Powered by Deep Web Technologies
Note: This page contains sample records for the topic "lake erie shore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Wind Equipment: Creating Jobs Along the Lake Erie Shore | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Equipment: Creating Jobs Along the Lake Erie Shore Wind Equipment: Creating Jobs Along the Lake Erie Shore August 16, 2012 - 9:36am Addthis 1 of 3 Finished wind tower sections...

2

Wind Equipment: Creating Jobs Along the Lake Erie Shore | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Equipment: Creating Jobs Along the Lake Erie Shore Wind Equipment: Creating Jobs Along the Lake Erie Shore Wind Equipment: Creating Jobs Along the Lake Erie Shore August 16, 2012 - 9:36am Addthis 1 of 3 Finished wind tower sections await load-out at Ventower Industries, state-of-the-art fabrication facility in Monroe, MI. Image: Ventower Industries. 2 of 3 Ventower operations team loading out first sections produced at Monroe plant. Image: Ventower Industries 3 of 3 Production team members in attendance at Ventower's ribbon cutting ceremony in August 2011. Image: Ventower Industries Monroe, Michigan Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs What are the key facts? Ventower Industries supplies wind turbine towers for projects throughout the Great Lakes and Northeast regions. Since opening, the company has grown to 53 employees.

3

HERO BX formerly Lake Erie Biofuels | Open Energy Information  

Open Energy Info (EERE)

Page Edit with form History Facebook icon Twitter icon HERO BX formerly Lake Erie Biofuels Jump to: navigation, search Name HERO BX (formerly Lake Erie Biofuels) Place Erie,...

4

Lake Erie Alternative Power | Open Energy Information  

Open Energy Info (EERE)

Erie Alternative Power Erie Alternative Power Jump to: navigation, search Name Lake Erie Alternative Power Facility Lake Erie Alternative Power Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Developer Lake Erie Alternative Power LLC Location Lake Erie PA Coordinates 42.265°, -80.642° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.265,"lon":-80.642,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

5

Real-Time Prediction of the Lake Breeze on the Western Shore of Lake Michigan  

Science Conference Proceedings (OSTI)

A forecast verification study of the occurrence and inland penetration of the lake breeze on the western shore of Lake Michigan was conducted. A real-time version of The Pennsylvania State UniversityNational Center for Atmospheric Research fifth-...

Paul J. Roebber; Mark G. Gehring

2000-06-01T23:59:59.000Z

6

North Shore Mono Lake Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Shore Mono Lake Geothermal Area Shore Mono Lake Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: North Shore Mono Lake Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.048205,"lon":-119.080047,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

7

Impacts of Severe Winter Weather during December 1989 in the Lake Erie Snowbelt  

Science Conference Proceedings (OSTI)

December 1989 was the coldest December in over 100 years in the Lake Erie snowbelt of Ohio, Pennsylvania, and New York. Mean temperatures of ?9C were 7C lower than average and extreme minima reached ?30C. Snow fell on 20 to 25 days of the ...

Thomas W. Schmidlin

1993-04-01T23:59:59.000Z

8

Numerical Simulation of Land-Breeze-Induced Snowbands Along the Western Shore of Lake Michigan  

Science Conference Proceedings (OSTI)

Case studies are presented which describe a type of lake-effect snowband which forms along the western shore of Lake Michigan when a cold anticyclone to the north sets up an easterly gradient over the lake. Numerical simulations indicate that the ...

Robert J. Ballentine

1983-08-01T23:59:59.000Z

9

Numerical Simulation of Land-Breeze-Induced Snowbands Along the Western Shore of Lake Michigan  

Science Conference Proceedings (OSTI)

Case studies are presented which describe a type of lake-effect snowband which forms along the western shore of Lake Michigan when a cold anticyclone to the north sets up an easterly gradient over the lake. Numerical simulations indicate that the ...

Robert J. Ballentine

1982-11-01T23:59:59.000Z

10

Lake Shore, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Shore, Utah: Energy Resources Shore, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.1218985°, -111.7304843° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.1218985,"lon":-111.7304843,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

11

Petrology of the Devonian gas-bearing shale along Lake Erie helps explain gas shows  

DOE Green Energy (OSTI)

Comprehensive petrologic study of 136 thin sections of the Ohio Shale along Lake Erie, when combined with detailed stratigraphic study, helps explain the occurrence of its gas shows, most of which occur in the silty, greenish-gray, organic poor Chagrin Shale and Three Lick Bed. Both have thicker siltstone laminae and more siltstone beds than other members of the Ohio Shale and both units also contain more clayshales. The source of the gas in the Chagrin Shale and Three Lick Bed of the Ohio Shale is believed to be the bituminous-rich shales of the middle and lower parts of the underlying Huron Member of the Ohio Shale. Eleven petrographic types were recognized and extended descriptions are provided of the major ones - claystones, clayshales, mudshales, and bituminous shales plus laminated and unlaminated siltstones and very minor marlstones and sandstones. In addition three major types of lamination were identified and studied. Thirty-two shale samples were analyzed for organic carbon, whole rock hydrogen and whole rock nitrogen with a Perkin-Elmer 240 Elemental Analyzer and provided the data base for source rock evaluation of the Ohio Shale.

Broadhead, R.F.; Potter, P.E.

1980-11-01T23:59:59.000Z

12

Social determinants, lived experiences, and consequences of household food insecurity among persons living with HIV/AIDS on the shore of Lake Victoria, Kenya  

E-Print Network (OSTI)

shore of Lake Victoria, Kenya 1 Social determinants, livedshore of Lake Victoria, Kenya Jason M. Nagata a,b* , RichardIsland, Nyanza Province, Kenya; d Department of Obstetrics,

Nagata, Jason M; Magerenge, Richard O; Young, Sera L; Oguta, Joel O; Weiser, Sheri D; Cohen, Craig R

2011-01-01T23:59:59.000Z

13

Mesoscale Boundary Layer and Heat Flux Variations over Pack IceCovered Lake Erie  

Science Conference Proceedings (OSTI)

The development of extensive pack ice fields on the Great Lakes significantly influences lake-effect storms and local airmass modification, as well as the regional hydrologic cycle and lake water levels. The evolution of the ice fields and their ...

Mathieu R. Gerbush; David A. R. Kristovich; Neil F. Laird

2008-02-01T23:59:59.000Z

14

Windflow circulation patterns in a blowout in coastal dunes along the southern shore of Lake Michigan  

Science Conference Proceedings (OSTI)

The windflow patterns in one of several large active blowouts in the coastal dunes along the southern shore of Lake Michigan was intensively monitored over a two-day period. Two wind towers, consisting of four sets of anemometer cups mounted at 20-, 40-, 80, and 160-cm heights above the base, were used to provide a velocity profile from which basal shear velocities could be calculated. A wind vane was mounted at the top of the tower to monitor wind directions. Data was collected continuously with digital data loggers and averaged over 1-min intervals, and each station was occupied for a 5-min period. The topography of the blowout was mapped with a transit, which also was used to establish the position and elevation of the authors data-collecting stations. Photomosaics were used to prepare a map of the geomorphic elements. The elliptical blowout is 100m long and approximately 25m wide. Its floor drops slightly in elevation from the mouth, and then rises to a height of 32 meters at the back wall. The walls of the blowout assume smooth parabolic shapes except where undercutting at the margins has produced several large slump blocks. Windflow entering the blowout at the mouth and sides separates at the point of maximum expansion and veers as much as 100[degree]. Maximum velocities occur at the point of reattachment, and deceleration occurs as the wind proceeds into the blowout. Axial flows may accelerate toward the back wall where flow compression occurs. Flows entering the blowout at the back wall separate at the margin. As they overflow the blowout, they produce a reverse flow circulation that is strongest near the mouth and decelerates rapidly up the axis.

Bauch, N.J.; Bennett, S.; Ferguson, V.; Fraser, G.S.; Gellasch, C.A.; Millard, C.L.; Mueller, B.; O'Malley, P.J.; Way, J.N.; Woodfield, M.C. (Indiana Univ., Bloomington, IN (United States). Dept. of Geosciences)

1993-03-01T23:59:59.000Z

15

Lake-Effect Rain Events  

Science Conference Proceedings (OSTI)

Seven years of autumnal (SeptemberNovember) precipitation data are examined to determine the characteristics of lake-effect precipitation downwind of Lake Erie. Atmospheric conditions for each lake-effect event are compiled and the mean ...

Todd J. Miner; J. M. Fritsch

1997-12-01T23:59:59.000Z

16

The Lake Effect of the Great Salt Lake: Overview and Forecast Problems  

Science Conference Proceedings (OSTI)

A lake-effect snow phenomenon along the shore of the Great Salt Lake (GSL) in Utah is documented and related to a similar, well-documented lake effect along the shores of the Great Lakes. Twenty-eight cases of GSL lake-effect snowfall are ...

David M. Carpenter

1993-06-01T23:59:59.000Z

17

Shore Erosion Control (Maryland)  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Natural Resources is responsible for creating and implementing a program designed to minimize shore erosion through education, erosion control projects, promulgate regulations,...

18

Lake-Effect Thunderstorms in the Lower Great Lakes  

Science Conference Proceedings (OSTI)

Cloud-to-ground (CG) lightning, radar, and radiosonde data were examined to determine how frequently lake-effect storms (rain/snow) with lightning occurred over and near the lower Great Lakes region (Lakes Erie and Ontario) from September 1995 ...

Scott M. Steiger; Robert Hamilton; Jason Keeler; Richard E. Orville

2009-05-01T23:59:59.000Z

19

Freshwater Shore Lines  

NLE Websites -- All DOE Office Websites (Extended Search)

banks are regularly scoured by freshets: or on lakes where high waves pound over a sandy beach; or on artificial reservoirs where the water levels fluctuate greatly because...

20

Integrated measures of anthropogenic stress in the U.S. Great Lakes Basin  

Science Conference Proceedings (OSTI)

Using publicly available, pre-existing spatial datasets, we developed a geographic information system database of 86 variables related to five classes of anthropogenic stress in the U.S. Great Lakes basin: agriculture, atmospheric deposition, human population, land cover, and point source pollution. The original variables were quantified by a variety of data types over a broad range of spatial and classification resolutions. We summarized the original data for 762 watershed-based units that comprise the U.S. portion of the basin and then used principal components analysis to develop overall stress measures within each stress category. We developed a cumulative stress index by combining the first principal component from each of the five stress categories. Maps of the stress measures illustrate strong spatial patterns across the basin, with the greatest amount of stress occurring on the western shore of Lake Michigan, southwest Lake Erie, and southeastern Lake Ontario. We found strong relationships between the stress measures and characteristics of bird communities, fish communities, and water chemistry measurements from the coastal region. The stress measures are taken to represent the major threats to coastal ecosystems in the U.S. Great Lakes. Such regional-scale efforts are critical for understanding relationships between human disturbance and ecosystem response, and can be used to guide environmental decision-making at both regional and local scales.

Danz, Nicholas; Niemi, Gerald; Regal, Ronald (and others) [University of Minnesota Duluth, Duluth, MN (United States)

2007-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "lake erie shore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Circulations, Bounded Weak Echo Regions, and Horizontal Vortices Observed within Long-Lake-Axis-ParallelLake-Effect Storms by the Doppler on Wheels  

Science Conference Proceedings (OSTI)

The eastern Great Lakes (Erie and Ontario) are often affected by intense lake-effect snowfalls. Lake-effect storms that form parallel to the major axes of these lakes can strongly impact communities by depositing more than 100 cm of snowfall in ...

Scott M. Steiger; Robert Schrom; Alfred Stamm; Daniel Ruth; Keith Jaszka; Timothy Kress; Brett Rathbun; Jeffrey Frame; Joshua Wurman; Karen Kosiba

2013-08-01T23:59:59.000Z

22

Lake Michigan Lake Breezes: Climatology, Local Forcing, and Synoptic Environment  

Science Conference Proceedings (OSTI)

A method was developed to identify the occurrence of lake-breeze events along the eastern, western, and both shores of Lake Michigan during a 15-yr period (198296). Comparison with detailed observations from May through September of 199697 ...

Neil F. Laird; David A. R. Kristovich; Xin-Zhong Liang; Raymond W. Arritt; Kenneth Labas

2001-03-01T23:59:59.000Z

23

Lake Erie Beach, New York: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Beach, New York: Energy Resources Beach, New York: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.6242256°, -79.0669829° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.6242256,"lon":-79.0669829,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

24

PESTICIDE ACCUMULATION RATES IN A MANAGED MARSH ALONG LAKE ERIE  

E-Print Network (OSTI)

column chromatographic separation and analysis with gas chromatography. Soils in both watersheds have low dedicated to orchards and concurrent increase in residential and road area. The increase in grain size. The pesticide accumulation rates were calculated and indicate an airborne source for HCHs and endrin

Gottgens, Hans

25

Hydroclimatic Factors of the Recent Record Drop in Laurentian Great Lakes Water Levels  

Science Conference Proceedings (OSTI)

An extreme low-water supply episode from 1997 to 2000 resulted in the largest 1-yr drop in Lakes MichiganHuron and Lake Erie water levels (0.92 and 1.03 m, respectively) recorded since measurements began in the early 1800s. Lake Superior water ...

Raymond A. Assel; Frank H. Quinn; Cynthia E. Sellinger

2004-08-01T23:59:59.000Z

26

Shore Protection Act (Georgia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Shore Protection Act (Georgia) Shore Protection Act (Georgia) Shore Protection Act (Georgia) < Back Eligibility Commercial Construction Developer Industrial Investor-Owned Utility Transportation Utility Savings Category Water Buying & Making Electricity Program Info State Georgia Program Type Environmental Regulations Siting and Permitting Provider Georgia Department of Natural Resources The Shore Protection Act is the primary legal authority for protection and management of Georgia's shoreline features including sand dunes, beaches, sandbars, and shoals, collectively known as the sand-sharing system. The value of the sand-sharing system is recognized as vitally important in protecting the coastal marshes and uplands from Atlantic storm activity, as well as providing valuable recreational opportunities.

27

North Shore Gas- Residential Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

'''Contact North Shore Gas for information on limited-time bonus incentive offerings. Bonus incentives of $250 - $450 are available for eligible purchases made before May 31, 2013.'''

28

Clean Cities: South Shore Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

South Shore Clean Cities Coalition South Shore Clean Cities Coalition The South Shore Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. South Shore Clean Cities coalition Contact Information Carl Lisek 219-644-3690 clisek@southshorecleancities.org Coalition Website Clean Cities Coordinator Carl Lisek Photo of Carl Lisek Carl Lisek is vice president of Legacy Environmental Services and is the executive director for South Shore Clean Cities (SSCC) of northern Indiana. Lisek's wife, Lorrie, serves as executive leadership for SSCC and is the executive director for Wisconsin Clean Cities. The couple has been with the Clean Cities program since 2006. Through local partnerships with business, industry, and state and local

29

Simulations of Dissipative, Shore-Oblique Infragravity Waves  

Science Conference Proceedings (OSTI)

A model of forced, dissipative shore-oblique shallow water waves predicts net cross-shore infragravity wave propagation, in qualitative agreement with field observations. Forcing applied near the shore generates edge waves, whose energy is mostly ...

Stephen M. Henderson; A. J. Bowen

2003-08-01T23:59:59.000Z

30

Coastal Boundary Layer Characteristics during Summer Stratification in Lake Ontario  

Science Conference Proceedings (OSTI)

Simultaneous measurements of Eulerian and Lagrangian currents along the north shore of Lake Ontario are analyzed to provide the mean flow properties and horizontal turbulent exchange characteristics in the coastal boundary layer (CBL). The summer ...

Y. R. Rao; C. R. Murthy

2001-04-01T23:59:59.000Z

31

On the Net Cyclonic Circulation in Large Stratified Lakes  

Science Conference Proceedings (OSTI)

This paper proposes a possible explanation for the mean cyclonic circulation in large stratified lakes The condition of no heat flux through the bottom boundary causes the isotherms to dip near the shores to intersect the sloping bottom ...

David J. Schwab; William P. O'Connor; George L. Mellor

1995-06-01T23:59:59.000Z

32

Numerical Simulation of the Airflow over Lake Michigan for a Major Lake-Effect Snow Event  

Science Conference Proceedings (OSTI)

A mesoscale model is used to simulate the airflow over Lake Michigan for the major lake-effect snowstorm of 10 December 1977. This storm was characterized by a land breeze circulation and a narrow shore-parallel radar reflectivity band. The model ...

Mark R. Hjelmfelt; Roscoe R. Braham Jr.

1983-01-01T23:59:59.000Z

33

METHANE AND NITROGEN ABUNDANCES ON PLUTO AND ERIS  

SciTech Connect

We present spectra of Eris from the MMT 6.5 m Telescope and Red Channel Spectrograph (5700-9800 A, 5 A pixel{sup -1}) on Mt. Hopkins, AZ, and of Pluto from the Steward Observatory 2.3 m Telescope and Boller and Chivens Spectrograph (7100-9400 A, 2 A pixel{sup -1}) on Kitt Peak, AZ. In addition, we present laboratory transmission spectra of methane-nitrogen and methane-argon ice mixtures. By anchoring our analysis in methane and nitrogen solubilities in one another as expressed in the phase diagram of Prokhvatilov and Yantsevich, and comparing methane bands in our Eris and Pluto spectra and methane bands in our laboratory spectra of methane and nitrogen ice mixtures, we find Eris' bulk methane and nitrogen abundances are {approx}10% and {approx}90% and Pluto's bulk methane and nitrogen abundances are {approx}3% and {approx}97%. Such abundances for Pluto are consistent with values reported in the literature. It appears that the bulk volatile composition of Eris is similar to the bulk volatile composition of Pluto. Both objects appear to be dominated by nitrogen ice. Our analysis also suggests, unlike previous work reported in the literature, that the methane and nitrogen stoichiometry is constant with depth into the surface of Eris. Finally, we point out that our Eris spectrum is also consistent with a laboratory ice mixture consisting of 40% methane and 60% argon. Although we cannot rule out an argon-rich surface, it seems more likely that nitrogen is the dominant species on Eris because the nitrogen ice 2.15 {mu}m band is seen in spectra of Pluto and Triton.

Tegler, S. C.; Cornelison, D. M.; Abernathy, M. R.; Bovyn, M. J.; Burt, J. A.; Evans, D. E.; Maleszewski, C. K.; Thompson, Z. [Department of Physics and Astronomy, Northern Arizona University, Flagstaff, AZ 86011 (United States); Grundy, W. M. [Lowell Observatory, Flagstaff, AZ 86001 (United States); Romanishin, W. [Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019 (United States); Vilas, F., E-mail: Stephen.Tegler@nau.ed, E-mail: David.Cornelison@nau.ed, E-mail: W.Grundy@lowell.ed, E-mail: wjr@nhn.ou.ed, E-mail: fvilas@mmto.or [MMT Observatory, University of Arizona, Tucson, AZ 85721 (United States)

2010-12-10T23:59:59.000Z

34

Operational Forecasting of Lake Effect Snowfall in Western and Central New York  

Science Conference Proceedings (OSTI)

Lake effect snowstorms frequently produce heavy snow in western and central New York State during the late fall and winter months when the waters of Lakes Erie and Ontario are relatively ice free. Mesoscale snowbands account for most of the snow. ...

Thomas A. Niziol

1987-12-01T23:59:59.000Z

35

Lake Shore, Maryland: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

0543°, -76.4849613° 0543°, -76.4849613° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.1070543,"lon":-76.4849613,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

36

Clear Lake Shores, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

29.547452°, -95.0321506° 29.547452°, -95.0321506° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.547452,"lon":-95.0321506,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

37

Lake Clarke Shores, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

6.6453449°, -80.0758754° 6.6453449°, -80.0758754° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.6453449,"lon":-80.0758754,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

38

City of Erie, Kansas (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Erie City of Erie City of Place Kansas Utility Id 5957 Utility Location Yes Ownership M NERC Location SPP NERC SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Ballfield Commercial Commercial Rate Commercial Demand Commercial Industrial Rate Industrial Residential Rate Residential Average Rates Residential: $0.1520/kWh Commercial: $0.1360/kWh Industrial: $0.1520/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Erie,_Kansas_(Utility_Company)&oldid=409569"

39

ENERGY RESOURCES INTERNATIONAL, INC. ERI-2142.16-1301  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

16-1301 16-1301 Quantification of the Potential Impact on Commercial Markets of Introduction of the Enrichment Services Component of DOE Low Enriched Uranium Inventory During Calendar Year 2013 ENERGY RESOURCES INTERNATIONAL, INC. 1015 18 th Street, NW, Suite 650 Washington, DC 20036 USA Telephone: (202) 785-8833 Facsimile: (202) 785-8834 ERI-2142.16-1301 Quantification of the Potential Impact on Commercial Markets of Introduction of the Enrichment Services Component of DOE Low Enriched Uranium Inventory During Calendar Year 2013 Prepared For: U.S. Department of Energy Office of Nuclear Energy Prepared By: Thomas B. Meade Eileen M. Supko January 28, 2013 NOTICE ERI-2142.16-1301/January 2013 iii Energy Resources International, Inc.

40

North Bar Lake South Bar Lake  

E-Print Network (OSTI)

Traverse Lake Lime Lake Crystal River Sh alda Cr GOOD HARBOR BAY SLEEPING BEAR BAY PLATTE BA Y LAKE South Bar Lake Otter Lake Loon Lake Long Lake Rush Lake Platte Lake Little Platte Lake CRYSTAL LAKE MICHIGAN LAKE MICHIGAN Lake Elevation 580ft (177m) MANITOU PAS S A G E Ott er C reek Pl atte River Platt e

Note: This page contains sample records for the topic "lake erie shore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Why Sequencea Near-Shore Anoxic Basin?  

NLE Websites -- All DOE Office Websites (Extended Search)

a Near-Shore Anoxic Basin? a Near-Shore Anoxic Basin? Oxygen minimum zones (OMZs; areas of low dissolved oxygen concentrations) play a major role in biogeochemical cycling within the world's oceans. They are major sinks for nitrogen and sources for the gases carbon dioxide and nitrous oxide. Microbially mediated biological activity associated with these systems affects the productivity of the deep blue sea and the balance of greenhouse gases in the atmosphere. Thus, studies aimed at evaluating the phylogenetic variation and metabolic capacity of microbial communities within these systems have great promise to enhance our understanding of the patterns and processes that drive global biogeochemical phenomena in both aquatic and atmospheric compartments of the biosphere. To this end, JGI and

42

Beverly Shores, Indiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

with form History Share this page on Facebook icon Twitter icon Beverly Shores, Indiana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

43

Nicor, Peoples, and North Shore Gas - Small Business Energy Savings...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- Small Business Energy Savings Program (Illinois) Nicor, Peoples, and North Shore Gas - Small Business Energy Savings Program (Illinois) Eligibility Commercial Residential...

44

South Shore, South Dakota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Edit with form History Share this page on Facebook icon Twitter icon South Shore, South Dakota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia...

45

Daemen Alternative Energy/Geothermal Technologies Demonstration Program Erie County  

NLE Websites -- All DOE Office Websites (Extended Search)

US DOE Geothermal Program US DOE Geothermal Program eere.energy.gov Public Service of Colorado Ponnequin Wind Farm Geothermal Technologies Program 2010 Peer Review Daemen Alternative Energy/Geothermal Technologies Demonstration Program Erie County Robert C. Beiswanger, Jr. Daemen College May 20, 2010 This presentation does not contain any proprietary confidential, or otherwise restricted information. Insert photo of your choice 2 | US DOE Geothermal Program eere.energy.gov DAEMEN COLLEGE Open Loop, Geo-exchange System Geothermal Technologies Program 2010 Peer Review May 20, 2010 3 | US DOE Geothermal Program eere.energy.gov DAEMEN COLLEGE Open Loop, Geo-exchange System Principal Investigators Robert C. Beiswanger Jr. Vice President for Business Affairs and Treasurer Dr. Edwin G. Clausen Vice President for Academic Affairs and Dean of the College

46

ERI-2142 07-1001 DOE - Potential Market Impact CY2011,12,13 December...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

No. GS-23F0242P and DOE Contract No. DE-DT0000752. ERI-2142.07-1001December 2010 iv Energy Resources International, Inc. TABLE OF CONTENTS Executive Summary ES-1 1....

47

Contaminant Monitoring Strategy for Henrys Lake, Idaho  

Science Conference Proceedings (OSTI)

Henrys Lake, located in southeastern Idaho, is a large, shallow lake (6,600 acres, {approx} 17.1 feet maximum depth) located at 6,472 feet elevation in Fremont Co., Idaho at the headwaters of the Henrys Fork of the Snake River. The upper watershed is comprised of high mountains of the Targhee National Forest and the lakeshore is surrounded by extensive flats and wetlands, which are mostly privately owned. The lake has been dammed since 1922, and the upper 12 feet of the lake waters are allocated for downriver use. Henrys Lake is a naturally productive lake supporting a nationally recognized ''Blue Ribbon'' trout fishery. There is concern that increasing housing development and cattle grazing may accelerate eutrophication and result in winter and early spring fish kills. There has not been a recent thorough assessment of lake water quality. However, the Department of Environmental Quality (DEQ) is currently conducting a study of water quality on Henrys Lake and tributary streams. Septic systems and lawn runoff from housing developments on the north, west, and southwest shores could potentially contribute to the nutrient enrichment of the lake. Many houses are on steep hillsides where runoff from lawns, driveways, etc. drain into wetland flats along the lake or directly into the lake. In addition, seepage from septic systems (drainfields) drain directly into the wetlands enter groundwater areas that seep into the lake. Cattle grazing along the lake margin, riparian areas, and uplands is likely accelerating erosion and nutrient enrichment. Also, cattle grazing along riparian areas likely adds to nutrient enrichment of the lake through subsurface flow and direct runoff. Stream bank and lakeshore erosion may also accelerate eutrophication by increasing the sedimentation of the lake. Approximately nine streams feed the lake (see map), but flows are often severely reduced or completely eliminated due to irrigation diversion. In addition, subsurface flows can occur as a result of severe cattle grazing along riparian areas and deltas. Groundwater and springs also feed the lake, and are likely critical for oxygen supply during winter stratification. During the winter of 1991, Henrys Lake experienced low dissolved oxygen levels resulting in large fish kills. It is thought that thick ice cover combined with an increase in nutrient loads created conditions resulting in poor water quality. The Idaho Department of Health and Welfare, DEQ is currently conducting a study to determine the water quality of Henrys Lake, the sources contributing to its deterioration, and potential remedial actions to correct problem areas.

John S. Irving; R. P. Breckenridge

1992-12-01T23:59:59.000Z

48

Peoples Gas and North Shore Gas - Bonus Rebate Program (Illinois) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Peoples Gas and North Shore Gas - Bonus Rebate Program (Illinois) Peoples Gas and North Shore Gas - Bonus Rebate Program (Illinois) Peoples Gas and North Shore Gas - Bonus Rebate Program (Illinois) < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Maximum Rebate $450 Program Info Start Date 01/01/2013 Expiration Date 05/31/2013 State Illinois Program Type Utility Rebate Program Rebate Amount Varies Provider Natural Gas Savings Program The Peoples Gas and North Shore Gas Natural Gas Savings Programs are offering the following bonus rebates (in addition to the joint utilities bonus rebate). For both offers below, installation must occur from February 1 through May 31, 2013. All paperwork must be received on or before May 31,

49

Vorticity and Divergence of Surface Velocities Near Shore  

Science Conference Proceedings (OSTI)

The nearshore environment is complex, with many competing dynamical elements. Surface waves and edge waves (a form of surface wave trapped to the shore) can generally be separated from other forms of motion because of their fast propagation ...

Jerome A. Smith

2008-07-01T23:59:59.000Z

50

North Shore Gas - Commercial and Industrial Prescriptive Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

North Shore Gas - Commercial and Industrial Prescriptive Rebate North Shore Gas - Commercial and Industrial Prescriptive Rebate Program North Shore Gas - Commercial and Industrial Prescriptive Rebate Program < Back Eligibility Commercial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Commercial Weatherization Manufacturing Appliances & Electronics Water Heating Maximum Rebate Contact North Shore Gas Program Info Expiration Date 05/31/2013 State Illinois Program Type Utility Rebate Program Rebate Amount Steam Traps (Low Pressure): $60/unit Steam Traps (High Pressure): $150/unit Industrial/Process Steam Trap (Low Pressure): $150 Industrial/Process Steam Trap (High Pressure): $200 HVAC Steam Trap Test: $5/unit surveyed Condensing Unit Heater: $2/MBH Boilers: $2 - $6.67/MBH Boiler Cutout/Reset Control: $250

51

Ocean Energy Projects Developing On and Off America's Shores | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ocean Energy Projects Developing On and Off America's Shores Ocean Energy Projects Developing On and Off America's Shores Ocean Energy Projects Developing On and Off America's Shores January 22, 2013 - 1:14pm Addthis Artist rendering of Ocean Power Technologies' proposed wave park off the coast of Oregon. | Photo courtesy of Ocean Power Technologies. Artist rendering of Ocean Power Technologies' proposed wave park off the coast of Oregon. | Photo courtesy of Ocean Power Technologies. Verdant testing its tidal energy device in New York's East River. | Photo courtesy of Verdant Power. Verdant testing its tidal energy device in New York's East River. | Photo courtesy of Verdant Power. Ocean Power Technologies wave energy device. | Photo courtesy of Ocean Power Technologies. Ocean Power Technologies wave energy device. | Photo courtesy of Ocean

52

Ocean Shores, Washington: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Ocean Shores, Washington: Energy Resources Ocean Shores, Washington: Energy Resources (Redirected from Ocean Shores, WA) Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.9736986°, -124.1562852° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.9736986,"lon":-124.1562852,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

53

Ocean Energy Projects Developing On and Off America's Shores | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ocean Energy Projects Developing On and Off America's Shores Ocean Energy Projects Developing On and Off America's Shores Ocean Energy Projects Developing On and Off America's Shores January 22, 2013 - 1:14pm Addthis Artist rendering of Ocean Power Technologies' proposed wave park off the coast of Oregon. | Photo courtesy of Ocean Power Technologies. Artist rendering of Ocean Power Technologies' proposed wave park off the coast of Oregon. | Photo courtesy of Ocean Power Technologies. Verdant testing its tidal energy device in New York's East River. | Photo courtesy of Verdant Power. Verdant testing its tidal energy device in New York's East River. | Photo courtesy of Verdant Power. Ocean Power Technologies wave energy device. | Photo courtesy of Ocean Power Technologies. Ocean Power Technologies wave energy device. | Photo courtesy of Ocean

54

Lake Ontario Maritime Cultural Landscape  

E-Print Network (OSTI)

The goal of the Lake Ontario Maritime Cultural Landscape project was to investigate the nature and distribution of archaeological sites along the northeast shoreline of Lake Ontario while examining the environmental, political, and cultural factors that influenced the position of these sites. The primary method of investigation was a combined archaeological and historical survey of the shoreline within seven 1-km square areas. The archaeological component of the survey covered both the terrestrial and submerged portions of the shore through marine remote sensing (side-scan sonar and magnetometer), diving surveys, pedestrian surveys, and informant interviews. A total of 39 sites and 51 isolated finds were identified or further analyzed as a result of this project. These sites ranged from the Middle Archaic period (ca. 5500-2500 B.C.) through the 19th century and included habitation, military, transportation, and recreational sites. Analysis of these findings was conducted at two scales: the individual survey area and Lake Ontario as a whole. By treating each survey area as a distinct landscape, it was possible to discuss how various cultures and groups used each space and to identify instances of both dynamism and continuity in the landscapes. Results of these analyses included the continuous occupation of several locations from pre-Contact times to the present, varying uses of the same environment in response to political and economic shifts, the formation of communities around transportation nodes, and recurring settlement patterns. The survey data was also combined to explore regional-scale trends that manifest themselves in the historical Lake Ontario littoral landscape including ephemeral landscapes, permeable boundaries, danger in the lake, and factors of change.

Ford, Benjamin L.

2009-08-01T23:59:59.000Z

55

ComEd, Nicor Gas, Peoples Gas and North Shore Gas - Bonus Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ComEd, Nicor Gas, Peoples Gas and North Shore Gas - Bonus Rebate Program (Illinois) ComEd, Nicor Gas, Peoples Gas and North Shore Gas - Bonus Rebate Program (Illinois) Eligibility...

56

Radioisotope Concentration in Lake Sediments of Maracaibo, Venezuela  

SciTech Connect

Maracaibo Lake is one of the most important water basing and oil producing regions in Venezuela. Changes in the local environment have been monitored for chemical pollution in the past. For this study we selected a set of sediment samples collected in the shore and analyzed for its radioisotope content. Results show the gamma emitting isotopes distribution. Isotopes concentrations have been determined within the natural K, Th and U families.

Salas, A. Rangel; Viloria, T. [La Universidad del Zulia (Venezuela); Sajo-Bohus, L.; Barros, H.; Greaves, E. D.; Palacios, D. [Universidad Simon Bolivar (Venezuela)

2007-10-26T23:59:59.000Z

57

Hillsmere Shores, Maryland: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Hillsmere Shores, Maryland: Energy Resources Hillsmere Shores, Maryland: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.9401129°, -76.4949597° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.9401129,"lon":-76.4949597,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

58

Norton Shores, Michigan: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Shores, Michigan: Energy Resources Shores, Michigan: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.1689044°, -86.2639461° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.1689044,"lon":-86.2639461,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

59

Fairview Shores, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Fairview Shores, Florida: Energy Resources Fairview Shores, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 28.5911114°, -81.3942365° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":28.5911114,"lon":-81.3942365,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

60

Maximum Freezing Degree-Days as a Winter Severity Index for the Great Lakes, 18971977  

Science Conference Proceedings (OSTI)

General regional and temporal trends in maximum freezing degree-days (FDD's) are identified for the shore zone of the Great Lakes Basin for the 80 winter periods 18971977. The cumulative frequency distribution of FDD's at cub of 25 locations is ...

Raymond A. Assel

1980-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "lake erie shore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

MHK Projects/Wave Powered Pumping of Seawater for On Shore Use...  

Open Energy Info (EERE)

Powered Pumping of Seawater for On Shore Use and Electrical Generation < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map......

62

ComEd, Nicor Gas, Peoples Gas & North Shore Gas - Bonus Rebate...  

