National Library of Energy BETA

Sample records for lake charles areas

  1. Lake Charles CCS Project

    SciTech Connect (OSTI)

    Leib, Thomas; Cole, Dan

    2015-06-30

    In late September 2014 development of the Lake Charles Clean Energy (LCCE) Plant was abandoned resulting in termination of Lake Charles Carbon Capture and Sequestration (CCS) Project which was a subset the LCCE Plant. As a result, the project was only funded through Phase 2A (Design) and did not enter Phase 2B (Construction) or Phase 2C (Operations). This report was prepared relying on information prepared and provided by engineering companies which were engaged by Leucadia Energy, LLC to prepare or review Front End Engineering and Design (FEED) for the Lake Charles Clean Energy Project, which includes the Carbon Capture and Sequestration (CCS) Project in Lake Charles, Louisiana. The Lake Charles Carbon Capture and Sequestration (CCS) Project was to be a large-scale industrial CCS project intended to demonstrate advanced technologies that capture and sequester carbon dioxide (CO2) emissions from industrial sources into underground formations. The Scope of work was divided into two discrete sections; 1) Capture and Compression prepared by the Recipient Leucadia Energy, LLC, and 2) Transport and Sequestration prepared by sub-Recipient Denbury Onshore, LLC. Capture and Compression-The Lake Charles CCS Project Final Technical Report describes the systems and equipment that would be necessary to capture CO2 generated in a large industrial gasification process and sequester the CO2 into underground formations. The purpose of each system is defined along with a description of its equipment and operation. Criteria for selection of major equipment are provided and ancillary utilities necessary for safe and reliable operation in compliance with environmental regulations are described. Construction considerations are described including a general arrangement of the CCS process units within the overall gasification project. A cost estimate is provided, delineated by system area with cost breakdown showing equipment, piping and materials, construction labor, engineering, and other costs. The CCS Project Final Technical Report is based on a Front End Engineering and Design (FEED) study prepared by SK E&C, completed in [June] 2014. Subsequently, Fluor Enterprises completed a FEED validation study in mid-September 2014. The design analyses indicated that the FEED package was sufficient and as expected. However, Fluor considered the construction risk based on a stick-build approach to be unacceptable, but construction risk would be substantially mitigated through utilization of modular construction where site labor and schedule uncertainty is minimized. Fluor’s estimate of the overall EPC project cost utilizing the revised construction plan was comparable to SKE&C’s value after reflecting Fluor’s assessment of project scope and risk characteristic. Development was halted upon conclusion of Phase 2A FEED and the project was not constructed.Transport and Sequestration – The overall objective of the pipeline project was to construct a pipeline to transport captured CO2 from the Lake Charles Clean Energy project to the existing Denbury Green Line and then to the Hastings Field in Southeast Texas to demonstrate effective geologic sequestration of captured CO2 through commercial EOR operations. The overall objective of the MVA portion of the project was to demonstrate effective geologic sequestration of captured CO2 through commercial Enhanced Oil Recovery (EOR) operations in order to evaluate costs, operational processes and technical performance. The DOE target for the project was to capture and implement a research MVA program to demonstrate the sequestration through EOR of approximately one million tons of CO2 per year as an integral component of commercial operations.

  2. The Lake Charles CCS Project

    SciTech Connect (OSTI)

    Doug Cathro

    2010-06-30

    The Lake Charles CCS Project is a large-scale industrial carbon capture and sequestration (CCS) project which will demonstrate advanced technologies that capture and sequester carbon dioxide (CO{sub 2}) emissions from industrial sources into underground formations. Specifically the Lake Charles CCS Project will accelerate commercialization of large-scale CO{sub 2} storage from industrial sources by leveraging synergy between a proposed petroleum coke to chemicals plant (the LCC Gasification Project) and the largest integrated anthropogenic CO{sub 2} capture, transport, and monitored sequestration program in the U.S. Gulf Coast Region. The Lake Charles CCS Project will promote the expansion of EOR in Texas and Louisiana and supply greater energy security by expanding domestic energy supplies. The capture, compression, pipeline, injection, and monitoring infrastructure will continue to sequester CO{sub 2} for many years after the completion of the term of the DOE agreement. The objectives of this project are expected to be fulfilled by working through two distinct phases. The overall objective of Phase 1 was to develop a fully definitive project basis for a competitive Renewal Application process to proceed into Phase 2 - Design, Construction and Operations. Phase 1 includes the studies attached hereto that will establish: the engineering design basis for the capture, compression and transportation of CO{sub 2} from the LCC Gasification Project, and the criteria and specifications for a monitoring, verification and accounting (MVA) plan at the Hastings oil field in Texas. The overall objective of Phase 2, provided a successful competitive down-selection, is to execute design, construction and operations of three capital projects: (1) the CO{sub 2} capture and compression equipment, (2) a Connector Pipeline from the LLC Gasification Project to the Green Pipeline owned by Denbury and an affiliate of Denbury, and (3) a comprehensive MVA system at the Hastings oil field.

  3. Lake Charles, LA Natural Gas LNG Imports from Equatorial Guinea...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lake Charles, LA Natural Gas LNG Imports from Equatorial Guinea (Dollars per Thousand Cubic Feet) Lake Charles, LA Natural Gas LNG Imports from Equatorial Guinea (Dollars per ...

  4. EIS-0498: Magnolia LNG and Lake Charles Expansion Projects; Calcasieu

    Office of Environmental Management (EM)

    Parish, Louisiana | Department of Energy 8: Magnolia LNG and Lake Charles Expansion Projects; Calcasieu Parish, Louisiana EIS-0498: Magnolia LNG and Lake Charles Expansion Projects; Calcasieu Parish, Louisiana Summary The Federal Energy Regulatory Commission prepared an EIS that analyzes the potential environmental impacts of constructing and operating the proposed Magnolia LNG Project, an on-land liquefied natural gas (LNG) terminal and associated facilities near Lake Charles, Louisiana.

  5. EIS-0498: Magnolia LNG and Lake Charles Expansion Projects; Calcasieu...

    Energy Savers [EERE]

    with the public interest. EIS-0498: Magnolia LNG and Lake Charles Expansion Projects Public Comment Opportunities No public comment opportunities available at this time....

  6. EIS-0498: Magnolia LNG and Lake Charles Expansion Projects; Calcasieu...

    Broader source: Energy.gov (indexed) [DOE]

    which would reconfigure an existing pipeline system to serve the LNG terminal site. ... EIS-0498: Magnolia LNG and Lake Charles Expansion Projects Public Comment Opportunities No ...

  7. Lake Charles Liquefaction Project Final Environmental Impact Statement

    Office of Environmental Management (EM)

    Lake Charles Liquefaction Project Final Environmental Impact Statement Trunkline Gas Company, LLC, Lake Charles LNG Company, LLC, and Lake Charles LNG Export Company, LLC FERC Docket Nos. CP14-119-000, CP14-120-000, and CP14-122-000 DOE Docket Nos. 11-59-LNG and 13-04-LNG FERC/EIS-0258F, DOE/EIS-0491 Cooperating Agencies: U.S. Coast Guard U.S. Department of Energy U.S. Department of Transportation Lake Charles Liquefaction Project Final Environmental Impact Statement FERC/EIS-0258F Docket Nos.

  8. EIS-0491: Lake Charles Liquefaction Project; Calcasieu Parish, Louisiana |

    Office of Environmental Management (EM)

    Department of Energy 1: Lake Charles Liquefaction Project; Calcasieu Parish, Louisiana EIS-0491: Lake Charles Liquefaction Project; Calcasieu Parish, Louisiana Summary The Federal Energy Regulatory Commission (FERC) prepared, with DOE as a cooperating agency, an EIS to analyze the potential environmental impacts of a proposal to expand an existing liquefied natural gas (LNG) import terminal in Calcasieu Parish, Louisiana, by constructing and operating natural gas liquefaction and exportation

  9. QER- Comment of Lake Charles Harbor & Terminal District

    Broader source: Energy.gov [DOE]

    Good Afternoon, Please find the Lake Charles Harbor and Terminal District’s comments on Infrastructure Constraints in re: the QER Investigation hearing scheduled for Bismarck, ND on August 8, 2014. Please include these comments in the public record of the hearing. Thank you.

  10. Lake Charles Carbon Capture and Sequestration Project U. S. Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lake Charles Carbon Capture and Sequestration Project U. S. Department of Energy National Energy Technology Laboratory March 2014 1 INTRODUCTION The United States (U.S.) Department of Energy (DOE) issued a final environmental impact statement (EIS; DOE/EIS-0464) for the Lake Charles Carbon Capture and Sequestration Project (Lake Charles CCS Project) in November 2013. DOE announced its decision to provide up to $261.4 million in cost-shared funding to Leucadia Energy, LLC (Leucadia) for the

  11. Lake Charles Carbon Capture and Sequestration Project U. S. Department of Energy

    Office of Environmental Management (EM)

    Lake Charles Carbon Capture and Sequestration Project U. S. Department of Energy National Energy Technology Laboratory March 2014 1 INTRODUCTION The United States (U.S.) Department of Energy (DOE) issued a final environmental impact statement (EIS; DOE/EIS-0464) for the Lake Charles Carbon Capture and Sequestration Project (Lake Charles CCS Project) in November 2013. DOE announced its decision to provide up to $261.4 million in cost-shared funding to Leucadia Energy, LLC (Leucadia) for the

  12. SEMI-ANNUAL REPORTS FOR LAKE CHARLES EXPORTS, LLC - FE DKT. NO. 11-59-LNG -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ORDER 3324 | Department of Energy LAKE CHARLES EXPORTS, LLC - FE DKT. NO. 11-59-LNG - ORDER 3324 SEMI-ANNUAL REPORTS FOR LAKE CHARLES EXPORTS, LLC - FE DKT. NO. 11-59-LNG - ORDER 3324 PDF icon October 2013 PDF icon April 2014 PDF icon October 2014 PDF icon April 2015 PDF icon October 2015 More Documents & Publications SEMI-ANNUAL REPORTS FOR LAKE CHARLES LNG EXPORT COMPANY, LLC (formerly Trunkline LNG Export, LLC) - DK. NO. 13-04-LNG - ORDER 3252 FE DOCKET NO. 11-59-LNG EIS-0491: Draft

  13. SEMI-ANNUAL REPORTS FOR LAKE CHARLES LNG EXPORT COMPANY, LLC...

    Broader source: Energy.gov (indexed) [DOE]

    & Publications SEMI-ANNUAL REPORTS FOR LAKE CHARLES EXPORTS, LLC - FE DKT. NO. 11-59-LNG - ORDER 3324 EIS-0491: Draft Environmental Impact Statement FE DOCKET NO. 11-59-LNG

  14. SEMI-ANNUAL REPORTS FOR LAKE CHARLES LNG EXPORT COMPANY, LLC...

    Broader source: Energy.gov (indexed) [DOE]

    & Publications SEMI-ANNUAL REPORTS FOR LAKE CHARLES EXPORTS, LLC - FE DKT. NO. 11-59-LNG - ORDER 3324 EIS-0491: Draft Environmental Impact Statement FE DOCKET NO. 11-59-LNG...

  15. Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from Trinidad

    U.S. Energy Information Administration (EIA) Indexed Site

    and Tobago (Million Cubic Feet) Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from Trinidad and Tobago (Million Cubic Feet) Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from Trinidad and Tobago (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,282 2012 2,514 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  16. SEMI-ANNUAL REPORTS FOR LAKE CHARLES LNG EXPORT COMPANY, LLC (formerly

    Energy Savers [EERE]

    Trunkline LNG Export, LLC) - DK. NO. 13-04-LNG - ORDER 3252 | Department of Energy LAKE CHARLES LNG EXPORT COMPANY, LLC (formerly Trunkline LNG Export, LLC) - DK. NO. 13-04-LNG - ORDER 3252 SEMI-ANNUAL REPORTS FOR LAKE CHARLES LNG EXPORT COMPANY, LLC (formerly Trunkline LNG Export, LLC) - DK. NO. 13-04-LNG - ORDER 3252 PDF icon April 2013 PDF icon October 2013 PDF icon April 2014 PDF icon October 2014 PDF icon April 2015 PDF icon October 2015 More Documents & Publications SEMI-ANNUAL

  17. Honey Lake Geothermal Area

    Broader source: Energy.gov [DOE]

    The Honey Lake geothermal area is located in Lassen County, California and Washoe County, Nevada. There are three geothermal projects actively producing electrical power. They are located at Wendel...

  18. Price of Lake Charles, LA Liquefied Natural Gas Total Imports (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Liquefied Natural Gas Total Imports (Dollars per Thousand Cubic Feet) Price of Lake Charles, LA Liquefied Natural Gas Total Imports (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 5.00 5.61 9.05 6.64 6.88 7.63 3.32 2010's 4.05 4.18 2.10 -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release

  19. Price of Lake Charles, LA Natural Gas LNG Imports from Algeria (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Algeria (Dollars per Thousand Cubic Feet) Price of Lake Charles, LA Natural Gas LNG Imports from Algeria (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.21 2000's 3.49 3.37 3.60 5.34 5.63 9.13 -- 7.03 -- -- 2010's -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring

  20. Price of Lake Charles, LA Natural Gas LNG Imports from Australia (Dollars

    U.S. Energy Information Administration (EIA) Indexed Site

    per Thousand Cubic Feet) Australia (Dollars per Thousand Cubic Feet) Price of Lake Charles, LA Natural Gas LNG Imports from Australia (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.47 2000's 3.25 3.86 NA -- 6.47 -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: U.S. Price

  1. Price of Lake Charles, LA Natural Gas LNG Imports from Brunei (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Brunei (Dollars per Thousand Cubic Feet) Price of Lake Charles, LA Natural Gas LNG Imports from Brunei (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA 2000's NA NA 3.25 -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: U.S. Price of Liquefied Natural

  2. Price of Lake Charles, LA Natural Gas LNG Imports from Egypt (Nominal

    U.S. Energy Information Administration (EIA) Indexed Site

    Dollars per Thousand Cubic Feet) Egypt (Nominal Dollars per Thousand Cubic Feet) Price of Lake Charles, LA Natural Gas LNG Imports from Egypt (Nominal Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- 9.73 6.60 6.64 7.14 3.29 2010's 3.93 -- -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  3. Price of Lake Charles, LA Natural Gas LNG Imports from Indonesia (Dollars

    U.S. Energy Information Administration (EIA) Indexed Site

    per Thousand Cubic Feet) Indonesia (Dollars per Thousand Cubic Feet) Price of Lake Charles, LA Natural Gas LNG Imports from Indonesia (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA 2000's 3.99 NA NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: U.S. Price of Liquefied

  4. Price of Lake Charles, LA Natural Gas LNG Imports from Malaysia (Dollars

    U.S. Energy Information Administration (EIA) Indexed Site

    per Thousand Cubic Feet) Malaysia (Dollars per Thousand Cubic Feet) Price of Lake Charles, LA Natural Gas LNG Imports from Malaysia (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.36 2000's NA NA 3.43 4.97 4.93 10.00 -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: U.S. Price

  5. Price of Lake Charles, LA Natural Gas LNG Imports from Oman (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Oman (Dollars per Thousand Cubic Feet) Price of Lake Charles, LA Natural Gas LNG Imports from Oman (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA 2000's 3.36 5.56 3.34 3.76 5.59 5.72 -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: U.S. Price of

  6. Price of Lake Charles, LA Natural Gas LNG Imports from Other Countries

    U.S. Energy Information Administration (EIA) Indexed Site

    (Nominal Dollars per Thousand Cubic Feet) Other Countries (Nominal Dollars per Thousand Cubic Feet) Price of Lake Charles, LA Natural Gas LNG Imports from Other Countries (Nominal Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 5.52 -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring

  7. Price of Lake Charles, LA Natural Gas LNG Imports from Qatar (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Qatar (Dollars per Thousand Cubic Feet) Price of Lake Charles, LA Natural Gas LNG Imports from Qatar (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.71 2000's 3.44 4.37 3.39 4.99 5.68 5.97 -- 6.19 -- -- 2010's -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring

  8. Price of Lake Charles, LA Natural Gas LNG Imports from United Arab Emirates

    U.S. Energy Information Administration (EIA) Indexed Site

    (Dollars per Thousand Cubic Feet) United Arab Emirates (Dollars per Thousand Cubic Feet) Price of Lake Charles, LA Natural Gas LNG Imports from United Arab Emirates (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 3.03 2000's 3.53 NA NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring

  9. Magnolia LNG and Lake Charles Expansion Projects Final Environmental Impact Statement

    Office of Environmental Management (EM)

    Energy Regulatory Commission Office of Energy Projects Washington, DC 20426 Magnolia LNG and Lake Charles Expansion Projects Final Environmental Impact Statement Magnolia LNG, LLC and Kinder Morgan Louisiana Pipeline LLC FERC Docket Nos. CP14-347-000 and CP14-511-000 DOE Docket Nos. 12-183-LNG, 13-131-LNG, and 13-132-LNG FERC/EIS-0260F, DOE/EIS-0498 Cooperating Agencies: U.S. Coast Guard U.S. Department of Energy U.S. Department of Transportation U.S. Army Corps of Engineers U.S. Environmental

  10. Price of Lake Charles, LA Natural Gas LNG Imports from Nigeria (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Nigeria (Dollars per Thousand Cubic Feet) Price of Lake Charles, LA Natural Gas LNG Imports from Nigeria (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA 2000's 4.37 5.56 3.21 4.66 5.61 7.44 6.78 6.98 8.68 3.50 2010's 4.06 -- -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  11. Fish Lake Valley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Fish Lake Valley Geothermal Area (Redirected from Fish Lake Valley Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Fish Lake Valley Geothermal Area Contents 1...

  12. Medicine Lake Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Page Technique Activity Start Date Activity End Date Reference Material Geothermal Literature Review At Medicine Lake Geothermal Area (1984) Geothermal Literature Review 1984...

  13. Fish Lake Valley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Fish Lake Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Fish Lake Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure...

  14. Mercury Vapor At Medicine Lake Area (Kooten, 1987) | Open Energy...

    Open Energy Info (EERE)

    Medicine Lake Area (Kooten, 1987) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Medicine Lake Area (Kooten, 1987) Exploration...

  15. Ground Gravity Survey At Clear Lake Area (Skokan, 1993) | Open...

    Open Energy Info (EERE)

    Ground Gravity Survey At Clear Lake Area (Skokan, 1993) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Clear Lake Area...

  16. Pressure Temperature Log At Fish Lake Valley Area (DOE GTP) ...

    Open Energy Info (EERE)

    Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Pressure Temperature Log At Fish Lake Valley Area (DOE GTP)...

  17. Thermochronometry At Fish Lake Valley Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermochronometry At Fish Lake Valley Area (DOE GTP) Exploration...

  18. Static Temperature Survey At Fish Lake Valley Area (Deymonaz...

    Open Energy Info (EERE)

    Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Static Temperature Survey At Fish Lake Valley Area...

  19. Hyperspectral Imaging At Fish Lake Valley Area (Littlefield ...

    Open Energy Info (EERE)

    Fish Lake Valley Area (Littlefield & Calvin, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hyperspectral Imaging At Fish Lake Valley Area...

  20. Geothermometry At Fish Lake Valley Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Fish Lake Valley Area (DOE GTP) Exploration...

  1. Compound and Elemental Analysis At Fish Lake Valley Area (DOE...

    Open Energy Info (EERE)

    ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Fish Lake Valley Area (DOE GTP) Exploration Activity Details Location Fish Lake Valley Area...

  2. Charles Newcomb

    Broader source: Energy.gov [DOE]

    Charles Newcomb is the Wind for Schools Coordinator at DOE’s National Renewable Energy Laboratory.

  3. Geographic Information System At Fish Lake Valley Area (Deymonaz...

    Open Energy Info (EERE)

    Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Fish Lake Valley...

  4. Modeling-Computer Simulations At Fish Lake Valley Area (Deymonaz...

    Open Energy Info (EERE)

    Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Fish Lake Valley...

  5. Geothermal Literature Review At Fish Lake Valley Area (Deymonaz...

    Open Energy Info (EERE)

    Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Fish Lake Valley...

  6. Geothermal Literature Review At Medicine Lake Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Medicine Lake Geothermal Area (1984) Exploration Activity Details Location...

  7. Glen Canyon National Recreation Area, Lake Powell, Utah | Department of

    Office of Environmental Management (EM)

    Energy Glen Canyon National Recreation Area, Lake Powell, Utah Glen Canyon National Recreation Area, Lake Powell, Utah Photo of the Photovoltaic System at Lake Powell, Utah Lake Powell is part of Utah's Glen Canyon National Recreation Area. The Dangling Rope Marina operates by using diesel generators to supply power. They use 65,000 gallons of diesel fuel per year that has to be barged in over Lake Powell. The potential for environmental damage to the marina in the event of a fuel spill is

  8. Charles Worthington

    Broader source: Energy.gov [DOE]

     Charles Worthington is a product designer and software developer serving as a Presidential Innovation Fellow working on Open Data Initiatives at the Department of Energy. Previously, he...

  9. Static Temperature Survey At Medicine Lake Area (Warpinski, Et...

    Open Energy Info (EERE)

    GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Static Temperature Survey At Medicine Lake Area (Warpinski, Et Al., 2002) Exploration Activity Details Location Medicine...

  10. Geothermal Literature Review At Lake City Hot Springs Area (Benoit...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lake City Hot Springs Area (Benoit, Et Al., 2004) Exploration Activity...

  11. Isotopic Analysis At Clear Lake Area (Thompson, Et Al., 1992...

    Open Energy Info (EERE)

    Exploration Activity Details Location Clear Lake Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness useful DOE-funding Unknown Notes Deuterium and...

  12. Compound and Elemental Analysis At Fish Lake Valley Area (Deymonaz...

    Open Energy Info (EERE)

    ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Exploration Activity Details Location Fish...

  13. Time-Domain Electromagnetics At Soda Lake Area (Combs 2006) ...

    Open Energy Info (EERE)

    Time-Domain Electromagnetics At Soda Lake Area (Combs 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Time-Domain Electromagnetics At Soda...

  14. Compound and Elemental Analysis At Clear Lake Area (Thompson...

    Open Energy Info (EERE)

    Details Location Clear Lake Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness useful DOE-funding Unknown Notes Based on the above discussion,...

  15. Geothermometry At Clear Lake Area (Thompson, Et Al., 1992) |...

    Open Energy Info (EERE)

    Activity Details Location Clear Lake Area Exploration Technique Geothermometry Activity Date Usefulness useful DOE-funding Unknown Notes Based on the above discussion,...

  16. Ground Gravity Survey At Lake City Hot Springs Area (Warpinski...

    Open Energy Info (EERE)

    Exploration Activity Details Location Lake City Hot Springs Area Exploration Technique Ground Gravity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes The...

  17. Heat flow studies, Coso Geothermal Area, China Lake, California...

    Open Energy Info (EERE)

    Heat flow studies in the Coso Geothermal Area were conducted at China Lake, California. Temperature measurements were completed in nine of the heat flow boreholes. Temperatures...

  18. Stepout-Deepening Wells At Medicine Lake Area (Warpinski, Et...

    Open Energy Info (EERE)

    2) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Stepout-Deepening Wells At Medicine Lake Area (Warpinski, Et Al., 2002) Exploration Activity...

  19. Data Acquisition-Manipulation At Lake City Hot Springs Area ...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Lake City Hot Springs Area (Warpinski, Et Al., 2004)...

  20. Soda Lake Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Facility Add a new Operating Power Plant Developing Power Projects: 1 East Soda Lake Geothermal Project ( MW, Phase I - Resource Procurement and Identification) Add a new...

  1. Charles Mix County, South Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Zone Subtype A. Places in Charles Mix County, South Dakota Castalia, South Dakota Dante, South Dakota Geddes, South Dakota Lake Andes, South Dakota Marty, South Dakota...

  2. Reflection Survey At Fish Lake Valley Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Reflection Survey At Fish Lake Valley Area (DOE GTP) Exploration...

  3. Field Mapping At Fish Lake Valley Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Fish Lake Valley Area (DOE GTP) Exploration Activity Details Location Fish Lake Valley Area...

  4. Density Log at Fish Lake Valley Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Density Log at Fish Lake Valley Area (DOE GTP) Exploration...

  5. Thermal Gradient Holes At Fish Lake Valley Area (DOE GTP) | Open...

    Open Energy Info (EERE)

    Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Fish Lake Valley Area (DOE GTP)...

  6. Slim Holes At Fish Lake Valley Area (Deymonaz, Et Al., 2008)...

    Open Energy Info (EERE)

    Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Slim Holes At Fish Lake Valley Area (Deymonaz, Et...

  7. Core Analysis At Fish Lake Valley Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Analysis At Fish Lake Valley Area (DOE GTP) Exploration...

  8. Flow Test At Fish Lake Valley Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Fish Lake Valley Area (DOE GTP) Exploration Activity...

  9. Resistivity Log At Fish Lake Valley Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Resistivity Log At Fish Lake Valley Area (DOE GTP) Exploration...

  10. Development Wells At Soda Lake Area (DOE GTP) | Open Energy Informatio...

    Open Energy Info (EERE)

    Soda Lake Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Development Wells At Soda Lake Area (DOE GTP) Exploration Activity...

  11. Flow Test At Soda Lake Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Soda Lake Area (DOE GTP) Exploration Activity Details Location Soda Lake Area...

  12. Reflection Survey At Soda Lake Area (DOE GTP) | Open Energy Informatio...

    Open Energy Info (EERE)

    Soda Lake Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Reflection Survey At Soda Lake Area (DOE GTP) Exploration Activity...

  13. Thermal And-Or Near Infrared At Fish Lake Valley Area (Deymonaz...

    Open Energy Info (EERE)

    Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal And-Or Near Infrared At Fish Lake Valley...

  14. Water Sampling At Hot Lake Area (Wood, 2002) | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Hot Lake Area (Wood, 2002) Exploration Activity Details Location Hot Lake...

  15. Pressure Temperature Log At Soda Lake Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Pressure Temperature Log At Soda Lake Area (DOE GTP) Exploration Activity Details Location Soda Lake...

  16. Clear Lake Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  17. Field Mapping At Fish Lake Valley Area (Deymonaz, Et Al., 2008...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Exploration Activity Details Location Fish...

  18. Flow Test At Lake City Hot Springs Area (Benoit Et Al., 2005...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Lake City Hot Springs Area (Benoit Et Al., 2005) Exploration Activity Details...

  19. Flow Test At Lake City Hot Springs Area (Warpinski, Et Al., 2004...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Lake City Hot Springs Area (Warpinski, Et Al., 2004) Exploration Activity Details...

  20. Direct-Current Resistivity Survey At Soda Lake Area (Combs 2006...

    Open Energy Info (EERE)

    Direct-Current Resistivity Survey At Soda Lake Area (Combs 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity...

  1. Compound and Elemental Analysis At Lake City Hot Springs Area...

    Open Energy Info (EERE)

    Date Usefulness useful DOE-funding Unknown References Chris Sladek, Greg B. Arehart, Walter R. Benoit (2004) Geochemistry Of The Lake City Geothermal System, California, Usa...

  2. Static Temperature Survey At Lake City Hot Springs Area (Benoit...

    Open Energy Info (EERE)

    Notes Two deeper wells encountered temps of 327 and 329 oF References Dick Benoit, Joe Moore, Colin Goranson, David Blackwell (2005) Core Hole Drilling And Testing At The Lake...

  3. Charles Rousseaux | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Charles Rousseaux About Us Charles Rousseaux - Senior Communications Specialist (detailee) Charles Rousseaux is a Senior Communications Specialist in the Office of Technology Transitions for the Department of Energy (DOE). He is on a detail from DOE's Office of Science, where he has served since 2010. Charles started as a Senior Writer in the Office of Science and then became its Editorial Services Manager, leading a team in managing the flow of content from DOE's national labs and research

  4. Signature of Charles Spencer Signature of Charles Spencer Signature of Charles Spencer

    National Nuclear Security Administration (NNSA)

    Spencer Signature of Charles Spencer Signature of Charles Spencer Signature of Steven Erhart Signature of Steven Erhart Signature of Steven Erhart Signature of Willie Wilson Signature of Willie Wilson Signature of Willie Wilson Signature of Jill Albaugh

  5. EIS-0150: Salt Lake City Area Integrated Projects Electric Power Marketing

    Broader source: Energy.gov [DOE]

    The Western Area Power Administration prepared this environmental impact statement to analyze the environmental impacts of its proposal to establish the level of its commitment (sales) of long- term firm electrical capacity and energy from the Salt Lake City Area Integrated Projects hydroelectric power plants.

  6. Charles Russomanno | Department of Energy

    Energy Savers [EERE]

    Russomanno About Us Charles Russomanno - Senior Technology Advisor Charles Russomanno is Senior Technology Advisor for the Office of the Under Secretary of Science and Energy (S-4). In this capacity he has been integral to conceptualizing, defining, and communicating the mission and function of the new Office of Technology Transitions (OTT) for the Department. Prior to coming on board with S-4, Charles completed a 2-year detail with DOE's, Office of Energy Efficiency and Renewable Energy,

  7. NREL: Geothermal Technologies - Charles Visser

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Charles Visser Photo of Charles Visser Principal Scientist (Geologist) On staff since 2003 Phone number: 303-275-4606 E-mail: Charles.Visser@nrel.gov General Profile Charlie Visser is an innovative international energy executive, geoscientist, researcher, program manager and business developer with private sector and national laboratory experience in geothermal energy, petroleum, petrochemicals, and satellite remote sensing. He has a successful record in hydrocarbon exploration, geologic

  8. Direct-Current Resistivity At Clear Lake Area (Skokan, 1993)...

    Open Energy Info (EERE)

    surveys were carried out in the area. These field measurements (Rapolla and Keller, 1984) were combined by spatially averaging apparent resistivities on a one kilometer grid (...

  9. Direct-Current Resistivity Survey At Clear Lake Area (Skokan...

    Open Energy Info (EERE)

    surveys were carried out in the area. These field measurements (Rapolla and Keller, 1984) were combined by spatially averaging apparent resistivities on a one kilometer grid (...

  10. Lake City Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  11. North Shore Mono Lake Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  12. Fry receives Charles W. Briggs Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fry receives Charles W. Briggs Award Fry receives Charles W. Briggs Award The ASTM International Committee E07 on Nondestructive Testing has honored David Fry with the Charles W....

  13. Charles McConnell | Department of Energy

    Office of Environmental Management (EM)

    Charles McConnell About Us Charles McConnell - Former Assistant Secretary for Fossil Energy Charles McConnell Charles McConnell is the former Assistant Secretary for Fossil Energy. Most Recent Adding "Utilization" to Carbon Capture and Storage May 1

  14. Charles Byers, Summary Remarks | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Charles Byers, Summary Remarks Chemical Sciences, Geosciences, & Biosciences (CSGB) Division CSGB Home About Research Areas Reports and Activities Science Highlights Principal Investigators' Meetings BES Home Third DOE BES Separations Research Workshop Charles Byers, Summary Remarks Print Text Size: A A A FeedbackShare Page Third DOE/Basic Energy Sciences Separations Research Workshop Savannah DeSoto Hilton, Savannah, Georgia May 12-14, 1999 Summary Remarks Charles H. Byers IsoPro

  15. CONFIRMATORY SURVEY REPORT FOR THE SECTION 4 AREA AT THE RIO ALGOM AMBROSIA LAKE FACILITY NEW MEXICO

    SciTech Connect (OSTI)

    W.C. Adams

    2010-02-12

    The objectives of the confirmatory survey were to verify that remedial actions were effective in meeting established release criteria and that documentation accurately and adequately described the final radiological conditions of the RAM Ambrosia Lake, Section 4 Areas.

  16. Optimizing hourly hydro operations at the Salt Lake City Area integrated projects

    SciTech Connect (OSTI)

    Veselka, T.D.; Hamilton, S.; McCoy, J.

