Climate in the Great Lakes Region

    Broader source: Energy.gov [DOE]

    This 4-week course will feature a new season each week through short lectures and activities covering Great Lakes weather, observed changes in the climate, and societal impacts of climate change....

  7. China Lake Acres, California: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. China Lake Acres is a census-designated place in Kern County, California.1 References ...

  8. Emerald Lake Hills, California: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Emerald Lake Hills is a census-designated place in San Mateo County, California.1...

  9. Prior Lake, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    This article is a stub. You can help OpenEI by expanding it. Prior Lake is a city in Scott County, Minnesota. It falls under Minnesota's 2nd congressional district.12...

  10. PROJECT PROFILE: Salt Lake City Corporation (Solar Market Pathways)

    Broader source: Energy.gov [DOE]

    Title: Wasatch Solar Project Funding Opportunity: Solar Market PathwaysSunShot Subprogram: Soft CostsLocation: Salt Lake City, UTAmount Awarded: $600,000Awardee Cost Share: $164,645

  11. Thermokarst lake methanogenesis along a complete talik profile

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Heslop, J. K.; Walter Anthony, K. M.; Sepulveda-Jauregui, A.; Martinez-Cruz, K.; Bondurant, A.; Grosse, G.; Jones, M. C.

    2015-07-24

    Thermokarst (thaw) lakes emit methane (CH4) to the atmosphere formed from thawed permafrost organic matter (OM), but the relative magnitude of CH4 production in surface lake sediments vs. deeper thawed permafrost horizons is not well understood. We assessed anaerobic CH4 production potentials from various depths along a 590 cm long lake sediment core that captured the entire sediment package of the talik (thaw bulb) beneath the center of an interior Alaska thermokarst lake, Vault Lake, and the top 40 cm of thawing permafrost beneath the talik. We also studied the adjacent Vault Creek permafrost tunnel that extends through ice-rich yedomamore » permafrost soils surrounding the lake and into underlying gravel. Our results showed CH4 production potentials were highest in the organic-rich surface lake sediments, which were 151 cm thick (mean ± SD: 5.95 ± 1.67 μg C–CH4 g dw-1 d-1; 125.9 ± 36.2 μg C–CH4 g C−1org d-1). High CH4 production potentials were also observed in recently thawed permafrost (1.18 ± 0.61 μg C–CH4g dw-1 d-1; 59.60± 51.5 μg C–CH4 g C−1org d-1) at the bottom of the talik, but the narrow thicknesses (43 cm) of this horizon limited its overall contribution to total sediment column CH4 production in the core. Lower rates of CH4 production were observed in sediment horizons representing permafrost that has been thawing in the talik for a longer period of time. No CH4 production was observed in samples obtained from the permafrost tunnel, a non-lake environment. Our findings imply that CH4 production is highly variable in thermokarst lake systems and that both modern OM supplied to surface sediments and ancient OM supplied to both surface and deep lake sediments by in situ thaw and shore erosion of yedoma permafrost are important to lake CH4 production.« less

  12. Thermokarst-lake methanogenesis along a complete talik profile

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Heslop, J. K.; Walter Anthony, K. M.; Sepulveda-Jauregui, A.; Martinez-Cruz, K.; Bondurant, A.; Grosse, G.; Jones, M. C.

    2015-03-24

    Thermokarst (thaw) lakes emit methane (CH4) to the atmosphere formed from thawed permafrost organic matter (OM), but the relative magnitude of CH4 production in surface lake sediments vs. deeper thawed permafrost horizons is not well understood. We assessed anaerobic CH4 production potentials from various depths along a 590 cm long lake sediment core that captured the entire sediment package of the talik (thaw bulb) beneath the center of an interior Alaska thermokarst lake, Vault Lake, and the top 40 cm of thawing permafrost beneath the talik. We also studied the adjacent Vault Creek permafrost tunnel that extends through ice-rich yedomamore » permafrost soils surrounding the lake and into underlying gravel. Our results showed CH4 production potentials were highest in the organic-rich surface lake sediments, which were 151 cm thick (mean ± SD 5.95 ± 1.67 μg C-CH4 g dw-1 d-1; 125.9± 36.2 μg C-CH4 g C-1org d-1). High CH4 production potentials were also observed in recently-thawed permafrost (1.18± 0.61 μg C-CH4g dw-1 d-1; 59.60± 51.5 μg C-CH4 g C-1org d-1) at the bottom of the talik, but the narrow thicknesses (43 cm) of this horizon limited its overall contribution to total sediment column CH4 production in the core. Lower rates of CH4 production were observed in sediment horizons representing permafrost that has been thawed in the talik for longer periods of time. No CH4 production was observed in samples obtained from the permafrost tunnel, a non-lake environment. Our findings imply that CH4 production is highly variable in thermokarst-lake systems and that both modern OM supplied to surface sediments and ancient OM supplied to both surface and deep lake sediments by in situ thaw as well as shore erosion of yedoma permafrost are important to lake CH4 production.« less

  13. 05684ArcticLakes | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using Artificial Barriers to Augment Fresh Water Supplies in Shallow Arctic Lakes Last Reviewed 6/26/2013 DE-NT0005684 Goal The goal of this project is to implement a snow control practice to enhance snow drift formation as a local water source to recharge a depleted lake despite possible unfavorable climate and hydrology preconditions (i.e., surface storage deficit and/or low precipitation). Performer University of Alaska Fairbanks, Fairbanks, AK Background Snow is central to activities in

  14. Obama Administration and Great Lakes States Announce Agreement to Spur

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development of Offshore Wind Projects | Department of Energy and Great Lakes States Announce Agreement to Spur Development of Offshore Wind Projects Obama Administration and Great Lakes States Announce Agreement to Spur Development of Offshore Wind Projects March 30, 2012 - 12:00pm Addthis Washington, D.C. - As part of President Obama's all of the above approach to energy, the Obama Administration today joined with the governors of Illinois, Michigan, Minnesota, New York and Pennsylvania to

  15. Kootznoowoos Thayer Lake Hydroelectric Update

    Office of Environmental Management (EM)

    Kootznoowoo's Thayer Lake Hydroelectric Update U.S. Department of Energy November 17, 2009 Tribal Energy Program Thayer Lake Report  Brief Summary of Tribe  Project Overview - video  Accomplishments  Lessons Learned  Activities Yet to Be Completed  Future Plans Angoon  Angoon and its people  Time immemorial  Only year round community in wilderness and monument  400 residents with potential to grow  Current spot demand of 600 kW  Commercial Rate unsubsidized

  16. EIS-0491: Lake Charles Liquefaction Project; Calcasieu Parish, Louisiana |

    Office of Environmental Management (EM)

    Department of Energy 1: Lake Charles Liquefaction Project; Calcasieu Parish, Louisiana EIS-0491: Lake Charles Liquefaction Project; Calcasieu Parish, Louisiana Summary The Federal Energy Regulatory Commission (FERC) prepared, with DOE as a cooperating agency, an EIS to analyze the potential environmental impacts of a proposal to expand an existing liquefied natural gas (LNG) import terminal in Calcasieu Parish, Louisiana, by constructing and operating natural gas liquefaction and exportation

  17. EIS-0099: Remedial Actions at the Former Vitro Chemical Company Site, South Salt Lake, Salt Lake County, Utah

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this statement to evaluate the environmental impacts of various scenarios associated with the cleanup of those residues remaining at the abandoned uranium mill tailings site located in South Salt Lake, Utah.

  18. Lake View Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    processes (afday) Daily Operation Water Use (afday) Well Field Water Use (afday) Cooling Tower Water use (annual average) (afday) Cooling Tower Water use (summer average) (af...

  19. Clear Lake Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  20. AN ESTIMATE OF THE CHEMICAL COMPOSITION OF TITAN's LAKES

    SciTech Connect (OSTI)

    Cordier, Daniel; Mousis, Olivier; Lunine, Jonathan I.; Lavvas, Panayotis; Vuitton, Veronique

    2009-12-20

    Hundreds of radar-dark patches interpreted as lakes have been discovered in the north and south polar regions of Titan. We have estimated the composition of these lakes by using the direct abundance measurements from the Gas Chromatograph Mass Spectrometer aboard the Huygens probe and recent photochemical models based on the vertical temperature profile derived by the Huygens Atmospheric Structure Instrument. Thermodynamic equilibrium is assumed between the atmosphere and the lakes, which are also considered nonideal solutions. We find that the main constituents of the lakes are ethane (C{sub 2}H{sub 6}) (approx76%-79%), propane (C{sub 3}H{sub 8}) (approx7%-8%), methane (CH{sub 4}) (approx5%-10%), hydrogen cyanide (HCN) (approx2%-3%), butene (C{sub 4}H{sub 8}) (approx1%), butane (C{sub 4}H{sub 10}) (approx1%), and acetylene (C{sub 2}H{sub 2}) (approx1%). The calculated composition of lakes is then substantially different from what has been expected from models elaborated prior to the exploration of Titan by the Cassini-Huygens spacecraft.

  1. Borehole Imaging of In Situ Stress Tests at Mirror Lake Research...

    Open Energy Info (EERE)

    at Mirror Lake Research Site Citation U.S. Geological Survey. Borehole Imaging of In Situ Stress Tests at Mirror Lake Research Site Internet. 2013. U.S. Geological Survey. cited...

  2. Soda Lake Well Lithology Data and Geologic Cross-Sections (Dataset...

    Office of Scientific and Technical Information (OSTI)

    Soda Lake Well Lithology Data and Geologic Cross-Sections Title: Soda Lake Well Lithology Data and Geologic Cross-Sections Comprehensive catalogue of drill-hole data in ...

  3. Application for Presidential Permit OE Docket No. PP-412 ITC Lake Erie

    Energy Savers [EERE]

    Connector Project | Department of Energy Project Application for Presidential Permit OE Docket No. PP-412 ITC Lake Erie Connector Project Application from ITC Lake Erie to construct, operate and maintain electric transmission facilities at the U.S. - Canada Border. PDF icon PP-412 Lake Erie Application.pdf More Documents & Publications Application for Presidential Permit OE Docket No. PP-412 ITC Lake Erie Connector Project: Federal Register Notice, Volume 80, No. 137 - July 17, 2015

  4. DOE - Office of Legacy Management -- Ambrosia Lake Mill Site - NM 0-01

    Office of Legacy Management (LM)

    Ambrosia Lake Mill Site - NM 0-01 FUSRAP Considered Sites Site: Ambrosia Lake Mill Site (NM.0-01) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see Ambrosia Lake Mill Site Documents Related to Ambrosia Lake Mill Site 2014 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal

  5. Uranium hydrogeochemical and stream-sediment reconnaissance of the Chandler Lake NTMS quadrangle, Alaska

    SciTech Connect (OSTI)

    Hardy, L. C.; D'Andrea, Jr., R. F.; Zinkl, R. J.; Shettel, Jr., D. L.; Langfeldt, S. L.

    1982-03-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Chandler Lake NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report.

  6. Uranium distribution in relation to sedimentary facies, Kern Lake, California

    SciTech Connect (OSTI)

    Merifield, P.M.; Carlisle, D.; Idiz, E.; Anderhalt, R.; Reed, W.E.; Lamar, D.L.