Open Energy Info (EERE)

Rebates Central Air Conditioner Unit 14 SEER or above: 350 Central Air Conditioner Unit Energy Star rated: 500 Nicor Gas, Peoples Gas & North Shore Gas Furnace: 200 - 500...

63

ICE MINERALOGY ACROSS AND INTO THE SURFACES OF PLUTO, TRITON, AND ERIS  

SciTech Connect

We present three near-infrared spectra of Pluto taken with the Infrared Telescope Facility and SpeX, an optical spectrum of Triton taken with the MMT and the Red Channel Spectrograph, and previously published spectra of Pluto, Triton, and Eris. We combine these observations with a two-phase Hapke model and gain insight into the ice mineralogy on Pluto, Triton, and Eris. Specifically, we measure the methane-nitrogen mixing ratio across and into the surfaces of these icy dwarf planets. In addition, we present a laboratory experiment that demonstrates it is essential to model methane bands in spectra of icy dwarf planets with two methane phases-one highly diluted by nitrogen and the other rich in methane. For Pluto, we find bulk, hemisphere-averaged, methane abundances of 9.1% {+-} 0.5%, 7.1% {+-} 0.4%, and 8.2% {+-} 0.3% for sub-Earth longitudes of 10 Degree-Sign , 125 Degree-Sign , and 257 Degree-Sign . Application of the Wilcoxon rank sum test to our measurements finds these small differences are statistically significant. For Triton, we find bulk, hemisphere-averaged, methane abundances of 5.0% {+-} 0.1% and 5.3% {+-} 0.4% for sub-Earth longitudes of 138 Degree-Sign and 314 Degree-Sign . Application of the Wilcoxon rank sum test to our measurements finds the differences are not statistically significant. For Eris, we find a bulk, hemisphere-averaged, methane abundance of 10% {+-} 2%. Pluto, Triton, and Eris do not exhibit a trend in methane-nitrogen mixing ratio with depth into their surfaces over the few centimeter range probed by these observations. This result is contrary to the expectation that since visible light penetrates deeper into a nitrogen-rich surface than the depths from which thermal emission emerges, net radiative heating at depth would drive preferential sublimation of nitrogen leading to an increase in the methane abundance with depth.

Tegler, S. C. [Department of Physics and Astronomy, Northern Arizona University, Flagstaff, AZ 86011 (United States); Grundy, W. M. [Lowell Observatory, Flagstaff, AZ 86001 (United States); Olkin, C. B.; Young, L. A. [Southwest Research Institute, Boulder, CO 80302 (United States); Romanishin, W. [Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019 (United States); Cornelison, D. M. [Department of Physics, Astronomy, and Materials Science, Missouri State University, Springfield, MO 65897 (United States); Khodadadkouchaki, R., E-mail: Stephen.Tegler@nau.edu, E-mail: W.Grundy@lowell.edu, E-mail: colkin@boulder.swri.edu, E-mail: layoung@boulder.swri.edu, E-mail: wjr@nhn.ou.edu, E-mail: DavidCornelison@MissouriState.edu [Department of Physics, California State University, Northridge, CA 91330 (United States)

2012-05-20T23:59:59.000Z

64

Lake Ecology  

NLE Websites -- All DOE Office Websites (Extended Search)

Lake Ecology Lake Ecology Name: Jody Location: N/A Country: N/A Date: N/A Question: We have a partically natural/ partially man-dug lake in our back yard. It is approximately 3 acres in size. The fish in this tiny like are plentiful and HUGE :) Bass up to 20" s (so far) and blue gill up to 10"s (so far). My question is this... we appear to have a heavy goose population and I was wondering if they are the cause of the green slimmy stuff that is all over the top of the water as well as the lighter green slime on the plants growing under the water? Are the fish being harmed by waste from the geese and if so, what can I put in the water to ensure their health? Additionally, I noticed hundreds of frogs during the mating period yet I've yet to see even one tad pole and I am at the lake atleast 5 out of the 7 days in a week. Is there a reason for this. The frogs are two toned.. light green with patches of darker shades of green on the head and body. I've never seen frogs like these before but then again, I've never lived in wet lands prior. The frogs are also very agressive... tend to attack fishing line and even leap up to 4' in the air to attack a fishing rod. Thank heavens they don't have teeth! . We do not keep the fish we catch, we always release.

65

The Lake Trout  

NLE Websites -- All DOE Office Websites (Extended Search)

Conservation THE LAKE TROUT Until thirty years ago, the Lake Trout was the choice food fish as well as the most highly prized game fish in the Great Lakes. Before that time,...

66

North Shore Solar & Windpower | Open Energy Information  

Open Energy Info (EERE)

Solar & Windpower Solar & Windpower Jump to: navigation, search Name North Shore Solar & Windpower Address 71 Cabot Street Place Beverly, Massachusetts Zip 01915 Sector Solar Product Solar and wind installer Website http://www.northshorewind.com/ Coordinates 42.543992°, -70.8819775° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.543992,"lon":-70.8819775,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

67

ComEd, Nicor Gas, Peoples Gas and North Shore Gas - Bonus Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ComEd, Nicor Gas, Peoples Gas and North Shore Gas - Bonus Rebate ComEd, Nicor Gas, Peoples Gas and North Shore Gas - Bonus Rebate Program (Illinois) ComEd, Nicor Gas, Peoples Gas and North Shore Gas - Bonus Rebate Program (Illinois) < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heating Maximum Rebate $1,000 Program Info Start Date 01/01/2013 Expiration Date 04/30/2013 State Illinois Program Type Utility Rebate Program Rebate Amount ComEd Rebates Central Air Conditioner Unit 14 SEER or above: $350 Central Air Conditioner Unit Energy Star rated: $500 Nicor Gas, Peoples Gas and North Shore Gas Furnace: $200 - $500 (varies based on gas company and unit installed) Provider ComEd Energy ComEd, Nicor Gas, Peoples Gas and North Shore Gas are offering a Complete System Replacement Rebate Program to residential customers. The program is

68

Flathead Lake Angler Survey; Monitoring Activities for the Hungry Horse Fisheries Mitigation Plan, 1992-1993 Final Report.  

DOE Green Energy (OSTI)

A roving creel survey was conducted on Flathead Lake in northwestern Montana from May 17, 1992 to May 19, 1993. The primary objective of the survey was to quantify the baseline fishery and exploitation rates existing prior to Hungry Horse Dam mitigation efforts. Anglers were counted on 308 occasions, comprising 5,618 fishing boats, 515 shore anglers, and 2,191 ice anglers. The party interviews represented 4,410 anglers, made up of 2,613 boat anglers, 787 shore anglers, and 1,010 ice anglers. A total of 47,883 angler days (190,108 angler hours) of pressure and a harvest of 42,979 fish (including lake trout, lake whitefish, yellow perch, bull trout, and westslope cutthroat trout) were estimated. Pressure was distributed between shore, boat, and ice anglers as 4%, 87%, and 9%, respectively. Seventynine percent of the total effort was directed at lake trout during the study period. Limited comparisons were made to previous creel surveys on Flathead Lake due to differences in methods and radical changes in the fishery. Potential sources of bias are explained in detail. Future creel surveys must employ methods consistent with this survey to obtain estimates that are statistically distinguishable.

Evarts, Les; Hansen, Barry; DosSantos, Joe (Confederated Salish and Kootenai Tribes of the Flathead Nation, Pablo, MT)

1994-02-01T23:59:59.000Z

69

Tidal Energy System for On-Shore Power Generation  

DOE Green Energy (OSTI)

Addressing the urgent need to develop LCOE competitive renewable energy solutions for US energy security and to replace fossil-fuel generation with the associated benefits to environment impacts including a reduction in CO2 emissions, this Project focused on the advantages of using hydraulic energy transfer (HET) in large-scale Marine Hydrokinetic (MHK) systems for harvesting off-shore tidal energy in US waters. A recent DOE resource assessment, identifies water power resources have a potential to meet 15% of the US electric supply by 2030, with MHK technologies being a major component. The work covered a TRL-4 laboratory proof-in-concept demonstration plus modeling of a 15MW full scale system based on an approach patented by NASA-JPL, in which submerged high-ratio gearboxes and electrical generators in conventional MHK turbine systems are replaced by a submerged hydraulic radial pump coupled to on-shore hydraulic motors driving a generator. The advantages are; first, the mean-time-between-failure (MTBF), or maintenance, can be extended from approximately 1 to 5 years and second, the range of tidal flow speeds which can be efficiently harvested can be extended beyond that of a conventional submerged generator. The approach uses scalable, commercial-off-the-shelf (COTS) components, facilitating scale-up and commercialization. All the objectives of the Project have been successfully met (1) A TRL4 system was designed, constructed and tested. It simulates a tidal energy turbine, with a 2-m diameter blade in up to a 2.9 m/sec flow. The system consists of a drive motor assembly providing appropriate torque and RPM, attached to a radial piston pump. The pump circulates pressurized, environmentally-friendly, HEES hydraulic fluid in a closed loop to an axial piston motor which drives an electrical generator, with a resistive load. The performance of the components, subsystems and system were evaluated during simulated tidal cycles. The pump is contained in a tank for immersion testing. The COTS pump and motor were selected to scale to MW size and were oversized for the TRL-4 demonstration, operating at only 1-6% of rated values. Nevertheless, in for 2-18 kW drive power, in agreement with manufacturer performance data, we measured efficiencies of 85-90% and 75-80% for the pump and motor, respectively. These efficiencies being 95-96% at higher operating powers. (2) Two follow-on paths were identified. In both cases conventional turbine systems can be modified, replacing existing gear box and generator with a hydraulic pump and on-shore components. On a conventional path, a TRL5/6 15kW turbine system can be engineered and tested on a barge at an existing site in Maine. Alternatively, on an accelerated path, a TRL-8 100kW system can be engineered and tested by modifying a team member's existing MHK turbines, with barge and grid-connected test sites in-place. On both paths the work can be expedited and cost effective by reusing TRL-4 components, modifying existing turbines and using established test sites. (3) Sizing, performance modeling and costing of a scaled 15MW system, suitable for operation in Maine's Western Passage, was performed. COTS components are identified and the performance projections are favorable. The estimated LCOE is comparable to wind generation with peak production at high demand times. (4) We determined that a similar HET approach can be extended to on-shore and off-shore wind turbine systems. These are very large energy resources which can be addressed in parallel for even great National benefit. (5) Preliminary results on this project were presented at two International Conferences on renewable energy in 2012, providing a timely dissemination of information. We have thus demonstrated a proof-in-concept of a novel, tidal HET system that eliminates all submerged gears and electronics to improve reliability. Hydraulic pump efficiencies of 90% have been confirmed in simulated tidal flows between 1 and 3 m/s, and at only 1-6% of rated power. Total system efficiencies have also been modeled, up to MW-scale, for ti

Bruce, Allan J

2012-06-26T23:59:59.000Z

70

Tidal Energy System for On-Shore Power Generation  

SciTech Connect

Addressing the urgent need to develop LCOE competitive renewable energy solutions for US energy security and to replace fossil-fuel generation with the associated benefits to environment impacts including a reduction in CO2 emissions, this Project focused on the advantages of using hydraulic energy transfer (HET) in large-scale Marine Hydrokinetic (MHK) systems for harvesting off-shore tidal energy in US waters. A recent DOE resource assessment, identifies water power resources have a potential to meet 15% of the US electric supply by 2030, with MHK technologies being a major component. The work covered a TRL-4 laboratory proof-in-concept demonstration plus modeling of a 15MW full scale system based on an approach patented by NASA-JPL, in which submerged high-ratio gearboxes and electrical generators in conventional MHK turbine systems are replaced by a submerged hydraulic radial pump coupled to on-shore hydraulic motors driving a generator. The advantages are; first, the mean-time-between-failure (MTBF), or maintenance, can be extended from approximately 1 to 5 years and second, the range of tidal flow speeds which can be efficiently harvested can be extended beyond that of a conventional submerged generator. The approach uses scalable, commercial-off-the-shelf (COTS) components, facilitating scale-up and commercialization. All the objectives of the Project have been successfully met (1) A TRL4 system was designed, constructed and tested. It simulates a tidal energy turbine, with a 2-m diameter blade in up to a 2.9 m/sec flow. The system consists of a drive motor assembly providing appropriate torque and RPM, attached to a radial piston pump. The pump circulates pressurized, environmentally-friendly, HEES hydraulic fluid in a closed loop to an axial piston motor which drives an electrical generator, with a resistive load. The performance of the components, subsystems and system were evaluated during simulated tidal cycles. The pump is contained in a tank for immersion testing. The COTS pump and motor were selected to scale to MW size and were oversized for the TRL-4 demonstration, operating at only 1-6% of rated values. Nevertheless, in for 2-18 kW drive power, in agreement with manufacturer performance data, we measured efficiencies of 85-90% and 75-80% for the pump and motor, respectively. These efficiencies being 95-96% at higher operating powers. (2) Two follow-on paths were identified. In both cases conventional turbine systems can be modified, replacing existing gear box and generator with a hydraulic pump and on-shore components. On a conventional path, a TRL5/6 15kW turbine system can be engineered and tested on a barge at an existing site in Maine. Alternatively, on an accelerated path, a TRL-8 100kW system can be engineered and tested by modifying a team member's existing MHK turbines, with barge and grid-connected test sites in-place. On both paths the work can be expedited and cost effective by reusing TRL-4 components, modifying existing turbines and using established test sites. (3) Sizing, performance modeling and costing of a scaled 15MW system, suitable for operation in Maine's Western Passage, was performed. COTS components are identified and the performance projections are favorable. The estimated LCOE is comparable to wind generation with peak production at high demand times. (4) We determined that a similar HET approach can be extended to on-shore and off-shore wind turbine systems. These are very large energy resources which can be addressed in parallel for even great National benefit. (5) Preliminary results on this project were presented at two International Conferences on renewable energy in 2012, providing a timely dissemination of information. We have thus demonstrated a proof-in-concept of a novel, tidal HET system that eliminates all submerged gears and electronics to improve reliability. Hydraulic pump efficiencies of 90% have been confirmed in simulated tidal flows between 1 and 3 m/s, and at only 1-6% of rated power. Total system efficiencies have also been modeled, up to MW-sca

Bruce, Allan J

2012-06-26T23:59:59.000Z

71

Nicor, Peoples, and North Shore Gas - Small Business Energy Savings Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nicor, Peoples, and North Shore Gas - Small Business Energy Savings Nicor, Peoples, and North Shore Gas - Small Business Energy Savings Program (Illinois) Nicor, Peoples, and North Shore Gas - Small Business Energy Savings Program (Illinois) < Back Eligibility Commercial Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Sealing Your Home Ventilation Heating Program Info State Illinois Program Type Utility Loan Program Rebate Amount Up to $20,000 See program web site for details on your utility The Illinois Energy Efficiency Loan Program, administered through AFC First and funded by participating utilities, provides loans to customers of Ameren Illinois, ComEd, Nicor, North Shore Gas, and Peoples Gas. Typically, loans of up to $20,000 can be repaid over the course of 3, 5, or 10 years.

72

ComEd, Nicor Gas, Peoples Gas & North Shore Gas- Bonus Rebate Program (Illinois)  

Energy.gov (U.S. Department of Energy (DOE))

ComEd, Nicor Gas, Peoples Gas & North Shore Gas are offering a Complete System Replacement Rebate Program to residential customers. The program is a bundled promotion in partnership with ComEd...

73

Cross-Shore Internal Waves in Zanpa Coastal Region of Okinawa Island  

E-Print Network (OSTI)

Cross-Shore Internal Waves in Zanpa Coastal Region of Okinawa Island Eizo Nakaza1 ; S. M. B- welling are assumed to contribute to these renowned fishing grounds in the Okinawa Island. Water

Pawlak, Geno

74

ComEd, Nicor Gas, Peoples Gas & North Shore Gas - Small Business...  

Open Energy Info (EERE)

icon Twitter icon ComEd, Nicor Gas, Peoples Gas & North Shore Gas - Small Business Energy Savings Program (Illinois) This is the approved revision of this page, as well as...

75

Lakes_Elec_You  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lakes, Lakes, Electricity & You Why It's So Important That Lakes Are Used To Generate Electricity Why We Can Thank Our Lakes For Electricity Because lakes were made to generate electricity. Back in the mid-1940s, Congress recognized the need for better flood control and navigation. To pay for these services, Congress passed laws that started the building of federal hydroelectric dams, and sold the power from the dams under long-term contracts. Today these dams provide efficient, environmentally safe electricity for our cities and rural areas. And now these beautiful lakes are ours to enjoy. There are now 22 major man-made lakes all across the Southeast built under these federal programs and managed by the U.S. Army Corps of Engineers - lakes that help prevent flooding and harness the renewable power of water to generate electricity. Power produced at these lakes is marketed by the Elberton,

76

Wind- and Buoyancy-modulated Along-shore Circulation over the Texas-Louisiana Shelf  

E-Print Network (OSTI)

Numerical experiments are used to study the wind- and buoyancy-modulated along-shore circulation over the Texas-Louisiana continental shelf inshore of 50-m water depth. Most attention is given to circulation in the non-summer flow regime. A major focus of this study is on a unique along-shore flow phenomenon convergent along- shore flows, which is controlled jointly by wind forcing and buoyancy fluxes from the Mississippi-Atchafalaya river plume. The second problem addresses the forcing effect of buoyancy on the general along-shore circulation pattern over the shelf in non-summer. The convergent along-shore flows are characterized by down-coast flow from the northern shelf encountering up-coast flow from the southern shelf. This phenomenon is explored for both weather band and seasonal timescales. For the weather band, investigations are focused on non-summer convergent events. The formation of convergent flows is primarily caused by along-coast variation in the along-shore component of wind forcing, which in turn is due to the curvature of the Texas-Louisiana coastline. In general, along-shore currents are well correlated with along-shore winds. However, the points of convergence of currents and winds are not co-located; but rather, points of convergence of currents typically occur down-coast of points of convergence of wind. This offset is mainly caused by buoyancy forcing that forces down-coast currents and drives the point of convergence of currents further down-coast. No specific temporal shift pattern is found for the weather-band convergence, whereas monthly

Zhang, Zhaoru

2013-08-01T23:59:59.000Z

77

VERTEBRATES OF FISH LAKE  

E-Print Network (OSTI)

VERTEBRATES OF FISH LAKE CAUTION! FISH LAKE SCAVANGER HUNT RED HEADED in large dead trees. Males and females both have the majestic red head the mound. Damselflies sit with their wings folded down, which differs them

Minnesota, University of

78

Lake-Effect Snowfall over Lake Michigan  

Science Conference Proceedings (OSTI)

Aircraft measurements of snow particle size spectra from 36 flights on 26 snowy days are used to estimate snow precipitation rates over Lake Michigan. Results show that average rates during 14 wind-parallel-type lake-effect storms increased from ...

Roscoe R. Braham Jr.; Maureen J. Dungey

1995-05-01T23:59:59.000Z

79

Lakes, Electricity and You | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lakes, Electricity and You Lakes, Electricity and You Why It's So Important That Lakes Are Used To Generate Electricity Lakes, Electricity and You More Documents & Publications A...

80

Focused risk assessment: Mound Plant, Miami-Erie Canal Operable Unit 4  

SciTech Connect

In 1969, an underground waste line at Mound Plant ruptured and released plutonium-238 in a dilute nitric acid solution to the surrounding soils. Most of the acid was neutralized by the native soils. The plutonium, which in a neutral solution is tightly sorbed onto clay particles, remained within the spill area. During remediation, a severe storm eroded some of the contaminated soil. Fine grained plutonium-contaminated clay particles were carried away through the natural drainage courses to the remnants of the Miami-Erie Canal adjacent to Mound Plant, and then into the Great Miami River. This focused risk assessment considers exposure pathways relevant to site conditions, including incidental ingestion of contaminated soils, ingestion of drinking water and fish, and inhalation of resuspended soils and sediments. For each potential exposure pathway, a simplified conceptual model and exposure scenarios have been used to develop conservative estimates of potential radiation dose equivalents and health risks. The conservatism of the dose and risk estimates provides a substantive margin of safety in assuring that the public health is protected.

Rogers, D.R.; Dunning, D.F.

1994-09-29T23:59:59.000Z

Note: This page contains sample records for the topic "lake erie shore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

MHK Technologies/LIMPET OWC fixed Near shore OWC | Open Energy Information  

Open Energy Info (EERE)

LIMPET OWC fixed Near shore OWC LIMPET OWC fixed Near shore OWC < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage LIMPET OWC fixed Near shore OWC.jpg Technology Profile Primary Organization Voith Hydro Wavegen Limited Project(s) where this technology is utilized *MHK Projects/Siadar Technology Resource Click here Wave Technology Type Click here Oscillating Water Column Technology Readiness Level Click here TRL 7/8: Open Water System Testing & Demonstration & Operation Technology Description Limpet (Land Installed Marine Powered Energy Transformer) is a shoreline energy converter sited on the island of Islay, off Scotland's west coast. The current Limpet device - Limpet 500 - was installed in 2000 and produces power for the national grid. Limpet uses the principle of an oscillating water column.

82

Impacts of Water Level Fluctuations on Kokanee Reproduction in Flathead Lake, 1985 Annual Report.  

DOE Green Energy (OSTI)

This study has investigated the effects of the operation of Kerr Dam on the reproductive success of kokanee that spawn along the shores of Flathead Lake. We have estimated the spawning escapement to the lakeshore, characterized spawning habitat, monitored egg and alevin survival in redds, and related survival to length of redd exposure due to lake drawdown. Groundwater discharge apparently attracts kokanee to spawning sites along the lakeshore and is responsible for prolonging egg survival in redds above minimum pool. We have quantified and described the effect of lake drawdown on groundwater flux in spawning areas. This report defines optimal lakeshore spawning habitat and discusses eqg and alevin survival both in and below the varial zone.

Beattie, Will; Fraley, John J.; Decker-Hess, Janet (Montana Department of Fish, Wildlife and Parks, Kalispell, MT)

1986-06-01T23:59:59.000Z

83

Climatology of Lake-Effect Precipitation Events over Lake Champlain  

Science Conference Proceedings (OSTI)

This study provides the first long-term climatological analysis of lake-effect precipitation events that developed in relation to a small lake (having a surface area of ?1500 km2). The frequency and environmental conditions favorable for Lake ...

Neil F. Laird; Jared Desrochers; Melissa Payer

2009-02-01T23:59:59.000Z

84

Geological History of Lake Lahontan, a Quaternary Lake of Northwestern...  

Open Energy Info (EERE)

Monograph M11 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Geological History of Lake Lahontan, a Quaternary Lake of Northwestern...

85

OFF-SHORE WIND AND GRID-CONNECTED PV: HIGH PENETRATION PEAK SHAVING FOR NEW YORK CITY  

E-Print Network (OSTI)

one year's worth of hourly site & time-specific data including electrical demand PV and off-shore wind is based upon the analysis of one year worth of hourly data ­ 2010 -- including New York City's electrical demand, distributed PV generation, and off- shore wind generation. PV and wind generation data

Perez, Richard R.

86

Department of Industrial Engineering Fall 2010 Electronic Medical Records at Jersey Shore Hospital  

E-Print Network (OSTI)

space savings which occur due to changes in equipment. The time and cost savings associated, which have an estimated cost $35,583.74 and will lead to a savings of 36.85% of previously utilized Hospital Overview The Jersey Shore Hospital is currently in the process of transitioning from paper medical

Demirel, Melik C.

87

Impacts of human trampling and periodic sand inundation on Southern California intertidal algal turf communities : implications for conservation and management of rocky shores  

E-Print Network (OSTI)

associated with rocky shore algae. Pgs. 36- 56 in: P.G.associated with rocky shore algae. In: P. G. Moore & R.h. Boulder Boulder / Turf Other Algae Sand > 50 mm, < 200 mm

Huff, Tonya Michelle

2006-01-01T23:59:59.000Z

88

The Behavior of Lakes  

NLE Websites -- All DOE Office Websites (Extended Search)

Behavior of Lakes Behavior of Lakes Nature Bulletin No, 320-A November 9, 1968 Forest Preserve District of Cook County Richard B. Ogilvie, President Roland F. Eisenbeis, Supt. of Conservation THE BEHAVIOR OF LAKES In many ways lakes are like living things -- especially a tree. A lake breathes and has a circulation; it is warmed and fed; it harbors many other living things; and in cold weather it goes into a winter sleep. If it were not for the special character of a body of standing water which we call a lake, the things that live in it would be radically different or, perhaps, not exist at all. Water is a very strange substance in many ways. For example, it is remarkable because it expands, becomes lighter and floats when it freezes into ice. If, like most substances, water shrank when it changed from a liquid to a solid, it would sink. Then, ponds and lakes would freeze from the bottom up and become solid blocks of ice. This would make life impossible for most kinds of aquatic plants and animals and indirectly affect all living things. Further, water is a poor conductor of heat -- otherwise lakes would freeze much deeper and, again most living things in it would perish.

89

Geological History of Lake Lahontan, a Quaternary Lake of Northwestern  

Open Energy Info (EERE)

History of Lake Lahontan, a Quaternary Lake of Northwestern History of Lake Lahontan, a Quaternary Lake of Northwestern Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geological History of Lake Lahontan, a Quaternary Lake of Northwestern Nevada Abstract Abstract unavailable. Author Israel C. Russell Organization U.S. Geological Survey Published U.S. Government Printing Office, 1885 Report Number Monograph M11 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Geological History of Lake Lahontan, a Quaternary Lake of Northwestern Nevada Citation Israel C. Russell (U.S. Geological Survey). 1885. Geological History of Lake Lahontan, a Quaternary Lake of Northwestern Nevada. Washington, District of Columbia: U.S. Government Printing Office. Report No.:

90

MHK Projects/Wave Powered Pumping of Seawater for On Shore Use and  

Open Energy Info (EERE)

Pumping of Seawater for On Shore Use and Pumping of Seawater for On Shore Use and Electrical Generation < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.53,"lon":-55.4,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

91

NREL: News Feature - Recycled Natural Gas Pipes Shore Up Green Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Recycled Natural Gas Pipes Shore Up Green Building Recycled Natural Gas Pipes Shore Up Green Building July 17, 2009 Photo of a line of four large metal tubes coming out of the ground in a construction site with blue sky, hills and buildings in the background. Early photos show the first few reclaimed gas pipes being erected at the RSF construction site. Using these recycled pipes will be help the building attain LEED platinum status. Credit: Carl Cox Building a support structure of something, tried, true and tested like "off the shelf" steel is standard practice in building construction. NREL's effort to create the most energy efficient and "green" office building is putting a twist on an old standard. The columns that will carry the weight of floors and walls in the new Research Support Facilities (RSF) are

92

The conquest of the nano-cosmos is occurring simultaneously in almost ev-ery field with a strong interdisciplinary and an increasing transdisciplinary  

E-Print Network (OSTI)

Preface The conquest of the nano-cosmos is occurring simultaneously in almost ev- ery field, optical, magnetic, and (bio)chemical properties of materials are beginning to be mastered on a nano-scale. This enables the fabrication of devices that rely on effects on the nano-scale. For the creation

Grundmann, Marius

93

A High-Speed, Wireless Network for Ship-to-Ship and Ship-to-Shore Data Exchange  

Science Conference Proceedings (OSTI)

Wireless networking equipment was installed on three research vessels and at three shore stations during the 1998 Thin Layers Experiment in East Sound, Washington. This wireless network provided high-speed data communication between scientists on ...

Nathan D. Potter; Timothy J. Cowles

2000-07-01T23:59:59.000Z

94

DOE/EA-1508: Environmental Assessment for the Beaver Creek-Hoyt-Erie Transmission Line Rebuild Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BC-HT-EE Mitigation Action Plan Nov. 2005 1 BC-HT-EE Mitigation Action Plan Nov. 2005 1 Mitigation Action Plan To Implement Mitigation Requirements for Beaver Creek-Hoyt-Erie Transmission Line Upgrade Project Morgan and Weld Counties, Colorado November 2005 BC-HT-EE Mitigation Action Plan Nov. 2005 2 Action Plan for Standard Project Practices and Mitigation Mitigation Action Identifier Responsible Party for Implementing Mitigation Action Party Responsible for Monitoring and Ensuring Compliance Construction Contractor Western Maintenance The contractor shall limit the movement of crews and equipment to the ROW, including access routes. The contractor shall limit movement on the ROW to minimize damage to residential yards, grazing land, crops, orchards, and property, and shall avoid marring the lands.

95

Black Hawk Lake Fresno River  

E-Print Network (OSTI)

Black Hawk Lake Fresno River R D 4 0 0 RD 415 HWY41 RD 207 REVISRD YO SEM ITE SP RINGS P KY LILLEY County Rosedale Ranch Revis Mountain Daulton Spring Red Top Lookout Buford Mountain Black Hawk Lake

Wang, Zhi

96

Uranium in the Near-shore Aquatic Food Chain: Studies on Periphyton and Asian Clams  

SciTech Connect

The benthic aquatic organisms in the near-shore environment of the Columbia River are the first biological receptors that can be exposed to groundwater contaminants coming from the U.S. Department of Energy's Hanford Site. The primary contaminant of concern in the former nuclear fuels processing area at the Site, known as the 300 Area, is uranium. Currently, there are no national clean up criteria for uranium and ecological receptors. This report summarizes efforts to characterize biological uptake of uranium in the food chain of the benthic aquatic organisms and provide information to be used in future assessments of uranium and the ecosystem.

Bunn, Amoret L.; Miley, Terri B.; Eslinger, Paul W.; Brandt, Charles A.; Napier, Bruce A.

2007-12-31T23:59:59.000Z

97

Obama Administration Hosts Great Lakes Offshore Wind Workshop...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hosts Great Lakes Offshore Wind Workshop in Chicago with Great Lakes Wind Collaborative Obama Administration Hosts Great Lakes Offshore Wind Workshop in Chicago with Great Lakes...

98

Lake Improvement District Law and County Lake Improvement Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lake Improvement District Law and County Lake Improvement Program Lake Improvement District Law and County Lake Improvement Program (Minnesota) Lake Improvement District Law and County Lake Improvement Program (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Minnesota Program Type Siting and Permitting Lake Improvement Districts may be established by county boards in order to

99

salt lake city.cdr  

Office of Legacy Management (LM)

Locations of the Salt Lake City Processing and Disposal Sites Locations of the Salt Lake City Processing and Disposal Sites This fact sheet provides information about the Uranium Mill Tailings Radiation Control Act of 1978 Title I processing site and disposal site at Salt Lake City, Utah. These sites are managed by the U.S. Department of Energy Office of Legacy Management. Salt Lake City, Utah, Processing and Disposal Sites Site Descriptions and History Regulatory Setting The former Salt Lake City processing site is located about 4 miles south-southwest of the center of Salt Lake City, Utah, at 3300 South and Interstate 15. The Vitro Chemical Company processed uranium and vanadium ore at the site from 1951 until 1968. Milling operations conducted at the processing site created radioactive tailings, a predominantly sandy material.

100

Method for lake restoration  

DOE Patents (OSTI)

A process for removing pollutants or minerals from lake, river or ocean sediments or from mine tailings is disclosed. Magnetically attractable collection units containing an ion exchange or sorbent media with an affinity for a chosen target substance are distributed in the sediments or tailings. After a period of time has passed sufficient for the particles to bind up the target substances, a magnet drawn through the sediments or across the tailings retrieves the units along with the target substance.

Dawson, Gaynor W. (Richland, WA); Mercer, Basil W. (Pasco, WA)

1979-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "lake erie shore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Why Sequence Lake Vostok accretion ice?  

NLE Websites -- All DOE Office Websites (Extended Search)

Sequence Lake Vostok accretion ice? Lake Vostok is the largest known subglacial lake in central Antarctica, though it's been buried under 4 kilometers (nearly 2.5 miles) of ice for...

102

Study on wave impact force prediction of different shore connecting structure based on improved BP neural network  

Science Conference Proceedings (OSTI)

In this paper, the advanced Neural Network technology was introduced to the field of the wave impact force prediction. A three-layered BP neural network is employed and the units of input layer are wave style, wave period, incident wave height, relative ... Keywords: BP, prediction, shore connecting structure, wave impact force

Xiaoguo Zhou; Shuguang Luan

2009-09-01T23:59:59.000Z

103

Banks Lake Fishery Evaluation Annual Report 2002-2003.  

DOE Green Energy (OSTI)

The Washington Department of Fish and Wildlife implemented the Banks Lake Fishery Evaluation Project (BLFEP) in September 2001 with funds from the Bonneville Power Administration. Fiscal Year (FY) 2001 of the BLFEP was used to gather historic information, establish methods and protocols, collect limnology data, and conduct the first seasonal fish surveys. FY 2002 was used to continue seasonal fish and lakewide creel surveys and adjust methods and protocols as needed. Water quality parameters were collected monthly from February to May and bi-monthly from June to August. Banks Lake water temperatures began to increase in April and stratification was apparent by June at all 3 limnology collection sites. By late August, the thermocline had dropped to nearly 20 meters deep, with 16-17 C temperatures throughout the epilimnion. Dissolved oxygen levels were generally above 10 mg/L until August when dissolved oxygen dropped near or below 5 mg/L below 20-meters deep. Secchi depths ranged from 2.5-8 meters and varied by location and date. Nearshore and offshore fish surveys were conducted in October 2002 and May and July 2003 using boat electrofishing, fyke net, gill net, and hydroacoustic surveys. Yellow Perch Perca flavescens (32 %) and cottid spp. (22 %) dominated the nearshore species composition in October; however, by May yellow perch (12 %) were the third most common species followed by smallmouth bass Micropterous dolomieui (34 %) and lake whitefish Coregonus clupeaformis (14 %). Lake whitefish dominated the offshore catch during October (78 %) and May (81 %). Fish diet analysis indicated that juvenile fishes consumed primarily insects and zooplankton, while adult piscivores consumed cottids spp. and yellow perch most frequently. For FY 2002, the following creel statistics are comprehensive through August 31, 2003. The highest angling pressure occurred in June 2003, when anglers were primarily targeting walleye and smallmouth bass. Boat anglers utilized Steamboat State Park more frequently than any other boat ramp on Banks Lake. Shore anglers used the rock jetty at Coulee City Park 76 % of the time, with highest use occurring from November through April. An estimated total of 11,915 ({+-}140 SD) smallmouth bass, 6,412 ({+-}59 SD) walleye, 5,470 ({+-}260 SD) rainbow trout, and 1,949 ({+-}118 SD) yellow perch were harvested from Banks Lake in FY 2002. Only 3 kokanee were reported in the catch during the FY 2002 creel survey. In the future, data from the seasonal surveys and creel will be used to identify potential factors that may limit the production and harvest of kokanee, rainbow trout, and various spiny-rayed fishes in Banks Lake. The limiting factors that will be examined consist of: abiotic factors including water temperature, dissolved oxygen levels, habitat, exploitation and entrainment; and biotic factors including food limitation and predation. The BLFEP will also evaluate the success of several rearing and stocking strategies for hatchery kokanee in Banks Lake.