    1995-06-01

    The Salt Lake City Area (SLCA) office of the Western Area Power Administration (Western) is responsible for marketing the capacity and energy generated by the Colorado Storage, Collbran, and Rio Grande hydropower projects. These federal resources are collectively called the Salt Lake City Area Integrated Projects (SLCA/IP). In recent years, stringent operational limitations have been placed on several of these hydropower plants including the Glen Canyon Dam, which accounts for approximately 80% of the SLCA/IP resources. Operational limitations on SLCA/IP hydropower plants continue to evolve as a result of decisions currently being made in the Glen Canyon Dam Environmental Impact Statement (EIS) and the Power Marketing EIS. To analyze a broad range of issues associated with many possible future operational restrictions, Argonne National Laboratory (ANL), with technical assistance from Western has developed the Hydro LP (Linear Program) Model. This model simulates hourly operations at SLCA/IP hydropower plants for weekly periods with the objective of maximizing Western`s net revenues. The model considers hydropower operations for the purpose of serving SLCA firm loads, loads for special projects, Inland Power Pool (IPP) spinning reserve requirements, and Western`s purchasing programs. The model estimates hourly SLCA/IP generation and spot market activities. For this paper, hourly SLCA/IP hydropower plant generation is simulated under three operational scenarios and three hydropower conditions. For each scenario an estimate of Western`s net revenue is computed.

  17. Salt Lake City Area Integrated Projects Electric Power Marketing. Draft environmental impact statement: Volume 1, Summary

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    The Salt Lake City Area Office of the Western Area Power Administration (Western) markets electricity produced at hydroelectric facilities operated by the Bureau of Reclamation. The facilities are known collectively as the Salt Lake City Area Integrated Projects (SLCA/IP) and include dams equipped for power generation on the Green, Gunnison, Rio Grande, and Colorado rivers and on Deer and Plateau creeks in the states of Wyoming, Utah, Colorado, Arizona, and New Mexico. Of these facilities, only the Glen Canyon Unit, the Flaming Gorge Unit, and the Aspinall Unit (which includes Blue Mesa, Morrow Point, and Crystal dams) are influenced by Western`s power scheduling and transmission decisions. The EIS alternatives, called commitment-level alternatives, reflect combinations of capacity and energy that would feasibly and reasonably fulfill Western`s firm power marketing responsibilities, needs, and statutory obligations. The viability of these alternatives relates directly to the combination of generation capability of the SLCA/IP with energy purchases and interchange. The economic and natural resource assessments in this environmental impact statement (EIS) include an analysis of commitment-level alternatives. Impacts of the no-action altemative are also assessed. Supply options, which include combinations of electrical power purchases and hydropower operational scenarios reflecting different operations of the dams, are also assessed. The EIS evaluates the impacts of these scenarios relative to socioeconomics, air resources, water resources, ecological resources, cultural resources, land use, recreation, and visual resources.

  18. Optimizing hourly hydro operations at the Salt Lake City Area Integrated Projects

    SciTech Connect (OSTI)

    Veselka, T.D.; Hamilton, S.; McCoy, J.

    1995-10-01

    The Salt Lake City Area (SLCA) office of the Western Area Power Administration (Western) is responsible for marketing the capacity and energy generated by the Colorado River Storage, Collbran, and Rio Grande hydropower projects. These federal resources are collectively called the Salt Lake City Area Integrated Projects (SLCA/IP). In recent years, stringent operational limitations have been placed on several of these hydropower plants including the Glen Canyon Dam, which accounts for approximately 80% of the SLCA/IP resources. Operational limitations on SLCA/IP hydropower plants continue to evolve as a result of decisions currently being made in the Glen Canyon Dam Environmental Impact Statement (EIS) and the Power Marketing EIS. The Hydro LP (Linear Program) model, which was developed by Argonne National Laboratory (ANL), was used to analyze a broad range of issues associated with many possible future operational restrictions at SLCA/IP power plants. With technical assistance from Western, the Hydro LP model was configured to simulate hourly power plant operations for weekly periods with the objective of maximizing Western`s net revenues. The model considers hydropower operations for the purpose of serving SLCA firm loads, loads for special projects, Inland Power Pool (IPP) operating reserve requirements, and Western`s purchasing programs. The model estimates hourly SLCA/IP generation and spot market activities. For this paper, hourly SLCA/IP hydropower plant generation was simulated under three operational scenarios and three hydropower conditions. For each scenario an estimate of Western`s net revenue was computed.

  19. Soil gas survey in the geothermal area of Bolsena Lake (Vulsini Mts. , central Italy)

    SciTech Connect (OSTI)

    Corazza, E.; Magro, G.; Ceccarelli, A. ); Pieri, S.; Rossi, U. )

    1993-06-01

    A soil gas survey has been carried out in the Vulsini Mts. volcanic area, around Bolsena Lake, with the objective of testing the reliability of this geochemical method for geothermal exploration. The thermal gradients is high all over the area; the He/Ne ratio, and He, CO[sub 2], and H[sub 2] concentrations have been determined in 259 samples. Compared with its surroundings, this area exhibits an overall positive CO[sub 2] anomaly, but the distribution of diffusive gases (He and H[sub 2]) allows one to distinguish three different sectors around the lake: (1) a northern sector with high CO[sub 2], and H[sub 2]/CO[sub 2], He/CO[sub 2], and He/Ne ratios close to the background value; (2) a south-eastern sector, characterized by the presence of cold fumaroles, with high He, H[sub 2], CO[sub 2] and He/Ne, and generally low H[sub 2]/CO[sub 2] and He/CO[sub 2] spots. Permeability is assumed to the main factor controlling the differences between the above three sectors. In sector 1, the flysch (1 km thick) is intruded by a great number of sills and dikes, and the underlying limestones are completely metamorphosed into marbles; CO[sub 2] is the late stage of a heavy degassing process. Sector 2 includes several volcanic spatter cones along the tectonic trends; the high permeability allows the deep gases to be ducted with minor changes. Sector 3 is an elongated strip with an anti-Apennine trend; diffusion of H[sub 2] only is the result of the thick (>3 km) unaltered flysch cover. In sector 3 the underground outflow of the lake through shallow volcanics entrains large quantities of air and masks any deep gases; the few anomalous spots reproduce situations like that of sector 2. One of these spots is located near a producing well tapping the geothermal reservoir.

  20. Saint Charles International | Open Energy Information

    Open Energy Info (EERE)

    France Product: A European fruit and vegetable distribution, transportation and logistics platform References: Saint Charles International1 This article is a stub. You can...

  1. Charles Townes, the Maser, and the Laser

    Office of Scientific and Technical Information (OSTI)

    ... Charles H. Townes Research Interests, physics@berkeley Top Awards and Honors: 1982 National Medal of Science 2006 Vannevar Bush Award 2010 Gold Medal of SPIE (international society ...

  2. Isotopic Analysis At Lake City Hot Springs Area (Sladek, Et Al...

    Open Energy Info (EERE)

    Date Usefulness useful DOE-funding Unknown References Chris Sladek, Greg B. Arehart, Walter R. Benoit (2004) Geochemistry Of The Lake City Geothermal System, California, Usa...

  3. Core Analysis At Lake City Hot Springs Area (Benoit Et Al., 2005...

    Open Energy Info (EERE)

    Rock core analyses and mineral assemblage investigations References Dick Benoit, Joe Moore, Colin Goranson, David Blackwell (2005) Core Hole Drilling And Testing At The Lake...

  4. Core Holes At Lake City Hot Springs Area (Benoit Et Al., 2005...

    Open Energy Info (EERE)

    obtained from cuttings in this particular geologic setting. References Dick Benoit, Joe Moore, Colin Goranson, David Blackwell (2005) Core Hole Drilling And Testing At The Lake...

  5. Core Analysis At Medicine Lake Area (Clausen Et Al, 2006) | Open...

    Open Energy Info (EERE)

    Lisle, 1995; Nemcok and Gayer, 1996). References Steven Clausen, Michal Nemcok, Joseph Moore, Jeffrey Hulen, John Bartley (2006) Mapping Fractures In The Medicine Lake Geothermal...

  6. Signature of Charles F. McMillan Signature of Charles F. McMillan

    National Nuclear Security Administration (NNSA)

    F. McMillan Signature of Charles F. McMillan Signature of Charles F. McMillan Signature of Charles F. McMillan Signature of Charles F. McMillan Signature of Charles F. McMillan Signature of Kimberly Davis LebakSignature of Kimberly Davis Lebak Signature of Kimberly Davis LebakSignature of Kimberly Davis Lebak Signature of Kimberly Davis LebakSignature of Kimberly Davis Lebak Signature of Kimberly Davis LebakSignature of Kimberly Davis Lebak Signature of Kimberly Davis LebakSignature of Kimberly

  7. DOE feasibility report on Lake Calumet area refuse-to-energy facility

    SciTech Connect (OSTI)

    1980-06-18

    Site analyses and literature reviews were conducted to determine the feasibility of building an energy-producing municipal waste incinerator at Calumet Lake, Illinois. The amount of burnable waste produced within 5 and 10 miles of the near-Chicago site, the composition and heating value of this solid waste, and the air pollution impacts of waste incineration were determined, and the economic value of recovered material or of steam and electricity produced at the plant are discussed. It is concluded that there is sufficient refuse in the area to support a refuse processing center, that increasng landfill costs make such a center economically attractive, and that the Btu content of the refuse is adequate to produce steam for heat and power use. Replacing existing oil-fired power plants with this facility would result in an 88% reduction in current pollutant emission levels. There is a ready market for steam that could be produced. It is recommended that steps be taken to implement the establishment of the proposed waste processing center. (LCL)

  8. Red Lake Weatherization Project

    Energy Savers [EERE]

    REVIEW RED LAKE WEATHERIZATION PROJECT BERT VAN WERT ENERGY ACTIVITIES COORDINATOR Project Overview To develop the capacity to conduct energy audits Implement energy efficiency measures into Tribal homes Develop a Tribally administered Energy Efficiency Program and business PROJECT LOCATION Our project is located at Red Lake Housing Authority Red Lake Band of Chippewa Indians Red Lake , MN Red Lake Band of Chippewas Area overview Reservation (Diminished Lands) and Surroundings Red Lake Band of

  9. Relationships between Western Area Power Administration`s power marketing program and hydropower operations at Salt Lake City area integrated projects

    SciTech Connect (OSTI)

    Veselka, T.D.; Folga, S.; Poch, L.A.

    1995-03-01

    This technical memorandum provides background information on the Western Area Power Administration (Western) and the physical characteristics of the Salt Lake City Area Integrated Projects (SLCA/IP) hydropower plants, which include the Colorado River Storage Project, the Rio Grande Project, and the Collbran Project. In addition, the history, electrical capacity, storage capacity, and flow restrictions at each dam are presented. An overview of Western`s current programs and services, including a review of statutory authorities, agency discretion, and obligations, is also provided. The variability of SLCA/IP hourly generation under various alternative marketing strategies and purchasing programs is discussed. The effects of Western`s services, such as area load control, outage assistance, and transmission, on SLCA/IP power plant operations are analyzed.

  10. Salt Lake City Area Integrated Projects Electric Power Marketing. Draft environmental impact statement: Volume 4, Appendixes B-D

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    The Salt Lake City Area Office of the Western Area Power Administration (Western) markets electricity produced at hydroelectric facilities operated by the Bureau of Reclamation. The facilities are known collectively as the Salt Lake City Area Integrated Projects (SLCA/IP) and include dams equipped for power generation on the Green, Gunnison, Rio Grande, and Colorado rivers and on Deer and Plateau creeks in the states of Wyoming, Utah, Colorado, Arizona, and New Mexico. Of these facilities, only the Glen Canyon Unit, the Flaming Gorge Unit, and the Aspinall Unit (which includes Blue Mesa, Morrow Point, and Crystal dams;) are influenced by Western power scheduling and transmission decisions. The EIS alternatives, called commitment-level alternatives, reflect combinations of capacity and energy that would feasibly and reasonably fulfill Westerns firm power marketing responsibilities, needs, and statutory obligations. The viability of these alternatives relates directly to the combination of generation capability of the SLCA/IP with energy purchases and interchange. The economic and natural resource assessments in this environmental impact statement (EIS) include an analysis of commitment-level alternatives. Impacts of the no-action alternative are also assessed. Supply options, which include combinations of electrical power purchases and hydropower operational scenarios reflecting different operations of the dams, are also assessed. The EIS evaluates the impacts of these scenarios relative to socioeconomics, air resources, water resources, ecological resources, cultural resources, land use, recreation, and visual resources.

  11. Salt Lake City Area Integrated Projects Electric Power Marketing. Draft environmental impact statement: Volume 3, Appendix A

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    The Salt Lake City Area Office of the Western Area Power Administration (Western) markets electricity produced at hydroelectric facilities operated by the Bureau of Reclamation. The facilities are known collectively as the Salt Lake City Area Integrated Projects (SLCA/IP) and include dams equipped for power generation on the Green, Gunnison, Rio Grande, and Colorado rivers and on Deer and Plateau creeks in the states of Wyoming, Utah, Colorado, Arizona, and New Mexico. Of these facilities, only the Glen Canyon Unit, the Flaming Gorge Unit, and the Aspinall Unit (which includes Blue Mesa, Morrow Point, and Crystal dams;) are influenced by Western power scheduling and transmission decisions. The EIS alternatives, called commitment-level alternatives, reflect combinations of capacity and energy that would feasibly and reasonably fulfill Westerns firm power marketing responsibilities, needs, and statutory obligations. The viability of these alternatives relates directly to the combination of generation capability of the SLCA/IP with energy purchases and interchange. The economic and natural resource assessments in this environmental impact statement (EIS) include an analysis of commitment-level alternatives. Impacts of the no-action alternative are also assessed. Supply options, which include combinations of electrical power purchases and hydropower operational scenarios reflecting different operations of the dams, are also assessed. The EIS evaluates the impacts of these scenarios relative to socioeconomics, air resources, water resources, ecological resources, cultural resources, land use, recreation, and visual resources.

  12. Salt Lake City Area Integrated Projects Electric Power Marketing. Draft environmental impact statement: Volume 2, Sections 1-16

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    The Salt Lake City Area Office of the Western Area Power Administration (Western) markets electricity produced at hydroelectric facilities operated by the Bureau of Reclamation. The facilities are known collectively as the Salt Lake City Area Integrated Projects (SLCA/IP) and include dams equipped for power generation on the Green, Gunnison, Rio Grande, and Colorado rivers and on Deer and Plateau creeks in the states of Wyoming, Utah, Colorado, Arizona, and New Mexico. Of these facilities, only the Glen Canyon Unit, the Flaming Gorge Unit, and the Aspinall Unit (which includes Blue Mesa, Morrow Point, and Crystal dams;) are influenced by Western power scheduling and transmission decisions. The EIS alternatives, called commitment-level alternatives, reflect combinations of capacity and energy that would feasibly and reasonably fulfill Westerns firm power marketing responsibilities, needs, and statutory obligations. The viability of these alternatives relates directly to the combination of generation capability of the SLCA/IP with energy purchases and interchange. The economic and natural resource assessments in this environmental impact statement (EIS) include an analysis of commitment-level alternatives. Impacts of the no-action alternative are also assessed. Supply options, which include combinations of electrical power purchases and hydropower operational scenarios reflecting different operations of the dams, are also assessed. The EIS evaluates the impacts of these scenarios relative to socioeconomics, air resources, water resources, ecological resources, cultural resources, land use, recreation, and visual resources.

  13. Lake Charles Carbon Capture and Sequestration Project U. S. Department...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The purpose for DOE's proposed action is to advance the ICCS Program by providing financial assistance to projects that have the best chance of achieving the program's...

  14. Class 1 overview of cultural resources for the Western Area Power Administration Salt Lake City Area Integrated Projects electric power marketing environmental impact statement

    SciTech Connect (OSTI)

    Moeller, K.L.; Malinowski, L.M.; Hoffecker, J.F.; Walitschek, D.A.; Shogren, L.; Mathews, J.E.; Verhaaren, B.T.

    1993-11-01

    Argonne National Laboratory conducted an inventory of known archaeological and historic sites in areas that could be affected by the hydropower operation alternatives under analysis in the power marketing environmental impact statement for the Western Area Power Administration`s Salt Lake City Area Integrated Projects. The study areas included portions of the Green River (Flaming Gorge Dam to Cub Creek) in Utah and Colorado and the Gunnison River (Blue Mesa Reservoir to Crystal Dam) in Colorado. All previous archaeological surveys and previously recorded prehistoric and historic sites, structures, and features were inventoried and plotted on maps (only survey area maps are included in this report). The surveys were classified by their level of intensity, and the sites were classified according to their age, type, and contents. These data (presented here in tabular form) permit a general assessment of the character and distribution of archaeological remains in the study areas, as well as an indication of the sampling basis for such an assessment. To provide an adequate context for the descriptions of the archaeological and historic sites, this report also presents overviews of the environmental setting and the regional prehistory, history, and ethnography for each study area.

  15. Charles Mix Electric Assn, Inc | Open Energy Information

    Open Energy Info (EERE)

    Charles Mix Electric Assn, Inc Jump to: navigation, search Name: Charles Mix Electric Assn, Inc Place: South Dakota Phone Number: 605-487-7321 Website: www.cme.coop Twitter:...

  16. DOE Zero Energy Ready Home Case Study: Charles Thomas Homes,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Charles Thomas Homes, Anna Model, Omaha, NE DOE Zero Energy Ready Home Case Study: Charles Thomas Homes, Anna Model, Omaha, NE Case study of a DOE 2015 Housing Innovation Award ...

  17. PPPL honors engineer Charles Neumeyer and physicist Rajesh Maingi |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Lab PPPL honors engineer Charles Neumeyer and physicist Rajesh Maingi By John GreenwaldRaphael Rosen October 12, 2015 Tweet Widget Google Plus One Share on Facebook PPPL engineer Charles Neumeyer and PPPL physicist Rajesh Maingi (Photo by Photo Credit: Elle Starkman/PPPL Office of Communications) PPPL engineer Charles Neumeyer and PPPL physicist Rajesh Maingi Gallery: PPPL engineer Charles Neumeyer (Photo by Photo Credit: Elle Starkman/PPPL Office of Communications)

  18. iccs-leucadia | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Carbon Capture and Storage: Area 1 Leucadia Energy, LLC: Lake Charles Carbon Capture & Sequestration Project Lake Charles, Louisiana PROJECT TIMELINE PROJECT FACT SHEET...

  19. Distribution and geochemistry of contaminated subsurface waters in fissured volcanogenic bed rocks of the Lake Karachai Area, Chelyabinsk, Southern Urals

    SciTech Connect (OSTI)

    Solodov, I.N.; Belichkin, V.I.; Zotov, A.V.; Kochkin, B.T.; Drozhko, E.G.; Glagolev, A.V.; Skokov, A.N.

    1994-06-01

    The present investigation is devoted to the study of the distribution and geochemistry of contaminated subsurface waters, beneath the site of temporary storage of liquid radioactive waste known as Lake Karachai. For this purpose a method of hydrogeochemical logging (HGCL) together with standard hydrogeochemical and geophysical methods of uncased hole logging were used. The distribution of sodium nitrate brine plumes in the subsurface was determined by the physical and physico-chemical properties of these brines and by the petrochemical composition of enclosing rocks and the structural setting of the flow paths. The latter is represented by fractures and large faults in the bedrock of volcanogenic and volcanogenic-sedimentary rocks of intermediate-to-basic composition. The volcanogenic rocks are overlain in some places by a thin cover of unconsolidated sediments, i.e., by loams and relatively impermeable silts. Contaminated waters flow-in accordance with the eluvium bottom relief towards local areas of natural (Mishelyak and Techa rivers) and artificial (Novogomenskii water intake) discharge of subsurface waters. The large Mishelyak fault, southwest of Lake Karachai and under fluvial sediments of the Mishelyak, is assumed to significantly influence the flow pattern of contaminated waters, diverting them from an intake of drinking water.

  20. Charles A Gentile | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Gentile Engineering and Scientific Staff, Plasma Physics Laboratory. Charles Gentile is head of the Tritium Systems Group at PPPL. He led a team at PPPL to create a Miniature Integrated Nuclear Detection System, called MINDS, which can be used to scan moving vehicles, luggage, cargo vessels, and the like for specific nuclear signatures associated with materials employed in radiological weapons. MINDS could be employed at work- place entrances, post offices, tollbooths, airports, commercial

  1. Charles L Neumeyer | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    L Neumeyer ITER Steady State Electrical Systems WBS Manager, NSTX Project Engineer Charles Neumeyer is a registered professional engineer with more than 30 years experience in advanced tech- nology research and project management. His experi- ence covers functions ranging from design to procurement and commissioning. Neumeyer has managerial roles in activities associated with ITER and the National Spherical Torus Experiment Upgrade (NSTX-U). He is responsible for U.S. equipment contributions for

  2. Charles County, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Bryans Road, Maryland Hughesville, Maryland Indian Head, Maryland La Plata, Maryland Port Tobacco Village, Maryland Potomac Heights, Maryland St. Charles, Maryland Waldorf,...

  3. Particle Gas Target for High Density Laser Produced Plasmas Charles...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Particle Gas Target for High Density Laser Produced Plasmas Charles H. Skinner, Nathaniel Fisch, and Ernest Valeo This invention is a novel "particle gas" cell for achieving plasma...

  4. Charles Motel & Bathhouse Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Temperature Geothermal Facility Facility Charles Motel & Bathhouse Sector Geothermal energy Type Pool and Spa Location Truth or Consequences, New Mexico Coordinates 33.1284047,...

  5. The Wizard of Schenectady: Charles Proteus Steinmetz | GE Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    week the Smithsonian's "Past Imperfect" blog highlighted a man near and dear to the heart of GE Global Research, Charles Proteus Steinmetz. The article paints a really...

  6. St. Charles County, Missouri: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Missouri O'Fallon, Missouri Portage Des Sioux, Missouri St. Charles, Missouri St. Paul, Missouri St. Peters, Missouri Weldon Spring Heights, Missouri Weldon Spring, Missouri...

  7. PPPL honors engineer Charles Neumeyer and physicist Rajesh Maingi...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    research awards to engineer Charles Neumeyer and physicist Rajesh Maingi following Stewart Prager's October 5 State of the Laboratory address. Neumeyer received the Kaul...

  8. DOE Tour of Zero Floorplans: Anna Model by Charles Thomas Homes |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Anna Model by Charles Thomas Homes DOE Tour of Zero Floorplans: Anna Model by Charles Thomas Homes DOE Tour of Zero Floorplans: Anna Model by Charles Thomas Homes

  9. Pyramid Lake Paiute Tribe - Pyramid Lake Energy Project - Geothermal Assessment

    Energy Savers [EERE]

    Tribe Pyramid Lake Paiute Tribe Pyramid Lake Energy Project Pyramid Lake Energy Project Geothermal Assessment Geothermal Assessment Pyramid Lake Paiute Reservation 40 miles north of Reno 475,000 acres Pyramid Lake 125,000 surface acres Northern Reservation Needles Area Needles Geyser Needles Geyser Exploration conducted Exploration conducted in 1968 in 1968 Hot water was found Hot water was found at 160 degrees f at 160 degrees f Was not considered Was not considered feasible feasible PLEP

  10. Overview Of The Lake City, California Geothermal System | Open...

    Open Energy Info (EERE)

    : GRC; p. () Related Geothermal Exploration Activities Activities (1) Geothermal Literature Review At Lake City Hot Springs Area (Benoit, Et Al., 2004) Areas (1) Lake City Hot...

  11. TBU-0067- In the Matter of Charles Montano

    Broader source: Energy.gov [DOE]

    Charles Montano (the complainant), appeals the dismissal of his complaint of retaliation filed under 10 C.F.R. Part 708, the Department of Energy (DOE) Contractor Employee Protection Program. The...

  12. Charles City (1Q08) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Developer MidAmerican Energy Energy Purchaser MidAmerican Energy Location Charles City IA Coordinates 43.049152, -92.734151 Show Map Loading map... "minzoom":false,"mappings...

  13. Charles City (2Q08) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Developer MidAmerican Energy Energy Purchaser MidAmerican Energy Location Charles City IA Coordinates 43.004101, -92.722392 Show Map Loading map... "minzoom":false,"mappings...

  14. TBU-0026- In the Matter of Charles L. Evans

    Broader source: Energy.gov [DOE]

    Charles Evans, a former employee of Fluor Hanford Inc. (Fluor), a Department of Energy (DOE) contractor, appeals the DOE Richland Operations Office=s (Richland) dismissal of the whistleblower...

  15. Summer 2010 Intern Project- Charles Buhler | Center for Energy Efficient

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Charles Buhler DESIGNING A MIDDLE ANTIREFLECTIVE COATING TO ALLOW LIGHT TO THE LOWER BANDGAP CELLS AND REFLECT HIGHER ENERGY PHOTONS BACK TO THE TOP CELLS TO INCREASE PERFORMANCE FOR A FOUR-JUNCTION SOLAR CELL Charles Buhler Physics UC Santa Barbara Mentor: Chieh-Ting Lin Faculty Advisor: John Bowers Department: Electrical and Computer Engineering As photovoltaic cells are made to absorb a larger part of the solar spectrum, antireflective (AR) coatings need to be better designed to

  16. Identification of Focal Mechanisms of Seisms Occurring in the San Salvador Volcano-Ilopango Lake Area Between 1994 and March 2005

    SciTech Connect (OSTI)

    Maria Mendez Martinez, Luz de; Portillo, Mercy

    2009-04-19

    We studied the geographic area located in the central part of El Salvador, between the San Salvador Volcano (Quezaltepec) and Ilopango Lake. Its latitude is between 13 deg. 36' and 13 deg. 54', and longitude is between -89 deg. 18' and -88 deg. 57'. This area is directly affected by the WNW axis, the most prominent weak tectonic system in the region. Our research aimed to determine the focal mechanisms of seisms occurring in the studied area between 1994 and March 2005. Our analysis provided information about displacement types of the geological faults, using the wave impulse P method and computer applications ARCGIS and SEISAN, with the subroutine FOCMEC. Information of the studied seisms was obtained from the National Service of Territorial Studies (SNET) database. Geographic models used in the preparation of maps are from the geographic information system of the School of Physics at the University of El Salvador. The 37 focal mechanisms on the map of faults were identified in digital seismographs to determinate the arrival polarity of the wave P for each seism station. Data from the focal mechanisms were analyzed and correlated with their replications. The analysis allowed us to identify evidences to consider the fault continuity not reported by the last geological mission in El Salvador conducted in the 1970s. The fault continuity is located northwest of the studied geographical area, between San Salvador City and the San Salvador Volcano. The compression and strain axes for this area are two main horizontal force axes. The average orientation for the strain axis is NNE-SSW, and WNW-SEE for the compression axis. There is also important seismic activity in the Ilopango Lake and surrounding area. However, data did not allow us to make any inference. The tensors distribution resulted in a high dispersion corresponding to typical fauces models.

  17. iccs-leucadia | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Carbon Capture and Storage: Area 1 Leucadia Energy, LLC: Lake Charles Carbon Capture & Sequestration Project Lake Charles, Louisiana PROJECT TIMELINE PROJECT FACT SHEET Leucadia Energy, LLC: Lake Charles Carbon Capture & Sequestration Project [PDF-485KB] (Nov 2014) PROGRAM PUBLICATIONS Information to come. PAPERS AND PRESENTATIONS Information to come. ENVIRONMENTAL REPORTS Lake Charles Draft Environmental Impact Statement [PDF-26MB] Lake Charles Draft Environmental Impact

  18. Numerical modeling of the groundwater contaminant transport for the Lake Karachai Area: The methodological approach and the basic two- dimensional regional model

    SciTech Connect (OSTI)

    Petrov, A.V.; Samsonova, L.M.; Vasil`kova, N.A.; Zinin, A.I.; Zinina, G.A. |

    1994-06-01

    Methodological aspects of the numerical modeling of the groundwater contaminant transport for the Lake Karachay area are discussed. Main features of conditions of the task are the high grade of non-uniformity of the aquifer in the fractured rock massif and the high density of the waste solutions, and also the high volume of the input data: both on the part of parameters of the aquifer (number of pump tests) and on the part of observations of functions of processes (long-time observations by the monitoring well grid). The modeling process for constructing the two dimensional regional model is described, and this model is presented as the basic model for subsequent full three-dimensional modeling in sub-areas of interest. Original powerful mathematical apparatus and computer codes for finite-difference numerical modeling are used.

  19. Academic Year 2009-2010 Intern Project - Charles Buhler | Center for Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Efficient Materials Charles Buhler SOLAR CELL THERMOELECTRICS Charles Buhler Physics UC Santa Barbara Mentor: Je-Hyeong Bahk / Chieh-Ting Lin Faculty Advisor: John Bowers Department: Electrical and Computer Engineering

  20. EIS-0005-FS: Bonneville Power Administration Proposed FY 1979 Program, Facility Location on Supplement, Southwest Oregon Area Service, Buckley-Summer Lake 500 kV Line, Supplemental

    Broader source: Energy.gov [DOE]

    This Bonneville Power Administration document assesses the environmental impacts of constructing transmission facilities, which will coordinate with the Midpoint-Malin 500-kV line to be constructed by the Pacific Power and Light (PP&L) Company. The proposed action includes the construction of the 1.56-mile Buckley-Summer Lake 500-kV transmission line; the proposed Buckley Substation near Maupin, Oregon; and the proposed Summer Lake Substation near Silver Lake, Oregon.

  1. Metered Evaporator for Tokamak Wall Conditioning --- Inventor(s): Charles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    H. Skinner, Dennis Mansfield, Henry Kugel, Hans Schneider and Lane Roquemore | Princeton Plasma Physics Lab Metered Evaporator for Tokamak Wall Conditioning --- Inventor(s): Charles H. Skinner, Dennis Mansfield, Henry Kugel, Hans Schneider and Lane Roquemore A novel lithium evaporator for the controlled introduction of lithium into tokamaks for wall conditioning is described. The concept uses a Li granule injector with a heated in-vessel yttrium crucible to evaporate a controlled amount of

  2. Facies architecture of the Bluejacket Sandstone in the Eufaula Lake area, Oklahoma: Implications for the reservoir characterization of the Bartlesville Sandstone

    SciTech Connect (OSTI)

    Ye, Liangmiao; Yang, Kexian

    1997-08-01

    Outcrop studies of the Bluejacket Sandstone (Middle Pennsylvanian) provide significant insights to reservoir architecture of the subsurface equivalent Bartlesville Sandstone. Quarry walls and road cuts in the Lake Eufaula area offer excellent exposures for detailed facies architectural investigations using high-precision surveying, photo mosaics. Directional minipermeameter measurements are being conducted. Subsurface studies include conventional logs, borehole image log, and core data. Reservoir architectures are reconstructed in four hierarchical levels: multi-storey sandstone, i.e. discrete genetic intervals; individual discrete genetic interval; facies within a discrete genetic interval; and lateral accretion bar deposits. In both outcrop and subsurface, the Bluejacket (Bartlesville) Sandstone comprises two distinctive architectures: a lower braided fluvial and an upper meandering fluvial. Braided fluvial deposits are typically 30 to 80 ft thick, and are laterally persistent filling an incised valley wider than the largest producing fields. The lower contact is irregular with local relief of 50 ft. The braided-fluvial deposits consist of 100-400-ft wide, 5-15-ft thick channel-fill elements. Each channel-fill interval is limited laterally by an erosional contact or overbank deposits, and is separated vertically by discontinuous mudstones or highly concentrated mudstone interclast lag conglomerates. Low-angle parallel-stratified or trough cross-stratified medium- to coarse-grained sandstones volumetrically dominate. This section has a blocky well log profile. Meandering fluvial deposits are typically 100 to 150 ft thick and comprise multiple discrete genetic intervals.

  3. Charles "Chuck" Farrar to receive DeMichele Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Farrar to receive DeMichele Award Charles "Chuck" Farrar to receive DeMichele Award The award is presented for demonstrated "exemplary service and support of promoting the science and educational aspects of modal analysis technology." November 21, 2012 Charles "Chuck" Farrar Charles "Chuck" Farrar Charles "Chuck" Farrar, leader of LANL's Engineering Institute, will receive the 2013 DeMichele Award from the Society for Experimental Mechanics. The

  4. EIS-0464: EPA Notice of Availability of Final Environmental Impact Statement

    Broader source: Energy.gov [DOE]

    Lake Charles Carbon Capture and Sequestration Project, Lake Charles, Louisiana and Brazoria County, Texas

  5. EIS-0464: EPA Notice of Availability of the Draft Environmental Impact Statement

    Broader source: Energy.gov [DOE]

    Lake Charles Carbon Capture and Sequestration Project, Lake Charles, Louisiana and Brazoria County, Texas

  6. Spirit Lake Tribe- 1995 Project

    Broader source: Energy.gov [DOE]

    A long-range goal of the Spirit Lake Nation is to develop a tribally owned and operated municipal power company. The tribe has been awarded a Western Area Power Administration (WAPA) allocation starting in the year 2001.