    1980-04-01

    Kern Lake has served as a sink for drainage from the southern Sierra Nevada and, in lesser amounts, from the southern Temblor Range. Both areas contain significant uranium source rocks. The uranium content in Holocene Kern Lake sediments correlates best with the mud (silt and clay) fraction. It correlates less well with organic carbon. Biotite grains could account for much of the uranium in the sand fraction, and perhaps the silt fraction as well. The data suggest that fixation of uranium by adsorption on mineral grains is a dominant process in this lake system. Further work is required to determine the importance of cation-exchange of uranium on clays and micas and of organically complexed uranium adsorbed to mineral surfaces. These findings also raise the question of whether uranium transport down the Kern River occurs largely as uranium adsorbed to mineral surfaces.

  7. EA-1983: Sabine Pass Liquefaction Expansion Project, Cameron...

    Broader source: Energy.gov (indexed) [DOE]

    programsgasregulationauthorizations2013applicationssabinepassdocket13-30-lng.html http:www.fossil.energy.govprogramsgasregulationauthorizations2013applications...

  8. Lake Roosevelt Fisheries Evaluation Program, Part B; Limnology, Primary Production, and Zooplankton in Lake Roosevelt, Washington, 1998 Annual Report.

    SciTech Connect (OSTI)

    Shields, John; Spotts, Jim; Underwood, Keith

    2002-11-01

    The Lake Roosevelt Fisheries Evaluation Program is the result of a merger between two projects, the Lake Roosevelt Monitoring Program (BPA No. 8806300) and the Lake Roosevelt Data Collection Project (BPA No. 9404300). These projects were merged in 1996 to continue work historically completed under the separate projects, and is now referred to as the Lake Roosevelt Fisheries Evaluation Program. The 1998 Annual Report, Part B. Limnology, Primary Production, and Zooplankton in Lake Roosevelt, Washington examined the limnology, primary production, and zooplankton at eleven locations throughout the reservoir. The 1998 research protocol required a continuation of the more complete examination of limnological parameters in Lake Roosevelt that began in 1997. Phytoplankton and periphyton speciation, phytoplankton and periphyton chlorophyll a analysis, complete zooplankton biomass analysis by taxonomic group, and an increased number of limnologic parameters (TDG, TDS, etc.) were examined and compared with 1997 results. Total dissolved gas levels were greatly reduced in 1998, compared with 1997, likely resulting from the relatively normal water year experienced in 1998. Mean water temperatures were similar to what was observed in past years, with a maximum of 22.7 C and a minimum of 2.6 C. Oxygen concentrations were also relatively normal, with a maximum of 16.6 mg/L, and a minimum of 0.9 mg/L. Phytoplankton in Lake Roosevelt was primarily composed of microplankton (29.6%), Cryptophyceae (21.7%), and Bacillriophyceae (17.0 %). Mean total phytoplankton chlorophyll a maximum concentration occurred in May (3.53 mg/m{sup 3}), and the minimum in January (0.39 mg/m{sup 3}). Phytoplankton chlorophyll a concentrations appear to be influenced by hydro-operations and temperature. Trophic status as indicated by phytoplankton chlorophyll a concentrations place Lake Roosevelt in the oligomesotrophic range. Periphyton colonization rates and biovolume were significantly greater at a depth of 1.5 m (5 ft) when compared with a 4.6 m (15 ft) depth, and during the shorter incubation periods (two and four weeks). Mean zooplankton densities were greatest for Copepoda (88 %), then Daphnia spp. (10%) and other Cladocera (2.1%), while the zooplankton biomass assessment indicated Daphnia spp. had the greatest biomass (53.6%), then Copepoda (44.0%) and other Cladocera (2.5%). Mean overall zooplankton densities were the lowest observed since 1991. The cause was unclear, but may have been an artifact of human error. It seems unlikely that hydro-operations played a significant part in the reduction of zooplankton in light of the relatively friendly water year of 1998.

  9. QER- Comment of Lake Charles Harbor & Terminal District

    Broader source: Energy.gov [DOE]

    Good Afternoon, Please find the Lake Charles Harbor and Terminal District’s comments on Infrastructure Constraints in re: the QER Investigation hearing scheduled for Bismarck, ND on August 8, 2014. Please include these comments in the public record of the hearing. Thank you.

  10. Proceedings of the Great Lakes Solar Greenhouse Conference V

    SciTech Connect (OSTI)

    Currin, C.G. (ed.)

    1983-01-01

    Proceedings of the Fifth Great Lakes Greenhouse Conference are presented. Topics included are: a review of a greenhouses, greenhouses as integral part of an earth-sheltered home, solar architecture, design criteria, heat contribution for solar greenhouses, and the future of solar greenhouses.

  11. Proceedings of the Great Lakes Solar Greenhouse Conference V

    SciTech Connect (OSTI)

    Currin, C.G. (ed.)

    1983-01-01

    Proceedings of the Fifth Great Lakes Solar Greenhouse Conference are presented. Topics included are a review of greenhouses, greenhouses as integral part of an earth-sheltered house, solar architecture, design criteria, heat contribution from solar greenhouses, and the future for solar greenhouses.

  12. Salt Lake City, Utah: Solar in Action (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This brochure provides an overview of the challenges and successes of Salt Lake City, UT, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  13. Changing Weather and Climate in the Great Lakes Region Webinar

    Broader source: Energy.gov [DOE]

    Offered by the University of Wisconsin-Madison through Coursera, this four-week course will feature a new season each week through short lectures and activities covering Great Lakes weather, observed changes in the climate, and societal impacts of climate change.

  14. Lake Roosevelt Fisheries Evaluation Program : Lake Whatcom Kokanee Salmon (Oncorhynchus nerka kennerlyi) : Investigations in Lake Roosevelt Annual Report 1999-2000.

    SciTech Connect (OSTI)

    McLellan, Holly J.; Scholz, Allan T.; McLellan, Jason G.; Tilson, Mary Beth

    2001-07-01

    Lake Whatcom stock kokanee have been planted in Lake Roosevelt since 1988 with the primary goal of establishing a self-sustaining fishery. Returns of hatchery kokanee to egg collection facilities and recruitment to the creel have been minimal. Therefore, four experiments were conducted to determine the most appropriate release strategy that would increase kokanee returns. The first experiment compared morpholine and non-morpholine imprinted kokanee return rates, the second experiment compared early and middle run Whatcom kokanee, the third experiment compared early and late release dates, and the fourth experiment compared three net pen release strategies: Sherman Creek hatchery vs. Sherman Creek net pens, Colville River net pens vs. Sherman Creek net pens, and upper vs. lower reservoir net pen releases. Each experiment was tested in three ways: (1) returns to Sherman Creek, (2) returns to other tributaries throughout the reservoir, and (3) returns to the creel. Chi-square analysis of hatchery and tributary returns indicated no significant difference between morpholine imprinted and non-imprinted fish, early run fish outperformed middle run fish, early release date outperformed late release fish, and the hatchery outperformed all net pen releases. Hatchery kokanee harvest was estimated at 3,323 fish, which was 33% of the total harvest. Return rates (1998 = 0.52%) of Whatcom kokanee were low indicating an overall low performance that could be caused by high entrainment, predation, and precocity. A kokanee stock native to the upper Columbia, as opposed to the coastal Whatcom stock, may perform better in Lake Roosevelt.

  15. Field Guide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ecologist for a Day Field Guide Program supported by: ©2011, Savannah River Ecology Laboratory - Outreach Program INVERTEBRATES Page 1 Brown Millipede Burgundy Millipede Red Millipede Green Centipede Small Gray Millipede Carrion Beetle Larva Red Centipede Orb Weaver Trapdoor Spider W lf S id Harvestman (Daddy long legs) S i d Mi th Wolf Spiders Harvestman (Daddy-long-legs) Spined Micrathena MOUS SPIDER Black and Yellow Argiope Widow Spider Crab Spider Cross Spider ©2011, Savannah River Ecology

  16. Hydrology of modern and late Holocene lakes, Death Valley, California

    SciTech Connect (OSTI)

    Grasso, D.N.

    1996-07-01

    Above-normal precipitation and surface-water runoff, which have been generally related to the cyclic recurrence of the El Nino-Southern Oscillation, have produced modern ephemeral lakes in the closed-basin Death Valley watershed. This study evaluates the regional hydroclimatic relations between precipitation, runoff, and lake transgressions in the Death Valley watershed. Recorded precipitation, runoff, and spring discharge data for the region are used in conjunction with a closed-basin, lake-water-budget equation to assess the relative contributions of water from these sources to modern lakes in Death Valley and to identify the requisite hydroclimatic changes for a late Holocene perennial lake in the valley. As part of the Yucca Mountain Site Characterization Program, an evaluation of the Quaternary regional paleoflood hydrology of the potential nuclear-waste repository site at Yucca Mountain, Nevada, was planned. The objectives of the evaluation were (1) to identify the locations and investigate the hydraulic characteristics of paleofloods and compare these with the locations and characteristics of modern floods, and (2) to evaluate the character and severity of past floods and debris flows to ascertain the potential future hazards to the potential repository during the pre-closure period (US Department of Energy, 1988). This study addresses the first of these objectives, and the second in part, by assessing and comparing the sizes, locations, and recurrence rates of modern, recorded (1962--83) floods and late Holocene paleofloods for the 8,533-mi{sup 2}, closed-basin, Death Valley watershed with its contributing drainage basins in the Yucca Mountain site area.

  17. Field O

    Office of Legacy Management (LM)

    -- ! Department of Energy Field O ffice, O s k Ridge P.O . Box 2001 Oak Ridge, Tennessee 37031- 0723 April 20. 1993 Dr. Robert Kulikowskf Director, Bureau of Radiation Control New York City Department of Health 111 Livingston Street Brooklyn, New York 11201 Dear Dr. Kulfkowskf: BAKER AN0 W ILLIAM W AREHOUSES SITE - CORPLETION O F CLEANUP ACTIVITIES The purpose of this notice is to inform you about further scheduled c leanup activities to be conducted by the Department of Energy (WE) at 513-519

  18. Hungry Horse Mitigation; Flathead Lake, 2003-2004 Annual Report.

    SciTech Connect (OSTI)

    Hansen, Barry; Evarts, Les

    2005-06-01

    The Confederated Salish and Kootenai Tribes (CSKT) and Montana Fish Wildlife and Parks (MFWP) wrote the ''Fisheries Mitigation Plan for Losses Attributable to the Construction and Operation of Hungry Horse Dam'' in March 1991 to define the fisheries losses, mitigation alternatives and recommendations to protect, mitigate and enhance resident fish and aquatic habitat affected by Hungry Horse Dam. On November 12, 1991, the Northwest Power Planning Council (NPPC) approved the mitigation plan with minor modifications, called for a detailed implementation plan, and amended measures 903(h)(1) through (7). A long-term mitigation plan was submitted in August 1992, was approved by the Council in 1993, and the first contract for this project was signed on November 11, 1993. The problem this project addresses is the loss of habitat, both in quality and quantity, in the Flathead Lake and River basin resulting from the construction and operation of Hungry Horse Dam. The purpose of the project is to both implement mitigation measures and monitor the biological responses to those measures including those implemented by Project Numbers 9101903 and 9101904. Goals and objectives of the 1994 Fish and Wildlife Program (Section 10.1) addressed by this project are the rebuilding to sustainable levels weak, but recoverable, native populations injured by the hydropower system. The project mitigates the blockage of spawning runs by Hungry Horse Dam by restoring and even creating spawning habitats within direct drainages to Flathead Lake. The project also addresses the altered habitat within Flathead Lake resulting from species shifts and consequent dominance of new species that restricts the potential success of mitigation measures. Specific goals of this project are to create and restore habitat and quantitatively monitor changes in fish populations to verify the efficacy of our mitigation measures. The project consists of three components: monitoring, restoration and research. Monitoring, for example, includes a spring gillnetting series conducted annually in Flathead Lake and builds on an existing data set initiated in 1981. Monitoring of the experimental kokanee reintroduction was a primary activity of this project between 1992 and 1997. Lake trout, whose high densities have precluded successful mitigation of losses of other species in Flathead Lake, have been monitored since 1996 to measure several biological parameters. Results of this work have utility in determining the population status of this key predator in Flathead Lake. The project has also defined the baseline condition of the Flathead Lake fishery in 1992-1993 and has conducted annual lakewide surveys since 1998. The restoration component of the project has addressed several stream channel, riparian, and fish passage problems, and suppression of non-native fish. The research component of the project began in FY 2000 and measured trophic linkages between M. relicta and other species to assist in predicting the results of our efforts to suppress lake trout. Only Objective 1 in the workplan is funded entirely by Hungry Horse Mitigation funds. Additional funds are drawn from other sources to assist in completion of Objectives 2-8.