Polacek, Matt; Knuttgen, Kamia; Shipley, Rochelle

2003-11-01T23:59:59.000Z

104

Great Lakes Bioenergy Research Center Technologies Available ...  

Great Lakes Bioenergy Research Center Technologies Available for Licensing Established by the Department of Energy (DOE) in 2007, the Great Lakes Bioenergy Research ...

105

Pyramid Lake Renewable Energy Project  

DOE Green Energy (OSTI)

The Pyramid Lake Paiute Tribe is a federally recognized Tribe residing on the Pyramid Lake Reservation in western Nevada. The funding for this project was used to identify blind geothermal systems disconnected from geothermal sacred sites and develop a Tribal energy corporation for evaluating potential economic development for profit.

John Jackson

2008-03-14T23:59:59.000Z

106

PYRAMID LAKE RENEWEABLE ENERGY PLAN  

DOE Green Energy (OSTI)

The Pyramid Lake Renewable Energy Plan covers these areas: energy potential (primarily focusing on geothermal resource potential, but also more generally addressing wind energy potential); renewable energy market potential; transmission system development; geothermal direct use potential; and business structures to accomplish the development objectives of the Pyramid Lake Paiute Tribe.

HIGH DESERT GEOCULTURE, LLC

2009-06-06T23:59:59.000Z

107

Why Sequence Great Salt Lake?  

NLE Websites -- All DOE Office Websites (Extended Search)

Great Salt Lake? Great Salt Lake? On average, the Great Salt Lake is four times saltier than the ocean and also has heavy metals, high concentrations of sulfur and petroleum seeps. In spite of all this, the lake is the saltiest body of water to support life. The lake hosts brine shrimp, algae and a diverse array of microbes, not to mention the roughly 5 million birds that migrate there annually. The secret to these microbes' ability to survive under such harsh conditions might be revealed in their genes. Researchers expect the genetic data will provide insight into how the microorganisms tolerate pollutants such as sulfur and detoxify pollutants such as sulfur and heavy metals like mercury. The information could then be used to develop bioremediation techniques. Researchers also expect that sequencing microorganisms sampled

108

Banks Lake Fishery Evaluation Project Annual Report : Fiscal Year 2008 (March 1, 2008 to February 1, 2009).  

DOE Green Energy (OSTI)

The Washington Department of Fish and Wildlife implemented the Banks Lake Fishery Evaluation Project (BLFEP) in September 2001 with funds from the Bonneville Power Administration, and continued project tasks in 2008. The objective was to evaluate factors that could limit kokanee in Banks Lake, including water quality, prey availability, harvest, and acute predation during hatchery releases. Water quality parameters were collected twice monthly from March through November. Banks Lake water temperatures began to increase in May and stratification was apparent by July. By late August, the thermocline had dropped to 15 meters deep, with temperatures of 21-23 C in the epilimnion and 16-19 C in the hypolimnion. Dissolved oxygen levels were generally above 8 mg/L until August when they dropped near or below 5 mg/L deeper than 20-meters. Secchi depths ranged from 3.2 to 6.2 meters and varied spatially and temporally. Daphnia and copepod densities were the highest in May and June, reaching densities of 26 copepods/liter and 9 Daphnia/liter. Fish surveys were conducted in July and October 2008 using boat electrofishing, gill netting, and hydroacoustic surveys. Lake whitefish (71%) and yellow perch (16%) dominated the limnetic fish assemblage in the summer, while lake whitefish (46%) and walleye (22%) were the most abundant in gill net catch during the fall survey. Piscivore diets switched from crayfish prior to the release of rainbow trout to crayfish and rainbow trout following the release. The highest angling pressure occurred in May, when anglers were primarily targeting walleye and smallmouth bass. Boat anglers utilized Steamboat State Park more frequently than any other boat ramp on Banks Lake. Shore anglers used the rock jetty at Coulee City Park 45% of the time, with highest use occurring from November through April. Ice fishing occurred in January and February at the south end of the lake. An estimated total of 4,397 smallmouth bass, 11,106 walleye, 371 rainbow trout, and 509 yellow perch were harvested from Banks Lake in 2008. No kokanee were reported in the creel; however, local reports indicated that anglers were targeting and catching kokanee. The economic benefit of the Banks Lake fishery was estimated at $2,288,005 during 2008. Abundance estimates from the hydroacoustic survey in July were 514,435 lake whitefish and 10,662 kokanee, with an overall abundance estimate of 626,061 limnetic fish greater than 100 mm. When comparing spring fry, fall fingerling and yearling net pen release strategies of kokanee, 95% were of hatchery origin, with the highest recaptures coming from the fall fingerling release group.

Polacek, Matt [Washington Department of Fish and Wildlife

2009-07-15T23:59:59.000Z

109

NBP RFI: Communications Requirements- Comments of Lake Region...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lake Region Electric Cooperative- Minnesota NBP RFI: Communications Requirements- Comments of Lake Region Electric Cooperative- Minnesota Comments of Lake Region Electric...

110

Evaluation of the CLM4 Lake Model at a Large and Shallow Freshwater Lake  

Science Conference Proceedings (OSTI)

Models of lake physical processes provide the lower flux boundary conditions for numerical predictions of weather and climate in lake basins. So far, there have been few studies on evaluating lake model performance at the diurnal time scale and ...

Bin Deng; Shoudong Liu; Wei Xiao; Wei Wang; Jiming Jin; Xuhui Lee

2013-04-01T23:59:59.000Z

111

Orographic Effects in Simulated Lake-Effect Snowstorms over Lake Michigan  

Science Conference Proceedings (OSTI)

Numerical simulations of lake-effect snowstorms over Lake Michigan show that orography enhances precipitation rates and mesoscale updrafts and strengthens the land breeze. The mild orographic changes east of Lake Michigan as modeled with an 8-km ...

Mark R. Hjelmfelt

1992-02-01T23:59:59.000Z

112

Impacts of human trampling and periodic sand inundation on Southern California intertidal algal turf communities : implications for conservation and management of rocky shores  

E-Print Network (OSTI)

A.C. and A. McLachlan. 2002. Sandy shore ecosystems and thelarge invertebrates of a sandy beach. Journal of Coastallong been recognized that sandy beaches along the southern

Huff, Tonya Michelle

2006-01-01T23:59:59.000Z

113

Recent Great Lakes Ice Trends  

Science Conference Proceedings (OSTI)

Analysis of ice observations made by cooperative observers from shoreline stations reveals significant changes in the ice season on the North American Great Lakes over the past 35years. Although the dataset is highly inhomogeneous and year-to-...

Howard P. Hanson; Claire S. Hanson; Brenda H. Yoo

1992-05-01T23:59:59.000Z

114

Fish of the Great Lakes  

NLE Websites -- All DOE Office Websites (Extended Search)

of Cook County Richard B. Ogilvie, President Roland F. Eisenbeis, Supt. of Conservation FISH OF THE GREAT LAKES As you stand at the top of one of the tallest buildings in downtown...

115

Contributions of Lake-Effect Periods to the Cool-Season Hydroclimate of the Great Salt Lake Basin  

Science Conference Proceedings (OSTI)

Although smaller lakes are known to produce lake-effect precipitation, their influence on the precipitation climatology of lake-effect regions remains poorly documented. This study examines the contribution of lake-effect periods (LEPs) to the ...

Kristen N. Yeager; W. James Steenburgh; Trevor I. Alcott

2013-02-01T23:59:59.000Z

116

Lake and reservoir restoration guidance manual: first edition  

SciTech Connect

This manual provides guidance to lake managers, homeowners, lake associations, and laypersons on lake and reservoir restoration, management and protection. It also provides information on how to identify lake problems, evaluate practices for restoring and protection lakes, watershed management, and creating a lake-management plan.

Moore, L.; Thornton, K.

1988-02-01T23:59:59.000Z

117

Category:Salt Lake City, UT | Open Energy Information  

Open Energy Info (EERE)

UT UT Jump to: navigation, search Go Back to PV Economics By Location Media in category "Salt Lake City, UT" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant Salt Lake City UT Moon Lake Electric Assn Inc (Utah).png SVFullServiceRestauran... 57 KB SVHospital Salt Lake City UT Moon Lake Electric Assn Inc (Utah).png SVHospital Salt Lake C... 57 KB SVLargeHotel Salt Lake City UT Moon Lake Electric Assn Inc (Utah).png SVLargeHotel Salt Lake... 55 KB SVLargeOffice Salt Lake City UT Moon Lake Electric Assn Inc (Utah).png SVLargeOffice Salt Lak... 57 KB SVMediumOffice Salt Lake City UT Moon Lake Electric Assn Inc (Utah).png SVMediumOffice Salt La... 62 KB SVMidriseApartment Salt Lake City UT Moon Lake Electric Assn Inc (Utah).png

118

Man-Made Lakes and Ponds  

NLE Websites -- All DOE Office Websites (Extended Search)

MAN-MADE LAKES AND PONDS Conservation is on the march. Slowly, we are stopping the pollution of our streams by sewage and industrial wastes; we are restoring many lakes and...

119

Measurement of environmental radiation exposure rates from Vernita, Hanford Reach, and Richland area shores. Addendum 1  

SciTech Connect

Environmental radiation exposure rate measurements are taken on and around the Hanford Site for Pacific Northwest Laboratory`s Hanford Site Surface Environmental Surveillance Project. In 1992, environmental radiation exposure rate measurements were taken from shoreline and island areas ranging from Vernita, along the Hanford Reach, down to the Richland Pumphouse. Measurements were taken primarily at locations known or expected to have elevated exposure rates as determined by examination of aerial photographs depicting radiation exposure measurements. Results from the 1992 survey indicated radiation exposure rates taken from the Hanford Reach area were elevated in comparison to the measurements taken from the Vernita area with ranges of 8 to 28 {mu}R/hr and 4 to 11 {mu}R/hr, respectively. In January 1994, additional shoreline radiation exposure rate measurements were taken from the Vernita, Hanford Reach, and Richland areas to determine the relationship of radiation exposure rates along the Richland area shores when compared to Vernita and Hanford Reach area exposure rates (measurements along the Richland area were not collected during the 1992 survey). This report discusses the 1994 results and is an addendum to the report that discussed the 1992 survey. An analysis of variance indicated a significant location interaction at a p-value of 0.0014. To determine differences between paried locations a post-hoc comparison of location means was performed on log transformed data using the Scheff{acute e}`s F-test. This test indicated a significant difference between Hanford Reach and Richland area means with a mean difference of 0.075 /{mu}R/hr and a p-value of 0.0014. No significant difference was found between Hanford Reach and Vernita area means: The mean difference was 0.031 {mu}R/hr and the p-value was 0.3138. No significant difference was found between Vernita and Richland area means with a mean difference of 0.044 {mu}R/hr and a p-value of 0.1155.

Cooper, A.T.

1995-02-01T23:59:59.000Z

120

Lake Region Electric Cooperative - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Region Electric Cooperative - Residential Energy Efficiency Rebate Program Lake Region Electric Cooperative - Residential Energy Efficiency Rebate Program Eligibility Residential...

Note: This page contains sample records for the topic "lake erie shore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Temperature analysis for lake Yojoa, Honduras  

E-Print Network (OSTI)

Lake Yojoa is the largest freshwater lake in Honduras, located in the central west region of the country (1405' N, 88 W). The lake has a surface area of 82 km2, a maximum depth of 26 m. and an average depth of 16 m. The ...

Chokshi, Mira (Mira K.)

2006-01-01T23:59:59.000Z

122

RECIPIENT:Lake County, FL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lake County, FL Lake County, FL u.s. DEPARTIIIEN T OF ENERGY EERE PROJECT MANAGEMENT CEN T ER NEPA DETERlIJJNATION PROJECf TITLE: Lake County, FL EECBG SOW (S) Page lof2 STATE: FL Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Numbcr CID Numbtr OE·FOA-OOOOO13 DE·EE00Q0786.001 0 Based on my review of the information concerning the proposed adion, as NEPA Compliance Officer (authorized undtr DOE Order 451.IA), I have made the following determination: ex. EA, EIS APPENDIX AND NUMBER: Description: 65.1 Actions to conserve energy, demonstrate potential energy conserva tion, and promote energy-efficiency that do not increase the indoor concentrations of potentially harmful substances. These actions may involve financial and technical

123

Geothermal exploration assessment and interpretation, Upper Klamah Lake Area, Klamath Basin, Oregon  

DOE Green Energy (OSTI)

Data from public and private sources on the Klamath Basin geothermal resource are reviewed, synthesized, and reinterpreted. In this, the second and final phase of the work, geological, remote sensing, geochemical, temperature gradient, gravity, aeromagnetic, and electrical resistivity data sets are examined. These data were derived from surveys concentrated on the east and west shores of Upper Klamath Lake. The geological, remote sensing, and potential field data suggest a few northeast-trending discontinuities, which cross the regional north-westerly strike. The near-surface distribution of warm water appears to be related to the intersections of these lineaments and northwest-trending faults. The groundwater geochemical data are reviewed and the various reservoir temperature estimates compared. Particular attention is given to specific electrical conductivities of waters as an interpretational aid to the subsurface resistivity results. A clear trend emerges in the Klamath Falls/Olene Gap area; hotter waters are associated with higher specific conductivities. In the Nuss Lake/Stukel Mountain area the opposite trend prevails, although the relationship is somewhat equivocal.

Stark, M.; Goldstein, N.E.; Wollenberg, H.A.

1980-09-01T23:59:59.000Z

124

Salt Lake Community College | .EDUconnections  

NLE Websites -- All DOE Office Websites (Extended Search)

SLCC Partners with DOE's Rocky Mountain Solar Training Program This program is a joint partnership between DOE's Solar Energy Technogies Program, Salt Lake Community College, Solar Energy International, and the Utah Solar Energy Association that works to accelerate use of solar electric technologies, training and facilities at community and technical college solar training programs within a 15 western United States region. DOE Solar Instructor Training Network Salt Lake City, Utah DOE Applauds SLCC's Science and Technical Programs Architectural Technology Biology Biotechnology Biomanufacturing Chemistry Computer Science Electric Sector Training Energy Management Engineering Geographic Information Sciences Geosciences InnovaBio Manufacturing & Mechanical Engineering Technology

125

Lake-Breeze Fronts in the Salt Lake Valley  

Science Conference Proceedings (OSTI)

Winds at the Salt Lake City International Airport (SLC) during the AprilOctober period from 1948 to 2003 have been observed to shift to the north (up-valley direction) between late morning and afternoon on over 70% of the days without ...

Daniel E. Zumpfe; John D. Horel

2007-02-01T23:59:59.000Z

126

Practical Estimates of Lake Evaporation  

Science Conference Proceedings (OSTI)

Practical estimates of lake evaporation must rely on data that can be observed in the land environment. This requires the ability to take into account the changes in the temperature and humidity that occur when the air passes from the land to the ...

F. I. Morton

1986-03-01T23:59:59.000Z

127

The Lake Thunderbird Micronet Project  

Science Conference Proceedings (OSTI)

The Lake Thunderbird Micronet is a dense network of environmental sensors and a meteorological tower situated on 10 acres of rural land in central Oklahoma. The Micronet was established in the spring of 2002 as part of a grassroots effort by a ...

Alan Shapiro; Petra M. Klein; Sean C. Arms; David Bodine; Matthew Carney

2009-06-01T23:59:59.000Z

128

Climatic Effects on Lake Basins. Part I: Modeling Tropical Lake Levels  

Science Conference Proceedings (OSTI)

The availability of satellite estimates of rainfall and lake levels offers exciting new opportunities to estimate the hydrologic properties of lake systems. Combined with simple basin models, connections to climatic variations can then be explored ...

Martina Ricko; James A. Carton; Charon Birkett

2011-06-01T23:59:59.000Z

129

Convective Evolution across Lake Michigan during a Widespread Lake-Effect Snow Event  

Science Conference Proceedings (OSTI)

Lake-effect snowstorms generally develop within convective boundary layers, which are induced when cold air flows over relatively warm lakes in fall and winter. Mesoscale circulations within the boundary layers largely control which communities ...

David A. R. Kristovich; Neil F. Laird; Mark R. Hjelmfelt

2003-04-01T23:59:59.000Z

130

Numerical Study of the Influence of Environmental Conditions on Lake-Effect Snowstorms over Lake Michigan  

Science Conference Proceedings (OSTI)

Numerical simulations are used to examine the influence of environmental parameters on the morphology of lake effect snowstorms over Lake Michigan. A series of model sensitivity studies are performed using the Colorado State University mesoscale ...

Mark R. Hjelmfelt

1990-01-01T23:59:59.000Z

131

Climatological Conditions of Lake-Effect Precipitation Events Associated with the New York State Finger Lakes  

Science Conference Proceedings (OSTI)

A climatological analysis was conducted of the environmental and atmospheric conditions that occurred during 125 identified lake-effect (LE) precipitation events in the New York State Finger Lakes region for the 11 winters (OctoberMarch) from ...

Neil Laird; Ryan Sobash; Natasha Hodas

2010-05-01T23:59:59.000Z

132

Lake Winds | Open Energy Information  

Open Energy Info (EERE)

Winds Winds Jump to: navigation, search Name Lake Winds Facility Lake Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Consumers Energy Developer Consumers Energy Energy Purchaser Consumers Energy Location Ludington MI Coordinates 43.83972728°, -86.38154984° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.83972728,"lon":-86.38154984,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

133

NAWS-China Lake Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

g g y g y S S C C NAWS NAWS - - China Lake China Lake Working with the Local Utility Working with the Local Utility Mark Shvartzman Mark Shvartzman Project Manager, Southern California Edison Project Manager, Southern California Edison Presented at the November FUPWG Meeting Presented at the November FUPWG Meeting November 18, 2009 November 18, 2009 1 1 g E t bli h d i 1998 d Ad i Fili 1358 E History of SCE's UESC Program History of SCE's UESC Program History of SCE s UESC Program History of SCE s UESC Program * Background - Edison developed Energy Related Services (ERS) to assist Federal customers in identifying and implementing energy efficiency and renewable energy projects at government owned and/or managed facilities within Southern California Edison service territory - Established in 1998 under Advice Filing 1358-E

134

Spirit Lake Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Spirit Lake Wind Farm Spirit Lake Wind Farm Jump to: navigation, search Name Spirit Lake Wind Farm Facility Spirit Lake Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Spirit Lake School Developer Minnesota Windpower Energy Purchaser Alliant/IES Utilities Location Spirit Lake IA Coordinates 43.411381°, -95.10075° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.411381,"lon":-95.10075,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

135

Lake Region State College | Open Energy Information  

Open Energy Info (EERE)

College College Jump to: navigation, search Name Lake Region State College Facility Lake Region State College Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Lake Region State College Developer Lake Region State College Energy Purchaser Lake Region State College Location Devils Lake ND Coordinates 48.166071°, -98.864529° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.166071,"lon":-98.864529,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

136

NAWS-China Lake Project | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NAWS-China Lake Project NAWS-China Lake Project Presentation covers the NAWS-China Lake Project at the Federal Utility Partnership Working Group (FUPWG) meeting, held on November...

137

Why sequence Bacteria from Lake Washington?  

NLE Websites -- All DOE Office Websites (Extended Search)

bacteria from Lake Washington? bacteria from Lake Washington? Previous collaborations between the University of Washington team and the DOE JGI involving both single genome and metagenomic sequencing have greatly enhanced the community's ability to explore the diversity of bacteria functionally active in metabolism of single carbon compounds, known as methylotrophs, isolated from Lake Washington (Seattle, Washington) sediment. Sequencing genomes of 50 methylotroph isolates from the Lake Washington will further enhance the methylotroph community knowledge database providing a much higher level of resolution of global (meta)transcriptomic and (meta)proteomic analyses, as well as species interaction studies, informing a better understanding of biogeochemical cycling of carbon and nitrogen.

138

great_lakes_90mwindspeed_off  

NLE Websites -- All DOE Office Websites (Extended Search)

GISDataTechnologySpecificUnitedStatesWindHighResolutionGreatLakes90mWindspeedOffshoreWindHighResolution.zip> Description: Abstract: Annual average offshore wind...

139

Lake Region Electric Cooperative - Commercial Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

details Lake Region Electric Cooperative (LREC) offers grants to commercial customers for electric energy efficiency improvements, audits, and engineering and design assistance for...

140

Clear Lake Cogeneration LP | Open Energy Information  

Open Energy Info (EERE)

Cogeneration LP Jump to: navigation, search Name Clear Lake Cogeneration LP Place Idaho Utility Id 3775 References EIA Form EIA-861 Final Data File for 2010 - File220101...

Note: This page contains sample records for the topic "lake erie shore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Glacial Lakes Energy | Open Energy Information  

Open Energy Info (EERE)

search Name Glacial Lakes Energy Place Watertown, South Dakota Zip 57201 Product Bioethanol producer using corn as feedstock Coordinates 43.197366, -88.720469 Loading...

142

Nacimiento Reservoir San Antonio Reservoir Searles Lake  

E-Print Network (OSTI)

Lake (Dry) TRONA WE ST END MCG EN SE ARLE S 190 395 RANDS BURG BA RREN RIDG E PINE T REE WIND FA RM LO

143

Lake Region Electric Cooperative | Open Energy Information  

Open Energy Info (EERE)

Cooperative Jump to: navigation, search Name Lake Region Electric Cooperative Place Minnesota Utility Id 10618 Utility Location Yes Ownership C NERC Location MRO NERC MRO Yes...

144

Association between Winter Precipitation and Water Level Fluctuations in the Great Lakes and Atmospheric Circulation Patterns  

Science Conference Proceedings (OSTI)

Atmospheric precipitation in the Great Lakes basin, as a major mediating variable between atmospheric circulation and lake levels, is analyzed relative to both. The effect of cumulative winter precipitation on lake levels varies from lake to lake ...

Sergei N. Rodionov

1994-11-01T23:59:59.000Z

145

Model Simulations Examining the Relationship of Lake-Effect Morphology to Lake Shape, Wind Direction, and Wind Speed  

Science Conference Proceedings (OSTI)

Idealized model simulations with an isolated elliptical lake and prescribed winter lake-effect environmental conditions were used to examine the influences of lake shape, wind speed, and wind direction on the mesoscale morphology. This study ...

Neil F. Laird; John E. Walsh; David A. R. Kristovich

2003-09-01T23:59:59.000Z

146

Division of Water, Part 675: Great Lakes Water Withdrawal Registration...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

75: Great Lakes Water Withdrawal Registration Regulations (New York) Division of Water, Part 675: Great Lakes Water Withdrawal Registration Regulations (New York) Eligibility...

147

Lake Charles, LA Natural Gas LNG Imports from Equatorial Guinea...  

Annual Energy Outlook 2012 (EIA)

Lake Charles, LA Natural Gas LNG Imports from Equatorial Guinea (Dollars per Thousand Cubic Feet) Lake Charles, LA Natural Gas LNG Imports from Equatorial Guinea (Dollars per...

148

Compound and Elemental Analysis At Fish Lake Valley Area (DOE...  

Open Energy Info (EERE)

ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Fish Lake Valley Area (DOE GTP) Exploration Activity Details Location Fish Lake Valley Area...

149

VALUE DISTRIBUTION ASSESSMENT OF GEOTHERMAL DEVELOPMENT IN LAKE COUNTY, CA  

E-Print Network (OSTI)

Eleven: Lake County Geothermal Energy Resource. . . .by t h e Report of t h e State Geothermal Task Force WDISTRIBUTION ASSESSMENT OF GEOTHERMAL DEVELOP~NTIN LAKE

Churchman, C.W.

2011-01-01T23:59:59.000Z

150

Obama Administration and Great Lakes States Announce Agreement...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Great Lakes States Announce Agreement to Spur Development of Offshore Wind Projects Obama Administration and Great Lakes States Announce Agreement to Spur Development of...

151

Geothermometry At Fish Lake Valley Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Fish Lake Valley Area (DOE GTP) Exploration...

152

Thermochronometry At Fish Lake Valley Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Thermochronometry At Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermochronometry At Fish Lake Valley Area...

153

Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from...  

Gasoline and Diesel Fuel Update (EIA)

Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from Trinidad and Tobago (Million Cubic Feet) Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from Trinidad...

154

The Lake Charles CCS Project  

SciTech Connect

The Lake Charles CCS Project is a large-scale industrial carbon capture and sequestration (CCS) project which will demonstrate advanced technologies that capture and sequester carbon dioxide (CO{sub 2}) emissions from industrial sources into underground formations. Specifically the Lake Charles CCS Project will accelerate commercialization of large-scale CO{sub 2} storage from industrial sources by leveraging synergy between a proposed petroleum coke to chemicals plant (the LCC Gasification Project) and the largest integrated anthropogenic CO{sub 2} capture, transport, and monitored sequestration program in the U.S. Gulf Coast Region. The Lake Charles CCS Project will promote the expansion of EOR in Texas and Louisiana and supply greater energy security by expanding domestic energy supplies. The capture, compression, pipeline, injection, and monitoring infrastructure will continue to sequester CO{sub 2} for many years after the completion of the term of the DOE agreement. The objectives of this project are expected to be fulfilled by working through two distinct phases. The overall objective of Phase 1 was to develop a fully definitive project basis for a competitive Renewal Application process to proceed into Phase 2 - Design, Construction and Operations. Phase 1 includes the studies attached hereto that will establish: the engineering design basis for the capture, compression and transportation of CO{sub 2} from the LCC Gasification Project, and the criteria and specifications for a monitoring, verification and accounting (MVA) plan at the Hastings oil field in Texas. The overall objective of Phase 2, provided a successful competitive down-selection, is to execute design, construction and operations of three capital projects: (1) the CO{sub 2} capture and compression equipment, (2) a Connector Pipeline from the LLC Gasification Project to the Green Pipeline owned by Denbury and an affiliate of Denbury, and (3) a comprehensive MVA system at the Hastings oil field.

Doug Cathro

2010-06-30T23:59:59.000Z

155

Bingham Lake Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Lake Wind Farm Lake Wind Farm Jump to: navigation, search Name Bingham Lake Wind Farm Facility Bingham Lake Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Edison Mission Group owns majority Developer Edison Mission Group Energy Purchaser Alliant Energy Location Bingham Lake MN Coordinates 43.909°, -95.0464° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.909,"lon":-95.0464,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

156

Why sequence novel haloarchaea from Deep Lake?  

NLE Websites -- All DOE Office Websites (Extended Search)

novel haloarchaea from Deep Lake? novel haloarchaea from Deep Lake? Antarctica's Deep Lake was isolated from the ocean by glaciers long ago, creating a salt water lake with a unique ecosystem for studying the evolution of marine microorganisms in harsh extremes. Among these microorganisms are haloarchaea, members of the halophile community which need high salt concentrations in order to grow. Haloarchaea are a distinct evolutionary branch of the Archaea, and are considered extremophiles. The haloarchaea from Deep Lake are naturally adapted to cold, nutrient-limited and high saline level conditions that would kill almost any other life. The enzymes in these naturally adapted microorganisms can provide insight into bioprospecting and bioengineering cold active and salt-adapted enzymes. Understanding how haloarchaea

157

Investment in Lake States Timberland June 24, 2008  

E-Print Network (OSTI)

­ Lake States Region Scott Henker, Senior Resource Manager Pete Coutu, Marketing Manager Our foresters

158

Geothermal assessment of the lower Bear River drainage and northern East Shore ground-water areas, Box Elder County, Utah  

DOE Green Energy (OSTI)

The Utah Geological and Mineral Survey (UGMS) has been researching the low-temperature geothermal resource potential in Utah. This report, part of an area-wide geothermal research program along the Wasatch Front, concerns the study conducted in the lower Bear River drainage and northern East Shore ground-water areas in Box Elder County, Utah. The primary purpose of the study is to identify new areas of geothermal resource potential. There are seven known low-temperature geothermal areas in this part of Box Elder County. Geothermal reconnaissance techniques used in the study include a temperature survey, chemical analysis of well and spring waters, and temperature-depth measurements in accessible wells. The geothermal reconnaissance techniques identified three areas which need further evaluation of their low-temperature geothermal resource potential. Area 1 is located in the area surrounding Little Mountain, area 2 is west and southwest of Plymouth, and area 3 is west and south of the Cutler Dam. 5 figures, 4 tables.

Klauk, R.H.; Budding, K.E.

1984-07-01T23:59:59.000Z

159

Category:Houghton-Lake, MI | Open Energy Information  

Open Energy Info (EERE)

Houghton-Lake, MI Houghton-Lake, MI Jump to: navigation, search Go Back to PV Economics By Location Media in category "Houghton-Lake, MI" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant Houghton-Lake MI Detroit Edison Co.png SVFullServiceRestauran... 64 KB SVHospital Houghton-Lake MI Detroit Edison Co.png SVHospital Houghton-La... 64 KB SVLargeHotel Houghton-Lake MI Detroit Edison Co.png SVLargeHotel Houghton-... 61 KB SVLargeOffice Houghton-Lake MI Detroit Edison Co.png SVLargeOffice Houghton... 64 KB SVMediumOffice Houghton-Lake MI Detroit Edison Co.png SVMediumOffice Houghto... 61 KB SVMidriseApartment Houghton-Lake MI Detroit Edison Co.png SVMidriseApartment Hou... 65 KB SVOutPatient Houghton-Lake MI Detroit Edison Co.png SVOutPatient Houghton-...

160

Observations of the Cross-Lake Cloud and Snow Evolution in a Lake-Effect Snow Event  

Science Conference Proceedings (OSTI)

While the total snowfall produced in lake-effect storms can be considerable, little is known about how clouds and snow evolve within lake-effect boundary layers. Data collected over Lake Michigan on 10 January 1998 during the Lake-Induced ...

Faye E. Barthold; David A. R. Kristovich

2011-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "lake erie shore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Noncrystallographic calcite dendrites from hot-spring deposits at Lake Bogoria, Kenya  

Science Conference Proceedings (OSTI)

Complex calcite crystals are an integral component of precipitates that form around the orifices of the Loburu and Mawe Moto hot springs on the shores of Lake bogoria, Kenya. Two types of large (up to 4 cm long) noncrystallographic dendrites are important components of these deposits. Feather dendrites are characterized by multiple levels of branching with individual branches developed through crystal splitting and spherulitic growth. Scandulitic (from Latin meaning shingle) dendrites are formed of stacked calcite crystals and are generally more compact than feather dendrites. These developed through the incremental stacking of rectangular-shaped calcite crystals that initially grew as skeletal crystals. Feather and scandulitic dendrites precipitated from the same waters in the same springs. The difference in morphology is therefore related to microenvironments in which they grew. Feather dendrites grew in any direction in pools of free-standing water provided that they were in constant contact with the solute. Conversely, scandulitic dendrites grew on rims of dams where water flowed over the surface in concert with the pulses of spring water. Thus, each calcite crystal in these dendrites represents one episode of crystal growth. The orientation of the component crystals in scandulitic dendrites is controlled by the topography of the dam or surface, not crystallographic criteria. The noncrystallographic dendrites formed from spring waters with initial temperatures of 90--99 C. Surficial water cooling, loss of CO{sub 2}, and presence of other elements that can interfere with crystal growth contributed to the formation of these unusual crystals.

Jones, B. [Univ. of Alberta, Edmonton, Alberta (Canada). Dept. of Geology; Renaut, R.W. [Univ. of Saskatchewan, Saskatoon (Canada). Dept. of Geological Sciences

1995-01-02T23:59:59.000Z

162

Hydrological and solute budgets of Lake Qinghai, the largest lake on the Tibetan Plateau  

Science Conference Proceedings (OSTI)

Water level and chemistry of Lake Qinghai are sensitive to climate changes and are important for paleoclimatic implications. An accurate understanding of hydrological and chemical budgets is crucial for quantifying geochemical proxies and carbon cycle. Published results of water budget are firstly reviewed in this paper. Chemical budget and residence time of major dissolved constituents in the lake are estimated using reliable water budget and newly obtained data for seasonal water chemistry. The results indicate that carbonate weathering is the most important riverine process, resulting in dominance of Ca2+ and DIC for river waters and groundwater. Groundwater contribution to major dissolved constituents is relatively small (4.2 0.5%). Wet atmospheric deposition contributes annually 7.444.0% soluble flux to the lake, resulting from eolian dust throughout the seasons. Estimates of chemical budget further suggest that (1) the Buha-type water dominates the chemical components of the lake water, (2) Na+, Cl?, Mg2+, and K+ in lake water are enriched owing to their conservative behaviors, and (3) precipitation of authigenic carbonates (low-Mg calcite, aragonite, and dolomite) transits quickly dissolved Ca2+ into the bottom sediments of the lake, resulting in very low Ca2+ in the lake water. Therefore, authigenic carbonates in the sediments hold potential information on the relative contribution of different solute inputs to the lake and the lake chemistry in the past.

Jin, Zhangdong; You, Chen-Feng; Wang, Yi; Shi, Yuewei

2010-05-01T23:59:59.000Z

163

Dewatering of Ambrosia Lake Mines  

SciTech Connect

The paper discusses the design of an aquifer depressurisation system using wells at Mt. Taylor Mine, Ambrosia Lake, New Mexico. The concepts discussed should be valid for any shaft of mine in a sandstone aquifer with predominantly matrix permeability. The system uses a number of wells surrounding the mine shaft to reduce the aquifer pressure in the vicinity of the shaft. The effect of various parameters such as number of wells, wellbore diameter, time and well location are considered. It is concluded that, with a properly designed system, the aquifer pressure and water inflow rate to the shaft may be reduced to less than 15% of their potential values in the absence of wells.

Juvkam-Wold, H.C.