  7. AUTHORS Charles E. Whittle Edward L. Allen Chester L. Cooper

    Office of Scientific and Technical Information (OSTI)

    AUTHORS Charles E. Whittle Edward L. Allen Chester L. Cooper Herbert G. MacPherson Doan L. Phung Alan D. Poole William G. Pollard Ralph M. Rotty Ned L. Treat Alvin M. Weinbecg OTHER CONTRIBUTORS William U. Chandler Alfred M. Perry Frances C. Edmonds David B. Reister James A. Edmonds Ernest G. Silver Harold L. Federow Paul C. Tompkins James A. Lane Eva M. Wike Gregg Marland Leon W. Zelby This document is PUBLICLY RELEASABLE Authorizing C&icial Date: Id/25/11. C W L W ORAU/lEA 76-4 September

  8. Charles D. Young Project Engineer Government Support Directorate

    Office of Legacy Management (LM)

    Please call if you have questions regarding the attached recommendation. i?&,o-o; ~~~pApv $l$I Charles D. Young Project Engineer Government Support Directorate Architecture Planning and Technology Division CDY/smb Attachment cc: J. Fiore ;;,ewis (w/o) TH' E AEROSPACE CORPORATION i ' 0 A Suite 7900, 955 L' Enfam Plaza. S. W., Woshingron. D.C. 20024-2174. Tekphonc (202) 488-6000 7117-03.87.cdy.43 23 September 1987 CA Mr. Andrew Wallo, III, NE-23 Division of Facility & Site Decosunissioning

  9. Price of Lake Charles, LA Natural Gas LNG Imports from Trinidad and Tobago

    U.S. Energy Information Administration (EIA) Indexed Site

    (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA 2000's 3.93 4.25 3.40 5.10 5.44 6.55 6.40 7.02 -- 3.01 2010's -- 4.18 2.10 -- --

  10. Price of Lake Charles, LA Natural Gas LNG Imports from Trinidad and Tobago

    U.S. Energy Information Administration (EIA) Indexed Site

    (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 4.18 2012 2.10

  11. EIS-0464: Lake Charles Carbon Capture and Storage (CCS) Project in Calcasieu Parish, Louisiana

    Broader source: Energy.gov [DOE]

    This EIS evaluates the potential environmental impacts of providing financial assistance for the construction and operation of a project proposed by Leucadia Energy, LLC. DOE selected this project for an award of financial assistance through a competitive process under the Industrial Carbon Capture and Sequestration Program.

  12. Andrew Lake

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lake, Martin Swany, Brian Tierney, Matt Zekauskas, "perfSONAR: On-board Diagnostics for Big Data", 1st Workshop on Big Data and Science: Infrastructure and Services Co-located...

  13. Great Lakes

    Office of Environmental Management (EM)

    10 Executive Order 13547-Stewardship of the Ocean, Our Coasts, and the Great Lakes July 19, 2010 By the authority vested in me as President by the Constitution and the laws of the United States of America, it is hereby ordered as follows: Section 1. Purpose. The ocean, our coasts, and the Great Lakes provide jobs, food, energy resources, ecological services, recreation, and tourism opportunities, and play critical roles in our Nation's transportation, economy, and trade, as well as the global

  14. East Soda Lake Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    ","group":"","inlineLabel":"","visitedicon":"" Hide Map Location Fallon, NV County Churchill County, NV Geothermal Area Soda Lake Geothermal Area Geothermal Region Northwest...

  15. WBU-15-0003 - In the Matter of Charles W. Trask III | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 - In the Matter of Charles W. Trask III WBU-15-0003 - In the Matter of Charles W. Trask III On April 2, 2015, the OHA issued a decision denying, due to lack of jurisdiction, an Appeal filed by Mr. Charles W. Trask III of the dismissal of his whistleblower complaint by the Whistleblower Program Manager for the Employee Concerns Program of the National Nuclear Security Administration. Mr. Trask filed the Complaint against his former employer, Los Alamos National Security, LLC (LANS), under the

  16. DOE Tour of Zero: Anna Model by Charles Thomas Homes | Department of Energy

    Energy Savers [EERE]

    Anna Model by Charles Thomas Homes DOE Tour of Zero: Anna Model by Charles Thomas Homes 1 of 11 Charles Thomas Homes built this 4,353-square-foot custom home in Omaha, Nebraska, to the performance criteria of the U.S. Department of Energy Zero Energy Ready Home (ZERH) program. 2 of 11 In keeping with the requirements of the DOE Zero Energy Ready Home program, the home also meets the EPA's Indoor airPLUS and ENERGY STAR criteria and is expected to give its homeowners more than $1,200 per year in

  17. DOE Tour of Zero: Anna Model by Charles Thomas Homes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Anna Model by Charles Thomas Homes DOE Tour of Zero: Anna Model by Charles Thomas Homes Addthis 1 of 11 Charles Thomas Homes built this 4,353-square-foot custom home in Omaha, Nebraska, to the performance criteria of the U.S. Department of Energy Zero Energy Ready Home (ZERH) program. 2 of 11 In keeping with the requirements of the DOE Zero Energy Ready Home program, the home also meets the EPA's Indoor airPLUS and ENERGY STAR criteria and is expected to give its homeowners more than $1,200 per

  18. VWA-0014- In the Matter of Charles Barry DeLoach

    Broader source: Energy.gov [DOE]

    This Decision involves a whistleblower complaint filed by Charles Barry DeLoach (DeLoach) under the Department of Energy's (DOE) Contractor Employee Protection Program, 10 C.F.R. Part 708. For a...

  19. Charles Byers, Summary Remarks | U.S. DOE Office of Science ...

    Office of Science (SC) Website

    Third DOEBasic Energy Sciences Separations Research Workshop Savannah DeSoto Hilton, Savannah, Georgia May 12-14, 1999 Summary Remarks Charles H. Byers IsoPro International This ...

  20. DEGAS 2 Daren Stotler and Charles Karney | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DEGAS 2 Daren Stotler and Charles Karney This invention is a Monte Carlo simulation code designed to study the behavior of neutral particles in plasmas with an emphasis on fusion applications. No.: M-807 Inventor(s): Daren P Stotler

  1. Charles C. Cremer, 1972 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Charles C. Cremer, 1972 The Ernest Orlando Lawrence Award Lawrence Award Home Nomination & Selection Guidelines Award Laureates 2010's 2000's 1990's 1980's 1970's 1960's Ceremony...

  2. Charles McMillan to lead Los Alamos National Laboratory's Weapons...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Charles McMillan to lead Los Alamos National Laboratory's Weapons Program He will provide oversight and direction for the nuclear weapons program at Los Alamos to accomplish the ...

  3. Declaration of Charles Wodrich in Support of Supplemental Comments of the

    Office of Environmental Management (EM)

    Plumbing Manufacturers Institute Regarding the Economic Impacts of the Proposed Definition of "Showerhead," Docket No. EERE-2010-BT-NOA-0016 | Department of Energy Declaration of Charles Wodrich in Support of Supplemental Comments of the Plumbing Manufacturers Institute Regarding the Economic Impacts of the Proposed Definition of "Showerhead," Docket No. EERE-2010-BT-NOA-0016 Declaration of Charles Wodrich in Support of Supplemental Comments of the Plumbing Manufacturers

  4. Similarities in shoreline response to Late Holocene lake-level variations in Lake Michigan

    SciTech Connect (OSTI)

    Thompson, T.A.; Baedke, S.J. )

    1992-01-01

    Beach ridges dating back to 2600 B.P. occur in embayments throughout Lake Michigan. Similarities in their geomorphic development are interpreted to be the product of three scales of lake-level variation. The largest of these embayments is roughly coincident with the Indiana shore of Lake Michigan known as the Toleston Beach. In the western part of the Toleston Beach, more than 150 beach ridges have formed in response to short-term variations in lake level occurring at a quasi-periodic interval of about 30 years. Bundles of five of these ridges merge eastward to form higher relief beach ridges that record an intermediate-term lake-level variation of about 150 years. Both the 30-year and 150-year lake-level events are superimposed on a longer term lake-level variation of about 600 years. Beach-ridge development in northern Lake Michigan reflects a similar response to late Holocene lake-level variations. For example, the southern embayment of the Platte Bay Unit of the Sleeping Bear Dunes National Lakeshore also contains a series of beach ridges that record three scales of lake-level variation. In this area, most of the beach ridges formed between 2600 and 1200 B.P., with individual ridges forming about every 29 years. Also recorded in this embayment are the time equivalent groupings of beach ridges every 150 and 600 years. Although embayments containing beach ridges in Lake Michigan may record different short-term lake-level variations in response to local depositional conditions within the embayment, the 150-year and 600-year variations appear to be represented throughout the lake. Relative lake-level curves for the Toleston Beach and the Platte Bay embayment are displaced by approximately 1.5 m. This displacement is accounted for under current models of isostasy for Lake Michigan.

  5. DOE Zero Energy Ready Home Case Study: Charles Thomas Homes, Anna Model,

    Energy Savers [EERE]

    Omaha, NE | Department of Energy Charles Thomas Homes, Anna Model, Omaha, NE DOE Zero Energy Ready Home Case Study: Charles Thomas Homes, Anna Model, Omaha, NE Case study of a DOE 2015 Housing Innovation Award winning custom home in the cold climate that got a HERS 48 without PV, with 2x6 24" on center walls with R-23 blown fiberglass, ocsf at rim joists, basement with plus 2x4 stud walls with R-23 blown fiberglass, with R-20 around slab, R-38 under slab; a vented attic with R-100 blown

  6. Charles D. Scott, 1980 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Charles D. Scott, 1980 The Ernest Orlando Lawrence Award Lawrence Award Home Nomination & Selection Guidelines Award Laureates 2010's 2000's 1990's 1980's 1970's 1960's Ceremony The Life of Ernest Orlando Lawrence Contact Information The Ernest Orlando Lawrence Award U.S. Department of Energy SC-2/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-2411 E: Email Us 1980's Charles D. Scott, 1980 Print Text Size: A A A FeedbackShare Page Chemistry & Metallurgy:

  7. Charles E. Elderkin, 1975 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Charles E. Elderkin, 1975 The Ernest Orlando Lawrence Award Lawrence Award Home Nomination & Selection Guidelines Award Laureates 2010's 2000's 1990's 1980's 1970's 1960's Ceremony The Life of Ernest Orlando Lawrence Contact Information The Ernest Orlando Lawrence Award U.S. Department of Energy SC-2/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-2411 E: Email Us 1970's Charles E. Elderkin, 1975 Print Text Size: A A A FeedbackShare Page Reactors: For his

  8. Charles Roger Alcock, 1996 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Charles Roger Alcock, 1996 The Ernest Orlando Lawrence Award Lawrence Award Home Nomination & Selection Guidelines Award Laureates 2010's 2000's 1990's 1980's 1970's 1960's Ceremony The Life of Ernest Orlando Lawrence Contact Information The Ernest Orlando Lawrence Award U.S. Department of Energy SC-2/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-2411 E: Email Us 1990's Charles Roger Alcock, 1996 Print Text Size: A A A FeedbackShare Page For his scientific

  9. Charles V. Jakowatz, 1996 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Charles V. Jakowatz, 1996 The Ernest Orlando Lawrence Award Lawrence Award Home Nomination & Selection Guidelines Award Laureates 2010's 2000's 1990's 1980's 1970's 1960's Ceremony The Life of Ernest Orlando Lawrence Contact Information The Ernest Orlando Lawrence Award U.S. Department of Energy SC-2/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-2411 E: Email Us 1990's Charles V. Jakowatz, 1996 Print Text Size: A A A FeedbackShare Page For fundamental work

  10. Charles V. Shank, 2014 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Charles V. Shank, 2014 The Enrico Fermi Award Fermi Award Home Nomination & Selection Guidelines Award Laureates 2010's 2000's 1990's 1980's 1970's 1960's 1950's Ceremony The Life of Enrico Fermi Contact Information The Enrico Fermi Award U.S. Department of Energy SC-2/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-2411 E: Email Us 2010's Charles V. Shank, 2014 Print Text Size: A A A FeedbackShare Page Senior Fellow, Howard Hughes Medical Institute, and

  11. VWZ-0016- In the Matter of Charles Montaño

    Broader source: Energy.gov [DOE]

    This decision considers a Motion to Dismiss filed by Charles Montaño (Montaño) on October 4, 1999. In his Motion, Montaño seeks dismissal of the hearing scheduled to begin on November 16, 1999 and...

  12. Results of sediment and water sampling for inorganic, organic, and radionuclide analysis at recreation areas and water intakes -- Norris, Melton Hill, and Watts Bar Lakes. Data report

    SciTech Connect (OSTI)

    1991-10-01

    Suspected water quality contamination in Watts Bar Reservoir as a result of activities in past decades at the Department of Energy`s (DOE) Oak Ridge facility is of public concern. DOE, the Tennessee Valley Authority (TVA), the State of Tennessee, and other agencies and officials have received many inquiries from the public in recent years concerning this suspected pollution, especially how this potential contamination may affect the health and safety of those persons who use beaches in the area for swimming or other water-body-contact sports. As a result of these concerns, TVA conducted a study in May and June 1991 to obtain data on potential contaminants of concern in the water and sediment of Watts Bar Reservoir. TVA collected water and sediment samples at a total of 29 sites, including 18 recreation areas and 11 water intake locations, located throughout Norris, Melton Hill, and Watts Bar Reservoirs. The samples were analyzed for radionuclides, metals, and organic compounds which could pose a threat to human health.

  13. Lakes_Elec_You

    Office of Environmental Management (EM)

    Lakes, Electricity & You Why It's So Important That Lakes Are Used To Generate Electricity Why We Can Thank Our Lakes For Electricity Because lakes were made to generate electricity. Back in the mid-1940s, Congress recognized the need for better flood control and navigation. To pay for these services, Congress passed laws that started the building of federal hydroelectric dams, and sold the power from the dams under long-term contracts. Today these dams provide efficient, environmentally

  14. Groundwater recharge from Long Lake, Indiana Dunes National Lakeshore

    SciTech Connect (OSTI)

    Isiorho, S.A.; Beeching, F.M. (Indiana Univ., Fort Wayne, IN (United States). Geosciences Dept.); Whitman, R.L.; Stewart, P.M. (National Park Services, Porter, IN (United States). Indiana Dunes National Lakeshore); Gentleman, M.A.

    1992-01-01

    Long Lake, located between Lake Michigan and the Dune-complexes of Indiana Dunes, was formed during Pleistocene and Holocene epochs. The lake is currently being studied to understand the detailed hydrology. One of the objective of the study is to understand the hydrologic relationship between the lake and a water treatment holding pond to the northeast. Understanding the water movement between the two bodies of water, if any, would be very important in the management and protection of nature preserves in the area. Seepage measurement and minipiezometric tests indicate groundwater recharge from Long Lake. The groundwater recharge rate is approximately 1.40 to 22.28 x 10[sup [minus]4] m/day. An estimate of the amount of recharge of 7.0 x 10[sup 6] m[sup 3]/y may be significant in terms of groundwater recharge of the upper aquifer system of the Dunes area. The water chemistry of the two bodies of water appears to be similar, however, the pH of the holding pond is slightly alkaline (8.5) while that of Long Lake is less alkaline (7.7). There appears to be no direct contact between the two bodies of water (separated by approximately six meters of clay rich sediment). The geology of the area indicates a surficial aquifer underlying Long Lake. The lake should be regarded as a recharge area and should be protected from pollutants as the degradation of the lake would contaminate the underlying aquifer.

  15. Lake Granbury and Lake Whitney Assessment Initiative Final Scientific/Technical Report Summary

    SciTech Connect (OSTI)

    Harris, B.L.; Roelke, Daniel; Brooks, Bryan; Grover, James

    2010-10-11

    A team of Texas AgriLife Research, Baylor University and University of Texas at Arlington researchers studied the biology and ecology of Prymnesium parvum (golden algae) in Texas lakes using a three-fold approach that involved system-wide monitoring, experimentation at the microcosm and mesocosm scales, and mathematical modeling. The following are conclusions, to date, regarding this organism??s ecology and potential strategies for mitigation of blooms by this organism. In-lake monitoring revealed that golden algae are present throughout the year, even in lakes where blooms do not occur. Compilation of our field monitoring data with data collected by Texas Parks and Wildlife and Brazos River Authority (a period spanning a decade) revealed that inflow and salinity variables affect bloom formations. Thresholds for algae populations vary per lake, likely due to adaptations to local conditions, and also to variations in lake-basin morphometry, especially the presence of coves that may serve as hydraulic storage zones for P. parvum populations. More specifically, our in-lake monitoring showed that the highly toxic bloom that occurred in Lake Granbury in the winter of 2006/2007 was eliminated by increased river inflow events. The bloom was flushed from the system. The lower salinities that resulted contributed to golden algae not blooming in the following years. However, flushing is not an absolute requirement for bloom termination. Laboratory experiments have shown that growth of golden algae can occur at salinities ~1-2 psu but only when temperatures are also low. This helps to explain why blooms are possible during winter months in Texas lakes. Our in-lake experiments in Lake Whitney and Lake Waco, as well as our laboratory experiments, revealed that cyanobacteria, or some other bacteria capable of producing algicides, were able to prevent golden algae from blooming. Identification of this organism is a high priority as it may be a key to managing golden algae blooms. Our numerical modeling results support the idea that cyanobacteria, through allelopathy, control the timing of golden algae blooms in Lake Granbury. The in-lake experiments in Lake Whitney and Lake Waco also revealed that as golden algae blooms develop, there are natural enemies (a species of rotifer, and a virus) that help slow the population growth. Again, better characterization of these organisms is a high priority as it may be key to managing golden algae blooms. Our laboratory and in-lake experiments and field monitoring have shown that nutrient additions will remove toxicity and prevent golden algae from blooming. In fact, other algae displace the golden algae after nutrient additions. Additions of ammonia are particularly effective, even at low doses (much lower than what is employed in fish hatchery ponds). Application of ammonia in limited areas of lakes, such as in coves, should be explored as a management option. The laboratory experiments and field monitoring also show that the potency of toxins produced by P. parvum is greatly reduced when water pH is lower, closer to neutral levels. Application of mild acid to limited areas of lakes (but not to a level where acidic conditions are created), such as in coves, should be explored as a management option. Finally, our field monitoring and mathematical modeling revealed that flushing/dilution at high enough levels could prevent P. parvum from forming blooms and/or terminate existing blooms. This technique could work using deeper waters within a lake to flush the surface waters of limited areas of the same lakes, such as in coves and should be explored as a management option. In this way, water releases from upstream reservoirs would not be necessary and there would be no addition of nutrients in the lake.

  16. Lakes, Electricity and You | Department of Energy

    Energy Savers [EERE]

    Lakes, Electricity and You Lakes, Electricity and You Why It's So Important That Lakes Are Used To Generate Electricity PDF icon Lakes, Electricity and You More Documents &...

  17. Charles Duncan Sworn in as Secretary of Energy | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Charles Duncan Sworn in as Secretary of Energy | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery

  18. MEMORANDUM FOR DISTRIBUTION FROM: CHARLES E. ANDERSON PRINCIPAL DEPUTY ASSISTANT SECRETARY FOR

    Energy Savers [EERE]

    - - Washington, DC 20585 April 4 , 2007 MEMORANDUM FOR DISTRIBUTION FROM: CHARLES E. ANDERSON PRINCIPAL DEPUTY ASSISTANT SECRETARY FOR ENVIRONMENTAL MANAGEMENT SUBJECT: Requirements to Coordinate Regulatory Negotiations with the Office of Regulatory Compliance In a memorandum dated December 28,2006, Assistant Secretary Rispoli announced the dissolution of the Office of Environmental Management (EM) Configuration Control Board and . the creation of a new EM Acquisition Advisory Board (EMAAB). In

  19. Clear Lake Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    300C573.15 K 572 F 1,031.67 R 1 USGS Estimated Reservoir Volume: 2 km 1 USGS Mean Capacity: 29 MW 1 Click "Edit With Form" above to add content History and...

  20. Hot Lake Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    150C423.15 K 302 F 761.67 R 1 USGS Estimated Reservoir Volume: 5 km 1 USGS Mean Capacity: 43 MW 1 Click "Edit With Form" above to add content History and...

  1. Soda Lake Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    of Reservoir: 1219 m1.219 km 0.757 mi 3,999.344 ft 1,333.111 yd 1 Average Depth to Reservoir: 762 m0.762 km 0.473 mi 2,500 ft 833.331 yd Use the "Edit with Form" button at...

  2. Medicine Lake Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Well Name: Location: Depth: Initial Flow Rate: "aa" is not declared as a valid unit of measurement for this property. The given value was not understood. Flow Test Comment:...

  3. Harney Lake Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    and Environmental Issues Click "Edit With Form" above to add content Exploration History First Discovery Well Completion Date: Well Name: Location: Depth: Initial Flow...

  4. Hot Lake Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    and Environmental Issues Click "Edit With Form" above to add content Exploration History First Discovery Well Completion Date: Well Name: Location: Depth: Initial Flow...

  5. Emmons Lake Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    and Environmental Issues Click "Edit With Form" above to add content Exploration History First Discovery Well Completion Date: Well Name: Location: Depth: Initial Flow...

  6. Distributed Production of Radionuclide Mo-99 Charles A. Gentile, Adam B.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cohen and George Ascione | Princeton Plasma Physics Lab Distributed Production of Radionuclide Mo-99 Charles A. Gentile, Adam B. Cohen and George Ascione This invention is for the production of Technetium-99m (Tc-99m), a widely used medical isotope in a distributed and in-situ fashion. Tc-99m results when Molybdenum 99 (Mo-99) decays. Mo-99 is typically produced in a nuclear reactor, but it can be produced from naturally occurring Molybdenum 100 or from Molybdenum 98 using either neutrons or

  7. Paleoclimatic significance of lake level fluctuations in the Lahontan Basin. [Pyramid Lake, Nevada

    SciTech Connect (OSTI)

    Benson, L.V.

    1980-08-01

    An energy flux balance model has been developed which treats evaporation as a function of air temperature, surface water temperature, precipitable water aloft, the amount, height, and type of sky cover, and the optical air mass. The model has been used to estimate the mean historical evaporation rate for Pyramid Lake, Nevada, using as input climatic data from the Reno area averaged over the period 1950 to 1975. Estimated and measured values of the mean annual evaporation rate were found to be in good agreement. The model was used to simulate changes in the level, the surface area and the volume of paleo Lake Lahontan. In particular, possible climatic states responsible for past high stands (1270 and 1330 m) were investigated. A conservative range of discharge values was used in the calculations. Results of the simulations indicate the fundamental importance of sky cover in the creation and destruction of large lake systems.

  8. DOE - Office of Legacy Management -- Salt_Lake

    Office of Legacy Management (LM)

    Salt_Lake Salt Lake City Sites ut_map Salt Lake City Disposal Site Salt Lake City Processing Site Last Updated: 12/14

  9. July 24, 2009; Visiting Speakers Program - Crossing the Valley of Death - The Role of the SBIR Program by Dr. Charles Wessner

    Office of Environmental Management (EM)

    Crossing the Valley of Death Crossing the Valley of Death Crossing the Valley of Death Crossing the Valley of Death The Role of the SBIR Program Department of Energy-NAPA HSS Visiting Speaker Program July 24, 2009 Charles W. Wessner, Ph.D. Director, Technology, Innovation, and Entrepreneurship The National Academies 1 © Charles W. Wessner Ph.D. The Good News and the Bad News New, Substantial Commitments for Technology Innovation, but Myths about the Innovation Process Remain 2009 Stimulus

  10. Public Meeting Commission Members TJ Glauthier, Co-Chair; Jared Cohon, Co-Chair; Charles Elachi; Richard Meserve;

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Minutes of the U.S. Department of Energy (DOE) Commission to Review the Effectiveness of the National Energy Laboratories Public Meeting Commission Members TJ Glauthier, Co-Chair; Jared Cohon, Co-Chair; Charles Elachi; Richard Meserve; in Attendance: Wanda Austin; Paul Fleury Date and Time: 9:00 AM - 4:30 PM, October 6, 2014 Location: Institute for Defense Analysis, IDA Mark Center, Room 1301, 4850 Mark Center Drive, Alexandria, VA Purpose: Meeting of the Commission to Review the Effectiveness

  11. Ground-water flow and ground- and surface-water interaction at the Weldon Spring quarry, St. Charles County, Missouri

    SciTech Connect (OSTI)

    Imes, J.L.; Kleeschulte, M.J.

    1997-12-31

    Ground-water-level measurements to support remedial actions were made in 37 piezometers and 19 monitoring wells during a 19-month period to assess the potential for ground-water flow from an abandoned quarry to the nearby St. Charles County well field, which withdraws water from the base of the alluvial aquifer. From 1957 to 1966, low-level radioactive waste products from the Weldon Spring chemical plant were placed in the quarry a few hundred feet north of the Missouri River alluvial plain. Uranium-based contaminants subsequently were detected in alluvial ground water south of the quarry. During all but flood conditions, lateral ground-water flow in the bedrock from the quarry, as interpreted from water-table maps, generally is southwest toward Little Femme Osage Creek or south into the alluvial aquifer. After entering the alluvial aquifer, the ground water flows southeast to east toward a ground-water depression presumably produced by pumping at the St. Charles County well field. The depression position varies depending on the Missouri River stage and probably the number and location of active wells in the St. Charles County well field.

  12. Facies distributions within contrasting structural components of a rift lake: Lake Tanganyika, Africa

    SciTech Connect (OSTI)

    Soreghan, M.J.; Cohen, A.S. )

    1991-03-01

    Lake Tanganyika is the most widely cited modern analog for interpreting ancient rift lakes; thus, understanding controls on its facies distribution is critical for refining stratigraphic models for rifts. Four recurrent margin types occur along the alternating half-graben structure of the lake: rift axes, platforms, escarpments, and accommodation zones. Data from study sites in the northern part of the lake suggest that predictable facies differences exist between these structural margin types. The rift axis site comprises a low-gradient, clastic (wave/current)-dominated deltaic system, with strong facies asymmetry and minor carbonate accumulations on raised benches. The platform margin site comprises a series of structurally controlled benches over which long, continuous facies tracts occur. Carbonate sands, muds, and shell gravel dominate; clastics are limited to moderate-sized silty deltas and long, narrow shoreface sands. The escarpment margin site is a steep-gradient system along which small ({lt}1 km{sup 2}) fan deltas alternate with cemented talus. The accommodation zone margin sites are also dominated by rugged structural relief, generally small fan deltas, and semicontinuous shoreface sand belts ({gt}5 km) onshore and poorly sorted silts offshore. TOC from fine-grained samples reflects the contrast in margin types. TOC values for the platform and rift axis range from 0.4 - 2.1 wt. % (avg. 1.3%), whereas accommodation zone and escarpment margin values range from 0.5-5.5% (avg. 3.0%). Acid insoluble sulfur shows a similar trend. Although all data are significantly correlated with depth, the relative area of the lake margin above and below the oxicline is directly controlled by the structural style of the lake margin.

  13. Geological History of Lake Lahontan, a Quaternary Lake of Northwestern...

    Open Energy Info (EERE)

    a Quaternary Lake of Northwestern Nevada Abstract Abstract unavailable. Author Israel C. Russell Organization U.S. Geological Survey Published U.S. Government Printing...

  14. Methane and carbon dioxide emissions from 40 lakes along a north–south latitudinal transect in Alaska

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sepulveda-Jauregui, A.; Walter Anthony, K. M.; Martinez-Cruz, K.; Greene, S.; Thalasso, F.

    2014-09-12

    Uncertainties in the magnitude and seasonality of various gas emission modes, particularly among different lake types, limit our ability to estimate methane (CH4) and carbon dioxide (CO2) emissions from northern lakes. Here we assessed the relationship between CH4 and CO2 emission modes in 40 lakes along a latitudinal transect in Alaska to physicochemical limnology and geographic characteristics, including permafrost soil type surrounding lakes. Emission modes included Direct Ebullition, Diffusion, Storage flux, and a newly identified Ice-Bubble Storage (IBS) flux. We found that all lakes were net sources of atmospheric CH4 and CO2, but the climate warming impact of lake CH4more » emissions was two times higher than that of CO2. Ebullition and Diffusion were the dominant modes of CH4 and CO2 emissions respectively. IBS, ~ 10% of total annual CH4 emissions, is the release to the atmosphere of seasonally ice-trapped bubbles when lake ice confining bubbles begins to melt in spring. IBS, which has not been explicitly accounted for in regional studies, increased the estimate of springtime emissions from our study lakes by 320%. Geographically, CH4 emissions from stratified, dystrophic interior Alaska thermokarst (thaw) lakes formed in icy, organic-rich yedoma permafrost soils were 6-fold higher than from non-yedoma lakes throughout the rest of Alaska. Total CH4 emission was correlated with concentrations of phosphate and total nitrogen in lake water, Secchi depth and lake area, with yedoma lakes having higher nutrient concentrations, shallower Secchi depth, and smaller lake areas. Our findings suggest that permafrost type plays important roles in determining CH4 emissions from lakes by both supplying organic matter to methanogenesis directly from thawing permafrost and by enhancing nutrient availability to primary production, which can also fuel decomposition and methanogenesis.« less

  15. Lake Region State College | Open Energy Information

    Open Energy Info (EERE)

    College Jump to: navigation, search Name Lake Region State College Facility Lake Region State College Sector Wind energy Facility Type Community Wind Facility Status In Service...

  16. Crow Lake Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Crow Lake Wind Facility Crow Lake Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Prairie Winds...

  17. Lake Erie Alternative Power | Open Energy Information

    Open Energy Info (EERE)

    Power Jump to: navigation, search Name Lake Erie Alternative Power Facility Lake Erie Alternative Power Sector Wind energy Facility Type Offshore Wind Facility Status Proposed...

  18. Blue Lake Power | Open Energy Information

    Open Energy Info (EERE)

    Power Jump to: navigation, search Name: Blue Lake Power Place: Redding, California Zip: 96001 Sector: Renewable Energy Product: Blue Lake Power is a wholey owned subsidiary of...

  19. Meadow Lake II | Open Energy Information

    Open Energy Info (EERE)

    II Jump to: navigation, search Name Meadow Lake II Facility Meadow Lake II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Horizon Wind...

  20. Summer Lake Aquaculture Aquaculture Low Temperature Geothermal...

    Open Energy Info (EERE)

    Summer Lake Aquaculture Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Summer Lake Aquaculture Aquaculture Low Temperature Geothermal Facility...

  1. Iowa Lakes Electric Cooperative | Open Energy Information

    Open Energy Info (EERE)

    Iowa Lakes Electric Cooperative Jump to: navigation, search Name: Iowa Lakes Electric Cooperative Place: Estherville, Iowa Zip: 51334 Sector: Wind energy Product: Iowa-based...

  2. Navy 1 Geothermal Area | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Navy 1 Geothermal Area Navy 1 Geothermal Area The Navy 1 Geothermal Project is located on the test and evaluation ranges of the Naval Air Weapons Station, China Lake. At its peak, the project produced more than 273 megawatts of electricity that was sold into the local utility grid under a long-term power sales agreement. Photo of the Coso Geothermal Area

  3. Curiosity Rover confirms existence of a large ancient lake on...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deputy Laboratory Director Paul Henry, Laboratory Director Charles McMillan and Amy Wong. Curiosity Rover bears three LANL technologies Contact Los Alamos National Laboratory...

  4. EIS-0464: DOE Notice of Availability of the Draft Environmental...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Notice of Availability of the Draft Environmental Impact Statement Lake Charles Carbon Capture and Sequestration Project, Lake Charles, Louisiana and Brazoria County,...

  5. EIS-0464: EPA Notice of Availability of Final Environmental Impact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EPA Notice of Availability of Final Environmental Impact Statement Lake Charles Carbon Capture and Sequestration Project, Lake Charles, Louisiana and Brazoria County, Texas EPA...