  19. Field Mapping At Walker Lake Valley Area (Shoffner, Et Al., 2010...

    Open Energy Info (EERE)

    N. Hinz, A. Sabin, M. Lazaro, S. Alm (2010) Understanding Fault Characteristics And Sediment Depth For Geothermal Exploration Using 3D Gravity Inversion In Walker Valley, Nevada...

  20. Lake Roosevelt Volunteer Net Pens, Lake Roosevelt Rainbow Trout Net Pens, 2002-2003 Annual Report.

    SciTech Connect (OSTI)

    Smith, Gene

    2003-11-01

    The completion of Grand Coulee Dam for power production, flood control, and irrigation resulted in the creation of a blocked area above the dam and in the loss of anadromous fish. Because of lake level fluctuations required to meet the demands for water release or storage, native or indigenous fish were often threatened. For many years very little effort was given to stocking the waters above the dam. However, studies by fish biologists showed that there was a good food base capable of supporting rainbow and kokanee (Gangmark and Fulton 1949, Jagielo 1984, Scholz etal 1986, Peone etal 1990). Further studies indicated that artificial production might be a way of restoring or enhancing the fishery. In the 1980's volunteers experimented with net pens. The method involved putting fingerlings in net pens in the fall and rearing them into early summer before release. The result was an excellent harvest of healthy fish. The use of net pens to hold the fingerlings for approximately nine months appears to reduce predation and the possibility of entrainment during draw down and to relieve the hatcheries to open up available raceways for future production. The volunteer net pen program grew for a few years but raising funds to maintain the pens and purchase food became more and more difficult. In 1995 the volunteer net pen project (LRDA) was awarded a grant through the Northwest Power Planning Council's artificial production provisions.

  1. TEMPERATURE MEASUREMENTS COLLECTED FROM AN INSTRUMENTED VAN IN SALT LAKE CITY, UTAH AS PART OF URBAN 2000

    SciTech Connect (OSTI)

    M.J. BROWN; E.R. PARDYJAK

    2001-08-01

    Measurements of temperature and position were collected during the night from an instrumented van on routes through Salt Lake City and the rural outskirts. The measurements were taken as part of the Department of Energy Chemical and Biological National Security Program URBAN 2 Field Experiment conducted in October 2000 (Shinn et al., 2000 and Allwine et al., 2001a). The instrumented van was driven over three primary routes, two including downtown, residential, and ''rural'' areas and a third that went by a line of permanently fixed temperature probes (Allwine et al., 2001b) for cross-checking purposes. Each route took from 45 to 60 minutes to complete. Based on four nights of data, initial analyses indicate that there was a temperature difference of 2-5 C between the urban core and nearby ''rural'' areas. Analyses also suggest that there were significant fine scale temperature differences over distances of tens of meters within the city and in the nearby rural areas. The temperature measurements that were collected are intended to supplement the meteorological measurements taken during the URBAN2000 Field Experiment, to assess the importance of the urban heat island phenomenon in Salt Lake City, and to test the urban canopy parameterizations that have been developed for regional scale meteorological codes as part of the DOE CBNP program.

  2. Simulation of oil-slick transport in Great Lakes connecting channels. Volume 3. User's manual for the lake-river oil-spill simulation model. Final report

    SciTech Connect (OSTI)

    Shen, H.T.; Yapa, P.D.; Petroski, M.E.

    1986-03-01

    In this study, two computer models named as ROSS and LROSS are developed for simulating oil-slick transport in rivers and lakes, respectively. The oil-slick transformation processes considered in these models include advection, spreading, evaporation, and dissolution. These models can be used for slicks of any shape originated from instantaneous or continuous spills in rivers and lakes with or without ice covers. Although developed for the need of the connecting channels in the upper Great Lakes, including the Detroit RIver, Lake St. Clair, St. Clair River, and St. Marys River, these models are site independent and can be used for others rivers and lakes. The programs are written in FORTRAN language to be compatible with FORTRAN77 compiler. The models are designed to be used on both mainframe and microcomputers.

  3. Banks Lake Fishery Evaluation Annual Report 2002-2003.

    SciTech Connect (OSTI)

    Polacek, Matt; Knuttgen, Kamia; Shipley, Rochelle

    2003-11-01

    The Washington Department of Fish and Wildlife implemented the Banks Lake Fishery Evaluation Project (BLFEP) in September 2001 with funds from the Bonneville Power Administration. Fiscal Year (FY) 2001 of the BLFEP was used to gather historic information, establish methods and protocols, collect limnology data, and conduct the first seasonal fish surveys. FY 2002 was used to continue seasonal fish and lakewide creel surveys and adjust methods and protocols as needed. Water quality parameters were collected monthly from February to May and bi-monthly from June to August. Banks Lake water temperatures began to increase in April and stratification was apparent by June at all 3 limnology collection sites. By late August, the thermocline had dropped to nearly 20 meters deep, with 16-17 C temperatures throughout the epilimnion. Dissolved oxygen levels were generally above 10 mg/L until August when dissolved oxygen dropped near or below 5 mg/L below 20-meters deep. Secchi depths ranged from 2.5-8 meters and varied by location and date. Nearshore and offshore fish surveys were conducted in October 2002 and May and July 2003 using boat electrofishing, fyke net, gill net, and hydroacoustic surveys. Yellow Perch Perca flavescens (32 %) and cottid spp. (22 %) dominated the nearshore species composition in October; however, by May yellow perch (12 %) were the third most common species followed by smallmouth bass Micropterous dolomieui (34 %) and lake whitefish Coregonus clupeaformis (14 %). Lake whitefish dominated the offshore catch during October (78 %) and May (81 %). Fish diet analysis indicated that juvenile fishes consumed primarily insects and zooplankton, while adult piscivores consumed cottids spp. and yellow perch most frequently. For FY 2002, the following creel statistics are comprehensive through August 31, 2003. The highest angling pressure occurred in June 2003, when anglers were primarily targeting walleye and smallmouth bass. Boat anglers utilized Steamboat State Park more frequently than any other boat ramp on Banks Lake. Shore anglers used the rock jetty at Coulee City Park 76 % of the time, with highest use occurring from November through April. An estimated total of 11,915 ({+-}140 SD) smallmouth bass, 6,412 ({+-}59 SD) walleye, 5,470 ({+-}260 SD) rainbow trout, and 1,949 ({+-}118 SD) yellow perch were harvested from Banks Lake in FY 2002. Only 3 kokanee were reported in the catch during the FY 2002 creel survey. In the future, data from the seasonal surveys and creel will be used to identify potential factors that may limit the production and harvest of kokanee, rainbow trout, and various spiny-rayed fishes in Banks Lake. The limiting factors that will be examined consist of: abiotic factors including water temperature, dissolved oxygen levels, habitat, exploitation and entrainment; and biotic factors including food limitation and predation. The BLFEP will also evaluate the success of several rearing and stocking strategies for hatchery kokanee in Banks Lake.

  4. Geohydrology and evapotranspiration at Franklin Lake Playa, Inyo County, California

    SciTech Connect (OSTI)

    NONE

    1990-12-01

    Franklin Lake playa is one of the principal discharge areas of the Furnace Creek Ranch-Alkali Flat ground-water-flow system in southern Nevada and adjacent California. Yucca Mountain, Nevada, located within this flow system, is being evaluated by the US Department of Energy to determine its suitability as a potential site for a high-level nuclear-waste repository. To assist the US Department of Energy with its evaluation of the Yucca Mountain site, the US Geological Survey developed a parameter-estimation model of the Furnace Creek Ranch-Alkali Flat ground-water-flow system. Results from sensitivity analyses made using the parameter-estimation model indicated that simulated rates of evapotranspiration at Franklin Lake playa had the largest effect on the calculation of transmissivity values at Yucca Mountain of all the model-boundary conditions and, therefore, that evapotranspiration required careful definition. 72 refs., 59 figs., 26 tab.

  5. Geohydrology and evapotranspiration at Franklin Lake playa, Inyo County, California

    SciTech Connect (OSTI)

    Czarnecki, J.B.

    1997-12-31

    Franklin Lake playa is one of the principal discharge areas of the Furnace Creek Ranch-Alkali Flat ground-water-flow system in southern Nevada and adjacent California. Yucca Mountain, Nevada, located within this flow system, is being evaluated by the US Department of Energy to determine its suitability as a potential site for a high-level nuclear-waste repository. To assist the U.S. Department of Energy with its evaluation of the Yucca Mountain site, the US Geological Survey developed a parameter-estimation model of the Furnace Creek Ranch-Alkali Flat ground-water-flow system. Results from sensitivity analyses made using the parameter-estimation model indicated that simulated rates of evapotranspiration at Franklin Lake playa had the largest effect on the calculation of transmissivity values at Yucca Mountain of all the model-boundary conditions and, therefore, that evapotranspiration required careful definition.

  6. Red Lake Band of Chippewa Indians- 2003 Project

    Broader source: Energy.gov [DOE]

    The Red Lake Band of Chippewa Indians, located in the northwest corner of Minnesota near the Canadian border, will assess the potential to expand the use of biomass resources for energy autonomy and economic development on tribal lands. Specifically, the tribe will evaluate the technical, market, financial, and cultural aspects of using its extensive, forested lands to create a sustainable bioproducts-based business and will develop a business plan to guide tribal industry development.