1982-09-01T23:59:59.000Z

164

Meadow Lake III | Open Energy Information  

Open Energy Info (EERE)

Lake III Lake III Jump to: navigation, search Name Meadow Lake III Facility Meadow Lake III Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Horizon Wind Energy Developer EDP Renewables Location Brookston IN Coordinates 40.601111°, -86.864167° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.601111,"lon":-86.864167,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

165

Lake View Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Lake View Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Lake View Geothermal Facility General Information Name Lake View Geothermal Facility Facility Lake View Sector Geothermal energy Location Information Location The Geysers, California Coordinates 38.823527148671°, -122.78173327446° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.823527148671,"lon":-122.78173327446,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

166

CA-TRIBE-BLUE LAKE RANCHERIA  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CA-TRIBE-BLUE LAKE RANCHERIA CA-TRIBE-BLUE LAKE RANCHERIA Location: Tribe CA-TRIBE-BLUE CA LAKE RANCHERIA American Recovery and Reinvestment Act: Proposed Action or Project Description The Blue Lake Rancheria Tribe of California proposes to hire a technical consultant to gather additional information and make recommendations as to the best energy efficiency and conservation project or projects to utilize energy efficiency and conservation block grant funds. Following these recommendations, a decision will be made on building retrofits, and the specific retrofits will be identified and submitted for NEPA review. Conditions: None Categorical Exclusion(s) Applied: A9, A11 *-For the complete DOE National Environmental Policy Act regulations regarding categorical exclusions, see Subpart D of 10 CFR10 21

167

Lost Lakes Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Lakes Wind Farm Lakes Wind Farm Jump to: navigation, search Name Lost Lakes Wind Farm Facility Lost Lakes Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Horizon-EDPR Developer Horizon-EDPR Energy Purchaser Market Location Dickinson County IA Coordinates 43.32401°, -95.264354° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.32401,"lon":-95.264354,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

168

NV-TRIBE-SUMMIT LAKE PAIUTE TRIBE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NV-TRIBE-SUMMIT LAKE PAIUTE TRIBE NV-TRIBE-SUMMIT LAKE PAIUTE TRIBE Location: Tribe NV-TRIBE-SUMMIT NV LAKE PAIUTE TRIBE American Recovery and Reinvestment Act: Proposed Action or Project Description The Summit Lake Paiute Tribe of Nevada will conduct energy building retrofits on several tribal-owned buildings including: Maintenance Shop (insulate walls and cover insulation to keep in place); Bunkhouse (replace single-pane glass windows, and repair or replace two exit doors); Tribal Administrative Office (replace old electric water heater and three air conditioner/heaters, and replace single-pane glass windows): Community Well Shed (install walls, cover insulation, and replace single-pane glass windows); Cabin #1 and Cabin #2 (insulate and/or replace single-pane windows). Conditions: None

169

Sandia Lake Facility | Open Energy Information  

Open Energy Info (EERE)

Sandia Lake Facility Sandia Lake Facility Jump to: navigation, search Basic Specifications Facility Name Sandia Lake Facility Overseeing Organization Sandia National Laboratories Hydrodynamics Hydrodynamic Testing Facility Type Wave Basin Length(m) 57.3 Beam(m) 36.6 Depth(m) 15.2 Water Type Freshwater Cost(per day) $5000-15000 Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 15.2 Length of Effective Tow(m) 45.7 Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.9 Maximum Wave Height(m) at Wave Period(s) 3.0 Maximum Wave Length(m) 4.57 Wave Period Range(s) 3.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Values listed are for a conceptual design yet to be implemented for the Sandia Lake facility.

170

Vortex Modes in Southern Lake Michigan  

Science Conference Proceedings (OSTI)

Current velocities and water temperatures were observed in southern Lake Michigan with an array of AMF vector-averaging current meters during late spring, summer and fall 1976. Analyses of the recorded current data have revealed that persistent ...

James H. Saylor; Joseph C. K. Huang; Robert O. Reid

1980-11-01T23:59:59.000Z

171

Control of Mississippi Headwater Lakes (Minnesota)  

Energy.gov (U.S. Department of Energy (DOE))

The lakes at the headwaters of the Mississippi River are subject to joint federal and state control, and the Commissioner of the Department of Natural Resources is responsible for establishing a...

172

Geology of the Soda Lake geothermal area  

DOE Green Energy (OSTI)

The Soda Lake geothermal area is located in the Carson Desert, west-central Nevada. Hot springs activity has occurred in the Soda Lake area in the past, resulting in surface deposits which have motivated present geothermal exploration. The geothermal anomaly is in Quaternary clastic sediments which are as much as 4600 feet thick. The sediments consist of interbedded deltaic, lacustrine, and alluvial sediments. Quaternary basaltic igneous activity has produced cinder cones, phreatic explosions that formed the maar occupied by Soda Lake, and possible dikes. Opal deposition and soil alteration are restricted to a small area two miles north of Soda Lake. The location of hot springs activity and the surface thermal anomaly may be partially controlled by north-northeast-trending faults.

Sibbett, B.S.

1979-12-01T23:59:59.000Z

173

Salt Lake City- High Performance Buildings Requirement  

Energy.gov (U.S. Department of Energy (DOE))

Salt Lake City's mayor issued an executive order in July 2005 requiring that all public buildings owned and controlled by the city be built or renovated to meet the requirements of LEED "silver"...

174

Synthetic ecology : revisiting Mexico City's lakes project  

E-Print Network (OSTI)

Mexico City was founded 700 years ago on man made islets in the middle of a lake. Today, it faces a contradictory situation were water is running scarce, but simultaneously the city runs the risk of drowning in its own ...

Daou, Daniel (Daou Ornelas)

2011-01-01T23:59:59.000Z

175

Great Lakes fish and the greenhouse effect  

SciTech Connect

This short article discusses data presented at the Second North American Conference on Preparing for Climate Change, held in Washington, D.C. Magnuson and Regier predicted that Great Lakes fish productivity may increase as a result of the increased water temperatures caused by the greenhouse effect. However, they also predicted that other indirect alterations could do more harm than good; for example, the effects of warming on lake oxygen levels, or wind, which affects the mixing of warm, cool, and cold water.

Mlot, C.

1989-03-01T23:59:59.000Z

176

Lake Granbury and Lake Whitney Assessment Initiative Final Scientific/Technical Report Summary  

SciTech Connect

A team of Texas AgriLife Research, Baylor University and University of Texas at Arlington researchers studied the biology and ecology of Prymnesium parvum (golden algae) in Texas lakes using a three-fold approach that involved system-wide monitoring, experimentation at the microcosm and mesocosm scales, and mathematical modeling. The following are conclusions, to date, regarding this organism??s ecology and potential strategies for mitigation of blooms by this organism. In-lake monitoring revealed that golden algae are present throughout the year, even in lakes where blooms do not occur. Compilation of our field monitoring data with data collected by Texas Parks and Wildlife and Brazos River Authority (a period spanning a decade) revealed that inflow and salinity variables affect bloom formations. Thresholds for algae populations vary per lake, likely due to adaptations to local conditions, and also to variations in lake-basin morphometry, especially the presence of coves that may serve as hydraulic storage zones for P. parvum populations. More specifically, our in-lake monitoring showed that the highly toxic bloom that occurred in Lake Granbury in the winter of 2006/2007 was eliminated by increased river inflow events. The bloom was flushed from the system. The lower salinities that resulted contributed to golden algae not blooming in the following years. However, flushing is not an absolute requirement for bloom termination. Laboratory experiments have shown that growth of golden algae can occur at salinities ~1-2 psu but only when temperatures are also low. This helps to explain why blooms are possible during winter months in Texas lakes. Our in-lake experiments in Lake Whitney and Lake Waco, as well as our laboratory experiments, revealed that cyanobacteria, or some other bacteria capable of producing algicides, were able to prevent golden algae from blooming. Identification of this organism is a high priority as it may be a key to managing golden algae blooms. Our numerical modeling results support the idea that cyanobacteria, through allelopathy, control the timing of golden algae blooms in Lake Granbury. The in-lake experiments in Lake Whitney and Lake Waco also revealed that as golden algae blooms develop, there are natural enemies (a species of rotifer, and a virus) that help slow the population growth. Again, better characterization of these organisms is a high priority as it may be key to managing golden algae blooms. Our laboratory and in-lake experiments and field monitoring have shown that nutrient additions will remove toxicity and prevent golden algae from blooming. In fact, other algae displace the golden algae after nutrient additions. Additions of ammonia are particularly effective, even at low doses (much lower than what is employed in fish hatchery ponds). Application of ammonia in limited areas of lakes, such as in coves, should be explored as a management option. The laboratory experiments and field monitoring also show that the potency of toxins produced by P. parvum is greatly reduced when water pH is lower, closer to neutral levels. Application of mild acid to limited areas of lakes (but not to a level where acidic conditions are created), such as in coves, should be explored as a management option. Finally, our field monitoring and mathematical modeling revealed that flushing/dilution at high enough levels could prevent P. parvum from forming blooms and/or terminate existing blooms. This technique could work using deeper waters within a lake to flush the surface waters of limited areas of the same lakes, such as in coves and should be explored as a management option. In this way, water releases from upstream reservoirs would not be necessary and there would be no addition of nutrients in the lake.

Harris, B.L.; Roelke, Daniel; Brooks, Bryan; Grover, James

2010-10-11T23:59:59.000Z

177

Parameterization of Lakes and Wetlands for Energy and Water Balance Studies in the Great Lakes Region  

Science Conference Proceedings (OSTI)

Lakes and wetlands are prevalent around the Great Lakes and play an important role in the regional water and energy cycle. However, simulating their impacts on regional-scale hydrology is still a major challenge and not widely attempted. In the ...

Vimal Mishra; Keith A. Cherkauer; Laura C. Bowling

2010-10-01T23:59:59.000Z

178

Numerical Study of the 10 January 1998 Lake-Effect Bands Observed during Lake-ICE  

Science Conference Proceedings (OSTI)

This paper presents the results of a series of idealized cloud resolving simulations of the evolution of moist roll convection observed as part of the Lake-Induced Convection Experiment (Lake-ICE) that took place during the 1997/98 winter over ...

Gregory J. Tripoli

2005-09-01T23:59:59.000Z

179

Mesoscale Lake-effect Snowstorms in the Vicinity of Lake Michigan: Linear Theory and Numerical Simulations  

Science Conference Proceedings (OSTI)

Mesoscale lake-effect snowstorms in the vicinity of Lake Michigan are studied by a linear steady-state analytic model and a nonlinear time-dependent numerical model with parameterized subgrid-scale physics. The solutions of the linear model show ...

Hsiao-ming Hsu

1987-04-01T23:59:59.000Z

180

Lake-atmosphere feedbacks associated with paleolakes Bonneville and Lahontan  

SciTech Connect

A high-resolution, regional climate model nested within a general circulation model was used to study the interactions between the atmosphere and the large Pleistocene lakes in the Great Basin of the United States. Simulations for January and July 18,000 years ago indicate that moisture provided by synoptic-scale atmospheric circulation features was the primary component of the hydrologic budgets of Lakes Lahontan and Bonneville. In addition, lake-generated precipitation was a substantial component of the hydrologic budget of Lake Bonneville at that time. This local lake-atmosphere interaction may help explain differences in the relative size of these lakes 18,000 years ago.

Hostetler, S.W. (Geological Survey, Boulder, CO (United States)); Giorgi, F.; Bates, G.T. (National Center for Atmospheric Research, Boulder, CO (United States)); Bartlein, P.J. (Univ. of Oregon, Eugene, OR (United States))

1994-02-04T23:59:59.000Z

Note: This page contains sample records for the topic "lake erie shore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Energy and water in the Great Lakes.  

Science Conference Proceedings (OSTI)

The nexus between thermoelectric power production and water use is not uniform across the U.S., but rather differs according to regional physiography, demography, power plant fleet composition, and the transmission network. That is, in some regions water demand for thermoelectric production is relatively small while in other regions it represents the dominate use. The later is the case for the Great Lakes region, which has important implications for the water resources and aquatic ecology of the Great Lakes watershed. This is today, but what about the future? Projected demographic trends, shifting lifestyles, and economic growth coupled with the threat of global climate change and mounting pressure for greater U.S. energy security could have profound effects on the region's energy future. Planning for such an uncertain future is further complicated by the fact that energy and environmental planning and regulatory decisionmaking is largely bifurcated in the region, with environmental and water resource concerns generally taken into account after new energy facilities and technologies have been proposed, or practices are already in place. Based on these confounding needs, the objective of this effort is to develop Great Lakes-specific methods and tools to integrate energy and water resource planning and thereby support the dual goals of smarter energy planning and development, and protection of Great Lakes water resources. Guiding policies for this planning are the Great Lakes and St. Lawrence River Basin Water Resources Compact and the Great Lakes Water Quality Agreement. The desired outcome of integrated energy-water-aquatic resource planning is a more sustainable regional energy mix for the Great Lakes basin ecosystem.

Tidwell, Vincent Carroll

2011-11-01T23:59:59.000Z

182

Obama Administration Hosts Great Lakes Offshore Wind Workshop in Chicago  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hosts Great Lakes Offshore Wind Workshop in Hosts Great Lakes Offshore Wind Workshop in Chicago with Great Lakes Wind Collaborative Obama Administration Hosts Great Lakes Offshore Wind Workshop in Chicago with Great Lakes Wind Collaborative October 28, 2010 - 12:00am Addthis WASHINGTON - The White House Council on Environmental Quality and the U.S. Department of Energy hosted a workshop with the Great Lakes Wind Collaborative in Chicago on October 26 - 27, 2010, focused on the siting of offshore wind power in the Great Lakes. The two day workshop brought together wind developers, Federal and state regulators, environmental advocates, and other regional stakeholders to discuss methods for ensuring greater clarity, certainty and coordination of Federal and state decision-making for offshore wind development in the Great Lakes.

183

Energy Budget Processes of a Small Northern Lake  

Science Conference Proceedings (OSTI)

There is a paucity of information on the energy budget of Canada's northern lakes. This research determines processes controlling the magnitude of energy fluxes between a small Canadian Shield lake and the atmosphere. Meteorological instruments ...

Christopher Spence; Wayne R. Rouse; Devon Worth; Claire Oswald

2003-08-01T23:59:59.000Z

184

Interpreting Annual Rainfall from the Levels of Lake Victoria  

Science Conference Proceedings (OSTI)

This paper presents a water balance model for Lake Victoria that can be inverted to estimate annual rainfall over the lake. The model is calibrated using a fixed value of evaporation and the regression expressions for inflow, discharge, and ...

Xungang Yin; Sharon E. Nicholson

2002-08-01T23:59:59.000Z

185

Influence of the Laurentian Great Lakes on Regional Climate  

Science Conference Proceedings (OSTI)

The influence of the Laurentian Great Lakes on climate is assessed by comparing two decade-long simulations, with the lakes either included or excluded, using the Abdus Salam International Centre for Theoretical Physics Regional Climate Model, ...

Michael Notaro; Kathleen Holman; Azar Zarrin; Elody Fluck; Steve Vavrus; Val Bennington

2013-02-01T23:59:59.000Z

186

The Role of Northern Lakes in a Regional Energy Balance  

Science Conference Proceedings (OSTI)

There are many lakes of widely varying morphometry in northern latitudes. For this study region, in the central Mackenzie River valley of western Canada, lakes make up 37% of the landscape. The nonlake components of the landscape are divided into ...

Wayne R. Rouse; Claire J. Oswald; Jacqueline Binyamin; Christopher Spence; William M. Schertzer; Peter D. Blanken; Normand Bussires; Claude R. Duguay

2005-06-01T23:59:59.000Z

187

Simulations of the Summer Hydrometeorological Processes of Lake Kinneret  

Science Conference Proceedings (OSTI)

Lake Kinneret is a 168-km2 lake located in northern Israel. It provides about 50% of the drinking water consumed in this arid country. To manage correctly this vital water resource, it is essential to understand the various hydrometeorological ...

Roni Avissar; Hai Pan

2000-02-01T23:59:59.000Z

188

The Frequency and Intensity of Great Lake Cyclones  

Science Conference Proceedings (OSTI)

Cyclones are an important feature of the Great Lakes region that can have important impacts on shipping, lake temperature profiles, ice cover, and shoreline property damages. The objective of this research is to analyze the frequency and ...

James R. Angel; Scott A. Isard

1998-01-01T23:59:59.000Z

189

Simulating Upwelling in a Large Lake Using Slippery Sacks  

Science Conference Proceedings (OSTI)

A Lagrangian numerical model is used to simulate upwelling in an idealized large lake. This simulation is carried out to test the model's potential for simulating lake and ocean circulations.

Patrick T. Haertel; David A. Randall; Tommy G. Jensen

2004-01-01T23:59:59.000Z

190

Pine Lake Corn Processors LLC | Open Energy Information  

Open Energy Info (EERE)

Farmer owned investment and management team which developed and manages the Pine Lake ethanol plant. References Pine Lake Corn Processors LLC1 LinkedIn Connections CrunchBase...

191

Relations between Meteorology and Ozone in the Lake Michigan Region  

Science Conference Proceedings (OSTI)

The field program phase of the Lake Michigan Ozone Study (LMOS) took place during the summer of 1991. Observed ozone concentrations and weather variables have been analyzed for the Lake Michigan region and the eastern United States for four 1991 ...

Steven R. Hanna; Joseph C. Chang

1995-03-01T23:59:59.000Z

192

Crow Lake Wind | Open Energy Information  

Open Energy Info (EERE)

Crow Lake Wind Crow Lake Wind Jump to: navigation, search Name Crow Lake Wind Facility Crow Lake Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Prairie Winds SD 1 Inc. (100) Mitchell Technical Institute (1) South Dakota Wind Partners (7) Developer Prairie Winds SD 1 Inc. Energy Purchaser Basin Electric Power Cooperative Location White Lake SD Coordinates 43.920959°, -98.7282157° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.920959,"lon":-98.7282157,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

193

THERMODYNAMICS OF PARTIALLY FROZEN COOLING LAKES  

SciTech Connect

The Rochester Institute of Technology (RIT) collected visible, SWIR, MWIR and LWIR imagery of the Midland (Michigan) Cogeneration Ventures Plant from aircraft during the winter of 2008-2009. RIT also made ground-based measurements of lake water and ice temperatures, ice thickness and atmospheric variables. The Savannah River National Laboratory (SRNL) used the data collected by RIT and a 3-D hydrodynamic code to simulate the Midland cooling lake. The hydrodynamic code was able to reproduce the time distribution of ice coverage on the lake during the entire winter. The simulations and data show that the amount of ice coverage is almost linearly proportional to the rate at which heat is injected into the lake (Q). Very rapid melting of ice occurs when strong winds accelerate the movement of warm water underneath the ice. A snow layer on top of the ice acts as an insulator and decreases the rate of heat loss from the water below the ice to the atmosphere above. The simulated ice cover on the lake was not highly sensitive to the thickness of the snow layer. The simplicity of the relationship between ice cover and Q and the weak responses of ice cover to snow depth over the ice are probably attributable to the negative feedback loop that exists between ice cover and heat loss to the atmosphere.

Garrett, A.; Casterline, M.; Salvaggio, C.

2010-01-05T23:59:59.000Z

194

Habitat Evaluation Procedures (HEP) Report; Steigerwald Lake National Wildlife Refuge, Technical Report 2000-2001.  

DOE Green Energy (OSTI)

Steigenvald Lake National Wildlife Refuge (NWR, refuge) was established as a result of the U. S. Army Corps of Engineers (COE) transferring ownership of the Stevenson tract located in the historic Steigerwald Lake site to the U.S. Fish and Wildlife Service (FWS, Service) for the mitigation of the fish and wildlife losses associated with the construction of a second powerhouse at the Bonneville Dam on the Columbia River and relocation of the town of North Bonneville (Public Law 98-396). The construction project was completed in 1983 and resulted in the loss of approximately 577 acres of habitat on the Washington shore of the Columbia River (USFWS, 1982). The COE determined that acquisition and development of the Steigenvald Lake area, along with other on-site project management actions, would meet their legal obligation to mitigate for these impacts (USCOE, 1985). Mitigation requirements included restoration and enhancement of this property to increase overall habitat diversity and productivity. From 1994 to 1999, 317 acres of additional lands, consisting of four tracts of contiguous land, were added to the original refuge with Bonneville Power Administration (BPA) funds provided through the Washington Wildlife Mitigation Agreement. These tracts comprised Straub (191 acres), James (90 acres), Burlington Northern (27 acres), and Bliss (9 acres). Refer to Figure 1. Under this Agreement, BPA budgeted $2,730,000 to the Service for 'the protection, mitigation, and enhancement of wildlife and wildlife habitat that was adversely affected by the construction of Federal hydroelectric dams on the Columbia River or its tributaries' in the state of Washington (BPA, 1993). Lands acquired for mitigation resulting from BPA actions are evaluated using the habitat evaluation procedures (HEP) methodology, which quantifies how many Habitat Units (HUs) are to be credited to BPA. HUs or credits gained lessen BPA's debt, which was formally tabulated in the Federal Columbia River Power System Loss Assessments and adopted as part of the Northwest Power Planning Council's Fish and Wildlife Program as a BPA obligation (BPA, 1994). Steigenvald Lake NWR is located in southwest Washington (Clark County), within the Columbia River Gorge National Scenic Area. Historically part of the Columbia River flood plain, the refuge area was disconnected from the river by a series of dikes constructed by the COE for flood control in 1966. An aerial photograph from 1948 portrays this area as an exceedingly complex mosaic of open water, wetlands, sloughs, willow and cottonwood stands, wet meadows, upland pastures, and agricultural fields, which once supported a large assemblage of fish and wildlife populations. Eliminating the threat of periodic inundation by the Columbia River allowed landowners to more completely convert the area into upland pasture and farmland through channelization and removal of standing water. Native pastures were 'improved' for grazing by the introduction of non-native fescues, orchard grass, ryegrass, and numerous clovers. Although efforts to drain the lake were not entirely successful, wetland values were still significantly reduced.

Allard, Donna

2001-09-01T23:59:59.000Z

195

Lake Roosevelt Fisheries Evaluation Program; Meadow Creek vs. Lake Whatcom Stock Kokanee Salmon Investigations in Lake Roosevelt, 2001 Annual Report.  

DOE Green Energy (OSTI)

Lake Roosevelt has been stocked with Lake Whatcom stock kokanee since 1989 with the primary objective of creating a self-sustaining recreational fishery. Due to low return numbers, it was hypothesized a stock of kokanee, native to the upper Columbia River, might perform better than the coastal Lake Whatcom strain. Kokanee from Meadow Creek, a tributary of Kootenay Lake, British Columbia were selected as an alternative stock. Matched pair releases of Lake Whatcom and Meadow Creek kokanee were made from Sherman Creek Hatchery in late June 2000 and repeated in 2001. Stock performance between Lake Whatcom and Meadow Creek kokanee was evaluated using three performance measures; (1) the number of returns to Sherman Creek, the primary egg collection facility, (2) the number of returns to other tributaries and (3) the number of returns to the creel. Kokanee were collected during five passes through the reservoir via electrofishing, which included 87 tributary mouths during the fall of 2000 and 2001. Chi-square analysis indicated age two Meadow Creek kokanee returned to Sherman Creek in significantly higher numbers when compared to the Whatcom stock in 2000 ({chi}{sup 2} = 736.6; d.f. = 1; P < 0.01) and 2001 ({chi}{sup 2} = 156.2; d.f. = 1; P < 0.01). Reservoir wide recoveries of age two kokanee had similar results in 2000 ({chi}{sup 2} = 735.3; d.f. = 1; P < 0.01) and 2001 ({chi}{sup 2} = 150.1; d.f. = 1; P < 0.01). Six Lake Whatcom and seven Meadow Creek three year olds were collected in 2001. The sample size of three year olds was too small for statistical analysis. No kokanee were collected during creel surveys in 2000, and two (age three kokanee) were collected in 2001. Neither of the hatchery kokanee collected were coded wire tagged, therefore stock could not be distinguished. After two years of monitoring, neither Meadow Creek or Lake Whatcom kokanee appear to be capable of providing a run of three-year-old spawners to sustain stocking efforts. The small number of hatchery three-year-olds collected indicated that the current stocking methods will continue to produce a limited jacking run largely composed of precocious males and a small number of three-year-olds. However, supplemental creel data indicated anglers harvested two-year-old hatchery kokanee 30-45 days after release. Supplemental creel data should continue to be collected to accurately evaluate hatchery contributions to the creel.

McLellan, Holly; Scholz, Allan

2002-03-01T23:59:59.000Z

196

Lake Roosevelt Fisheries Evaluation Program; Meadow Creek vs. Lake Whatcom Stock Kokanee Salmon Investigations in Lake Roosevelt, Annual Report 2002.  

DOE Green Energy (OSTI)

Lake Whatcom, Washington kokanee have been stocked in Lake Roosevelt since 1987 with the primary objective of creating a self-sustaining fishery. Success has been limited by low recruitment to the fishery, low adult returns to hatcheries, and a skewed sex ratio. It was hypothesized that a stock native to the upper Columbia River might perform better than the coastal Lake Whatcom stock. Kokanee from Meadow Creek, a tributary of Kootenay Lake, British Columbia were selected as an alternative stock. Post smolts from each stock were released from Sherman Creek Hatchery in late June 2000 and repeated in 2001. Stock performance was evaluated using three measures; (1) number of returns to Sherman Creek, the primary egg collection facility, (2) the number of returns to 86 tributaries sampled and, (3) the number of returns to the creel. In two repeated experiments, neither Meadow Creek or Lake Whatcom kokanee appeared to be capable of providing a run of three-year old spawners to sustain stocking efforts. Less than 10 three-years olds from either stock were collected during the study period. Chi-square analysis indicated age two Meadow Creek kokanee returned to Sherman Creek and to other tributaries in significantly higher numbers when compared to the Lake Whatcom stock in both 2000 and 2001. However, preliminary data from the Spokane Tribe of Indians indicated that a large number of both stocks were precocial before they were stocked. The small number of hatchery three-year olds collected indicated that the current hatchery rearing and stocking methods will continue to produce a limited jacking run largely composed of precocious males and a small number of three-year olds. No kokanee from the study were collected during standard lake wide creel surveys. Supplemental creel data, including fishing derbies, test fisheries, and angler diaries, indicated anglers harvested two-year-old hatchery kokanee a month after release. The majority of the two-year old kokanee harvested were from a direct stock at the Fort Spokane boat launch. Only Lake Whatcom kokanee were stocked from the boat launch, therefore stock performance was not evaluated, however the high success of the stocking location will likely increase harvest of hatchery kokanee in the future. Despite low numbers of the targeted three-year olds, Meadow Creek kokanee should be stocked when possible to promote fish native to the upper Columbia River.

McLellan, Holly

2003-03-01T23:59:59.000Z

197

A parameterized model of heat storage by lake sediments  

Science Conference Proceedings (OSTI)

A model of seasonal heat storage by lake sediments is proposed oriented at applications in climate modeling and at lake parameterization in numerical weather prediction. The computational efficiency is achieved by reformulating of the heat transfer problem ... Keywords: Bulk model, Climate modeling, Lake temperature, Sediment processes, Temperature wave, Water-sediment exchange

Sergey Golosov; Georgiy Kirillin

2010-06-01T23:59:59.000Z

198

Medicine Lake Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Medicine Lake Geothermal Area Medicine Lake Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Medicine Lake Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (9) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.57,"lon":-121.57,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

199

Harney Lake Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Lake Geothermal Area Lake Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Harney Lake Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.18166667,"lon":-119.0533333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

200

Lake Palmdale Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Lake Palmdale Wind Farm Lake Palmdale Wind Farm Facility Lake Palmdale Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Palmdale Water District Developer Palmdale Water District Energy Purchaser Palmdale Water District Location Palmdale CA Coordinates 34.555932°, -118.118307° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.555932,"lon":-118.118307,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "lake erie shore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Meadow Lake IV | Open Energy Information  

Open Energy Info (EERE)

Meadow Lake IV Meadow Lake IV Facility Meadow Lake IV Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Horizon Wind Energy Developer EDP Renewables Location Brookston IN Coordinates 40.601111°, -86.864167° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.601111,"lon":-86.864167,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

202

Why sequence metagenomics in freshwater lakes?  

NLE Websites -- All DOE Office Websites (Extended Search)

metagenomics in freshwater lakes? metagenomics in freshwater lakes? Aquatic microbial communities represent one of the largest reservoirs of genetic and biochemical diversity on the planet, and metagenomic studies have led to the discovery of novel gene families and a deeper understanding of how microbial communities mediate the flow of carbon and energy. However, most of these studies have been based on a static 'snap shot' of genetic diversity found under a particular set of environmental conditions. This study involves a metagenomic time-series to better understand how microbial communities control carbon cycling in freshwater systems. Principal Investigators: Katherine McMahon, University of Wisconsin Program: CSP 2011 Home > Sequencing > Why sequence metagenomics in freshwater lakes

203

Emmons Lake Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Lake Geothermal Area Lake Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Emmons Lake Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":55.3333,"lon":-162.14,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

204

Meadow Lake II | Open Energy Information  

Open Energy Info (EERE)

Meadow Lake II Meadow Lake II Facility Meadow Lake II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Horizon Wind Energy Developer EDP Renewables Location Brookston IN Coordinates 40.601111°, -86.864167° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.601111,"lon":-86.864167,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

205

Rice Lake Utilities | Open Energy Information  

Open Energy Info (EERE)

Rice Lake Utilities Rice Lake Utilities Jump to: navigation, search Name Rice Lake Utilities Place Wisconsin Utility Id 15938 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cp-1 Small Power Service Industrial Cp-1 Small Power Service with Parallel Generation(20kW or less) Industrial Cp-1 TOD Small Power Optional Time-of-Day Service Primary Metering Discount Industrial Cp-1 TOD Small Power Optional Time-of-Day Service Primary Metering Discount with Parallel Generation(20kW or less) Industrial

206

Great Lakes | OpenEI  

Open Energy Info (EERE)

Lakes Lakes Dataset Summary Description This dataset is a geographic shapefile generated from the original raster data. The original raster data resolution is a 200-meter cell size. Source National Renewable Energy Laboratory (NREL) Date Released August 19th, 2010 (4 years ago) Date Updated August 23rd, 2010 (4 years ago) Keywords GIS Great Lakes NREL offshore wind shapefile U.S. wind windspeed Data application/zip icon Download Shapefile (zip, 11.8 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Other or unspecified, see optional comment below Comment DISCLAIMER NOTICE This GIS data was developed by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy, LLC for the U.S. Department of Energy ("DOE"). The user is granted the right, without any fee or cost, to use, copy, modify, alter, enhance and distribute this data for any purpose whatsoever, provided that this entire notice appears in all copies of the data. Further, the user of this data agrees to credit NREL in any publications or software that incorporate or use the data. Access to and use of the GIS data shall further impose the following obligations on the User. The names DOE/NREL may not be used in any advertising or publicity to endorse or promote any product or commercial entity using or incorporating the GIS data unless specific written authorization is obtained from DOE/NREL. The User also understands that DOE/NREL shall not be obligated to provide updates, support, consulting, training or assistance of any kind whatsoever with regard to the use of the GIS data. THE GIS DATA IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL DOE/NREL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO CLAIMS ASSOCIATED WITH THE LOSS OF DATA OR PROFITS, WHICH MAY RESULT FROM AN ACTION IN CONTRACT, NEGLIGENCE OR OTHER TORTIOUS CLAIM THAT ARISES OUT OF OR IN CONNECTION WITH THE ACCESS OR USE OF THE GIS DATA. The User acknowledges that access to the GIS data is subject to U.S. Export laws and regulations and any use or transfer of the GIS data must be authorized under those regulations. The User shall not use, distribute, transfer, or transmit GIS data or any products incorporating the GIS data except in compliance with U.S. export regulations. If requested by DOE/NREL, the User agrees to sign written assurances and other export-related documentation as may be required to comply with U.S. export regulations. DISCLAIMER NOTICE This GIS data was developed by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy, LLC for the U.S. Department of Energy ("DOE"). The user is granted the right, without any fee or cost, to use, copy, modify, alter, enhance and distribute this data for any purpose whatsoever, provided that this entire notice appears in all copies of the data. Further, the user of this data agrees to credit NREL in any publications or software that incorporate or use the data. Access to and use of the GIS data shall further impose the following obligations on the User. The names DOE/NREL may not be used in any advertising or publicity to endorse or promote any product or commercial entity using or incorporating the GIS data unless specific written authorization is obtained from DOE/NREL. The User also understands that DOE/NREL shall not be obligated to provide updates, support, consulting, training or assistance of any kind whatsoever with regard to the use of the GIS data. THE GIS DATA IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL DOE/NREL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO CLAIMS ASSOCIATED WITH THE LOSS OF DATA OR PROFITS, WHICH MAY RESULT FROM AN ACTION IN CONTRACT, NEGLIGENCE OR OTHER TORTIOUS CLAIM THAT ARISES OUT OF OR IN CONNECTION WITH THE ACCESS OR USE OF THE GIS DATA. The User acknowledges that access to the GIS data is subject to U.S. Export laws and regulations and any use or transfer of the GIS data must be authorized under those regulations. The User shall not use, distribute, transfer, or transmit GIS data or any products incorporating the GIS data except in compliance with U.S. export regulations. If requested by DOE/NREL, the User agrees to sign written assurances and other export-related documentation as may be required to comply with U.S. export regulations.

207

Convective Structures in a Cold Air Outbreak over Lake Michigan during Lake-ICE  

Science Conference Proceedings (OSTI)

The Lake-Induced Convection Experiment provided special field data during a westerly flow cold air outbreak (CAO) on 13 January 1998, which has afforded the opportunity to examine in detail an evolving convective boundary layer. Vertical cross ...

Suzanne M. Zurn-Birkhimer; Ernest M. Agee; Zbigniew Sorbjan

2005-07-01T23:59:59.000Z

208

Patterns of Local Circulation in the Itaipu Lake Area: Numerical Simulations of Lake Breeze  

Science Conference Proceedings (OSTI)

The lake-breeze circulation in the Itaipu region was investigated numerically using a nonhydrostatic version of the Topographic Vorticity Model. The area of study corresponds to a 100 km 180 km rectangle, located on the BrazilParaguay border, ...