  6. EIS-0464: EPA Notice of Availability of the Draft Environmental...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Notice of Availability of the Draft Environmental Impact Statement Lake Charles Carbon Capture and Sequestration Project, Lake Charles, Louisiana and Brazoria County, Texas The...

  7. EIS-0464: Notice of Intent to Prepare an Environmental Impact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Notice of Intent to Prepare an Environmental Impact Statement Lake Charles Carbon Capture and Sequestration Project, Lake Charles, LA Notice of Intent To Prepare an...

  8. EIS-0464: Record of Decision | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Lake Charles CCS project) under DOE's Industrial Carbon Capture Sequestration Program. ... DOE's proposed action of providing financial assistance to the Lake Charles CCS project. ...

  9. Leucadia Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Leucadia Energy Leucadia Energy LAKE CHARLES CCS PROJECT In October 2009, DOE selected the ... Capture & Sequestration (Lake Charles CCS) project from the Recovery Act of 2009. The ...

  10. Notices

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... and Sequestration project (Lake Charles CCS project) under DOE's Industrial Carbon ... DOE's proposed action of providing financial assistance to the Lake Charles CCS project. ...

  11. Pyramid Lake Paiute Tribe - Geothermal Energy Assessment

    Energy Savers [EERE]

    Tribe Geothermal Energy Project Donna Marie Noel Project Manager Water Resources Department (775) 574-0101 x16 dnoel@plpt.nsn.us GEOTHERMAL RESOURCES Bonham Ranch Sutcliffe Pyramid Rock Astor Pass Needles Rocks Pyramid Lake Paiute Reservation PYRAMID LAKE PAIUTE TRIBE * Largest Nevada Reservation in land base and population, 2300 members * Reservation encompasses 470,000 acres & 330,000 acres cattle range * Pyramid Lake 115,000 acre lake surface * Terminus lake with Truckee River connector

  12. Iowa Lakes Superior Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    search Name Iowa Lakes Superior Wind Farm Facility Iowa Lakes Superior Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Iowa Lakes...

  13. Iowa Lakes Lakota Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    search Name Iowa Lakes Lakota Wind Farm Facility Iowa Lakes Lakota Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Iowa Lakes...

  14. City of Detroit Lakes, Minnesota (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Lakes, Minnesota (Utility Company) Jump to: navigation, search Name: City of Detroit Lakes Place: Minnesota Website: www.ci.detroit-lakes.mn.usmai Facebook: https:...

  15. Spirit Lake II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Lake School District Energy Purchaser Spirit Lake School District Location Spirit Lake IA Coordinates 43.411412, -95.09914 Show Map Loading map... "minzoom":false,"mappingse...

  16. Hot Lake RV Park Space Heating Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Lake RV Park Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Hot Lake RV Park Space Heating Low Temperature Geothermal Facility Facility Hot Lake...

  17. Soap Lake Pool & Spa Low Temperature Geothermal Facility | Open...

    Open Energy Info (EERE)

    Soap Lake Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Soap Lake Pool & Spa Low Temperature Geothermal Facility Facility Soap Lake Sector...

  18. Uranium distribution in relation to sedimentary facies, Kern Lake, California

    SciTech Connect (OSTI)

    Merifield, P.M.; Carlisle, D.; Idiz, E.; Anderhalt, R.; Reed, W.E.; Lamar, D.L.

    1980-04-01

    Kern Lake has served as a sink for drainage from the southern Sierra Nevada and, in lesser amounts, from the southern Temblor Range. Both areas contain significant uranium source rocks. The uranium content in Holocene Kern Lake sediments correlates best with the mud (silt and clay) fraction. It correlates less well with organic carbon. Biotite grains could account for much of the uranium in the sand fraction, and perhaps the silt fraction as well. The data suggest that fixation of uranium by adsorption on mineral grains is a dominant process in this lake system. Further work is required to determine the importance of cation-exchange of uranium on clays and micas and of organically complexed uranium adsorbed to mineral surfaces. These findings also raise the question of whether uranium transport down the Kern River occurs largely as uranium adsorbed to mineral surfaces.

  19. Physical and Chemical Implications of Mid-Winter Pumping of Trunda Lakes - North Slope, Alaska

    SciTech Connect (OSTI)

    Hinzman, Larry D.; Lilly, Michael R.; Kane, Douglas L.; Miller, D. Dan; Galloway, Braden K.; Hilton, Kristie M.; White, Daniel M.

    2005-09-30

    Tundra lakes on the North Slope, Alaska, are an important resource for energy development and petroleum field operations. A majority of exploration activities, pipeline maintenance, and restoration activities take place on winter ice roads that depend on water availability at key times of the winter operating season. These same lakes provide important fisheries and ecosystem functions. In particular, overwintering habitat for fish is one important management concern. This study focused on the evaluation of winter water use in the current field operating areas to provide a better understanding of the current water use practices. It found that under the current water use practices, there were no measurable negative effects of winter pumping on the lakes studied and current water use management practices were appropriately conservative. The study did find many areas where improvements in the understanding of tundra lake hydrology and water usage would benefit industry, management agencies, and the protection of fisheries and ecosystems.

  20. Land O Lakes Inc | Open Energy Information

    Open Energy Info (EERE)

    O Lakes Inc Jump to: navigation, search Name: Land O'Lakes Inc Place: Saint Paul, Minnesota Zip: 55164-0101 Product: Farmer-owned cooperative, marketer of dairy-based products for...

  1. Great Lakes Energy Coop | Open Energy Information

    Open Energy Info (EERE)

    Logo: Great Lakes Energy Coop Name: Great Lakes Energy Coop Address: PO Box 70 Place: Boyne City, MI Zip: 49712 Service Territory: Michigan Phone Number: 1-800-678-0411 Website:...

  2. ORISE Research Team Experiences: Joe Lake

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Joe Lake One-Time Student Intern has 'Second Life' as ORNL Mentor Joe Lake Joe Lake, a full-time software engineer for Oak Ridge National Laboratory's Computational Science and Engineering Division, is doing his part to help foster the next generation of scientists. As a former participant of both the ORISE-administered DOE Science Undergraduate Laboratory Internships (SULI) and Higher Education Research Experiences (HERE) programs, Lake is currently co-mentoring his fourth student. As a former

  3. Lake City Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    form View source History View New Pages Recent Changes All Special Pages Semantic SearchQuerying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with...

  4. Compound and Elemental Analysis At Hot Lake Area (Wood, 2002...

    Open Energy Info (EERE)

    and Heber geothermal fields of southern California; and 7) the Dieng field in Central Java, Indonesia. We have analyzed the samples from all fields for REE except the last two....

  5. Teleseismic-Seismic Monitoring At Clear Lake Area (Skokan, 1993...

    Open Energy Info (EERE)

    4 illustrates seismicity from January of 1969 to June of 1977 (Rapolla and Keller, 1984). During this span, most of the seismicity occurred in the region of the Geysers...

  6. Aeromagnetic Survey At Clear Lake Area (Skokan, 1993) | Open...

    Open Energy Info (EERE)

    not indicated DOE-funding Unknown Notes USGS aeromagnetic data (Rapolla and Keller, 1984) were acquired at an elevation of 4500 feet and flown with one-mile spacings. These...

  7. Thermal Gradient Holes At Lake City Hot Springs Area (Warpinski...

    Open Energy Info (EERE)

    consists of a previously identified geothermal site that has been explored with both geophysics and drilling (Hedel, 1981), but has not been characterized adequately to allow...

  8. Compound and Elemental Analysis At Lake City Hot Springs Area...

    Open Energy Info (EERE)

    consists of a previously identified geothermal site that has been explored with both geophysics and drilling (Hedel, 1981), but has not been characterized adequately to allow...

  9. Telluric Survey At Clear Lake Area (Skokan, 1993) | Open Energy...

    Open Energy Info (EERE)

    through use of a controlled source transient electromagnetic survey (Keller and Jacobson, 1983 ). A grounded-wire source of 1.1 km in length was energized with a current of...

  10. Walker Lake Valley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: USGS Mean Reservoir Temp: USGS Estimated Reservoir Volume: USGS Mean Capacity: Click "Edit With...

  11. Winnemucca Dry Lake Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: USGS Mean Reservoir Temp: USGS Estimated Reservoir Volume: USGS Mean Capacity: Click "Edit With...

  12. Winnemucca Dry Lake Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    GEA Development Phase: Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: USGS Mean Reservoir Temp: USGS Estimated Reservoir Volume: USGS Mean...

  13. Summer Lake Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    110C383.15 K 230 F 689.67 R 1 USGS Estimated Reservoir Volume: 2 km 1 USGS Mean Capacity: 8 MW 1 Click "Edit With Form" above to add content History and...

  14. Carson Lake Corral Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Sanyal Classification (Reservoir): Depth to Top of Reservoir: Depth to Bottom of Reservoir: Average Depth to Reservoir: Use the "Edit with Form" button at the top of the...

  15. Ground Gravity Survey At Walker Lake Valley Area (Shoffner, Et...

    Open Energy Info (EERE)

    N. Hinz, A. Sabin, M. Lazaro, S. Alm (2010) Understanding Fault Characteristics And Sediment Depth For Geothermal Exploration Using 3D Gravity Inversion In Walker Valley, Nevada...

  16. Stepout-Deepening Wells At Medicine Lake Area (Warpinski, Et...

    Open Energy Info (EERE)

    Technique Well Deepening Activity Date Usefulness useful DOE-funding Unknown Notes Update to Warpinski, et al., 2002 References N. R. Warpinski, A. R. Sattler, R. Fortuna, D....

  17. Static Temperature Survey At Medicine Lake Area (Warpinski, Et...

    Open Energy Info (EERE)

    Static Temperature Survey Activity Date Usefulness useful DOE-funding Unknown Notes Update to Warpinski, et al., 2002 References N. R. Warpinski, A. R. Sattler, R. Fortuna, D....

  18. Geodetic Survey At Medicine Lake Area (Poland, Et Al., 2006)...

    Open Energy Info (EERE)

    Date Usefulness useful DOE-funding Unknown References Michael Poland, Roland Burgmann, Daniel Dzurisin, Michael Lisowski, Timothy Masterlark, Susan Owen, Jonathan Fink (2006)...

  19. Walker Lake Valley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    and Environmental Issues Click "Edit With Form" above to add content Exploration History First Discovery Well Completion Date: Well Name: Location: Depth: Initial Flow...

  20. Methane and carbon dioxide emissions from 40 lakes along a northsouth latitudinal transect in Alaska

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sepulveda-Jauregui, A.; Walter Anthony, K. M.; Martinez-Cruz, K.; Greene, S.; Thalasso, F.

    2015-06-02

    Uncertainties in the magnitude and seasonality of various gas emission modes, particularly among different lake types, limit our ability to estimate methane (CH4) and carbon dioxide (CO2) emissions from northern lakes. Here we assessed the relationship between CH4 and CO2 emission modes in 40 lakes along a latitudinal transect in Alaska to lakes' physicochemical properties and geographic characteristics, including permafrost soil type surrounding lakes. Emission modes included direct ebullition, diffusion, storage flux, and a newly identified ice-bubble storage (IBS) flux. We found that all lakes were net sources of atmospheric CH4 and CO2, but the climate warming impact of lakemoreCH4 emissions was 2 times higher than that of CO2. Ebullition and diffusion were the dominant modes of CH4 and CO2 emissions, respectively. IBS, ~10% of total annual CH4 emissions, is the release to the atmosphere of seasonally ice-trapped bubbles when lake ice confining bubbles begins to melt in spring. IBS, which has not been explicitly accounted for in regional studies, increased the estimate of springtime emissions from our study lakes by 320%. Geographically, CH4 emissions from stratified, mixotrophic interior Alaska thermokarst (thaw) lakes formed in icy, organic-rich yedoma permafrost soils were 6-fold higher than from non-yedoma lakes throughout the rest of Alaska. The relationship between CO2 emissions and geographic parameters was weak, suggesting high variability among sources and sinks that regulate CO2 emissions (e.g., catchment waters, pH equilibrium). Total CH4 emission was correlated with concentrations of soluble reactive phosphorus and total nitrogen in lake water, Secchi depth, and lake area, with yedoma lakes having higher nutrient concentrations, shallower Secchi depth, and smaller lake areas. Our findings suggest that permafrost type plays important roles in determining CH4 emissions from lakes by both supplying organic matter to methanogenesis directly from thawing permafrost and by enhancing nutrient availability to primary production, which can also fuel decomposition and methanogenesis.less

  1. A giant dune-dammed lake on the North Platte River, Nebraska

    SciTech Connect (OSTI)

    Swinehart, J.B. (Univ. of Nebraska, Lincoln, NE (United States). Conservation and Survey Div.); Loope, D.B. (Univ. of Nebraska, Lincoln, NE (United States). Dept. of Geology)

    1992-01-01

    The recent work in the Nebraska Sand Hills, just north of the North Platte Valley, has revealed the presence of numerous dune dams--sites where eolian sand has filled Pleistocene paleovalleys and caused the formation of lake basins containing abundant small, interdunal lakes. Although the Platte River is considered the southern margin of the Sand Hills, there is a 1,200 sq km triangular area of large dunes in Lincoln County just south of the South Platte. The authors hypothesize that large dunes migrated southward to fill the North Platte Valley during glacial maximum when both the North and South Platte were dry. As Rocky Mountain snowmelt and Great Plains precipitation increased during deglaciation, a single 65 km-long, 15 km-wide, 50 m-deep lake formed behind the massive dune dam. The tentative chronology suggests that the lake was in existence for at least several thousand years. They have not yet found compelling evidence of catastrophic flooding downstream of the former lake. Evidence of two large Quaternary lakes on the White Nile between Khartoum and Malakal (Sudan) was discovered in the 1960's. Shoreline deposits indicate the lakes were 400--600 km long and up to 50 km wide. Although the lakes have been attributed to repeated blockage of the White Nile by clay-rich Blue Nile deposits, the distribution and age of dune sand near the confluence of these rivers suggest that, as in the Nebraska example, the course of the White Nile was blocked by dunes when the region was desiccated in the Late Pleistocene. Lakes behind permeable dams rise to a level where input equals output. Earthen dams are vulnerable to overtopping and piping. The relatively high permeability of dune sand prevents or delays overtopping, and piping is prevented by the extremely high low hydraulic gradients that typify extant sand dams.

  2. Hydrology of modern and late Holocene lakes, Death Valley, California

    SciTech Connect (OSTI)

    Grasso, D.N.

    1996-07-01

    Above-normal precipitation and surface-water runoff, which have been generally related to the cyclic recurrence of the El Nino-Southern Oscillation, have produced modern ephemeral lakes in the closed-basin Death Valley watershed. This study evaluates the regional hydroclimatic relations between precipitation, runoff, and lake transgressions in the Death Valley watershed. Recorded precipitation, runoff, and spring discharge data for the region are used in conjunction with a closed-basin, lake-water-budget equation to assess the relative contributions of water from these sources to modern lakes in Death Valley and to identify the requisite hydroclimatic changes for a late Holocene perennial lake in the valley. As part of the Yucca Mountain Site Characterization Program, an evaluation of the Quaternary regional paleoflood hydrology of the potential nuclear-waste repository site at Yucca Mountain, Nevada, was planned. The objectives of the evaluation were (1) to identify the locations and investigate the hydraulic characteristics of paleofloods and compare these with the locations and characteristics of modern floods, and (2) to evaluate the character and severity of past floods and debris flows to ascertain the potential future hazards to the potential repository during the pre-closure period (US Department of Energy, 1988). This study addresses the first of these objectives, and the second in part, by assessing and comparing the sizes, locations, and recurrence rates of modern, recorded (1962--83) floods and late Holocene paleofloods for the 8,533-mi{sup 2}, closed-basin, Death Valley watershed with its contributing drainage basins in the Yucca Mountain site area.

  3. DOE - Office of Legacy Management -- Lake_D

    Office of Legacy Management (LM)

    Disposal Site UMTRCA Title I site laked_map The Lakeview Disposal Site, an Uranium Mill Tailings Radiation Control Act (UMTRCA) Title I disposal site, is licensed to DOE for long-term custody and managed by the Office of Legacy Management. The site transferred to the Office of Legacy Management in 2003 and requires routine inspection and maintenance, records-related activities, and stakeholder support. For more information about the Lakeview site, view the fact sheet. Site Documents and Links

  4. Great Lakes Steel -- PCI facility

    SciTech Connect (OSTI)

    Eichinger, F.T.; Dake, S.H.; Wagner, E.D.; Brown, G.S.

    1997-12-31

    This paper discusses the planning, design, and start-up of the 90 tph PCI facility for National Steel`s Great Lakes Steel Division in River Rouge, MI. This project is owned and operated by Edison Energy Services, and was implemented on a fast-track basis by Raytheon Engineers and Constructors, Babcock Material Handling, and Babcock and Wilcox. This paper presents important process issues, basic design criteria, an the challenges of engineering and building a state-of-the-art PCI facility in two existing plants. Pulverized coal is prepared at the River Rouge Power Plant of Detroit Edison, is pneumatically conveyed 6,000 feet to a storage silo at Great Lakes Steel, and is injected into three blast furnaces.

  5. Geohydrology and evapotranspiration at Franklin Lake Playa, Inyo County, California

    SciTech Connect (OSTI)

    NONE

    1990-12-01

    Franklin Lake playa is one of the principal discharge areas of the Furnace Creek Ranch-Alkali Flat ground-water-flow system in southern Nevada and adjacent California. Yucca Mountain, Nevada, located within this flow system, is being evaluated by the US Department of Energy to determine its suitability as a potential site for a high-level nuclear-waste repository. To assist the US Department of Energy with its evaluation of the Yucca Mountain site, the US Geological Survey developed a parameter-estimation model of the Furnace Creek Ranch-Alkali Flat ground-water-flow system. Results from sensitivity analyses made using the parameter-estimation model indicated that simulated rates of evapotranspiration at Franklin Lake playa had the largest effect on the calculation of transmissivity values at Yucca Mountain of all the model-boundary conditions and, therefore, that evapotranspiration required careful definition. 72 refs., 59 figs., 26 tab.

  6. Geohydrology and evapotranspiration at Franklin Lake playa, Inyo County, California

    SciTech Connect (OSTI)

    Czarnecki, J.B.

    1997-12-31

    Franklin Lake playa is one of the principal discharge areas of the Furnace Creek Ranch-Alkali Flat ground-water-flow system in southern Nevada and adjacent California. Yucca Mountain, Nevada, located within this flow system, is being evaluated by the US Department of Energy to determine its suitability as a potential site for a high-level nuclear-waste repository. To assist the U.S. Department of Energy with its evaluation of the Yucca Mountain site, the US Geological Survey developed a parameter-estimation model of the Furnace Creek Ranch-Alkali Flat ground-water-flow system. Results from sensitivity analyses made using the parameter-estimation model indicated that simulated rates of evapotranspiration at Franklin Lake playa had the largest effect on the calculation of transmissivity values at Yucca Mountain of all the model-boundary conditions and, therefore, that evapotranspiration required careful definition.

  7. VEE-0018- In the Matter of Lakes Gas Company

    Broader source: Energy.gov [DOE]

    On March 12, 1996, the Lakes Gas Company (Lakes) of Forest Lake, Minnesota, filed an Application for Exception with the Office of Hearings and Appeals of the Department of Energy. In its...

  8. Glacial Lakes Energy | Open Energy Information

    Open Energy Info (EERE)

    search Name: Glacial Lakes Energy Place: Watertown, South Dakota Zip: 57201 Product: Bioethanol producer using corn as feedstock Coordinates: 43.197366, -88.720469 Show Map...

  9. Spirit Lake Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Minnesota Windpower Energy Purchaser AlliantIES Utilities Location Spirit Lake IA Coordinates 43.411381, -95.10075 Show Map Loading map... "minzoom":false,"mappingse...

  10. Great Lakes Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Great Lakes Biofuels LLC Place: Madison, Wisconsin Zip: 53704 Sector: Services Product: Biodiesel research, consulting, management distribution and services company. Coordinates:...

  11. Lake Pocotopaug, Connecticut: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Lake Pocotopaug, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.5984325, -72.5103654 Show Map Loading map......

  12. Rice Lake Utilities | Open Energy Information

    Open Energy Info (EERE)

    Place: Wisconsin Phone Number: 715-234-7004 Website: www.ricelakeutilities.com Facebook: https:www.facebook.compagesCity-of-Rice-Lake-Utilities162786740407997 Outage...

  13. Lake Country Power | Open Energy Information

    Open Energy Info (EERE)

    Number: 8004219959 Website: www.lakecountrypower.coopinde Twitter: @LakeCountryPowe Facebook: https:www.facebook.comlakecountrypower Outage Hotline: 8004219959 Outage Map:...

  14. Obama Administration Hosts Great Lakes Offshore Wind Workshop in Chicago

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with Great Lakes Wind Collaborative | Department of Energy Hosts Great Lakes Offshore Wind Workshop in Chicago with Great Lakes Wind Collaborative Obama Administration Hosts Great Lakes Offshore Wind Workshop in Chicago with Great Lakes Wind Collaborative October 28, 2010 - 12:00am Addthis WASHINGTON - The White House Council on Environmental Quality and the U.S. Department of Energy hosted a workshop with the Great Lakes Wind Collaborative in Chicago on October 26 - 27, 2010, focused on the

  15. Salt Lake City, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Salt Lake City, Utah: Energy Resources (Redirected from Salt Lake City, UT) Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.7607793, -111.8910474 Show Map...

  16. Summer Lake Hot Springs Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Summer Lake Hot Springs Space Heating Low Temperature Geothermal Facility Facility Summer Lake...

  17. City of Mountain Lake, Minnesota (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Lake, Minnesota (Utility Company) Jump to: navigation, search Name: City of Mountain Lake Place: Minnesota Phone Number: (507) 427-2999 Website: www.mountainlakemn.comindex.a...

  18. Lake Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Gas Recovery Biomass Facility Jump to: navigation, search Name Lake Gas Recovery Biomass Facility Facility Lake Gas Recovery Sector Biomass Facility Type Landfill Gas Location Cook...

  19. Lake County, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    North Chicago, Illinois Old Mill Creek, Illinois Palatine, Illinois Park City, Illinois Port Barrington, Illinois Riverwoods, Illinois Round Lake Beach, Illinois Round Lake...

  20. Wall Lake Municipal Utilities Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Municipal Utilities Energy Purchaser Wall Lake Municipal Utilities Location Wall Lake IA Coordinates 42.281965, -95.094098 Show Map Loading map... "minzoom":false,"mappings...

  1. Lake County Ag Park Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Ag Park Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Lake County Ag Park Greenhouse Low Temperature Geothermal Facility Facility Lake County Ag...

  2. HERO BX formerly Lake Erie Biofuels | Open Energy Information

    Open Energy Info (EERE)

    HERO BX formerly Lake Erie Biofuels Jump to: navigation, search Name: HERO BX (formerly Lake Erie Biofuels) Place: Erie, Pennsylvania Product: Pennsylvania-based project developer...

  3. Lake County, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    2 Climate Zone Subtype A. US Recovery Act Smart Grid Projects in Lake County, Florida City of Leesburg, Florida Smart Grid Project Energy Generation Facilities in Lake County,...

  4. Lake County, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Zone Subtype B. Places in Lake County, Oregon Crump Geyser, Oregon Lakeview, Oregon Paisley, Oregon Retrieved from "http:en.openei.orgwindex.php?titleLakeCounty,Oregon&ol...

  5. Great Lakes Science Center Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Science Center Wind Farm Jump to: navigation, search Name Great Lakes Science Center Wind Farm Facility Great Lakes Science Center Sector Wind energy Facility Type Community Wind...

  6. Lake Elsinore Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Elsinore Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Lake Elsinore Pool & Spa Low Temperature Geothermal Facility Facility Lake Elsinore Sector...

  7. EA-1996: Glass Buttes Radio Station, Lake County, Oregon | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6: Glass Buttes Radio Station, Lake County, Oregon EA-1996: Glass Buttes Radio Station, Lake County, Oregon SUMMARY The Bureau of Land Management (BLM), with DOE's Bonneville Power...

  8. Letter: Cultural Resource Determination for the Non-Channel Area of the Southeast Drainage, a Part of the Weldon Spring Site Remedial Action Project (WSSRAP), Saint Charles, Missouri.

    Office of Legacy Management (LM)

  9. Proposed Weldon Spring Quarry Discharge Pipeline Project and Southeast Drainage Area (DOE), Weldon Spring, Saint Charles County, Missouri. SE-200-201-1.01.

    Office of Legacy Management (LM)

  10. Survey and Evaluation: Phase 1 Survey and Evaluation of Part of the Southeast Drainage of the Weldon Spring Remedial Action Project Area, Saint Charles County, Missouri.

    Office of Legacy Management (LM)

  11. Source Characterization and Temporal Variation of Methane Seepage from Thermokarst Lakes on the Alaska North Slope in Response to Arctic Climate Change

    SciTech Connect (OSTI)

    2012-09-30

    The goals of this research were to characterize the source, magnitude and temporal variability of methane seepage from thermokarst lakes (TKL) within the Alaska North Slope gas hydrate province, assess the vulnerability of these areas to ongoing and future arctic climate change and determine if gas hydrate dissociation resulting from permafrost melting is contributing to the current lake emissions. Analyses were focused on four main lake locations referred to in this report: Lake Qalluuraq (referred to as Lake Q) and Lake Teshekpuk (both on Alaska?s North Slope) and Lake Killarney and Goldstream Bill Lake (both in Alaska?s interior). From analyses of gases coming from lakes in Alaska, we showed that ecological seeps are common in Alaska and they account for a larger source of atmospheric methane today than geologic subcap seeps. Emissions from the geologic source could increase with potential implications for climate warming feedbacks. Our analyses of TKL sites showing gas ebullition were complemented with geophysical surveys, providing important insight about the distribution of shallow gas in the sediments and the lake bottom manifestation of seepage (e.g., pockmarks). In Lake Q, Chirp data were limited in their capacity to image deeper sediments and did not capture the thaw bulb. The failure to capture the thaw bulb at Lake Q may in part be related to the fact that the present day lake is a remnant of an older, larger, and now-partially drained lake. These suggestions are consistent with our analyses of a dated core of sediment from the lake that shows that a wetland has been present at the site of Lake Q since approximately 12,000 thousand years ago. Chemical analyses of the core indicate that the availability of methane at the site has changed during the past and is correlated with past environmental changes (i.e. temperature and hydrology) in the Arctic. Discovery of methane seeps in Lake Teshekpuk in the northernmost part of the lake during 2009 reconnaissance surveys provided a strong impetus to visit this area in 2010. The seismic methods applied in Lake Teshekpuk were able to image pockmarks, widespread shallow gas in the sediments, and the relationship among different sediment packages on the lake?s bottom, but even boomer seismics did not detect permafrost beneath the northern part of the lake. By characterizing the biogeochemistry of shallow TKL with methane seeps we showed that the radical seasonal shifts in ice cover and temperature. These seasonal environmental differences result in distinct consumption and production processes of biologically-relevant compounds. The combined effects of temperature, ice-volume and other lithological factors linked to seepage from the lake are manifest in the distribution of sedimentary methane in Lake Q during icecovered and ice-free conditions. The biogeochemistry results illustrated very active methanotrophy in TKLs. Substantial effort was subsequently made to characterize the nature of methanotrophic communities in TKLs. We applied stable isotope probing approaches to genetically characterize the methanotrophs most active in utilizing methane in TKLs. Our study is the first to identify methane oxidizing organisms active in arctic TKLs, and revealing that type I methanotrophs and type II methanotrophs are abundant and active in assimilating methane in TKLs. These organisms play an important role in limiting the flux of methane from these sites. Our investigations indicate that as temperatures increase in the Arctic, oxidation rates and active methanotrophic populations will also shift. Whether these changes can offset predicted increases in methanogenesis is an important question underlying models of future methane flux and resultant climate change. Overall our findings indicate that TKLs and their ability to act as both source and sink of methane are exceedingly sensitive to environmental change.

  12. Using Snow Fences to Augument Fresh Water Supplies in Shallow Arctic Lakes

    SciTech Connect (OSTI)

    Stuefer, Svetlana

    2013-03-31

    This project was funded by the U.S. Department of Energy, National Energy Technology Laboratory (NETL) to address environmental research questions specifically related to Alaska?s oil and gas natural resources development. The focus of this project was on the environmental issues associated with allocation of water resources for construction of ice roads and ice pads. Earlier NETL projects showed that oil and gas exploration activities in the U.S. Arctic require large amounts of water for ice road and ice pad construction. Traditionally, lakes have been the source of freshwater for this purpose. The distinctive hydrological regime of northern lakes, caused by the presence of ice cover and permafrost, exerts influence on lake water availability in winter. Lakes are covered with ice from October to June, and there is often no water recharge of lakes until snowmelt in early June. After snowmelt, water volumes in the lakes decrease throughout the summer, when water loss due to evaporation is considerably greater than water gained from rainfall. This balance switches in August, when air temperature drops, evaporation decreases, and rain (or snow) is more likely to occur. Some of the summer surface storage deficit in the active layer and surface water bodies (lakes, ponds, wetlands) is recharged during this time. However, if the surface storage deficit is not replenished (for example, precipitation in the fall is low and near?surface soils are dry), lake recharge is directly affected, and water availability for the following winter is reduced. In this study, we used snow fences to augment fresh water supplies in shallow arctic lakes despite unfavorable natural conditions. We implemented snow?control practices to enhance snowdrift accumulation (greater snow water equivalent), which led to increased meltwater production and an extended melting season that resulted in lake recharge despite low precipitation during the years of the experiment. For three years (2009, 2010, and 2011), we selected and monitored two lakes with similar hydrological regimes. Both lakes are located 30 miles south of Prudhoe Bay, Alaska, near Franklin Bluffs. One is an experimental lake, where we installed a snow fence; the other is a control lake, where the natural regime was preserved. The general approach was to compare the hydrologic response of the lake to the snowdrift during the summers of 2010 and 2011 against the ?baseline? conditions in 2009. Highlights of the project included new data on snow transport rates on the Alaska North Slope, an evaluation of the experimental lake?s hydrological response to snowdrift melt, and cost assessment of snowdrift?generated water. High snow transport rates (0.49 kg/s/m) ensured that the snowdrift reached its equilibrium profile by winter's end. Generally, natural snowpack disappeared by the beginning of June in this area. In contrast, snow in the drift lasted through early July, supplying the experimental lake with snowmelt when water in other tundra lakes was decreasing. The experimental lake retained elevated water levels during the entire open?water season. Comparison of lake water volumes during the experiment against the baseline year showed that, by the end of summer, the drift generated by the snow fence had increased lake water volume by at least 21?29%. We estimated water cost at 1.9 cents per gallon during the first year and 0.8 cents per gallon during the second year. This estimate depends on the cost of snow fence construction in remote arctic locations, which we assumed to be at $7.66 per square foot of snow fence frontal area. The snow fence technique was effective in augmenting the supply of lake water during summers 2010 and 2011 despite low rainfall during both summers. Snow fences are a simple, yet an effective, way to replenish tundra lakes with freshwater and increase water availability in winter. This research project was synergetic with the NETL project, "North Slope Decision Support System (NSDSS) for Water Resources Planning and Management." The results

  13. Chickasaw National Recreational Area, Chickasaw, Oklahoma | Department of

    Office of Environmental Management (EM)

    Energy Chickasaw National Recreational Area, Chickasaw, Oklahoma Chickasaw National Recreational Area, Chickasaw, Oklahoma Photo of Comfort Station at the Chickasaw National Recreation Area The Chickasaw National Recreation Area is located 100 miles south of Oklahoma City, Oklahoma, on the Lake of the Arbuckles. To save taxpayers' money and minimize adverse impacts on the environment, the National Park Service (NPS) recently incorporated solar energy into the design of three new comfort

  14. NBP RFI: Communications Requirements- Comments of Lake Region Electric

    Office of Environmental Management (EM)

    Cooperative- Minnesota | Department of Energy Lake Region Electric Cooperative- Minnesota NBP RFI: Communications Requirements- Comments of Lake Region Electric Cooperative- Minnesota Comments of Lake Region Electric Cooperative- Minnesota on Implementing the National Broadband Plan by Studying the Communications Requirements of Electric Utilities to Inform Federal Smart Grid Policy PDF icon NBP RFI: Communications Requirements- Comments of Lake Region Electric Cooperative- Minnesota More

  15. Lac du Flambeau Band of Lake Superior Chippewa Indians - Conservation and Renewable Energy Planning

    Office of Environmental Management (EM)

    Bryan Hoover Lac du Flambeau Band of Lake Superior Chippewa Indians November 20, 2008 * Located in North Central Wisconsin. * The reservation is 144 square miles or 86,000 acres. * Population 3,400 Tribal Members. * Checkerboard Reservation * Area- 86,630 acres or 144 square miles * Land Ownership- 66.8%-Tribal land 33.2%-Fee land * 260 Lakes * 71 Miles of Streams * 24,000 Acres of Wetlands * 41,733 Acres of Forests * Develop and evaluate baseline data on energy consumption, costs, trends and

  16. Converters Charles N Johnson

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to predict the propagation of sound underwater solve variations of the Helmholtz wave equation. These models become self-limiting to the problems they can most effectively solve...