  7. Great Lakes Bioenergy Research Center Technologies Available for Licensing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Energy Innovation Portal GLBRC Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Great Lakes Bioenergy Research Center

  8. Terrestrial Climate Change and Ecosystem Response Recorded in Lake

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sediments and Related Deposits Terrestrial Climate Change and Ecosystem Response Recorded in Lake Sediments and Related Deposits Reconstruction of past terrestrial climate and ecosystem response relies on archives that incorporate and preserve information about changes in temperature, precipitation, nutrients, vegetation, fire history, etc. The resolution and length of such paleoclimate/ecological records is dependent on the type of archive. Although much information is able to be determined

  9. Lac Courte Oreilles Band of Lake Superior Ojibwe

    Office of Environmental Management (EM)

    Oreilles Band of Lake Superior Ojibwe Leslie Isham, Director/Assistant Director Lac Courte Oreilles Energy Project Lac Courte Oreilles Public works Department First Steps towards Tribal Weatherization Assessing the Feasibility of the Hydro Dam About Lac Courte Oreilles (LCO) * Located in Upper Northwest Wisconsin * 76,000 acres and 15 miles wide * 90 miles from Duluth 100 miles from Eau Claire 10 miles from Hayward * Close to 6,000 members, 50% live on or near the reservation * 68% unemployment

  10. Lac Courte Oreilles Lake Superior Band of Ojibwe Energy Projects

    Office of Environmental Management (EM)

    OdaawaaZaga'iganing or Lac Courte Oreilles Lake Superior Band Of Ojibwe LCO Energy Department Staff: Director: Leslie Isham Coordinator: Denise Johnson Energy Projects: Assessing Hydro Dam First Steps Toward Tribal Weatherization Lac Courte Oreilles's Mission We, the Anishinaabeg, the people of OdaawaaZaaga'iganing, the Lac Courte Oreilles Tribe, will sustain our heritage by preserving our past, strengthening our present and embracing our future. We will defend our inherent sovereign rights and

  11. ~~~~: Gmt Lakes Cat-bar) ALTERNaTE I

    Office of Legacy Management (LM)

    ~~~: Gmt Lakes Cat-bar) ALTERNaTE I --------------------------------------- NAME: 333 Iv. Mkhi qr) Aw. thka o ~~~---~~~--~~~_-----__ C I TV : 8 Morim 'Love 82 10 bhh &Q Ir -+----------- STATE- fL I - ------ l OWNER(S) -__----_ past: Current: I --------------------____ Owner contacted q yes p no; _____--_____-____------~~~l if yes, data contacted -_--------__- TYPE OF OPERATION ---_------------- 0 Research & Development q Production scale testing 0 Pilot Scale 0 Bench Scale process 0

  12. Biogeochemistry of manganese in ferruginous Lake Matano, Indonesia

    SciTech Connect (OSTI)

    Jones, C.; Crowe, S.A.; Sturm, A.; Leslie, K.L.; MacLean, L.C. W.; Katsev, S.; Henny, C.; Fowle, D.A.; Canfield, D.E.

    2012-12-13

    This study explores Mn biogeochemistry in a stratified, ferruginous lake, a modern analogue to ferruginous oceans. Intense Mn cycling occurs in the chemocline where Mn is recycled at least 15 times before sedimentation. The product of biologically catalyzed Mn oxidation in Lake Matano is birnessite. Although there is evidence for abiotic Mn reduction with Fe(II), Mn reduction likely occurs through a variety of pathways. The flux of Fe(II) is insufficient to balance the reduction of Mn at 125m depth in the water column, and Mn reduction could be a significant contributor to CH{sub 4} oxidation. By combining results from synchrotron-based X-ray fluorescence and X-ray spectroscopy, extractions of sinking particles, and reaction transport modeling, we find the kinetics of Mn reduction in the lake's reducing waters are sufficiently rapid to preclude the deposition of Mn oxides from the water column to the sediments underlying ferruginous water. This has strong implications for the interpretation of the sedimentary Mn record.

  13. Total and methyl mercury in selected Great Lakes tributaries

    SciTech Connect (OSTI)

    Hurley, J.P.; Cowell, S.E.; Shafer, M.M.

    1995-12-31

    Eleven Lake Michigan tributaries were chosen to investigate the effects of chemical and physical conditions in rivers on mercury partitioning and transport. Preliminary results from 1994 indicate that mean unfiltered Hg{sub T} ranged from about 1-2 ng L{sup -1} in the Manistique and Muskegon R. to 10-30 ng L{sup -1} in the St. Joseph and Fox R. Highest Hg{sub T} fluxes were generally associated with increased particle loads. Preliminary estimates from a subset of Lake Michigan tributaries also suggest that methylmercury loading from riverine inputs may be important. Additional work on 19 Lake Superior tributaries in Spring 1993 reveal that MeHg and DOC are correlated. Results from these tributaries are consistent with our {open_quotes}Background Trace Metals in Wisconsin Rivers{close_quotes} study, where greater yields of Hg{sub T} were observed with increased particle loading and elevated MeHg yields were observed from watersheds with significant forest and wetland regions.

  14. Simulation model for oil slick transport in lakes

    SciTech Connect (OSTI)

    Shen, H.T.; Yapa, P.D.; Petroski, M.E.

    1987-10-01

    A computer model for simulating oil slick movement in lakes by a Lagrangian discrete parcel algorithm is presented. In this model the transformation of an oil slick due to advection, spreading, evaporation, and dissolution is considered. For open water conditions the movement of the oil slick by water current and wind is considered using the drifting factor formulation. For ice-covered conditions the drift velocity is determined according to the ice roughness and current velocity. The current distribution in the lake is determined by a rigid lid circulation model. In the spreading process the mechanical spreading of the oil slick due to the balance in inertia, gravity, viscous, and surface tension forces is considered, in addition to the dispersion of the surface oil layer. Boundary conditions along the shore are formulated according to the storage capacity of the shoreline. The model can be used for simulating either instantaneous or continuous oil spills. Sample simulations for oil spills in Lake St. Clair are presented.

  15. Lake Charles Carbon Capture and Sequestration Project U. S. Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lake Charles Carbon Capture and Sequestration Project U. S. Department of Energy National Energy Technology Laboratory March 2014 1 INTRODUCTION The United States (U.S.) Department of Energy (DOE) issued a final environmental impact statement (EIS; DOE/EIS-0464) for the Lake Charles Carbon Capture and Sequestration Project (Lake Charles CCS Project) in November 2013. DOE announced its decision to provide up to $261.4 million in cost-shared funding to Leucadia Energy, LLC (Leucadia) for the

  16. Fond du Lac Band Leads Climate Resilience Efforts on Lake Superior Chippewa

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Indian Reservation | Department of Energy Fond du Lac Band Leads Climate Resilience Efforts on Lake Superior Chippewa Indian Reservation Fond du Lac Band Leads Climate Resilience Efforts on Lake Superior Chippewa Indian Reservation September 23, 2014 - 11:24am Addthis From the White House Council on Environmental Quality blog: Last Friday I had the pleasure of visiting the Fond du Lac Band of Lake Superior Chippewa Indian Reservation. I was joined by Raina Thiele, Associate Director of White

  17. Lake Charles Carbon Capture and Sequestration Project U. S. Department of Energy

    Office of Environmental Management (EM)

    Lake Charles Carbon Capture and Sequestration Project U. S. Department of Energy National Energy Technology Laboratory March 2014 1 INTRODUCTION The United States (U.S.) Department of Energy (DOE) issued a final environmental impact statement (EIS; DOE/EIS-0464) for the Lake Charles Carbon Capture and Sequestration Project (Lake Charles CCS Project) in November 2013. DOE announced its decision to provide up to $261.4 million in cost-shared funding to Leucadia Energy, LLC (Leucadia) for the

  18. DOE - Office of Legacy Management -- Salt Lake City Vitro Chemical - UT

    Office of Legacy Management (LM)

    0-04 Vitro Chemical - UT 0-04 FUSRAP Considered Sites Site: Salt Lake City Vitro Chemical (UT.0-04 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see Salt Lake City, Utah, Processing Site Documents Related to Salt Lake City Vitro Chemical 2014 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control

  19. Isotopic Analysis At Lake City Hot Springs Area (Sladek, Et Al...

    Open Energy Info (EERE)

    Date Usefulness useful DOE-funding Unknown References Chris Sladek, Greg B. Arehart, Walter R. Benoit (2004) Geochemistry Of The Lake City Geothermal System, California, Usa...

  20. Eagle, Garfield, Gunnison, Lake, and Pitkin Counties- Energy Smart Colorado Loan Program

    Broader source: Energy.gov [DOE]

    Residents of Roaring Fork Valley and Eagle, Gunnison, Lake, and Summit Counties are eligible for energy efficiency and renewable energy assistance, rebates, and financing through the Energy Smart...

  1. Core Analysis At Lake City Hot Springs Area (Benoit Et Al., 2005...

    Open Energy Info (EERE)

    Rock core analyses and mineral assemblage investigations References Dick Benoit, Joe Moore, Colin Goranson, David Blackwell (2005) Core Hole Drilling And Testing At The Lake...

  2. Core Holes At Lake City Hot Springs Area (Benoit Et Al., 2005...

    Open Energy Info (EERE)

    obtained from cuttings in this particular geologic setting. References Dick Benoit, Joe Moore, Colin Goranson, David Blackwell (2005) Core Hole Drilling And Testing At The Lake...

  3. Core Analysis At Medicine Lake Area (Clausen Et Al, 2006) | Open...

    Open Energy Info (EERE)

    Lisle, 1995; Nemcok and Gayer, 1996). References Steven Clausen, Michal Nemcok, Joseph Moore, Jeffrey Hulen, John Bartley (2006) Mapping Fractures In The Medicine Lake Geothermal...

  4. Eagle, Gunnison, Lake, and Pitkin Counties- Energy Smart Colorado Loan Program

    Broader source: Energy.gov [DOE]

    Residents of Roaring Fork Valley and Eagle, Gunnison, Lake, and Summit Counties are eligible for energy efficiency and renewable energy assistance, rebates, and financing through the Energy Smart...

  5. Flow Test At Lake City Hot Springs Area (Benoit Et Al., 2005...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Lake City Hot Springs Area (Benoit Et Al., 2005) Exploration Activity Details...

  6. Flow Test At Lake City Hot Springs Area (Warpinski, Et Al., 2004...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Lake City Hot Springs Area (Warpinski, Et Al., 2004) Exploration Activity Details...

  7. EO 13547: Stewardship of the Ocean, Our Coasts, and the Great Lakes

    Office of Energy Efficiency and Renewable Energy (EERE)

    This order establishes a national policy to ensure the protection, maintenance, and restoration of the health of ocean, coastal, and Great Lakes ecosystems and resources, enhance the sustainability...

  8. Blue Lake Rancheria's Bold Action on the Climate Front Pays Dividends...

    Energy Savers [EERE]

    the coastal mountains and the Pacific Ocean, the Blue Lake Rancheria is bordered by ... Current initiatives include a biodiesel project that converts waste oil from the Tribe's ...

  9. Direct-Current Resistivity Survey At Soda Lake Area (Combs 2006...

    Open Energy Info (EERE)

    Direct-Current Resistivity Survey At Soda Lake Area (Combs 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity...

  10. Lake Roosevelt Fisheries Evaluation Program : Meadow Creek vs. Lake Whatcom Stock Kokanee Salmon Investigations in Lake Roosevelt Annual Report 2000-2001.

    SciTech Connect (OSTI)

    McLellan, Holly J.; Scholz, Allan T.