Snia M. S. Stivari; Amauri P. de Oliveira; Hugo A. Karam; Jacyra Soares

2003-01-01T23:59:59.000Z

209

Spatiotemporal Trends in Lake Effect and Continental Snowfall in the Laurentian Great Lakes, 19511980  

Science Conference Proceedings (OSTI)

A new raster-based monthly snowfall climatology was derived from 19511980 snowfall station data for the Laurentian Great Lakes. An automated methodology was used to obtain higher spatial resolution than previously obtained. The increase in ...

D. C. Norton; S. J. Bolsenga

1993-10-01T23:59:59.000Z

210

Impacts of Climate Variation and Catchment Area on Water Balance and Lake Hydrologic Type in Groundwater-Dominated Systems: A Generic Lake Model  

Science Conference Proceedings (OSTI)

Lakes are a major geologic feature in humid regions, and multiple lake hydrologic types exist with varying physical and chemical characteristics, connections among lakes, and relationships to the landscape. The authors developed a model of water ...

Jeffrey Cardille; Michael T. Coe; Julie A. Vano

2004-12-01T23:59:59.000Z

211

Geothermal Exploration Using Aviris Remote Sensing Data Over Fish Lake  

Open Energy Info (EERE)

Using Aviris Remote Sensing Data Over Fish Lake Using Aviris Remote Sensing Data Over Fish Lake Valley, Nv Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Geothermal Exploration Using Aviris Remote Sensing Data Over Fish Lake Valley, Nv Details Activities (1) Areas (1) Regions (0) Abstract: Fish Lake Valley, in Esmeralda County, Nevada, sits at the southern end of the Mina Deflection where the very active Death Valley-Furnace Creek-Fish Lake Valley fault system makes a right step to transfer slip northward into the Walker Lane. Northern Fish Lake Valley has been pulling part since ca. 6 Ma, primarily along the Emigrant Peak normal fault zone (Stockli et al., 2003). Elevated tectonic activity in Fish Lake Valley suggests there may be increased fracture permeability to facilitate

212

Medicine Lake Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Medicine Lake Geothermal Area Medicine Lake Geothermal Area (Redirected from Medicine Lake Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Medicine Lake Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (9) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.57,"lon":-121.57,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

213

CX-005726: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

726: Categorical Exclusion Determination 726: Categorical Exclusion Determination CX-005726: Categorical Exclusion Determination Coastal Ohio Wind Project for Reduced Barriers to Deployment of Offshore Wind Energy CX(s) Applied: A9, B3.1, B3.6 Date: 04/11/2011 Location(s): Bowling Green, Ohio Office(s): Energy Efficiency and Renewable Energy, Golden Field Office Bowling Green State University (BGSU), in Bowling Green, Ohio, is proposing to use federal funding to 1) develop a sensor that would monitor avian and bat fatalities resulting from wind turbines and 2) to address a particular Great Lakes condition, ice accumulation on wind turbines, BGSU is partnering with the University of Toledo (UT) to perform research and development on two existing 1 megawatt, N1000 wind turbines, installed by the City of Toledo, near the shore of Lake Erie.

214

Lake Region Electric Cooperative | Open Energy Information  

Open Energy Info (EERE)

Cooperative Cooperative (Redirected from Lake Region Coop Elec Assn) Jump to: navigation, search Name Lake Region Electric Cooperative Place Minnesota Utility Id 10618 Utility Location Yes Ownership C NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 2013 Residential and Farm Rates Residential Interruptible Heating(Domestic Use) Interruptible Heating(Non-Domestic Use) Residential Irrigation Rate Commercial Large Commercial Commercial Offpeak Storage Residential Simultaneous Purchase and Sale Small Commercial Commercial

215

Iowa Lakes Electric Cooperative | Open Energy Information  

Open Energy Info (EERE)

Iowa Lakes Electric Cooperative Iowa Lakes Electric Cooperative Place Estherville, Iowa Zip 51334 Sector Wind energy Product Iowa-based consumer-owned electric cooperative. The entity is a project developer for two wind farms. Coordinates 43.401935°, -94.838594° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.401935,"lon":-94.838594,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

216

Carson Lake Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Carson Lake Geothermal Project Carson Lake Geothermal Project Project Location Information Coordinates 39.321111111111°, -118.70388888889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.321111111111,"lon":-118.70388888889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

217

Great Lakes Biofuels LLC | Open Energy Information  

Open Energy Info (EERE)

Great Lakes Biofuels LLC Great Lakes Biofuels LLC Place Madison, Wisconsin Zip 53704 Sector Services Product Biodiesel research, consulting, management distribution and services company. Coordinates 43.07295°, -89.386694° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.07295,"lon":-89.386694,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

218

Dry Lake Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind Farm Wind Farm Jump to: navigation, search Name Dry Lake Wind Farm Facility Dry Lake Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Iberdrola Renewables Developer Iberdrola Renewables Energy Purchaser Iberdrola Renewables Location Navajo County AZ Coordinates 34.635651°, -110.357351° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.635651,"lon":-110.357351,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

219

Mercury in the Lake Powell ecosystem  

SciTech Connect

Flameless atomic absorption analyses of samples from Lake Powell yield the following mercury levels (in mean parts per billion): 0.01 in lake water, 30 in bottom sediments, 10 in shoreline substrates, 34 in plant leaves, 145 in plant debris, 28 in algae, 10 in crayfish, and 232 in fish muscle. Bioamplification and the association of mercury with organic matter are evident in this recently created, relatively unpolluted reservoir. Formulation of an estimated mercury budget suggests that the restriction of outflow in the impounded Colorado River leads to mercury accumulation, and that projected regional coal-fired power generation may produce sufficient amounts of mercury to augment significantly the mercury released by natural weathering.

Standiford, D.R.; Potter, L.D.; Kidd, D.E.

1973-06-01T23:59:59.000Z

220

Spirit Lake II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

II Wind Farm II Wind Farm Jump to: navigation, search Name Spirit Lake II Wind Farm Facility Spirit Lake II Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Spirit Lake School Dist Developer Spirit Lake School District Energy Purchaser Spirit Lake School District Location Spirit Lake IA Coordinates 43.411412°, -95.09914° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.411412,"lon":-95.09914,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "lake erie shore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Star Lakes and Rivers (Minnesota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Star Lakes and Rivers (Minnesota) Star Lakes and Rivers (Minnesota) Star Lakes and Rivers (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Minnesota Program Type Siting and Permitting An association organized for the purpose of addressing issues on a specific lake or river, a lake improvement district, or a lake conservation district

222

Great Lakes Energy - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Great Lakes Energy - Residential Energy Efficiency Rebate Program Great Lakes Energy - Residential Energy Efficiency Rebate Program Great Lakes Energy - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Program Info State Michigan Program Type Utility Rebate Program Rebate Amount Air-Source Heat Pumps: $250 Geothermal Heat Pumps: $500 Provider Great Lakes Energy Great Lakes Energy offers rebates to residential customers for the purchase of efficiency air-source heat pumps or geothermal heat pumps. A rebate of $250 is available for air-source heat pumps, and a $500 rebate is available for geothermal heat pumps. View the program website listed above to view program and efficiency specifics. A variety of rebates may also be available to Great Lake Energy residential

223

Mapping Fractures In The Medicine Lake Geothermal System | Open Energy  

Open Energy Info (EERE)

Fractures In The Medicine Lake Geothermal System Fractures In The Medicine Lake Geothermal System Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Mapping Fractures In The Medicine Lake Geothermal System Details Activities (1) Areas (1) Regions (0) Abstract: A major challenge to energy production in the region has been locating high-permability fracture zones in the largely impermeable volcanic host rock. An understanding of the fracture networks will be a key to harnessing geothermal resources in the Cascades Author(s): Steven Clausen, Michal Nemcok, Joseph Moore, Jeffrey Hulen, John Bartley Published: GRC, 2006 Document Number: Unavailable DOI: Unavailable Core Analysis At Medicine Lake Area (Clausen Et Al, 2006) Medicine Lake Geothermal Area Retrieved from "http://en.openei.org/w/index.php?title=Mapping_Fractures_In_The_Medicine_Lake_Geothermal_System&oldid=388927

224

National Park Service - Lake Powell, Utah | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lake Powell, Utah Lake Powell, Utah National Park Service - Lake Powell, Utah October 7, 2013 - 9:58am Addthis Photo of the Photovoltaic System at Lake Powell, Utah Lake Powell is part of Utah's Glen Canyon National Recreation Area. The Dangling Rope Marina operates by using diesel generators to supply power. They use 65,000 gallons of diesel fuel per year that has to be barged in over Lake Powell. The potential for environmental damage to the marina in the event of a fuel spill is significant, and the cost to the National Park Service (NPS) for transporting each fuel delivery is considerable. Consequently, the installation of a photovoltaic (PV) system presented many advantages. This is the largest PV system the NPS has installed with 115 kilowatts of energy being produced. A 59% improvement in energy efficiency has been

225

Lake Lahontan: Geology of Southern Carson Desert, Nevada | Open Energy  

Open Energy Info (EERE)

Lake Lahontan: Geology of Southern Carson Desert, Nevada Lake Lahontan: Geology of Southern Carson Desert, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Lake Lahontan: Geology of Southern Carson Desert, Nevada Abstract This report presents a stratigraphic study of an area of about 860 square miles in the southern part of the Carson Desert, near Fallen, Churchill County, Nev. The exposed rocks and surficial sediments range in age from early Tertiary (?) to Recent. The late Quaternary sediments and soils were especially studied: they furnish a detailed history of the fluctuations of Lake Lahontan (a huge but intermittent late Pleistocene lake) and of younger lakes, as well as a history of late Quaternary sedimentation, erosion, soil development, and climatic change that probably is

226

Iowa Lakes Superior Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Lakes Superior Wind Farm Lakes Superior Wind Farm Jump to: navigation, search Name Iowa Lakes Superior Wind Farm Facility Iowa Lakes Superior Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Iowa Lakes Electric Cooperative Developer Iowa Lakes Electric Cooperative Location West of Superior IA Coordinates 43.447756°, -94.980719° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.447756,"lon":-94.980719,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

227

New and interesting prepolymers based on the molecular dynamics computer simulation of binary systems to be utilized in the clean-up technologies of off-shore oil spills  

Science Conference Proceedings (OSTI)

New emerging technologies for the clean-up of off-shore oil spills have been reported. Several research groups are currently working on various ways to develop new urethane prepolymers that will foam upon contact with water and encapsulate the oil droplets ... Keywords: computer simulation, hydrophobic, miscibility, molecular dynamics, oil spill, urethane prepolymer

Rasha A. Azzam; Tarek M. Madkour

2008-12-01T23:59:59.000Z

228

Kilauea Iki lava lake experiment plans  

DOE Green Energy (OSTI)

Twelve experimental studies are proposed to complete field laboratory work at Kilauea Iki lava lake. Of these twelve experiments, eleven do not require the presence of melt. Some studies are designed to use proven techniques in order to expand our existing knowledge, while others are designed to test new concepts. Experiments are grouped into three main categories: geophysics, energy extraction, and drilling technology. Each experiment is described in terms of its location, purpose, background, configuration, operation, and feasibility.

Dunn, J.C.; Hills, R.G.

1981-01-01T23:59:59.000Z

229

The Lake Baikal neutrino experiment: selected results  

E-Print Network (OSTI)

We review the present status of the lake Baikal Neutrino Experiment and present selected physical results gained with the consequetive stages of the stepwise increasing detector: from NT-36 to NT-96. Results cover atmospheric muons, neutrino events, very high energy neutrinos, search for neutrino events from WIMP annihilation, search for magnetic monopoles and environmental studies. We also describe an air Cherenkov array developed for the study of angular resolution of NT-200.

BAIKAL Collaboration; V. Balkanov

2000-01-10T23:59:59.000Z

230

Energy Efficient Buildings, Salt Lake County, Utah  

SciTech Connect

Executive Summary Salt Lake County's Solar Photovoltaic Project - an unprecedented public/private partnership Salt Lake County is pleased to announce the completion of its unprecedented solar photovoltaic (PV) installation on the Calvin R. Rampton Salt Palace Convention Center. This 1.65 MW installation will be one the largest solar roof top installations in the country and will more than double the current installed solar capacity in the state of Utah. Construction is complete and the system will be operational in May 2012. The County has accomplished this project using a Power Purchase Agreement (PPA) financing model. In a PPA model a third-party solar developer will finance, develop, own, operate, and maintain the solar array. Salt Lake County will lease its roof, and purchase the power from this third-party under a long-term Power Purchase Agreement contract. In fact, this will be one of the first projects in the state of Utah to take advantage of the recent (March 2010) legislation which makes PPA models possible for projects of this type. In addition to utilizing a PPA, this solar project will employ public and private capital, Energy Efficiency and Conservation Block Grants (EECBG), and public/private subsidized bonds that are able to work together efficiently because of the recent stimulus bill. The project also makes use of recent changes to federal tax rules, and the recent re-awakening of private capital markets that make a significant public-private partnership possible. This is an extremely innovative project, and will mark the first time that all of these incentives (EECBG grants, Qualified Energy Conservation Bonds, New Markets tax credits, investment tax credits, public and private funds) have been packaged into one project. All of Salt Lake County's research documents and studies, agreements, and technical information is available to the public. In addition, the County has already shared a variety of information with the public through webinars, site tours, presentations, and written correspondence.

Barnett, Kimberly

2012-04-30T23:59:59.000Z

231

Numerical Simulation of Transitions in Boundary Layer Convective Structures in a Lake-Effect Snow Event  

Science Conference Proceedings (OSTI)

Numerical simulations are used to study transitions between boundary layer rolls and more cellular convective structures observed during a lake-effect snow event over Lake Michigan on 17 December 1983. Weak lake-effect nonroll convection was ...

Kevin A. Cooper; Mark R. Hjelmfelt; Russell G. Derickson; David A. R. Kristovich; Neil F. Laird

2000-09-01T23:59:59.000Z

232

Regional factors governing performance and sustainability of wastewater treatment plants in Honduras : Lake Yojoa Subwatershed  

E-Print Network (OSTI)

Lake Yojoa, the largest natural lake in Honduras, is currently experiencing eutrophication from overloading of nutrients, in part due to inadequate wastewater treatment throughout the Lake Yojoa Subwatershed. Some efforts ...

Walker, Kent B. (Kent Bramwell)

2011-01-01T23:59:59.000Z

233

Temporal and Spatial Variability of Great Lakes Ice Cover, 19732010  

Science Conference Proceedings (OSTI)

In this study, temporal and spatial variability of ice cover in the Great Lakes are investigated using historical satellite measurements from 1973 to 2010. The seasonal cycle of ice cover was constructed for all the lakes, including Lake St. ...

Jia Wang; Xuezhi Bai; Haoguo Hu; Anne Clites; Marie Colton; Brent Lofgren

2012-02-01T23:59:59.000Z

234

The Effect of Groundwater Inflow on Evaporation from a Saline Lake  

Science Conference Proceedings (OSTI)

A decade study of the hydrometeorology of Big Quill Lake in Saskatchewan, a saline prairie lake, has effectively used remote sensing to delineate groundwater inflow. The lake covers an area of 250 square kilometers with the groundwater seeping ...

Jeffrey M. Whiting

1984-02-01T23:59:59.000Z

235

Increasing Great LakeEffect Snowfall during the Twentieth Century: A Regional Response to Global Warming?  

Science Conference Proceedings (OSTI)

The influence of the Laurentian Great Lakes on the climate of surrounding regions is significant, especially in leeward settings where lake-effect snowfall occurs. Heavy lake-effect snow represents a potential natural hazard and plays important ...

Adam W. Burnett; Matthew E. Kirby; Henry T. Mullins; William P. Patterson

2003-11-01T23:59:59.000Z

236

Supporting Water, Ecological, and Transportation Systems in the Great Lakes Basin Ecosystem  

E-Print Network (OSTI)

8-9, 2004. Ann Arbor, Michigan. Great Lakes InformationKeystone, Colorado. Lake Michigan (MI) Lakewide ManagementOffice (GLNPO) Lake Michigan Lakewide Management Plan (LaMP)

Beck, Judy; Kamke, Sherry; Majerus, Kimberly

2007-01-01T23:59:59.000Z

237

Lake Titicaca - Physics of an Inherited Hydropower Macroproject Proposal  

E-Print Network (OSTI)

Shared almost evenly by Peru and Bolivia, Lake Titicaca is situated on an Altiplano endorheic region of the northern Andes Mountains. Rio Desaguadero is the lake only outlet. From 1908, several macro-engineers speculated on the creation of a second, completely artificial, outlet for Lake Titicaca freshwater. Here we reconsider several 20th Century macroproject proposals, with the goal of examining and enhancing this technically interesting South American 21st Century Macro-engineering inheritance.

R. Cathcart; A. Bolonkin

2007-03-19T23:59:59.000Z

238

Clear Lake Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Clear Lake Geothermal Area (Redirected from Clear Lake Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Clear Lake Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.01666667,"lon":-122.65,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

239

Soda Lake Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Soda Lake Geothermal Area Soda Lake Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Soda Lake Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (3) 9 Exploration Activities (9) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.56666667,"lon":-118.85,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

240

Clear Lake Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Clear Lake Geothermal Area Clear Lake Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Clear Lake Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.01666667,"lon":-122.65,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "lake erie shore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Soda Lake Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Soda Lake Geothermal Area (Redirected from Soda Lake Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Soda Lake Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (3) 9 Exploration Activities (9) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.56666667,"lon":-118.85,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

242

Hot Lake Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Hot Lake Geothermal Area Hot Lake Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Hot Lake Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.33333333,"lon":-118.6,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

243

White Bear Lake Conservation District (Minnesota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

White Bear Lake Conservation District (Minnesota) White Bear Lake Conservation District (Minnesota) White Bear Lake Conservation District (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Minnesota Program Type Siting and Permitting This statute establishes the White Bear Lake Conservation District, which

244

Recreational Lake and Water Quality Districts (Iowa) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recreational Lake and Water Quality Districts (Iowa) Recreational Lake and Water Quality Districts (Iowa) Recreational Lake and Water Quality Districts (Iowa) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Iowa Program Type Environmental Regulations Territory contiguous to a recreational lake may be incorporated into a

245

Lake George Park Commission: Stormwater Management (New York) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lake George Park Commission: Stormwater Management (New York) Lake George Park Commission: Stormwater Management (New York) Lake George Park Commission: Stormwater Management (New York) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State New York Program Type Environmental Regulations Provider Lake George Park Commission

246

EIS-0491: Lake Charles Liquefaction Project, Calcasieu Parish, Louisiana |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

91: Lake Charles Liquefaction Project, Calcasieu Parish, 91: Lake Charles Liquefaction Project, Calcasieu Parish, Louisiana EIS-0491: Lake Charles Liquefaction Project, Calcasieu Parish, Louisiana SUMMARY The Federal Energy Regulatory Commission (FERC) is preparing, with DOE as a cooperating agency, an EIS to analyze the potential environmental impacts of a proposal to expand an existing liquefied natural gas (LNG) import terminal in Calcasieu Parish, Louisiana, by constructing and operating natural gas liquefaction and exportation capabilities. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD March 28, 2013 EIS-0491: Supplemental Notice of Intent to Prepare an Environmental Impact Statement Lake Charles Liquefaction Project, Calcasieu Parish, Louisiana September 25, 2012

247

Natural Lakes: Drainage: Diversion: Application (Nebraska) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lakes: Drainage: Diversion: Application (Nebraska) Lakes: Drainage: Diversion: Application (Nebraska) Natural Lakes: Drainage: Diversion: Application (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Nebraska Program Type Siting and Permitting Provider Natural Resources This section provides limitations on water withdrawals and diversions from natural lakes. Any such activity requires a permit from the Department of Natural Resources

248

Data Acquisition-Manipulation At Lake City Hot Springs Area ...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Lake City Hot Springs Area (Warpinski, Et Al., 2004)...

249

Stepout-Deepening Wells At Medicine Lake Area (Warpinski, Et...  

Open Energy Info (EERE)

Page Edit History Facebook icon Twitter icon Stepout-Deepening Wells At Medicine Lake Area (Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home...

250

Thermal Waters Along The Konocti Bay Fault Zone, Lake County...  

Open Energy Info (EERE)

Thermal Waters Along The Konocti Bay Fault Zone, Lake County, California- A Re-Evaluation Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Thermal...

251

Thermal Gradient Holes At Lake City Hot Springs Area (Warpinski...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Lake City Hot Springs Area (Warpinski, Et Al., 2004) Exploration...

252

Ground Gravity Survey At Lake City Hot Springs Area (Warpinski...  

Open Energy Info (EERE)

to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Lake City Hot Springs Area (Warpinski, Et Al., 2004) Exploration Activity...

253

Ground Gravity Survey At Walker Lake Valley Area (Shoffner, Et...  

Open Energy Info (EERE)

to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Walker Lake Valley Area (Shoffner, Et Al., 2010) Exploration Activity...

254

Cedar Lake, Indiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Edit with form History Share this page on Facebook icon Twitter icon Cedar Lake, Indiana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

255

Shamrock Lakes, Indiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

with form History Share this page on Facebook icon Twitter icon Shamrock Lakes, Indiana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

256

Bass Lake, Indiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Edit with form History Share this page on Facebook icon Twitter icon Bass Lake, Indiana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

257

Southwestern Petroleum Corporation (SWEPCO) and the City of Lake...  

NLE Websites -- All DOE Office Websites (Extended Search)

resources Small business resources State and local government resources Southwestern Petroleum Corporation (SWEPCO) and the City of Lake Alfred, Florida: SPP Success Story SWEPCO...

258

Exploration And Discovery In Yellowstone Lake- Results From High...  

Open Energy Info (EERE)

volcanic, and sedimentary processes. Detailed bathymetric, seismic reflection, and magnetic evidence reveals that rhyolitic lava flows underlie much of Yellowstone Lake and...

259

Geographic Information System At Fish Lake Valley Area (Deymonaz...  

Open Energy Info (EERE)

Area (Deymonaz, Et Al., 2008) Exploration Activity Details Location Fish Lake Valley Area Exploration Technique Geographic Information System Activity Date Usefulness useful...

260

Geothermal Literature Review At Fish Lake Valley Area (Deymonaz...  

Open Energy Info (EERE)

Search Page Edit History Facebook icon Twitter icon Geothermal Literature Review At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL...

Note: This page contains sample records for the topic "lake erie shore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Compound and Elemental Analysis At Fish Lake Valley Area (Deymonaz...  

Open Energy Info (EERE)

ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Exploration Activity Details Location Fish...

262

Hyperspectral Imaging At Fish Lake Valley Area (Littlefield ...  

Open Energy Info (EERE)

Hyperspectral Imaging At Fish Lake Valley Area (Littlefield & Calvin, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hyperspectral Imaging...

263

Heat flow studies, Coso Geothermal Area, China Lake, California...  

Open Energy Info (EERE)

studies, Coso Geothermal Area, China Lake, California. Technical report Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Heat flow studies, Coso Geothermal...

264

DOE - Office of Legacy Management -- Ambrosia Lake Mill Site...  

Office of Legacy Management (LM)

2009 Ambrosia Lake, New Mexico Long-Term Surveillance and Maintenance Plan (LTSP) and NRC Concurrence: Acceptance of Final Long Term Surveillance Plan (LTSP) for the Ambrosia...

265

Modeling-Computer Simulations At Fish Lake Valley Area (Deymonaz...  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit History Facebook icon Twitter icon Modeling-Computer Simulations At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation,...

266

Lake Region Electric Cooperative- Commercial Energy Efficiency Grant Program  

Energy.gov (U.S. Department of Energy (DOE))

Lake Region Electric Cooperative (LREC) offers grants to commercial customers for electric energy efficiency improvements, audits, and engineering and design assistance for new and existing...

267

PADD IV PADD II lakes PADD V - PADD II - inland  

U.S. Energy Information Administration (EIA)

228 U.S. Energy Information Administration Annual Energy Outlook 2013 Regional maps Source Maritime Canada Caribbean PADD V - other PADD II lakes PADD V -

268

Lake Country Wind Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Country Wind Energy LLC Jump to: navigation, search Name Lake Country Wind Energy LLC Place Minnesota Zip 56209 Sector Renewable Energy, Wind energy Product Minnesota-based wind...

269

Alturas Lake Creek Flow Augmentation, 1986 Final Report.  

DOE Green Energy (OSTI)

Two alternatives were outlined in the first statement of work as possibilities for flow augmentation in Alturas Lake Creek. The alternatives were to raise the level of Alturas Lake and to acquire necessary water rights in Alturas Lake Creek. The first alternative considered in the study was raising the water level at Alturas Lake with a low head dam. Raising Alturas Lake, appeared feasible in that it provided the necessary fish flows in Alturas Lake Creek. However, raising the level of Alturas Lake has adverse effects to other resources and forced pursuing the second alternative as defined in this report. Some of these effects included: flooding Smokey Bear boat ramp, inundation of recreation beaches for extended periods, flooding of the campground and some of the road system, potentially contaminating the quality of lake water from flooded toilet vaults, and destroying the conifer canopy around the lake. Maintenance and operation costs of the dam, along with the need to have a watermaster to distribute flows over the course of the irrigation season, raised additional concerns that detracted from this alternative. The second alternative considered was the acquisition of water rights. This led to an appraisal of the water right values which was completed by BPA with a comparison appraisal done by the Forest Service.

Andrews, John; Lloyd, John; Webster, Bert (Sawtooth National Forest, Twin Falls, ID)

1987-04-01T23:59:59.000Z

270

Price of Lake Charles, LA Liquefied Natural Gas Total Imports...  

Annual Energy Outlook 2012 (EIA)

Liquefied Natural Gas Total Imports (Dollars per Thousand Cubic Feet) Price of Lake Charles, LA Liquefied Natural Gas Total Imports (Dollars per Thousand Cubic Feet) Decade Year-0...

271

Big Lake, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Congressional Districts by Places. Retrieved from "http:en.openei.orgwindex.php?titleBigLake,Texas&oldid227762" Categories: Places Stubs Cities What links here Related...

272

Big Lake, Missouri: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Congressional Districts by Places. Retrieved from "http:en.openei.orgwindex.php?titleBigLake,Missouri&oldid227761" Categories: Places Stubs Cities What links here Related...

273

Big Lake, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Geographic Relationship Tables Retrieved from "http:en.openei.orgwindex.php?titleBigLake,Alaska&oldid227759" Categories: Places Stubs Cities What links here Related...

274

Big Lake, Washington: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Bureau 2005 Place to 2006 CBSA Retrieved from "http:en.openei.orgwindex.php?titleBigLake,Washington&oldid227763" Categories: Places Stubs Cities What links here Related...

275

EA-1937: Pacific Direct Intertie Upgrade Project, Lake, Jefferson...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lake, Jefferson, Crook, Deschutes, and Wasco Co, OR SUMMARY This project would replace aging equipment at BPA's Celilo converter station and to upgrade equipment on the...

276

Magnetotellurics At Soda Lake Area (Combs 2006) | Open Energy...  

Open Energy Info (EERE)

Lake Area Exploration Technique Magnetotellurics Activity Date Usefulness not indicated DOE-funding Unknown Notes "EM sounding, MT, CSAMT, dipole-dipole resistivity; reservoir...

277

Regional Gravity Survey of the Northern Great Salt Lake Desert...  

Open Energy Info (EERE)

of the Northern Great Salt Lake Desert and Adjacent Areas in Utah, Nevada, and Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Regional Gravity...

278

Core Analysis At Fish Lake Valley Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Analysis At Fish Lake Valley Area (DOE GTP) Exploration...

279

Flow Test At Fish Lake Valley Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Fish Lake Valley Area (DOE GTP) Exploration Activity...

280

Reflection Survey At Fish Lake Valley Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Reflection Survey At Fish Lake Valley Area (DOE GTP) Exploration...

Note: This page contains sample records for the topic "lake erie shore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Field Mapping At Fish Lake Valley Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Fish Lake Valley Area (DOE GTP) Exploration...

282

Flow Test At Soda Lake Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Soda Lake Area (DOE GTP) Exploration Activity Details Location Soda Lake...

283

Development Wells At Soda Lake Area (DOE GTP) | Open Energy Informatio...  

Open Energy Info (EERE)

Soda Lake Area (DOE GTP) Exploration Activity Details Location Soda Lake Area Exploration Technique Development Wells Activity Date Usefulness not indicated DOE-funding Unknown...

284

InSAR At Medicine Lake Area (Poland, Et Al., 2006) | Open Energy...  

Open Energy Info (EERE)

Medicine Lake Area (Poland, Et Al., 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: InSAR At Medicine Lake Area (Poland, Et Al., 2006)...

285

Wall Lake Municipal Utilities Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wall Lake Municipal Utilities Wind Farm Wall Lake Municipal Utilities Wind Farm Jump to: navigation, search Name Wall Lake Municipal Utilities Wind Farm Facility Wall Lake Municipal Utilities Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Wall Lake Municipal Utilities Developer Wall Lake Municipal Utilities Energy Purchaser Wall Lake Municipal Utilities Location Wall Lake IA Coordinates 42.281965°, -95.094098° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.281965,"lon":-95.094098,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

286

Further Studies of a Lake Breeze Part I: Observational Study  

Science Conference Proceedings (OSTI)

The three-dimensional structure and behavior of a lake-land breeze circulation system induced by Lake Ontario for a selected 24 h period is presented. The structure is determined from observations made during the International Field Year of the ...

Mariano A. Estoque

1981-03-01T23:59:59.000Z

287

Further Studies of a Lake Breeze Part ll: Theoretical Study  

Science Conference Proceedings (OSTI)

The three-dimensional structure and behavior of the lake-land breeze circulation which is induced by Lake Ontario is studied by means of a numerical model. The model is a primitive equation model which incorporates the effects of orography and ...

Mariano A. Estoque; James M. Gross

1981-03-01T23:59:59.000Z

288

Yukon Southern Lakes Nest Box Project Report, 2000  

E-Print Network (OSTI)

this report with permission of the photographers and the credited photographer retains copyright on all photos. Reference this report as: Eckert, C.D., Rousseau, A., and T. Davey. 2001. Yukon Southern Lakes Nest Box Project Report, 2000. Yukon Bird Club & Yukon Conservation Society. Whitehorse, Yukon. Yukon Southern Lakes Nest Box Project ii CONTENTS 1. EXECUTIVE SUMMARY...................................................................................................................................... 1 2.

Cameron Eckert Amlie; Cameron D. Eckert; Tanis Davey; Tanis Davey; Yukon Fish; Wildlife Enhancement; Trust Fund; Amlie Rousseau; Amlie Rousseau; Cameron Eckert; Cameron Eckert; Jeanette Mccrie; Heidi Hehn

2000-01-01T23:59:59.000Z

289

The Potential Impacts of Climate Change on the Great Lakes  

Science Conference Proceedings (OSTI)

Global climate change could have a significant impact on the Great Lakes. A number of studies of the potential effects of climate change on the Great Lakes were commissioned by the U.S. Environmental Protection Agency, using common scenarios of ...

Joel B. Smith

1991-01-01T23:59:59.000Z

290

Determining Photosynthesis Rate Constants in Lake Harapan Penang  

Science Conference Proceedings (OSTI)

Lake Harapan was created in 1990 to serve as a runoff detention pond in Universiti Sains Malaysia USM. The lake is eutrophic with occasional high levels of 300 ug/l chl a, with dissolved oxygen reaching 12 - 16 mg/l in the late afternoon and near anaerobic ... Keywords: Photosynthesis, Rate Constants, Dissolved Oxygen

Teh Su Yean; Koh Hock Lye; Ahmad Izani Md Ismail; Mashhor Mansor

2008-05-01T23:59:59.000Z

291

Energy Efficient Buildings, Salt Lake County, Utah  

DOE Green Energy (OSTI)

Salt Lake County is pleased to announce the completion of its unprecedented solar photovoltaic (PV) installation on the Calvin R. Rampton Salt Palace Convention Center. This 1.65 MW installation will be one the largest solar roof top installations in the country and will more than double the current installed solar capacity in the state of Utah. Construction is complete and the system will be operational in May 2012. The County has accomplished this project using a Power Purchase Agreement (PPA) financing model. In a PPA model a third-party solar developer will finance, develop, own, operate, and maintain the solar array. Salt Lake County will lease its roof, and purchase the power from this third-party under a long-term Power Purchase Agreement contract. In fact, this will be one of the first projects in the state of Utah to take advantage of the recent (March 2010) legislation which makes PPA models possible for projects of this type. In addition to utilizing a PPA, this solar project will employ public and private capital, Energy Efficiency and Conservation Block Grants (EECBG), and public/private subsidized bonds that are able to work together efficiently because of the recent stimulus bill. The project also makes use of recent changes to federal tax rules, and the recent re-awakening of private capital markets that make a significant public-private partnership possible. This is an extremely innovative project, and will mark the first time that all of these incentives (EECBG grants, Qualified Energy Conservation Bonds, New Markets tax credits, investment tax credits, public and private funds) have been packaged into one project. All of Salt Lake County's research documents and studies, agreements, and technical information is available to the public. In addition, the County has already shared a variety of information with the public through webinars, site tours, presentations, and written correspondence.