  17. Klamath and Lake Counties Agricultural Industrial Park | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Klamath and Lake Counties Agricultural Industrial Park Klamath and Lake Counties Agricultural Industrial Park Engineered Geothermal Systems, Low Temp, Exploration Demonstration Projects. Project goal: to attract new businesses to Klamath and Lake counties for the purpose of capitalizing on our abundant geothermal resources. PDF icon egs_riley_klamath_lake.pdf More Documents & Publications Klamath and Lake Counties Agricultural Industrial Park; 2010 Geothermal Technology Program

  18. Bay Area

    National Nuclear Security Administration (NNSA)

    8%2A en NNSA to Conduct Aerial Radiological Surveys Over San Francisco, Pacifica, Berkeley, And Oakland, CA Areas http:nnsa.energy.govmediaroompressreleasesamsca

  19. Research Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in diverse research areas such as cell biology, lithography, infrared microscopy, radiology, and x-ray tomography. Time-Resolved These techniques exploit the pulsed nature of...

  20. Research Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    environment and health issues; and to advance the engineering of biological systems for sustainable manufacturing. Biosciences Area research is coordinated through three...

  1. Impacts of Water Level Fluctuations on Kokanee Reproduction in Flathead Lake, 1985 Annual Report.

    SciTech Connect (OSTI)

    Beattie, Will; Fraley, John J.; Decker-Hess, Janet

    1986-06-01

    This study has investigated the effects of the operation of Kerr Dam on the reproductive success of kokanee that spawn along the shores of Flathead Lake. We have estimated the spawning escapement to the lakeshore, characterized spawning habitat, monitored egg and alevin survival in redds, and related survival to length of redd exposure due to lake drawdown. Groundwater discharge apparently attracts kokanee to spawning sites along the lakeshore and is responsible for prolonging egg survival in redds above minimum pool. We have quantified and described the effect of lake drawdown on groundwater flux in spawning areas. This report defines optimal lakeshore spawning habitat and discusses eqg and alevin survival both in and below the varial zone.

  2. O:\IM-20\E-Government Program Office\FDMS\FDMS database\DOE\2011\DOE-HQ-2011-0014 - Daniel Cohen - GC\Comments from FDMS\Charles W Adams DRAFT-0005.html

    Energy Savers [EERE]

    %20Daniel%20Cohen%20-%20GC/Comments%20from%20FDMS/Charles%20W%20Adams%20DRAFT-0005.html[3/23/2011 2:17:13 PM] PUBLIC SUBMISSION As of: March 23, 2011 Received: March 21, 2011 Status: Pending_Post Tracking No. 80c0d05f Comments Due: April 04, 2011 Submission Type: Web Docket: DOE-HQ-2011-0014 Reducing Regulatory Burden Comment On: DOE-HQ-2011-0014-0001 Reducing Regulatory Burden Document: DOE-HQ-2011-0014-DRAFT-0005 Comment on FR Doc # 2011-02368 Submitter Information Name: Charles W Adams

  3. Clear Lake Cogeneration LP | Open Energy Information

    Open Energy Info (EERE)

    Cogeneration LP Jump to: navigation, search Name: Clear Lake Cogeneration LP Place: Idaho Phone Number: 281-474-7611 Outage Hotline: 281-474-7611 References: EIA Form EIA-861 Final...

  4. Salt Lake City- High Performance Buildings Requirement

    Broader source: Energy.gov [DOE]

    Salt Lake City's mayor issued an executive order in July 2005 requiring that all public buildings owned and controlled by the city be built or renovated to meet the requirements of LEED "silver"...

  5. Lake Mills Light & Water | Open Energy Information

    Open Energy Info (EERE)

    Light & Water Jump to: navigation, search Name: Lake Mills Light & Water Place: Wisconsin Phone Number: (920) 648-4026 Website: www.lakemillslw.com Outage Hotline: (920) 648-4026...

  6. Dry lake reveals evidence of Southwestern 'megadroughts'

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dry lake reveals evidence of Southwestern 'megadroughts' Dry lake reveals evidence of Southwestern 'megadroughts' A portion of the research indicates that an ancient period of warming may be analogous to natural present-day climate conditions. February 28, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma

  7. Energy and water in the Great Lakes.

    SciTech Connect (OSTI)

    Tidwell, Vincent Carroll

    2011-11-01

    The nexus between thermoelectric power production and water use is not uniform across the U.S., but rather differs according to regional physiography, demography, power plant fleet composition, and the transmission network. That is, in some regions water demand for thermoelectric production is relatively small while in other regions it represents the dominate use. The later is the case for the Great Lakes region, which has important implications for the water resources and aquatic ecology of the Great Lakes watershed. This is today, but what about the future? Projected demographic trends, shifting lifestyles, and economic growth coupled with the threat of global climate change and mounting pressure for greater U.S. energy security could have profound effects on the region's energy future. Planning for such an uncertain future is further complicated by the fact that energy and environmental planning and regulatory decisionmaking is largely bifurcated in the region, with environmental and water resource concerns generally taken into account after new energy facilities and technologies have been proposed, or practices are already in place. Based on these confounding needs, the objective of this effort is to develop Great Lakes-specific methods and tools to integrate energy and water resource planning and thereby support the dual goals of smarter energy planning and development, and protection of Great Lakes water resources. Guiding policies for this planning are the Great Lakes and St. Lawrence River Basin Water Resources Compact and the Great Lakes Water Quality Agreement. The desired outcome of integrated energy-water-aquatic resource planning is a more sustainable regional energy mix for the Great Lakes basin ecosystem.

  8. Slim Holes At Steamboat Springs Area (Combs, Et Al., 1999) |...

    Open Energy Info (EERE)

    Charles E. Hockox Jr., Ronald D. Jacobsen, Gene Polik (1999) Slimhole Handbook- Procedures And Recommendations For Slimhole Drilling And Testing In Geothermal Exploration...

  9. THERMODYNAMICS OF PARTIALLY FROZEN COOLING LAKES

    SciTech Connect (OSTI)

    Garrett, A.; Casterline, M.; Salvaggio, C.

    2010-01-05

    The Rochester Institute of Technology (RIT) collected visible, SWIR, MWIR and LWIR imagery of the Midland (Michigan) Cogeneration Ventures Plant from aircraft during the winter of 2008-2009. RIT also made ground-based measurements of lake water and ice temperatures, ice thickness and atmospheric variables. The Savannah River National Laboratory (SRNL) used the data collected by RIT and a 3-D hydrodynamic code to simulate the Midland cooling lake. The hydrodynamic code was able to reproduce the time distribution of ice coverage on the lake during the entire winter. The simulations and data show that the amount of ice coverage is almost linearly proportional to the rate at which heat is injected into the lake (Q). Very rapid melting of ice occurs when strong winds accelerate the movement of warm water underneath the ice. A snow layer on top of the ice acts as an insulator and decreases the rate of heat loss from the water below the ice to the atmosphere above. The simulated ice cover on the lake was not highly sensitive to the thickness of the snow layer. The simplicity of the relationship between ice cover and Q and the weak responses of ice cover to snow depth over the ice are probably attributable to the negative feedback loop that exists between ice cover and heat loss to the atmosphere.

  10. City of Lake Crystal, Minnesota (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Name: City of Lake Crystal Place: Minnesota Phone Number: (605)256-6536 Website: www.ci.lake-crystal.mn.usinde Outage Hotline: (800)520-4746 References: EIA Form EIA-861 Final...

  11. City of Shasta Lake, California (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Name: City of Shasta Lake Place: California Phone Number: 530-275-7400 Website: www.ci.shasta-lake.ca.usindex Outage Hotline: 530-275-7400 References: EIA Form EIA-861 Final...

  12. Cooperative L&P Assn Lake Cnty | Open Energy Information

    Open Energy Info (EERE)

    Cooperative L&P Assn Lake Cnty Jump to: navigation, search Name: Cooperative L&P Assn Lake Cnty Place: Minnesota Phone Number: 800-580-5881 Website: www.clpower.com Facebook:...

  13. JW Great Lakes Wind LLC | Open Energy Information

    Open Energy Info (EERE)

    JW Great Lakes Wind LLC Jump to: navigation, search Name: JW Great Lakes Wind LLC Place: Cleveland, Ohio Zip: 44114-4420 Sector: Wind energy Product: Ohio based subsidiary of Juwi...

  14. City of Wall Lake, Iowa (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    City of Wall Lake, Iowa (Utility Company) Jump to: navigation, search Name: City of Wall Lake Place: Iowa Phone Number: (712) 664-2216 Website: walllake.com?pageid40 Outage...

  15. Lake Benton II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    II Wind Farm Jump to: navigation, search Name Lake Benton II Wind Farm Facility Lake Benton II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  16. Meadow Lake II (3Q10) | Open Energy Information

    Open Energy Info (EERE)

    II (3Q10) Jump to: navigation, search Name Meadow Lake II (3Q10) Facility Meadow Lake II (3Q10) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  17. Dry Lake II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    II Wind Farm Jump to: navigation, search Name Dry Lake II Wind Farm Facility Dry Lake II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  18. Red Lake Electric Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    Red Lake Electric Coop, Inc Jump to: navigation, search Name: Red Lake Electric Coop, Inc Place: Minnesota Phone Number: 218-253-2168 or 800-245-6068 Website: www.redlakeelectric.c...

  19. Soda Lake, Nevada: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    This article is a stub. You can help OpenEI by expanding it. Soda Lake is a lake in Churchill County, Nevada. References USGS GNIS Retrieved from "http:en.openei.orgw...

  20. Montana Joint Application for Proposed Work in Streams, Lakes...

    Open Energy Info (EERE)

    Streams, Lakes and Wetlands Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Joint Application for Proposed Work in Streams, Lakes and...

  1. Lake Roosevelt Volunteer Net Pens, Lake Roosevelt Rainbow Trout Net Pens, 2002-2003 Annual Report.

    SciTech Connect (OSTI)

    Smith, Gene

    2003-11-01

    The completion of Grand Coulee Dam for power production, flood control, and irrigation resulted in the creation of a blocked area above the dam and in the loss of anadromous fish. Because of lake level fluctuations required to meet the demands for water release or storage, native or indigenous fish were often threatened. For many years very little effort was given to stocking the waters above the dam. However, studies by fish biologists showed that there was a good food base capable of supporting rainbow and kokanee (Gangmark and Fulton 1949, Jagielo 1984, Scholz etal 1986, Peone etal 1990). Further studies indicated that artificial production might be a way of restoring or enhancing the fishery. In the 1980's volunteers experimented with net pens. The method involved putting fingerlings in net pens in the fall and rearing them into early summer before release. The result was an excellent harvest of healthy fish. The use of net pens to hold the fingerlings for approximately nine months appears to reduce predation and the possibility of entrainment during draw down and to relieve the hatcheries to open up available raceways for future production. The volunteer net pen program grew for a few years but raising funds to maintain the pens and purchase food became more and more difficult. In 1995 the volunteer net pen project (LRDA) was awarded a grant through the Northwest Power Planning Council's artificial production provisions.

  2. Lake Roosevelt Fisheries Evaluation Program; Meadow Creek vs. Lake Whatcom Stock Kokanee Salmon Investigations in Lake Roosevelt, 2001 Annual Report.

    SciTech Connect (OSTI)

    McLellan, Holly; Scholz, Allan

    2002-03-01

    Lake Roosevelt has been stocked with Lake Whatcom stock kokanee since 1989 with the primary objective of creating a self-sustaining recreational fishery. Due to low return numbers, it was hypothesized a stock of kokanee, native to the upper Columbia River, might perform better than the coastal Lake Whatcom strain. Kokanee from Meadow Creek, a tributary of Kootenay Lake, British Columbia were selected as an alternative stock. Matched pair releases of Lake Whatcom and Meadow Creek kokanee were made from Sherman Creek Hatchery in late June 2000 and repeated in 2001. Stock performance between Lake Whatcom and Meadow Creek kokanee was evaluated using three performance measures; (1) the number of returns to Sherman Creek, the primary egg collection facility, (2) the number of returns to other tributaries and (3) the number of returns to the creel. Kokanee were collected during five passes through the reservoir via electrofishing, which included 87 tributary mouths during the fall of 2000 and 2001. Chi-square analysis indicated age two Meadow Creek kokanee returned to Sherman Creek in significantly higher numbers when compared to the Whatcom stock in 2000 ({chi}{sup 2} = 736.6; d.f. = 1; P < 0.01) and 2001 ({chi}{sup 2} = 156.2; d.f. = 1; P < 0.01). Reservoir wide recoveries of age two kokanee had similar results in 2000 ({chi}{sup 2} = 735.3; d.f. = 1; P < 0.01) and 2001 ({chi}{sup 2} = 150.1; d.f. = 1; P < 0.01). Six Lake Whatcom and seven Meadow Creek three year olds were collected in 2001. The sample size of three year olds was too small for statistical analysis. No kokanee were collected during creel surveys in 2000, and two (age three kokanee) were collected in 2001. Neither of the hatchery kokanee collected were coded wire tagged, therefore stock could not be distinguished. After two years of monitoring, neither Meadow Creek or Lake Whatcom kokanee appear to be capable of providing a run of three-year-old spawners to sustain stocking efforts. The small number of hatchery three-year-olds collected indicated that the current stocking methods will continue to produce a limited jacking run largely composed of precocious males and a small number of three-year-olds. However, supplemental creel data indicated anglers harvested two-year-old hatchery kokanee 30-45 days after release. Supplemental creel data should continue to be collected to accurately evaluate hatchery contributions to the creel.

  3. Lake Roosevelt Fisheries Evaluation Program; Meadow Creek vs. Lake Whatcom Stock Kokanee Salmon Investigations in Lake Roosevelt, Annual Report 2002.

    SciTech Connect (OSTI)

    McLellan, Holly

    2003-03-01

    Lake Whatcom, Washington kokanee have been stocked in Lake Roosevelt since 1987 with the primary objective of creating a self-sustaining fishery. Success has been limited by low recruitment to the fishery, low adult returns to hatcheries, and a skewed sex ratio. It was hypothesized that a stock native to the upper Columbia River might perform better than the coastal Lake Whatcom stock. Kokanee from Meadow Creek, a tributary of Kootenay Lake, British Columbia were selected as an alternative stock. Post smolts from each stock were released from Sherman Creek Hatchery in late June 2000 and repeated in 2001. Stock performance was evaluated using three measures; (1) number of returns to Sherman Creek, the primary egg collection facility, (2) the number of returns to 86 tributaries sampled and, (3) the number of returns to the creel. In two repeated experiments, neither Meadow Creek or Lake Whatcom kokanee appeared to be capable of providing a run of three-year old spawners to sustain stocking efforts. Less than 10 three-years olds from either stock were collected during the study period. Chi-square analysis indicated age two Meadow Creek kokanee returned to Sherman Creek and to other tributaries in significantly higher numbers when compared to the Lake Whatcom stock in both 2000 and 2001. However, preliminary data from the Spokane Tribe of Indians indicated that a large number of both stocks were precocial before they were stocked. The small number of hatchery three-year olds collected indicated that the current hatchery rearing and stocking methods will continue to produce a limited jacking run largely composed of precocious males and a small number of three-year olds. No kokanee from the study were collected during standard lake wide creel surveys. Supplemental creel data, including fishing derbies, test fisheries, and angler diaries, indicated anglers harvested two-year-old hatchery kokanee a month after release. The majority of the two-year old kokanee harvested were from a direct stock at the Fort Spokane boat launch. Only Lake Whatcom kokanee were stocked from the boat launch, therefore stock performance was not evaluated, however the high success of the stocking location will likely increase harvest of hatchery kokanee in the future. Despite low numbers of the targeted three-year olds, Meadow Creek kokanee should be stocked when possible to promote fish native to the upper Columbia River.

  4. Great Lakes Water Scarcity and Regional Economic Development

    ScienceCinema (OSTI)

    Cameron Davis; Tim Eder; David Ulrich; David Naftzger; Donald J. Wuebbles; Mark C. Petri

    2013-06-06

    Great Lakes Water Scarcity and Regional Economic Development panel at Northwestern University on 10/10/2012

  5. Workplace Charging Challenge Partner: College of Lake County | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy College of Lake County Workplace Charging Challenge Partner: College of Lake County Workplace Charging Challenge Partner: College of Lake County The College of Lake County is committed to sustainability and strives to both reduce its carbon emissions and provide learning opportunities for students and members of the community. Plug-in electric vehicle (PEV) charging stations help the College to meet both aspects of this goal. The College installed its first charging station in the

  6. Great Lakes Water Scarcity and Regional Economic Development

    SciTech Connect (OSTI)

    Cameron Davis; Tim Eder; David Ulrich; David Naftzger; Donald J. Wuebbles; Mark C. Petri

    2012-10-10

    Great Lakes Water Scarcity and Regional Economic Development panel at Northwestern University on 10/10/2012

  7. Leading the Charge: Jana Ganion Advances Blue Lake Rancheria's Climate

    Office of Environmental Management (EM)

    Action Agenda | Department of Energy Jana Ganion Advances Blue Lake Rancheria's Climate Action Agenda Leading the Charge: Jana Ganion Advances Blue Lake Rancheria's Climate Action Agenda February 27, 2015 - 10:38am Addthis Jana Ganion is the Energy Director for the Blue Lake Rancheria. Jana Ganion is the Energy Director for the Blue Lake Rancheria. Change doesn't happen on its own. It's led by dedicated and passionate people who are committed to empowering Indian Country to energize future

  8. Ambrosia Lake, New Mexico, Disposal Site Fact Sheet

    Office of Legacy Management (LM)

    Ambrosia Lake, New Mexico, Disposal Site This fact sheet provides information about the Uranium Mill Tailings Radiation Control Act of 1978 Title I disposal site located at Ambrosia Lake, New Mexico. The site is managed by the U.S. Department of Energy Office of Legacy Management. Location of the Ambrosia Lake Disposal Site Site Description and History The Ambrosia Lake disposal site is a former uranium-ore processing facility in McKinley County, approximately 25 miles north of Grants, New

  9. DOE - Office of Legacy Management -- West Lake Landfill - MO 05

    Office of Legacy Management (LM)

    Lake Landfill - MO 05 FUSRAP Considered Sites Site: West Lake Landfill (MO.05) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see http://www.epa.gov/oerrpage/superfund/sites/npl/nar1289.htm Documents Related to West Lake Landfill

  10. Lake Whitney Comprehensive Water Quality Assessment, Phase 1B- Physical and Biological Assessment (USDOE)

    SciTech Connect (OSTI)

    Doyle, Robert D; Byars, Bruce W

    2009-11-24

    Baylor University Center for Reservoir and Aquatic Systems Research (CRASR) has conducted a phased, comprehensive evaluation of Lake Whitney to determine its suitability for use as a regional water supply reservoir. The area along the Interstate 35 corridor between Dallas / Fort Worth Metroplex and the Waco / Temple Centroplex represents one of the fastest growth areas in the State of Texas and reliable water supplies are critical to sustainable growth. Lake Whitney is situated midway between these two metropolitan areas. Currently, the City of Whitney as well as all of Bosque and Hill counties obtain their potable water from the Trinity Sands aquifer. Additionally, parts of the adjoining McLennan and Burleson counties utilize the Trinity sands aquifer system as a supplement to their surface water supplies. Population growth coupled with increasing demands on this aquifer system in both the Metroplex and Centroplex have resulted in a rapid depletion of groundwater in these rural areas. The Lake Whitney reservoir represents both a potentially local and regional solution for an area experiencing high levels of growth. Because of the large scope of this project as well as the local, regional and national implications, we have designed a multifaceted approach that will lead to the solution of numerous issues related to the feasibility of using Lake Whitney as a water resource to the region. Phase IA (USEPA, QAPP Study Elements 1-4) of this research focused on the physical limnology of the reservoir (bathymetry and fine scale salinity determination) and develops hydrodynamic watershed and reservoir models to evaluate how salinity would be expected to change with varying hydrologic and climatic factors. To this end, we implemented a basic water quality modeling program in collaboration with the Texas Parks and Wildlife Department and the Texas Commission on Environmental Quality to add to the developing long-term database on Lake Whitney. Finally, we conducted an initial assessment of knowledge of watershed and water quality related issues by local residents and stakeholders of Lake Whitney and design an intervention educational program to address any deficiencies discovered. Phase IA was funded primarily from EPA Cooperative Agreement X7-9769 8901-0. Phase IC (USEPA, QAPP Study Element 5) of this research focused on the ambient toxicity of the reservoir with respect to periodic blooms of golden algae. Phase IC was funded primarily from Cooperative Agreement EM-96638001. Phase 1B (USDOE, Study Elements 6-11) complemented work being done via EPA funding on study elements 1-5 and added five new study elements: 6) Salinity Transport in the Brazos Watershed to Lake Whitney; 7) Bacterial Assessment; 8) Organic Contaminant Analysis on Lake Whitney; 9) Plankton Photosynthesis; 10) Lake Whitney Resident Knowledge Assessment; and 11) Engineering Scoping Perspective: Recommendations for Use.

  11. EIS-0317-S1: Kangley-Echo Lake Transmission Line Project Final Environmental Impact Statement

    Broader source: Energy.gov [DOE]

    Bonneville Power Administration (BPA) has completed a supplemental draft Environmental Impact Statement (SDEIS) for the proposed Kangley-Echo Lake Transmission Line Project. The proposed line in central King County, Washington is needed to accommodate electrical growth and reliability concerns in the Puget Sound area. The SDEIS analyzes four additional transmission alternatives not analyzed in detail in the draft Environmental Impact Statement (DEIS) issued in June 2001, and a number of non-transmission alternatives.

  12. Climate Action Champions: Salt Lake City, UT | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Salt Lake City, UT Climate Action Champions: Salt Lake City, UT Salt Lake City, the capital of Utah, blends snowy mountain ranges with an urban downtown. Known historically as the “Crossroads of the West,” Salt Lake City today is a major economic center in the Great Basin and a hub of tourism. │ Photo courtesy of University of Utah Department of Mathematics. Salt Lake City, the capital of Utah, blends snowy mountain ranges with an urban downtown. Known historically as the

  13. Lake Michigan Offshore Wind Feasibility Assessment

    SciTech Connect (OSTI)

    Boezaart, Arnold; Edmonson, James; Standridge, Charles; Pervez, Nahid; Desai, Neel; Williams, Bruce; Clark, Aaron; Zeitler, David; Kendall, Scott; Biddanda, Bopi; Steinman, Alan; Klatt, Brian; Gehring, J. L.; Walter, K.; Nordman, Erik E.

    2014-06-30

    The purpose of this project was to conduct the first comprehensive offshore wind assessment over Lake Michigan and to advance the body of knowledge needed to support future commercial wind energy development on the Great Lakes. The project involved evaluation and selection of emerging wind measurement technology and the permitting, installation and operation of the first mid-lake wind assessment meteorological (MET) facilities in Michigan’s Great Lakes. In addition, the project provided the first opportunity to deploy and field test floating LIDAR and Laser Wind Sensor (LWS) technology, and important research related equipment key to the sitting and permitting of future offshore wind energy development in accordance with public participation guidelines established by the Michigan Great Lakes Wind Council (GLOW). The project created opportunities for public dialogue and community education about offshore wind resource management and continued the dialogue to foster Great Lake wind resource utilization consistent with the focus of the GLOW Council. The technology proved to be effective, affordable, mobile, and the methods of data measurement accurate. The public benefited from a substantial increase in knowledge of the wind resources over Lake Michigan and gained insights about the potential environmental impacts of offshore wind turbine placements in the future. The unique first ever hub height wind resource assessment using LWS technology over water and development of related research data along with the permitting, sitting, and deployment of the WindSentinel MET buoy has captured public attention and has helped to increase awareness of the potential of future offshore wind energy development on the Great Lakes. Specifically, this project supported the acquisition and operation of a WindSentinel (WS) MET wind assessment buoy, and associated research for 549 days over multiple years at three locations on Lake Michigan. Four research objectives were defined for the project including to: 1) test and validate floating LIDAR technology; 2) collect and access offshore wind data; 3) detect and measure bird and bat activity over Lake Michigan; 4) conduct an over water sound propagation study; 5) prepare and offer a college course on offshore energy, and; 6) collect other environmental, bathometric, and atmospheric data. Desk-top research was performed to select anchorage sites and to secure permits to deploy the buoy. The project also collected and analyzed data essential to wind industry investment decision-making including: deploying highly mobile floating equipment to gather offshore wind data; correlating offshore wind data with conventional on-shore MET tower data; and performing studies that can contribute to the advancement and deployment of offshore wind technologies. Related activities included: • Siting, permitting, and deploying an offshore floating MET facility; • Validating the accuracy of floating LWS using near shoreline cup anemometer MET instruments; • Assessment of laser pulse technology (LIDAR) capability to establish hub height measurement of wind conditions at multiple locations on Lake Michigan; • Utilizing an extended-season (9-10 month) strategy to collect hub height wind data and weather conditions on Lake Michigan; • Investigation of technology best suited for wireless data transmission from distant offshore structures; • Conducting field-validated sound propagation study for a hypothetical offshore wind farm from shoreline locations; • Identifying the presence or absence of bird and bat species near wind assessment facilities; • Identifying the presence or absence of benthic and pelagic species near wind assessment facilities; All proposed project activities were completed with the following major findings: • Floating Laser Wind Sensors are capable of high quality measurement and recordings of wind resources. The WindSentinel presented no significant operational or statistical limitations in recording wind data technology at a at a high confidence level as compared to traditional anemometer cup technology. • During storms, mean Turbulent Kinetic Energy (TKE) increases with height above water; • Sufficient wind resources exist over Lake Michigan to generate 7,684 kWh of power using a 850 kW rated turbine at elevations between 90 - 125 meters, a height lower than originally anticipated for optimum power generation; • Based on initial assessments, wind characteristics are not significantly different at distant (thirty-two mile) offshore locations as compared to near-shore (six mile) locations; • Significant cost savings can be achieved in generation wind energy at lower turbine heights and locating closer to shore. • Siting must be sufficiently distant from shore to minimize visual impact and to address public sentiment about offshore wind development; • Project results show that birds and bats do frequent the middle of Lake Michigan, bats more so than birds; • Based on the wind resource assessment and depths of Lake Michigan encountered during the project, future turbine placement will most likely need to incorporate floating or anchored technology; • The most appropriate siting of offshore wind energy locations will enable direct routing of transmission cables to existing generating and transmission facilities located along the Michigan shoreline; • Wind turbine noise propagation from a wind energy generating facility at a five mile offshore location will not be audible at the shoreline over normal background sound levels.

  14. Remedial investigation concept plan for the groundwater operable units at the chemical plant area and the ordnance works area, Weldon Spring, Missouri

    SciTech Connect (OSTI)

    1999-07-15

    The U.S. Department of Energy (DOE) and the U.S. Department of the Army (DA) are conducting cleanup activities at two properties--the DOE chemical plant area and the DA ordnance works area (the latter includes the training area)--located in the Weldon Spring area in St. Charles County, Missouri. These areas are on the National Priorities List (NPL), and cleanup activities at both areas are conducted in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended. DOE and DA are conducting a joint remedial investigation (RI) and baseline risk assessment (BRA) as part of the remedial investigation/feasibility study (RI/FS) for the groundwater operable units for the two areas. This joint effort will optimize further data collection and interpretation efforts and facilitate overall remedial decision making since the aquifer of concern is common to both areas. A Work Plan issued jointly in 1995 by DOE and the DA discusses the results of investigations completed at the time of preparation of the report. The investigations were necessary to provide an understanding of the groundwater system beneath the chemical plant area and the ordnance works area. The Work Plan also identifies additional data requirements for verification of the evaluation presented.

  15. EIS-0464: Draft Environmental Impact Statement | Department of Energy

    Office of Environmental Management (EM)

    Draft Environmental Impact Statement EIS-0464: Draft Environmental Impact Statement Lake Charles Carbon Capture and Sequestration Project, Lake Charles, Louisiana and Brazoria County, Texas This draft Environmental Impact Statement (EIS) provides information about the potential environmental impacts associated with the Department of Energy's (DOE's) proposed action to provide financial assistance to Leucadia Energy, LLC (Leucadia) and with Leucadia's proposed Lake Charles Carbon Capture and

  16. EIS-0464: Final Environmental Impact Statement | Department of Energy

    Office of Environmental Management (EM)

    Final Environmental Impact Statement EIS-0464: Final Environmental Impact Statement Lake Charles Carbon capture and Sequestration Project, Lake Charles, Louisiana and Brazoria County, Texas This Final Environmental Impact Statement provides information about the potential environmental impacts associated with the Department of Energy's proposed action to provide financial assistance to Leucadia Energy, LLC (Leucadia) and with Leucadia's proposed Lake Charles Carbon Capture and Sequestration

  17. Stochastic Forecasting of Algae Blooms in Lakes

    SciTech Connect (OSTI)

    Wang, Peng; Tartakovsky, Daniel M.; Tartakovsky, Alexandre M.

    2013-01-15

    We consider the development of harmful algae blooms (HABs) in a lake with uncertain nutrients inflow. Two general frameworks, Fokker-Planck equation and the PDF methods, are developed to quantify the resultant concentration uncertainty of various algae groups, via deriving a deterministic equation of their joint probability density function (PDF). A computational example is examined to study the evolution of cyanobacteria (the blue-green algae) and the impacts of initial concentration and inflow-outflow ratio.

  18. Salt Lake City | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Salt Lake City | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA

  19. Energy Efficient Buildings, Salt Lake County, Utah

    SciTech Connect (OSTI)

    Barnett, Kimberly

    2012-04-30

    Executive Summary Salt Lake County's Solar Photovoltaic Project - an unprecedented public/private partnership Salt Lake County is pleased to announce the completion of its unprecedented solar photovoltaic (PV) installation on the Calvin R. Rampton Salt Palace Convention Center. This 1.65 MW installation will be one the largest solar roof top installations in the country and will more than double the current installed solar capacity in the state of Utah. Construction is complete and the system will be operational in May 2012. The County has accomplished this project using a Power Purchase Agreement (PPA) financing model. In a PPA model a third-party solar developer will finance, develop, own, operate, and maintain the solar array. Salt Lake County will lease its roof, and purchase the power from this third-party under a long-term Power Purchase Agreement contract. In fact, this will be one of the first projects in the state of Utah to take advantage of the recent (March 2010) legislation which makes PPA models possible for projects of this type. In addition to utilizing a PPA, this solar project will employ public and private capital, Energy Efficiency and Conservation Block Grants (EECBG), and public/private subsidized bonds that are able to work together efficiently because of the recent stimulus bill. The project also makes use of recent changes to federal tax rules, and the recent re-awakening of private capital markets that make a significant public-private partnership possible. This is an extremely innovative project, and will mark the first time that all of these incentives (EECBG grants, Qualified Energy Conservation Bonds, New Markets tax credits, investment tax credits, public and private funds) have been packaged into one project. All of Salt Lake County's research documents and studies, agreements, and technical information is available to the public. In addition, the County has already shared a variety of information with the public through webinars, site tours, presentations, and written correspondence.