    2001-07-01

    Lake Roosevelt has been stocked with Whatcom stock kokanee since 1989 to mitigate for anadromous salmon losses caused by the construction of Grand Coulee Dam. The primary objective of the hatchery plantings was to create a self-sustaining recreational fishery. Due to low return numbers, it was hypothesized a native stock of kokanee might perform better than the coastal Whatcom strain. Therefore, kokanee from Meadow Creek, a tributary of Kootenay Lake, British Columbia were selected as an alternative stock. Matched pair releases of Whatcom stock and Meadow Creek kokanee were made from Sherman Creek in late June 2000. Stock performance between Lake Whatcom and Meadow Creek kokanee was evaluated through three performance measures (1) returns to Sherman Creek, the primary egg collection facility, (2) returns to other tributaries, indicating availability for angler harvest, and (3) returns to the creel. A secondary objective was to evaluate the numbers collected at downstream fish passage facilities. Age 2 kokanee were collected during five passes through the reservoir, which included 89 tributaries between August 17th and November 7th, 2000. Sherman Creek was sampled once a week because it was the primary egg collection location. A total of 2,789 age 2 kokanee were collected, in which 2,658 (95%) were collected at Sherman Creek. Chi-square analysis indicated the Meadow Creek kokanee returned to Sherman Creek in significantly higher numbers compared to the Whatcom stock ({chi}{sup 2} = 734.4; P < 0.01). Reservoir wide recoveries indicated similar results ({chi}{sup 2} = 733.1; P < 0.01). No age 2 kokanee were collected during creel surveys. Age 3 kokanee are expected to recruit to the creel in 2001. No age 2 kokanee were collected at the fish passage facilities due to a 170 mm size restriction at the fish passage centers. Age 3 kokanee are expected to be collected at the fish passage centers during 2001. Stock performance cannot be properly evaluated until 2001, when age 3 kokanee are expected to return to Sherman Creek.

  11. Salt Lake Community College | OSTI, US Dept of Energy, Office of Scientific

    Office of Scientific and Technical Information (OSTI)

    and Technical Information Salt Lake Community College Spotlights Home DOE Applauds SLCC Science and Technical Programs Salt Lake City, Utah Architectural Technology Biology Biotechnology Biomanufacturing Chemistry Computer Science Electric Sector Training Energy Management Engineering Geographic Information Sciences Geosciences InnovaBio Manufacturing & Mechanical Engineering Technology Mathematics Physics SLCC Partners with DOE's Rocky Mountain Solar Training Program This program is a

  12. Technical background information for the environmental and safety report, Volume 4: White Oak Lake and Dam

    SciTech Connect (OSTI)

    Oakes, T.W.; Kelly, B.A.; Ohnesorge, W.F.; Eldridge, J.S.; Bird, J.C.; Shank, K.E.; Tsakeres, F.S.

    1982-03-01

    This report has been prepared to provide background information on White Oak Lake for the Oak Ridge National Laboratory Environmental and Safety Report. The paper presents the history of White Oak Dam and Lake and describes the hydrological conditions of the White Oak Creek watershed. Past and present sediment and water data are included; pathway analyses are described in detail.

  13. Salt Lake City, Utah A White House Climate Action Champions Case Study

    Energy Savers [EERE]

    Salt Lake City, Utah A White House Climate Action Champions Case Study INDEX Executive Summary.............................. 2 Climate Action Champion.................... 2 Project Spotlight.................................... 3 Challenges and lessons learned.......... 4 Resources & Contacts........................... 5 2 Executive Summary Salt Lake City has a robust set of ambitious climate goals that target reducing emissions while simultaneously prioritizing ways to become more resilient

  14. Lake Roosevelt Fisheries Monitoring Program; 1988-1989 Annual Report.

    SciTech Connect (OSTI)

    Peone, Tim L.; Scholz, Allan T.; Griffith, James R.

    1990-10-01

    In the Northwest Power Planning Council's 1987 Columbia River Basin Fish and Wildlife Program (NPPC 1987), the Council directed the Bonneville Power Administration (BPA) to construct two kokanee salmon (Oncorhynchus nerka) hatcheries as partial mitigation for the loss of anadromous salmon and steelhead incurred by construction of Grand Coulee Dam [Section 903 (g)(l)(C)]. The hatcheries will produce kokanee salmon for outplanting into Lake Roosevelt as well as rainbow trout (Oncorhynchus mykiss) for the Lake Roosevelt net-pen program. In section 903 (g)(l)(E), the Council also directed BPA to fund a monitoring program to evaluate the effectiveness of the kokanee hatcheries. The monitoring program included the following components: (1) a year-round, reservoir-wide, creel survey to determine angler use, catch rates and composition, and growth and condition of fish; (2) assessment of kokanee, rainbow, and walleye (Stizostedion vitreum) feeding habits and densities of their preferred prey, and; (3) a mark and recapture study designed to assess the effectiveness of different locations where hatchery-raised kokanee and net pen reared rainbow trout are released. The above measures were adopted by the Council based on a management plan, developed by the Upper Columbia United Tribes Fisheries Center, Spokane Indian Tribe, Colville Confederated Tribes, Washington Department of Wildlife, and National Park Service, that examined the feasibility of restoring and enhancing Lake Roosevelt fisheries (Scholz et al. 1986). In July 1988, BPA entered into a contract with the Spokane Indian Tribe to initiate the monitoring program. The projected duration of the monitoring program is through 1995. This report contains the results of the monitoring program from August 1988 to December 1989.

  15. Lake Roosevelt Fisheries Monitoring Program; 1990 Annual Report.

    SciTech Connect (OSTI)

    Griffith, Janelle R.; Scholz, Allan T.

    1991-09-01

    As partial mitigation for the loss of anadromous salmon and steelhead incurred by construction of Grand Coulee Dam, the Northwest Power Planning Council directed Bonneville Power Administration (BPA) to construct two kokanee salmon (Oncorhynchus nerka) hatcheries on Lake Roosevelt (NPPC 1987 [Section 903 (g)(l)(C)]). The hatcheries are to produce 8 million kokanee salmon fry or 3.2 million adults for outplanting into Lake Roosevelt as well as 500,000 rainbow trout (Oncorhynchus mykiss) for the Lake Roosevelt net-pen programs. In section 903 (g)(l)(E), the Council also directed BPA to fund a monitoring program to evaluate the effectiveness of the kokanee hatcheries. The monitoring program included the following components: (1) conduction of a year-round creel census survey to determine angler pressure, catch rates and composition, growth and condition of fish caught by anglers, and economic value of the fishery. Comparisons will be made before and after hatcheries are on-line to determine hatchery effectiveness; (2) conduct an assessment of kokanee, rainbow trout, and walleye feeding habits, growth rates, and densities of their preferred prey at different locations in the reservoir and how reservoir operations affect population dynamics of preferred prey organisms. This information will be used to determine kokanee and rainbow trout stocking locations, stocking densities and stocking times; (3) conduct a mark-recapture study designed to assess effectiveness of various release times and locations for hatchery-raised kokanee and net-pen raised rainbow so fish-loss over Grand Coulee Dam will be minimized, homing to egg collection sites will be improved and angler harvest will be increased. The above measures were adopted by the Council based on a management plan developed by Upper Columbia United Tribes Fisheries Center, Spokane Indian Tribe, Colville Confederated Tribes, Washington Department of Wildlife, and the National Park Service. This plan examined the feasibility of restoring and enhancing Lake Roosevelt fisheries (Scholz et al. 1986). In July 1988, BPA entered into a contract with the Spokane Indian Tribe to initiate the monitoring program and continue research through 1995. This report contains the results of the monitoring program from January to December 1990.

  16. Red Lake Band of Chippewa Indians- 2005 Project

    Broader source: Energy.gov [DOE]

    Nearly 60% of the 1,621 housing units on the reservation lack adequate insulation, ventilation, and efficient and safe furnaces and appliances. The project will achieve the following objectives: (1) to enhance tribal member energy expertise for reducing tribal energy consumption and for implementing energy efficiency measures, (2) to increase the tribe's capacity to secure additional funding for energy conservation, including state-sponsored investments, and (3) to create significant energy savings in tribal homes and promote economic and environmental opportunities to sustain Red Lake.

  17. Federal interagency ecosystem management initiative: Great Lakes ecosystem case study

    SciTech Connect (OSTI)

    Cordle, S.

    1995-12-01

    In August 1994 a team of representatives from six Federal agencies conducted a case study of ecosystem management practices in the Great Lakes. Its report was based on interviews carried out in Chicago, Illinois, and Ann Arbor, Michigan; on phone interviews; and on written materials provided by Federal and State officials as well as representatives of Tribal organizations, non-governmental organizations, academia, industry, and the International Joint Commission. The report describes mainly what the participants told or provided to the survey team, with a few explicit conclusions and recommendations from the team. The issues covered by the survey included Legal, Institutional, Science and Information, Budget, and Public Participation.

  18. Dune-dammed lakes of the Nebraska Sand Hills: Geologic setting and paleoclimatic implications

    SciTech Connect (OSTI)

    Loope, D.B.; Swinehart, J.B. (Univ. of Nebraska, Lincoln, NE (United States))

    1992-01-01

    Within the western half of this grass-stabilized dunefield, about 1,000 interdune lakes are grouped into two clusters here named the Blue and Birdwood lake basins. In the lake basins, those parts of the valley not filled by dune sand are occupied by modern lakes and Holocene lake sediments. The Blue Creek dam is mounded transverse to flow; spill-over of the lake basin takes place over bedrock on the east side of the dam when lake level is 2 m higher than present. The permeability of dune sand prevents massive overflow, and thereby contributes to the integrity and longevity of the dam. Preserved lake sediments in the basin indicate that Blue Creek was obstructed prior to 13,000 yr BP, probably during glacial maximum (18,000 yr BP). Extensive peats dated at 1,500-1,000 yr BP lie directly on fluvial sand and gravel along the Calamus River, a stream that presently discharges a nearly constant 350 cfs. These sediments indicate blockage of streams also took place when linear dunes were active in the eastern Sand Hills in Late Holocene time. With the onset of an arid episode, dunes forming an interfluves curtail the severity of runoff events. As the regional water table drops, drainages go dry and dunes move uncontested into blocking positions. Although drainages of the eastern Sand Hills appear to have repeatedly broken through sand-blocked channels, the Blue and Birdwood lake basins are still blocked by Late Pleistocene dune dams. The repeated episodes of stream blockage and interbedded lake sediments and dune sands behind the extant dams record several strong fluctuations in Holocene climate. Recently proposed climatic models indicate that the northward flow of warm, moist air from the Gulf of Mexico is enhanced when the Gulf's surface temperature is low and the Bermuda high is intensified and in a western position. When the Bermuda high moves eastward, the core of the North American continent becomes desiccated.

  19. Compound and Elemental Analysis At Hot Lake Area (Wood, 2002...

    Open Energy Info (EERE)

    and Heber geothermal fields of southern California; and 7) the Dieng field in Central Java, Indonesia. We have analyzed the samples from all fields for REE except the last two....

  20. Internal split field generator

    DOE Patents [OSTI]

    Thundat; Thomas George (Knoxville, TN); Van Neste, Charles W. (Kingston, TN); Vass, Arpad Alexander (Oak Ridge, TN)

    2012-01-03

    A generator includes a coil of conductive material. A stationary magnetic field source applies a stationary magnetic field to the coil. An internal magnetic field source is disposed within a cavity of the coil to apply a moving magnetic field to the coil. The stationary magnetic field interacts with the moving magnetic field to generate an electrical energy in the coil.

  1. Methane and carbon dioxide emissions from 40 lakes along a north–south latitudinal transect in Alaska

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sepulveda-Jauregui, A.; Walter Anthony, K. M.; Martinez-Cruz, K.; Greene, S.; Thalasso, F.

    2014-09-12

    Uncertainties in the magnitude and seasonality of various gas emission modes, particularly among different lake types, limit our ability to estimate methane (CH4) and carbon dioxide (CO2) emissions from northern lakes. Here we assessed the relationship between CH4 and CO2 emission modes in 40 lakes along a latitudinal transect in Alaska to physicochemical limnology and geographic characteristics, including permafrost soil type surrounding lakes. Emission modes included Direct Ebullition, Diffusion, Storage flux, and a newly identified Ice-Bubble Storage (IBS) flux. We found that all lakes were net sources of atmospheric CH4 and CO2, but the climate warming impact of lake CH4more » emissions was two times higher than that of CO2. Ebullition and Diffusion were the dominant modes of CH4 and CO2 emissions respectively. IBS, ~ 10% of total annual CH4 emissions, is the release to the atmosphere of seasonally ice-trapped bubbles when lake ice confining bubbles begins to melt in spring. IBS, which has not been explicitly accounted for in regional studies, increased the estimate of springtime emissions from our study lakes by 320%. Geographically, CH4 emissions from stratified, dystrophic interior Alaska thermokarst (thaw) lakes formed in icy, organic-rich yedoma permafrost soils were 6-fold higher than from non-yedoma lakes throughout the rest of Alaska. Total CH4 emission was correlated with concentrations of phosphate and total nitrogen in lake water, Secchi depth and lake area, with yedoma lakes having higher nutrient concentrations, shallower Secchi depth, and smaller lake areas. Our findings suggest that permafrost type plays important roles in determining CH4 emissions from lakes by both supplying organic matter to methanogenesis directly from thawing permafrost and by enhancing nutrient availability to primary production, which can also fuel decomposition and methanogenesis.« less

  2. Great Lakes Biomass State and Regional Partnership (GLBSRP)

    SciTech Connect (OSTI)

    Frederic Kuzel

    2009-09-01

    The Council of Great Lakes Governors administered the Great Lakes Biomass State and Regional Partnership (GLBSRP) under contract with the U. S. Department of Energy (DOE). This Partnership grew out of the existing Regional Biomass Energy Program which the Council had administered since 1983. The GLBSRP includes the States of Illinois, Indiana, Iowa, Michigan, Minnesota, Ohio and Wisconsin. The GLBSRP??s overall goal is to facilitate the increased production and use of bioenergy and biobased products throughout the region. The GLBSRP has traditionally addressed its goals and objectives through a three-pronged approach: providing grants to the States; undertaking region-wide education, outreach and technology transfer projects; and, providing in-house management, support and information dissemination. At the direction of US Department of Energy, the primary emphasis of the GLBSRP in recent years has been education and outreach. Therefore, most activities have centered on developing educational materials, hosting workshops and conferences, and providing technical assistance. This report summarizes a selection of activities that were accomplished under this cooperative agreement.

  3. A subtropical fate awaited freshwater discharged from glacial Lake Agassiz

    SciTech Connect (OSTI)

    Condron, Alan; Winsor, Peter

    2011-02-01

    The 8.2 kyr event is the largest abrupt climatic change recorded in the last 10,000 years, and is widely hypothesized to have been triggered by the release of thousands of kilometers cubed of freshwater into the North Atlantic Ocean. Using a high-resolution (1/6) global, ocean-ice circulation model we present an alternative view that freshwater discharged from glacial Lake Agassiz would have remained on the continental shelf as a narrow, buoyant, coastal current, and would have been transported south into the subtropical North Atlantic. The pathway we describe is in contrast to the conceptual idea that freshwater from this lake outburst spread over most of the sub-polar North Atlantic, and covered the deep, open-ocean, convection regions. This coastally confined freshwater pathway is consistent with the present-day routing of freshwater from Hudson Bay, as well as paleoceanographic evidence of this event. Using a coarse-resolution (2.6) version of the same model, we demonstrate that the previously reported spreading of freshwater across the sub-polar North Atlantic results from the inability of numerical models of this resolution to accurately resolve narrow coastal flows, producing instead a diffuse circulation that advects freshwater away from the boundaries. To understand the climatic impact of freshwater released in the past or future (e.g. Greenland and Antarctica), the ocean needs to be modeled at a resolution sufficient to resolve the dynamics of narrow, coastal buoyant flows.

  4. MTI Ground Truth Collection Ivanpah Dry Lake Bed, California, May, July, and August 2002

    SciTech Connect (OSTI)

    David L. Hawley

    2002-10-01

    A multi-agency collaboration successfully completed a series of ground truth measurements at the Ivanpah Dry Lake bed during FY 2002. Four collection attempts were made: two in May, one in July, and one in August. The objective was to collect ground-based measurements and airborne data during Multispectral Thermal Imager satellite overpasses. The measurements were to aid in the calibration of the satellite data and in algorithm validation. The Remote Sensing Laboratory, Las Vegas, Nevada; the National Aeronautics and Space Administration; Los Alamos National Laboratory; and the University of Arizona participated in the effort. Field instrumentation included a sun photometer on loan from the University of Arizona and the Remote Sensing Laboratory's radiosonde weather balloon, weather station, thermal infrared radiometers, and spectral radiometer. In addition, three reflectance panels were deployed; certain tests used water baths set at two different temperatures. Local weather data as well as sky photography were collected. May presented several excellent days; however, it was later learned that tasking for the satellite was not available. A combination of cloud cover, wind, and dusty conditions limited useful data collections to two days, August 28 and 29. Despite less-than- ideal weather conditions, the data for the Multispectral Thermal Imager calibration were obtained. A unique set of circumstances also allowed data collection during overpasses of the LANDSAT7 and ASTER satellites.

  5. Best Practices for Sustainable WInd Energy Development in the Great Lakes Region and Beyond

    SciTech Connect (OSTI)

    Great Lakes Commission; Victoria Pebbles; John Hummer; Celia Haven

    2011-07-19

    This document offers a menu of 18 different, yet complimentary preferred practices and policies. The best practices cover all phases of the wind energy development process - from the policies that allow for wind development, to the sustainable operation of a wind project, to the best practices for decommissioning a spent turbine - including applications for offshore wind. The practices include those that have been previously tested and proven effective, as well as new practices that were identified by experts in the field as needed for future wind developments. Each best practice includes information about the opportunities and challenges (pros and cons), and offers a case example that illustrates how that best practice is being utilized by a particular jurisdiction or wind project. The practices described in this publication were selected by a diverse group of interests from the Great Lakes Wind Collaborative that included environmental groups, industry, and federal, state and local government regulators. They were identified through a year long process that included a literature review, online survey and interviews with individuals from the public, private and non-profit sectors.

  6. Lake Roosevelt Fisheries Evaluation Program; Movements and Growth of Marked Walleye Recaptured in Lake Roosevelt, 2000-2001 Annual Report.

    SciTech Connect (OSTI)

    McLellan, Holly; Scholz, Allan

    2002-03-01

    Walleye (Stizostedion vitreum) have been marked with floy tags in Lake Roosevelt since 1997 to estimate abundance, distribution and movement trends. In 2000, walleye were collected and marked during the spawning run in the Spokane River through electrofishing and angling to supplement movement and growth data collected in previous years. Walleye were also collected and marked during the 2000 and 2001 Kettle Falls Governor's Cup Walleye Tournaments. Seventy-six tag returns were recovered in 2000 and twenty-three in 2001. Walleye migrated into the Spokane River to spawn in mid April and early May. The majority of marked walleye were recovered within 25 km of their original marking location, with a few traveling long distances between recovery locations. Data also verified earlier results that walleye establish summer home ranges. Some walleye remained in the Spokane River, while others moved downstream, or upstream after entering the mainstem of Lake Roosevelt. Those moving upstream moved as far north as Keenlyside Dam in British Columbia (245 km). Growth data indicated similar trends exhibited in the past. Walleye growth and mortality rates were consistent with other walleye producing waters. Walleye condition was slightly below average when compared to other systems.

  7. Environmental Assessment of remedial action at the Ambrosia Lake uranium mill tailings site, Ambrosia Lake, New Mexico

    SciTech Connect (OSTI)

    Not Available

    1987-06-01

    This document assesses and compares the environmental impacts of various alternatives for remedial action at the Ambrosia Lake uranium mill tailings site located near Ambrosia Lake, New Mexico. The designated site covers 196 acres and contains 111 acres of tailings and some of the original mill structures. The Uranium Mill Tailings Radiation Control Act (UMTRCA), Public Law 95-604, authorizes the US Department of Energy to clean up the site to reduce the potential health impacts associated with the residual radioactive materials remaining at the site and at associated properties off the site. The US Environmental Protection Agency promulgated standards for th remedial action (40 CFR Part 192). Remedial action must be performed in accordance with these standards and with the concurrence of the Nuclear Regulatory Commission. The proposed action is to stabilize the tailings at their present location by consolidating the tailings and associated contaminated materials into a recontoured pile. A radon barrier would be constructed over the pile and various erosion protection measures would be taken to assure the long-term stability of the pile. Another alternative which would involve moving the tailings to a new location is also assessed in this document. This alternative would generally involve greater short-term impacts and costs but would result in stabilization of the tailings at an undeveloped location. The no action alternative is also assessed in this document.

  8. A giant dune-dammed lake on the North Platte River, Nebraska

    SciTech Connect (OSTI)

    Swinehart, J.B. (Univ. of Nebraska, Lincoln, NE (United States). Conservation and Survey Div.); Loope, D.B. (Univ. of Nebraska, Lincoln, NE (United States). Dept. of Geology)

    1992-01-01

    The recent work in the Nebraska Sand Hills, just north of the North Platte Valley, has revealed the presence of numerous dune dams--sites where eolian sand has filled Pleistocene paleovalleys and caused the formation of lake basins containing abundant small, interdunal lakes. Although the Platte River is considered the southern margin of the Sand Hills, there is a 1,200 sq km triangular area of large dunes in Lincoln County just south of the South Platte. The authors hypothesize that large dunes migrated southward to fill the North Platte Valley during glacial maximum when both the North and South Platte were dry. As Rocky Mountain snowmelt and Great Plains precipitation increased during deglaciation, a single 65 km-long, 15 km-wide, 50 m-deep lake formed behind the massive dune dam. The tentative chronology suggests that the lake was in existence for at least several thousand years. They have not yet found compelling evidence of catastrophic flooding downstream of the former lake. Evidence of two large Quaternary lakes on the White Nile between Khartoum and Malakal (Sudan) was discovered in the 1960's. Shoreline deposits indicate the lakes were 400--600 km long and up to 50 km wide. Although the lakes have been attributed to repeated blockage of the White Nile by clay-rich Blue Nile deposits, the distribution and age of dune sand near the confluence of these rivers suggest that, as in the Nebraska example, the course of the White Nile was blocked by dunes when the region was desiccated in the Late Pleistocene. Lakes behind permeable dams rise to a level where input equals output. Earthen dams are vulnerable to overtopping and piping. The relatively high permeability of dune sand prevents or delays overtopping, and piping is prevented by the extremely high low hydraulic gradients that typify extant sand dams.

  9. Arrow Lakes Reservoir Fertilization Experiment, Technical Report 1999-2004.

    SciTech Connect (OSTI)

    Schindler, E.

    2007-02-01

    The Arrow Lakes food web has been influenced by several anthropogenic stressors during the past 45 years. These include the introduction of mysid shrimp (Mysis relicta) in 1968 and 1974 and the construction of large hydroelectric impoundments in 1969, 1973 and 1983. The construction of the impoundments affected the fish stocks in Upper and Lower Arrow lakes in several ways. The construction of Hugh Keenleyside Dam (1969) resulted in flooding that eliminated an estimated 30% of the available kokanee spawning habitat in Lower Arrow tributaries and at least 20% of spawning habitat in Upper Arrow tributaries. The Mica Dam (1973) contributed to water level fluctuations and blocked upstream migration of all fish species including kokanee. The Revelstoke Dam (1983) flooded 150 km of the mainstem Columbia River and 80 km of tributary streams which were used by kokanee, bull trout, rainbow trout and other species. The construction of upstream dams also resulted in nutrient retention which ultimately reduced reservoir productivity. In Arrow Lakes Reservoir (ALR), nutrients settled out in the Revelstoke and Mica reservoirs, resulting in decreased productivity, a process known as oligotrophication. Kokanee are typically the first species to respond to oligotrophication resulting from aging impoundments. To address the ultra-oligotrophic status of ALR, a bottom-up approach was taken with the addition of nutrients (nitrogen and phosphorus in the form of liquid fertilizer from 1999 to 2004). Two of the main objectives of the experiment were to replace lost nutrients as a result of upstream impoundments and restore productivity in Upper Arrow and to restore kokanee and other sport fish abundance in the reservoir. The bottom-up approach to restoring kokanee in ALR has been successful by replacing nutrients lost as a result of upstream impoundments and has successfully restored the productivity of Upper Arrow. Primary production rates increased, the phytoplankton community responded with a shift in species and zooplankton biomass was more favorable for kokanee. With more productive lower trophic levels, the kokanee population increased in abundance and biomass, resulting in improved conditions for bull trout, one of ALR's piscivorous species.

  10. Blue Lake Rancheria-Forging a Path toward Climate Resiliency | Department

    Office of Environmental Management (EM)

    of Energy Rancheria-Forging a Path toward Climate Resiliency Blue Lake Rancheria-Forging a Path toward Climate Resiliency January 22, 2015 - 4:14pm Addthis Blue Lake Rancheria—Forging a Path toward Climate Resiliency Sarai Geary Sarai Geary Program Manager, 48 Contiguous States The Blue Lake Rancheria Tribe is one of 16 communities selected as Climate Action Champions by the Obama Administration in December for exceptional work in response to climate change. To date, the Tribe has

  11. SEMI-ANNUAL REPORTS FOR LAKE CHARLES EXPORTS, LLC - FE DKT. NO. 11-59-LNG -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ORDER 3324 | Department of Energy LAKE CHARLES EXPORTS, LLC - FE DKT. NO. 11-59-LNG - ORDER 3324 SEMI-ANNUAL REPORTS FOR LAKE CHARLES EXPORTS, LLC - FE DKT. NO. 11-59-LNG - ORDER 3324 PDF icon October 2013 PDF icon April 2014 PDF icon October 2014 PDF icon April 2015 PDF icon October 2015 More Documents & Publications SEMI-ANNUAL REPORTS FOR LAKE CHARLES LNG EXPORT COMPANY, LLC (formerly Trunkline LNG Export, LLC) - DK. NO. 13-04-LNG - ORDER 3252 FE DOCKET NO. 11-59-LNG EIS-0491: Draft

  12. Consumers' Gas lays coiled steel tubing in Lake Erie

    SciTech Connect (OSTI)

    Not Available

    1980-10-01

    Forty-four miles of polypropylene-coated, coiled steel tubing have been laid underwater by the Consumers' Gas Co. of Toronto. Laid in 33,000-ft sections from a giant reel, the tubing is used for the remote control of subsea hydraulically operated line valves and the distribution of methyl alcohol to subsea gas wells. The installation is the first of long, continuous tubing underwater using this technology in Canada. The line was installed in conjunction with a newly completed gas well gathering system and processing plant that is expected to yield more than 35 billion cu ft of fuel over the next 15 yr. The new system under W.-Central Lake Erie provides consumers with a cost-effective method for remotely controlling underwater hydraulic valves and distributing methyl alcohol to eliminate hydrate build-up in the gas gathering lines.

  13. A subtropical fate awaited freshwater discharged from glacial Lake Agassiz

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Condron, Alan; Winsor, Peter

    2011-02-10

    The 8.2 kyr event is the largest abrupt climatic change recorded in the last 10,000 years, and is widely hypothesized to have been triggered by the release of thousands of kilometers cubed of freshwater into the North Atlantic Ocean. Using a high-resolution (1/6°) global, ocean-ice circulation model we present an alternative view that freshwater discharged from glacial Lake Agassiz would have remained on the continental shelf as a narrow, buoyant, coastal current, and would have been transported south into the subtropical North Atlantic. The pathway we describe is in contrast to the conceptual idea that freshwater from this lake outburstmore » spread over most of the sub-polar North Atlantic, and covered the deep, open-ocean, convection regions. This coastally confined freshwater pathway is consistent with the present-day routing of freshwater from Hudson Bay, as well as paleoceanographic evidence of this event. In this study, using a coarse-resolution (2.6°) version of the same model, we demonstrate that the previously reported spreading of freshwater across the sub-polar North Atlantic results from the inability of numerical models of this resolution to accurately resolve narrow coastal flows, producing instead a diffuse circulation that advects freshwater away from the boundaries. To understand the climatic impact of freshwater released in the past or future (e.g. Greenland and Antarctica), the ocean needs to be modeled at a resolution sufficient to resolve the dynamics of narrow, coastal buoyant flows.« less

  14. External split field generator

    DOE Patents [OSTI]

    Thundat, Thomas George (Knoxville, TN); Van Neste, Charles W. (Kingston, TN); Vass, Arpad Alexander (Oak Ridge, TN)

    2012-02-21

    A generator includes a coil disposed about a core. A first stationary magnetic field source may be disposed on a first end portion of the core and a second stationary magnetic field source may be disposed on a second end portion of core. The first and second stationary magnetic field sources apply a stationary magnetic field to the coil. An external magnetic field source may be disposed outside the coil to apply a moving magnetic field to the coil. Electrical energy is generated in response to an interaction between the coil, the moving magnetic field, and the stationary magnetic field.

  15. livermore field office

    National Nuclear Security Administration (NNSA)

    donation to those in need.

    Livermore Field Office sets core values as part of continuous improvement process http:nnsa.energy.govbloglivermore-field-office-sets-cor...

  16. Rend Lake College celebrates the opening of a new coal miner training facility

    SciTech Connect (OSTI)

    Buchsbaum, L.

    2009-09-15

    The Coal Miner Training Center at Rend Lake College recently hosted the Illinois Mining Institute's annual conference and a regional mine rescue competition. The article gives an outline of the coal miner training and refresher course offered. 3 photos.

  17. SEMI-ANNUAL REPORTS FOR LAKE CHARLES LNG EXPORT COMPANY, LLC...

    Broader source: Energy.gov (indexed) [DOE]

    & Publications SEMI-ANNUAL REPORTS FOR LAKE CHARLES EXPORTS, LLC - FE DKT. NO. 11-59-LNG - ORDER 3324 EIS-0491: Draft Environmental Impact Statement FE DOCKET NO. 11-59-LNG

  18. SEMI-ANNUAL REPORTS FOR LAKE CHARLES LNG EXPORT COMPANY, LLC...

    Broader source: Energy.gov (indexed) [DOE]

    & Publications SEMI-ANNUAL REPORTS FOR LAKE CHARLES EXPORTS, LLC - FE DKT. NO. 11-59-LNG - ORDER 3324 EIS-0491: Draft Environmental Impact Statement FE DOCKET NO. 11-59-LNG...

  19. EIS-0008: Dickey-Lincoln School Lakes Transmission Project, Maine, New Hampshire, and Vermont

    Broader source: Energy.gov [DOE]

    The U.S. Army Corps of Engineers and the U.S. Department of Energy's Bonneville Power Administration developed this statement to evaluate the environmental impacts of the Dickey-Lincoln School Lakes Transmission Project.

  20. Vehicle Technologies Office Merit Review 2014: Lake Michigan Corridor Alternative Fuel Implementation Initiative

    Broader source: Energy.gov [DOE]

    Presentation given by Institute of Gas Technology at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Lake Michigan...

  1. Title 10 Chapter 11 Management of Lakes and Ponds | Open Energy...

    Open Energy Info (EERE)

    of Lakes and PondsLegal Published NA Year Signed or Took Effect 1985 Legal Citation 29 V.S.A 401 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet...

  2. Land O'Lakes Shaves Gas Usage through Steam System In-Plant Training

    Broader source: Energy.gov [DOE]

    Twelve participants from 6 different facilities learned and practiced energy efficiency assessment skills during the recent in-plant training at a Land O'Lakes dairy plant in Carlisle, Pennsylvania...

  3. EA-1932: Bass Lake Native Fish Restoration, Eureka, Lincoln County, Montana

    Broader source: Energy.gov [DOE]

    This EA was initiated to evaluate the potential environmental impacts of a BPA proposal to fund Montana Fish, Wildlife and Parks to help restore native fish populations to the Tobacco River and Lake Koocanusa. The project has been cancelled.

  4. Title 29 Chapter 11 Management of Lakes and Ponds | Open Energy...

    Open Energy Info (EERE)

    Title 29 Chapter 11 Management of Lakes and Ponds Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Title 29 Chapter 11 Management...

  5. Macrophyte mapping in ten lakes of South Carolina with multispectral SPOT HRV data

    SciTech Connect (OSTI)

    Mackey, H.E. Jr.

    1989-01-01

    Fall and spring multispectral SPOT HRV data for 1987 and 1988 were used to evaluate the macrophyte distributions in ten freshwater reservoirs of South Carolina. The types of macrophyte and wetland communities present along the shoreline of the lakes varied depending on the age, water level fluctuations, water quality, and basin morphology. Seasonal satellite data were important for evaluation of the extent of persistent versus non-persistent macrophyte communities in the lakes. This paper contains only the view graphs of this process.