Barnett, Kimberly

2012-04-30T23:59:59.000Z

292

Lakes and Rivers Improvement Act (Ontario, Canada) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lakes and Rivers Improvement Act (Ontario, Canada) Lakes and Rivers Improvement Act (Ontario, Canada) Lakes and Rivers Improvement Act (Ontario, Canada) < Back Eligibility Construction Developer Investor-Owned Utility Municipal/Public Utility Utility Savings Category Water Buying & Making Electricity Home Weatherization Program Info State Ontario Program Type Environmental Regulations Safety and Operational Guidelines Siting and Permitting Provider Ontario Ministry of Natural Resources The Lakes and Rivers Improvement Act proscribes the management, protection, preservation and use of the waters of the lakes and rivers of Ontario and the land under them. The Act also details regulations for the protection of persons and property by ensuring that dams are suitably located, constructed, operated and maintained and are of an appropriate nature. The

293

Iowa Lakes Lakota Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Iowa Lakes Lakota Wind Farm Iowa Lakes Lakota Wind Farm Facility Iowa Lakes Lakota Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Iowa Lakes Electric Cooperative Developer Iowa Lakes Electric Cooperative Location West of Lakota IA Coordinates 43.377021°, -94.139493° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.377021,"lon":-94.139493,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

294

Soda Lake II Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Soda Lake II Geothermal Facility Soda Lake II Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Soda Lake II Geothermal Facility General Information Name Soda Lake II Geothermal Facility Facility Soda Lake II Sector Geothermal energy Location Information Location Fallon, Nevada Coordinates 39.4727622°, -118.778963° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.4727622,"lon":-118.778963,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

295

Lake Worth Utilities - Residential Solar Water Heating Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lake Worth Utilities - Residential Solar Water Heating Rebate Lake Worth Utilities - Residential Solar Water Heating Rebate Program Lake Worth Utilities - Residential Solar Water Heating Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate $450 Rebates must not exceed purchase price Program Info State Florida Program Type Utility Rebate Program Rebate Amount $450 per system Provider City of Lake Worth Utilities The City of Lake Worth Utilities (CLWU), in conjunction with Florida Municipal Power Agency, offers rebates to customers who purchase and install a solar water heating system for residential use. A rebate of $450 per system is available to eligible applicants. Eligible equipment must be located on customer premises within the CLWU service territory, and must

296

Lake Region Electric Cooperative - Residential Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lake Region Electric Cooperative - Residential Energy Efficiency Lake Region Electric Cooperative - Residential Energy Efficiency Rebate Program Lake Region Electric Cooperative - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Maximum Rebate Limit one rebate per appliance Geothermal Heat Pumps: 20 tons Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount Refrigerator: $75 with recycling of old unit Freezer: $75 with recycling of old unit Ductless Air-Source Heat Pump: $300 Air-Source Heat Pump: $330 - $630 Central AC: $50 - $200 Geothermal Heat Pump: $100 - $400/ton CFLs: Free Recycling Provider Lake Region Electric Cooperative Lake Region Electric Cooperative (LREC) offers a variety of rebates for

297

Aeromagnetic Survey At Clear Lake Area (Skokan, 1993) | Open Energy  

Open Energy Info (EERE)

Clear Lake Area (Skokan, 1993) Clear Lake Area (Skokan, 1993) Exploration Activity Details Location Clear Lake Area Exploration Technique Aeromagnetic Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes USGS aeromagnetic data (Rapolla and Keller, 1984) were acquired at an elevation of 4500 feet and flown with one-mile spacings. These data were dominated by patterns of highs that coincide with serpentinite outcrops. Serpentinite is one component of the complex Franciscan melange. Fracturing within the Franciscan provides the porosity needed for collection of hot water characteristic of the Geysers Field. The Clear Lake Volcanics overlie the Franciscan formation. These in turn, are overlain by the Great Valley Sequence. The susceptibilities of both the Clear Lake Volcanics and Great

298

National Science Foundation - Lake Hoare, Antarctica | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Science Foundation - Lake Hoare, Antarctica National Science Foundation - Lake Hoare, Antarctica National Science Foundation - Lake Hoare, Antarctica October 7, 2013 - 9:57am Addthis Photo of a Photovoltaic System Located at Lake Hoare, Antarctica Lake Hoare is a scientific research site located in Antarctica. Research at this large field site is conducted all summer and requires an energy source that does not cause pollution or engine noise. The photovoltaic system (PV) that was installed at this site is 1.2 kW PV and was one of 10 PV systems purchased for use in Antarctica. Each system has eight 55 W panels that use a manual tracking system to optimize performance and provide power to the site. The system includes 1,000 amp-hours of deep-cycled gel batteries. The site operates all summer using only PV energy except for a three-day cloudy period when scientists

299

Summer Lake Hot Springs Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Summer Lake Hot Springs Space Heating Low Temperature Geothermal Facility Summer Lake Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Summer Lake Hot Springs Space Heating Low Temperature Geothermal Facility Facility Summer Lake Hot Springs Sector Geothermal energy Type Space Heating Location Summer Lake, Oregon Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

300

Heat flow and microearthquake studies, Coso Geothermal Area, China Lake,  

Open Energy Info (EERE)

and microearthquake studies, Coso Geothermal Area, China Lake, and microearthquake studies, Coso Geothermal Area, China Lake, California. Final report Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Book: Heat flow and microearthquake studies, Coso Geothermal Area, China Lake, California. Final report Details Activities (2) Areas (1) Regions (0) Abstract: The present research effort at the Coso Geothermal Area located on the China Lake Naval Weapons Center, China Lake, California, was concerned with: (1) heat flow studies and (2) microearthquake studies associated with the geothermal phenomena in the Coso Hot Springs area. The sites for ten heat flow boreholes were located primarily using the available seismic ground noise and electrical resistivity data. Difficulty was encountered in the drilling of all of the holes due to altered, porous,

Note: This page contains sample records for the topic "lake erie shore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Soda Lake I Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Soda Lake I Geothermal Facility Soda Lake I Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Soda Lake I Geothermal Facility General Information Name Soda Lake I Geothermal Facility Facility Soda Lake I Sector Geothermal energy Location Information Location Fallon, Nevada Coordinates 39.4727622°, -118.778963° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.4727622,"lon":-118.778963,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

302

Blue Lake Plant Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Blue Lake Plant Biomass Facility Blue Lake Plant Biomass Facility Jump to: navigation, search Name Blue Lake Plant Biomass Facility Facility Blue Lake Plant Sector Biomass Location Blue Lake, California Coordinates 40.8829072°, -123.9839488° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.8829072,"lon":-123.9839488,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

303

Great Lakes Surface Environmental Analysis | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Great Lakes Surface Environmental Analysis Great Lakes Surface Environmental Analysis Agriculture Community Menu DATA APPS EVENTS DEVELOPER STATISTICS COLLABORATE ABOUT Agriculture You are here Data.gov » Communities » Agriculture » Data Great Lakes Surface Environmental Analysis Dataset Summary Description The Great Lakes Surface Environmental Analysis (GLSEA2) is a digital map of the Great Lakes surface water temperature and ice cover which is produced daily at the NOAA Great Lakes Environmental Research Laboratory (GLERL) in Ann Arbor, Michigan through the NOAA CoastWatch program. The GLSEA is stored as a 1024x1024 pixel map in PNG or ASCII format, suitable for viewing on PCs and workstations with readily available software. The lake surface temperatures are derived from NOAA polar-orbiting satellite imagery obtained through the Great Lakes CoastWatch program. The addition of ice cover information was implemented in early 1999, using data provided by the National Ice Center (NIC). Lake surface temperatures are updated daily with information from the cloud-free portions of the previous day's satellite imagery. If no imagery is available, a smoothing algorithm is applied to the previous day's map. Ice information will then be added, using the most recent Great Lakes Ice Analysis produced by NIC, currently daily during the ice season. GLERL is currently receiving a product suite of an average of 108 enhanced digital images including satellite-derived surface temperature (Fig. 1.1), visible and near-infrared reflectance, brightness temperatures, cloud masks, and satellite/solar zenith angle data from the NOAA/AVHRR (Advanced Very High Resolution Radiometer).

304

Assessment of Biomass Energy Opportunities for the Red Lake Band of Chippewa Indians  

Science Conference Proceedings (OSTI)

Assessment of biomass energy and biobased product manufacturing opportunities for the Red Lake Tribe.

Scott Haase (McNeil Technologies, Inc)

2005-09-30T23:59:59.000Z

305

Supporting Water, Ecological, and Transportation Systems in the Great Lakes Basin Ecosystem  

E-Print Network (OSTI)

office. Participants included transportation and environmental professionals involved with stormwater managementEnvironmental Protection Agency (USEPA), Great Lakes National Program Office (GLNPO) Lake Michigan Lakewide ManagementEnvironmental Protection Agency (USEPA), Great Lakes National Program Office (GLNPO) Lake Michigan Lakewide Management

Beck, Judy; Kamke, Sherry; Majerus, Kimberly

2007-01-01T23:59:59.000Z

306

Evaluation of a Cooling Lake Fishery, Volume 4: Fish Food Resource Studies  

Science Conference Proceedings (OSTI)

This volume documents the assessment of benthic communities, zooplankton, and algae in Lake Sangchris (a cooling lake) and in Lake Shelbyville (a nearby ambient flood control reservoir). Samples of each group of organisms were collected in each lake to obtain information on changes in species composition, relative abundance, density, biomass, and species diversity. Data were compiled and analyzed statistically.

1980-07-01T23:59:59.000Z

307

Limnol. Oceanogr., 47(4), 2002, 12101216 2002, by the American Society of Limnology and Oceanography, Inc.  

E-Print Network (OSTI)

an abandoned uranium mine located near the southern shore of the lake, several research projects have been

Aeschbach-Hertig, Werner

308

Alternative Fuels Data Center: Salt Lake City Fuels Vehicles With Natural  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Salt Lake City Fuels Salt Lake City Fuels Vehicles With Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Salt Lake City Fuels Vehicles With Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Salt Lake City Fuels Vehicles With Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Salt Lake City Fuels Vehicles With Natural Gas on Google Bookmark Alternative Fuels Data Center: Salt Lake City Fuels Vehicles With Natural Gas on Delicious Rank Alternative Fuels Data Center: Salt Lake City Fuels Vehicles With Natural Gas on Digg Find More places to share Alternative Fuels Data Center: Salt Lake City Fuels Vehicles With Natural Gas on AddThis.com... May 14, 2011 Salt Lake City Fuels Vehicles With Natural Gas W atch how Salt Lake City fuels vehicles with liquefied and compressed

309

Lake Roosevelt Fisheries and Limnological Research : 1996 Annual Report.  

DOE Green Energy (OSTI)

The Lake Roosevelt Monitoring/Data Collection Program resulted from a merger between the Lake Roosevelt Monitoring Program and the Lake Roosevelt Data Collection Project. This project will model biological responses to reservoir operations, evaluate the effects of releasing hatchery origin kokanee salmon and rainbow trout on the fishery, and evaluate the success of various stocking strategies. In 1996, limnological, reservoir operation, zooplankton, and tagging data were collected. Mean reservoir elevation, storage volume and water retention time were reduced in 1996 relative to the last five years. In 1996, Lake Roosevelt reached a yearly low of 1,227 feet above mean sea level in April, a yearly high of 1,289 feet in July, and a mean yearly reservoir elevation of 1,271.4 feet. Mean monthly water retention times in Lake Roosevelt during 1996 ranged from 15.7 days in May to 49.2 days in October. Average zooplankton densities and biomass were lower in 1996 than 1995. Daphnia spp. and total zooplankton densities peaked during the summer, whereas minimum densities occurred during the spring. Approximately 300,000 kokanee salmon and 400,000 rainbow trout were released into Lake Roosevelt in 1996. The authors estimated 195,628 angler trips to Lake Roosevelt during 1996 with an economic value of $7,629,492.

Cichosz, Thomas A.; Underwood, Keith D.; Shields, John; Scholz, Allan; Tilson, Mary Beth

1997-05-01T23:59:59.000Z

310

Lake Roosevelt Fisheries Evaluation Program; Limnological and Fisheries Monitoring, Annual Report 2000.  

DOE Green Energy (OSTI)

A slightly dryer than normal year yielded flows in Lake Roosevelt that were essentially equal to the past ten year average. Annual mean inflow and outflow were 3,160.3 m3/s and 3,063.4 m3/s respectively. Mean reservoir elevation was 387.2 m above sea level at the Grand Coulee Dam forebay. The forebay elevation was below the mean elevation for a total of 168 days. During the first half of the 2000 forebay elevation changed at a rate of 0.121 m/d and during the last half changed at a rate of 0.208 m/d. The higher rate of elevation change earlier in the year is due to the drawdown to accommodate spring runoff. Mean annual water retention time was 40 days. Annual mean total dissolved gas was 108%. Total dissolved gas was greatest at upriver locations (110% = US/Canada Border annual mean) and decreased moving toward Grand Coulee Dam (106% = Grand Coulee Dam Forebay annual mean). Total dissolved gas was greatest in May (122% reservoir wide monthly mean). Gas bubble trauma was observed in 16 fish primarily largescale suckers and was low in severity. Reservoir wide mean temperatures were greatest in August (19.5 C) and lowest in January (5.5 C). The Spokane River and Sanpoil River Arms experienced higher temperatures than the mainstem reservoir. Brief stratification was observed at the Sanpoil River shore location in July. Warm water temperatures in the Spokane Arm contributed to low dissolved oxygen concentrations in August (2.6 mg/L at 33 m). However, decomposition of summer algal biomass was likely the main cause of depressed dissolved oxygen concentrations. Otherwise, dissolved oxygen profiles were relatively uniform throughout the water column across other sampling locations. Annual mean Secchi depth throughout the reservoir was 5.7 m. Nutrient concentrations were generally low, however, annual mean total phosphorus (0.016 mg/L) was in the mesotrophic range. Annual mean total nitrogen was in the meso-oligotrophic range. Total nitrogen to total phosphorus ratios were large (31:1 annual mean) likely indicating phosphorus limitations to phytoplankton.

Lee, Chuck; Scofield, Ben; Pavlik, Deanne

2003-03-01T23:59:59.000Z

311

Evaluation of a Cooling Lake Fishery, Volume 3: Fish Population Studies  

Science Conference Proceedings (OSTI)

Surveys were conducted in Lake Sangchris, a cooling lake, and Lake Shelbyville, a nearby flood control reservoir, to compare the size and composition of the fish populations and to determine the effects, if any, of the thermal discharge from the power plant on the fish community. Quantitative samples of fishes were collected (by electrofishing, gillnetting, and seining) bimonthly from Lake Sangchris and quarterly from Lake Shelbyville. Preferred temperatures and movements of fishes were studied by radiot...

1980-07-01T23:59:59.000Z

312

Lake Worth Utilities - Energy Conservation Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lake Worth Utilities - Energy Conservation Rebate Program Lake Worth Utilities - Energy Conservation Rebate Program Lake Worth Utilities - Energy Conservation Rebate Program < Back Eligibility Commercial Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Heat Pumps Commercial Lighting Lighting Maximum Rebate Limit one of each type of equipment per customer account Program Info State Florida Program Type Utility Rebate Program Rebate Amount Residential Energy Savings Kit: Free AC/Heat Pump: $250 Clothes Washer: $100 Dishwasher: $75 Freezer: $100 Refrigerator: $100 Programmable Thermostat: $25 Room AC: $100 Insulation Upgrade: up to $300 Commercial Commercial Lighting: up to $1,000 Insulation Upgrade: up to $1,000

313

Mercury Vapor At Medicine Lake Area (Kooten, 1987) | Open Energy  

Open Energy Info (EERE)

Kooten, 1987) Kooten, 1987) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Medicine Lake Area (Kooten, 1987) Exploration Activity Details Location Medicine Lake Area Exploration Technique Mercury Vapor Activity Date Usefulness could be useful with more improvements DOE-funding Unknown References Gerald K. Van Kooten (1987) Geothermal Exploration Using Surface Mercury Geochemistry Retrieved from "http://en.openei.org/w/index.php?title=Mercury_Vapor_At_Medicine_Lake_Area_(Kooten,_1987)&oldid=386431" Category: Exploration Activities What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation:

314

THE OAK RIDGE RESERVATION, BIODIVERSITY, AND THE COMMON GROUND...  

NLE Websites -- All DOE Office Websites (Extended Search)

Large marshy areas and margins of large lakes THREATS TO SURVIVAL: Loss of wetland habitats and development along lake and reservoir shores ORR CONSERVATION...

315

Comparative analysis of discharges into Lake Michigan, Phase I - Southern Lake Michigan.  

SciTech Connect

BP Products North America Inc. (BP) owns and operates a petroleum refinery located on approximately 1,700 acres in Whiting, East Chicago, and Hammond, Indiana, near the southern tip of Lake Michigan. BP provided funding to Purdue University-Calumet Water Institute (Purdue) and Argonne National Laboratory (Argonne) to conduct studies related to wastewater treatment and discharges. Purdue and Argonne are working jointly to identify and characterize technologies that BP could use to meet the previous discharge permit limits for total suspended solids (TSS) and ammonia after refinery modernization. In addition to the technology characterization work, Argonne conducted a separate project task, which is the subject of this report. In Phase I of a two-part study, Argonne estimated the current levels of discharge to southern Lake Michigan from significant point and nonpoint sources in Illinois, Indiana, and portions of Michigan. The study does not consider all of the chemicals that are discharged. Rather, it is narrowly focused on a selected group of pollutants, referred to as the 'target pollutants'. These include: TSS, ammonia, total and hexavalent chromium, mercury, vanadium, and selenium. In Phase II of the study, Argonne will expand the analysis to cover the entire Lake Michigan drainage basin.

Veil, J. A.; Elcock, D.; Gasper, J. R.; Environmental Science Division

2008-06-30T23:59:59.000Z

316

Mineralogy and geochemistry of Mariano Lake uranium deposit, Smith Lake district  

Science Conference Proceedings (OSTI)

The Mariano Lake uranium deposit is located on the west side of the Smith Lake district in the Grants mineral belt. Mineralization is restricted to a basal arkosic sandstone of the Brushy Basin Member of the Morrison Formation (Upper Jrassic). This sandstone is equivalent to the Poison Canyon sandstone of the Ambrosia Lake district and contains a series of paleochannels that have been mineralized. The ore displays a roll-type geometry and is located at an iron-sulfur redox interface. The deposit is chemically different from other deposits of the grants mineral belt. It is characterized by low total carbon dioxide, calcium, molybdenum, and selenium, whereas sulfur and vanadium are enriched. Arsenic and zinc exhibit regular zoning patterns across the deposit. The deposit contains an ubiquitous assemblage of pyrite, kaolinite, chlorite, illite, and illite-montmorillonite associated with vanadiferous ore mixed with organic carbon. No primary uranium minerals have been identified. Gypsum (variety selenite) is present, but calcite is absent. The age of mineralization is unknown. The ore has been remobilized, perhaps more than once, and mineralization may have occurred during mid-Cretaceous, Laramide, or post-Laramide time. Based on existing data, polygenetic models are as reasonable as a single stage of remobilization.

Place, J. (Gulf Oil Corp., Casper, WY); Della Valle, R.S.; Brookins, D.G.

1980-01-01T23:59:59.000Z

317

Comparative analysis of discharges into Lake Michigan, Phase I - Southern Lake Michigan.  

SciTech Connect

BP Products North America Inc. (BP) owns and operates a petroleum refinery located on approximately 1,700 acres in Whiting, East Chicago, and Hammond, Indiana, near the southern tip of Lake Michigan. BP provided funding to Purdue University-Calumet Water Institute (Purdue) and Argonne National Laboratory (Argonne) to conduct studies related to wastewater treatment and discharges. Purdue and Argonne are working jointly to identify and characterize technologies that BP could use to meet the previous discharge permit limits for total suspended solids (TSS) and ammonia after refinery modernization. In addition to the technology characterization work, Argonne conducted a separate project task, which is the subject of this report. In Phase I of a two-part study, Argonne estimated the current levels of discharge to southern Lake Michigan from significant point and nonpoint sources in Illinois, Indiana, and portions of Michigan. The study does not consider all of the chemicals that are discharged. Rather, it is narrowly focused on a selected group of pollutants, referred to as the 'target pollutants'. These include: TSS, ammonia, total and hexavalent chromium, mercury, vanadium, and selenium. In Phase II of the study, Argonne will expand the analysis to cover the entire Lake Michigan drainage basin.

Veil, J. A.; Elcock, D.; Gasper, J. R.; Environmental Science Division

2008-06-30T23:59:59.000Z

318

Great Lakes Energy Coop | Open Energy Information  

Open Energy Info (EERE)

Energy Coop Energy Coop Jump to: navigation, search Name Great Lakes Energy Coop Place Michigan Utility Id 38084 Utility Location Yes Ownership C NERC Location MRO NERC RFC Yes Operates Generating Plant Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Alternative - Residential Residential Commercial and Industrial Loads Automated Power Monitoring Commercial Commercial and Industrial Loads Automated Power Monitoring - 200kW Commercial Commercial and industrial Loads Automated Power Monitoring Industrial Controlled Heating Commercial Controlled Water Heater - Opt 1 Commercial

319

Crystal Lake II | Open Energy Information  

Open Energy Info (EERE)

II II Facility Crystal Lake II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Location Hancock/Winnebago Counties IA Coordinates 43.16151°, -93.855786° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.16151,"lon":-93.855786,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

320

Lake Country Power | Open Energy Information  

Open Energy Info (EERE)

Power Power Jump to: navigation, search Name Lake Country Power Place Minnesota Utility Id 10697 Utility Location Yes Ownership C NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cycled/Interruptible Air Conditioning Cycled Air (metered) Residential Cycled/Interruptible Air Conditioning Cycled Air (unmetered) Residential Heat Pumps Air-Source if Cycled Residential Heat Pumps Duel Fuel Residential Heat Pumps Ground Source Residential Residential Service Residential Space Heating Duel Fuel Residential

Note: This page contains sample records for the topic "lake erie shore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Lake Effect Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Effect Energy LLC Effect Energy LLC Jump to: navigation, search Name Lake Effect Energy LLC Place Buffalo, New York Sector Wind energy Product Wind Project Developer in New York State. Coordinates 42.88544°, -78.878464° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.88544,"lon":-78.878464,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

322

Crystal Lake III | Open Energy Information  

Open Energy Info (EERE)

III III Facility Crystal Lake III Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Location Hancock/Winnebago Counties IA Coordinates 43.304401°, -93.824029° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.304401,"lon":-93.824029,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

323

Meadow Lake Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind Farm Wind Farm Facility Meadow Lake Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Horizon Wind Energy Developer EDP Renewables Location Brookston IN Coordinates 40.601111°, -86.864167° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.601111,"lon":-86.864167,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

324

Dry Lake II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Dry Lake II Wind Farm Dry Lake II Wind Farm Jump to: navigation, search Name Dry Lake II Wind Farm Facility Dry Lake II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Iberdrola Renewables Developer Iberdrola Renewables Energy Purchaser Salt River Project Location Northwest of Snowflake AZ Coordinates 34.635651°, -110.357351° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.635651,"lon":-110.357351,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

325

Mallard Lake Electric Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Mallard Lake Electric Biomass Facility Mallard Lake Electric Biomass Facility Jump to: navigation, search Name Mallard Lake Electric Biomass Facility Facility Mallard Lake Electric Sector Biomass Facility Type Landfill Gas Location Du Page County, Illinois Coordinates 41.8243831°, -88.0900762° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.8243831,"lon":-88.0900762,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

326

NPP Tundra: Toolik Lake, Alaska [U.S.A.]  

NLE Websites -- All DOE Office Websites (Extended Search)

Toolik Lake, Alaska, 1982 Toolik Lake, Alaska, 1982 Data Citation Cite this data set as follows: Shaver, G. R. 2001. NPP Tundra: Toolik Lake, Alaska, 1982. Data set. Available on-line [http://www.daac.ornl.gov] from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A. Description Productivity of four contrasting vegetation types was studied during 1982 near Toolik Lake, Alaska, U.S.A. Above-ground biomass and below-ground stem/ rhizome biomass were measured on three occasions during the growing season; for (1) a "tussock" tundra containing graminoids, deciduous shrubs and evergreen shrubs, (2) a "shrub" tundra dominated by deciduous willow shrubs, (3) a "heath" tundra of evergreen shrubs, and (4) a "wet" tundra

327

Crystal Lake - Clipper (09) Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Lake - Clipper (09) Wind Farm Lake - Clipper (09) Wind Farm Jump to: navigation, search Name Crystal Lake - Clipper (09) Wind Farm Facility Crystal Lake - Clipper (09) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Location IA Coordinates 41.8780025°, -93.097702° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.8780025,"lon":-93.097702,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

328

Obama Administration and Great Lakes States Announce Agreement to Spur  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Great Lakes States Announce Agreement to and Great Lakes States Announce Agreement to Spur Development of Offshore Wind Projects Obama Administration and Great Lakes States Announce Agreement to Spur Development of Offshore Wind Projects March 30, 2012 - 12:00pm Addthis Washington, D.C. - As part of President Obama's all of the above approach to energy, the Obama Administration today joined with the governors of Illinois, Michigan, Minnesota, New York and Pennsylvania to announce the signing of a Memorandum of Understanding (MOU) that will streamline the efficient and responsible development of offshore wind resources in the Great Lakes. This effort underscores the President's commitment to American made energy, increasing energy independence, and creating jobs. "President Obama is focused on leveraging American energy sources,

329

Pierre's Prototype for Wind and Solar - Capitol Lake Plaza | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pierre's Prototype for Wind and Solar - Capitol Lake Plaza Pierre's Prototype for Wind and Solar - Capitol Lake Plaza Pierre's Prototype for Wind and Solar - Capitol Lake Plaza June 3, 2010 - 3:22pm Addthis Lindsay Gsell What are the key facts? 80 photovoltaic (PV) solar energy system and two vertical wind turbines will produce up to 40 percent of the building's total energy usage Capitol Lake Plaza sits centrally on Pierre, S.D.'s government plaza. Originally built in 1974, the building has been undergoing major energy renovations since being purchased by the state two years ago. Two major components of the renovation are about to appear at the building's highest point: solar panels and wind turbines are being installed on the roof. The 80 photovoltaic (PV) solar energy system and two vertical wind turbines will produce up to 40 percent of the building's total energy usage, says

330

Geochemistry Of The Lake City Geothermal System, California, Usa | Open  

Open Energy Info (EERE)

Geochemistry Of The Lake City Geothermal System, California, Usa Geochemistry Of The Lake City Geothermal System, California, Usa Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Geochemistry Of The Lake City Geothermal System, California, Usa Details Activities (2) Areas (1) Regions (0) Abstract: Lake City hot springs and geothermal wells chemically fall into a narrow compositional group. This indicates that, with the exception of a few hot springs, mixing with shallow cold ground waters does not have a significant influence on the chemistry of the hot springs. Narrow ranges in plots of F, B and Li versus Cl, and _D to _18O values indicate minimal mixing. Because of this, the compositions of the natural hot spring waters are fairly representative of the parent geothermal water. The average

331

Winnemucca Dry Lake Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Winnemucca Dry Lake Geothermal Area Winnemucca Dry Lake Geothermal Area (Redirected from Winnemucca Dry Lake Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Winnemucca Dry Lake Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

332

Heat flow studies, Coso Geothermal Area, China Lake, California. Technical  

Open Energy Info (EERE)

studies, Coso Geothermal Area, China Lake, California. Technical studies, Coso Geothermal Area, China Lake, California. Technical report Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Heat flow studies, Coso Geothermal Area, China Lake, California. Technical report Details Activities (1) Areas (1) Regions (0) Abstract: Heat flow studies in the Coso Geothermal Area were conducted at China Lake, California. Temperature measurements were completed in nine of the heat flow boreholes. Temperatures were measured at five meter intervals from the ground surface to the deepest five meter interval. Subsequently, temperatures were remeasured two or three times in each borehole in order to demonstrate that equilibrium thermal conditions existed. The maximum difference in temperature, at any of the five meter intervals, was 0.03 deg

333

Walker Lake Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Walker Lake Valley Geothermal Area Walker Lake Valley Geothermal Area (Redirected from Walker Lake Valley Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Walker Lake Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

334

Simulation and Verification of Lake Ontario's Mean State  

Science Conference Proceedings (OSTI)

A numerical dynamic model based on primitive equations has been developed for Lake Ontario. Many experimental tests for parameter selections and alternative formulations of physical processes in the model were carried out. Two simulations, both ...

Joseph Chi Kan Huang; Peter W. Sloss

1981-11-01T23:59:59.000Z

335

Sea, Lake, and Overland Surges from Hurricanes (SLOSH) ...  

Science Conference Proceedings (OSTI)

... 0 60 0 87 After: :p:ps2:ps2:Matagorda Bay Texas New:-1 ... to a lake value (3). 2. The number of Intermediate (8) and ... 13325 East West HWY SSMC ...

2010-12-13T23:59:59.000Z

336

Lake Aggregate Mesoscale Disturbances. Part I: Linear Analysis  

Science Conference Proceedings (OSTI)

The steady boundary-layer responses that occur over the Great Lakes region during wintertime cold air outbreaks are examined using a two-dimensional, linear, analytic model. The planetary boundary layer (PBL) is modeled as an idealized, ...

Peter J. Sousounis; Hampton N. Shirer

1992-01-01T23:59:59.000Z

337

Mesoscale Vortices over the Great Lakes in Wintertime  

Science Conference Proceedings (OSTI)

The occasional occurrence of wintertime mesoscale lake vortices is documented. The vortices are readily discernible in satellite imagery, in which they take one of three forms: a miniature comma cloud, a swirl of cloud bands (resembling a ...

Gregory S. Forbes; Jonathan H. Merritt

1984-02-01T23:59:59.000Z

338

Chilean glacial lake outburst flood impacts on dam construction  

E-Print Network (OSTI)

Four Glacial Lake Outburst Floods (GLOF) occurred in the Colonia Glacier (Northern Patagonia Icefield, Chile) from April 2008 to March 2009. Lago Cachet 2 emptied four times producing a maximum excess discharge in the ...

Tauro, Flavia

2009-01-01T23:59:59.000Z

339

Improving 30-Day Great Lakes Ice Cover Outlooks  

Science Conference Proceedings (OSTI)

Prediction of Great Lakes ice cover is important for winter operations and planning activities. Current 30-day forecasts use accumulated freezing degree-days (AFDDs) to identify similar historical events and associated ice cover. The authors ...

Raymond Assel; Sheldon Drobot; Thomas E. Croley II

2004-08-01T23:59:59.000Z

340

Measurements of the Skin Temperature on Small Lakes  

Science Conference Proceedings (OSTI)

An apparatus to measure the skin temperature and related variables on inland lakes is described. The apparatus is a transparent frame with sensors to measure the skin and bulk water temperature, the wind velocity, and the air temperature and ...

Robert Kurzeja; Malcolm Pendergast; Eliel Villa-Aleman

2005-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "lake erie shore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from...  

U.S. Energy Information Administration (EIA) Indexed Site

Malaysia (Million Cubic Feet) Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from Malaysia (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

342

Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from...  

U.S. Energy Information Administration (EIA) Indexed Site

Oman (Million Cubic Feet) Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from Oman (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

343

Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from...  

U.S. Energy Information Administration (EIA) Indexed Site

Algeria (Million Cubic Feet) Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from Algeria (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

344

Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from...  

U.S. Energy Information Administration (EIA) Indexed Site

Equatorial Guinea (Million Cubic Feet) Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from Equatorial Guinea (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

345

Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from...  

U.S. Energy Information Administration (EIA) Indexed Site

Nigeria (Million Cubic Feet) Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from Nigeria (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

346

Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from...  

U.S. Energy Information Administration (EIA) Indexed Site

Brunei (Million Cubic Feet) Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from Brunei (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

347

Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from...  

U.S. Energy Information Administration (EIA) Indexed Site

Qatar (Million Cubic Feet) Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from Qatar (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

348

Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from...  

U.S. Energy Information Administration (EIA) Indexed Site

Indonesia (Million Cubic Feet) Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from Indonesia (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

349

Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from...  

U.S. Energy Information Administration (EIA) Indexed Site

United Arab Emirates (Million Cubic Feet) Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from United Arab Emirates (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

350

Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from...  

U.S. Energy Information Administration (EIA) Indexed Site

Other Countries (Million Cubic Feet) Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from Other Countries (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

351

Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from...  

U.S. Energy Information Administration (EIA) Indexed Site

Australia (Million Cubic Feet) Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from Australia (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

352

Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from...  

U.S. Energy Information Administration (EIA) Indexed Site

Egypt (Million Cubic Feet) Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from Egypt (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

353

Lake Charles, LA Liquefied Natural Gas Total Imports (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquefied Natural Gas Total Imports (Million Cubic Feet) Lake Charles, LA Liquefied Natural Gas Total Imports (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

354

Comparison Between Polluted and Clean Air Masses over Lake Michigan  

Science Conference Proceedings (OSTI)

Clean and polluted air masses, advected over Lake Michigan, were studied using instrumented aircraft during the summers of 1976 and 1978. The results show that regardless of the degree of pollution, the particle size distribution is bimodal. The ...

A. J. Alkezweeny; N. S. Laulainen

1981-02-01T23:59:59.000Z

355

Trend Reversal in Lake Michigan Contribution to Snowfall  

Science Conference Proceedings (OSTI)

One of the most notable ways the Laurentian Great Lakes impact the regions climate is by augmenting snowfall in downwind locations during autumn and winter months. Among many negative consequences, this surplus of snow can cause substantial ...

Luke Bard; David A. R. Kristovich

2012-11-01T23:59:59.000Z

356

Climatological Observations and Predicted Sublimation Rates at Lake Hoare, Antarctica  

Science Conference Proceedings (OSTI)

In December 1985, an automated meteorological station was established at Lake Hoare in the dry valley region of Antarctica. Here, we report on the first year-round observations available for any site in Taylor Valley. This dataset augments the ...

Gary D. Clow; Christopher P. McKay; George M. Simmons Jr.; Robert A. Wharton Jr.

1988-07-01T23:59:59.000Z

357

Lake Pend Oreille Predation Research, Annual Report 2002-2003.  

DOE Green Energy (OSTI)

During August 2002 we conducted a hydroacoustic survey to enumerate pelagic fish >406 mm in Lake Pend Oreille, Idaho. The purpose of this survey was to determine a collective lakewide biomass estimate of pelagic bull trout Salvelinus confluentus, rainbow trout Oncorhynchus mykiss, and lake trout S. namaycush and compare it to pelagic prey (kokanee salmon O. nerka) biomass. By developing hydroacoustic techniques to determine the pelagic predator to prey ratio, we can annually monitor their balance. Hydroacoustic surveys were also performed during December 2002 and February 2003 to investigate the effectiveness of autumn and winter surveys for pelagic predators. The inherent problem associated with hydroacoustic sampling is the inability to directly identify fish species. Therefore, we utilized sonic tracking techniques to describe rainbow trout and lake trout habitat use during our winter hydroacoustic survey to help identify fish targets from the hydroacoustic echograms. During August 2002 we estimated there were 39,044 pelagic fish >406 mm in Lake Pend Oreille (1.84 f/ha). Based on temperature and depth utilization, two distinct groups of pelagic fish >406 mm were located during August; one group was located between 10 and 35 m and the other between 40 and 70 m. The biomass for pelagic fish >406 mm during August 2002 was 73 t (metric ton). This would account for a ratio of 1 kg of pelagic predator for every 2.63 kg of kokanee prey, assuming all pelagic fish >406 mm are predators. During our late fall and winter hydroacoustic surveys, pelagic fish >406 mm were observed at lake depths between 20 and 90 m. During late fall and winter, we tracked three rainbow trout (168 habitat observations) and found that they mostly occupied pelagic areas and predominantly stayed within the top 10 m of the water column. During late fall (one lake trout) and winter (four lake trout), we found that lake trout (184 habitat observations) utilized benthic-nearshore areas 65% of the time and were found in the pelagic area only 35% of the time. Lake trout were found at depths between 10 and 90 m (average was approximately 30 m). Based on hydroacoustic surveys of pelagic fish >406 mm and habitat use of sonic tagged rainbow trout and lake trout during late fall and winter, we conclude that hydroacoustic sampling during those times would be ineffective at acquiring an accurate pelagic predator population estimate and recommend conducting abundance estimates for pelagic predators when Lake Pend Oreille is thermally stratified (i.e. August).