  20. Great Lakes Bioenergy Research Center Technology Marketing Summaries -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Great Lakes Bioenergy Research Center Technology Marketing Summaries Here you'll find marketing summaries for technologies available for licensing from the Great Lakes Bioenergy Research Center (GLBRC). The summaries provide descriptions of the technologies including their benefits, applications and industries, and development stage. Great Lakes Bioenergy Research Center 43 Technology Marketing Summaries Category Title and Abstract Laboratories Date Biomass and

  1. Salt Lake County Residential Solar Financing Study | Department of Energy

    Energy Savers [EERE]

    Salt Lake County Residential Solar Financing Study Salt Lake County Residential Solar Financing Study As part of our engagement with the National Renewable Energy Laboratories conducting the Salt Lake County Solar America Residential Finance Study, we have drafted this report summarizing the tools and mechanisms available for residential solar projects. These include the financial incentives available, possible financing models that could be used in the County, and a review of the

  2. Climate Action Champions: Blue Lake Rancheria Tribe, CA | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Blue Lake Rancheria Tribe, CA Climate Action Champions: Blue Lake Rancheria Tribe, CA The Blue Lake Rancheria, California, a federally recognized Native American tribal Government and community, is located on over 100 acres of land spanning the scenic Mad River in northwestern California. In its operational strategy, the Tribe has implemented the ‘seven generations’ philosophy, where actions taken today will have a positive impact for seven generations to come. This results

  3. Late Pleistocene landslide-dammed lakes along the Rio Grande, White Rock Canyon, New Mexico

    SciTech Connect (OSTI)

    Reneau, S.L.; Dethier, D.P.

    1996-11-01

    Massive slump complexes composed of Pliocene basaltic rocks and underlying Miocene and Pliocene sediments flank the Rio Grande along 16 km of northern White Rock Canyon, New Mexico. The toe area of at least one slump complex was active in the late Pleistocene, damming the Rio Grande at least four times during the period from 18 to 12 {sup 14}C ka and impounding lakes that extended 10-20 km upriver. Stratigraphic relationships and radiocarbon age constraints indicate that three separate lakes formed between 13.7 and 12.4 {sup 14}C ka. The age and dimensions of the ca. 12.4 ka lake are best constrained; it had an estimated maximum depth of {approx}30 m, a length of {approx}13 km, a surface area of {approx}2.7 km{sup 2}, and an initial volume of {approx}2.5 x 10{sup 7} m{sup 3}. The youngest landslide-dammed lakes formed during a period of significantly wetter regional climate, strongly suggesting that climate changes were responsible for reactivation of the slump complexes. We are not certain about the exact triggering mechanisms for these landslides, but they probably involved removal of lateral support due to erosion of the slope base by the Rio Grande during periods of exceptionally high flood discharge or rapid incision; increased pore pressures associated with higher water tables; higher seepage forces at sites of ground-water discharge; or some combination of these processes. Seismic shaking could also have contributed to triggering of some of the landslides, particularly if aided by wet antecedent conditions. 54 refs., 19 figs., 3 tabs.

  4. Lake Hart, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Lake Hart, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 28.3927849, -81.2406232 Show Map Loading map... "minzoom":false,"mappingser...

  5. Blue Lake Plant Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    National Map Retrieved from "http:en.openei.orgwindex.php?titleBlueLakePlantBiomassFacility&oldid397215" Feedback Contact needs updating Image needs updating...

  6. Lake Encroachment Permit Application, Abutting Land Owner Addendum...

    Open Energy Info (EERE)

    Lake Encroachment Permit Application, Abutting Land Owner Addendum Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- Permit ApplicationPermit...

  7. The Great Lakes Insitute for Energy Innovation | Open Energy...

    Open Energy Info (EERE)

    Insitute for Energy Innovation Jump to: navigation, search Name: The Great Lakes Insitute for Energy Innovation Place: Cleveland, Ohio Zip: 44106 Website: energy.case.edu...

  8. Salt Lake City, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Salt Lake City, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.7607793, -111.8910474 Show Map Loading map... "minzoom":false,"mapping...

  9. City of Lake Park, Iowa (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    City of Place: Iowa Phone Number: (712) 832-3667 Website: www.lakeparkia.comindex.phpl Facebook: https:www.facebook.compagesLake-Park-Iowa104075932961159 Outage Hotline:...

  10. Hush Lake, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hush Lake, Minnesota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.4494204, -92.1031839 Show Map Loading map... "minzoom":false,"mappings...

  11. Mountain Lakes, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Mountain Lakes, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.8948212, -74.4329314 Show Map Loading map......

  12. Obama Administration and Great Lakes States Announce Agreement...

    Broader source: Energy.gov (indexed) [DOE]

    wind resources in the Great Lakes. This effort underscores the President's commitment to American made energy, ... increased oil and gas production, the safe development of ...

  13. Lake Forest, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Lake Forest, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.6469661, -117.689218 Show Map Loading map... "minzoom":false,"mappi...

  14. Lake Forest, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Lake Forest, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 30.3980165, -81.6737085 Show Map Loading map... "minzoom":false,"mappings...

  15. Marion Lake, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Marion Lake, Minnesota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.1383694, -91.9960581 Show Map Loading map... "minzoom":false,"mappin...

  16. Seismic Structure And Seismicity Of The Cooling Lava Lake Of...

    Open Energy Info (EERE)

    Of The Cooling Lava Lake Of Kilauea Iki, Hawaii Abstract The use of multiple methods is indispensable for the determination of the seismic properties of a complex body...

  17. Iowa Lakes Community College Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Community College Energy Purchaser Iowa Lakes Community College Location Esterville IA Coordinates 43.397912, -94.81768 Show Map Loading map... "minzoom":false,"mappingse...

  18. Palmer Lake, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    district.12 Registered Energy Companies in Palmer Lake, Colorado American Electric Vehicles Inc References US Census Bureau Incorporated place and minor civil...

  19. Angola on the Lake, New York: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Angola on the Lake, New York: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.6547811, -79.0489273 Show Map Loading map......

  20. Taylor Lake Village, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    dataset (All States, all geography) US Census Bureau Congressional Districts by Places. Retrieved from "http:en.openei.orgwindex.php?titleTaylorLakeVillage,Texas&oldid...

  1. Star Lake, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Lake, New York: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.159785, -75.0315825 Show Map Loading map... "minzoom":false,"mappingservice"...

  2. Cordes Lakes, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Lakes, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.3078074, -112.1034912 Show Map Loading map... "minzoom":false,"mappingservic...

  3. Green Lake County, Wisconsin: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Mackford, Wisconsin Markesan, Wisconsin Marquette, Wisconsin Princeton, Wisconsin St. Marie, Wisconsin Retrieved from "http:en.openei.orgwindex.php?titleGreenLakeCounty,W...

  4. Salt Lake County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Creek Valley, Utah Magna, Utah Midvale, Utah Millcreek, Utah Mount Olympus, Utah Murray, Utah Riverton, Utah Salt Lake City, Utah Sandy, Utah South Jordan, Utah South Salt...

  5. Acomita Lake, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Acomita Lake, New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.0703192, -107.6136628 Show Map Loading map... "minzoom":false,"map...

  6. Moose Lake Water & Light Comm | Open Energy Information

    Open Energy Info (EERE)

    Website: www.mooselakepower.com Facebook: https:www.facebook.compagesMoose-Lake-Water-Light-Commission445326012175319?frefts Outage Hotline: (218) 485-4100 References:...

  7. Lazy Lake, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    it. Lazy Lake is a village in Broward County, Florida. It falls under Florida's 20th congressional district.12 References US Census Bureau Incorporated place and...

  8. Lauderdale Lakes, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    it. Lauderdale Lakes is a city in Broward County, Florida. It falls under Florida's 20th congressional district and Florida's 23rd congressional district.12 References ...

  9. Lake Country Wind Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    Wind Energy LLC Jump to: navigation, search Name: Lake Country Wind Energy LLC Place: Minnesota Zip: 56209 Sector: Renewable Energy, Wind energy Product: Minnesota-based wind...

  10. Lake County- Energy Smart Colorado Renewable Energy Rebate Program

    Broader source: Energy.gov [DOE]

    Residents of Roaring Fork Valley and Eagle, Gunnison, Lake, and Summit Counties are eligible for energy efficiency and renewable energy assistance, rebates, and financing through the Energy Smart...

  11. Lake County- Energy Smart Colorado Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Residents of Roaring Fork Valley and Eagle, Gunnison, Lake, and Summit Counties are eligible for energy efficiency and renewable energy assistance, rebates, and financing through the Energy Smart...

  12. Lake of the Woods County, Minnesota: Energy Resources | Open...

    Open Energy Info (EERE)

    in Lake of the Woods County, Minnesota Baudette, Minnesota Roosevelt, Minnesota Williams, Minnesota Retrieved from "http:en.openei.orgwindex.php?titleLakeoftheWoodsC...

  13. Salt Lake City, Utah, Processing and Disposal Sites Fact Sheet

    Office of Legacy Management (LM)

    Salt Lake City, Utah, Processing and Disposal Sites This fact sheet provides information about the Uranium Mill Tailings Radiation Control Act of 1978 Title I processing site and disposal site at Salt Lake City, Utah. These sites are managed by the U.S. Department of Energy Office of Legacy Management. Locations of the Salt Lake City Processing and Disposal Sites Site Descriptions and History The former Salt Lake City processing site is located about 4 miles south-southwest of the center of Salt

  14. China Lake South Range Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: China Lake South Range Geothermal Project Project Location Information Coordinates 35.65,...

  15. Cloud Lake, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Cloud Lake, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 26.6761772, -80.0739308 Show Map Loading map... "minzoom":false,"mappingse...

  16. National Science Foundation, Lake Hoare, Antarctica | Department of Energy

    Office of Environmental Management (EM)

    Science Foundation, Lake Hoare, Antarctica National Science Foundation, Lake Hoare, Antarctica Photo of a Photovoltaic System Located at Lake Hoare, Antarctica Lake Hoare is a scientific research site located in Antarctica. Research at this large field site is conducted all summer and requires an energy source that does not cause pollution or engine noise. The photovoltaic system (PV) that was installed at this site is 1.2 kW PV and was one of 10 PV systems purchased for use in Antarctica. Each

  17. Management Plan for Experimental Reintroduction of Sockeye into Skaha Lake; Proposed Implementation, Monitoring, and Evaluation, 2004 Technical Report.

    SciTech Connect (OSTI)

    Wright, Howie; Smith, Howard

    2004-01-01

    Okanagan River sockeye salmon, which spawn near the town of Oliver, B.C., have their farther upstream migration limited by several water control and diversion dams. Stock numbers have been declining for many years and the Okanagan Native Alliance Fisheries Department (ONAFD) has been the principal advocate of a program to restore their numbers and range by reintroducing them into upstream waters where they may once have occurred in substantial numbers Some investigators have warned that without effective intervention Okanagan sockeye are at considerable risk of extinction. Among a host of threats, the quality of water in the single nursery areas in Osoyoos Lake. is deteriorating and a sanctuary such as that afforded in larger lakes higher in the system could be essential. Because the proposed reintroduction upstream has implications for other fish species, (particularly kokanee, the so-called ''landlocked sockeye'' which reside in many Okanagan lakes), the proponents undertook a three-year investigation, with funding from the Bonneville Power Administration and the Confederated Tribes of the Colville Reservation, to identify possible problem areas, and they committed to an interim experimental reintroduction to Skaha Lake where any problems could be worked out before a more ambitious reintroduction, (e.g. to Okanagan Lake) could be formally considered. The three-year investigation was completed in the spring of 2003. It included an assessment of risks from disease or the possible introduction of unwanted exotic species. It also considered the present quality and quantity of sockeye habitat, and opportunities for expanding or improving it. Finally ecological complexity encouraged the development of a life history model to examine interactions of sockeye with other fishes and their food organisms. While some problem areas were exposed in the course of these studies, they appeared to be manageable and the concept of an experimental reintroduction was largely supported but with the proviso that there should be a thorough evaluation and reporting of progress and results. A 2004 start on implementation and monitoring has now been proposed.

  18. Fond du Lac Band Leads Climate Resilience Efforts on Lake Superior...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fond du Lac Band Leads Climate Resilience Efforts on Lake Superior Chippewa Indian Reservation Fond du Lac Band Leads Climate Resilience Efforts on Lake Superior Chippewa Indian ...

  19. Fate of hazardous waste derived organic compounds in Lake Ontario

    SciTech Connect (OSTI)

    Jaffe, R.; Hites, R.A.

    1986-03-01

    Dated sediment cores from Lake Ontario's four sedimentation basins and sedentary fish from tributaries and embayments were analyzed by gas chromatographic, methane-enhanced, negative ion mass spectrometry for a group of fluorinated aromatic compounds. The historical record of these chemicals in Lake Ontario sediments agrees well with the use of the Hyde Park dump in the city of Niagara Falls, NY. These compounds first appeared in sediments in 1958 and rapidly increased until 1970. These dates coincide with the onset of dumping at Hyde Park and remedial action undertaken when this dump was closed, respectively. Chemicals introduced into Lake Ontario by the Niagara River distribute throughout the lake rapidly and uniformly and accumulate in sedentary fish taken from remote locations in the lake. 24 references, 9 figures, 4 tables.

  20. Assessment of Biomass Energy Opportunities for the Red Lake Band of Chippewa Indians

    SciTech Connect (OSTI)

    Scott Haase

    2005-09-30

    Assessment of biomass energy and biobased product manufacturing opportunities for the Red Lake Tribe.

  1. Work plan for the remedial investigation/feasibility study for the groundwater operable units at the Chemical Plant Area and the Ordnance Works Area, Weldon Spring, Missouri

    SciTech Connect (OSTI)

    1995-08-01

    US Department of Energy (DOE) and the US Army Corps of Engineers (CE) are conducting cleanup activities at two properties, the chemical plant area and the ordnance works area, located adjacent to one another in St. Charles County, Missouri. In accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended, DOE and CE are evaluating conditions and potential responses at the chemical plant area and at the ordnance works area, respectively, to address groundwater and surface water contamination. This work plan provides a comprehensive evaluation of areas that are relevant to the (GWOUs) of both the chemical plant and the ordnance works area. Following areas or media are addressed in this work plan: groundwater beneath the chemical plant area (including designated vicinity properties described in Section 5 of the RI for the chemical plant area [DOE 1992d]) and beneath the ordnance works area; surface water and sediment at selected springs, including Burgermeister Spring. The organization of this work plan is as follows: Chapter 1 discusses the objectives for conducting the evaluation, including a summary of relevant site information and overall environmental compliance activities to be undertaken; Chapter 2 presents a history and a description of the site and areas addressed within the GWOUs, along with currently available data; Chapter 3 presents a preliminary evaluation of areas included in the GWOUs, which is based on information given in Section 2, and discusses data requirements; Chapter 4 presents rationale for data collection or characterization activities to be carried out in the remedial investigation (RI) phase, along with brief summaries of supporting documents ancillary to this work plan; Chapter 5 discusses the activities planned for GWOUs under each of the 14 tasks for an remedial (RI/FS); Chapter 6 presents proposed schedules for RI/FS for the GWOUS; and Chapter 7 explains the project management structure.

  2. Core Holes At Newberry Caldera Area (Combs, Et Al., 1999) | Open...

    Open Energy Info (EERE)

    Jim Combs, John T. Finger, Colin Goranson, Charles E. Hockox Jr., Ronald D. Jacobsen, Gene Polik (1999) Slimhole Handbook- Procedures And Recommendations For Slimhole Drilling...

  3. Slim Holes At Vale Hot Springs Area (Combs, Et Al., 1999) | Open...

    Open Energy Info (EERE)

    Jim Combs, John T. Finger, Colin Goranson, Charles E. Hockox Jr., Ronald D. Jacobsen, Gene Polik (1999) Slimhole Handbook- Procedures And Recommendations For Slimhole Drilling...

  4. Core Holes At Vale Hot Springs Area (Combs, Et Al., 1999) | Open...

    Open Energy Info (EERE)

    Jim Combs, John T. Finger, Colin Goranson, Charles E. Hockox Jr., Ronald D. Jacobsen, Gene Polik (1999) Slimhole Handbook- Procedures And Recommendations For Slimhole Drilling...

  5. Profile for Thomas Charles Terwilliger

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structural Genomics - Determination of structures of proteins from Mycobacterium tuberculosis to form a foundation for rational drug design. Proteins are the molecular machines of ...

  6. Charles Rousseaux | Department of Energy

    Energy Savers [EERE]

    through ultramarathons. Most Recent New Perspective on a Corrosive Problem March 28 Deep Insights from Thin Layers March 13 Amazing Materials and the Emerging Field of...

  7. Charles Macal | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Browse by Topic Energy Energy efficiency Vehicles Alternative fuels Automotive engineering Biofuels Diesel Fuel economy Fuel injection Heavy-duty vehicles Hybrid & electric vehicles Hydrogen & fuel cells Internal combustion Powertrain research Vehicle testing Building design Manufacturing Energy sources Renewable energy Bioenergy Solar energy Wind energy Fossil fuels Oil Nuclear energy Nuclear energy modeling & simulation Nuclear fuel cycle Geology & disposal Reactors Nuclear

  8. Charles F. McMillan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Apollo γ-ray array for HELIOS Experiment development : A. Couture, M. Devlin, H. Y. Lee and J. M. O'Donnell (LANSCE-NS) Nuclear reaction and mass models: T. Kawano, P. Talou and P. Möller (T2) Supernova modeling : C. Fryer, A. Hungerford, and G. Rockefeller (CCS, XTD) ATLAS Users Meeting on May 15-16 2014 | Los Alamos National Laboratory | | 2 Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA Addition of gamma detection for transfer reactions expands

  9. Charles F. McMillan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improving neutron capture rate predictions using Apollo + HELIOS Experiment development : A. Couture, M. Devlin, H. Y. Lee and J. M. O'Donnell (LANSCE-NS) Nuclear reaction model and mass: T. Kawano, M. Bertolli, P. Talou and P. Möller (T2) Supernova modeling : C. Fryer, A. Hungerford, and G. Rockefeller (CCS, XTD) ATLAS Users Meeting on May 15-16 2014 | Los Alamos National Laboratory | | 2 Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA Slide 2 Neutron

  10. Charles Elachi | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the COSPAR Nordberg Medal (1996), the Nevada Medal (1995), the IEEE Medal of Engineering Excellence (1992), the IEEE Geoscience and Remote Sensing Distinguished Achievement Award ...

  11. Charles F. McMillan

    Office of Environmental Management (EM)

    Los Alamos National Laboratory | April 2013 | UNCLASSIFIED | 1 Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA UNCLASSIFIED UNCLASSIFIED Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA Ultra-deep Water Risk Assessment DV Rao September 17, 2013 | Los Alamos National Laboratory | April 2013 | UNCLASSIFIED | 2 Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA UNCLASSIFIED 1. Real-time

  12. DOE Tour of Zero Floorplans: Mutual Housing at Spring Lake by Mutual

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Housing California | Department of Energy DOE Tour of Zero Floorplans: Mutual Housing at Spring Lake by Mutual Housing California DOE Tour of Zero Floorplans: Mutual Housing at Spring Lake by Mutual Housing California DOE Tour of Zero Floorplans: Mutual Housing at Spring Lake by Mutual Housing California DOE Tour of Zero Floorplans: Mutual Housing at Spring Lake by Mutual Housing California DOE Tour of Zero Floorplans: Mutual Housing at Spring Lake by Mutual Housing California DOE Tour of

  13. Alternative Fuels Data Center: Salt Lake City Fuels Vehicles With Natural

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Gas Salt Lake City Fuels Vehicles With Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Salt Lake City Fuels Vehicles With Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Salt Lake City Fuels Vehicles With Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Salt Lake City Fuels Vehicles With Natural Gas on Google Bookmark Alternative Fuels Data Center: Salt Lake City Fuels Vehicles With Natural Gas on Delicious Rank Alternative Fuels Data

  14. Baseline risk assessment for groundwater operable units at the Chemical Plant Area and the Ordnance Works Area, Weldon Spring, Missouri

    SciTech Connect (OSTI)

    1999-07-14

    The U.S. Department of Energy (DOE) and the U.S. Department of the Army (DA) are evaluating conditions in groundwater and springs at the DOE chemical plant area and the DA ordnance works area near Weldon Spring, Missouri. The two areas are located in St. Charles County, about 48 km (30 mi) west of St. Louis. The 88-ha (217-acre) chemical plant area is chemically and radioactively contaminated as a result of uranium-processing activities conducted by the U.S. Atomic Energy Commission in the 1950s and 1960s and explosives-production activities conducted by the U.S. Army (Army) in the 1940s. The 6,974-ha (17,232-acre) ordnance works area is primarily chemically contaminated as a result of trinitrotoluene (TNT) and dinitrotoluene (DNT) manufacturing activities during World War II. This baseline risk assessment (BRA) is being conducted as part of the remedial investigation/feasibility study (RUFS) required under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980, as amended. The purpose of the BRA is to evaluate potential human health and ecological impacts from contamination associated with the groundwater operable units (GWOUs) of the chemical plant area and ordnance works area. An RI/FS work plan issued jointly in 1995 by the DOE and DA (DOE 1995) analyzed existing conditions at the GWOUs. The work plan included a conceptual hydrogeological model based on data available when the report was prepared; this model indicated that the aquifer of concern is common to both areas. Hence, to optimize further data collection and interpretation efforts, the DOE and DA have decided to conduct a joint RI/BRA. Characterization data obtained from the chemical plant area wells indicate that uranium is present at levels slightly higher than background, with a few concentrations exceeding the proposed U.S. Environmental Protection Agency (EPA) maximum contaminant level (MCL) of 20 {micro}g/L (EPA 1996c). Concentrations of other radionuclides (e.g., radium and thorium) were measured at back-ground levels and were eliminated from further consideration. Chemical contaminants identified in wells at the chemical plant area and ordnance works area include nitroaromatic compounds, metals, and inorganic anions. Trichloroethylene (TCE) and 1,2-dichloroethylene (1,2 -DCE) have been detected recently in a few wells near the raffinate pits at the chemical plant.

  15. City of Lake City, Minnesota (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Place: Minnesota Phone Number: (651) 345 - 5383 (8am to 4:30pm weekdays) Website: www.ci.lake-city.mn.usindex.a Outage Hotline: After Hours: (651) 345 - 4711 or (651) 345 -...

  16. Medicine Lake, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Medicine Lake is a city in Hennepin County, Minnesota. It falls under Minnesota's 3rd...

  17. White Meadow Lake, New Jersey: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. White Meadow Lake is a census-designated place in Morris County, New Jersey.1 References...

  18. Spring Lake, Michigan: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Spring Lake is a village in Ottawa County, Michigan. It falls under Michigan's 2nd...

  19. Spring Lake, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Spring Lake is a census-designated place in Utah County, Utah.1 References US Census...

  20. Sky Lake, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Sky Lake is a census-designated place in Orange County, Florida.1 References US...

  1. Category:Salt Lake City, UT | Open Energy Information

    Open Energy Info (EERE)

    UT Jump to: navigation, search Go Back to PV Economics By Location Media in category "Salt Lake City, UT" The following 16 files are in this category, out of 16 total....

  2. City of Shasta Lake Electric Utility- PV Rebate Program

    Broader source: Energy.gov [DOE]

    City of Shasta Lake Electric Utility is providing rebates to their customers for the purchase of photovoltaic (PV) systems. The rebate levels will decrease annually over the life of the program. ...

  3. Lake Nacimiento, California: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    You can help OpenEI by expanding it. Lake Nacimiento is a census-designated place in San Luis Obispo County, California.1 References US Census Bureau 2005 Place to 2006...

  4. Lake Quivira, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    This article is a stub. You can help OpenEI by expanding it. Lake Quivira is a city in Johnson County and Wyandotte County, Kansas. It falls under Kansas's 3rd congressional...

  5. MHK Projects/Lake Huron | Open Energy Information

    Open Energy Info (EERE)

    during July-August 2005 in Lake Huron. The rest of the rig was developed to mimic the action of the hydraulic system and provide the opportunity to take various measurements to...

  6. Cottage Lake, Washington: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    stub. You can help OpenEI by expanding it. Cottage Lake is a census-designated place in King County, Washington.1 References US Census Bureau 2005 Place to 2006 CBSA...

  7. Ames Lake, Washington: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    a stub. You can help OpenEI by expanding it. Ames Lake is a census-designated place in King County, Washington.1 References US Census Bureau 2005 Place to 2006 CBSA...

  8. Lake Marcel-Stillwater, Washington: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    can help OpenEI by expanding it. Lake Marcel-Stillwater is a census-designated place in King County, Washington.1 References US Census Bureau 2005 Place to 2006 CBSA...

  9. Lake Forest Park, Washington: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    article is a stub. You can help OpenEI by expanding it. Lake Forest Park is a city in King County, Washington. It falls under Washington's 1st congressional district and...

  10. Lake Morton-Berrydale, Washington: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    can help OpenEI by expanding it. Lake Morton-Berrydale is a census-designated place in King County, Washington.1 References US Census Bureau 2005 Place to 2006 CBSA...

  11. Maple Heights-Lake Desire, Washington: Energy Resources | Open...

    Open Energy Info (EERE)

    help OpenEI by expanding it. Maple Heights-Lake Desire is a census-designated place in King County, Washington.1 References US Census Bureau 2005 Place to 2006 CBSA...

  12. Lake Lahontan: Geology of Southern Carson Desert, Nevada | Open...

    Open Energy Info (EERE)

    with the soil of pre-Tahoe age (of Blackwelder, 1931) in the Sierra Nevada; the Churchill soil is correlated with the middle Lake Bonneville soil and with the soil of inter-Tahoe...

  13. Seven Lakes, North Carolina: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    stub. You can help OpenEI by expanding it. Seven Lakes is a census-designated place in Moore County, North Carolina.1 References US Census Bureau 2005 Place to 2006 CBSA...

  14. Storm Lake, Iowa: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    article is a stub. You can help OpenEI by expanding it. Storm Lake is a city in Buena Vista County, Iowa. It falls under Iowa's 5th congressional district.12 Registered...

  15. Blue Lake, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Blue Lake is a city in Humboldt County, California. It falls under California's 1st...

  16. Egypt Lake-Leto, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Egypt Lake-Leto is a census-designated place in Hillsborough County, Florida.1 References...

  17. Lake Meade, Pennsylvania: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    a stub. You can help OpenEI by expanding it. Lake Meade is a census-designated place in Adams County, Pennsylvania.1 References US Census Bureau 2005 Place to 2006 CBSA...

  18. Lake Heritage, Pennsylvania: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    You can help OpenEI by expanding it. Lake Heritage is a census-designated place in Adams County, Pennsylvania.1 References US Census Bureau 2005 Place to 2006 CBSA...

  19. Big Bear Lake, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Big Bear Lake is a city in San Bernardino County, California. It falls under California's...

  20. Red Feather Lakes, Colorado: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Red Feather Lakes is a census-designated place in Larimer County, Colorado.1 References...

  1. Red Lake County, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Red Lake County is a county in Minnesota. Its FIPS County Code is 125. It is classified as...

  2. Moon Lake Electric Assn Inc (Utah) | Open Energy Information

    Open Energy Info (EERE)

    search Name: Moon Lake Electric Assn Inc Place: Utah Phone Number: ALTAMONT OFFICE (435) 454-3611 -- DUCHESNE OFFICE (435) 738-5322 -- RANGELY OFFICE (970) 675-2291 --...

  3. West Lake Hills, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. West Lake Hills is a city in Travis County, Texas. It falls under Texas's 10th congressional...

  4. Vermont Individual Lake Encroachment Permit | Open Energy Information

    Open Energy Info (EERE)

    Abstract Submission of this application required for notice of intent to encroach beyond the mean water level of a lake or pond, and certify that the project will comply with...

  5. Avon Lake, Ohio: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Avon Lake is a city in Lorain County, Ohio. It falls under Ohio's 13th congressional...

  6. Changing Weather and Climate in the Great Lakes Region

    Broader source: Energy.gov [DOE]

    This 4-week course will feature a new season each week through short lectures and activities covering Great Lakes weather, observed changes in the climate, and societal impacts of climate change....

  7. China Lake Acres, California: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. China Lake Acres is a census-designated place in Kern County, California.1 References ...

  8. Emerald Lake Hills, California: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Emerald Lake Hills is a census-designated place in San Mateo County, California.1...

  9. Prior Lake, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    This article is a stub. You can help OpenEI by expanding it. Prior Lake is a city in Scott County, Minnesota. It falls under Minnesota's 2nd congressional district.12...

  10. PROJECT PROFILE: Salt Lake City Corporation (Solar Market Pathways)

    Broader source: Energy.gov [DOE]

    Title: Wasatch Solar Project Funding Opportunity: Solar Market PathwaysSunShot Subprogram: Soft CostsLocation: Salt Lake City, UTAmount Awarded: $600,000Awardee Cost Share: $164,645

  11. Kootenay Lake Fertilization Experiment, Year 15 (North Arm) and Year 3 (South Arm) (2006) Report

    SciTech Connect (OSTI)

    Schindler, E.U.; Sebastian, D.; Andrusak, G.F.

    2009-07-01

    This report summarizes results from the fifteenth year (2006) of nutrient additions to the North Arm of Kootenay Lake and three years of nutrient additions to the South Arm. Experimental fertilization of the lake has been conducted using an adaptive management approach in an effort to restore lake productivity lost as a result of nutrient uptake in upstream reservoirs. The primary objective of the experiment is to restore kokanee (Oncorhynchus nerka) populations, which are the main food source for Gerrard rainbow trout (Oncorhynchus mykiss) and bull trout (Salvelinus confluentus). The quantity of agricultural grade liquid fertilizer (10-34-0, ammonium polyphosphate and 28-0-0, urea ammonium nitrate) added to the North Arm in 2006 was 44.7 tonnes of P and 248.4 tonnes of N. The total fertilizer load added to the South Arm was 257 tonnes of nitrogen; no P was added. Kootenay Lake has an area of 395 km{sup 2}, a maximum depth of 150 m, a mean depth of 94 m, and a water renewal time of approximately two years. Kootenay Lake is a monomictic lake, generally mixing from late fall to early spring and stratifying during the summer. Surface water temperatures generally exceed 20 C for only a few weeks in July. Results of oxygen profiles were similar to previous years with the lake being well oxygenated from the surface to the bottom depths at all stations. Similar to past years, Secchi disc measurements at all stations in 2006 indicate a typical seasonal pattern of decreasing depths associated with the spring phytoplankton bloom, followed by increasing depths as the bloom gradually decreases by the late summer and fall. Total phosphorus (TP) ranged from 2-7 {micro}g/L and tended to decrease as summer advanced. Over the sampling season dissolved inorganic nitrogen (DIN) concentrations decreased, with the decline corresponding to nitrate (the dominant component of DIN) being utilized by phytoplankton during summer stratification. Owing to the importance of epilimnetic nitrate that is required for optimal phytoplankton growth discrete depth water sampling occurred in 2006 to measure more accurately changes in the nitrate concentrations. As expected there was a seasonal decline in nitrate concentrations, thus supporting the strategy of increasing the nitrogen loading in both arms. These in-season changes emphasize the need for an adaptive management approach to ensure the nitrogen to phosphorus (N:P) ratio does not decrease below 15:1 (weight:weight) during the fertilizer application period. Phytoplankton composition determined from the integrated samples (0-20m) was dominated by diatoms, followed by cryptophytes and chrysophytes. The contribution of cryptophytes to total biomass was higher in 2006 than in 2005. Cryptophytes, considered being edible biomass for zooplankton and Daphnia spp., increased in 2006. Phytoplankton in the discrete depth samples (2, 5, 10, 15 and 20m) demonstrated a clear north to south gradient in average phytoplankton density and biomass among the three stations sampled, with highest values at the North Arm station (KLF 2) and lowest values in the most southern station in the South Arm (KLF 7). Populations were dominated by flagellates at all stations and depths in June and July, then dominated by diatoms in August and September in the North and South arms of the lake. There were no large bluegreen (cyanobacteria) populations in either arm of the lake in 2006. Seasonal average zooplankton abundance and biomass in both the main body of the lake and in the West Arm increased in 2006 compared to 2005. Zooplankton density was numerically dominated by copepods and biomass was dominated by Daphnia spp. The annual average mysid biomass data at deep stations indicated that the North Arm of Kootenay Lake was more productive than the South Arm in 2006. Mysid densities increased through the summer and declined in the winter; mean whole lake values remain within prefertilization densities. Kokanee escapement to Meadow Creek declined in 2006 to approximately 400,000 spawners. The Lardeau River escapement also declined wit

  12. Thermokarst lake methanogenesis along a complete talik profile

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Heslop, J. K.; Walter Anthony, K. M.; Sepulveda-Jauregui, A.; Martinez-Cruz, K.; Bondurant, A.; Grosse, G.; Jones, M. C.