  6. Blue Lake Rancheria's Bold Action on the Climate Front Pays Dividends |

    Office of Environmental Management (EM)

    Department of Energy Rancheria's Bold Action on the Climate Front Pays Dividends Blue Lake Rancheria's Bold Action on the Climate Front Pays Dividends February 27, 2015 - 10:21am Addthis Blue Lake Rancheria’s Bold Action on the Climate Front Pays Dividends Karen Petersen Karen Petersen Project Manager with the National Renewable Energy Laboratory's Communications & Public Affairs Office Nestled in Northern California's Mad River Valley between the coastal mountains and the Pacific

  7. Curiosity Rover confirms existence of a large ancient lake on Mars

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Curiosity Rover confirms existence of a large ancient lake on Mars Curiosity Rover confirms existence of a large ancient lake on Mars New findings released today in the journal Science show substantial bodies of water likely existed on the surface of the planet in its early history. October 8, 2015 The DOE Secretary's Achievement Award is presented to the RLUOB Transfer Team. Top (from left): David Gallimore, Brett Cederdahl, Mike Parkes, Tim Leckbee and Tim Nelson. Bottom (from left): Denise

  8. Application for Presidential Permit OE Docket No. PP-412 ITC Lake Erie

    Energy Savers [EERE]

    Connector Project: Federal Register Notice, Volume 80, No. 137 - July 17, 2015 | Department of Energy Project: Federal Register Notice, Volume 80, No. 137 - July 17, 2015 Application for Presidential Permit OE Docket No. PP-412 ITC Lake Erie Connector Project: Federal Register Notice, Volume 80, No. 137 - July 17, 2015 Application from ITC Lake Erie to construct, operate and maintain electric transmission facilities at the U.S. - Canada Border. Federal Register Notice. PDF icon PP-412 ITC

  9. DOE Tour of Zero: Mutual Housing at Spring Lake by Mutual Housing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    California | Department of Energy Mutual Housing at Spring Lake by Mutual Housing California DOE Tour of Zero: Mutual Housing at Spring Lake by Mutual Housing California Addthis 1 of 14 Mutual Housing built this 62-unit multifamily affordable housing development near Sacramento, California, to the performance criteria of the U.S. Department of Energy Zero Energy Ready Home (ZERH) program. 2 of 14 In addition to DOE Zero Energy Ready Home, the high-efficiency construction meets the

  10. Lac du Flambeau Band of Lake Superior Chippewa Indians - Conservation and Renewable Energy Planning

    Office of Environmental Management (EM)

    du Flambeau Tribal Energy Program Lac du Flambeau Tribal Energy Program Renewable Energy and Conservation Renewable Energy and Conservation Planning Planning Larry Wawronowicz Larry Wawronowicz Deputy Administrator of Natural Resources Deputy Administrator of Natural Resources November 8, 2007 November 8, 2007 Lac du Flambeau Band of Lake Superior Lac du Flambeau Band of Lake Superior Chippewa Indians Chippewa Indians DE DE - - PS36 PS36 - - 06GO96038 06GO96038 Brief Summary of Tribe Brief

  11. DOE - Office of Legacy Management -- Great Lakes Carbon Corp - IL 21

    Office of Legacy Management (LM)

    Great Lakes Carbon Corp - IL 21 FUSRAP Considered Sites Site: GREAT LAKES CARBON CORP. ( IL.21 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: 333 North Michigan Avenue , Chicago , Illinois IL.21-1 Evaluation Year: 1987 IL.21-1 Site Operations: Facility performed a limited amount of nuclear fuel fabrication in the 1950s. Facility also developed graphite production under an AEC contract. IL.21-1 IL.21-3 Site Disposition:

  12. University of Michigan Gets Offshore Wind Ready for Winter on Lake Michigan

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Michigan Gets Offshore Wind Ready for Winter on Lake Michigan University of Michigan Gets Offshore Wind Ready for Winter on Lake Michigan April 16, 2013 - 12:00am Addthis The University of Michigan received funding from EERE to develop a modeling tool to simulate surface water ice impact on offshore wind turbine designs, especially designs involving innovative substructures. The funding will be used to augment existing computer-aided engineering tools, used for

  13. Using Snow Fences to Augument Fresh Water Supplies in Shallow Arctic Lakes

    SciTech Connect (OSTI)

    Stuefer, Svetlana

    2013-03-31

    This project was funded by the U.S. Department of Energy, National Energy Technology Laboratory (NETL) to address environmental research questions specifically related to Alaska?s oil and gas natural resources development. The focus of this project was on the environmental issues associated with allocation of water resources for construction of ice roads and ice pads. Earlier NETL projects showed that oil and gas exploration activities in the U.S. Arctic require large amounts of water for ice road and ice pad construction. Traditionally, lakes have been the source of freshwater for this purpose. The distinctive hydrological regime of northern lakes, caused by the presence of ice cover and permafrost, exerts influence on lake water availability in winter. Lakes are covered with ice from October to June, and there is often no water recharge of lakes until snowmelt in early June. After snowmelt, water volumes in the lakes decrease throughout the summer, when water loss due to evaporation is considerably greater than water gained from rainfall. This balance switches in August, when air temperature drops, evaporation decreases, and rain (or snow) is more likely to occur. Some of the summer surface storage deficit in the active layer and surface water bodies (lakes, ponds, wetlands) is recharged during this time. However, if the surface storage deficit is not replenished (for example, precipitation in the fall is low and near?surface soils are dry), lake recharge is directly affected, and water availability for the following winter is reduced. In this study, we used snow fences to augment fresh water supplies in shallow arctic lakes despite unfavorable natural conditions. We implemented snow?control practices to enhance snowdrift accumulation (greater snow water equivalent), which led to increased meltwater production and an extended melting season that resulted in lake recharge despite low precipitation during the years of the experiment. For three years (2009, 2010, and 2011), we selected and monitored two lakes with similar hydrological regimes. Both lakes are located 30 miles south of Prudhoe Bay, Alaska, near Franklin Bluffs. One is an experimental lake, where we installed a snow fence; the other is a control lake, where the natural regime was preserved. The general approach was to compare the hydrologic response of the lake to the snowdrift during the summers of 2010 and 2011 against the ?baseline? conditions in 2009. Highlights of the project included new data on snow transport rates on the Alaska North Slope, an evaluation of the experimental lake?s hydrological response to snowdrift melt, and cost assessment of snowdrift?generated water. High snow transport rates (0.49 kg/s/m) ensured that the snowdrift reached its equilibrium profile by winter's end. Generally, natural snowpack disappeared by the beginning of June in this area. In contrast, snow in the drift lasted through early July, supplying the experimental lake with snowmelt when water in other tundra lakes was decreasing. The experimental lake retained elevated water levels during the entire open?water season. Comparison of lake water volumes during the experiment against the baseline year showed that, by the end of summer, the drift generated by the snow fence had increased lake water volume by at least 21?29%. We estimated water cost at 1.9 cents per gallon during the first year and 0.8 cents per gallon during the second year. This estimate depends on the cost of snow fence construction in remote arctic locations, which we assumed to be at $7.66 per square foot of snow fence frontal area. The snow fence technique was effective in augmenting the supply of lake water during summers 2010 and 2011 despite low rainfall during both summers. Snow fences are a simple, yet an effective, way to replenish tundra lakes with freshwater and increase water availability in winter. This research project was synergetic with the NETL project, "North Slope Decision Support System (NSDSS) for Water Resources Planning and Management." The results

  14. Shallow Water Offshore Wind Optimization for the Great Lakes (DE-FOA-0000415) Final Report: A Conceptual Design for Wind Energy in the Great Lakes

    SciTech Connect (OSTI)

    Wissemann, Chris; White, Stanley M

    2014-02-28

    The primary objective of the project was to develop a innovative Gravity Base Foundation (GBF) concepts, including fabrication yards, launching systems and installation equipment, for a 500MW utility scale project in the Great Lakes (Lake Erie). The goal was to lower the LCOE by 25%. The project was the first to investigate an offshore wind project in the Great Lakes and it has furthered the body of knowledge for foundations and installation methods within Lake Erie. The project collected historical geotechnical information for Lake Erie and also used recently obtained data from the LEEDCo Icebreaker Project (FOA DE-EE0005989) geotechnical program to develop the conceptual designs. Using these data-sets, the project developed design wind and wave conditions from actual buoy data in order to develop a concept that would de-risk a project using a GBF. These wind and wave conditions were then utilized to create reference designs for various foundations specific to installation in Lake Erie. A project partner on the project (Weeks Marine) provided input for construction and costing the GBF fabrication and installation. By having a marine contractor with experience with large marine projects as part of the team provides credibility to the LCOE developed by NREL. NREL then utilized the design and construction costing information as part of the LCOE model. The report summarizes the findings of the project. • Developed a cost model and “baseline” LCOE • Documented Site Conditions within Lake Erie • Developed Fabrication, Installation and Foundations Innovative Concept Designs • Evaluated LCOE Impact of Innovations • Developed Assembly line “Rail System” for GBF Construction and Staging • Developed Transit-Inspired Foundation Designs which incorporated: Semi-Floating Transit with Supplemental Pontoons Barge mounted Winch System • Developed GBF with “Penetration Skirt” • Developed Integrated GBF with Turbine Tower • Developed Turbine, Plant Layout and O&M Strategies The report details lowering LCOE by 22.3% and identified additional strategies that could further lower LCOE when building an utility scale wind farm in the Great Lakes.

  15. Geology and geochemistry of crude oils, Bolivar coastal fields, Venezuela

    SciTech Connect (OSTI)

    Bockmeulen, H.; Barker, C.; Dickey, P.A.

    1983-02-01

    The Bolivar Coastal Fields (BCF) are located on the eastern margin of Lake Maracaibo, Venezuela. They form the largest oil field outside of the Middle East and contain mostly heavy oil with a gravity less than 22/sup 0/ API. Thirty crude oils from the BCF were collected along two parallel and generally southwest-northeast trends. These oils were characterized by their API gravity, percent saturates, aromatics, NSO and asphalitic compounds, gas chromatograms for whole oils, C/sub 4/-C/sub 7/ fractions, and aromatics. Also, 24 associated waters were sampled and analyzed for Ca/sup + +/, Mg/sup + +/, Na/sup +/, HCO/sub 3//sup -/, CO/sub 3//sup - -/, SO/sub 4//sup - -/, pH, and total dissolved solids (TDS). The geological and geochemical significances of these analyses are discussed with particular emphasis on the genesis of the petroleum.

  16. Red Lake Band of Chippewa Indians - First Steps Toward an Energy Efficient Future and MAP Biomass Project

    Energy Savers [EERE]

    OVERVIEW To develop the capacity to conduct energy audits Implement energy efficiency measures into Tribal homes Develop a Tribally administered Energy Efficiency Program and business PROJECT PARTICIPANTS Red Lake Housing Employees Energy Cents Coalition Staff Red Lake Band Members RELEVANT BACKGROUND INFORMATION The Red Lake Band of Chippewa Indians recognizes the need to develop a more sustainable, affordable and autonomous energy future for Tribal members Nearly 60% of the 1,621 housing units

  17. MOSRC Field Definitions 01202016 MOSRC Field Definitions

    Office of Environmental Management (EM)

    MOSRC Field Definitions 01202016 MOSRC Field Definitions 1/5 1/20/2016 Field Name Definition Prime Contract Procurement Instrument Identifier The unique Prime Contractor identifier as it is recorded on the original (or base) contract in FPDS-NG. This must be a valid DOE M&O PIID, as recorded in FPDS-NG. Prime Contract DUNS Number The Prime Contractor's Dun and Bradstreet Data Universal Numbering System (DUNS) as it is recorded on the prime contract in FPDS-NG. Subcontract DUNS Number The

  18. Direct-Current Resistivity At Clear Lake Area (Skokan, 1993)...

    Open Energy Info (EERE)

    surveys were carried out in the area. These field measurements (Rapolla and Keller, 1984) were combined by spatially averaging apparent resistivities on a one kilometer grid (...

  19. Direct-Current Resistivity Survey At Clear Lake Area (Skokan...

    Open Energy Info (EERE)

    surveys were carried out in the area. These field measurements (Rapolla and Keller, 1984) were combined by spatially averaging apparent resistivities on a one kilometer grid (...

  20. Lake City Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  1. North Shore Mono Lake Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  2. Nevada Field Office

    National Nuclear Security Administration (NNSA)

    field-items">
    field-item odd">