Bassista, Thomas

2004-02-01T23:59:59.000Z

358

Core Hole Drilling And Testing At The Lake City, California Geothermal  

Open Energy Info (EERE)

Hole Drilling And Testing At The Lake City, California Geothermal Hole Drilling And Testing At The Lake City, California Geothermal Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Core Hole Drilling And Testing At The Lake City, California Geothermal Field Details Activities (4) Areas (1) Regions (0) Abstract: Unavailable Author(s): Dick Benoit, Joe Moore, Colin Goranson, David Blackwell Published: GRC, 2005 Document Number: Unavailable DOI: Unavailable Core Analysis At Lake City Hot Springs Area (Benoit Et Al., 2005) Core Holes At Lake City Hot Springs Area (Benoit Et Al., 2005) Flow Test At Lake City Hot Springs Area (Benoit Et Al., 2005) Static Temperature Survey At Lake City Hot Springs Area (Benoit Et Al., 2005) Lake City Hot Springs Geothermal Area Retrieved from "http://en.openei.org/w/index.php?title=Core_Hole_Drilling_And_Testing_At_The_Lake_City,_California_Geothermal_Field&oldid=389996

359

Geophysical study of the Clear Lake region, California  

DOE Green Energy (OSTI)

Results of geophysical studies in the Clear Lake region of California, north of San Francisco, have revealed a prominent, nearly circular negative gravity anomaly with an amplitude of more than 25 milligals (mgal) and an areal extent of approximately 250 square miles and, in addition, a number of smaller positive and negative anomalies. The major negative gravity anomaly is closely associated with the Clear Lake volcanic field and with an area characterized by hot springs and geothermal fields. However, the anomaly cannot be explained by mapped surface geologic features of the area. Aeromagnetic data in the Clear Lake region show no apparent correlation with the major negative gravity anomaly; the local magnetic field is affected principally by serpentine. An electrical resistivity low marks the central part of the gravity minimum, and a concentration of earthquake epicenters characterizes the Clear Lake volcanic field area. The primary cause of the major negative gravity anomaly is believed to be a hot intrusive mass, possibly a magma chamber, that may underlie the Clear Lake volcanic field and vicinity. This mass may serve as a source of heat for the geothermal phenomena in the area. Other smaller gravity anomalies in the Clear Lake region are apparently caused by near-surface geologic features, including relatively dense units of the Franciscan Formation and less dense Cenozoic sedimentary and volcanic rock units.

Chapman, R.H.

1975-01-01T23:59:59.000Z

360

Moses Lake Fishery Restoration Project; Factors Affecting the Recreational Fishery in Moses Lake Washington, Annual Report 2002-2003.  

DOE Green Energy (OSTI)

This annual report is a precursor to the final technical report we will be writing the next contract period. Consequently, this report, covering the period between September 27, 2002, and September 26, 2003, represents a progress report towards the final technical report we anticipate completing by September 26, 2004. Sample analysis and field work have progressed well and we anticipate no further delays. There are 4 objectives: (1) To quantify secondary production Moses Lake; (2) To quantify the influence of predation on target fishes in Moses Lake; (3) To quantify mortality of selected fished in Moses Lake; and (4) To assess effects of habitat changes from shoreline development and carp on the fish community in Moses Lake.

Burgess, Dave

2003-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "lake erie shore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Over-Lake Meteorology and Estimated Bulk Heat Exchange of Great Slave Lake in 1998 and 1999  

Science Conference Proceedings (OSTI)

Meteorological and thermistor moorings were deployed in Great Slave Lake during the Canadian Global Energy and Water Cycle Experiment (GEWEX) Enhanced Study (CAGES) in 1998 and 1999. Large-scale meteorology included influence from a record ENSO ...

William M. Schertzer; Wayne R. Rouse; Peter D. Blanken; Anne E. Walker

2003-08-01T23:59:59.000Z

362

Promoting Offshore Wind Along the "Fresh Coast" | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Promoting Offshore Wind Along the "Fresh Coast" Promoting Offshore Wind Along the "Fresh Coast" Promoting Offshore Wind Along the "Fresh Coast" October 12, 2010 - 12:18pm Addthis Chris Hart Offshore Wind Team Lead, Wind & Water Power Program When people think about offshore wind power, the first location that comes to mind probably isn't Cleveland, Ohio. Most of the offshore wind turbines installed around the world are operating in salt water, like Europe's North Sea and Baltic Sea, and most of the offshore wind projects proposed in U.S. waters are in the Atlantic Ocean or Gulf of Mexico. But the winds blowing above Lake Erie, only a few miles off the shore from Cleveland, represent a huge potential source of clean, renewable energy that could yield substantial benefits for the regional economy and

363

An Evaluation of the Impact of the Niagara River Ice Boom on the Air Temperature Regime at Buffalo, New York  

Science Conference Proceedings (OSTI)

The objective of this study was to determine if the Niagara River ice boom has prolonged the Lake Erie ice cover at Buffalo, New York, resulting in significant changes in the spring warm-up of Lake Erie and longer, colder winters in the area. ...

Frank H. Quinn; Raymond A. Assel; Daniel W. Gaskill

1982-03-01T23:59:59.000Z

364

Off-Shore Cargo Handling  

Science Conference Proceedings (OSTI)

... concepts. T-ACS (Tactical Auxiliary Crane Ship) RoboCrane. T- ACS_RoboCrane. ONR Mobile Offshore Base (MOB) Crane. ...

2011-08-26T23:59:59.000Z

365

How law grad David Shore  

E-Print Network (OSTI)

Ph.D. Research Project Search of the Higgs boson in the two photon final state Ph.D. candidate of the Higgs boson. My Ph.D. reasearch project will focus on the Higgs boson searches in the two photon decay channel. The Higgs boson It is still one the missing bricks of the Standard Model. The actual Spontaneous

366

Great Lakes WIND Network | Open Energy Information  

Open Energy Info (EERE)

WIND Network WIND Network Jump to: navigation, search Name Great Lakes WIND Network Address 4855 W 130th Place Cleveland, Ohio Zip 44135 Sector Wind energy Product Business and legal services;Consulting; Energy provider: energy transmission and distribution; Investment/finances;Maintenance and repair;Manufacturing; Research and development; Trainining and education Phone number 215-588-1440 Website http://www.glwn.org Coordinates 41.4228056°, -81.7801592° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.4228056,"lon":-81.7801592,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

367

Seismic imaging of the Medicine Lake Caldera  

DOE Green Energy (OSTI)

Medicine Lake Volcano, a broad shield volcano about 50 km east of Mount Shasta in northern California, produced rhylotic eruptions as recently as 400 years ago. Because of this recent activity it is of considerable interest to producers of geothermal energy. The USGS and LLNL conducted an active seismic experiment designed to explore the area beneath and around the caldera. This experiment had two purposes: To produce high-quality velocity and attenuation images of the young magma body presumed to be the source for the young volcanic features, and to collect a dataset that can be used to develop and test seismic imaging methods that may be useful for understanding other geothermal systems. Eight large explosions were detonated in a 50 km radius circle around the volcano, a distance chosen to produce strong upward traveling signals through the area of interest. The data were inverted using Aki's method to produce three-dimensional velocity and attenuation images of the sub-surface. Preliminary interpretation shows low velocity and attenuation on the flanks of the volcano, and coincident high attenuation values and low velocities (-20%) from 3 to 5 km beneath the center of the caldera. This zone may be a region of partial melt which fed the youngest eruptions.

Zucca, J.J.; Evans, J.R.; Kasameyer, P.W.

1987-04-01T23:59:59.000Z

368

Computational Fluid Dynamics Modeling of The Dalles Project: Effects of Spill Flow Distribution Between the Washington Shore and the Tailrace Spillwall  

DOE Green Energy (OSTI)

The U.S. Army Corps of Engineers-Portland District (CENWP) has ongoing work to improve the survival of juvenile salmonids (smolt) migrating past The Dalles Dam. As part of that effort, a spillwall was constructed to improve juvenile egress through the tailrace downstream of the stilling basin. The spillwall was designed to improve smolt survival by decreasing smolt retention time in the spillway tailrace and the exposure to predators on the spillway shelf. The spillwall guides spillway flows, and hence smolt, more quickly into the thalweg. In this study, an existing computational fluid dynamics (CFD) model was modified and used to characterize tailrace hydraulics between the new spillwall and the Washington shore for six different total river flows. The effect of spillway flow distribution was simulated for three spill patterns at the lowest total river flow. The commercial CFD solver, STAR-CD version 4.1, was used to solve the unsteady Reynolds-averaged Navier-Stokes equations together with the k-epsilon turbulence model. Free surface motion was simulated using the volume-of-fluid (VOF) technique. The model results were used in two ways. First, results graphics were provided to CENWP and regional fisheries agency representatives for use and comparison to the same flow conditions at a reduced-scale physical model. The CFD results were very similar in flow pattern to that produced by the reduced-scale physical model but these graphics provided a quantitative view of velocity distribution. During the physical model work, an additional spill pattern was tested. Subsequently, that spill pattern was also simulated in the numerical model. The CFD streamlines showed that the hydraulic conditions were likely to be beneficial to fish egress at the higher total river flows (120 kcfs and greater, uniform flow distribution). At the lowest flow case, 90 kcfs, it was necessary to use a non-uniform distribution. Of the three distributions tested, splitting the flow evenly between Bay 7 and Bay 8 had hydraulics deemed most beneficial for egress by CENWP fisheries biologists and regional fishery agency representatives. The numerical and physical model results were very similar, building confidence in both hydraulic tools.

Rakowski, Cynthia L.; Serkowski, John A.; Richmond, Marshall C.

2010-12-01T23:59:59.000Z

369

Paleo-Storminess in the Southern Lake Michigan Basin, as Recorded by Eolian Sand Downwind of Dunes.  

E-Print Network (OSTI)

??Eolian sand deposited in lakes downwind of coastal sand dunes record a history of paleoclimatic fluctuations. Studies from embayed lakes along the east-central coast of (more)

Hanes, Barbara E.

2010-01-01T23:59:59.000Z

370

Simulated Physical Mechanisms Associated with Climate Variability over Lake Victoria Basin in East Africa  

Science Conference Proceedings (OSTI)

A fully coupled regional climate, 3D lake modeling system is used to investigate the physical mechanisms associated with the multiscale variability of the Lake Victoria basin climate. To examine the relative influence of different processes on ...

Richard O. Anyah; Fredrick H. M. Semazzi; Lian Xie

2006-12-01T23:59:59.000Z

371

Modeling the Effects of Lakes and Wetlands on the Water Balance of Arctic Environments  

Science Conference Proceedings (OSTI)

Lakes, ponds, and wetlands are common features in many low-gradient arctic watersheds. Storage of snowmelt runoff in lakes and wetlands exerts a strong influence on both the interannual and interseasonal variability of northern rivers. This ...

Laura C. Bowling; Dennis P. Lettenmaier

2010-04-01T23:59:59.000Z

372

Comparison between Two Extreme NAO Winters and Consequences on the Thermal Regime of Lake Vendyurskoe, Karelia  

Science Conference Proceedings (OSTI)

For 10 consecutive winters, measurements were carried out in Lake Vendyurskoe, Karelia, Russia. The aim of these measurements was to investigate some of the physical processes in this small shallow lake during its ice-covered period. Detailed ...

Osama Ali Maher; Cintia Bertacchi Uvo; Lars Bengtsson

2005-10-01T23:59:59.000Z

373

Water Supplies to the Great LakesReconstructed from Tree-Rings  

Science Conference Proceedings (OSTI)

Correlations between the water supplies to each of the Great Lakes and prewhitened tree-ring chronologies from 16 sites around the Great Lakes suggested some strong associations for the summer months, particularly June and July. Some of these ...

W. A. R. Brinkmann

1987-04-01T23:59:59.000Z

374

Lake-Effect Snowstorms in Northern Utah and Western New York with and without Lightning  

Science Conference Proceedings (OSTI)

Lake-effect snowstorms in northern Utah and western New York with and without lightning/thunder are examined. Lake-effect snowstorms with lightning have significantly higher temperatures and dewpoints in the lower troposphere and significantly ...

David M. Schultz

1999-12-01T23:59:59.000Z

375

The Influence of Large-Scale Flow on Fall Precipitation Systems in the Great Lakes Basin  

Science Conference Proceedings (OSTI)

A synoptic climatology is presented of the precipitation mechanisms that affect the Great Lakes Basin. The focus is on fall because increasing precipitation in this season has contributed to record high lake levels since the 1960s and because the ...

Emily K. Grover; Peter J. Sousounis

2002-07-01T23:59:59.000Z

376

How different home styles are valued in the Salt Lake City market  

E-Print Network (OSTI)

This thesis focuses on market valuation of attributes of single family housing in the Salt Lake City market. Using data from different sub-regions of Salt Lake County, this paper addresses the question of buyer demand with ...

Peterson, Barrett, 1976-

2003-01-01T23:59:59.000Z

377

An Investigation of the Thermal and Energy Balance Regimes of Great Slave and Great Bear Lakes  

Science Conference Proceedings (OSTI)

Great Slave Lake and Great Bear Lake have large surface areas, water volumes, and high latitudinal positions; are cold and deep; and are subject to short daylight periods in winter and long ones in summer. They are dissimilar hydrologically. ...

Wayne R. Rouse; Peter D. Blanken; Normand Bussires; Anne E. Walker; Claire J. Oswald; William M. Schertzer; Christopher Spence

2008-12-01T23:59:59.000Z

378

Mesoscale Frequencies and Seasonal Snowfalls for Different Types of Lake Michigan Snow Storms  

Science Conference Proceedings (OSTI)

Members of the Cloud Physics Laboratory, University of Chicago, have identified three different mesoscale organization patterns of lake-effect snow storms over Lake Michigan: multiple wind-parallel bands, single midlake bands, and single ...

Robert D. Kelly

1986-03-01T23:59:59.000Z

379

Observational Study of a Convective Internal Boundary Layer over Lake Michigan  

Science Conference Proceedings (OSTI)

Using aircraft data collected during the University of Chicago Lake-Effect Snow Storm project, the results of a case study of the convective thermal internal boundary layer (TIBL) over Lake Michigan are presented. An intense cold air outbreak on ...

Sam S. Chang; Roscoe R. Braham Jr.

1991-10-01T23:59:59.000Z

380

Observations of Transport Processes for Ozone and Ozone Precursors during the 1991 Lake Michigan Ozone Study  

Science Conference Proceedings (OSTI)

The Lake Michigan Air Quality Region (LMAQR) continues to experience ozone concentrations in urban and rural areas above the federal standard of 125 ppb. During the summer of 1991, the LMAQR states sponsored the Lake Michigan Ozone Study, which ...

Timothy S. Dye; Paul T. Roberts; Marcelo E. Korc

1995-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "lake erie shore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Reductive dissolution and metal transport in lake coeur d alene sediments  

E-Print Network (OSTI)

in Coeur d'Alene Lake, Idaho. Environ. Sci. Technol. 32,heavy metals in the sediment of Lake Coeur d'Alene, Idaho.Masters Thesis, University of Idaho, Moscow, Idaho. Zachara,

Sengor, Sevinc.S.; Spycher, Nicolas.F.; Ginn, Timothy.R.; Moberly, James; Peyton, B.; Sani, Rajesh.K.

2007-01-01T23:59:59.000Z

382

Iowa Lakes Community College Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Community College Wind Farm Community College Wind Farm Jump to: navigation, search Name Iowa Lakes Community College Wind Farm Facility Iowa Lakes Community College Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Iowa Lakes Community College Developer Iowa Lakes Community College Energy Purchaser Iowa Lakes Community College Location Esterville IA Coordinates 43.397912°, -94.81768° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.397912,"lon":-94.81768,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

383

Great Lakes Science Center Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Science Center Wind Farm Science Center Wind Farm Jump to: navigation, search Name Great Lakes Science Center Wind Farm Facility Great Lakes Science Center Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Great Lakes Science Center Developer Great Lakes Science Center Energy Purchaser Great Lakes Science Center Location Cleveland OH Coordinates 41.506659°, -81.696816° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.506659,"lon":-81.696816,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

384

AN ESTIMATE OF THE CHEMICAL COMPOSITION OF TITAN's LAKES  

SciTech Connect

Hundreds of radar-dark patches interpreted as lakes have been discovered in the north and south polar regions of Titan. We have estimated the composition of these lakes by using the direct abundance measurements from the Gas Chromatograph Mass Spectrometer aboard the Huygens probe and recent photochemical models based on the vertical temperature profile derived by the Huygens Atmospheric Structure Instrument. Thermodynamic equilibrium is assumed between the atmosphere and the lakes, which are also considered nonideal solutions. We find that the main constituents of the lakes are ethane (C{sub 2}H{sub 6}) (approx76%-79%), propane (C{sub 3}H{sub 8}) (approx7%-8%), methane (CH{sub 4}) (approx5%-10%), hydrogen cyanide (HCN) (approx2%-3%), butene (C{sub 4}H{sub 8}) (approx1%), butane (C{sub 4}H{sub 10}) (approx1%), and acetylene (C{sub 2}H{sub 2}) (approx1%). The calculated composition of lakes is then substantially different from what has been expected from models elaborated prior to the exploration of Titan by the Cassini-Huygens spacecraft.

Cordier, Daniel [Ecole Nationale Superieure de Chimie de Rennes, CNRS, UMR 6226, Avenue du General Leclerc, CS 50837, 35708 Rennes Cedex 7 (France); Mousis, Olivier; Lunine, Jonathan I.; Lavvas, Panayotis [Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ (United States); Vuitton, Veronique, E-mail: daniel.cordier@ensc-rennes.f [Universite Joseph Fourier, Laboratoire de Planetologie de Grenoble, CNRS/INSU (France)

2009-12-20T23:59:59.000Z

385

AERIAL MEASUREMENTS OF CONVECTION CELL ELEMENTS IN HEATED LAKES  

SciTech Connect

Power plant-heated lakes are characterized by a temperature gradient in the thermal plume originating at the discharge of the power plant and terminating at the water intake. The maximum water temperature discharged by the power plant into the lake depends on the power generated at the facility and environmental regulations on the temperature of the lake. Besides the observed thermal plume, cloud-like thermal cells (convection cell elements) are also observed on the water surface. The size, shape and temperature of the convection cell elements depends on several parameters such as the lake water temperature, wind speed, surfactants and the depth of the thermocline. The Savannah River National Laboratory (SRNL) and Clemson University are collaborating to determine the applicability of laboratory empirical correlations between surface heat flux and thermal convection intensity. Laboratory experiments at Clemson University have demonstrated a simple relationship between the surface heat flux and the standard deviation of temperature fluctuations. Similar results were observed in the aerial thermal imagery SRNL collected at different locations along the thermal plume and at different elevations. SRNL will present evidence that the results at Clemson University are applicable to cooling lakes.

Villa-Aleman, E; Saleem Salaymeh, S; Timothy Brown, T; Alfred Garrett, A; Malcolm Pendergast, M; Linda Nichols, L

2007-12-19T23:59:59.000Z

386

NOAA Technical Memorandum ERL GLERL-31 SUMMARY OF GREAT LAKES WEATHER AND ICE CONDITIONS,  

E-Print Network (OSTI)

Description 3.2.1 Fall Cooling Phase 3.2.2 Ice Formation and Breakup Phases 3.2.3 The Ice Cycle cm LakeEs of +* SUMMARY OF GREAT LAKES WEATHER AND ICE CONDITIONS, WINTER 1978-79 B. H. Dewitt D. F. Kahlbaum D. G. Baker,-MOSWERlC AOMlNlSTRAllON #12;NOAA Technical Memorandum ERL GLERL-31 SUMMARY OF GREAT LAKES WEATHER AND ICE

387

Erie, Colorado: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

502623°, -105.0499817° 502623°, -105.0499817° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.0502623,"lon":-105.0499817,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

388

EriEnergyInvest20050426.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

are that 20% of households have access to electricity, 66.3% of primary energy consumption is supplied by biomass, and the major consumers of energy are households (68.3%),...

389

A Bayesian network approach for assessing the sustainability of coastal lakes in New South Wales, Australia  

Science Conference Proceedings (OSTI)

Coastal lakes are ecosystems of significant value generating many ecological, social and economic benefits. Increasing demands resulting from urban development and other human activities within coastal lake catchments have the potential to result in ... Keywords: Bayesian network, Coastal lakes, Decision support, Environmental management, Integrated assessment, Pathogens, Sustainability

Jenifer L. Ticehurst; Lachlan T. H. Newham; David Rissik; Rebecca A. Letcher; Anthony J. Jakeman

2007-08-01T23:59:59.000Z

390

Hydroclimate Analysis of Severe Floods in Chinas Poyang Lake Region  

Science Conference Proceedings (OSTI)

Poyang Lake in Jiangxi Province is the largest freshwater lake in China and is historically a region of significant floods. Maximum annual lake stage and the number of severe flood events have increased during the past few decades because of levee ...

David Shankman; Barry D. Keim; Tadanobu Nakayama; Rongfang Li; Dunyin Wu; W. Craig Remington

2012-12-01T23:59:59.000Z

391

Coherence between the Great Salt Lake Level and the Pacific Quasi-Decadal Oscillation  

Science Conference Proceedings (OSTI)

The lake level elevation of the Great Salt Lake (GSL), a large closed basin lake in the arid western United States, is characterized by a pronounced quasi-decadal oscillation (QDO). The variation of the GSL elevation is very coherent with the QDO ...

Shih-Yu Wang; Robert R. Gillies; Jiming Jin; Lawrence E. Hipps

2010-04-01T23:59:59.000Z

392

Modeling the subsurface thermal impact of Arctic thaw lakes in a warming climate  

Science Conference Proceedings (OSTI)

Warming air temperatures in the Arctic are modifying the rates of thermokarst processes along Alaska's Arctic Coastal Plain. The Arctic Coastal Plain is dominated by thaw lakes. These kilometer-scale lakes are the most visible surface features in the ... Keywords: MATLAB, Numerical model, Permafrost, Thaw lakes, Thermal model

N. Matell; R. S. Anderson; I. Overeem; C. Wobus; F. E. Urban; G. D. Clow

2013-04-01T23:59:59.000Z

393

Lake-Effect Snowstorms over Southern Ontario, Canada, and Their Associated Synoptic-Scale Environment  

Science Conference Proceedings (OSTI)

Lake-effect snowstorms are an important source of severe winter weather over the Great Lakes region and are often triggered by the passage of synoptic-scale low pressure systems. In this paper, a climatology of lake-effect snowstorms over ...

A. Q. Liu; G. W. K. Moore

2004-11-01T23:59:59.000Z

394

Kangley - Echo Lake Transmission Line Project, Final Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

STATEMENT STATEMENT Kangley-Echo Lake Transmission Line Project Final Environmental Impact Statement Responsible Agency: U.S. Department of Energy, Bonneville Power Administration (BPA) Cooperating Agency: U.S. Department of Agriculture, Forest Service (USFS) Title of Proposed Project: Kangley-Echo Lake Transmission Line Project State Involved: Washington Abstract: BPA is proposing to build a new transmission line to accommodate increasing demand for electricity and ensure reliability in the Puget Sound area. The Proposed Action would construct a new line that would connect to an existing transmis- sion line near the community of Kangley, and then connect with BPA's existing Echo Lake Substation. The major purpose of this proposal is to improve system reliability in the King County area. An outage on an existing line during times of heavy use, such as

395

Lake City Utilities - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lake City Utilities - Residential Energy Efficiency Rebate Program Lake City Utilities - Residential Energy Efficiency Rebate Program Lake City Utilities - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Heat Pumps Commercial Lighting Lighting Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount Lighting: Varies, see program website Room A/C: $25, plus $25 for recycling an old, working unit Central A/C: $100 - $200, plus additional rebate for efficiency ratings above 14.5 SEER Air Source Heat Pump:$100 - $200, plus additional rebate for efficiency ratings above 14.5 SEER Geothermal Heat Pump:$200/ton, plus $25/ton for every 1 EER above minimum required EER Refrigerators: $25, plus $50 for recycling an old, working unit

396

JW Great Lakes Wind LLC | Open Energy Information  

Open Energy Info (EERE)

JW Great Lakes Wind LLC JW Great Lakes Wind LLC Jump to: navigation, search Name JW Great Lakes Wind LLC Place Cleveland, Ohio Zip 44114-4420 Sector Wind energy Product Ohio based subsidiary of Juwi International that develops wind projects. Coordinates 41.504365°, -81.690459° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.504365,"lon":-81.690459,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

397

City of Elbow Lake, Minnesota (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Lake, Minnesota (Utility Company) Lake, Minnesota (Utility Company) Jump to: navigation, search Name City of Elbow Lake Place Minnesota Utility Id 5732 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Dual Fuel Heating Commercial Controlled Central Air Conditioning Controlled Water Heater Large Commercial Commercial Off Peak Heating Residential Rate Residential Security Lighting 150 Watt HPS Lighting Security Lighting 250 Watt HPS Lighting Small Commercial Rate Single Phase Commercial

398

Lake Benton I Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Benton I Wind Farm Benton I Wind Farm Jump to: navigation, search Name Lake Benton I Wind Farm Facility Lake Benton I Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner AES Corp. Developer GE Energy Energy Purchaser Xcel Energy Location Lake Benton MN Coordinates 44.230507°, -96.248327° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.230507,"lon":-96.248327,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

399

Analysis of Lake Washington Microbes Shows the Power of Metagenomic  

NLE Websites -- All DOE Office Websites (Extended Search)

8, 2008 8, 2008 Analysis of Lake Washington Microbes Shows the Power of Metagenomic Approaches WALNUT CREEK, CA-Today's powerful sequencing machines can rapidly read the genomes of entire communities of microbes, but the challenge is to extract meaningful information from the jumbled reams of data. In a paper appearing in Nature Biotechnology August 17, a collaboration headed by researchers at the University of Washington and the U.S. Department of Energy Joint Genome Institute (DOE JGI) describes a novel approach for extracting single genomes and discerning specific microbial capabilities from mixed community ("metagenomic") sequence data. Methylamine-enriched community of Lake Washington Methylamine-enriched community of Lake Washington sediment featuring

400

Village of Tupper Lake, New York (Utility Company) | Open Energy  

Open Energy Info (EERE)

Tupper Lake, New York (Utility Company) Tupper Lake, New York (Utility Company) Jump to: navigation, search Name Village of Tupper Lake Place New York Utility Id 19274 Utility Location Yes Ownership M NERC Location NPCC NERC NPCC Yes ISO NY Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Large Commercial Rate 500 kW Max Commercial Large Commercial Rate Greater than 500 kW Commercial Residential Residential Small Commercial Commercial Average Rates Residential: $0.0378/kWh Commercial: $0.0464/kWh Industrial: $0.0388/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

Note: This page contains sample records for the topic "lake erie shore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Lake Benton II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Lake Benton II Wind Farm Lake Benton II Wind Farm Facility Lake Benton II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Energy Purchaser Xcel Energy Location Pipestone County MN Coordinates 44.226606°, -96.225049° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.226606,"lon":-96.225049,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

402

East Soda Lake Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Soda Lake Geothermal Project Soda Lake Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: East Soda Lake Geothermal Project Project Location Information Coordinates 39.53°, -118.87° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.53,"lon":-118.87,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

403

EA-1937: Pacific Direct Intertie Upgrade Project, Lake, Jefferson, Crook,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

37: Pacific Direct Intertie Upgrade Project, Lake, Jefferson, 37: Pacific Direct Intertie Upgrade Project, Lake, Jefferson, Crook, Deschutes, and Wasco Co, OR EA-1937: Pacific Direct Intertie Upgrade Project, Lake, Jefferson, Crook, Deschutes, and Wasco Co, OR SUMMARY This project would replace aging equipment at BPA's Celilo converter station and to upgrade equipment on the Celilo-Sylmar 500-kilovolt (kV) transmission line from the Celilo converter station in The Dalles, Oregon to the Nevada-Oregon border. As part of the project, BPA would remove and salvage the converter terminals 1 and 2 at its Celilo converter station and install a new two-converter terminal. A 20-acre expansion of the existing substation would accommodate the new terminal equipment. About 265 miles of transmission towers on the Celilo-Sylmar 500-kV transmission line would be

404

Moose Lake Water & Light Comm | Open Energy Information  

Open Energy Info (EERE)

Lake Water & Light Comm Lake Water & Light Comm Jump to: navigation, search Name Moose Lake Water & Light Comm Place Minnesota Utility Id 12897 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 2-250HPS-FRO Lighting 250 HPS ELEOLY Lighting 3-250 HPS Lighting 4-250 HPS Lighting 400 HPS Rent Lighting BEST OIL CO Commercial BIKE TRAIL Commercial CIP Commercial Commercial Demand Commercial Commercial Electricity Commercial Demand 1 Phase Industrial

405

Summer Lake Aquaculture Aquaculture Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Aquaculture Aquaculture Low Temperature Geothermal Facility Aquaculture Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Summer Lake Aquaculture Aquaculture Low Temperature Geothermal Facility Facility Summer Lake Aquaculture Sector Geothermal energy Type Aquaculture Location Summer Lake, Oregon Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

406

Western Lake Superior Sanitary District (Minnesota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Western Lake Superior Sanitary District (Minnesota) Western Lake Superior Sanitary District (Minnesota) Western Lake Superior Sanitary District (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State Minnesota Program Type Siting and Permitting A sanitary board is established to deal with long-term serious problems relating to water pollution and solid waste disposal in the area. The district can set regulations regarding garbage management and recycling,

407

Walker Lake Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Walker Lake Valley Geothermal Area Walker Lake Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Walker Lake Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

408

Keystone/Mesquite Lake Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Keystone/Mesquite Lake Geothermal Project Keystone/Mesquite Lake Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Keystone/Mesquite Lake Geothermal Project Project Location Information Coordinates 35.978611111111°, -115.53027777778° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.978611111111,"lon":-115.53027777778,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

409

China Lake South Range Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

China Lake South Range Geothermal Project China Lake South Range Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: China Lake South Range Geothermal Project Project Location Information Coordinates 35.65°, -117.66166666667° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.65,"lon":-117.66166666667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

410

City of Mountain Lake, Minnesota (Utility Company) | Open Energy  

Open Energy Info (EERE)

Mountain Lake Mountain Lake Place Minnesota Utility Id 13048 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Operates Generating Plant Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png City Rates Commercial Commercial Commercial Industrial Industrial Residential- Rural Residential Residential- Urban Residential Average Rates Residential: $0.0957/kWh Commercial: $0.0842/kWh Industrial: $0.0804/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Mountain_Lake,_Minnesota_(Utility_Company)&oldid=40998

411

EA-1894: Albeni Falls Flexible Winter Lake Operations, Bonner, Idaho |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EA-1894: Albeni Falls Flexible Winter Lake Operations, Bonner, EA-1894: Albeni Falls Flexible Winter Lake Operations, Bonner, Idaho EA-1894: Albeni Falls Flexible Winter Lake Operations, Bonner, Idaho Summary DOE's Bonneville Power Administration and the U.S. Army Corps of Engineers, as co-lead Federal agencies, prepared this EA to evaluate the potential environmental impacts of a proposal to operate Albeni Falls dam during the winter months (approximately December 15th to March 31st) and determine whether the existing Columbia River System Operation Review EIS (DOE/EIS-0170) is adequate or a supplemental or new EIS is required. For more information about this project, see: http://efw.bpa.gov/environmental_services/Document_Library/AFD-FWPO/ http://efw.bpa.gov/environmental_services/Document_Library/System_Operation/ (Link

412

Winnemucca Dry Lake Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Winnemucca Dry Lake Geothermal Area Winnemucca Dry Lake Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Winnemucca Dry Lake Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

413

Overview Of The Lake City, California Geothermal System | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Overview Of The Lake City, California Geothermal System Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Overview Of The Lake City, California Geothermal System Details Activities (1) Areas (1) Regions (0) Abstract: Following a spectacular mud volcano eruption in 1951, the Lake City geothermal system has been intermittently explored for 44 years. A discovery well was drilled 30 years ago. The geothermal system is associated with a two mile-long, north-south trending, abnormally complex section of the active Surprise Valley fault zone that has uplifted the

414

Geothermal Literature Review At Medicine Lake Geothermal Area (1984) | Open  

Open Energy Info (EERE)

Geothermal Area (1984) Geothermal Area (1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Medicine Lake Geothermal Area (1984) Exploration Activity Details Location Medicine Lake Geothermal Area Exploration Technique Geothermal Literature Review Activity Date 1984 Usefulness not indicated DOE-funding Unknown Notes The melt zones of volcanic clusters was analyzed with recent geological and geophysical data for five magma-hydrothermal systems were studied for the purpose of developing estimates for the depth, volume and location of magma beneath each area. References Goldstein, N. E.; Flexser, S. (1 December 1984) Melt zones beneath five volcanic complexes in California: an assessment of shallow magma occurrences

415

Lake Minnetonka Conservation District (Minnesota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Minnetonka Conservation District (Minnesota) Minnetonka Conservation District (Minnesota) Lake Minnetonka Conservation District (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Minnesota Program Type Siting and Permitting This statute establishes the Lake Minnetonka Conservation District, which

416

~~~~: Gmt Lakes Cat-bar) ALTERNaTE I  

Office of Legacy Management (LM)

~~~: Gmt Lakes Cat-bar) ~~~: Gmt Lakes Cat-bar) ALTERNaTE I --------------------------------------- NAME: 333 Iv. Mkhi qr) Aw. thka o ~~~---~~~--~~~_-----__ C I TV : 8 Morim 'Love 82 10 bhh &Q Ir -+----------- STATE- fL I - ------ l OWNER(S) -__----_ past: Current: I --------------------____ Owner contacted q yes p no; _____--_____-____------~~~l if yes, data contacted -_--------__- TYPE OF OPERATION ---_------------- 0 Research & Development q Production scale testing 0 Pilot Scale 0 Bench Scale process 0 Theoretical Studies 0 Sample & Analysis Facility Type p Manufacturing I ! fJ University 0 Research Organization ! 0 Government Sponsored F+ci li ty 0 Other ----~~-~~~----~------ 0 Production 0 Disposal/Storage TYPE OF CUNTRKT ----~---~__----_ / w Prime

417

Clean Cities Award Winning Coalition: Salt Lake City  

DOE Green Energy (OSTI)

Since its designation as a national Clean City in 1994, Salt Lake Clean Cities has put more than 2,600 alternative fuel vehicles (AFVs) on community streets. The 82 business, nonprofit, and government agencies that comprise the coalition are all dedicated to cleaning the air by reducing vehicle exhaust. Salt Lake Clean Cities has the third largest compressed natural gas and propane-refueling infrastructure in the country, with 98 locations available. They sponsor an annual ''Spring Soiree'' to increase public awareness about the program and educate the public about the benefits of alternative fuel and AFVs.