    2015-07-24

    Thermokarst (thaw) lakes emit methane (CH4) to the atmosphere formed from thawed permafrost organic matter (OM), but the relative magnitude of CH4 production in surface lake sediments vs. deeper thawed permafrost horizons is not well understood. We assessed anaerobic CH4 production potentials from various depths along a 590 cm long lake sediment core that captured the entire sediment package of the talik (thaw bulb) beneath the center of an interior Alaska thermokarst lake, Vault Lake, and the top 40 cm of thawing permafrost beneath the talik. We also studied the adjacent Vault Creek permafrost tunnel that extends through ice-rich yedomamore » permafrost soils surrounding the lake and into underlying gravel. Our results showed CH4 production potentials were highest in the organic-rich surface lake sediments, which were 151 cm thick (mean ± SD: 5.95 ± 1.67 μg C–CH4 g dw-1 d-1; 125.9 ± 36.2 μg C–CH4 g C−1org d-1). High CH4 production potentials were also observed in recently thawed permafrost (1.18 ± 0.61 μg C–CH4g dw-1 d-1; 59.60± 51.5 μg C–CH4 g C−1org d-1) at the bottom of the talik, but the narrow thicknesses (43 cm) of this horizon limited its overall contribution to total sediment column CH4 production in the core. Lower rates of CH4 production were observed in sediment horizons representing permafrost that has been thawing in the talik for a longer period of time. No CH4 production was observed in samples obtained from the permafrost tunnel, a non-lake environment. Our findings imply that CH4 production is highly variable in thermokarst lake systems and that both modern OM supplied to surface sediments and ancient OM supplied to both surface and deep lake sediments by in situ thaw and shore erosion of yedoma permafrost are important to lake CH4 production.« less

  13. Thermokarst-lake methanogenesis along a complete talik profile

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Heslop, J. K.; Walter Anthony, K. M.; Sepulveda-Jauregui, A.; Martinez-Cruz, K.; Bondurant, A.; Grosse, G.; Jones, M. C.

    2015-03-24

    Thermokarst (thaw) lakes emit methane (CH4) to the atmosphere formed from thawed permafrost organic matter (OM), but the relative magnitude of CH4 production in surface lake sediments vs. deeper thawed permafrost horizons is not well understood. We assessed anaerobic CH4 production potentials from various depths along a 590 cm long lake sediment core that captured the entire sediment package of the talik (thaw bulb) beneath the center of an interior Alaska thermokarst lake, Vault Lake, and the top 40 cm of thawing permafrost beneath the talik. We also studied the adjacent Vault Creek permafrost tunnel that extends through ice-rich yedomamore » permafrost soils surrounding the lake and into underlying gravel. Our results showed CH4 production potentials were highest in the organic-rich surface lake sediments, which were 151 cm thick (mean ± SD 5.95 ± 1.67 μg C-CH4 g dw-1 d-1; 125.9± 36.2 μg C-CH4 g C-1org d-1). High CH4 production potentials were also observed in recently-thawed permafrost (1.18± 0.61 μg C-CH4g dw-1 d-1; 59.60± 51.5 μg C-CH4 g C-1org d-1) at the bottom of the talik, but the narrow thicknesses (43 cm) of this horizon limited its overall contribution to total sediment column CH4 production in the core. Lower rates of CH4 production were observed in sediment horizons representing permafrost that has been thawed in the talik for longer periods of time. No CH4 production was observed in samples obtained from the permafrost tunnel, a non-lake environment. Our findings imply that CH4 production is highly variable in thermokarst-lake systems and that both modern OM supplied to surface sediments and ancient OM supplied to both surface and deep lake sediments by in situ thaw as well as shore erosion of yedoma permafrost are important to lake CH4 production.« less

  14. 05684ArcticLakes | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using Artificial Barriers to Augment Fresh Water Supplies in Shallow Arctic Lakes Last Reviewed 6/26/2013 DE-NT0005684 Goal The goal of this project is to implement a snow control practice to enhance snow drift formation as a local water source to recharge a depleted lake despite possible unfavorable climate and hydrology preconditions (i.e., surface storage deficit and/or low precipitation). Performer University of Alaska Fairbanks, Fairbanks, AK Background Snow is central to activities in

  15. Obama Administration and Great Lakes States Announce Agreement to Spur

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development of Offshore Wind Projects | Department of Energy and Great Lakes States Announce Agreement to Spur Development of Offshore Wind Projects Obama Administration and Great Lakes States Announce Agreement to Spur Development of Offshore Wind Projects March 30, 2012 - 12:00pm Addthis Washington, D.C. - As part of President Obama's all of the above approach to energy, the Obama Administration today joined with the governors of Illinois, Michigan, Minnesota, New York and Pennsylvania to

  16. Kootznoowoos Thayer Lake Hydroelectric Update

    Office of Environmental Management (EM)

    Kootznoowoo's Thayer Lake Hydroelectric Update U.S. Department of Energy November 17, 2009 Tribal Energy Program Thayer Lake Report  Brief Summary of Tribe  Project Overview - video  Accomplishments  Lessons Learned  Activities Yet to Be Completed  Future Plans Angoon  Angoon and its people  Time immemorial  Only year round community in wilderness and monument  400 residents with potential to grow  Current spot demand of 600 kW  Commercial Rate unsubsidized

  17. 2-M Probe At Winnemucca Dry Lake Area (Kratt, Et Al., 2010) ...

    Open Energy Info (EERE)

    temperature anomalies were detected. We were unable to clearly ascertain the background temperature but the spatial distribution of the data did not point to a broader zone of...

  18. Field Mapping At Walker Lake Valley Area (Shoffner, Et Al., 2010...

    Open Energy Info (EERE)

    N. Hinz, A. Sabin, M. Lazaro, S. Alm (2010) Understanding Fault Characteristics And Sediment Depth For Geothermal Exploration Using 3D Gravity Inversion In Walker Valley, Nevada...

  19. InSAR At Medicine Lake Area (Poland, Et Al., 2006) | Open Energy...

    Open Energy Info (EERE)

    Date Usefulness useful DOE-funding Unknown References Michael Poland, Roland Burgmann, Daniel Dzurisin, Michael Lisowski, Timothy Masterlark, Susan Owen, Jonathan Fink (2006)...

  20. Sweet Surface Area

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sweet Surface Area Sweet Surface Area Create a delicious root beer float and learn sophisticated science concepts at the same time. Sweet Surface Area Science is all around us, so...

  1. EIS-0099: Remedial Actions at the Former Vitro Chemical Company Site, South Salt Lake, Salt Lake County, Utah

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this statement to evaluate the environmental impacts of various scenarios associated with the cleanup of those residues remaining at the abandoned uranium mill tailings site located in South Salt Lake, Utah.

  2. Physics Thrust Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thrust Areas Physics Thrust Areas Physics Division serves the nation through its broad portfolio of fundamental and applied research. Quality basic science research: critical ...

  3. 100 Area - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    00 Area About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact Us 100 Area 118-K-1 Burial Ground 200 Area 222-S Laboratory 242-A Evaporator 300 Area 324 Building 325 Building 400 Area/Fast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim Storage Area Canyon Facilities Cold Test Facility D and DR Reactors Effluent Treatment Facility Environmental Restoration Disposal Facility F Reactor H

  4. 200 Area - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    00 Area About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact Us 100 Area 118-K-1 Burial Ground 200 Area 222-S Laboratory 242-A Evaporator 300 Area 324 Building 325 Building 400 Area/Fast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim Storage Area Canyon Facilities Cold Test Facility D and DR Reactors Effluent Treatment Facility Environmental Restoration Disposal Facility F Reactor H

  5. 300 Area - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    300 Area About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact Us 100 Area 118-K-1 Burial Ground 200 Area 222-S Laboratory 242-A Evaporator 300 Area 324 Building 325 Building 400 Area/Fast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim Storage Area Canyon Facilities Cold Test Facility D and DR Reactors Effluent Treatment Facility Environmental Restoration Disposal Facility F Reactor H

  6. 700 Area - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    700 Area About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact Us 100 Area 118-K-1 Burial Ground 200 Area 222-S Laboratory 242-A Evaporator 300 Area 324 Building 325 Building 400 Area/Fast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim Storage Area Canyon Facilities Cold Test Facility D and DR Reactors Effluent Treatment Facility Environmental Restoration Disposal Facility F Reactor H

  7. Lake Roosevelt White Sturgeon Recovery Project : Annual Progress Report, January 2003 March 2004.

    SciTech Connect (OSTI)

    Howell, Matthew D.; McLellan, Jason G.

    2009-07-15

    This report summarizes catch data collected from white sturgeon Acipenser transmontanus in Lake Roosevelt during limited setlining and gill netting activities in the fall of 2003, and documents progress toward development of a U.S. white sturgeon conservation aquaculture program for Lake Roosevelt. From 27-30 October, 42 overnight small mesh gill net sets were made between Marcus and Northport, WA for a total catch of 15 juvenile white sturgeon (275-488 mm FL). All sturgeon captured were of Canadian hatchery origin. These fish had been previously released as sub-yearlings into the Canadian portion (Keenleyside Reach) of the Transboundary Reach of the Columbia River during 2002 and 2003. Most sturgeon (n=14) were caught in the most upstream area sampled (Northport) in low velocity eddy areas. Five fish exhibited pectoral fin deformities (curled or stunted). Growth rates were less than for juvenile sturgeon captured in the Keenleyside Reach but condition factor was similar. Condition factor was also similar to that observed in juvenile sturgeon (ages 1-8) captured in the unimpounded Columbia River below Bonneville Dam between 1987-92. From 10-14 November, 28 overnight setline sets were made in the Roosevelt Reach between the confluence of the Spokane River and Marcus Island for a total catch of 17 white sturgeon (94-213 cm FL). Catch was greatest in the most upstream areas sampled, a distribution similar to that observed during a WDFW setline survey in Lake Roosevelt in 1998. The mean W{sub r} index of 110% for fish captured this year was higher than the mean W{sub r} of 91% for fish captured in 1998. Excellent fish condition hindered surgical examination of gonads as lipid deposits made the ventral body wall very thick and difficult to penetrate with available otoscope specula. Acoustic tags (Vemco model V16 coded pingers, 69 kHz, 48-month life expectancy) were internally applied to 15 fish for subsequent telemetry investigations of seasonal and reproductively motivated movements. In August 2003, three Vemco VR2 fixed station acoustic receivers, supplied by the UCWSRI Transboundary Telemetry Project, were deployed in the vicinities of Kettle Falls Bridge, Marcus Island, and Northport, WA. Data downloaded from these receivers through December 2003 confirmed the findings of a previous telemetry study that the Marcus area is an important overwintering habitat for white sturgeon. On 18 February 2004, juvenile white sturgeon (n=2,000) were transported from Kootenay Sturgeon Hatchery in British Columbia to WDFW Columbia Basin Hatchery (CBH) in Moses Lake, WA. Fish were reared at CBH to approximately 30 g and individually outfitted with PIT tags and scute marked. On 11 May 2004, fish were released into Lake Roosevelt in the vicinities of Kettle Falls Bridge, North Gorge, and Northport.

  8. Marys Lake 69/115-kV transmission line upgrade and substation expansion projects

    SciTech Connect (OSTI)

    NONE

    1996-05-01

    Western Area Power Administration (Western) and the Platte River Power Authority (Platte River) propose to upgrade portions of the existing electric transmission and substation system that serves the Town of Estes Park, Colorado. The existing transmission lines between the Estes Power Plant Switchyard and the Marys Lake Substation include a 115,000 volt (115-kV) line and 69,000 volt (69-kV) line. Approximately one mile is a double-circuit 115/69-kV line on steel lattice structures, and approximately two miles consists of separate single-circuit 115-kV and a 69-kV lines, constructed on wood H-Frame structures. Both lines were constructed in 1951 by the US Bureau of Reclamation. The existing transmission lines are on rights-of-way (ROW) that vary from 75 feet to 120 feet and are owned by Western. There are 48 landowners adjacent to the existing ROW. All of the houses were built adjacent to the existing ROW after the transmission lines were constructed. Upgrading the existing 69-kV transmission line between the Marys Lake Substation and the Estes Power Plant Switchyard to 115-kV and expanding the Marys Lake Substation was identified as the most effective way in which to improve electric service to Estes Park. The primary purpose and need of the proposed project is to improve the reliability of electric service to the Town of Estes Park. Lack of reliability has been a historical concern, and reliability will always be less than desired until physical improvements are made to the electrical facilities serving Estes Park.

  9. AN ESTIMATE OF THE CHEMICAL COMPOSITION OF TITAN's LAKES

    SciTech Connect (OSTI)

    Cordier, Daniel; Mousis, Olivier; Lunine, Jonathan I.; Lavvas, Panayotis; Vuitton, Veronique

    2009-12-20

    Hundreds of radar-dark patches interpreted as lakes have been discovered in the north and south polar regions of Titan. We have estimated the composition of these lakes by using the direct abundance measurements from the Gas Chromatograph Mass Spectrometer aboard the Huygens probe and recent photochemical models based on the vertical temperature profile derived by the Huygens Atmospheric Structure Instrument. Thermodynamic equilibrium is assumed between the atmosphere and the lakes, which are also considered nonideal solutions. We find that the main constituents of the lakes are ethane (C{sub 2}H{sub 6}) (approx76%-79%), propane (C{sub 3}H{sub 8}) (approx7%-8%), methane (CH{sub 4}) (approx5%-10%), hydrogen cyanide (HCN) (approx2%-3%), butene (C{sub 4}H{sub 8}) (approx1%), butane (C{sub 4}H{sub 10}) (approx1%), and acetylene (C{sub 2}H{sub 2}) (approx1%). The calculated composition of lakes is then substantially different from what has been expected from models elaborated prior to the exploration of Titan by the Cassini-Huygens spacecraft.

  10. Mineral resources of the Home Creek wilderness study area, Harney County, Oregon

    SciTech Connect (OSTI)

    Vander Meulen, D.B.; Griscom, A.; King, H.D.; Vercoutere, T.L.; Moyle, P.R.

    1988-01-01

    This book discusses the Home Creek Wilderness Study Area, on the western slope of Steens Mountain in the northern Basin and Range physiographic province of southeastern Oregon. The area is underlain by Miocene Steens Basalt. Isolated outcrops of the Devine Canyon ash-flow tuff unconformably overlie the Steens Basalt. Pleistocene shoreline deposits and Holocene dunes are exposed in the western part of the study area, moderate potential for sand and gravel resources in lake shoreline deposits, and low potential for geothermal energy throughout the study area.

  11. Technical Area 21

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technical Area 21 Technical Area 21 Technical Area 21 was the site of chemical research for refining plutonium and plutonium metal production from 1945 to 1978. August 1, 2013 Technical Area 21 in 2011 Technical Area 21 in 2011 Technical Area 21 (TA-21), also known as DP Site was the site of chemical research for refining plutonium and plutonium metal production from 1945 to 1978. Between 2008 and 2011, MDAs B, U, and V were excavated and removed. 24 buildings were demolished in 2010 and 2011

  12. Borehole Imaging of In Situ Stress Tests at Mirror Lake Research...

    Open Energy Info (EERE)

    at Mirror Lake Research Site Citation U.S. Geological Survey. Borehole Imaging of In Situ Stress Tests at Mirror Lake Research Site Internet. 2013. U.S. Geological Survey. cited...

  13. Soda Lake Well Lithology Data and Geologic Cross-Sections (Dataset...

    Office of Scientific and Technical Information (OSTI)

    Soda Lake Well Lithology Data and Geologic Cross-Sections Title: Soda Lake Well Lithology Data and Geologic Cross-Sections Comprehensive catalogue of drill-hole data in ...

  14. Impacts of Western Area Power Administration`s power marketing alternatives on electric utility systems

    SciTech Connect (OSTI)

    Veselka, T.D.; Portante, E.C.; Koritarov, V.

    1995-03-01

    This technical memorandum estimates the effects of alternative contractual commitments that may be initiated by the Western Area Power Administration`s Salt Lake City Area Office. It also studies hydropower operational restrictions at the Salt Lake City Area Integrated Projects in combination with these alternatives. Power marketing and hydropower operational effects are estimated in support of Western`s Electric Power Marketing Environmental Impact Statement (EIS). Electricity production and capacity expansion for utility systems that will be directly affected by alternatives specified in the EIS are simulated. Cost estimates are presented by utility type and for various activities such as capacity expansion, generation, long-term firm purchases and sales, fixed operation and maintenance expenses, and spot market activities. Operational changes at hydropower facilities are also investigated.

  15. Application for Presidential Permit OE Docket No. PP-412 ITC Lake Erie

    Energy Savers [EERE]

    Connector Project | Department of Energy Project Application for Presidential Permit OE Docket No. PP-412 ITC Lake Erie Connector Project Application from ITC Lake Erie to construct, operate and maintain electric transmission facilities at the U.S. - Canada Border. PDF icon PP-412 Lake Erie Application.pdf More Documents & Publications Application for Presidential Permit OE Docket No. PP-412 ITC Lake Erie Connector Project: Federal Register Notice, Volume 80, No. 137 - July 17, 2015

  16. DOE - Office of Legacy Management -- Ambrosia Lake Mill Site - NM 0-01

    Office of Legacy Management (LM)

    Ambrosia Lake Mill Site - NM 0-01 FUSRAP Considered Sites Site: Ambrosia Lake Mill Site (NM.0-01) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see Ambrosia Lake Mill Site Documents Related to Ambrosia Lake Mill Site 2014 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal

  17. Site Monitoring Area Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Maps Individual Permit: Site Monitoring Area Maps Each Site Monitoring Area Map is updated whenever the map information is updated. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email What do these maps show? The Individual Permit for Storm Water site monitoring area maps display the following information: Surface hydrological features Locations of the Site(s) assigned to the Site Monitoring Area (SMA) The Site Monitoring

  18. Visualizing Diurnal Population Change in Urban Areas for Emergency Management

    SciTech Connect (OSTI)

    Kobayashi, Tetsuo; Medina, Richard M; Cova, Thomas

    2011-01-01

    There is an increasing need for a quick, simple method to represent diurnal population change in metropolitan areas for effective emergency management and risk analysis. Many geographic studies rely on decennial U.S. Census data that assume that urban populations are static in space and time. This has obvious limitations in the context of dynamic geographic problems. The U.S. Department of Transportation publishes population data at the transportation analysis zone level in fifteen-minute increments. This level of spatial and temporal detail allows for improved dynamic population modeling. This article presents a methodology for visualizing and analyzing diurnal population change for metropolitan areas based on this readily available data. Areal interpolation within a geographic information system is used to create twenty-four (one per hour) population surfaces for the larger metropolitan area of Salt Lake County, Utah. The resulting surfaces represent diurnal population change for an average workday and are easily combined to produce an animation that illustrates population dynamics throughout the day. A case study of using the method to visualize population distributions in an emergency management context is provided using two scenarios: a chemical release and a dirty bomb in Salt Lake County. This methodology can be used to address a wide variety of problems in emergency management.

  19. Electrical resistivity and magnetic investigations of the geothermal systems in the Rotorua area, New Zealand

    SciTech Connect (OSTI)

    Bibby, H.M. ); Dawson, G.B.; Rayner, H.H.; Bennie, S.L.; Bromley, C.J. )

    1992-04-01

    This paper reports that electrical and magnetic data are used in an investigation of a 450 km{sup 2} region in order to delineate the Rotorua City Geothermal system and determine its relationship with other geothermal systems in the region. Three distinct regions of low ({lt}30 Omega m) apparent resistivity are delineated. The southern of these outlines the Rotorua City Geothermal System which has an area of about 18 km{sup 2}, with the northern third covered by Lake Rotorua. The boundary of the system is characterized by a rapid lateral change in apparent resistivity which can be modeled as a single, near vertical zone in which the distance between hot and cold water is very narrow. Magnetic properties also change in the vicinity of the discontinuity in some areas, consistent with hydrothermal alteration having destroyed the magnetite in the rocks of the geothermal system. Hot water is believed to be rising, driven by buoyancy forces across the whole of the low resistivity region. There is some indication, particularly in the south, that the boundary between hot and cold fluids dips away from the field. A second low resistivity zone (the East Lake Rotorua anomaly) with an area of about 8 km{sup 2}, is believed to outline a second independent geothermal system, with surface manifestations on Mokoia Island, and on the eastern shore of the lake. High heat flow in lake bottom sediments, and a reduction in magnetic signature over this region supports this conclusion. A third resistivity low under the west of Lake Rotorua has no associated thermal features and is believed to be a fossil hydrothermal system. There is no apparent relationship between the location of the geothermal systems and the Rotorua caldera. The aeromagnetic measurements have delineated several highly magnetic bodies which cannot be linked with surface geology. These are believed to be caused by buried rhyolite dome complexes at shallow depth.

  20. Lake Roosevelt Fisheries Evaluation Program, Part B; Limnology, Primary Production, and Zooplankton in Lake Roosevelt, Washington, 1998 Annual Report.

    SciTech Connect (OSTI)

    Shields, John; Spotts, Jim; Underwood, Keith

    2002-11-01

    The Lake Roosevelt Fisheries Evaluation Program is the result of a merger between two projects, the Lake Roosevelt Monitoring Program (BPA No. 8806300) and the Lake Roosevelt Data Collection Project (BPA No. 9404300). These projects were merged in 1996 to continue work historically completed under the separate projects, and is now referred to as the Lake Roosevelt Fisheries Evaluation Program. The 1998 Annual Report, Part B. Limnology, Primary Production, and Zooplankton in Lake Roosevelt, Washington examined the limnology, primary production, and zooplankton at eleven locations throughout the reservoir. The 1998 research protocol required a continuation of the more complete examination of limnological parameters in Lake Roosevelt that began in 1997. Phytoplankton and periphyton speciation, phytoplankton and periphyton chlorophyll a analysis, complete zooplankton biomass analysis by taxonomic group, and an increased number of limnologic parameters (TDG, TDS, etc.) were examined and compared with 1997 results. Total dissolved gas levels were greatly reduced in 1998, compared with 1997, likely resulting from the relatively normal water year experienced in 1998. Mean water temperatures were similar to what was observed in past years, with a maximum of 22.7 C and a minimum of 2.6 C. Oxygen concentrations were also relatively normal, with a maximum of 16.6 mg/L, and a minimum of 0.9 mg/L. Phytoplankton in Lake Roosevelt was primarily composed of microplankton (29.6%), Cryptophyceae (21.7%), and Bacillriophyceae (17.0 %). Mean total phytoplankton chlorophyll a maximum concentration occurred in May (3.53 mg/m{sup 3}), and the minimum in January (0.39 mg/m{sup 3}). Phytoplankton chlorophyll a concentrations appear to be influenced by hydro-operations and temperature. Trophic status as indicated by phytoplankton chlorophyll a concentrations place Lake Roosevelt in the oligomesotrophic range. Periphyton colonization rates and biovolume were significantly greater at a depth of 1.5 m (5 ft) when compared with a 4.6 m (15 ft) depth, and during the shorter incubation periods (two and four weeks). Mean zooplankton densities were greatest for Copepoda (88 %), then Daphnia spp. (10%) and other Cladocera (2.1%), while the zooplankton biomass assessment indicated Daphnia spp. had the greatest biomass (53.6%), then Copepoda (44.0%) and other Cladocera (2.5%). Mean overall zooplankton densities were the lowest observed since 1991. The cause was unclear, but may have been an artifact of human error. It seems unlikely that hydro-operations played a significant part in the reduction of zooplankton in light of the relatively friendly water year of 1998.

  1. TEMPERATURE MEASUREMENTS COLLECTED FROM AN INSTRUMENTED VAN IN SALT LAKE CITY, UTAH AS PART OF URBAN 2000

    SciTech Connect (OSTI)

    M.J. BROWN; E.R. PARDYJAK

    2001-08-01

    Measurements of temperature and position were collected during the night from an instrumented van on routes through Salt Lake City and the rural outskirts. The measurements were taken as part of the Department of Energy Chemical and Biological National Security Program URBAN 2 Field Experiment conducted in October 2000 (Shinn et al., 2000 and Allwine et al., 2001a). The instrumented van was driven over three primary routes, two including downtown, residential, and ''rural'' areas and a third that went by a line of permanently fixed temperature probes (Allwine et al., 2001b) for cross-checking purposes. Each route took from 45 to 60 minutes to complete. Based on four nights of data, initial analyses indicate that there was a temperature difference of 2-5 C between the urban core and nearby ''rural'' areas. Analyses also suggest that there were significant fine scale temperature differences over distances of tens of meters within the city and in the nearby rural areas. The temperature measurements that were collected are intended to supplement the meteorological measurements taken during the URBAN2000 Field Experiment, to assess the importance of the urban heat island phenomenon in Salt Lake City, and to test the urban canopy parameterizations that have been developed for regional scale meteorological codes as part of the DOE CBNP program.

  2. Inner Area Principles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inner Area Principles The Inner Area principles proposed by the Tri-Parties are a good beginning toward consideration of what kind of approach will be needed to remedy the problems of the Central Plateau. However, the Board feels that some principles have been overlooked in the preparation of these. [1] While it has been generally agreed that designated waste disposal facilities of the Inner Area (like ERDF and IDF) would not be candidates for remediation. What happened to the remedial approach

  3. Imperial Valley Geothermal Area

    Broader source: Energy.gov [DOE]

    The Imperial Valley Geothermal project consists of 10 generating plants in the Salton Sea Known Geothermal Resource Area in Southern California's Imperial Valley. The combined capacity at Imperial...

  4. Material Disposal Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Material Disposal Areas Material Disposal Areas Material Disposal Areas, also known as MDAs, are sites where material was disposed of below the ground surface in excavated pits, trenches, or shafts. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Material Disposal Areas at LANL The following are descriptions and status updates of each MDA at LANL. To view a current fact sheet on the MDAs, click on LA-UR-13-25837 (pdf).

  5. Tank Farm Area Closure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Final Disposition Reactor Current Status (a) Decision Area Final Disposition B National Historic Landmark (2008) 100-BC ROD for Decommissioning of Eight Surplus Production ...

  6. Focus Area 3 Deliverables

    Office of Environmental Management (EM)

    Services Office of Environmental Management And Energy Facility Contractors Group Quality Assurance Improvement Project Plan Project Focus Area Task and Description...

  7. Proceedings of the Great Lakes Solar Greenhouse Conference V

    SciTech Connect (OSTI)

    Currin, C.G. (ed.)

    1983-01-01

    Proceedings of the Fifth Great Lakes Greenhouse Conference are presented. Topics included are: a review of a greenhouses, greenhouses as integral part of an earth-sheltered home, solar architecture, design criteria, heat contribution for solar greenhouses, and the future of solar greenhouses.

  8. Proceedings of the Great Lakes Solar Greenhouse Conference V

    SciTech Connect (OSTI)

    Currin, C.G. (ed.)

    1983-01-01

    Proceedings of the Fifth Great Lakes Solar Greenhouse Conference are presented. Topics included are a review of greenhouses, greenhouses as integral part of an earth-sheltered house, solar architecture, design criteria, heat contribution from solar greenhouses, and the future for solar greenhouses.

  9. Salt Lake City, Utah: Solar in Action (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This brochure provides an overview of the challenges and successes of Salt Lake City, UT, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  10. Changing Weather and Climate in the Great Lakes Region Webinar

    Broader source: Energy.gov [DOE]

    Offered by the University of Wisconsin-Madison through Coursera, this four-week course will feature a new season each week through short lectures and activities covering Great Lakes weather, observed changes in the climate, and societal impacts of climate change.

  11. Movements of White Sturgeon in Lake Roosevelt : Final Report 1988-1991.

    SciTech Connect (OSTI)

    Brannon, E.L.; Setter, Ann L.

    1992-06-01

    Historically, white sturgeon moved throughout the Columbia River system, ranging freely from the estuary to the headwaters, with the possible exception of limited passage at Cascades, Celilo and Kettle Falls during spring floods. Construction of Rock Island Dam in 1933, followed by Bonneville in 1938 and Grand Coulee in 1941, completely disrupted sturgeon migratory opportunity, and with the 17 successive Columbia and Snake river dams constructed over the next 32 years an entirely different river system was created for the species. Sturgeon caught between dams were essentially isolated populations with severely limited reproduction potential. Some reservoirs ran from dam to dam with no river habitat remaining, while other reaches had various lengths of free running river, but drastically reduced from historical situations. However, if reservoirs provide habitat for sturgeon use, and therefore compensate to some degree for river loss, the major limiting factors associated with population viability may be reduced spawning success, either from lack of suitable area or poor incubation environments. The most upstream impoundment of the Columbia River in the United States is Lake Roosevelt, behind Grand Coulee Dam. If sturgeon don`t use Lake Roosevelt the capacity of the system to sustain a large sturgeon population would be understandably limited, and much reduced from the pre-dam era. In general this study found that sturgeon spawner aggregations from early spring to mid- summer depend most heavily on the timing of increasing water temperature. In the spring the water temperatures seem to stimulate the fish to start feeding and leave deep pools. The summer provides access to broader and shallower areas for food. The study on sturgeon movement was an attempt to define habitat use in such a reservoir/river system.

  12. Radionuclide concentrations in fish collected from Jemez, Nambe, and San Ildefonso Tribal Lakes

    SciTech Connect (OSTI)

    Fresquez, P.R.; Armstrong, D.R.; Salazar, J.G.

    1995-02-01

    Radionuclide concentrations ({sup 90}Sr, {sup 137}Cs, {sup 238}Pu, {sup 239}Pu,and total uranium) were determined in fish collected from Jemez, Nambe, and San Ildefonso tribal lakes. With the exception of {sup 137}Cs, all other radionuclides were not significantly different in (stocked) rainbow trout collected from Jemez and Nambe as compared with game fish collected from Abiquiu, Heron, and El Vado Reservoirs. Although {sup 137}Cs levels in trout from Jemez (3.2 {times} 10{sup -2} pCi per dry gram) and Nambe (7.5 {times} 10{sup -2} pCi per dry gram) were significantly higher than {sup 137}Cs concentrations in fish from Abiquiu, Heron, and El Vado, they were still well below the regional statistical (worldwide fallout) reference level (i.e., < 28 {times} 10{sup -2} pCi per dry gram). Game and nongame fish collected from San Ildefonso contained higher and significantly higher concentrations of uranium, respectively, as compared with fish collected from Abiquiu, Heron, and El Vado. The higher uranium concentrations in fish from San Ildefonso as compared with fish from Abiquiu, Heron, and El Vado were attributed to the higher natural soil uranium contents in the area as compared with the geology of the area upstream of San Ildefonso. The effective (radiation) dose equivalent (EDE) from consuming 46 lb of game fish from Jemez, Nambe, and San Ildefonso lakes, after natural background has been subtracted, was 0.013 ({+-}0.002), 0.019 ({+-}0.012), and 0.017 ({+-}0.028) mrem/yr, respectively. Similarly, the EDE from consuming nongame fish from San Ildefonso was 0.0092 ({+-}0.0084) mrem/yr. The highest calculated dose, based on the mean + 2 standard deviation (95% confidence level), was 0.073 mrem/yr; this was <0.08% of the International Commission on Radiological Protection permissible dose limit for protecting members of the public.

  13. Lake Roosevelt Fisheries Evaluation Program : Lake Whatcom Kokanee Salmon (Oncorhynchus nerka kennerlyi) : Investigations in Lake Roosevelt Annual Report 1999-2000.

    SciTech Connect (OSTI)

    McLellan, Holly J.; Scholz, Allan T.; McLellan, Jason G.; Tilson, Mary Beth

    2001-07-01

    Lake Whatcom stock kokanee have been planted in Lake Roosevelt since 1988 with the primary goal of establishing a self-sustaining fishery. Returns of hatchery kokanee to egg collection facilities and recruitment to the creel have been minimal. Therefore, four experiments were conducted to determine the most appropriate release strategy that would increase kokanee returns. The first experiment compared morpholine and non-morpholine imprinted kokanee return rates, the second experiment compared early and middle run Whatcom kokanee, the third experiment compared early and late release dates, and the fourth experiment compared three net pen release strategies: Sherman Creek hatchery vs. Sherman Creek net pens, Colville River net pens vs. Sherman Creek net pens, and upper vs. lower reservoir net pen releases. Each experiment was tested in three ways: (1) returns to Sherman Creek, (2) returns to other tributaries throughout the reservoir, and (3) returns to the creel. Chi-square analysis of hatchery and tributary returns indicated no significant difference between morpholine imprinted and non-imprinted fish, early run fish outperformed middle run fish, early release date outperformed late release fish, and the hatchery outperformed all net pen releases. Hatchery kokanee harvest was estimated at 3,323 fish, which was 33% of the total harvest. Return rates (1998 = 0.52%) of Whatcom kokanee were low indicating an overall low performance that could be caused by high entrainment, predation, and precocity. A kokanee stock native to the upper Columbia, as opposed to the coastal Whatcom stock, may perform better in Lake Roosevelt.

  14. EIS-0464: Mitigation Action Plan | Department of Energy

    Energy Savers [EERE]

    Mitigation Action Plan EIS-0464: Mitigation Action Plan Lake Charles Carbon Capture and Sequestration Project, Lake Charles, Louisiana and Brazoria County, Texas This Mitigation Action Plan (MAP) briefly describes the mitigation actions and monitoring and reporting requirements the recipient must implement during the design, construction, and demonstration of the Lake Charles Carbon Capture and Sequestration Project. DOE prepared this MAP in accordance with 10 CFR 1021.331. PDF icon

  15. Microsoft Word - Leucadia ROD.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    [6450-01-P] DEPARTMENT OF ENERGY Record of Decision and Floodplain Statement of Findings for the Lake Charles Carbon Capture and Sequestration Project AGENCY: Department of Energy ACTION: Record of Decision SUMMARY: The U.S. Department of Energy (DOE) announces its decision to provide cost-shared funding to Leucadia Energy, LLC (Leucadia) for its Lake Charles Carbon Capture and Sequestration project (Lake Charles CCS project) under DOE's Industrial Carbon Capture Sequestration (ICCS) Program.

  16. EIS-0464: DOE Notice of Availability of the Draft Environmental Impact

    Office of Environmental Management (EM)

    Statement | Department of Energy DOE Notice of Availability of the Draft Environmental Impact Statement EIS-0464: DOE Notice of Availability of the Draft Environmental Impact Statement Lake Charles Carbon Capture and Sequestration Project, Lake Charles, Louisiana and Brazoria County, Texas DOE announces the availability of the Lake Charles Carbon Capture and Sequestration Project Draft Environmental Impact Statement (DOE/EIS-0464D) for public review and comment, as well as the dates,

  17. Hungry Horse Mitigation; Flathead Lake, 2003-2004 Annual Report.

    SciTech Connect (OSTI)

    Hansen, Barry; Evarts, Les

    2005-06-01

    The Confederated Salish and Kootenai Tribes (CSKT) and Montana Fish Wildlife and Parks (MFWP) wrote the ''Fisheries Mitigation Plan for Losses Attributable to the Construction and Operation of Hungry Horse Dam'' in March 1991 to define the fisheries losses, mitigation alternatives and recommendations to protect, mitigate and enhance resident fish and aquatic habitat affected by Hungry Horse Dam. On November 12, 1991, the Northwest Power Planning Council (NPPC) approved the mitigation plan with minor modifications, called for a detailed implementation plan, and amended measures 903(h)(1) through (7). A long-term mitigation plan was submitted in August 1992, was approved by the Council in 1993, and the first contract for this project was signed on November 11, 1993. The problem this project addresses is the loss of habitat, both in quality and quantity, in the Flathead Lake and River basin resulting from the construction and operation of Hungry Horse Dam. The purpose of the project is to both implement mitigation measures and monitor the biological responses to those measures including those implemented by Project Numbers 9101903 and 9101904. Goals and objectives of the 1994 Fish and Wildlife Program (Section 10.1) addressed by this project are the rebuilding to sustainable levels weak, but recoverable, native populations injured by the hydropower system. The project mitigates the blockage of spawning runs by Hungry Horse Dam by restoring and even creating spawning habitats within direct drainages to Flathead Lake. The project also addresses the altered habitat within Flathead Lake resulting from species shifts and consequent dominance of new species that restricts the potential success of mitigation measures. Specific goals of this project are to create and restore habitat and quantitatively monitor changes in fish populations to verify the efficacy of our mitigation measures. The project consists of three components: monitoring, restoration and research. Monitoring, for example, includes a spring gillnetting series conducted annually in Flathead Lake and builds on an existing data set initiated in 1981. Monitoring of the experimental kokanee reintroduction was a primary activity of this project between 1992 and 1997. Lake trout, whose high densities have precluded successful mitigation of losses of other species in Flathead Lake, have been monitored since 1996 to measure several biological parameters. Results of this work have utility in determining the population status of this key predator in Flathead Lake. The project has also defined the baseline condition of the Flathead Lake fishery in 1992-1993 and has conducted annual lakewide surveys since 1998. The restoration component of the project has addressed several stream channel, riparian, and fish passage problems, and suppression of non-native fish. The research component of the project began in FY 2000 and measured trophic linkages between M. relicta and other species to assist in predicting the results of our efforts to suppress lake trout. Only Objective 1 in the workplan is funded entirely by Hungry Horse Mitigation funds. Additional funds are drawn from other sources to assist in completion of Objectives 2-8.

  18. EIS-0498: Draft Environmental Impact Statement | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    The EIS also analyzes the potential environmental impacts of the proposed Lake Charles Expansion Project, which would reconfigure an existing pipeline system to serve the LNG ...

  19. EIS-0498: Final Environmental Impact Statement | Department of...

    Energy Savers [EERE]

    Magnolia LNG and Lake Charles Expansion Projects, Calcasieu Parish, Louisiana The Federal ... which would reconfigure an existing pipeline system to serve the LNG terminal site. ...

  20. EIS-0498: Notice of Availability for the Final Environmental...

    Broader source: Energy.gov (indexed) [DOE]

    The EIS also analyzes the potential environmental impacts of the proposed Lake Charles Expansion Project, which would reconfigure an existing pipeline system to serve the LNG ...

  1. Notices

    Broader source: Energy.gov (indexed) [DOE]

    Morgan Louisiana Pipeline LLC; Notice of Availability of the Draft Environmental Impact Statement for the Proposed Magnolia LNG and Lake Charles Expansion Projects The staff of the ...

  2. EIS-0491: Final Environmental Impact Statement | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Impact Statement EIS-0491: Final Environmental Impact Statement Lake Charles Liquefaction Project; Calcasieu Parish, Louisiana Federal Energy Regulatory Commission, with DOE...

  3. EIS-0491: Draft Environmental Impact Statement | Department of...

    Energy Savers [EERE]

    Impact Statement EIS-0491: Draft Environmental Impact Statement Lake Charles Liquefaction Project, Calcasieu Parish, Louisiana Federal Energy Regulatory Commission, with DOE...

  4. EIS-0491: FERC Notice of Availability of Draft Environmental...

    Broader source: Energy.gov (indexed) [DOE]

    Lake Charles Liquefaction Project, Calcasieu Parish, Louisiana Federal Energy Regulatory Commission issued a notice of availability of a Draft EIS that analyzes the potential...

  5. EIS-0491: EPA Notice of Availability of Draft Environmental Impact...

    Broader source: Energy.gov (indexed) [DOE]

    environmental impacts of a proposal to construct and operate the Lake Charles Liquefaction Project. For more information on this project, including available public comment...

  6. Geothermal br Resource br Area Geothermal br Resource br Area...

    Open Energy Info (EERE)

    Aluto Langano Geothermal Area Aluto Langano Geothermal Area East African Rift System Ethiopian Rift Valley Major Normal Fault Basalt MW K Amatitlan Geothermal Area Amatitlan...

  7. Decontamination & decommissioning focus area

    SciTech Connect (OSTI)

    1996-08-01

    In January 1994, the US Department of Energy Office of Environmental Management (DOE EM) formally introduced its new approach to managing DOE`s environmental research and technology development activities. The goal of the new approach is to conduct research and development in critical areas of interest to DOE, utilizing the best talent in the Department and in the national science community. To facilitate this solutions-oriented approach, the Office of Science and Technology (EM-50, formerly the Office of Technology Development) formed five Focus AReas to stimulate the required basic research, development, and demonstration efforts to seek new, innovative cleanup methods. In February 1995, EM-50 selected the DOE Morgantown Energy Technology Center (METC) to lead implementation of one of these Focus Areas: the Decontamination and Decommissioning (D & D) Focus Area.

  8. Strategic Focus Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Strategic Focus Areas Lockheed Martin on behalf of Sandia National Laboratories will consider grant requests that best support the Corporation's strategic focus areas and reflect effective leadership, fiscal responsibility and program success. Education: K-16 Science, Technology, Engineering and Math (STEM) programs that are focused on reducing the achievement gap. Lockheed Martin dedicates 50% of its support to STEM education programs & activities. Customer & Constituent Relations:

  9. Hanford 300 Area ROD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    300 Area ROD Briefing to the Hanford Advisory Board March 6, 2014 Larry Gadbois -- EPA Recap of the 300 Area ROD Primary new concept -- Uranium Sequestration: * Purpose: Accelerate restoration of groundwater uranium contamination. * Protect groundwater from downward leaching from the vadose zone (overlying soil). * Add phosphate to chemically bond with uranium into geologically stable autunite. Does not dissolve. * Dissolve phosphate in water, apply at ground surface, inject into the ground,

  10. Identifying Oil Exploration Leads using Intergrated Remote Sensing and Seismic Data Analysis, Lake Sakakawea, Fort Berthold Indian Reservation, Willistion Basin

    SciTech Connect (OSTI)

    Scott R. Reeves; Randal L. Billingsley

    2004-02-26

    The Fort Berthold Indian Reservation, inhabited by the Arikara, Mandan and Hidatsa Tribes (now united to form the Three Affiliated Tribes) covers a total area of 1530 mi{sup 2} (980,000 acres). The Reservation is located approximately 15 miles east of the depocenter of the Williston basin, and to the southeast of a major structural feature and petroleum producing province, the Nesson anticline. Several published studies document the widespread existence of mature source rocks, favorable reservoir/caprock combinations, and production throughout the Reservation and surrounding areas indicating high potential for undiscovered oil and gas resources. This technical assessment was performed to better define the oil exploration opportunity, and stimulate exploration and development activities for the benefit of the Tribes. The need for this assessment is underscored by the fact that, despite its considerable potential, there is currently no meaningful production on the Reservation, and only 2% of it is currently leased. Of particular interest (and the focus of this study) is the area under the Lake Sakakawea (formed as result of the Garrison Dam). This 'reservoir taking' area, which has never been drilled, encompasses an area of 150,000 acres, and represents the largest contiguous acreage block under control of the Tribes. Furthermore, these lands are Tribal (non-allotted), hence leasing requirements are relatively simple. The opportunity for exploration success insofar as identifying potential leads under the lake is high. According to the Bureau of Land Management, there have been 591 tests for oil and gas on or immediately adjacent to the Reservation, resulting in a total of 392 producing wells and 179 plugged and abandoned wells, for a success ratio of 69%. Based on statistical probability alone, the opportunity for success is high.

  11. Simulation of oil-slick transport in Great Lakes connecting channels. Volume 3. User's manual for the lake-river oil-spill simulation model. Final report

    SciTech Connect (OSTI)

    Shen, H.T.; Yapa, P.D.; Petroski, M.E.

    1986-03-01

    In this study, two computer models named as ROSS and LROSS are developed for simulating oil-slick transport in rivers and lakes, respectively. The oil-slick transformation processes considered in these models include advection, spreading, evaporation, and dissolution. These models can be used for slicks of any shape originated from instantaneous or continuous spills in rivers and lakes with or without ice covers. Although developed for the need of the connecting channels in the upper Great Lakes, including the Detroit RIver, Lake St. Clair, St. Clair River, and St. Marys River, these models are site independent and can be used for others rivers and lakes. The programs are written in FORTRAN language to be compatible with FORTRAN77 compiler. The models are designed to be used on both mainframe and microcomputers.

  12. Banks Lake Fishery Evaluation Annual Report 2002-2003.

    SciTech Connect (OSTI)

    Polacek, Matt; Knuttgen, Kamia; Shipley, Rochelle

    2003-11-01

    The Washington Department of Fish and Wildlife implemented the Banks Lake Fishery Evaluation Project (BLFEP) in September 2001 with funds from the Bonneville Power Administration. Fiscal Year (FY) 2001 of the BLFEP was used to gather historic information, establish methods and protocols, collect limnology data, and conduct the first seasonal fish surveys. FY 2002 was used to continue seasonal fish and lakewide creel surveys and adjust methods and protocols as needed. Water quality parameters were collected monthly from February to May and bi-monthly from June to August. Banks Lake water temperatures began to increase in April and stratification was apparent by June at all 3 limnology collection sites. By late August, the thermocline had dropped to nearly 20 meters deep, with 16-17 C temperatures throughout the epilimnion. Dissolved oxygen levels were generally above 10 mg/L until August when dissolved oxygen dropped near or below 5 mg/L below 20-meters deep. Secchi depths ranged from 2.5-8 meters and varied by location and date. Nearshore and offshore fish surveys were conducted in October 2002 and May and July 2003 using boat electrofishing, fyke net, gill net, and hydroacoustic surveys. Yellow Perch Perca flavescens (32 %) and cottid spp. (22 %) dominated the nearshore species composition in October; however, by May yellow perch (12 %) were the third most common species followed by smallmouth bass Micropterous dolomieui (34 %) and lake whitefish Coregonus clupeaformis (14 %). Lake whitefish dominated the offshore catch during October (78 %) and May (81 %). Fish diet analysis indicated that juvenile fishes consumed primarily insects and zooplankton, while adult piscivores consumed cottids spp. and yellow perch most frequently. For FY 2002, the following creel statistics are comprehensive through August 31, 2003. The highest angling pressure occurred in June 2003, when anglers were primarily targeting walleye and smallmouth bass. Boat anglers utilized Steamboat State Park more frequently than any other boat ramp on Banks Lake. Shore anglers used the rock jetty at Coulee City Park 76 % of the time, with highest use occurring from November through April. An estimated total of 11,915 ({+-}140 SD) smallmouth bass, 6,412 ({+-}59 SD) walleye, 5,470 ({+-}260 SD) rainbow trout, and 1,949 ({+-}118 SD) yellow perch were harvested from Banks Lake in FY 2002. Only 3 kokanee were reported in the catch during the FY 2002 creel survey. In the future, data from the seasonal surveys and creel will be used to identify potential factors that may limit the production and harvest of kokanee, rainbow trout, and various spiny-rayed fishes in Banks Lake. The limiting factors that will be examined consist of: abiotic factors including water temperature, dissolved oxygen levels, habitat, exploitation and entrainment; and biotic factors including food limitation and predation. The BLFEP will also evaluate the success of several rearing and stocking strategies for hatchery kokanee in Banks Lake.

  13. Uranium hydrogeochemical and stream-sediment reconnaissance of the Chandler Lake NTMS quadrangle, Alaska

    SciTech Connect (OSTI)

    Hardy, L. C.; D'Andrea, Jr., R. F.; Zinkl, R. J.; Shettel, Jr., D. L.; Langfeldt, S. L.

    1982-03-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Chandler Lake NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report.

  14. Red Lake Band of Chippewa Indians- 2003 Project

    Broader source: Energy.gov [DOE]

    The Red Lake Band of Chippewa Indians, located in the northwest corner of Minnesota near the Canadian border, will assess the potential to expand the use of biomass resources for energy autonomy and economic development on tribal lands. Specifically, the tribe will evaluate the technical, market, financial, and cultural aspects of using its extensive, forested lands to create a sustainable bioproducts-based business and will develop a business plan to guide tribal industry development.

  15. Great Lakes Bioenergy Research Center Technologies Available for Licensing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Energy Innovation Portal GLBRC Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Great Lakes Bioenergy Research Center

  16. Terrestrial Climate Change and Ecosystem Response Recorded in Lake

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sediments and Related Deposits Terrestrial Climate Change and Ecosystem Response Recorded in Lake Sediments and Related Deposits Reconstruction of past terrestrial climate and ecosystem response relies on archives that incorporate and preserve information about changes in temperature, precipitation, nutrients, vegetation, fire history, etc. The resolution and length of such paleoclimate/ecological records is dependent on the type of archive. Although much information is able to be determined

  17. Lac Courte Oreilles Band of Lake Superior Ojibwe

    Office of Environmental Management (EM)

    Oreilles Band of Lake Superior Ojibwe Leslie Isham, Director/Assistant Director Lac Courte Oreilles Energy Project Lac Courte Oreilles Public works Department First Steps towards Tribal Weatherization Assessing the Feasibility of the Hydro Dam About Lac Courte Oreilles (LCO) * Located in Upper Northwest Wisconsin * 76,000 acres and 15 miles wide * 90 miles from Duluth 100 miles from Eau Claire 10 miles from Hayward * Close to 6,000 members, 50% live on or near the reservation * 68% unemployment

  18. Lac Courte Oreilles Lake Superior Band of Ojibwe Energy Projects

    Office of Environmental Management (EM)

    OdaawaaZaga'iganing or Lac Courte Oreilles Lake Superior Band Of Ojibwe LCO Energy Department Staff: Director: Leslie Isham Coordinator: Denise Johnson Energy Projects: Assessing Hydro Dam First Steps Toward Tribal Weatherization Lac Courte Oreilles's Mission We, the Anishinaabeg, the people of OdaawaaZaaga'iganing, the Lac Courte Oreilles Tribe, will sustain our heritage by preserving our past, strengthening our present and embracing our future. We will defend our inherent sovereign rights and

  19. ~~~~: Gmt Lakes Cat-bar) ALTERNaTE I

    Office of Legacy Management (LM)

    ~~~: Gmt Lakes Cat-bar) ALTERNaTE I --------------------------------------- NAME: 333 Iv. Mkhi qr) Aw. thka o ~~~---~~~--~~~_-----__ C I TV : 8 Morim 'Love 82 10 bhh &Q Ir -+----------- STATE- fL I - ------ l OWNER(S) -__----_ past: Current: I --------------------____ Owner contacted q yes p no; _____--_____-____------~~~l if yes, data contacted -_--------__- TYPE OF OPERATION ---_------------- 0 Research & Development q Production scale testing 0 Pilot Scale 0 Bench Scale process 0

  20. Core Holes At Long Valley Caldera Geothermal Area (Chu, Et Al...

    Open Energy Info (EERE)

    H.R. Westrich (1990) The Magma Energy Program John B. Rundle, Charles R. Carrigan, Harry C. Hardee, William C. Luth (1986) Deep Drilling to the Magmatic Environment in Long...

  1. Biogeochemistry of manganese in ferruginous Lake Matano, Indonesia

    SciTech Connect (OSTI)

    Jones, C.; Crowe, S.A.; Sturm, A.; Leslie, K.L.; MacLean, L.C. W.; Katsev, S.; Henny, C.; Fowle, D.A.; Canfield, D.E.

    2012-12-13

    This study explores Mn biogeochemistry in a stratified, ferruginous lake, a modern analogue to ferruginous oceans. Intense Mn cycling occurs in the chemocline where Mn is recycled at least 15 times before sedimentation. The product of biologically catalyzed Mn oxidation in Lake Matano is birnessite. Although there is evidence for abiotic Mn reduction with Fe(II), Mn reduction likely occurs through a variety of pathways. The flux of Fe(II) is insufficient to balance the reduction of Mn at 125m depth in the water column, and Mn reduction could be a significant contributor to CH{sub 4} oxidation. By combining results from synchrotron-based X-ray fluorescence and X-ray spectroscopy, extractions of sinking particles, and reaction transport modeling, we find the kinetics of Mn reduction in the lake's reducing waters are sufficiently rapid to preclude the deposition of Mn oxides from the water column to the sediments underlying ferruginous water. This has strong implications for the interpretation of the sedimentary Mn record.

  2. Total and methyl mercury in selected Great Lakes tributaries

    SciTech Connect (OSTI)

    Hurley, J.P.; Cowell, S.E.; Shafer, M.M.

    1995-12-31

    Eleven Lake Michigan tributaries were chosen to investigate the effects of chemical and physical conditions in rivers on mercury partitioning and transport. Preliminary results from 1994 indicate that mean unfiltered Hg{sub T} ranged from about 1-2 ng L{sup -1} in the Manistique and Muskegon R. to 10-30 ng L{sup -1} in the St. Joseph and Fox R. Highest Hg{sub T} fluxes were generally associated with increased particle loads. Preliminary estimates from a subset of Lake Michigan tributaries also suggest that methylmercury loading from riverine inputs may be important. Additional work on 19 Lake Superior tributaries in Spring 1993 reveal that MeHg and DOC are correlated. Results from these tributaries are consistent with our {open_quotes}Background Trace Metals in Wisconsin Rivers{close_quotes} study, where greater yields of Hg{sub T} were observed with increased particle loading and elevated MeHg yields were observed from watersheds with significant forest and wetland regions.

  3. Simulation model for oil slick transport in lakes

    SciTech Connect (OSTI)

    Shen, H.T.; Yapa, P.D.; Petroski, M.E.

    1987-10-01

    A computer model for simulating oil slick movement in lakes by a Lagrangian discrete parcel algorithm is presented. In this model the transformation of an oil slick due to advection, spreading, evaporation, and dissolution is considered. For open water conditions the movement of the oil slick by water current and wind is considered using the drifting factor formulation. For ice-covered conditions the drift velocity is determined according to the ice roughness and current velocity. The current distribution in the lake is determined by a rigid lid circulation model. In the spreading process the mechanical spreading of the oil slick due to the balance in inertia, gravity, viscous, and surface tension forces is considered, in addition to the dispersion of the surface oil layer. Boundary conditions along the shore are formulated according to the storage capacity of the shoreline. The model can be used for simulating either instantaneous or continuous oil spills. Sample simulations for oil spills in Lake St. Clair are presented.

  4. Dynamic coupling of volcanic CO2 flow and wind at the HorseshoeLake tree kill, Mammoth Mountain, CA

    SciTech Connect (OSTI)

    Lewicki, J.L.; Hilley, G.E.; Tosha, T.; Aoyagi, R.; Yamamoto, K.; Benson, S.M.

    2006-11-20

    We investigate spatio-temporal relationships between soilCO2 flux (FCO2), meteorological variables, and topography over a ten-dayperiod (09/12/2006 to 09/21/2006) at the Horseshoe Lake tree kill,Mammoth Mountain, CA. Total CO2 discharge varied from 16 to 52 t d-1,suggesting a decline in CO2 emissions over decadal timescales. Weobserved systematic changes in FCO2 in space and time in association witha weather front with relatively high wind speeds from the west and lowatmospheric pressures. The largest FCO2 changes were observed inrelatively high elevation areas. The variations in FCO2 may be due todynamic coupling of wind-driven airflow through the subsurface and flowof source CO2 at depth. Our results highlight the influence of weatherfronts on volcanic gas flow in the near-surface environment and how thisinfluence can vary spatially within a study area.

  5. Fond du Lac Band Leads Climate Resilience Efforts on Lake Superior Chippewa

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Indian Reservation | Department of Energy Fond du Lac Band Leads Climate Resilience Efforts on Lake Superior Chippewa Indian Reservation Fond du Lac Band Leads Climate Resilience Efforts on Lake Superior Chippewa Indian Reservation September 23, 2014 - 11:24am Addthis From the White House Council on Environmental Quality blog: Last Friday I had the pleasure of visiting the Fond du Lac Band of Lake Superior Chippewa Indian Reservation. I was joined by Raina Thiele, Associate Director of White

  6. DOE - Office of Legacy Management -- Salt Lake City Vitro Chemical - UT

    Office of Legacy Management (LM)

    0-04 Vitro Chemical - UT 0-04 FUSRAP Considered Sites Site: Salt Lake City Vitro Chemical (UT.0-04 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see Salt Lake City, Utah, Processing Site Documents Related to Salt Lake City Vitro Chemical 2014 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control

  7. Waste Area Grouping 2 Remedial Investigation Phase 1 Seep Task data report: Contaminant source area assessment

    SciTech Connect (OSTI)

    Hicks, D.S.

    1996-03-01

    This report presents the findings of the Waste Area Grouping (WAG) 2, Phase 1 Remedial Investigation (RI) Seep Task efforts during 1993 and 1994 at Oak Ridge National Laboratory (ORNL). The results presented here follow results form the first year of sampling, 1992, which are contained in the Phase 1 RI report for WAG 2 (DOE 1995a). The WAG 2 Seep Task efforts focused on contaminants in seeps, tributaries, and main streams within the White Oak Creek (WOC) watershed. This report is designed primarily as a reference for contaminants and a resource for guiding remedial decisions. Additional in-depth assessments of the Seep Task data may provide clearer understandings of contaminant transport from the different source areas in the WOC watershed. WAG 2 consists of WOC and its tributaries downstream of the ORNL main plant area, White Oak Lake, the White Oak Creek Embayment of the Clinch River, and the associated flood plains and subsurface environment. The WOC watershed encompasses ORNL and associated WAGs. WAG 2 acts as an integrator for contaminant releases from the contaminated sites at ORNL and as the conduit transporting contaminants to the Clinch River. The main objectives of the Seep Task were to identify and characterize seeps, tributaries and source areas that are responsible for the contaminant releases to the main streams in WAG 2 and to quantify their input to the total contaminant release from the watershed at White Oak Dam (WOD). Efforts focused on {sup 90}Sr, {sup 3}H, and {sup 137}Cs because these contaminants pose the greatest potential human health risk from water ingestion at WOD. Bimonthly sampling was conducted throughout the WOC watershed beginning in March 1993 and ending in August 1994. Samples were also collected for metals, anions, alkalinity, organics, and other radionuclides.

  8. OLED area illumination source

    DOE Patents [OSTI]

    Foust, Donald Franklin (Scotia, NY); Duggal, Anil Raj (Niskayuna, NY); Shiang, Joseph John (Niskayuna, NY); Nealon, William Francis (Gloversville, NY); Bortscheller, Jacob Charles (Clifton Park, NY)

    2008-03-25

    The present invention relates to an area illumination light source comprising a plurality of individual OLED panels. The individual OLED panels are configured in a physically modular fashion. Each OLED panel comprising a plurality of OLED devices. Each OLED panel comprises a first electrode and a second electrode such that the power being supplied to each individual OLED panel may be varied independently. A power supply unit capable of delivering varying levels of voltage simultaneously to the first and second electrodes of each of the individual OLED panels is also provided. The area illumination light source also comprises a mount within which the OLED panels are arrayed.

  9. Operational Area Monitoring Plan

    Office of Legacy Management (LM)

    ' SECTION 11.7B Operational Area Monitoring Plan for the Long -Term H yd rol og ical M o n i to ri ng - Program Off The Nevada Test Site S . C. Black Reynolds Electrical & Engineering, Co. and W. G. Phillips, G. G. Martin, D. J. Chaloud, C. A. Fontana, and 0. G. Easterly Environmental Monitoring Systems Laboratory U. S. Environmental Protection Agency October 23, 1991 FOREWORD This is one of a series of Operational Area Monitoring Plans that comprise the overall Environmental Monitoring Plan

  10. Heavy rains hamper Louisiana gas line

    SciTech Connect (OSTI)

    Horner, C.

    1983-06-01

    Despite heavy rains and flooding a 36-mile gas pipeline loop for Transcontinental Gas Pipe Line Corp. was completed from north of Starks (at the end of Transco's south Louisiana lateral) to the Lake Charles area. Somastic-coated, 42-in. grade X-60 pipe comprises 90% of the route. The contract included multiple 30-42 in. fabrications, installation of six 42-in. gate valves, and expansion of the Gillis compressor station.

  11. Eagle, Garfield, Gunnison, Lake, and Pitkin Counties- Energy Smart Colorado Loan Program

    Broader source: Energy.gov [DOE]

    Residents of Roaring Fork Valley and Eagle, Gunnison, Lake, and Summit Counties are eligible for energy efficiency and renewable energy assistance, rebates, and financing through the Energy Smart...

  12. Core Hole Drilling And Testing At The Lake City, California Geothermal...

    Open Energy Info (EERE)

    And Testing At The Lake City, California Geothermal Field Authors Dick Benoit, Joe Moore, Colin Goranson and David Blackwell Published GRC, 2005 DOI Not Provided Check for DOI...

  13. Eagle, Gunnison, Lake, and Pitkin Counties- Energy Smart Colorado Loan Program

    Broader source: Energy.gov [DOE]

    Residents of Roaring Fork Valley and Eagle, Gunnison, Lake, and Summit Counties are eligible for energy efficiency and renewable energy assistance, rebates, and financing through the Energy Smart...

  14. Monitoring the Effect of Injection of Fluids from the Lake County...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Monitoring the Effect of Injection of Fluids from the Lake County Pipeline on Seismicity at The Geysers, California Geothermal Field. Monitoring the Effect of Injection of Fluids ...

  15. EO 13547: Stewardship of the Ocean, Our Coasts, and the Great Lakes

    Office of Energy Efficiency and Renewable Energy (EERE)

    This order establishes a national policy to ensure the protection, maintenance, and restoration of the health of ocean, coastal, and Great Lakes ecosystems and resources, enhance the sustainability...

  16. Blue Lake Rancheria's Bold Action on the Climate Front Pays Dividends...

    Energy Savers [EERE]

    the coastal mountains and the Pacific Ocean, the Blue Lake Rancheria is bordered by ... Current initiatives include a biodiesel project that converts waste oil from the Tribe's ...

  17. Subsurface contaminants focus area

    SciTech Connect (OSTI)

    1996-08-01

    The US Department of Enregy (DOE) Subsurface Contaminants Focus Area is developing technologies to address environmental problems associated with hazardous and radioactive contaminants in soil and groundwater that exist throughout the DOE complex, including radionuclides, heavy metals; and dense non-aqueous phase liquids (DNAPLs). More than 5,700 known DOE groundwater plumes have contaminated over 600 billion gallons of water and 200 million cubic meters of soil. Migration of these plumes threatens local and regional water sources, and in some cases has already adversely impacted off-site rsources. In addition, the Subsurface Contaminants Focus Area is responsible for supplying technologies for the remediation of numerous landfills at DOE facilities. These landfills are estimated to contain over 3 million cubic meters of radioactive and hazardous buried Technology developed within this specialty area will provide efective methods to contain contaminant plumes and new or alternative technologies for development of in situ technologies to minimize waste disposal costs and potential worker exposure by treating plumes in place. While addressing contaminant plumes emanating from DOE landfills, the Subsurface Contaminants Focus Area is also working to develop new or alternative technologies for the in situ stabilization, and nonintrusive characterization of these disposal sites.

  18. Plutonium focus area

    SciTech Connect (OSTI)

    1996-08-01

    To ensure research and development programs focus on the most pressing environmental restoration and waste management problems at the U.S. Department of Energy (DOE), the Assistant Secretary for the Office of Environmental Management (EM) established a working group in August 1993 to implement a new approach to research and technology development. As part of this new approach, EM developed a management structure and principles that led to the creation of specific Focus Areas. These organizations were designed to focus the scientific and technical talent throughout DOE and the national scientific community on the major environmental restoration and waste management problems facing DOE. The Focus Area approach provides the framework for intersite cooperation and leveraging of resources on common problems. After the original establishment of five major Focus Areas within the Office of Technology Development (EM-50, now called the Office of Science and Technology), the Nuclear Materials Stabilization Task Group (EM-66) followed the structure already in place in EM-50 and chartered the Plutonium Focus Area (PFA). The following information outlines the scope and mission of the EM, EM-60, and EM-66 organizations as related to the PFA organizational structure.

  19. AREA 5 RWMS CLOSURE

    National Nuclear Security Administration (NNSA)

    153 CLOSURE STRATEGY NEVADA TEST SITE AREA 5 RADIOACTIVE WASTE MANAGEMENT SITE Revision 0 Prepared by Under Contract No. DE-AC52-06NA25946 March 2007 DISCLAIMER Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. Available for sale to the public,

  20. Property:AreaGeology | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Area B Beowawe Hot Springs Geothermal Area Blue Mountain Geothermal Area Brady Hot Springs Geothermal Area C Chena Geothermal Area Coso Geothermal Area D Desert Peak...