ICF Kaiser

1999-05-20T23:59:59.000Z

418

Lake Roosevelt Fisheries Evaluation Program, Part B; Limnology, Primary Production, and Zooplankton in Lake Roosevelt, Washington, 1998 Annual Report.  

DOE Green Energy (OSTI)

The Lake Roosevelt Fisheries Evaluation Program is the result of a merger between two projects, the Lake Roosevelt Monitoring Program (BPA No. 8806300) and the Lake Roosevelt Data Collection Project (BPA No. 9404300). These projects were merged in 1996 to continue work historically completed under the separate projects, and is now referred to as the Lake Roosevelt Fisheries Evaluation Program. The 1998 Annual Report, Part B. Limnology, Primary Production, and Zooplankton in Lake Roosevelt, Washington examined the limnology, primary production, and zooplankton at eleven locations throughout the reservoir. The 1998 research protocol required a continuation of the more complete examination of limnological parameters in Lake Roosevelt that began in 1997. Phytoplankton and periphyton speciation, phytoplankton and periphyton chlorophyll a analysis, complete zooplankton biomass analysis by taxonomic group, and an increased number of limnologic parameters (TDG, TDS, etc.) were examined and compared with 1997 results. Total dissolved gas levels were greatly reduced in 1998, compared with 1997, likely resulting from the relatively normal water year experienced in 1998. Mean water temperatures were similar to what was observed in past years, with a maximum of 22.7 C and a minimum of 2.6 C. Oxygen concentrations were also relatively normal, with a maximum of 16.6 mg/L, and a minimum of 0.9 mg/L. Phytoplankton in Lake Roosevelt was primarily composed of microplankton (29.6%), Cryptophyceae (21.7%), and Bacillriophyceae (17.0 %). Mean total phytoplankton chlorophyll a maximum concentration occurred in May (3.53 mg/m{sup 3}), and the minimum in January (0.39 mg/m{sup 3}). Phytoplankton chlorophyll a concentrations appear to be influenced by hydro-operations and temperature. Trophic status as indicated by phytoplankton chlorophyll a concentrations place Lake Roosevelt in the oligomesotrophic range. Periphyton colonization rates and biovolume were significantly greater at a depth of 1.5 m (5 ft) when compared with a 4.6 m (15 ft) depth, and during the shorter incubation periods (two and four weeks). Mean zooplankton densities were greatest for Copepoda (88 %), then Daphnia spp. (10%) and other Cladocera (2.1%), while the zooplankton biomass assessment indicated Daphnia spp. had the greatest biomass (53.6%), then Copepoda (44.0%) and other Cladocera (2.5%). Mean overall zooplankton densities were the lowest observed since 1991. The cause was unclear, but may have been an artifact of human error. It seems unlikely that hydro-operations played a significant part in the reduction of zooplankton in light of the relatively friendly water year of 1998.

Shields, John; Spotts, Jim; Underwood, Keith

2002-11-01T23:59:59.000Z

419

TheTheTheThe MysteryMysteryMysteryMystery ofofofof the Black Lakethe Black Lakethe Black Lakethe Black Lake  

E-Print Network (OSTI)

TheTheTheThe MysteryMysteryMysteryMystery ofofofof the Black Lakethe Black Lakethe Black Lakethe Black Lake Manuel AlfonsecaManuel AlfonsecaManuel AlfonsecaManuel Alfonseca #12;Manuel Alfonseca 2 #12;The Mystery of the Black Lake 3 The Mystery of the Black LakeThe Mystery of the Black LakeThe Mystery

Alfonseca, Manuel

420

"EMM Region","PC","IGCC","PC","Conv. CT","Adv. CT","Conv. CC","Adv. CC","Adv. CC w/CCS","Fuel Cell","Nuclear","Biomass","MSW","On-shore Wind","Off-shore Wind","Solar Thermal","Solar PV"  

U.S. Energy Information Administration (EIA) Indexed Site

Regional cost adjustments for technologies modeled by NEMS by Electric Market Modul (EMM) region 10,11" Regional cost adjustments for technologies modeled by NEMS by Electric Market Modul (EMM) region 10,11" "EMM Region","PC","IGCC","PC","Conv. CT","Adv. CT","Conv. CC","Adv. CC","Adv. CC w/CCS","Fuel Cell","Nuclear","Biomass","MSW","On-shore Wind","Off-shore Wind","Solar Thermal","Solar PV" ,,,"w/CCS" "1 (ERCT)",0.91,0.92,0.92,0.93,0.95,0.91,0.92,0.9,0.96,0.96,0.93,0.93,0.95,0.92,0.86,0.87 "2 (FRCC)",0.92,0.93,0.94,0.93,0.93,0.91,0.92,0.92,0.97,0.97,0.94,0.94,"N/A","N/A",0.89,0.9 "3 (MROE)",1.01,1.01,0.99,0.99,1.01,0.99,0.99,0.97,0.99,1.01,0.99,0.98,0.99,0.97,"N/A",0.96

Note: This page contains sample records for the topic "lake erie shore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

VEE-0018 - In the Matter of Lakes Gas Company | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

18 - In the Matter of Lakes Gas Company 18 - In the Matter of Lakes Gas Company VEE-0018 - In the Matter of Lakes Gas Company On March 12, 1996, the Lakes Gas Company (Lakes) of Forest Lake, Minnesota, filed an Application for Exception with the Office of Hearings and Appeals of the Department of Energy. In its Application, Lakes requests that it be relieved of the requirement that it file the Energy Information Administration's (EIA) form entitled "Resellers'/Retailers' Monthly Petroleum Product Sales Report" (Form EIA-782B). As explained below, we have determined that the Application for Exception should be denied. vee0018.pdf More Documents & Publications VEE-0081 - In the Matter of North Side Coal & Oil Co., Inc. VEE-0085 - In the Matter of Smith Brothers Gas Company VEE-0067 - In the Matter of M.L. Halle Oil Service

422

Storm Lake I Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Storm Lake I Wind Farm Storm Lake I Wind Farm Jump to: navigation, search Name Storm Lake I Wind Farm Facility Storm Lake I Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Edison Mission Group Developer GE Energy Energy Purchaser MidAmerican Energy Location Buena Vista and Cherokee Counties IA Coordinates 42.57215°, -95.340693° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.57215,"lon":-95.340693,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

423

Crystal Lake - Clipper (08) Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Crystal Lake - Clipper (08) Wind Farm Crystal Lake - Clipper (08) Wind Farm Jump to: navigation, search Name Crystal Lake - Clipper (08) Wind Farm Facility Crystal Lake - Clipper (08) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Location IA Coordinates 43.221728°, -93.833227° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.221728,"lon":-93.833227,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

424

Lake City Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Lake City Hot Springs Geothermal Area Lake City Hot Springs Geothermal Area (Redirected from Lake City Hot Springs Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Lake City Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (12) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.66842001,"lon":-120.2068527,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

425

Combustion Effects Investigation at the Martin Lake Station  

Science Conference Proceedings (OSTI)

One key to improving the availability of coal-fired plants is an improved understanding of the impact of combustion conditions on deposit formation on furnace walls. This report builds on a previously developed model of a unit at the Martin Lake Generating Station to investigate the conditions contributing to excessive slagging at the plant.

2009-11-25T23:59:59.000Z

426

Luminant Martin Lake Unit 3 Intelligent Sootblowing Test Report  

Science Conference Proceedings (OSTI)

A Clyde Bergemann Intelligent Sootblowing (ISB) system was recently installed at Luminant's Martin Lake Unit 3. This report compares the performance of the new ISB system to that of the previous boiler cleaning control system. Criteria monitored during the test included overall heat flux, cleanliness factors from thermodynamic modeling, ash weight, emissions, gas temperatures, and the number of daily sootblower and wallblower operations.

2009-05-01T23:59:59.000Z

427

DIRECT MEASUREMENT OF HEAT FLUX FROM COOLING LAKE THERMAL IMAGERY  

SciTech Connect

Laboratory experiments show a linear relationship between the total heat flux from a water surface to air and the standard deviation of the surface temperature field, {sigma}, derived from thermal images of the water surface over a range of heat fluxes from 400 to 1800 Wm{sup -2}. Thermal imagery and surface data were collected at two power plant cooling lakes to determine if the laboratory relationship between heat flux and {sigma} exists in large heated bodies of water. The heat fluxes computed from the cooling lake data range from 200 to 1400 Wm{sup -2}. The linear relationship between {sigma} and Q is evident in the cooling lake data, but it is necessary to apply band pass filtering to the thermal imagery to remove camera artifacts and non-convective thermal gradients. The correlation between {sigma} and Q is improved if a correction to the measured {sigma} is made that accounts for wind speed effects on the thermal convection. Based on more than a thousand cooling lake images, the correlation coefficients between {sigma} and Q ranged from about 0.8 to 0.9.

Garrett, A; Eliel Villa-Aleman, E; Robert Kurzeja, R; Malcolm Pendergast, M; Timothy Brown, T; Saleem Salaymeh, S

2007-12-19T23:59:59.000Z

428

Climate Fluctuations and Record-High Levels of Lake Michigan  

Science Conference Proceedings (OSTI)

Lake Michigan reached record-high levels during 1985 and 1986 just 10 years after attaining its previous record highs of this century. The climate of the basin has become cloudier and cooler over the past 40 years, loading to decreased ...

Stanley A. Changnon Jr.

1987-11-01T23:59:59.000Z

429

Salt Lake City, Utah: Solar in Action (Brochure)  

DOE Green Energy (OSTI)

This brochure provides an overview of the challenges and successes of Salt Lake City, UT, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

Not Available

2011-10-01T23:59:59.000Z

430

Lake Roosevelt Fisheries Evaluation Program : Lake Whatcom Kokanee Salmon (Oncorhynchus nerka kennerlyi) : Investigations in Lake Roosevelt Annual Report 1999-2000.  

DOE Green Energy (OSTI)

Lake Whatcom stock kokanee have been planted in Lake Roosevelt since 1988 with the primary goal of establishing a self-sustaining fishery. Returns of hatchery kokanee to egg collection facilities and recruitment to the creel have been minimal. Therefore, four experiments were conducted to determine the most appropriate release strategy that would increase kokanee returns. The first experiment compared morpholine and non-morpholine imprinted kokanee return rates, the second experiment compared early and middle run Whatcom kokanee, the third experiment compared early and late release dates, and the fourth experiment compared three net pen release strategies: Sherman Creek hatchery vs. Sherman Creek net pens, Colville River net pens vs. Sherman Creek net pens, and upper vs. lower reservoir net pen releases. Each experiment was tested in three ways: (1) returns to Sherman Creek, (2) returns to other tributaries throughout the reservoir, and (3) returns to the creel. Chi-square analysis of hatchery and tributary returns indicated no significant difference between morpholine imprinted and non-imprinted fish, early run fish outperformed middle run fish, early release date outperformed late release fish, and the hatchery outperformed all net pen releases. Hatchery kokanee harvest was estimated at 3,323 fish, which was 33% of the total harvest. Return rates (1998 = 0.52%) of Whatcom kokanee were low indicating an overall low performance that could be caused by high entrainment, predation, and precocity. A kokanee stock native to the upper Columbia, as opposed to the coastal Whatcom stock, may perform better in Lake Roosevelt.

McLellan, Holly J.; Scholz, Allan T.; McLellan, Jason G.; Tilson, Mary Beth

2001-07-01T23:59:59.000Z

431

Hungry Horse Mitigation; Flathead Lake, 2004-2005 Annual Report.  

DOE Green Energy (OSTI)

The Confederated Salish and Kootenai Tribes (CSKT) and Montana Fish Wildlife and Parks (MFWP) wrote the ''Fisheries Mitigation Plan for Losses Attributable to the Construction and Operation of Hungry Horse Dam'' in March 1991 to define the fisheries losses, mitigation alternatives and recommendations to protect, mitigate and enhance resident fish and aquatic habitat affected by Hungry Horse Dam. On November 12, 1991, the Northwest Power Planning Council (NPPC) approved the mitigation plan with minor modifications, called for a detailed implementation plan, and amended measures 903(h)(1) through (7). A long-term mitigation plan was submitted in August 1992, was approved by the Council in 1993, and the first contract for this project was signed on November 11, 1993. The problem this project addresses is the loss of habitat, both in quality and quantity, in the Flathead Lake and River basin resulting from the construction and operation of Hungry Horse Dam. The purpose of the project is to both implement mitigation measures and monitor the biological responses to those measures including those implemented by Project Numbers 9101903 and 9101904. Goals and objectives of the 1994 Fish and Wildlife Program (Section 10.1) addressed by this project are the rebuilding to sustainable levels weak, but recoverable, native populations injured by the hydropower system. The project mitigates the blockage of spawning runs by Hungry Horse Dam by restoring and even creating spawning habitats within direct drainages to Flathead Lake. The project also addresses the altered habitat within Flathead Lake resulting from species shifts and consequent dominance of new species that restricts the potential success of mitigation measures. Specific goals of this project are to create and restore habitat and quantitatively monitor changes in fish populations to verify the efficacy of our mitigation measures. The project consists of three components: monitoring, restoration and research. Monitoring, for example, includes a spring gillnetting series conducted annually in Flathead Lake and builds on an existing data set initiated in 1981. Monitoring of the experimental kokanee reintroduction was a primary activity of this project between 1992 and 1997. Lake trout, whose high densities have precluded successful mitigation of losses of other species in Flathead Lake, have been monitored since 1996 to measure several biological parameters. Results of this work have utility in determining the population status of this key predator in Flathead Lake. The project has also defined the baseline condition of the Flathead Lake fishery in 1992-1993 and has conducted annual lakewide surveys since 1998. The restoration component of the project has addressed several stream channel, riparian, and fish passage problems, and suppression of non-native fish. The research component of the project began in FY 2000 and measured trophic linkages between M. relicta and other species to assist in predicting the results of our efforts to suppress lake trout. Only Work Element A in the Statement of Work is funded entirely by Hungry Horse Mitigation funds. Additional funds are drawn from other sources to assist in completion of all remaining Work Elements.

Hansen, Barry; Evarts, Les (Confederated Salish and Kootenai Tribes of the Flathead Nation, Pablo, MT)

2006-06-01T23:59:59.000Z

432

Hungry Horse Mitigation : Flathead Lake : Annual Progress Report 2008.  

DOE Green Energy (OSTI)

The Confederated Salish and Kootenai Tribes (CSKT) and Montana Fish Wildlife and Parks (MFWP) wrote the 'Fisheries Mitigation Plan for Losses Attributable to the Construction and Operation of Hungry Horse Dam' in March 1991 to define the fisheries losses, mitigation alternatives and recommendations to protect, mitigate and enhance resident fish and aquatic habitat affected by Hungry Horse Dam. On November 12, 1991, the Northwest Power Planning Council (NPPC) approved the mitigation plan with minor modifications, called for a detailed implementation plan, and amended measures 903(h)(1) through (7). A long-term mitigation plan was submitted in August 1992, was approved by the Council in 1993, and the first contract for this project was signed on November 11, 1993. The problem this project addresses is the loss of habitat, both in quality and quantity, in the Flathead Lake and River basin resulting from the construction and operation of Hungry Horse Dam. The purpose of the project is to both implement mitigation measures and monitor the biological responses to those measures including those implemented by Project Numbers 9101903 and 9101904. Goals and objectives of the 1994 Fish and Wildlife Program (Section 10.1) addressed by this project are the rebuilding to sustainable levels weak, but recoverable, native populations injured by the hydropower system. The project mitigates the blockage of spawning runs by Hungry Horse Dam by restoring and even creating spawning habitats within direct drainages to Flathead Lake. The project also addresses the altered habitat within Flathead Lake resulting from species shifts and consequent dominance of new species that restricts the potential success of mitigation measures. Specific goals of this project are to create and restore habitat and quantitatively monitor changes in fish populations to verify the efficacy of our mitigation measures. The project consists of three components: monitoring, restoration and research. Monitoring, for example, includes a spring gillnetting series conducted annually in Flathead Lake and builds on an existing data set initiated in 1981. Monitoring of the experimental kokanee reintroduction was a primary activity of this project between 1992 and 1997. Lake trout, whose high densities have precluded successful mitigation of losses of other species in Flathead Lake, have been monitored since 1996 to measure several biological parameters. Results of this work have utility in determining the population status of this key predator in Flathead Lake. The project has also defined the baseline condition of the Flathead Lake fishery in 1992-1993 and has conducted annual lakewide surveys since 1998. The restoration component of the project has addressed several stream channel, riparian, and fish passage problems, and suppression of non-native fish. The research component of the project began in FY 2000 and measured trophic linkages between M. relicta and other species to assist in predicting the results of our efforts to suppress lake trout. Only Work Element A in the Statement of Work is funded entirely by Hungry Horse Mitigation funds. Additional funds are drawn from other sources to assist in completion of all remaining Work Elements.

Hansen, Barry; Evarts, Les [Confederated Salish and Kootenai Tribes

2009-08-06T23:59:59.000Z

433

Hungry Horse Mitigation : Flathead Lake : Annual Progress Report 2007.  

DOE Green Energy (OSTI)

The Confederated Salish and Kootenai Tribes (CSKT) and Montana Fish Wildlife and Parks (MFWP) wrote the 'Fisheries Mitigation Plan for Losses Attributable to the Construction and Operation of Hungry Horse Dam' in March 1991 to define the fisheries losses, mitigation alternatives and recommendations to protect, mitigate and enhance resident fish and aquatic habitat affected by Hungry Horse Dam. On November 12, 1991, the Northwest Power Planning Council (NPPC) approved the mitigation plan with minor modifications, called for a detailed implementation plan, and amended measures 903(h)(1) through (7). A long-term mitigation plan was submitted in August 1992, was approved by the Council in 1993, and the first contract for this project was signed on November 11, 1993. The problem this project addresses is the loss of habitat, both in quality and quantity, in the Flathead Lake and River basin resulting from the construction and operation of Hungry Horse Dam. The purpose of the project is to both implement mitigation measures and monitor the biological responses to those measures including those implemented by Project Numbers 9101903 and 9101904. Goals and objectives of the 1994 Fish and Wildlife Program (Section 10.1) addressed by this project are the rebuilding to sustainable levels weak, but recoverable, native populations injured by the hydropower system. The project mitigates the blockage of spawning runs by Hungry Horse Dam by restoring and even creating spawning habitats within direct drainages to Flathead Lake. The project also addresses the altered habitat within Flathead Lake resulting from species shifts and consequent dominance of new species that restricts the potential success of mitigation measures. Specific goals of this project are to create and restore habitat and quantitatively monitor changes in fish populations to verify the efficacy of our mitigation measures. The project consists of three components: monitoring, restoration and research. Monitoring, for example, includes a spring gillnetting series conducted annually in Flathead Lake and builds on an existing data set initiated in 1981. Monitoring of the experimental kokanee reintroduction was a primary activity of this project between 1992 and 1997. Lake trout, whose high densities have precluded successful mitigation of losses of other species in Flathead Lake, have been monitored since 1996 to measure several biological parameters. Results of this work have utility in determining the population status of this key predator in Flathead Lake. The project has also defined the baseline condition of the Flathead Lake fishery in 1992-1993 and has conducted annual lakewide surveys since 1998. The restoration component of the project has addressed several stream channel, riparian, and fish passage problems, and suppression of non-native fish. The research component of the project began in FY 2000 and measured trophic linkages between M. relicta and other species to assist in predicting the results of our efforts to suppress lake trout. Only Work Element A in the Statement of Work is funded entirely by Hungry Horse Mitigation funds. Additional funds are drawn from other sources to assist in completion of all remaining Work Elements.

Hansen, Barry; Evarts, Les [Confederated Salish and Kootenai Tribes

2008-12-22T23:59:59.000Z

434

Hungry Horse Mitigation; Flathead Lake, 2003-2004 Annual Report.  

DOE Green Energy (OSTI)

The Confederated Salish and Kootenai Tribes (CSKT) and Montana Fish Wildlife and Parks (MFWP) wrote the ''Fisheries Mitigation Plan for Losses Attributable to the Construction and Operation of Hungry Horse Dam'' in March 1991 to define the fisheries losses, mitigation alternatives and recommendations to protect, mitigate and enhance resident fish and aquatic habitat affected by Hungry Horse Dam. On November 12, 1991, the Northwest Power Planning Council (NPPC) approved the mitigation plan with minor modifications, called for a detailed implementation plan, and amended measures 903(h)(1) through (7). A long-term mitigation plan was submitted in August 1992, was approved by the Council in 1993, and the first contract for this project was signed on November 11, 1993. The problem this project addresses is the loss of habitat, both in quality and quantity, in the Flathead Lake and River basin resulting from the construction and operation of Hungry Horse Dam. The purpose of the project is to both implement mitigation measures and monitor the biological responses to those measures including those implemented by Project Numbers 9101903 and 9101904. Goals and objectives of the 1994 Fish and Wildlife Program (Section 10.1) addressed by this project are the rebuilding to sustainable levels weak, but recoverable, native populations injured by the hydropower system. The project mitigates the blockage of spawning runs by Hungry Horse Dam by restoring and even creating spawning habitats within direct drainages to Flathead Lake. The project also addresses the altered habitat within Flathead Lake resulting from species shifts and consequent dominance of new species that restricts the potential success of mitigation measures. Specific goals of this project are to create and restore habitat and quantitatively monitor changes in fish populations to verify the efficacy of our mitigation measures. The project consists of three components: monitoring, restoration and research. Monitoring, for example, includes a spring gillnetting series conducted annually in Flathead Lake and builds on an existing data set initiated in 1981. Monitoring of the experimental kokanee reintroduction was a primary activity of this project between 1992 and 1997. Lake trout, whose high densities have precluded successful mitigation of losses of other species in Flathead Lake, have been monitored since 1996 to measure several biological parameters. Results of this work have utility in determining the population status of this key predator in Flathead Lake. The project has also defined the baseline condition of the Flathead Lake fishery in 1992-1993 and has conducted annual lakewide surveys since 1998. The restoration component of the project has addressed several stream channel, riparian, and fish passage problems, and suppression of non-native fish. The research component of the project began in FY 2000 and measured trophic linkages between M. relicta and other species to assist in predicting the results of our efforts to suppress lake trout. Only Objective 1 in the workplan is funded entirely by Hungry Horse Mitigation funds. Additional funds are drawn from other sources to assist in completion of Objectives 2-8.

Hansen, Barry; Evarts, Les (Confederated Salish and Kootenai Tribes of the Flathead Nation, Pablo, MT)

2005-06-01T23:59:59.000Z

435

Simulation of Heavy Lake-Effect Snowstorms across the Great Lakes Basin by RegCM4: Synoptic Climatology and Variability  

Science Conference Proceedings (OSTI)

A historical simulation (19762002) of the Abdus Salam International Centre for Theoretical Physics Regional Climate Model, version 4 (ICTP RegCM4), coupled to a one-dimensional lake model, is validated against observed lake ice cover and snowfall ...

Michael Notaro; Azar Zarrin; Steve Vavrus; Val Bennington

2013-06-01T23:59:59.000Z

436

The Role of Ice Cover in Heavy Lake-Effect Snowstorms over the Great Lakes Basin as Simulated by RegCM4  

Science Conference Proceedings (OSTI)

A 20-km regional climate model, the Abdus Salam International Centre for Theoretical Physics Regional Climate Model version 4 (ICTP RegCM4), is employed to investigate heavy lake-effect snowfall (HLES) over the Great Lakes Basin and the role of ...

Steve Vavrus; Michael Notaro; Azar Zarrin

2013-01-01T23:59:59.000Z

437

Woodcliff Lake, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Woodcliff Lake, New Jersey: Energy Resources Woodcliff Lake, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.0234304°, -74.0665297° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.0234304,"lon":-74.0665297,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

438

Three Lakes, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Lakes, Florida: Energy Resources Lakes, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 25.642049°, -80.3983876° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":25.642049,"lon":-80.3983876,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

439

Wolverine Lake, Michigan: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Lake, Michigan: Energy Resources Lake, Michigan: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.556717°, -83.484431° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.556717,"lon":-83.484431,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

440

Chippewa Lake, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Chippewa Lake, Ohio: Energy Resources Chippewa Lake, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.0697771°, -81.9009726° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.0697771,"lon":-81.9009726,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "lake erie shore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Linwood Lake, Minnesota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Lake, Minnesota: Energy Resources Lake, Minnesota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.3120616°, -92.1143214° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.3120616,"lon":-92.1143214,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

442

Lake Gas Recovery Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Gas Recovery Biomass Facility Gas Recovery Biomass Facility Jump to: navigation, search Name Lake Gas Recovery Biomass Facility Facility Lake Gas Recovery Sector Biomass Facility Type Landfill Gas Location Cook County, Illinois Coordinates 41.7376587°, -87.697554° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.7376587,"lon":-87.697554,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

443

Sky Lake, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Lake, Florida: Energy Resources Lake, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 28.4572272°, -81.3914592° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":28.4572272,"lon":-81.3914592,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

444

Walled Lake, Michigan: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Walled Lake, Michigan: Energy Resources Walled Lake, Michigan: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.537811°, -83.4810481° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.537811,"lon":-83.4810481,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

445

Storm Lake, Iowa: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Storm Lake, Iowa: Energy Resources Storm Lake, Iowa: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.645021°, -95.199855° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.645021,"lon":-95.199855,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

446

Meyers Lake, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Meyers Lake, Ohio: Energy Resources Meyers Lake, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.812558°, -81.4165041° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.812558,"lon":-81.4165041,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

447

Buckeye Lake, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Lake, Ohio: Energy Resources Lake, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.9336753°, -82.4723781° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.9336753,"lon":-82.4723781,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

448

Potshot Lake, Minnesota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Potshot Lake, Minnesota: Energy Resources Potshot Lake, Minnesota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.9995454°, -93.0040972° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.9995454,"lon":-93.0040972,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

449

Long Lake, Minnesota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Lake, Minnesota: Energy Resources Lake, Minnesota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.9866298°, -93.5716243° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.9866298,"lon":-93.5716243,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

450

Storm Lake II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

II Wind Farm II Wind Farm Jump to: navigation, search Name Storm Lake II Wind Farm Facility Storm Lake II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner AES Corp. Developer GE Energy Energy Purchaser Alliant/IES Utilities Location Buena Vista and Cherokee Counties IA Coordinates 42.655334°, -95.383651° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.655334,"lon":-95.383651,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

451

Salt Lake City, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

(Redirected from Salt Lake City, UT) (Redirected from Salt Lake City, UT) Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.7607793°, -111.8910474° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.7607793,"lon":-111.8910474,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

452

Maple Heights-Lake Desire, Washington: Energy Resources | Open Energy  

Open Energy Info (EERE)

Heights-Lake Desire, Washington: Energy Resources Heights-Lake Desire, Washington: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.4521975°, -122.0984885° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.4521975,"lon":-122.0984885,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

453

Janette Lake, Minnesota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Janette Lake, Minnesota: Energy Resources Janette Lake, Minnesota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.2340488°, -92.9856539° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.2340488,"lon":-92.9856539,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

454

Red Lake Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Red Lake Electric Coop, Inc Red Lake Electric Coop, Inc Place Minnesota Utility Id 26934 Utility Location Yes Ownership C NERC Location MRO NERC ERCOT Yes NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Controlled Electric Water Heating - Commercial Commercial Controlled Electric Water Heating - Residential Residential General Service - 1.5 to 10 kVA - Commercial Commercial General Service - 1.5 to 10 kVA - Multiphase Commercial General Service - 1.5 to 10 kVA - Residential Residential General Service - 11 to 25 kVA - Commercial Commercial General Service - 11 to 25 kVA - Multiphase Commercial

455

Hush Lake, Minnesota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Hush Lake, Minnesota: Energy Resources Hush Lake, Minnesota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.4494204°, -92.1031839° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.4494204,"lon":-92.1031839,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

456

Sylvan Lake, Michigan: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Sylvan Lake, Michigan: Energy Resources Sylvan Lake, Michigan: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.6114217°, -83.3285467° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.6114217,"lon":-83.3285467,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

457

Crystal Lake - GE Energy Wind Farm | Open Energy Information  

Open Energy Info (EERE)

GE Energy Wind Farm GE Energy Wind Farm Jump to: navigation, search Name Crystal Lake - GE Energy Wind Farm Facility Crystal Lake - GE Energy Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Location IA Coordinates 43.194201°, -93.860521° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.194201,"lon":-93.860521,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

458

Lake Placid Village, Inc (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Placid Village, Inc (Utility Company) Placid Village, Inc (Utility Company) Jump to: navigation, search Name Lake Placid Village, Inc Place New York Utility Id 10610 Utility Location Yes Ownership M NERC Location NPCC Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Non-Residential Commercial Non-Residential with Demand More than 25kW Commercial Residential Residential Average Rates Residential: $0.0488/kWh Commercial: $0.0450/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Lake_Placid_Village,_Inc_(Utility_Company)&oldid=410966

459

Lauderdale Lakes, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Lauderdale Lakes, Florida: Energy Resources Lauderdale Lakes, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 26.1664736°, -80.2083806° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.1664736,"lon":-80.2083806,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

460

Cheat Lake, West Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Cheat Lake, West Virginia: Energy Resources Cheat Lake, West Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.6720244°, -79.8533907° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.6720244,"lon":-79.8533907,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "lake erie shore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Lazy Lake, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Lazy Lake, Florida: Energy Resources Lazy Lake, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 26.1561961°, -80.1447675° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.1561961,"lon":-80.1447675,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

462

Lily Lake, Illinois: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Lily Lake, Illinois: Energy Resources Lily Lake, Illinois: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.9489159°, -88.4778586° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.9489159,"lon":-88.4778586,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

463

Peach Lake, New York: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Peach Lake, New York: Energy Resources Peach Lake, New York: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.3675945°, -73.5779042° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.3675945,"lon":-73.5779042,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

464

Pine Lake, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Pine Lake, Georgia: Energy Resources Pine Lake, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.7937162°, -84.2060309° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.7937162,"lon":-84.2060309,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

465

Mud Hen Lake, Minnesota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Hen Lake, Minnesota: Energy Resources Hen Lake, Minnesota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.3270583°, -92.3498333° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.3270583,"lon":-92.3498333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

466

Heikkala Lake, Minnesota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Heikkala Lake, Minnesota: Energy Resources Heikkala Lake, Minnesota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.3243663°, -92.477975° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.3243663,"lon":-92.477975,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

467

Hoyt Lakes, Minnesota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Hoyt Lakes, Minnesota: Energy Resources Hoyt Lakes, Minnesota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.5196465°, -92.1385071° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.5196465,"lon":-92.1385071,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

468

Collings Lakes, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Collings Lakes, New Jersey: Energy Resources Collings Lakes, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.5956716°, -74.8815556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.5956716,"lon":-74.8815556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

469

Okauchee Lake, Wisconsin: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Okauchee Lake, Wisconsin: Energy Resources Okauchee Lake, Wisconsin: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.1233399°, -88.4406534° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.1233399,"lon":-88.4406534,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

470

Nett Lake, Minnesota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Nett Lake, Minnesota: Energy Resources Nett Lake, Minnesota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 48.1110349°, -93.0940552° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.1110349,"lon":-93.0940552,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

471

Bear Head Lake, Minnesota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Head Lake, Minnesota: Energy Resources Head Lake, Minnesota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.7638457°, -92.1265023° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.7638457,"lon":-92.1265023,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

472

Cedar Glen Lakes, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Glen Lakes, New Jersey: Energy Resources Glen Lakes, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.952339°, -74.3998711° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.952339,"lon":-74.3998711,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

473

Tikander Lake, Minnesota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Tikander Lake, Minnesota: Energy Resources Tikander Lake, Minnesota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.4052865°, -92.3562843° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.4052865,"lon":-92.3562843,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

474

Palmer Lake, Colorado: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Palmer Lake, Colorado: Energy Resources Palmer Lake, Colorado: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.1222138°, -104.917204° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.1222138,"lon":-104.917204,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

475

MHK Projects/Lake Huron | Open Energy Information  

Open Energy Info (EERE)

Lake Huron Lake Huron < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.2076,"lon":-81.6235,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

476

Wolf Lake, Michigan: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Lake, Michigan: Energy Resources Lake, Michigan: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.0066766°, -85.8375635° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.0066766,"lon":-85.8375635,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

477

Lake Region Electric Assn, Inc | Open Energy Information  

Open Energy Info (EERE)

Lake Region Electric Assn, Inc Lake Region Electric Assn, Inc Place South Dakota Utility Id 10632 Utility Location Yes Ownership C NERC Location MRO NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service - Large Three Phase Heating(Separate Metering) Industrial General Service Single Phase Commercial General Service Single Phase (Heat-separate meter) Commercial General Service- Large Three-Phase Controlled Commercial General Service- Large Three-Phase uncontrolled Industrial General Service- Seasonal Service Commercial General Service- Small Three-Phase Commercial

478

Budd Lake, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Budd Lake, New Jersey: Energy Resources Budd Lake, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.8712101°, -74.7340523° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.8712101,"lon":-74.7340523,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon"