Powered by Deep Web Technologies
Note: This page contains sample records for the topic "laboratory vorbeck materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Vorbeck Materials Corp. | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Vorbeck Vorbeck Materials Corp. America's Next Top Energy Innovator Challenge 45458 likes Vorbeck Materials Corp. Pacific Northwest National Laboratory Vorbeck Materials was founded in 2006 to bring to market products using graphene, a sheet of carbon that is only a single atom thick. Graphene is the strongest material ever tested and is electrically and thermally conductive. In recent years, there has been significant interest and activity on graphene research and its potential applications. The Aksay Labs at Princeton University produced a patented method for manufacturing graphene at commercial scale. Vorbeck signed a worldwide license for the Princeton technology and commissioned a ton-scale graphene manufacturing plant in 2007. The partnership between Vorbeck, PNNL and Princeton ultilizes graphene's

2

Vorbeck Materials Corp. | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Vorbeck Vorbeck Materials Corp. America's Next Top Energy Innovator Challenge 45458 likes Vorbeck Materials Corp. Pacific Northwest National Laboratory Vorbeck Materials was founded in 2006 to bring to market products using graphene, a sheet of carbon that is only a single atom thick. Graphene is the strongest material ever tested and is electrically and thermally conductive. In recent years, there has been significant interest and activity on graphene research and its potential applications. The Aksay Labs at Princeton University produced a patented method for manufacturing graphene at commercial scale. Vorbeck signed a worldwide license for the Princeton technology and commissioned a ton-scale graphene manufacturing plant in 2007. The partnership between Vorbeck, PNNL and Princeton ultilizes graphene's

3

Vorbeck Materials Corp. | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Science & Innovation » Innovation » America's Next Top Energy Science & Innovation » Innovation » America's Next Top Energy Innovator » America's Next Top Energy Innovator Challenge » Vorbeck Materials Corp. America's Next Top Energy Innovator Challenge 45458 likes Vorbeck Materials Corp. Pacific Northwest National Laboratory Vorbeck Materials was founded in 2006 to bring to market products using graphene, a sheet of carbon that is only a single atom thick. Graphene is the strongest material ever tested and is electrically and thermally conductive. In recent years, there has been significant interest and activity on graphene research and its potential applications. The Aksay Labs at Princeton University produced a patented method for manufacturing graphene at commercial scale. Vorbeck signed a worldwide license for the

4

Vorbeck Materials Licenses Graphene-based Battery Technologies...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

America Energy Storage Energy Storage Return to Search Vorbeck Materials Licenses Graphene-based Battery Technologies Pacific Northwest National Laboratory Testing materials in...

5

Vorbeck Materials Corp. | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Integrated Dynamic Electron Solutions, Inc. Integrated Dynamic Electron Solutions, Inc. Lawrence Livermore National Laboratory 333 likes Integrated Dynamic Electron Solutions, Inc., based in Belmont, California, uses Dynamic Transmission Electron Microscopes (DTEM) to enable imaging of nanoscale objects, such as proteins, thin films and nanoparticles at unprecedented time scales and frame rates. By utilizing a laser-driven electron source, DTEMs are able to produce short bursts of electrons that can form an image with nanometer resolution in as little as 10 nanoseconds. This enables observation of dynamics in material systems that play an important role in a wide range of energy technologies, including battery electrodes, petroleum catalysts, solar cell materials, and organisms for bio fuel growth. Integrated Dynamic Electron Solutions uses technology

6

Vorbeck Materials Corp. | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

7AC Technologies, Inc. 7AC Technologies, Inc. National Renewable Energy Laboratory 498 likes 7AC Technologies, based in Woburn, Massachusetts, is developing Liquid Desiccant HVAC systems for Commercial and Industrial buildings using technology from the National Renewable Energy Laboratory. These Liquid Desiccant HVAC systems deliver a 50 to 75 percent reduction in energy usage over conventional HVAC units. The system consists of a membrane conditioner responsible for drying and cooling the air and a heat-driven regenerator. The liquid desiccant design allows for the utilization of solar or waste heat sources, paving the way for net-zero energy retrofits to existing buildings with costs comparable to conventional HVAC. Learn More Borla Performance Industries, Inc. Oak Ridge National Laboratory

7

Crumpled graphene: Conductive inks made by startup company Vorbeck  

E-Print Network [OSTI]

Crumpled graphene: Conductive inks made by startup company Vorbeck Materials contain crumpled graphene. This atomic-force microscope image is colorized to show the topography of a piece of graphene Technology Review in English | en Español | auf Deutsch | in Italiano | Bringing Graphene to Market

Aksay, Ilhan A.

8

PNNL Success Stories - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Company Laboratories Date Energy Storage Startup America Vorbeck Materials Licenses Graphene-based Battery Technologies Vorbeck Materials Corp of Jessup, MD participated in...

9

Sandia National Laboratories: Advanced Materials Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Materials Laboratory Sandia Researchers Win CSP:ELEMENTS Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy...

10

LANL: Materials Science Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Science Laboratory (MSL) is Materials Science Laboratory (MSL) is an interdisciplinary facility dedicated to research on current materials and those of future interest. It is a 56,000 square-foot modern facility that can be easily reconfigured to accom- modate new processes and operations. It compris- es 27 laboratories, 15 support rooms, and 60 offices. The MSL supports many distinct materi- als research topics, grouped into four focus areas: mechanical behavior, materials processing, syn- thesis, and characterization. Research within the MSL supports programs of national interest in defense, energy, and the basic sciences. The MSL is a non-classified area in the Materials Science Complex in close proximity to classified and other non-classified materials research facilities. The Materials Science

11

Sandia National Laboratories: Advanced Materials Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy Storage, Facilities, National Solar Thermal Test Facility,...

12

Sandia National Laboratories: Materials Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Science Materials Science and Engineering Support for Microsystems-Enabled Photovoltaic Grand Challenge Laboratory-Directed Research and Development Project On May 22,...

13

Sandia National Laboratories: materials science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of microsystems-enabled PV (MEPV) technology and ... Sandia Researchers Win CSP:ELEMENTS Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating...

14

Materials | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

today New high-tech materials are the key to breakthroughs in biology, the environment, nuclear energy, transportation and national security. Argonne continues to make...

15

LANL: Ion Beam Materials Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ion Beam Materials Laboratory (IBML) is a Los Ion Beam Materials Laboratory (IBML) is a Los Alamos National Laboratory resource devoted to materi- als research through the use of ion beams. Current major research areas include surface characterization through ion beam analysis techniques, surface modification and materials synthesis through ion implantation technology, and radiation damage stud- ies in gases, liquids, and solids. The laboratory's core is a 3.2 MV tandem ion accelerator and a 200 kV ion implanter together with several beam lines. Attached to each beam line is a series of experimental stations that support various research programs. The operation of IBML and its interactions with users are organized around core facilities and experimental stations. The IBML provides and operates the core facilities as well as supports

16

Materials Preparation Center | Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Preparation Center Materials Preparation Center Materials Preparation Center The Materials Preparation Center (MPC) is a U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences & Engineering specialized research center located at the Ames Laboratory. MPC operations are primarily funded by the Materials Discovery, Design, & Synthesis team's Synthesis & Processing Science core research activity. MPC is recognized throughout the worldwide research community for its unique capabilities in purification, preparation, and characterization of: Rare earth metals [learn about rare earths] Single crystal growth Metal Powders/Atomization Alkaline-earth metals [learn more, wikipedia] External Link Icon Refractory metal [learn more, wikipedia] External Link Icon

17

Materials Science Division - Argonne National Laboratories, Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Home Home About MSD Information Awards Visit MSD Administrative Staff Division Personnel Research Research Groups Condensed Matter Theory Emerging Materials Energy Conversion and Storage Magnetic Films Molecular Materials Neutron and X-ray Scattering Superconductivity and Magnetism Surface Chemistry Synchrotron Radiation Studies Threat Detection and Analysis Group Research Areas Careers in MSD Internal Sites Search Front Slide 1 November 2013 - Patricia Dehmer (second from right), Deputy Director of Science Programs, DOE Office of Science, joined Argonne Director Eric Isaacs(left) and Associate Laboratory Director for Physical Sciences and Engineering Peter Littlewood(second from left) to tour the recently-opened Energy Sciences Building. Among Dehmer's stops was the crystal growth

18

Sandia National Laboratories: energy storage materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

materials Sandia Researchers Win CSP:ELEMENTS Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy Storage, Facilities,...

19

Sandia National Laboratories: Materials Science and Engineering...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

itiesCapabilitiesMaterials Science and Engineering Support for Microsystems-Enabled Photovoltaic Grand Challenge Laboratory-Directed Research and Development Project Materials...

20

Materials and Transportation Services | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials and Transportation Services General Information: Materials and Transportation Services provides Ames Laboratory employees with a wide array of services and support...

Note: This page contains sample records for the topic "laboratory vorbeck materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Sandia National Laboratories: materials science and engineering  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

science and engineering Joint Hire Increases Materials Science Collaboration for Sandia, UNM On September 16, 2014, in Advanced Materials Laboratory, Capabilities, Energy, Energy...

22

High Temperature Materials Laboratory (HTML) - PSD Directorate  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

filler A National Resource for Collaborative Materials Research The High Temperature Materials Laboratory (HTML) User Program is on hiatus due to federal budget reductions....

23

Sensors & Materials | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sensors and Materials Argonne uses its materials and engineering expertise to develop, test, and deploy sensors and materials to detect nuclear and radiological materials, chemical...

24

Materials Characterization Laboratory (Fact Sheet), NREL (National...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Laboratory will cover multiple analytical operations, with the overall goal of troubleshooting synthetic materials or process streams to improve performance. Having...

25

Sandia National Laboratories: Materials Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials with Solar Cells for Increased Photovoltaic Efficiency On December 4, 2014, in Energy, Materials Science, News, News & Events, Photovoltaic, Renewable Energy,...

26

Sandia National Laboratories: Materials Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

20, 2013, in CINT, Facilities, Grid Integration, Infrastructure Security, Materials Science, Partnership, Research & Capabilities, Transmission Grid Integration The nation's...

27

Sandia National Laboratories: Materials Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8, 2013, in Capabilities, Customers & Partners, Energy, Energy Efficiency, Materials Science, News, News & Events, Office of Science, Partnership, Research & Capabilities,...

28

Sandia National Laboratories: Materials Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Grid Integration, Energy, Energy Storage, Energy Storage Systems, Facilities, Grid Integration, Infrastructure Security, Materials Science, News, News & Events,...

29

Nuclear Engineering Division Irradiated Materials Laboratory  

E-Print Network [OSTI]

Nuclear Engineering Division Irradiated Materials Laboratory The Irradiated Materials Laboratory (IML) in Argonne's Nuclear Engineering Division is used to conduct research on the behavior. #12;C O N TA C T > Dr. Michael C. Billone | 630-252-7146 | billone@anl.gov | Nuclear Engineering

Kemner, Ken

30

Sandia National Laboratories: Materials Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

at the ASME 12th Fuel Cell Science, Engineering and Technology Conference in Boston, Massachusetts. One pathway for delivering H2 ... Combining 'Tinkertoy' Materials with...

31

Laboratory Surveys when Working with Radioactive Materials  

E-Print Network [OSTI]

radioactive materials (RAM) are used or stored, including waste areas. Negative results should be clearlyLaboratory Surveys when Working with Radioactive Materials Procedure: 7.546 Created: 9/25/14 Version: 1.0 Revised: Environmental Health & Safety Page 1 of 6 A. Purpose Radioactive contamination and

Jia, Songtao

32

Argonne National Laboratory Center for Nanoscale Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages

Laboratory Center for Nanoscale Materials Laboratory Center for Nanoscale Materials An Office of Science User Facility U.S. Department of Energy Search CNM ... Search CNM Home About CNM Research Facilities People For Users Publications News & Highlights Events Jobs CNM Users Organization Contact Us Other DOE Nanoscale Science Research Centers Casimir force reduction Casimir Force Reduction through Nanostructuring By nanostructuring one of two interacting metal surfaces at scales below the plasma wavelength, a new regime in the Casimir force was observed by researchers in the Center for Nanoscale Materials Nanofabrication & Devices Group working with collaborators at NIST, other national laboratories, and universities. Replacing a flat surface with a deep metallic lamellar grating with <100 nm features strongly suppresses the Casimir force and,

33

High Temperature Materials Laboratory (HTML) - PSD Directorate  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

filler A National Resource for Collaborative Materials Research The High Temperature Materials Laboratory (HTML) User Program is on hiatus due to federal budget reductions. However, research projects at the HTML still may be conducted on a cost-recovery basis through the Work for Others (WFO) Program or under a Cooperative R&D Agreement (CRADA). Dr. Edgar Lara-Curzio, HTML Director Tel: 865.574.1749 Fax: 865.574.4913 laracurzioe@ornl.gov Christine Goudy, Administrative Specialist Tel: 865.574.8295 Fax: 865.574.4913 goudyc@ornl.gov Oak Ridge National Laboratory [MST Home] [ORNL Home] [Site Index] [Search][Disclaimer] [Webmaster] Oak Ridge National Laboratory is a national multi-program research and development facility managed by UT-Battelle, LLC for the U.S. Department of Energy

34

Nanoscale Materials Safety at the Department's Laboratories  

Broader source: Energy.gov (indexed) [DOE]

U.S. Department of Energy Office of Inspector General Office of Audit Services Audit Report Nanoscale Materials Safety at the Department's Laboratories DOE/IG-0788 February 2008 Department of Energy Washington, DC 2 0 5 8 5 February 28, 2008 MEMORANDUM FOR FROM: Inspector General SUBJECT: IhTFORMATION: Audit Report on "Nanoscale Materials Safety at the Department's Laboratories" BACKGROUND The National Nanotechnology Initiative was established as a multi-agency research and development program in 200 1. As a part of the Initiative, the Department of Energy (Energy) is in the process of constructing Nanoscale Science Research Centers at six national laboratories. In addition to funding the construction and operation of these

35

Guisinger-081612 - Argonne National Laboratories, Materials Sicence  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Guisinger-081612 Guisinger-081612 MATERIALS SCIENCE COLLOQUIUM SPEAKER: Dr. Nathan Guisinger Center for Nanoscale Materials, Argonne National Laboratory TITLE: "Current Trends in Scanning Tunneling Microscopy at Argonne National Laboratory"" DATE: Thursday,August 16, 2012 TIME: 11:00 am PLACE: Building 212 / A-157 ABSTRACT:Low-dimensional materials functioning at the nanoscale are a critical component for a variety of current and future technologies. From the optimization of light harvesting solar technologies to large-scale catalytic processes, key physical phenomena are occurring at the nanometer and atomic length-scales and predominately at interfaces. For instance, graphene is a nearly ideal two-dimensional conductor that is comprised of a single sheet of hexagonally packed carbon atoms. In order fully realize the

36

Bhattacharya-102512 - Argonne National Laboratories, Materials Sicence  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bhattacharya-102512 Bhattacharya-102512 MATERIALS SCIENCE COLLOQUIUM SPEAKER: Anand Bhattacharya Materials Science Division and Center for Nanoscale Materials Argonne National Laboratory TITLE: "Digital Synthesis: A Pathway to New Materials in the Complex Oxides " DATE: Thursday, October 25, 2012 TIME: 11:00 a.m. PLACE: Building 200 / Auditorium Refreshments will be served at 10:45 a.m. ABSTRACT: The complex oxides have set the stage for some of the most striking phenomena in condensed matter, including high-temperature superconductivity and colossal magnetoresistance. These collective properties emerge as a result of strong correlations between the various degrees of freedom within these materials. In recent years, it has become possible to create artificial structures where complex oxides with diverse

37

Vehicle Technologies Office: ORNL's High Temperature Materials Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ORNL's High Temperature ORNL's High Temperature Materials Laboratory Assists NASCAR Teams to someone by E-mail Share Vehicle Technologies Office: ORNL's High Temperature Materials Laboratory Assists NASCAR Teams on Facebook Tweet about Vehicle Technologies Office: ORNL's High Temperature Materials Laboratory Assists NASCAR Teams on Twitter Bookmark Vehicle Technologies Office: ORNL's High Temperature Materials Laboratory Assists NASCAR Teams on Google Bookmark Vehicle Technologies Office: ORNL's High Temperature Materials Laboratory Assists NASCAR Teams on Delicious Rank Vehicle Technologies Office: ORNL's High Temperature Materials Laboratory Assists NASCAR Teams on Digg Find More places to share Vehicle Technologies Office: ORNL's High Temperature Materials Laboratory Assists NASCAR Teams on AddThis.com...

38

High Temperature Materials Laboratory third annual report  

SciTech Connect (OSTI)

The High Temperature Materials Laboratory has completed its third year of operation as a designated DOE User Facility at the Oak Ridge National Laboratory. Growth of the user program is evidenced by the number of outside institutions who have executed user agreements since the facility began operation in 1987. A total of 88 nonproprietary agreements (40 university and 48 industry) and 20 proprietary agreements (1 university, 19 industry) are now in effect. Sixty-eight nonproprietary research proposals (39 from university, 28 from industry, and 1 other government facility) and 8 proprietary proposals were considered during this reporting period. Research projects active in FY 1990 are summarized.

Tennery, V.J.; Foust, F.M.

1990-12-01T23:59:59.000Z

39

Sandia National Laboratories: high-temperature materials and...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Science Collaboration for Sandia, UNM On September 16, 2014, in Advanced Materials Laboratory, Capabilities, Energy, Energy Storage, Facilities, Materials Science,...

40

Martinson-042111 - Argonne National Laboratories, Materials Sicence  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Martinson-042111 Martinson-042111 MATERIALS SCIENCE COLLOQUIUM SPEAKER: Dr. Alex Martinson Argonne National Laboratory Materials Science Division TITLE: "New Designs for Affordable Photovoltaics: Materials, Interfaces, and Economics" DATE: Thursday, April 21, 2011 TIME: 11:00 a.m. PLACE: Building 212 / A-157 HOST: Michael Pellin Refreshments will be served at 10:45 a.m. ABSTRACT: Identifying sufficient supplies of clean energy for the future is one of society's most daunting challenges. The direct conversion of solar energy to electricity is one of our most enticing solutions. I will briefly discuss the state of solar energy conversion before describing some unconventional designs in thin film photovoltics (TFPV) and dye-sensitized solar cells (DSSCs). The most desirable TFPVs would utilize inexpensive materials without

Note: This page contains sample records for the topic "laboratory vorbeck materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Campuzano-081111 - Argonne National Laboratories, Materials Sicence  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Campuzano-081111 Campuzano-081111 MATERIALS SCIENCE COLLOQUIUM SPEAKER: Professor Juan Carlos Campuzano University of Illinois at Chicago Materials Science Division Argonne National Laboratory TITLE: "How angle resolved photoemission can help us understand high temperature superconductivity and other complex states of matter" DATE: Thursday, August 11, 2011 TIME: 11:00 a.m. PLACE: Building 212 / A-157 HOST: Mike Norman Refreshments will be served at 10:45 a.m. ABSTRACT: All the physical, chemical, and mechanical properties of materials are controlled by electrons that occupy the highest energy level in solids, those near the Fermi energy. Many techniques were develop to study those electrons, leading to the great successes of condensed matter physics. Newer and complex materials, such as the high temperature

42

Wiederrecht-041212 - Argonne National Laboratories, Materials Sicence  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wiederrecht-041212 Wiederrecht-041212 MATERIALS SCIENCE COLLOQUIUM SPEAKER: Gary Wiederrecht Center for Nanoscale Materials (CNM) Argonne National Laboratory TITLE: "Nanophotonic approaches to solar energy concentration and conversion" DATE: Thursday, April 12, 2012 TIME: 11:00 a.m. PLACE: Building 212 / A-157 HOST: Alex Martinson Refreshments will be served at 10:45 a.m. ABSTRACT: Nanostructured materials have unique optical and electronic properties that can be utilized advantageously for both solar energy concentration and conversion. In this talk, the confinement of light via cavity modes in bilayer films of nanoscale thickness is described, and the application to a new type of "resonance-shifted" luminescent solar concentrator (RSLSC) is introduced. By spatially varying the thickness of

43

A material's multiple personalities | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

News News Press Releases Feature Stories In the News Experts Guide Media Contacts Social Media Photos Videos Fact Sheets, Brochures and Reports Summer Science Writing Internship The brightness and energy of X-ray beams are critical properties for research. The APS Upgrade will make our X-ray beams brighter, meaning more X-rays can be focused onto a smaller, laser-like spot, allowing researchers to gather more data in greater detail in less time. A material's multiple personalities By Jared Sagoff * September 11, 2013 Tweet EmailPrint ARGONNE, Ill. - Just like people, materials can sometimes exhibit "multiple personalities." This kind of unusual behavior in a certain class of materials has compelled researchers at the U.S. Department of Energy's Argonne National Laboratory to take a closer look at the precise

44

Rosenkranz-082511 - Argonne National Laboratories, Materials Sicence  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rosenkranz-082511 Rosenkranz-082511 MATERIALS SCIENCE COLLOQUIUM SPEAKER: Dr. Stephan Rosenkranz Materials Science Division Argonne National Laboratory TITLE: "Resonant spin excitations in Iron Arsenide superconductors" DATE: Thursday, August 25, 2011 TIME: 11:00 a.m. PLACE: Building 212 / A-157 HOST: Anand Bhattacharya Refreshments will be served at 10:45 a.m. ABSTRACT: The iron pnictides have attracted great interest following the discovery of superconductivity up to 50K and because of their superficial similarities with the cuprate superconductors. In both systems, superconductivity emerges when longrange antiferromagnetic order is suppressed by doping or pressure. This indicates that spin correlations are intimately connected with superconductivity and may be involved in the

45

Thermal Storage Materials Laboratory (Fact Sheet), NREL (National Renewable Energy Laboratory), Energy Systems Integration Facility (ESIF)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Storage Materials Storage Materials Laboratory may include: * CSP technology developers * Utilities * Certification laboratories * Government agencies * Universities * Other National laboratories Contact Us If you are interested in working with NREL's Thermal Storage Materials Laboratory, please contact: ESIF Manager Carolyn Elam Carolyn.Elam@nrel.gov 303-275-4311 Thermal Storage Materials Laboratory The Thermal Storage Materials Laboratory at NREL's Energy Systems Integration Facility (ESIF) investigates materials that can be used as high-temperature heat transfer fluids or thermal energy storage media in concentrating solar power (CSP) plants. Research objectives include the discovery and evaluation of

46

Implementation Plan for the Irradiated Materials Characterization Laboratory (IMCL)  

SciTech Connect (OSTI)

This document contains details regarding the planned implementation of the Irradiated Materials Characterization Laboratory at the INL.

Not Listed

2013-04-01T23:59:59.000Z

47

Tranquada-031512 - Argonne National Laboratories, Materials Sicence  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tranquada-031512 Tranquada-031512 MATERIALS SCIENCE COLLOQUIUM SPEAKER: Dr. John Tranquada Brookhaven National Laboratory TITLE: "Superconductivity and Stripes in La2-xBaxCuO4)" DATE: Thursday, March 15, 2012 TIME: 11:00 a.m. PLACE: Building 212 / A-157 HOST: Valentin Stanev Refreshments will be served at 10:45 a.m. ABSTRACT: In hole-doped cuprates, superconductivity occurs where antiferromagnetic ordering and charge carrier mobility are mutually frustrated. A contentious question has been: what sorts of correlations emerge to reduce the frustration and how do they relate to the superconductivity? In the system La2-xBaxCuO4, we observe the formation of charge and spin stripes that order when a structural transition leads to suitable anisotropy of the CuO2 planes [1]. At x=1/8, where stripe ordering

48

Sandia National Laboratories: Hydrogen Effects on Materials Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of -70 C to 170 C. The material properties measured are the crack velocity and subcritical cracking threshold. Dynamic-load Testing - Specimens are exposed to gaseous...

49

Sandia National Laboratories: Combining 'Tinkertoy' Materials...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials with Solar Cells for Increased Photovoltaic Efficiency On December 4, 2014, in Energy, Materials Science, News, News & Events, Photovoltaic, Renewable Energy,...

50

Nanotube Composite Anode Materials | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nanotube Composite Anode Materials Technology available for licensng: A composite material suitable for use in an anode for a lithium-ion battery Reduces manufacturing costs....

51

Advanced Materials and Manufacturing | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and characterization of ceramic materials for energy-related applications Process Development and Scale-up Program Argonne's Materials Synthesis and Manufacturing Research and...

52

Nano-High: Lawrence Berkeley National Laboratory Lecture on Materials...  

Broader source: Energy.gov (indexed) [DOE]

on Materials Nano-High: Lawrence Berkeley National Laboratory Lecture on Materials February 23, 2013 3:00PM EST UC Berkeley campus Nano-High, a program of the Lawrence Berkeley...

53

LANL: Facility Focus, MST-6 Materials Surface Science Investigations Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

07-018 Spring 2007 07-018 Spring 2007 T he MST-6 Materials Surface Science Investigations Laboratory is home to a one-of-a-kind integrated instrument for surface science and materials research, allowing scientists at Los Alamos National Laboratory the unique opportunity to perform coordinated research using ultra-high vacuum surface measurements, in situ reactions, and materials synthesis tools. Housed in the Materials Science Laboratory, the surface science instrument features an ultra-clean integrated system for surface analysis and in situ surface modification, thin film deposition, and surface gas reactions. This integrated system is used for analytical surface science; materials electronic

54

Ris National Laboratory Materials Research Department  

E-Print Network [OSTI]

the exchange interaction between NiO nanoparticles 2 cells [14] and as an electrochromic material, where

55

Research - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Research Research Groups in the Materials Science Division Condensed Matter Theory Carries out theoretical work on superconductivity, electronic structure and magnetism. Emerging Materials Emphasizes an integrated materials synthesis and science program that focuses on correlated electron transition metal oxides, chalcogenides with enhanced thermoelectric performance, and novel superconductors, including pnictides and cuprates. Energy Conversion and Storage The energy conversion and storage group focuses on charge-transfer processes, as well as the chemical environment in the vicinity of electrode surfaces. Magnetic Films Research to develop, characterize and investigate the properties of magnetic thin films and superlattices. Molecular Materials Synthesis and characterization of molecular materials that have novel

56

Materials for Energy | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

strategies in energy, environment, biology and national security. In the search for alternative energy sources, we need to make new discoveries in materials science. We need...

57

Sandia National Laboratories: Research: Materials Science: About...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

our products will perform in demanding missions over time. We must understand the fundamentals of the materials involved - over time and in demanding environments....

58

Charudatta Phatak - Argonne National Laboratories, Materials Sicence  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

IM > Charudatta Phatak IM > Charudatta Phatak Charudatta Phatak Assistant Materials Scientist Bldg. 212, C-216 Phone: 630-252-5379 This e-mail address is being protected from spambots. You need JavaScript enabled to view it. Research Interests Understanding domain behavior and interactions in multiferroic heterostructures Phase reconstruction techniques and Lorentz TEM, In-situ TEM TEM Image simulations Education Ph.D - 2009, Materials Science Engineering, Carnegie Mellon University, Pittsburgh, PA, USA M. Tech - 2005 (Ceramics and Composites), Metallurgical and Materials Science Engineering, Indian Institute of Technology, Bombay, India B. Tech - 2004, Metallurgical and Materials Science Engineering, Indian Institute of Technology, Bombay, India Awards 2008 Presidential Student award for outstanding research work by the Microscopy Society of America

59

Sandia National Laboratories: Light Creation Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

from AlGaN LEDs could also be used to pump RGB phosphors, as mentioned above. Nitride materials are usually grown by Metal Organic Vapor Phase Epitaxy (MOVPE)-also referred to as...

60

Lemberger-120111 - Argonne National Laboratories, Materials Sicence  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lemberger-120111 Lemberger-120111 MATERIALS SCIENCE COLLOQUIUM SPEAKER: Dr. Tom Lemberger Ohio State University TITLE: "Science and Applications of Novel Superconducting Materials" DATE: Thursday, December 1, 2011 TIME: 11:00 a.m. PLACE: Building 212 / A-157 HOST: Ken Gray Refreshments will be served at 10:45 a.m. ABSTRACT: This talk will review the most important aspects of the phenomenon of superconductivity, discuss the surprising materials in which superconductivity has been found in the past few years, and survey some real and potential applications of superconductors. Some time will be spent on measurements we make at OSU of the "super-electron" (or, superfluid) density, whose magnitude and temperature dependence are sensitive probes of the superconducting quantum state, e.g., the symmetry of the

Note: This page contains sample records for the topic "laboratory vorbeck materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Materials Capability Review Los Alamos National Laboratory  

E-Print Network [OSTI]

. Nastasi, Y. Wang Poster Abstracts Nuclear Energy: Actinide Focus D. Teter, C. Stanek, A. Nelson Poster Abstracts Materials for Clean Energy D. Watkins, V. Klimov, R. Borup Poster Abstracts LANSCE Overview K, New Mexico Tuesday Evening, May 31, 2011 (By Invitation Only) 6:00 Opening Session ­ Committee

62

Bernstein-060211 - Argonne National Laboratories, Materials Sicence  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bernstein-060211 Bernstein-060211 MATERIALS SCIENCE COLLOQUIUM SPEAKER: Professor Elliot R. Bernstein Colorado State University TITLE: "Neutral Cluster Studies of Heterogeneous Catalytic Mechanisms" DATE: Thursday, June 2, 2011 TIME: 11:00 a.m. PLACE: Building 212 / A-157 HOST: Stefan Vajda Refreshments will be served at 10:45 a.m. ABSTRACT: Heterogeneous catalysis is a major synthetic approach to the generation and production of new materials and important industrial chemicals. Moreover, small clusters and nanoparticles are often responsible for inducing new chemical reactions, both wanted and unwanted. Our studies are focused on the mechanisms for both types of reactions (catalysis and nanoparticle), because mechanistic understanding in these instances (currently unavailable) can lead to improved catalytic reactions and better

63

Fullerton-120811 - Argonne National Laboratories, Materials Sicence  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fullerton-120811 Fullerton-120811 MATERIALS SCIENCE COLLOQUIUM SPEAKER: Professor Eric Fullerton University of California, San Diego TITLE: "Spin-transfer phenomena in high-anisotropy magnetic nanostructures" DATE: Thursday, December 8, 2011 TIME: 11:00 a.m. PLACE: Building 212 / A-157 HOST: Olle Heinonen Refreshments will be served at 10:45 a.m. ABSTRACT: In most magnetic applications the orientations of the magnetic elements are controlled by external magnetic fields. However, it has recently been appreciated that the relative orientations of nano-magnets can be controlled directly by the injection of spin polarized currents known as spin transfer effects. The ability of a spin-polarized current to reverse the magnetization orientation of a nanomagnets should enable a

64

Vishwanath-072811 - Argonne National Laboratories, Materials Sicence  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vishwanath-072811 Vishwanath-072811 MATERIALS SCIENCE COLLOQUIUM SPEAKER: Professor Ashvin Vishwanath University of California at Berkeley TITLE: "Topological Phases in Correlated Solids with Strong Spin Orbit Interactions" DATE: Thursday, July 28, 2011 TIME: 11:00 a.m. PLACE: Building 212 / A-157 HOST: Anand Bhattacharya Refreshments will be served at 10:45 a.m. ABSTRACT: I will discuss recent proposals of novel correlated phases that may be realized in transition metal oxides with strong spin orbit interactions. First, I will describe properties of the Weyl semimetal, a three dimensional topological phase with unusual properties including exotic surface states that take the form of 'Fermi arcs'[1]. Possible realization in a family of iridium oxides A2Ir2O7 with pyrochlore structure

65

Seminars - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Seminars Seminars Materials Science 2013 Seminars December December 3 - Joseph Sklenar Northwestern University Ferromagnetic Resonance and Spin Wave Studies in Permalloy Nanostructures and YIG Films December 4 - Andrey Varlamov CNR-SPIN, Viale del Politecnico Tunnel-Fluctuoscopy: Fluctuation Induced Low-Bias Anomaly December 4 - Inti Sodemann University of Texas, Austin Broken SU(4) Symmetry and The Fractional Quantum Hall Effect in Graphene December 6 - Anh Ngo University of Wisconsin-Madison Mechanisms for oxygen surface exchange at the solid oxide fuel cell cathodes: a case study on the surface of La1-xSrxCoO3-δ December 12 - Rebecca Sichel-Tissot Drexel University Synchrotron X-Ray Diffraction from Perovskite Thin Films: Probing the Effects of Microscopic Structure on Macroscopic Properties

66

Materials Transportation Testing & Analysis at Sandia National Laboratories  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Characterization Materials Characterization Paul McConnell, (505) 844-8361 The purpose of hazardous and radioactive materials, i.e., mixed waste, packaging is to enable this waste type to be transported without posing a threat to the health or property of the general public. To achieve this goal, regulations have been written establishing general design requirement for such packagings. Based on these regulatory requirements, a Mixed Waste Chemical Compatibility Testing Program is intended to assure regulatory bodies that the issue of packaging compatibility towards hazardous and radioactive materials has been addressed. Such a testing program has been developed in the Transportation Systems Department at Sandia National Laboratories. Materials Characterization Capabilities

67

Sandia National Laboratories, California Hazardous Materials Management Program annual report.  

SciTech Connect (OSTI)

The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Hazardous Materials Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This program annual report describes the activities undertaken during the calender past year, and activities planned in future years to implement the Hazardous Materials Management Program, one of six programs that supports environmental management at SNL/CA.

Brynildson, Mark E.

2011-02-01T23:59:59.000Z

68

Materials Transportation Testing & Analysis at Sandia National Laboratories  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RMIR (Radioactive Materials Incident Report) Database Transportation RMIR (Radioactive Materials Incident Report) Database Transportation Accident and Incident Experience,1971-1999 Access Hazardous Materials Information System (HMIS) the primary source of national data for the Federal, state, and local governmental agencies responsible for the safety of hazardous materials transportation. Rail Transport Highway Transport Air Transport The Radioactive Material Incident Report (RMIR) Database was developed in 1981 at the Transportation Technology Center of Sandia National Laboratories (SNL) to support its research and development activities for the U.S. Department of Energy (DOE). This database contains information about radioactive materials transportation incidents that have occurred in the U.S. from 1971 through 1999. These data were drawn from the U.S.

69

Lawrence Livermore National Laboratory's Use of Time and Materials Subcontracts  

Broader source: Energy.gov (indexed) [DOE]

Lawrence Livermore National Lawrence Livermore National Laboratory's Use of Time and Materials Subcontracts OAS-M-13-06 August 2013 Department of Energy Washington, DC 20585 August 8, 2013 MEMORANDUM FOR THE MANAGER, LIVERMORE FIELD OFFICE FROM: George W. Collard Assistant Inspector General for Audits Office of Inspector General SUBJECT: INFORMATION: Audit Report on "Lawrence Livermore National Laboratory's Use of Time and Materials Subcontracts" BACKGROUND The mission of Lawrence Livermore National Laboratory (Livermore) is to strengthen the United States' security through development and application of science and technology to enhance the Nation's defense, reduce the global threat from terrorism and weapons of mass destruction, and respond to scientific issues of national importance. Livermore is operated by Lawrence

70

Laboratory to demolish excavation enclosures at Material Disposal Area B  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Excavation Enclosures At MDA B Excavation Enclosures At MDA B Laboratory to demolish excavation enclosures at Material Disposal Area B near DP Road Pre-demolition activities are beginning this week and the work should be completed by the end of March 2013. November 1, 2012 The Laboratory plans to demolish the enclosures used to safely excavate and clean up the Lab's oldest waste disposal site near DP Road in Los Alamos. The Laboratory plans to demolish the enclosures used to safely excavate and clean up the Lab's oldest waste disposal site near DP Road in Los Alamos. Contact Communications Office (505) 667-7000 "We look forward to the day we officially turn the property over for the benefit of our community." Work is beginning this week LOS ALAMOS, New Mexico, November 1, 2012-Los Alamos National Laboratory

71

Laboratory to demolish excavation enclosures at Material Disposal Area B  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Excavation enclosures at MDA B Excavation enclosures at MDA B Laboratory to demolish excavation enclosures at Material Disposal Area B near DP road Pre-demolition activities are beginning this week and the work should be completed by the end of March 2013. November 1, 2012 The Laboratory plans to demolish the enclosures used to safely excavate and clean up the Lab's oldest waste disposal site near DP Road in Los Alamos. The Laboratory plans to demolish the enclosures used to safely excavate and clean up the Lab's oldest waste disposal site near DP Road in Los Alamos. Contact Colleen Curran Communications Office (505) 664-0344 Email "We look forward to the day we officially turn the property over for the benefit of our community." Work is beginning this week LOS ALAMOS, New Mexico, November 1, 2012-Los Alamos National Laboratory

72

Laboratory to demolish excavation enclosures at Material Disposal Area B  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Excavation Enclosures At MDA B Excavation Enclosures At MDA B Laboratory to demolish excavation enclosures at Material Disposal Area B near DP Road Pre-demolition activities are beginning this week and the work should be completed by the end of March 2013. November 1, 2012 The Laboratory plans to demolish the enclosures used to safely excavate and clean up the Lab's oldest waste disposal site near DP Road in Los Alamos. The Laboratory plans to demolish the enclosures used to safely excavate and clean up the Lab's oldest waste disposal site near DP Road in Los Alamos. Contact Communications Office (505) 667-7000 "We look forward to the day we officially turn the property over for the benefit of our community." Work is beginning this week LOS ALAMOS, New Mexico, November 1, 2012-Los Alamos National Laboratory

73

Materials Transportation Testing & Analysis at Sandia National Laboratories  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Unique Solutions] Unique Solutions] [Working With Us] [Contacting Us] [News Center] [Search] [Home] [navigation panel] Materials Transportation Testing & Analysis Our Mission Our Contacts Write to Us Package Development Risk Assessment RADTRAN GIS Mapping Structural Analysis Thermal Analysis Structural Testing Thermal Testing MIDAS Data Aquisition System Concepts Materials Characterization Regulatory Development Certification Support RMIR Data Base Scientific Visualization Mobile Instrumentation Data Acquisition System (MIDAS) Doug Ammerman, (505) 845-8158 The Mobile Instrumentation Data Acquisition System (MIDAS), developed by Sandia National Laboratories for the U.S. Department of Energy, provides on-site data acquisition of containers that transport radioactive materials during impact, puncture, fire, and immersion tests.

74

Colloquium 2011 - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 1 Materials Science 2011 Colloquium Archive January 27th Dr. John Mitchell Argonne National Laboratory What in the World is M2D2? *** A part of the "Future States" lecture series *** February 10th Prof. Kieron Burke UC Davis How Density Functional Theory Will Revolutionize Modern Materials Science February 17th Prof. Noel Elman MIT The Next Generation of Biomedical Microdevices February 24th Dr. James Rondinelli Argonne National Laboratory Designing Improper Ferroelectrics in Ultra-short Perovskite Superlattices March 31st Joel Moore UC Berkeley New Topologically Ordered Phases of Condensed Matter April 18th Dr. Dieter Wolf Materials Science Division From Radiation Damage to Radiation-induced Self-organization: A Paradigm for the Design of Novel Materialsfor Nuclear Energy?

75

Conceptual Design Report for the Irradiated Materials Characterization Laboratory (IMCL)  

SciTech Connect (OSTI)

This document describes the design at a conceptual level for the Irradiated Materials Characterization Laboratory (IMCL) to be located at the Materials and Fuels Complex (MFC) at the Idaho National Laboratory (INL). The IMCL is an 11,000-ft2, Hazard Category-2 nuclear facility that is designed for use as a state of the-art nuclear facility for the purpose of hands-on and remote handling, characterization, and examination of irradiated and nonirradiated nuclear material samples. The IMCL will accommodate a series of future, modular, and reconfigurable instrument enclosures or caves. To provide a bounding design basis envelope for the facility-provided space and infrastructure, an instrument enclosure or cave configuration was developed and is described in some detail. However, the future instrument enclosures may be modular, integral with the instrument, or reconfigurable to enable various characterization environments to be configured as changes in demand occur. They are not provided as part of the facility.

Stephanie Austad

2010-06-01T23:59:59.000Z

76

Materials Physics Applications: The National High Magnetic Field Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Search National High Magnetic Field Laboratory, NHMFL Home About Us Organization DIVISION Materials Physics and Applications Division GROUPS Superconductivity Technology Center Condensed Matter and Magnet Science Center for Integrated Nanotechnologies Sensors & Electrochemical Devices Materials Chemistry CONTACTS Group Leader Mike Hundley Director, NHMFL-PFF/Deputy Group Leader Chuck Mielke Head of Users Program Operations Jon Betts Professional Staff Assistant Julie T. Gallegos TA-03 Group Office TA-03, Building 0034, Room 101 Office Administrator Juanita Armijo TA-35 Group Office TA-35, Building 0127, Room C117 Office Administrator Angeline Willow 505-667-5032 National High Magnetic Field Laboratory, Pulsed Field Facility The Pulsed Field Facility at Los Alamos National Laboratory in Los Alamos, New Mexico, is one of three campuses of the National High Magnetic Field Laboratory (NHMFL), the other two being at Florida State University, Tallahassee (continuous fields, magnetic resonance, and general headquarters) and the University of Florida ,Gainesville(ultra-low temperatures at high magnetic fields). The NHMFL is sponsored primarily by the National Science Foundation, Division of Materials Research, with additional support from the State of Florida and the US Department of Energy.

77

The changing role of the National Laboratories in materials research  

SciTech Connect (OSTI)

The role of the National Laboratories is summarized from the era of post World War II to the present time. The U.S. federal government policy for the National Laboratories and its influence on their materials science infrastructure is reviewed with respect to: determining overall research strategies, various initiatives to interact with industry (especially in recent years), building facilities that serve the nation, and developing leading edge research in the materials sciences. Despite reductions in support for research in the U.S. in recent years, and uncertainties regarding the specific policies for R&D in the U.S., there are strong roles for materials research at the National Laboratories. These roles will be centered on the abilities of the National Laboratories to field multidisciplinary teams, the use of unique cutting edge facilities, a focus on areas of strength within each of the labs, increased teaming and partnerships, and the selection of motivated research areas. It is hoped that such teaming opportunities will include new alliances with China, in a manner similar, perhaps, to those recently achieved between the U.S. and other countries.

Wadsworth, J.; Fluss, M.

1995-06-02T23:59:59.000Z

78

Aronson-021612 - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Aronson-021612 Aronson-021612 MATERIALS SCIENCE COLLOQUIUM SPEAKER: Dr. Igor Aronson Materials Science Division Argonne National Laboratory TITLE: "Active Colloids: From Self-Assembled Swimmers to Simple Robots" DATE: Thursday, May 17, 2012 TIME: 11:00 a.m. PLACE: Building 212 / A-157 HOST: TBA Refreshments will be served at 10:45 a.m. ABSTRACT: Self-assembly, a natural tendency of simple building blocks to organize into complex architectures is a unique opportunity for contemporary materials science. In order to support structural complexity and functional diversity, self-assembled materials must actively consume energy and "live" out of equilibrium. We study a variety of simple active colloidal systems: from a suspension of swimming bacteria to a

79

Pellin-051211 - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pellin-051211 Pellin-051211 MATERIALS SCIENCE COLLOQUIUM SPEAKER: Dr. Michael Pellin Argonne National Laboratory Physical Sciences & Engineering TITLE: "Atomic layer Deposition for Energy Materials" DATE: Thursday, May 12, 2011 TIME: 11:00 a.m. PLACE: Building 212 / A-157 HOST: Alex Martinson Refreshments will be served at 10:45 a.m. ABSTRACT: As materials synthesis evolves from building exquisite materials for ever smaller electronics circuits to addressing the nation¹s energy needs (with consequent massive scale), new relatively inexpensive synthetic methods and techniques need to be developed. Among the challenges is the need to find scalable crystalline film synthesis methods. If solar photovoltaics, for instance, are to contribute significantly to electrical

80

Hong-060911 - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hong-060911 Hong-060911 MATERIALS SCIENCE COLLOQUIUM SPEAKER: Dr. Seungbum Hong Argonne National Laboratory Materials Science Division TITLE: "Visualization of Ferroelectric Domain Behavior Using Atomic Force Microscopy" DATE: Thursday, June 9, 2011 TIME: 11:00 a.m. PLACE: Building 212 / A-157 HOST: Anand Bhattacharya Refreshments will be served at 10:45 a.m. ABSTRACT: Ferroelectric materials possess spontaneous polarization - net electric dipole moment per unit volume, of which magnitude and direction determine the surface charge density, and of which direction can be switched by electric field larger than a threshold called coercive field. As polycrystalline materials have grains with different crystallographic orientations and various grain boundaries dividing those grains,

Note: This page contains sample records for the topic "laboratory vorbeck materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

SC Research - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Research Surface Chemistry Research Overview The Surface Chemistry Group is a part of the Materials Science Division at Argonne National Laboratory. The focus of this group's work is the control surface species, composition, and structure at length scales that range from atomic level to micrometers. The group's expertise includes time-of-flight ion mass spectrometry, tunable laser spectroscopy, ion sputtering, laser-surface interactions, vapor phase deposition, electrical and electrochemical characterization, and device assembly. We have numerous collaborations within Argonne as well as with chemists, physicists, and materials scientists around the world. Research Directed Energy Interactions with Surfaces Nanostructured Thin Films Interfaces for Solar Energy Conversion

82

Qing'an Li - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EM > Qing'an Li EM > Qing'an Li Qing'an Li Scientific Associate Sr Bldg. 223, A-113 Phone: 630-252-3996 This e-mail address is being protected from spambots. You need JavaScript enabled to view it. Biography Qing'an Li was an Assistant Research Scientist at Institute of Physics, Chinese Academy of Sciences after receiving his doctorate in July 1993 working on superconducting electronics. He was a postdoctoral fellow at University of Tokyo, Japan working on superconducting electronics in 1996. In 1997, he became a Visiting Scientist (postdoc) at the Materials Science Division of the Argonne National Laboratory, and started to study the transport properties of colossal magnetoresistance (CMR) materials in the Emerging Materials group. At the Institute of Physics, Chinese Academy of Sciences, Li was an Associated Research Scientist in 2000, a Research scientist, and Professor in 2001, working on magnetic and transport properties of transition metal oxides. In 2006, he visited the Materials Science Division of the Argonne National Laboratory as a Visiting Scientist, working on the transport properties of intermetallic compounds of rare-earth and transition metals, transition metal oxides, etc. and became a Scientific Associate Sr. in Emerging Materials group in 2009.

83

New Ion Beam Materials Laboratory for Materials Modification and Irradiation Effects Research  

SciTech Connect (OSTI)

A new multifunctional ion beam materials laboratory (IBML) has been established at the University of Tennessee, in partnership with Oak Ridge National Laboratory. The IBML is currently equipped with two ion sources, a 3 MV tandem accelerator, three beamlines and three endstations. The IBML is primarily dedicated to fundamental research on ion-solid interaction, ion beam analysis, ion beam modification, and other basic and applied research on irradiation effects in a wide range of materials. An overview of the IBML facility is provided, and experimental results are reported to demonstrate the specific capabilities.

Zhang, Yanwen [ORNL; Crespillo, Miguel L [University of Tennessee (UT); Xue, Haizhou [University of Tennessee, Knoxville (UTK); Jin, Ke [University of Tennessee, Knoxville (UTK); Chen, Chien-Hung [University of Tennessee, Knoxville (UTK); Fontana, Cristiano L [ORNL; Graham, Dr. Joseph T. [The University of Tennessee; Weber, William J [ORNL

2014-01-01T23:59:59.000Z

84

Alex Martinson - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SC > Alex Martinson SC > Alex Martinson Alex Martinson Alex Martinson Principal Investigator, Assistant Chemist Bldg. 200,D-169 Phone: 630-252-7520 This e-mail address is being protected from spambots. You need JavaScript enabled to view it. Education Ph.D. Physical Chemistry, Northwestern University - 2008 B.A., Chemistry and Mathematics, Luther College - 2003 Professional Experience Assistant Chemist, Argonne National Laboratory - 2009-present Director's Postdoctoral Fellow, Argonne National Laboratory - 2008-2009 Publications have received over 1600 citations with an h-index of 17 (see Google Scholar Page). Author and inventor on 5 patents and pending applications. Research Interests Alex Martinson is an Assistant Chemist at ANL in the Materials Science Division, Surface Chemistry Group. The aim of his research is to elucidate and exploit a multitude of technologically relevant optoelectronic processes that occur at the interface between conductors, semiconductors, and ionic conductors. The research tests the limits of what is possible in materials synthesis and device fabrication at length scales approaching the atomic level. Present work is intended to advance the science of solar energy conversion through the design, modeling, and fabrication of nanoscale photovoltaic (PV) and solar fuels platforms. Disruptive designs are enabled through the precise spatial and chemical control afforded by atomic layer deposition. These studies explore the intersection of earth-abundant materials, photoelectrochemistry, and thin film PV in order to study their synergies and reveal the shortcomings of our control over energy and matter.

85

Lee 092712 - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lee 092712 Lee 092712 MATERIALS SCIENCE COLLOQUIUM SPEAKER: Dr. Ho Nyung Lee Oakridge National Laboratory TITLE: "Epitaxy of Multivalent Oxides: Fast Reversible Redox Reactions and Magnetism in Perovskite Cobaltites" DATE: Thursday,September 27, 2012 TIME: 11:00 am PLACE: Building 212 / A-157 ABSTRACT:Perovskite-typed complex oxides with multivalent transition metals exhibit a wide spectrum of physical properties, including ferroelectricity, superconductivity, ferromagnetism, ion conductivity, and catalytic activity. Owing to the high ionic conductivity and, sometimes, electronic conductivity offered from several multivalent transition metal oxides, perovskite oxides have attracted lots of attention for solid oxide fuel cell and electrochemical sensor applications. However, high ionic

86

Guo-Ren Bai - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Guo-Ren Bai Guo-Ren Bai Guo-Ren Bai Bldg. 212, C-230 Phone: 630-252-4966 Fax: 630-252-4798 This e-mail address is being protected from spambots. You need JavaScript enabled to view it. Education Department of Science and Engineering, Harbin Institute of Technology, China - 1968 Employment Interfacial Material Group, Materials Sciences, Argonne National Laboratory 1989-present Shanghai Institute of Metallurgy, hinese Academy of Science 1970-1998 Expertise Hands-on experience on thin film synthesis techniques such as CVD, MOCVD, PECVD, FECVD Hands-on experience on synthesis of nano-crystal films and nano-particles of metal oxides by MOCVD and MOCVC. Proficiency in optimization of process variables to obtain desirable phase, crystallinity, morphology, orientation, compositions, and grain size for a variety of metal oxide films and nano-particles

87

Matveev-032212 - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Matveev-032212 Matveev-032212 MATERIALS SCIENCE COLLOQUIUM SPEAKER: Dr. Konstantin Matveev Materials Science Division Argonne National Laboratory TITLE: "Equilibration of Electrons in Quantum Wires" DATE: Thursday, March 22, 2012 TIME: 11:00 a.m. PLACE: Building 212 / A-157 HOST: TBA Refreshments will be served at 10:45 a.m. ABSTRACT: I will discuss transport of electrons through one-dimensional conductors. Experiments show that at low temperatures conductance of such quantum wires takes the universal value of 2e2/h. Conductance quantization is well understood theoretically and is expected to persist as long as the temperature remains small compared to the Fermi energy. On the other hand, numerous experiments show that conductance of quantum wires acquires

88

Helmut Claus - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EM > Helmut Claus EM > Helmut Claus Helmut Claus STA Senior Physicist Bldg. 223, A-133 Phone: 630-252-4030 This e-mail address is being protected from spambots. You need JavaScript enabled to view it. Biography Helmut Claus is a Senior Scientist STA in the Material Sciences Division at Argonne National Laboratory. He received his PhD summa cum laude from the Technische Hochschule Karlsruhe, Germany, in 1965. He is Professor Emeritus in the Department of Physics, University of Illinois at Chicago. His research areas include magnetic and superconducting properties of materials. Selected Publications Phase diagram of Ba1-xKxFe2As2, S. Avci, O. Chmaissem,D.-Y. Chung, S. Rosenkranz, E. A. Goremychkin, J. P. Castellan, I. S. Todorov, J. A. Schlueter, H. Claus, A. Daoud-Aladine, D. D. Khalyavin, M. G. Kanatzidis, R. Osborn, Phys. Rev. B 85, 184507 (2012) [doi]

89

Paul Fuoss - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SRS > Paul Fuoss SRS > Paul Fuoss Paul Fuoss Group Leader, Senior Physicist Bldg. 223, A-213 Phone: 630-252-3289 This e-mail address is being protected from spambots. You need JavaScript enabled to view it. Biography Paul H. Fuoss received his B.S. in Physics from the South Dakota School of Mines and Technology in 1975 and a Ph.D. in Materials Science from Stanford University in 1980. While a graduate student, he created x-ray anomalous scattering techniques to study the short and long-range structure in amorphous materials. Dr. Fuoss joined the staff of Bell Laboratories in 1980 and pioneered the use of x-ray scattering techniques to study surface structures, amorphous thin films and crystal growth. He was a co-leader of the AT&T Bell Labs beamline development effort at the NSLS, was actively

90

Auciello-011212 - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Auciello-011212 Auciello-011212 MATERIALS SCIENCE COLLOQUIUM SPEAKER: Dr. Orlando Auciello Materials Science Division Argonne National Laboratory TITLE: "Update on the Science and Technology of Multifunctional Oxides and Ultrananocrystalline Diamond Films and Applications to a New Generation of Multifunctional Devices and Systems " DATE: Thursday, January 12, 2012 TIME: 11:00 a.m. PLACE: Building 212 / A-157 HOST: Anand Bhattacharya Refreshments will be served at 10:45 a.m. ABSTRACT: A new generation of multifunctional oxides and the well known ultrananocrystalline diamond (UNCD) thin films are yielding new physics and providing the bases for a new generation of micro/nano-electronics and biomedical devices and biosystems that will make a major impact in micro/nano-electronics and in the health and way of life of people

91

Gray-030812 - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gray-030812 Gray-030812 MATERIALS SCIENCE COLLOQUIUM SPEAKER: Dr. Stephen K. Gray Center for Nanoscale Materials (CNM) Argonne National Laboratory TITLE: "Quantum Dot - Surface Plasmon Interactions" DATE: Thursday, March 8, 2012 TIME: 11:00 a.m. PLACE: Building 212 / A-157 HOST: TBA Refreshments will be served at 10:45 a.m. ABSTRACT: I discuss theoretical predictions of how quantum dots (QDs) interact with plasmonic systems (e.g. metal nanoparticles). The QD is treated either as a dipole emitter, as an effective, polarizable medium, or with a quantum mechanical density matrix approach. The combined system is modeled with computational electrodynamics. The presence of the quantum dot can significantly alter the optical response of the system. I show how the

92

Hoffmann-011912 - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hoffmann-011912 Hoffmann-011912 MATERIALS SCIENCE COLLOQUIUM SPEAKER: Dr. Axel Hoffmann Materials Science Division Argonne National Laboratory TITLE: "Spin Hall Effects: A Pathway towards Charge-Free Spintronics" DATE: Thursday, January 19, 2012 TIME: 11:00 a.m. PLACE: Building 212 / A-157 HOST: Sam Bader Refreshments will be served at 10:45 a.m. ABSTRACT: As semiconducting electronic devices are miniaturized to ever-smaller dimensions, power dissipation becomes an ever-increasing problem due to leakage charge currents. Spintronics may help addressing some of these issues by utilizing besides the charge degree of freedom also the electron spin. Towards this end, pure spin currents [1] may eliminate some of the limitations due to charge currents and their concomitant power

93

Hwang-050312 - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hwang-050312 Hwang-050312 MATERIALS SCIENCE COLLOQUIUM SPEAKER: Prof. Harold Y. Hwang Stanford University and SLAC National Accelerator Laboratory TITLE: "Emergent Phenomena at Oxide Interfaces" DATE: Thursday, May 3, 2012 TIME: 11:00 a.m. PLACE: Building 212 / A-157 HOST: TBA Refreshments will be served at 10:45 a.m. ABSTRACT: Complex oxides are fascinating systems which host a vast array of unique phenomena, such as high temperature (and unconventional) superconductivity, 'colossal' magnetoresistance, all forms of magnetism and ferroelectricity, as well as (quantum) phase transitions and couplings between these states. In recent years, there has been a mini-revolution in the ability to grow thin film heterostructures of these materials with atomic precision. With this level of control, the electrostatic boundary

94

Kim-062311 - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

62311 62311 MATERIALS SCIENCE COLLOQUIUM SPEAKER: Dr. Bum Joon Kim Argonne National Laboratory Materials Science Division TITLE: "Topological and correlated electron physics in 5d transition-metal oxide iridates" DATE: Thursday, June 23, 2011 TIME: 11:00 a.m. PLACE: Building 212 / A-157 HOST: Anand Bhattacharya Refreshments will be served at 10:45 a.m. ABSTRACT: The recent discovery of the topological insulator revealed that relativistic spin-orbit coupling can provide a novel route to realization of a new quantum phase of matter. The physics behind this surprising finding is understood at the level of one-electron picture without electron-electron interactions, or correlation effects, which have been the main driver for researches on transition-metal oxides in the past few

95

Dieter M. Gruen - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Dieter M. Gruen Dieter M. Gruen Dieter M. Gruen Argonne Distinguished Fellow Bldg. 200, D-165 Phone: 630-252-3513 This e-mail address is being protected from spambots. You need JavaScript enabled to view it. Dieter M. Gruen, an internationally respected innovator, is a senior scientist in the Materials Science Division at Argonne National Laboratory. He received B.S. (1944, cum laude) and M.S. (1947) degrees in chemistry from Northwestern University and the Ph.D. (1951) in chemical physics from the University of Chicago. Dr. Gruen has received a number of awards and recognitions. Among them are the: Materials Research Society 2000 Medal for the synthesis and characterization of ultrananocrystalline diamond films. Energy 100 A ward for the 308 nm excimer laser system for cardiovascular applications as one of the top scientific contributions in the Department of Energy's history.

96

Curtiss-111711 - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Curtiss-111711 Curtiss-111711 MATERIALS SCIENCE COLLOQUIUM SPEAKER: Dr. Larry Curtiss Argonne National Laboratory Materials Science Division TITLE: "Recent Developments in Li-O2 Chemistry for Li-Air Batteries" DATE: Thursday, November 17, 2011 TIME: 11:00 a.m. PLACE: Building 212 / A-157 HOST: Anand Bhattacharya Refreshments will be served at 10:45 a.m. ABSTRACT: Nonaqueous Li-air batteries have a much superior theoretical gravimetric energy density compared to conventional Li-ion batteries, and thus have the potential for making long-range electric vehicles a reality. Two major problems that have limited the successful development of Li-air batteries to date have been related to severe difficulties in attaining reversibility and low charge overpotentials. This seminar will cover recent

97

David Hinks - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EM > David Hinks EM > David Hinks David Hinks Materials Scientist Bldg. 223, C-229 Phone: 630-252-5471 This e-mail address is being protected from spambots. You need JavaScript enabled to view it. Biography David G. Hinks is a Senior Chemist in the Materials Science Division. He joined Argonne after receiving his PhD from Oregon State University in 1968. He received the DOE-BES Materials Sciences Award for Outstanding Scientific Achievement in 1982 and 1987, and the 1987 Laboratory Director's Award and ANL Pacesetter Award. He received the University of Chicago Distinguished Performance Award in 1989, and is a top-100 ISI Highly Cited Researcher for 1981-1999. Selected Publications "Evidence for Intrinsic Impurities in the High-Temperature Superconductor Bi2Sr2CaCu2O8-d from 17O Nuclear Magnetic Resonance", B. Chen, S. Mukhopadhyay, W.P. Halperin, P. Guptasarma, and D.G. Hinks, Phys. Rev. B 77, 052508 (2008) [doi]

98

Seminars 2012 - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 2 Materials Science 2012 Seminar Archive January January 13th - Ming Tang Lawrence Livermore National Laboratory Stress-Diffusion Coupling in Olivine Cathodes for Li-ion Batteries January 16th - Jonathan Keeling University of St. Andrews, United Kingdom Condensation, superfluidity, and lasing of coupled light-matter systems January 23rd - Wade DeGottardi University of Illinois at Urbana-Champaign Majorana fermions in a spin-ladder system January 23rd - Sergey Artyukhin Moscow Institute of Physics and Technology Solitonic Arrays and Magnetoelectric Switching in Rare Earth Orthoferrites January 25th - Geoffrey Oxberry Massachusetts Institute of Technology Advances in the Model Reduction of Chemistry for Reacting Flow Simulations January 27th - Tianheng Han Massachusetts Institute of Technology

99

Koulakov-062713 - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Koulakov-062713 Koulakov-062713 MATERIALS SCIENCE COLLOQUIUM SPEAKER: Alexei Koulakov Cold Spring Harbor Laboratory, NY TITLE: Formation of brain maps: nurture versus nature DATE: Thursday, June 27, 2013 TIME: 11:00 a.m. PLACE: Building 212 / A-157 HOST: Ivar Martin Refreshments will be served at 10:45 a.m. ABSTRACT: In the brain, neurons are organized according to their functional properties into multiple maps such as retinotopic, ocular dominance, orientation preference, direction of motion, and others. To a large degree, these maps are reflections of connections between neurons. Two factors contribute to the formation of neuronal connections, and, by extension, of the brain maps. First, much of the connectivity is determined by the rules specified in the genome and is therefore hardwired. Second, connections can

100

Qingbiao Zhao - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EM > Qingbiao Zhao EM > Qingbiao Zhao Qingbiao Zhao Qingbiao Zhao Postdoctoral Appointee Bldg. 223, A-110 This e-mail address is being protected from spambots. You need JavaScript enabled to view it. Biography Qingbiao joined the Materials Science Division of Argonne National Laboratory in September 2011, to study crystal growth of iridates by flux approaches, and investigate their electronic and magnetic properties. Qingbiao received his BS degree in Chemistry from University of Science and Technology of China in 2006. As an undergraduate researcher he studied synthesis of nickel nanomaterials for novel morphology and higher magnetic coercivity. In 2007 he came to the USA to pursue a PhD degree with Dr. Hanno zur Loye in the University of South Carolina. His thesis focused on single crystal growth of Fe, Co containing oxides and magnetic property studies, particularly the interconnection among phase transitions, magnetic moment change, and valence disproportionation in Co-containing one-dimensional crystal structures.

Note: This page contains sample records for the topic "laboratory vorbeck materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Fei Han - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EM > Fei Han EM > Fei Han Fei Han Fei Han Postdoctoral Appointee Bldg. 223, A-110 This e-mail address is being protected from spambots. You need JavaScript enabled to view it. Biography Fei Han joined Argonne National Laboratory in June 2012 as a postdoctoral appointee. His current research is exploratory synthesis of new superconductors. His research interests include unconventional superconductors, Mott insulators, topological insulators and other strongly correlated materials. Fei obtained his BS degree in materials physics from University of Science and Technology of China in 2007. As an undergraduate researcher he studied growth of superconducting cuprate thin films via magnetron sputtering. In 2007 he came to Beijing to pursue a PhD degree with Professor Hai-Hu Wen in Institute of Physics, Chinese Academy of Sciences. His PhD research was focused on synthesis and characterization of structural and transport properties of superconductors, especially the iron-based superconductors. As of now, Fei has published more than 20 papers. His total citation is about 400 and his h-index is 9.

102

Daniel Bugaris - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EM > Daniel Bugaris EM > Daniel Bugaris Daniel E. Bugaris Daniel E. Bugaris Postdoctoral Appointee Bldg. 223, A-125 Phone: 630-252-5525 This e-mail address is being protected from spambots. You need JavaScript enabled to view it. Biography Daniel joined the Materials Science Division at Argonne National Laboratory in March 2012. His research focuses on the exploration of superconducting behavior in pnictide and intermetallic systems exhibiting competing interactions, as well as in narrow gap semiconductors. The aim of this program is to rationally design a homologous series of phases with tunable building blocks to enable the generation of specific compositions with predictable structures. Materials of interest will possess a high degree of structural and compositional freedom and chemical/electronic complexity with which to investigate (i) density-wave instabilities (spin and charge), and their suppression through chemical doping in order to generate superconductivity that may emerge from phase competition, and (ii) how narrow energy band gaps and facile doping properties could lead to a superconducting state. Daniel received his BS in Chemistry from the University of Notre Dame in 2005 and his PhD in Chemistry from Northwestern University in 2009, advised by Prof. James A. Ibers. His thesis research involved the solid-state chemistry of uranium halides and chalcogenides, with an emphasis on their crystal growth, structures, and physical properties. Daniel joined the research group of Prof. Hans-Conrad zur Loye at the University of South Carolina in October 2009 as a post-doctoral fellow, where he worked on the structural characterization of perovskite oxides via neutron diffraction in order to better understand their potential application as electrode materials in solid oxide fuel cells.

103

Sandia National Laboratories: Wind-Turbine Blade Materials and...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Demonstration Wind-Turbine Blade Materials and Reliability Progress On May 21, 2014, in Energy, Materials Science, News, News & Events, Partnership, Renewable Energy,...

104

Materials characterization capabilities at DOE Nuclear Weapons Laboratories and Production Plants  

SciTech Connect (OSTI)

The materials characterization and analytical chemistry capabilities at the 11 DOE Nuclear Weapons Laboratories or Production Plants have been surveyed and compared. In general, all laboratories have similar capabilities and equipment. Facilities or capabilities that are unique or that exist at only a few laboratories are described in detail.

Pyper, J.W.

1984-06-01T23:59:59.000Z

105

A laboratory study of the friction behavior of granular materials  

E-Print Network [OSTI]

I report on laboratory experiments designed to investigate the microphysical processes that result in rate- and state-dependent friction behavior and experiments designed to match the boundary conditions used by numerical ...

Frye, Kevin M. (Kevin Michael), 1972-

2002-01-01T23:59:59.000Z

106

Center for Nanoscale Materials Brochure | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Acknowledgment Statements for Publications Fact Sheets & Other Documents Center for Nanoscale Materials Brochure Changing the World with Nanoscience CNM Brochure 2014.pdf...

107

Sandia National Laboratories: control key solar cell material...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4, 2014, in Energy, Materials Science, News, News & Events, Photovoltaic, Renewable Energy, Research & Capabilities, Solar Sandia researchers have received a 1.2M award from...

108

3.082 Materials Processing Laboratory, Spring 2003  

E-Print Network [OSTI]

Student project teams design and fabricate a materials engineering prototype using appropriate processing technologies (injection molding, thermoforming, investment casting, powder processing, brazing, etc.). Emphasis on ...

Chiang, Yet-Ming

109

Paul V. Braun and John A. Rogers Materials Research Laboratory...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

epitaxy of high- performance III-V semiconductor materials. We have demonstrated optoelectronic functionality by fabricating a 3D photonic crystal LED, the rst- ever electrically...

110

Research Areas - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

http://www.msd.anl.gov http://www.msd.anl.gov 2014-01-12T01:06:27+00:00 Joomla! 1.6 - Open Source Content Management Dynamics of Active Self-Assemble Materials 2011-05-13T17:17:28+00:00 2011-05-13T17:17:28+00:00 http://www.msd.anl.gov/research-areas/dynamics-of-active-self-assemble-materials Ken Krajniak krajniak@anl.gov Self-assembly, a natural tendency of simple building blocks to organize into complex architectures is a unique opportunity for materials science. In-depth understanding of self-assembly paves the way for design of tailored smart materials for emerging energy technologies. However, self-assembled materials pose a formidable challenge: they are intrinsically complex, with an often hierarchical organization occurring on many nested length and time scales. This program

111

NXRS Research - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Research Neutron and X-Ray Scattering Research Vision Recent advances in neutron and x-ray scattering instrumentation at major DOE facilities such as the Spallation Neutron Source and Advanced Photon Source provide unprecedented insights into complex phenomena in bulk and interfacial materials. The vision of our group is to harness the complementarity of neutrons and x-rays to study how materials respond on a range of length and time scales to phase competition, so that we can learn to control emergent behavior and generate functional properties in materials that impact energy use. Mission Our mission is to use neutrons and x-rays to investigate the structure and dynamics of bulk and interfacial materials with properties that are useful for energy applications, such as superconductivity, magnetism and

112

Zhili Xiao - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SM > Zhili Xiao SM > Zhili Xiao Zhili Xiao Physicist Appointment Bldg. 223, C-133 Phone: 630-252-8762 This e-mail address is being protected from spambots. You need JavaScript enabled to view it. Education Ph.D., Experimental Physics, University of Konstanz, Germany, 1996 M.S., Solid State Physics, Sichuan University, Chengdu, China, 1988 Professional Experience January 2004 - present: Physicist, Argonne National Laboratory June 2009 - present: Professor, Northern Illinois University Oct 2004 - May 2009: Associate Professor, Northern Illinois University Jan 2004 - Sep 2004: Visiting Associate Professor, Northern Illinois University Sep 2001- Jan 2004: Visiting scientist, Argonne National Laboratory Dec 1997- Sep 2001: Research Associate in Dept. of Physics and Astronomy, Rutgers University, Piscataway, New Jersey

113

Neutron and X-Ray Scattering - Argonne National Laboratories, Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Home Home Neutron and X-Ray Scattering Neutron and X-ray Scattering Science Recent advances in neutron and x-ray scattering instrumentation at major DOE facilities such as the Spallation Neutron Source and Advanced Photon Source provide unprecedented insights into complex phenomena in bulk and interfacial materials. The vision of our group is to harness the complementarity of neutrons and x-rays to study how materials respond on a range of length and time scales to phase competition, so that we can learn to control emergent behavior and generate functional properties in energy-related materials. We use neutrons and x-rays to investigate the structure and dynamics of bulk and interfacial materials with properties that are useful for energy applications, such as superconductivity, magnetism and thermoelectricity. Phase competition can generate or enhance such properties, but it is extremely challenging to characterize fluctuations in the competing order, whether in bulk disordered materials, or artificial heterostructures. Our goal is to utilize efficient techniques that we have been developing for measuring nanoscale phase fluctuations, both static and dynamic, to enable the rational design of new materials for energy within MSD.

114

Critical and strategic materials proceedings of the laboratory study group meeting  

SciTech Connect (OSTI)

These Proceedings serve to identify the appropriate role for the DOE-BES-DMS Laboratory program concerning critical and strategic materials, identify and articulate high priority DOE-BES-DMS target areas so as to maximize programmatic responsiveness to national needs concerning critical and strategic materials, and identify research, expertise, and resources (including Collaborative Research Centers) that are relevant to critical and strategic materials that is either underway or in place under the DOE-BES-DMS Laboratory program. Laboratory statements of collaborative research are given.

Not Available

1983-06-01T23:59:59.000Z

115

Liu-082913 - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Liu-082913 Liu-082913 MATERIALS SCIENCE COLLOQUIUM SPEAKER: Yaohua Liu Materials Science Division, ANL TITLE: Interface Magnetism in Heteroepitaxial Complex Oxide Films DATE: Thursday, August 29, 2013 TIME: 11:00 a.m. PLACE: Building 212 / A-157 HOST: Ray Osborn Refreshments will be served at 10:45 a.m. ABSTRACT: Complex oxide materials host many interesting collective phenomena in condensed matter physics, such as high-temperature superconductivity, various forms of magnetism and ferroelectricity, as well as phase competitions between these states. Recently, it has become possible to create heteroepitaxial complex oxide films with atomic precision, and such structures are of keen interest because modified bonding at the interfaces can give rise to fundamentally new phenomena and

116

Hai-Hu Wen 072612 - Argonne National Laboratories, Materials Sicence  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hai-Hu Wen 072612 Hai-Hu Wen 072612 MATERIALS SCIENCE COLLOQUIUM SPEAKER: Professor Hai-Hu Wen Nanjing University China TITLE: "Materials and Pairing Mechanism in Iron Pnictides/Chalcogenides: What We Have Learnt and What Are Left" DATE: Thursday, July 26, 2012 TIME: 11:00 am PLACE: Building 212 / A-157 ABSTRACT: I will give a brief survey of the material and experimental status in the new iron based superconductors. The transport, thermodynamics, penetration depth and tunneling experiments have revealed clearly the existence of multiband superconductivity. The NMR, inelastic neutron scattering, etc., have uncovered the intimate relationship between the superconductivity and the fluctuating antiferromagnetism. In many measurements a full-gap feature is favored, although a distinction remains

117

McHenry-121913 - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

McHenry-121913 McHenry-121913 MATERIALS SCIENCE COLLOQUIUM SPEAKER: Michael McHenry IEEE Distinguished Lecturer, Carnegie Mellon University TITLE: Nanocomposite Magnets for Power Electronic Applications DATE: Thursday, Dec. 19, 2013 TIME: 11:00 am PLACE: ESB 241, Conference Room D172 HOST: Olle Heinonen ABSTRACT: Recent USDOE workshops highlight the need for advanced soft magnetic materials leveraged in novel designs of power electronic components and systems for power conditioning and grid integration. Similarly soft magnetic materials figure prominently in applications in electric vehicles and high torque motors. Dramatic weight and size reductions are possible in such applications. Nanocomposites also hold potential for applications in active magneocaloric cooling of such devices.

118

Colloquium 2010 - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 0 Materials Science 2010 Colloquium Archive 21-January-2010 Prof. Cheol Seong Hwang, Seol National University Identification and formation mechanism of conducting nano-filaments in TiO2 resistive switching thin film 28-January-2010 Dr. Haifeng Ding, Nanjing University 11-February-2010 Dr. John Schlueter, Materials Science Division Molecular Architectures for Control of Electron Spin and Its Transport, 16-April-2010 Prof. Albrecht Jander, Oregon State University Nanostructured Magentic Materails for Inductors 29-April-2010 Prof. Aldo Romero, CINVESTAV-Unidad Queretaro, Mexico 06-May-2010 Dr. Alex Zayak, UC Berkeley/Molecular Foundry, LBNL 20-May-2010 Dr. Matthew J. Highland, Materials Science Division 27-May-2010 Dr. Mark Stiles, National Institute of Standards and Technology

119

Research Areas - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nanostructured Thin Films Nanostructured Thin Films Theme: The Nanostructured Thin Films program is focused on the synthesis, characterization, and modeling of dimensionally constrained materials systems in which a nano-scale trait of the material (e.g. grain size, film thickness, interfacial boundary, etc.) fundamentally determines its structure-property relationships. The work performed in this program falls primarily into two areas: (1) studies of thin-film growth phenomena and film properties, with emphasis on diamond and multicomponent oxides; and (2) first principles quantum-mechanical calculations that model thin film growth processes and electronic structure. Frequently, the experimental and theoretical efforts are coordinated on common scientific issues in a particular material system. Current research is devoted to (a) growth

120

Research Areas - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

http://www.msd.anl.gov/research-areas Sun, 12 Jan 2014 01:06:27 +0000 Joomla! 1.6 - Open Source Content Management en-gb Dynamics of Active Self-Assemble Materials http://www.msd.anl.gov/research-areas/dynamics-of-active-self-assemble-materials http://www.msd.anl.gov/research-areas/dynamics-of-active-self-assemble-materials krajniak@anl.gov (Ken Krajniak) Fri, 13 May 2011 17:17:28 +0000 Elastic Relaxation and Correlation of Local Strain Gradients with Ferroelectric Domains in (001) BiFeO3 Nanostructures http://www.msd.anl.gov/research-areas/elastic-relaxation-and-correlation-of-local-strain-gradients-with-ferroelectric-domains-in-001-bifeo3-nanostructures http://www.msd.anl.gov/research-areas/elastic-relaxation-and-correlation-of-local-strain-gradients-with-ferroelectric-domains-in-001-bifeo3-nanostructures

Note: This page contains sample records for the topic "laboratory vorbeck materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

EM Research - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Research Emerging Materials Recent Highlights Overview: This program emphasizes materials synthesis and processing, advanced characterizations and studies of materials properties, all aimed at a fundamental understanding of materials that have potential for applications. Currently the program concentrates on complex oxides with two connected goals: Understanding the complex interrelationship between charge and spin degrees of freedom and with crystal structure Understanding the proximity interactions which occur when an oxide shares a common boundary with a metal or other oxides. Recent highlights: Quantum Spins Mimic Refrigerator Magnets quantum spins October 11, 2012 The behavior of magnetic moments in metal oxides such as iridates is dominated by strong spin-orbit coupling effects. In layered compounds such as Sr3Ir2O7, the direction of these moments is controlled at the quantum level by dipolar interactions that are akin to those of classical bar magnets. From a functional standpoint, our findings suggest novel routes toward engineered structures that allow manipulation of moments without magnetic fields, a general strategy for future low-power electronics platforms.

122

Duck Young Chung - Argonne National Laboratories, Materials Sicence  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EM > Duck Young Chung EM > Duck Young Chung Duck Young Chung Principal Materials Engineer Bldg. 223, C-233 Phone: 630-252-4907 This e-mail address is being protected from spambots. You need JavaScript enabled to view it. Biography Duck Young Chung is a staff scientist in the Emerging Materials Group. After receiving his B.A. from DanKook University in 1984, M.S. and Ph.D from Kyungpook National University in 1991, he joined the group of Prof. Kanatzidis as a postdoc at Michigan State University in 1992 where later he became a research faculty, then moved to Argonne in 2006. His expertise includes exploratory synthesis, crystal growth, and characterization of a wide variety of bulk materials as well as development of synthesis techniques and methods in the areas of chalcogenides, pnictides, and intermetallic alloys for thermoelectrics, superconductivity, topological insulators, and semiconducting materials with interesting electronic or magnetic properties. He is the author of 80 peer-reviewed articles and patents published. Notable achievements include discovery of high performance thermoelectric semiconductor, CsBi4Te6, which holds the record of figure of merit for low temperature cooling applications (Science, 2000) and synthesis of an unconventional superconductors Ba1-xKxFe2As2 characterized by inelastic neutron scattering (Nature, 2008).

123

High Temperature Materials Laboratory User Program: 19th Annual Report, October 1, 2005 - September 30, 2006  

SciTech Connect (OSTI)

Annual Report contains overview of the High Temperature Materials Laboratory User Program and includes selected highlights of user activities for FY2006. Report is submitted to individuals within sponsoring DOE agency and to other interested individuals.

Pasto, Arvid [ORNL

2007-08-01T23:59:59.000Z

124

Chemical surety material decontamination and decommissioning of Los Alamos National Laboratory Chemical Surety Material Laboratory area TA-3, building SM-29, room 4009  

SciTech Connect (OSTI)

From 1982 through 1987, Los Alamos National Laboratory (LANL) performed surety laboratory operations for the U.S. Army Medical Research and Development Command (MRDC). Room 4009 in building SM-29, TA-3, was used as the laboratory for work with the following chemical surety material (CSM) agents: sarin (GB), soman (GD), lewisite (L), and distilled mustard (HD) radio-labelled with H{sup 3} or C{sup 14}. The work was confined to three CSM-certified fume hoods, located in room 4009 (see diagram in Appendix C). The laboratory ceased all active operations during the late 1986 and early 1987 period. From 1987 until 1993 the laboratory was secured and the ventilation system continued to operate. During late 1992, the decision was made to utilize this laboratory space for other operations, thus a decision was made to dismantle and reconfigure this room. LANL sub-contracted Battelle Memorial Institute (BMI) to draw upon the CSM experience of the technical staff from the Hazardous Materials Research Facility (HMRF) to assist in developing a decontamination and decommissioning plan. BMI was subcontracted to devise a CSM safety training course, and a sampling and air monitoring plan for CSM material to ensure personnel safety during all disassembly operations. LANL subcontracted Johnson Controls personnel to perform all disassembly operations. Beginning in early 1993 BMI personnel from the HMRF visited the laboratory to develop both the safety plan and the sample and air monitoring plan. Execution of that plan began in September 1993 and was completed in January 1994.

Moore, T.E.; Smith, J.M.

1994-04-01T23:59:59.000Z

125

Cathode Contact Materials for Anode-Supported Cell Development - Lawrence Berkeley National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cathode Contact Materials for Anode- Cathode Contact Materials for Anode- Supported Cell Development- Lawrence Berkeley National Laboratory Background The mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid State Energy Conversion Alliance (SECA), NETL is leading the research, development, and demonstration of solid oxide

126

Kim-011713 - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

11713 11713 MATERIALS SCIENCE COLLOQUIUM SPEAKER: Sang Ouk Kim Institute for Basic Science (IBS) Department of Materials Science and Engineering, KAIST TITLE: Directed Molecular Assembly of Soft Nanomaterials DATE: Thursday, January 17, 2013 TIME: 11:00 a.m. PLACE: Building 212 / A-157 HOST: Seungbum Hong Refreshments will be served at 10:45 a.m. ABSTRACT: Establishing a robust and versatile nanofabrication process has been a central issue in nanotechnology. Molecular self-assembly has several advantages over other methods such that molecular building blocks ensure ultrafine pattern precision, parallel structure formation allows for mass production and a variety of three-dimensional structures are available for fabricating complex structures. Nevertheless, the molecular interaction

127

Matthew J. Highland - Argonne National Laboratories, Materials Sicence  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Matthew J. Highland Matthew J. Highland Matthew J. Highland Assistant Physicist Bldg. 212, A-113 Phone:(630) 252-3195 This e-mail address is being protected from spambots. You need JavaScript enabled to view it. Research Interest My scientific interest is in addressing outstanding challenges in materials design, processing, and characterization with innovations in synthesis science and in situ measurement. Specifically, I have used metal organic chemical vapor deposition and reactive magnetron sputtering to synthesize a variety of thin film material systems for energy applications including functional complex oxide multilayers to study the fundamentals of ferroelectric switching, semiconducting and transition metal nitrides for solid state lighting applications, and oxide nanocomposites to study the

128

Kotliar-081811 - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Kotliar-081811 Kotliar-081811 MATERIALS SCIENCE COLLOQUIUM SPEAKER: Professor Gabriel Kotliar Department of Physics and Astronomy Rutgers University TITLE: "Strongly Correlated Materials: the Dawn of the Theoretical Spectroscopy Era?" DATE: Thursday, August 18, 2011 TIME: 11:00 a.m. PLACE: Building 212 / A-157 HOST: Mike Norman Refreshments will be served at 10:45 a.m. ABSTRACT: Strongly correlated electron systems are one of the most fertile areas for surprising discoveries such as high temperature superconductivity, colossal magnetoresistance, volume collapses and metal to insulator transitions. For theorist, correlated electron systems, pose one of the greatest non perturbative challenges in physics. For many years, and for good reasons, strongly correlated solids were thought to be off

129

EM Pnictide Phase Diagram - Argonne National Laboratories, Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials > EM Pnictide Materials > EM Pnictide Phase Diagram Phase Diagram of Ba1-xKxFe2As2 Structural, magnetic, and superconducting phase diagram of Ba1-xK1-xFe2As2. Published May 7, 2012 The role of internal structural parameters that influence the band structure and the degree of moment localization in optimizing superconductivity and the implications for the gap symmetry in Ba1-xKxFe2As2 remains a matter of debate. Controlling the inhomogeneity to within acceptable limits to improve the accuracy of structural, magnetic, and superconducting phase boundaries has been a key goal of this work. We estimate that we have been able to synthesize samples for which Δx <0.01, suitable for systematic investigation using high-resolution neutron and x-ray diffraction combined with magnetization measurements.

130

Hla-092613 - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hla-092613 Hla-092613 MATERIALS SCIENCE COLLOQUIUM SPEAKER: Saw Wai Hla Center for Nanoscale Materials, ANL & Ohio University TITLE: Frontiers of STM Manipulations: Imaging Atomic Spin to Operating Nanomachines DATE: Thursday, Sept. 26, 2013 TIME: 11:00 a.m. PLACE: Building 212 / A-157 HOST: Seungbum Hong Refreshments will be served at 10:45 a.m. ABSTRACT:We combine a variety of scanning tunneling microscope (STM) manipulation schemes with tunneling spectroscopy techniques to image and manipulate properties of atoms and molecules on surfaces. This talk will highlight recent advances achieved by manipulation at atomic and molecular scale [1-4]. In spintronic area, we will present imaging and manipulation of atomic spin using a spin-polarized STM tip [1], and the spin fiction

131

Stan-020912 - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Stan-020912 Stan-020912 MATERIALS SCIENCE COLLOQUIUM SPEAKER: Dr. Marius Stan Nuclear Engineering Division (NE), ANL Computational Institute, University of Chicago TITLE: "Computational Microscopy" DATE: Thursday, February 9, 2012 TIME: 11:00 a.m. PLACE: Building 212 / A-157 HOST: Mike Norman Refreshments will be served at 10:45 a.m. ABSTRACT: Interesting and important properties and phenomena occur in materials at various scales, from angstroms to meters and from femtoseconds to days or even years. Scientists have developed experimental, theoretical, and computational tools to study specific properties and phenomena within rather narrow length and time intervals, as imposed by the limitations of individual techniques. This approach is often referred to as "science at

132

SRS Research - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Research Synchrotron Radiation Studies Research Overview This program develops new capabilities using the nation's synchrotron radiation facilities and applies them to cutting-edge problems in materials science. In particular, we aim to play a leading scientific role at the Advanced Photon Source (APS). X-ray scattering studies take advantage of the high brilliance APS x-ray source for in-situ and time-resolved studies of surface and thin film structure. These include investigations of synthesis processes such as vapor-phase epitaxy and electrochemical deposition, and studies of electric-field-driven ferroelectric domain dynamics. High-resolution angle-resolved photoemission is used to understand the nature of superconductivity in the hi-Tc materials. New thrusts focus on exploring science enabled by future facilities such as

133

Chang-032813 - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chang-032813 Chang-032813 MATERIALS SCIENCE COLLOQUIUM SPEAKER: Clarence Chang Kavli Institute for Cosmological Physics TITLE: Superconducting technology and the South Pole Telescope: connecting Material Sciences with Cosmology DATE: Thursday, March 28, 2013 TIME: 11:00 a.m. PLACE: Building 212 / A-157 HOST: Ray Osborn Refreshments will be served at 10:45 a.m. ABSTRACT: Advances in superconducting Transition Edge Sensors (TES) are enabling new measurements relevant for understanding the origins, composition, and evolution of the Universe. I will discuss how TES technology is opening new windows into cosmology through ground-breaking measurements of the Cosmic Microwave Background (CMB) radiation with the South Pole Telescope (SPT), a 10-m mm-wave observatory at the geographic

134

Seungbum Hong - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

IM > Seungbum Hong IM > Seungbum Hong Seungbum Hong Seungbum Hong Materials Scientist Bldg. 212, C-220 Phone: 630-252-1366 This e-mail address is being protected from spambots. You need JavaScript enabled to view it. Quick Links Publications Education B.S. (summa cum laude, 1994) in Ceramic, M. S. (1996) and Ph. D. (2000) in Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Korea Professional Experience Member of Research Staff & Project Leader, Samsung Advanced Institute of Technology, Korea, 2000-2007 Post-doctoral researcher, Swiss Federal Institute of Technology, Lausanne, Switzerland, 2000-2001 Research Supervision 16 students and post-docs supervised since 2000 Selected Awards Rising Researcher Fellowship, Korea Research Foundation, 1998-1999

135

Law-066812 - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Law-066812 Law-066812 MATERIALS SCIENCE COLLOQUIUM SPEAKER: PROF. MATT LAW University of California - Irvine TITLE: "Developing Earth Abundant and Quantum Dot Materials for Thin-Film Photovoltaics" DATE: Thursday, June 28, 2012 TIME: 11:00 a.m. PLACE: Building 212 / A-157 HOST: TBA Refreshments will be served at 10:45 a.m. ABSTRACT: This talk describes projects in our group to develop thin-film photovoltaics based on earth-abundant iron pyrite (FeS2) active layers and PbSe quantum dot (QD) solids. I will first introduce the promise and challenge of pyrite, describe solution- and gas-phase syntheses of pyrite films, and present preliminary electrical characterization of pyrite layers and device stacks. Then I will switch gears to highlight several projects

136

Dempsey-012114 - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Dempsey-012114 Dempsey-012114 MATERIALS SCIENCE SEMINAR SPEAKER: Nora Dempsey Institut Néel - CNRS, 
France TITLE: High performance hard magnetic films: from model systems to micro-system applications DATE: Monday, January 14, 2013 TIME: 11:00 a.m. PLACE: Building 223 / S-105 HOST: Jidong Samuel Jiang ABSTRACT: High performance hard magnetic materials are of growing importance for clean energy technologies (hybrid electric vehicles, gearless wind turbines...) and have great potential for use in micro-systems. In this talk I will report on the preparation and characterisation of NdFeB thick films. On the one hand these films are used as model systems to study magnetization reversal, with the aim of guiding the development of heavy rare earth free magnets. On the other, they are

137

Bauer-082312 - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bauer-082312 Bauer-082312 MATERIALS SCIENCE COLLOQUIUM SPEAKER: Prof. Gerrit E. W. Bauer Institute of Materials Research Tohoku University, Japan Kavli Institute of NanoScience, TU Delft, The Netherlands TITLE: IEEE Magnetics Society Distinguished Lecture "Spin Caloritronics" DATE: Thursday, August 23, 2012 TIME: 11:00 a.m. PLACE: Building 212 / A-157 HOST: Axel Hoffmann Refreshments will be served at 10:45 a.m. ABSTRACT: The spin degree of freedom of the electron affects not only charge, but also heat and thermoelectric transport, leading to new effects in small structures that are studied in the field of spin caloritronics (from calor, the Latin word for heat). This lecture addresses the basic physics of spin caloritronics. Starting with an introduction into thermoelectrics and Onsager's reciprocity

138

Seshadri-120513 - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Seshadri-120513 Seshadri-120513 MATERIALS SCIENCE COLLOQUIUM This colloquium has been canceled and will be rescheduled at a later time. SPEAKER: Prof. Ram Seshadri University of California, Santa Barbara TITLE: Solid-state Chemistry in Energy Efficiency: Lighting Phosphors and Thermoelectric Materials DATE: Thursday, December 5, 2013 TIME: 11:00 am PLACE: Bldg. 241, Conference Room D172 HOST: Ray Osborn ABSTRACT: In the first part, I will address phosphors that play a key role in the now almost-mature solid-state white-lighting technologies based on combining a III-nitride-based near-UV or blue solid-state light source with down-conversion to longer wavelengths.[1] Almost all widely used phosphors comprise a crystalline oxide, nitride, or oxynitride host that is appropriately doped with either Ce3+ or Eu2+. Optical excitation into these

139

Sandeman-012113 - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sandeman-012113 Sandeman-012113 JOINT PSE/MSD SEMINAR SPEAKER: Karl G. Sandeman Department of Physics TITLE: "(Tri)critical Phase Transitions in Magnetocaloric Materials " DATE: Monday, January 21, 2013 TIME: 3:00 p.m. PLACE: Building 223 / S-105 HOST: Seungbum Hong ABSTRACT: Much of today's research in so-called functional materials is driven by the quest for technologies that use energy more efficiently and reduce our impact on the environment. Such pressures drive a renewed investigation of some of the most fundamental properties of condensed matter. Solid-state phase transitions are one good example. In order to find an energy efficient solution to the problem of reducing our use of HFCs in a variety of cooling applications, a new field has been defined.

140

Bredas-121511 - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bredas-121511 Bredas-121511 MATERIALS SCIENCE COLLOQUIUM SPEAKER: Professor Jean-Luc Bredas Georgia Tech TITLE: "Electronic and Optical Processes in Organic Semiconductors: The Case of Organic Solar Cells" DATE: Thursday, December 15, 2011 TIME: 11:00 a.m. PLACE: Building 212 / A-157 HOST: John Schlueter Refreshments will be served at 10:45 a.m. ABSTRACT: Our objective in this presentation is two-fold. First, we provide a general overview of the optical and electronic processes that take place in a solid-state organic solar cell, which we define as a cell in which the semiconducting materials between the electrodes are organic, be them polymers, oligomers, or small molecules. We briefly turn our attention to: (i) optical absorption and exciton formation; (ii) exciton migration to the

Note: This page contains sample records for the topic "laboratory vorbeck materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Rodichev-121213 - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rodichev-121213 Rodichev-121213 MATERIALS SCIENCE COLLOQUIUM SPEAKER: Dimitri Rodichev LPEM, France TITLE: Confinement in Superconductors: A Scanning Tunneling Spectroscopy Study DATE: Thursday, Dec. 12, 2013 TIME: 11:00 am PLACE: ESB 241, Conference Room D172 HOST: Thomas Proslier ABSTRACT:The most famous macroscopic quantum phenomenon - superconductivity - is characterized by a nanometer-length scale, called coherence length ξ, at which the superconducting condensate evolves in space. The confinement of a superconducting material to scales comparable to ξ should substantially modify the superconducting properties. We addressed the problem of confinement in superconductivity by choosing a quasi-ideal model system - Pb atoms deposited in-situ on atomically clean surface of

142

CMT Research - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Research Condensed Matter Theory Research Technical Progress Superconductivity Nobel Prize in physics awarded to Abrikosov at Stockholm ceremony: ARGONNE, Ill. (Dec. 10, 2003) Ñ The 2003 Nobel Prize in physics was awarded to Alexei A. Abrikosov of the U.S. Department of Energy's Argonne National Laboratory at a ceremony in Stockholm. Abrikosov shared the prize with two colleagues for theories about how matter can show bizarre behavior at extremely low temperatures. The Royal Swedish Academy of Sciences cited Abrikosov, Anthony J. Leggett and Vitaly L. Ginzburg for their work concerning two phenomena called superconductivity and superfluidity. ARPES spectra in the superconducting state of the cuprates are characterized by a low binding energy feature (quasiparticle peak), and a

143

Michael Zach - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SM > Michael Zach SM > Michael Zach Michael Zach Resident Associate Bldg. 223,C-133 Phone: (715)346-3179 This e-mail address is being protected from spambots. You need JavaScript enabled to view it. Quick Links Selected Publications Education M.S., Ph.D., Chemistry under Prof. Reginald Penner, University of California, Irvine; 2002 B.S., Chemistry (ACS) and Chemistry with Polymer option, University of Wisconsin - Stevens Point; Graduation with honors, 1997 Professional Experience Glenn Seaborg Postdoctoral Research Fellow, Argonne National Laboratory Miller Postdoctoral Research Fellow, Miller Institute University of California, Berkeley, 2002 Joint appointment to NASA-Ames Research Center, 2003 Awards Elected to the American Association for the Advancement of Science, Pacific Division (AAAS-PD) Board of Directors as Council Member at Large. Term 2002 -2005

144

Critical Materials and Rare Futures: Ames Laboratory Signs a New Agreement  

Broader source: Energy.gov (indexed) [DOE]

Critical Materials and Rare Futures: Ames Laboratory Signs a New Critical Materials and Rare Futures: Ames Laboratory Signs a New Agreement on Rare-Earth Research Critical Materials and Rare Futures: Ames Laboratory Signs a New Agreement on Rare-Earth Research June 15, 2011 - 7:07pm Addthis The plasma torch in the Retech plasma furnace is one tool used in Materials Preparation Center to create ultra-high purity metal alloy samples, particularly rare-earth metals, located at the Ames Lab. | Photo Courtesy of the Ames Lab Flickr The plasma torch in the Retech plasma furnace is one tool used in Materials Preparation Center to create ultra-high purity metal alloy samples, particularly rare-earth metals, located at the Ames Lab. | Photo Courtesy of the Ames Lab Flickr Charles Rousseaux Charles Rousseaux Senior Writer, Office of Science

145

talapin-101812 - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

talapin-101812 talapin-101812 MATERIALS SCIENCE COLLOQUIUM SPEAKER: Prof. Dmitri Talapin Department of Chemistry and James Frank Institute University of Chicago TITLE: Department of Chemistry and James Frank Institute DATE: Thursday, October 18, 2012 TIME: 11:00 am PLACE: Building 212 / A-157 HOST: Seungbum Hong ABSTRACT: Colloidal nanocrystals can combine the advantages of crystalline inorganic semiconductors with the size-tunable electronic structure and inexpensive solution-based device fabrication. Single- and multicomponent nanocrystal assemblies, also known as superlattices, provide a powerful general platform for designing two- and three-dimensional solids with tailored electronic, magnetic, and optical properties. Unlike atomic and molecular crystals where atoms, lattice geometry, and interatomic distances

146

Kenneth Gray - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EM > Kenneth Gray EM > Kenneth Gray Kenneth Gray Group Leader, Sr. Physicist Bldg. 223, A-125 Phone: 630-252-9595 This e-mail address is being protected from spambots. You need JavaScript enabled to view it. Biography Kenneth E. Gray is a Senior Scientist in the Materials Science Division. His experimental thesis involved tunneling studies of superconductors and non-equilibrium effects. He joined Argonne's superconductivity group as a post-doc, and in 1972 became a staff member specializing in non-equilibrium effects in superconductors. He is presently the group leader of the Emerging Materials Group. He was the Director for the NATO Advanced Study Institute "Nonequilibrium Superconductivity, Phonons and Kapitza Boundaries" Maratea, Italy, August 25-September 5, 1980 and Chairman of the "1992 Applied Superconductivity Conference" Chicago, Illinois, August 23-28, 1992. He was the Thin Film Research Area Coordinator for the NSF Science and Technology Center for Superconductivity (University of Illinois, Urbana), Feb. 1989-Jan. 1992. He edited Nonequilibrium Superconductivity, Phonons and Kapitza Boundaries, (Plenum Publishing Corporation, 1981). He holds 5 patents, and Research and Development Magazine recognized two of his inventions as among the 100 most significant technical products of their year. These are the Superconducting Tunnel Junction Transistor in 1979 and the 3He/4He Dilution Refrigerator (with P. Roach) in 1988. He received the 1989 Significant Implication for Department of Energy Related Technologies in Solid State Physics - "Thin-Film Superconducting Device Concepts and Development". He has co-authored 250 publications (5300 citations) and is known for research collaborations on flux dynamics and point-contact tunneling in high-temperature superconductors and transport measurements in the highly anisotropic colossal magnetoresistive layered manganites. He is a Senior Scientist and the Group Leader for the Emerging Materials Group at Argonne. His current research interests include tunneling in exotic superconductors, phase diagrams of layered manganites and non-equilibrium effects in complex electronic oxides. He was also an integral part of the recent development of a compact solid-state source for THz radiation.

147

News Archive - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

News Archive News Archive News & Events Archive January 2, 2013 Chaotic 'spin vortices' could lead to new computer memories November 30, 2012 Department of Energy awards up to $120 million for battery hub to Argonne-led group October 11, 2012 Quantum spins mimic refrigerator magnets August 16, 2012 Drs. Nenad Markovic and Vojislav Stamenkovic received Distinguished Performance Award August 6, 2012 Nestor Zaluzec Receives Honor June 29, 2012 Dieter Gruen retires 65 years May 14, 2012 Argonne, Universities partner to design advanced materials April 23, 2012 Magnetic Modes March 15, 2012 Gian Felcher receives 2012 Sustained Research Prize of the Neutron Scattering Society of America December 14, 2011 7 things you may not know about catalysis December 8, 2011 Making molecular hydrogen more efficiently

148

Michael Norman - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Michael Norman Michael Norman Michael Norman Division Director Argonne Distinguished Fellow Bldg. 223, S-235 (630) 252-3518 (630) 252-8042 FAX This e-mail address is being protected from spambots. You need JavaScript enabled to view it. Quick Links Publications Invited Conference Talks Recent Preprints and Publications Education Ph.D. Physics, Tulane University, 1983 B.S. Physics, Louisiana State University - Shreveport, 1979 (Summa Cum Laude) Honors LSUS Circle of Excellence Award (2008) University of Chicago Distinguished Performance Award (1999) Fellow of the American Physical Society (1995) Professional Experiences 2011-present: Director, Materials Science Division 2009-present: Principal Investigator, Center for Emergent Superconductivity 2008-present: Argonne Distinguished Fellow

149

Armitage-050913 - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Armitage-050913 Armitage-050913 MATERIALS SCIENCE COLLOQUIUM SPEAKER: Prof. N. Peter Armitage The Johns Hopkins University TITLE: THz investigations of exotic quantum states of matter DATE: Thursday, May 9, 2013 TIME: 11:00 a.m. PLACE: Building 212 / A-157 HOST: Ray Osborn Refreshments will be served at 10:45 a.m. ABSTRACT: "The underlying physical laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are ... completely known..." ...or so was claimed in 1929 by P.A.M. Dirac shortly after the Schrodinger equation had been verified for few electron systems like H2 and He. Dirac continued that the difficulty in extending this success to largersystems is "only that the exact application of these laws leads to equations much

150

Gutt-111512 - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gutt-111512 Gutt-111512 MATERIALS SCIENCE COLLOQUIUM SPEAKER: Dr. Christian Gutt DESY, Germany TITLE: X-Ray Snapshots of Magnets and Liquids Using X-Ray Free-Electron Lasers DATE: Thursday, November 15, 2012 TIME: 11:00 am PLACE: Building 212 / A-157 HOST: Paul Fuoss Refreshments will be served at 10:45 a.m. ABSTRACT: X-ray free-electron laser sources provide extremely high-intensity and ultashort X-ray pulses which allow to access ultrafast phenomena in condensed matter on the nanoscale. In this talk I will report on results and future challenges of resonant magnetic scattering experiments using the FEL sources FLASH, LCLS and FERMI [1-3]. We investigated via IR pump / FEL probe experiments the ultrafast response of magnetic domain configurations in Co/Pt multilayer systems [4] to an

151

Edith Perret - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SRS > Edith Perret SRS > Edith Perret Edith Perret Postdoctoral Appointee Bldg. 212, C-223 Phone: 630-252-3132 This e-mail address is being protected from spambots. You need JavaScript enabled to view it. Biography Edith Perret received her degree in materials science in 2006 from ETH Zurich, Switzerland. During her doctoral studies (2006-2010), she investigated the structure of molecular liquids under nanometer confinement by synchrotron x-ray reflectivity and surface force experiments at the Swiss Light Source (SLS) of the Paul Scherrer Institute in Switzerland. Prof. J. Friso van der Veen and Prof. Manfred Heuberger supervised her. In autumn 2010 she worked as a scientist at the EMPA St.Gallen in Switzerland. Her project consisted of analyzing small-angle x-ray scattering data of

152

Shpyrko1-011013 - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Shpyrko1-011013 Shpyrko1-011013 MATERIALS SCIENCE COLLOQUIUM SPEAKER: Oleg Shpyrko University of California, San Diego TITLE: "Coherent X-ray Nanovision" DATE: Thursday, January 10, 2013 TIME: 11:00 a.m. PLACE: Building 212 / A-157 Refreshments will be served at 10:45 a.m. ABSTRACT: Attempts to produce focusing x-ray optics date back to the days of Roentgen, however, it was not until the past decade that X-ray Microscopy has finally been able to achieve sub-100 nmresolution. We have used X-ray micro-diffraction in combination with X-ray Photon Correlation Spectroscopy to investigate slow relaxation dynamics of Charge Density Wave domains in antiferromagnetic Chromium and TaS2. I will discuss similarities between dynamics in these charge- and spin-ordered condensates and dynamics

153

Michael R. Savina - Argonne National Laboratories, Materials Sicence  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Michael R. Savina Michael R. Savina Michael R. Savina Group Leader Bldg. 200, D-117 Phone: 630-252-3514 This e-mail address is being protected from spambots. You need JavaScript enabled to view it. Research Interests My research revolves around the interactions of lasers with surfaces; both as a means of surface analysis and for the study of large-scale laser ablation and damage mechanisms. Surfaces may respond to laser light in a variety of ways that depend on the optical, thermal, and mechanical properties of the surface, and the color, intensity, and duration of the laser light. By understanding the phenomena, we can tailor the interaction to remove only a tiny bit of material for analysis, or ablate away large amounts for surface cleaning. In many cases, laser effects are cumulative, that is each laser pulse actively processes the

154

Adler-091913 - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Adler-091913 Adler-091913 MATERIALS SCIENCE COLLOQUIUM SPEAKER: Stuart Adler University of Washington TITLE: Theory and Application of Nonlinear Electrochemical Impedance Spectroscopy (NLEIS) DATE: Thursday, Sept. 19, 2013 TIME: 11:00 am PLACE: 11:00 a.m. - Bldg. 212, Conference Room A157 HOST: Hoydoo You ABSTRACT: Traditional electrochemical impedance spectroscopy (EIS) involves measuring the response of an electrochemical system or device to a small-amplitude perturbation. However, a significant limitation of EIS is that it only probes the linearized response, filtering out potentially useful information contained in the nonlinear behavior. Over the last 7 years, our group has pioneered an extension of EIS called nonlinear EIS, (NLEIS) that attempts to capture this lost nonlinear information via

155

Yuasa-110812 - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Yuasa-110812 Yuasa-110812 MATERIALS SCIENCE COLLOQUIUM SPEAKER: Professor Shinji Yuasa AIST Japan (IEEE Distinguished Lecturer) TITLE: "Magnetoresistance and Spin-Transfer Torque in Magnetic Tunnel Junctions" DATE: Thursday, November 8, 2012 TIME: 11:00 am PLACE: Building 212 / A-157 HOST: Axel Hoffmann Refreshments will be served at 10:45 a.m. ABSTRACT: A magnetic tunnel junction (MTJ) consisting of a thin insulating layer (a tunnel barrier) sandwiched between two ferromagnetic electrodes exhibits the tunnel magnetoresistance (TMR) effect due to spin-dependent electron tunneling. Since the discovery of room-temperature TMR in the mid-1990s, MTJs with an amorphous aluminum oxide (Al-O) tunnel barrier have been studied extensively. Such MTJs exhibit a magnetoresistance (MR) ratio of

156

SC Research - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research > Research Groups Research > Research Groups Research Groups Display # 5 10 15 20 25 30 50 100 All Title Research Groups CMT Personnel CMT Research CMT Links Condensed Matter Theory ECS Personnel ECS Research ECS Highlights Energy Conversion and Storage EM-Heating Effects EM- Electronic Valves EM-Breaking Up EM-Exploring Complexity EM-Narrow Phase Fields EM Pnictide Phase Diagram EM Molten Polysulfides EM Materials By Design EM Iron Pnictides EM Personnel EM D.J. Miller EM D.G. Hinks EM M.Grimsditch EM Tunneling EM Structural Features EM Seamless Joining EM Role of Reactive Elements EM Residual Strains EM Proximity Interactions EM Interface Roughness EM Growth Strains EM Grain Boundaries EM Extending the Phase EM Exploring the Mechanism EM Double Exchange EM Research EM Links EM Home IM Odin III

157

Materials Transportation Testing & Analysis at Sandia National Laboratories  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Testing Testing Carlos Lopez, (505) 845-9545 Packages transporting the larger "Type B" quantities of radioactive materials must be qualified and certified under Title 10, Code of Federal Regulations, Part 71, or under the equivalent international standard ST-1 issued by the International Atomic Energy Agency. The principal thermal qualification test is the 30 minute pool fire. As part of the National Transportation Program, the Transportation Risk & Packaging Program at Sandia can plan and conduct these tests for DOE and other package suppliers. Test Plans, QA plans and other necessary test documents can be prepared for customer and regulatory approval. Tests may be conducted with a variety of available facilities at Sandia, including large pools, an indoor fire facility, and a radiant heat test

158

Liao-020713 - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Liao-020713 Liao-020713 MATERIALS SCIENCE SEMINAR SPEAKER: Zhaoliang Liao Louisiana State University TITLE: The dead layer and critical behavior of La2/3Sr1/3MnO3 ultra thin film DATE: Thursday, February 07, 2013 TIME: 2:00 p.m. PLACE: Building 223 / S-105 HOST: Anand Bhattacharya ABSTRACT: "Dead layer"-the insulating behavior in ultrathin films of metallic oxides-is an intriguing property of thin TMO films. The question is, is this effect caused by dimensional confinement, or by the interface, strain, segregation, impurity, or stoichiometry. Utilizing UHV Laser-MBE growth technique, we have systematically studied the thickness-dependence of structure/properties for La2/3Sr1/3MnO3 (LSMO) on SrTiO3(001) by using in-situ characterization such as LEED, XPS and STM, and ex-situ transport

159

Iacocca-011013 - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Iacocca-011013 Iacocca-011013 MATERIALS SCIENCE SEMINAR SPEAKER: Ezio Iacocca University of Gothenburg, Sweden TITLE: Micromagnetic simulations of highly non-linear modes in spin torque oscillators: propagating, solitonic and magnetic dissipative droplet modes DATE: Thursday, January 10, 2013 TIME: 2:00 p.m. PLACE: Building 223, Conference Room S105 HOST: Olle Heinonen ABSTRACT: Magnetic dynamics can be locally excited in spin valve structures by the current-induced spin transfer torque (STT). Such devices are generally referred to as Spin Torque Oscillators where the high current densities required are, for instance, achieved by patterning a metallic nanocontact on top of the spin valve (NC-SV). The resulting dynamics are analytically described with the Landau-Lifshitz-Gilbert-Slonczewski

160

Bum Joon Kim - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EM > Bum Joon Kim EM > Bum Joon Kim Bum Joon Kim Assistant Physicist Bldg. 223, A-129 Phone: 630-252-5347 This e-mail address is being protected from spambots. You need JavaScript enabled to view it. Biography Bumjoon ("BJ") Kim is a staff scientist in the Material Science Division. He received B. A. from Korea Advanced Institute of Science and Technology in 1999 and Ph. D. from Seoul National University in 2005. His thesis involved angle-resolved photoemission (ARPES) studies of transition-metal oxides. Before joining MSD in 2010, he held postdoctoral position in University of Michigan and visiting assistant professor in University of Tokyo. His current research focuses on 5d transition-metal oxides, in which strong spin-orbit coupling and correlation effects conspire to realize novel phases of matter. His research program encompasses single crystal growth and characterizations, elastic and inelastic x-ray scattering, and ARPES.

Note: This page contains sample records for the topic "laboratory vorbeck materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

MF Research - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Research Magnetic Films Research Vision: Our vision is to address the grand challenges in condensed matter and materials physics via the exploration of the realm of nanomagnetism. Nanomagnetism is connected to fundamental questions of how the energy demands of future generations will be met via the utilization of wind turbines as a viable alternate energy source, and electric vehicles as alternatives to continued fossil-fuel consumption. Nanomagnetism is connected to the question of how the information technology revolution will be extended via the advent of spintronics and the possibilities of communication by means of pure spin currents. Nanomagnetism provides deep issues to explore in the realms of nanoscale confinement, physical proximity, far-from-equilibrium phenomena, and ultrafast and emergent

162

Materials Transportation Testing & Analysis at Sandia National Laboratories  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Testing Testing Doug Ammerman, (505) 845-8158 Type B packages that transport radioactive materials must survive a sequence of full-scale (actual physical size) impact, puncture, fire, and immersion tests designed to replicate transportation accident conditions. The Hypothetical Accident Conditions (six tests as defined in 10 CFR Part 71.73) tests 1 through 4 (Drop, Crush, Puncture and Fire) are sequential, test 5 (Immersion) is performed on either a previously tested or untested package. Free Drop Test Crush Test Puncture Test Thermal Test Immersion Test [drop] Click to view picture [crush] Click to view picture [puncture] Click to view picture [thermal] Click to view picture [immersion] Click to view picture Dropping a package from 30 feet onto an unyielding target. (the unyielding target forces all of the deformation to be in the package, none in the target). The speed on impact is 44 feet per second or 30 miles per hour. Dropping a 1100 pound steel plate from 30 feet onto a package. This test is only required for packages weighing less than 1100 pounds. The speed on impact is 44 feet per second or 30 miles per hour. Dropping a package from 40 inches onto a welded, 6 inch diameter, steel spike. The speed on impact is 14.6 feet per second or 10 miles per hour. Placing a package 40 inches above a pool of burning fuel for 30 minutes at 800 degrees Celsius (1475 degrees Fahrenheit). Placing a package under 50 feet of water for 8 hours. Fissile material packages are also immersed under 3 feet of water for 8 hours sequentially after tests 1 through 4

163

INTRODUCTION In every laboratory where radioactive materials are utilized, it is necessary to maintain a  

E-Print Network [OSTI]

) in their work habits and to minimize the potential for exposures, contamination or release of radioactiveINTRODUCTION In every laboratory where radioactive materials are utilized, it is necessary of Texas the privilege of using large varieties of radioactive materials. Large amounts of activity

164

Laboratory for Advanced Materials Processing University of Maryland http://www.enma.umd.edu/LAMP  

E-Print Network [OSTI]

) = Rs x (L / W), with Rs: sheet resistance of a layer of this material The sheet resistance is expressedLaboratory for Advanced Materials Processing � University of Maryland http Operating Procedure for LAMP four point probe sheet resistance measurements Overview of 4 point probe

Rubloff, Gary W.

165

Phenomenological modelling of viscoplasticity Mechanics of Materials Laboratory, Rensselaer Polytechnic Institute, Troy, NY 12180-3590,  

E-Print Network [OSTI]

331 Phenomenological modelling of viscoplasticity E. Krempl Mechanics of Materials Laboratory. - The essentials of phenomenological modeling of metal deformation behavior at small strain are introduced together interpreted from a materials science viewpoint are re-analyzed from a phenomenological point of view

Paris-Sud XI, Université de

166

John Pearson - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MF > John Pearson MF > John Pearson John Pearson Principle Materials Engineer Bldg. 223, B-137 Phone: 630-252-7738 This e-mail address is being protected from spambots. You need JavaScript enabled to view it. Education M.S. Southern Illinois University - 1987 Studied ion irradation effects in Si and Zr-Al alloys with the guidance of Lynn Rehn and Paul Okamoto (MSD-ANL). Thesis combined Transmission Electron Diffraction with Brillouin Light Scattering to study the effects of disorder on elastic constants Research and Expertise I joined the Magnetic Films Group in 1987 as a Scientific Assistant. I design and implement experiments in cooperation with the principal investigators of the Magnetic Films Group. I have studied thin-films, multilayers and superlattices with Electron Microscopy. I am involved in studies of magnetic coupling including Fe/Cr wedges using UV-photoemission, and Surface Magneto-Optical Kerr Effect (SMOKE). Currently, research includes STM studies on self-assembled magnetic nanostructures, and transport properties of lithographically patterned nanostructures.

167

Laboratory study of acid stimulation of drilling-mud-damaged geothermal-reservoir materials. Final report  

SciTech Connect (OSTI)

Presented here are the results of laboratory testing performed to provide site specific information in support of geothermal reservoir acidizing programs. The testing program included laboratory tests performed to determine the effectiveness of acid treatments in restoring permeability of geologic materials infiltrated with hydrothermally altered sepiolite drilling mud. Additionally, autoclave tests were performed to determine the degree of hydrothermal alteration and effects of acid digestion on drilling muds and drill cuttings from two KGRA's. Four laboratory scale permeability/acidizing tests were conducted on specimens prepared from drill cuttings taken from two geothermal formations. Two tests were performed on material from the East Mesa KGRA Well No. 78-30, from a depth of approximately 5500 feet, and two tests were performed on material from the Roosevelt KGRA Well No. 52-21, from depths of approximately 7000 to 7500 feet. Tests were performed at simulated in situ geothermal conditions of temperature and pressure.

Not Available

1983-05-01T23:59:59.000Z

168

Rationale and summary of methods for determining ultrasonic properties of materials at Lawrence Livermore National Laboratory  

SciTech Connect (OSTI)

This report is a summary of the methods used to determine ultrasonic velocities through the many materials tested at the Acoustic Properties of Materials Laboratory. Ultrasonic velocity techniques enable the determination of material properties, including elastic moduli, without harming the materials being tested, an advantage some over mechanical methods. Ultrasonic modulus determination has other advantages as well: (1) relative ease and low cost of material preparation; and (2) comparative analysis to physical testing as a function of material loading rate dependence. In addition, ultrasonic measurement provides clues to determine grain size and orientation, and provides a relative indication of material anisotropy with respect to the material geometry. The authors usually perform ultrasonic measurements on materials in ambient atmospheric conditions, and in a relatively free-free condition. However, the authors can perform them in other environments, as required. This paper describes some of the techniques used in this laboratory and shows how ultrasonic velocities are used to establish elastic constants. It also includes a sample test report for a homogeneous isotropic solid, along with a list of references.

Brown, A.E.

1995-02-09T23:59:59.000Z

169

Materials Issues in Innovative Turbine Blade Designs - Oak Ridge National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Issues in Innovative Turbine Materials Issues in Innovative Turbine Blade Designs-Oak Ridge National Laboratory Background Gas turbine efficiency and service life are strongly affected by the turbine expansion process, where the working fluid's high thermal energy gas is converted into mechanical energy to drive the compressor and the electric generator. The most effective way to increase the efficiency of the expansion process is to raise the temperature of the turbine's working fluid.

170

Suzanne G.E. te Velthuis - Argonne National Laboratories, Materials Sicence  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NXRS > Suzanne G.E. te Velthuis NXRS > Suzanne G.E. te Velthuis Suzanne G.E. te Velthuis Physicist Bldg. 223, B-205 Phone 630-252-1075 This e-mail address is being protected from spambots. You need JavaScript enabled to view it. Quick Links Selected Publications Selected Invited Talks Present Position Physicist, Materials Science Division, Argonne National Laboratory (2005-Present). Education Ph.D. Degree, Deft University of Technology, The Netherlands (1999). Masters Degree in Applied Physics, Eindhoven University of Technology, The Netherlands (1993). Professional Expirence Assistant Scientist, Materials Science Division, Argonne National Laboratory, (2001-2005). Post-doctoral Scientist, Intense Pulsed Neutron Source, Argonne National Laboratory (1999-2001). Researcher in training (leading to PhD degree), Delft University of Technology, The Netherlands (1994 -1998).

171

UT-BATTELLE, LLC/Oak Ridge National Laboratory MATERIAL AND SERVICES ORDER FORM (MSOF)  

E-Print Network [OSTI]

or participate in the filling of this order pursuant to their employment or the contracts with DOE. The term-AC05-OR22725 with DOE. "Government" means the federal government of the United States of America. 21 UT-BATTELLE, LLC/Oak Ridge National Laboratory MATERIAL AND SERVICES ORDER FORM (MSOF) UT

Pennycook, Steve

172

1Nuclear Materials Technology Division/Los Alamos National Laboratory Publications  

E-Print Network [OSTI]

, the United States had no easy way of recover- ing plutonium from its nuclear weapons with- out generating1Nuclear Materials Technology Division/Los Alamos National Laboratory 0 Publications Nuclear Fuels-Dehydride Recycle Process for Plutonium Recovery 4-5 Electrolytic Decontamination of Oralloy 6 Applied Weapons

173

Management of nuclear materials in an R D environment at the Los Alamos National Laboratory  

SciTech Connect (OSTI)

Los Alamos National Laboratory is a multidisciplinary R D organization and, as such, its nuclear materials inventory is diverse. Accordingly, major inventories of isotopes such as Pu-238, Pu-239, Pu-242, U-235, Th, tritium, and deuterium, and lesser amounts of isotopes of Am, Cm, Np and exotic isotopes such as berkelium must be managed in accordance with Department of Energy Orders and Laboratory policies. Los Alamos also acts as a national resource for many one-of-a-kind materials which are supplied to universities, industry, and other government agencies within the US and throughout the world. Management of these materials requires effective interaction and communication with many nuclear materials custodians residing in over forty technical groups as well as effective interaction with numerous outside organizations. This paper discusses the role, philosophy, and organizational structure of Nuclear Materials Management at Los Alamos and also briefly presents results of two special nuclear materials management projects: 1- Revision of Item Description Codes for use in the Los Alamos nuclear material data base and 2- The recommendation of new economic discard limits for Pu-239. 2 refs., 1 fig.

Behrens, R.G.; Roth, S.B.; Jones, S.R.

1991-01-01T23:59:59.000Z

174

Materials Capability Review Los Alamos National Laboratory April 29-May 2, 2012  

SciTech Connect (OSTI)

Los Alamos National Laboratory (LANL) uses Capability Reviews to assess the quality and institutional integration of science, technology and engineering (STE) and to advise Laboratory Management on the current and future health of LANL STE. The capabilities are deliberately chosen to be crosscutting over the Laboratory and therefore will include experimental, theoretical and simulation disciplines from multiple line organizations. Capability Reviews are designed to provide a more holistic view of the STE quality, integration to achieve mission requirements, and mission relevance. The scope of these capabilities necessitate that there will be significant overlap in technical areas covered by capability reviews (e.g., materials research and weapons science and engineering). In addition, LANL staff may be reviewed in different capability reviews because of their varied assignments and expertise. The principal product of the Capability Review is the report that includes the review committee's assessments, recommendations, and recommendations for STE.

Taylor, Antoinette J [Los Alamos National Laboratory

2012-04-20T23:59:59.000Z

175

Review of the Lawrence Livermore Nationa Laboratory Identiified Defective Department of Transportation Hazardous Material Packages  

Broader source: Energy.gov (indexed) [DOE]

5 5 Site Visit Report - Review of the Lawrence Livermore National Laboratory Identified Defective Department of Transportation Hazardous Material Packages This site visit report documents the results of Office of Health, Safety and Security's review of the Lawrence Livermore National Laboratory (LLNL) identification, immediate actions, communications, documentation, evaluation, reporting and follow-up to the discovery of defective Department of Transportation (DOT) UN1A2 55- and 30-gallon open head single bolt closure steel drums intended for storage and transportation of hazardous waste and materials. This review, conducted on January 26-29, 2010, was sponsored by the DOE Livermore Site Office (LSO) to support interface with the lab and this report is intended to support follow-up

176

Materials capability review Los Alamos National Laboratory, May 3-6, 2010  

SciTech Connect (OSTI)

The 2010 'Capability Review' process at LANL significantly differs from the Division reviews of prior years. The Capabilities being reviewed (some 4-8 per year) are deliberately chosen to be crosscutting over the Laboratory, and therefore will include not only several experimental, theoretical and simulation disciplines, but also contributions from multiple line organizations. This approach is consistent with the new Laboratory organizational structure, focusing on agile and integrated capabilities applied to present national security missions, and also nurtured to be available for rapid application to future missions. The overall intent is that the Committee assess the quality of the science, engineering, and technology identified in the agenda, and advise the LANS Board of Governors and Laboratory management. Specifically, the Committees will: (1) Assess the quality of science, technology and engineering within the Capability in the areas defined in the agenda. Identify issues to develop or enhance the core competencies within this capability. (2) Evaluate the integration of this capability across the Laboratory organizations that are listed in the agenda in terms of joint programs, projects, proposals, and/or publications. Describe the integration of this capability in the wider scientific community using the recognition as a leader within the community, ability to set research agendas, and attraction and retention of staff. (3) Assess the quality and relevance of this capability's science, technology and engineering contributions to current and emerging Laboratory programs, including Nuclear Weapons, Threat Reduction/Homeland Security, and Energy Security. (4) Advise the Laboratory Director/Principal Associate Director for Science, Technology and Engineering on the health of the Capability including the current and future (5 year) science, technology and engineering staff needs, mix of research and development activities, program opportunities, environment for conducting science, technology and engineering. The specific charge for the Materials Capability Review is to assess the Los Alamos Laboratory Directed Research and Development project titled, 'First Principles Predictive Capabilities for Transuranic Materials: Mott Insulators to Correlated Metals' using the criteria performance, quality, and relevance for the current status of the project. The committee is requested to provide advice on future direction of the project.

Taylor, Antoinette [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

177

Annual report: Purchasing and Materials Management Organization, Sandia National Laboratories, fiscal year 1992  

SciTech Connect (OSTI)

This report summarizes the purchasing and transportation activities of the Purchasing and Materials Management Organization for Fiscal Year 1992. Activities for both the New Mexico and California locations are included. Topics covered in this report include highlights for fiscal year 1992, personnel, procurements (small business procurements, disadvantaged business procurements, woman-owned business procurements, New Mexico commercial business procurements, Bay area commercial business procurements), commitments by states and foreign countries, and transportation activities. Also listed are the twenty-five commercial contractors receiving the largest dollar commitments, commercial contractors receiving commitments of $1,000 or more, integrated contractor and federal agency commitments of $1,000 or more from Sandia National Laboratories/New Mexico and California, and transportation commitments of $1,000 or more from Sandia National Laboratories/New Mexico and California.

Zaeh, R.A.

1993-04-01T23:59:59.000Z

178

High Temperature Materials Laboratory fourth annual report, October 1990--September 1991  

SciTech Connect (OSTI)

The High Temperature Materials Laboratory has completed its fourth year of operation as a designated Department of Energy User Facility at the Oak Ridge National Laboratory. Growth of the user program is evidenced by the number of outside institutions who have executed user agreements since the facility began operation in 1987. A total of 118 nonproprietary agreements (62 university and 56 industry) and 28 proprietary agreements (2 university, 26 industry) are now in effect. Five other government facilities have also participated in the user program. Sixty-free nonproprietary research proposals (38 from university, 26 from industry, and 1 other government facility) and four proprietary proposals were considered during this reporting period. Research projects active in FY 1991 are summarized.

Tennery, V.J.; Foust, F.M.

1991-12-01T23:59:59.000Z

179

High Temperature Materials Laboratory sixth annual report, October 1992--September 1993  

SciTech Connect (OSTI)

The High Temperature Materials Laboratory has completed its sixth year of operation as a designated Department of Energy User Facility at the Oak Ridge National Laboratory. Growth of the User Program is evidenced by the number of outside institutions executing user agreements since the facility began operation in 1987. A total of 172 nonproprietary agreements (88 university and 84 industry) and 35 proprietary agreements, (2 university, 33 industry) are now in effect. Six other government facilities have also participated in the User Program. Thirty-eight states are represented by these interactions. Ninety-four nonproprietary research proposals (44 from universities, 47 from industry, and 3 from other government facilities) and three proprietary proposals were considered during this reporting period. Nonproprietary research projects active in FY 1993 are summarized.

Tennery, V.J.; Foust, F.M.

1993-12-01T23:59:59.000Z

180

Berry phase effects on electronic properties Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge,  

E-Print Network [OSTI]

Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA Ming-Che Chang Department of PhysicsBerry phase effects on electronic properties Di Xiao Materials Science and Technology Division, Oak

Wu, Zhigang

Note: This page contains sample records for the topic "laboratory vorbeck materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Chemistry {ampersand} Materials Science program report, Weapons Resarch and Development and Laboratory Directed Research and Development FY96  

SciTech Connect (OSTI)

This report is the annual progress report for the Chemistry Materials Science Program: Weapons Research and Development and Laboratory Directed Research and Development. Twenty-one projects are described separately by their principal investigators.

Chase, L.

1997-03-01T23:59:59.000Z

182

High Temperature Materials Laboratory seventh annual report, October 1993--September 1994  

SciTech Connect (OSTI)

The High Temperature Materials Laboratory (HTML) has completed its seventh year of operation as a designated Department of Energy User Facility at the Oak Ridge National Laboratory. Growth of the User Program has been demonstrated by the number of institutions executing user agreements since the HTML began operation in 1987. A total of 193 nonproprietary agreements (91 industry and 102 university) and 41 proprietary agreements (39 industry and two university) are now in effect. This represents an increase of 21 nonproprietary user agreements during FY 1994. Forty-one states are represented by these users. During FY 1994, the HTML User Program evaluated 106 nonproprietary proposals (46 from industry, 52 from universities, and 8 from other government facilities) and 8 proprietary proposals. The HTML User Advisory Committee approved about ninety-five percent of those evaluated proposals, sometimes after the prospective user revised the proposal based on comments from the Committee. This annual report discusses FY 1994 activities in the individual user centers, as well as plans for the future. It also gives statistics about users and their proposals and FY 1994 publications, and summarizes nonproprietary research projects active in FY 1994.

Tennery, V.J.; Teague, P.A.

1994-12-01T23:59:59.000Z

183

Los Alamos National Laboratory new generation standard nuclear material storage container - the SAVY4000 design  

SciTech Connect (OSTI)

Incidents involving release of nuclear materials stored in containers of convenience such as food pack cans, slip lid taped cans, paint cans, etc. has resulted in defense board concerns over the lack of prescriptive performance requirements for interim storage of nuclear materials. Los Alamos National Laboratory (LANL) has shared in these incidents and in response proactively moved into developing a performance based standard involving storage of nuclear material (RD003). This RD003 requirements document has sense been updated to reflect requirements as identified with recently issued DOE M 441.1-1 'Nuclear Material Packaging Manual'. The new packaging manual was issued at the encouragement of the Defense Nuclear Facilities Safety Board with a clear directive for protecting the worker from exposure due to loss of containment of stored materials. The Manual specifies a detailed and all inclusive approach to achieve a high level of protection; from package design & performance requirements, design life determinations of limited life components, authorized contents evaluations, and surveillance/maintenance to ensure in use package integrity over time. Materials in scope involve those stored outside an approved engineered-contamination barrier that would result in a worker exposure of in excess of 5 rem Committed Effective Does Equivalent (CEDE). Key aspects of meeting the challenge as developed around the SAVY-3000 vented storage container design will be discussed. Design performance and acceptance criteria against the manual, bounding conditions as established that the user must ensure are met to authorize contents in the package (based upon the activity of heat-source plutonium (90% Pu-238) oxide, which bounds the requirements for weapons-grade plutonium oxide), interface as a safety class system within the facility under the LANL plutonium facility DSA, design life determinations for limited life components, and a sense of design specific surveillance program implementation as LANL moves forward into production and use of the SAVY-3000 will all be addressed. The SAVY-3000 is intended as a work horse package for the DOE complex as a vented storage container primarily for plutonium in solid form.

Stone, Timothy Amos [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

184

Element One, Inc. | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Umpqua Energy, Inc. Umpqua Energy, Inc. Argonne National Laboratory 142564 likes Umpqua Energy, based in Medford, Oregon, is using an Argonne National Laboratory technology to develop a system that allows a gasoline engine to operate in an extreme lean burn mode in order to increase gasoline mileage. One negative side effect of a lean burn engine, whether powered by gasoline or diesel fuel, is an increase in the amount of harmful gases released to the environment. The company expects to both increase fuel economy and simultaneously reduce emissions with its system. Learn More Vorbeck Materials Corp. Pacific Northwest National Laboratory 45458 likes Vorbeck Materials, based in Jessup, Md., is using a Pacific Northwest National Laboratory (PNNL)-developed method for building tiny chemical

185

Treatment of effluents arising from a material characterization laboratory, using chemical precipitation and reverse osmosis processes  

SciTech Connect (OSTI)

Owing to the restrictions imposed by the Regulations, mainly in the field of effluent release into a water body, it`s necessary to use a set of technologies that will help meeting the standards established by these regulations. Taking into account what was exposed above, a process for treating the effluents arising from a Material Characterization Laboratory, that will characterize nuclear materials is proposed in this paper. The process proposed uses chemical precipitation for removing chemicals which can be removed by this means (Chromium, Calcium and Sulfate for instance), and reverse osmosis process to purify the filtrate from precipitation process. The reverse osmosis process is used to remove dissolved chemicals (Nitrates and Chlorides). A synthetic solution with a COD of 8000 mg/l was used to simulate the treatment process. After treatment was finished, a purified stream, which represents 90 % of the intake stream have presented a COD of less then 10 mg/l, showing that this process can be utilized to minimize the impact caused to the environment. The characterization of all streams involved in the treatment process as well as the process description is presented in this paper.

Bello, S.M.G.; Mierzwa, J.C. [Cidade Universitaria, Sao Paulo (Brazil)

1995-11-01T23:59:59.000Z

186

A retrospective survey of the use of laboratory tests to simulate internal combustion engine materials tribology problems  

SciTech Connect (OSTI)

Progress in the Field of tribology strongly parallels, and has always been strongly driven by, developments and needs in transportation and related industries. Testing of candidate materials for internal combustion engine applications has historically taken several routes: (1) replacement of parts in actual engines subjected to daily use, (2) testing in special, instrumented test engines, (3) and simulative testing in laboratory tribometers using relatively simple specimens. The advantages and disadvantages of each approach are reviewed using historical examples. A four-decade, retrospective survey of the tribomaterials literature focused on the effectiveness of laboratory simulations for engine materials screening. Guidelines for designing and ducting successful tribology laboratory simulations will be discussed. These concepts were used to design a valve wear simulator at Oak Ridge National Laboratory.

Blau, P.J.

1992-12-31T23:59:59.000Z

187

Follow-up Inspection on Material Control and Accountability at Los Alamos National Laboratory, INS-O-13-04  

Broader source: Energy.gov (indexed) [DOE]

Follow-up Inspection on Material Follow-up Inspection on Material Control and Accountability at Los Alamos National Laboratory INS-O-13-04 July 2013 Department of Energy Washington, DC 20585 July 18, 2013 MEMORANDUM FOR THE ACTING MANAGER, LOS ALAMOS FIELD OFFICE, NATIONAL NUCLEAR SECURITY ADMINISTRATION FROM: Sandra D. Bruce Assistant Inspector General for Inspections Office of Inspector General SUBJECT: INFORMATION: Inspection Report on "Follow-up Inspection on Material Control and Accountability at Los Alamos National Laboratory" INTRODUCTION AND OBJECTIVE The Department of Energy's (Department) Los Alamos National Laboratory (Los Alamos) is managed and operated under contract by Los Alamos National Security, LLC, for the National Nuclear Security Administration (NNSA). The Los Alamos Field Office is the Federal entity

188

Los Alamos National Laboratory Est. 1943 MPA Materials Matter--Newsletter of the Materials Physics and Applications Division I N S I D E  

E-Print Network [OSTI]

, satellites in deep space, secure communications without need for encryption, medical applicationsJune 2010 Los Alamos National Laboratory · Est. 1943 MPA Materials Matter to the advancement of technology in New Mexico. Intel, the New Mexico Technology Council, and Sandia National

189

PATRAM '92: 10th international symposium on the packaging and transportation of radioactive materials [Papers presented by Sandia National Laboratories  

SciTech Connect (OSTI)

This document provides the papers presented by Sandia Laboratories at PATRAM '92, the tenth International symposium on the Packaging and Transportation of Radioactive Materials held September 13--18, 1992 in Yokohama City, Japan. Individual papers have been cataloged separately. (FL)

none,

1992-01-01T23:59:59.000Z

190

Material control and accountability (MC&A) recovery from the Cerro Grande fire at Los Alamos National Laboratory  

SciTech Connect (OSTI)

During the week of May 10-14, 2000, the Cerro Grande Fire scorched over 40,000 acres of prime forestland and destroyed over 400 homes in the Los Alamos community and several structures at the Los Alamos National Laboratory (LANL). Of the land affected by the fire, nearly one quarter of it was Laboratory property. All of LANL's 64 material balance areas (MBAs) were affected to some degree, but one Category I technical area and several Category I11 and IV areas sustained heavy damage. When the MC&A personnel were allowed to return to work on May 23, they addressed the following problems: How do we assure both ourselves and the Department of Energy (DOE) that no nuclear materials had been compromised? How do we assist the nuclear material (NM) custodians and their operating groups so that they can resume normal MC&A operations? Immediately after the return to work, the Laboratory issued emergency MC&A assurance actions for Category I through Category IV facilities. We conducted special inventories, area walkthroughs, and other forms of evaluation so that within a month after the fire, we were able to release the last MBA to resume work and assure that all nuclear material had been accounted for. This paper discusses the measures LANL adopted to ensure that none of its nuclear material had been compromised.

Haag, William Earl

2001-01-01T23:59:59.000Z

191

Termination of Safeguards for Accountable Nuclear Materials at the Idaho National Laboratory  

SciTech Connect (OSTI)

Termination of safeguards ends requirements of Nuclear Material Control and Accountability (MC&A) and thereby removes the safeguards basis for applying physical protection requirements for theft and diversion of nuclear material, providing termination requirements are met as described. Department of Energy (DOE) M 470.4 6 (Nuclear Material Control and Accountability [8/26/05]) stipulates: 1. Section A, Chapter I (1)( q) (1): Safeguards can be terminated on nuclear materials provided the following conditions are met: (a) 'If the material is special nuclear material (SNM) or protected as SNM, it must be attractiveness level E and have a measured value.' (b) 'The material has been determined by DOE line management to be of no programmatic value to DOE.' (c) 'The material is transferred to the control of a waste management organization where the material is accounted for and protected in accordance with waste management regulations. The material must not be collocated with other accountable nuclear materials.' Requirements for safeguards termination depend on the safeguards attractiveness levels of the material. For attractiveness level E, approval has been granted from the DOE Idaho Operations Office (DOE ID) to Battelle Energy Alliance, LLC (BEA) Safeguards and Security (S&S). In some cases, it may be necessary to dispose of nuclear materials of attractiveness level D or higher. Termination of safeguards for such materials must be approved by the Departmental Element (this is the DOE Headquarters Office of Nuclear Energy) after consultation with the Office of Security.

Michael Holzemer; Alan Carvo

2012-04-01T23:59:59.000Z

192

One-Step No-Bake Hydrogen Storage Material | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

One-Step No-Bake Hydrogen Storage Material Scientists have designed a simple and direct method for the synthesis of a solid-state hydrogen storage material, alane (AlH3). Alane,...

193

Materials science and engineering at the Oak Ridge National Laboratory. Abstracts  

SciTech Connect (OSTI)

Abstracts of 31 papers are arranged under the following headings: surfaces and interfaces, advanced materials, and structural and electronic ceramics. (DLC)

Not Available

1986-01-01T23:59:59.000Z

194

Accelerated climate ageing of building materials, components and structures in the laboratory  

Science Journals Connector (OSTI)

An example of such new materials and solutions is building integrated photovoltaics (BIPV), where the developed solar cell...26 [75]. A BIPV system then also has to fulfil the requirements of a building envelope ...

Bjrn Petter Jelle

2012-09-01T23:59:59.000Z

195

Purchasing and Materials Management Organization, Sandia National Laboratories annual report, fiscal year 1993  

SciTech Connect (OSTI)

This report summarizes the purchasing and transportation activities of the Purchasing and Materials Management Organization for Fiscal Year 1993. Activities for both the New Mexico and California locations are included.

Martin, D.R.

1994-02-01T23:59:59.000Z

196

University of Illinois at Urbana-Champaign, Materials Research Laboratory progress report for FY 1993 and research proposal for FY 1994  

SciTech Connect (OSTI)

The materials research laboratory program is about 30% of total Materials Science and Engineering effort on the Univ. of Illinois campus. Coordinated efforts are being carried out in areas of structural ceramics, grain boundaries, field responsive polymeric and organic materials, molecular structure of solid-liquid interfaces and its relation to corrosion, and x-ray scattering science.

Birnbaum, H.K.

1993-03-01T23:59:59.000Z

197

Laboratory Assessment of Potential Impacts to Dungeness Crabs from Disposal of Dredged Material from the Columbia River  

SciTech Connect (OSTI)

Dredging of the Columbia River navigation channel has raised concerns about dredging-related impacts on Dungeness crabs (Cancer magister) in the estuary, mouth of the estuary, and nearshore ocean areas adjacent to the Columbia River. The Portland District, U.S. Army Corps of Engineers engaged the Marine Sciences Laboratory (MSL) of the U.S. Department of Energys Pacific Northwest National Laboratory to review the state of knowledge and conduct studies concerning impacts on Dungeness crabs resulting from disposal during the Columbia River Channel Improvement Project and annual maintenance dredging in the mouth of the Columbia River. The present study concerns potential effects on Dungeness crabs from dredged material disposal specific to the mouth of the Columbia River.

Vavrinec, John; Pearson, Walter H.; Kohn, Nancy P.; Skalski, J. R.; Lee, Cheegwan; Hall, Kathleen D.; Romano, Brett A.; Miller, Martin C.; Khangaonkar, Tarang P.

2007-05-07T23:59:59.000Z

198

DOE/EA-1651: Final Environmental Assessment for U-233 Material Downblending and Disposition Project at the Oak Ridge National Laboratory Oak Ridge, Tennessee (January 2010)  

Broader source: Energy.gov (indexed) [DOE]

51 51 Final Environmental Assessment for U-233 Material Downblending and Disposition Project at the Oak Ridge National Laboratory Oak Ridge, Tennessee U. S. Department of Energy Oak Ridge Office Oak Ridge, Tennessee January 2010 FINDING OF NO SIGNIFICANT IMPACT URANIUM-233 MATERIAL DOWNBLENDING AND DISPOSITION PROJECT AT THE OAK RIDGE NATIONAL LABORATORY, OAK RIDGE, TENNESSEE AGENCY: U.S. Department of Energy (DOE) ACTION: Finding of No Significant Impact (FONSI) SUMMARY: DOE has completed the Final Environmental Assessment for U-233 Material Downblending and Disposition Project at the Oak Ridge National Laboratory [DOE/EA-1651]. This environmental assessment (EA) evaluates the impacts of planned activities to modify selected

199

Electromechanical coupling in free-standing AlGaNGaN planar structures Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force  

E-Print Network [OSTI]

Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Ohio 45433 and Semiconductor Research Center, Wright State University, Dayton, Ohio 45435 J. D. Albrecht Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433 E. Pan Department of Civil Engineering

Pan, Ernie

200

Los Alamos National Laboratory summary plan to fabricate mixed oxide lead assemblies for the fissile material disposition program  

SciTech Connect (OSTI)

This report summarizes an approach for using existing Los Alamos National Laboratory (Laboratory) mixed oxide (MOX) fuel-fabrication and plutonium processing capabilities to expedite and assure progress in the MOX/Reactor Plutonium Disposition Program. Lead Assembly MOX fabrication is required to provide prototypic fuel for testing in support of fuel qualification and licensing requirements. It is also required to provide a bridge for the full utilization of the European fabrication experience. In part, this bridge helps establish, for the first time since the early 1980s, a US experience base for meeting the safety, licensing, safeguards, security, and materials control and accountability requirements of the Department of Energy and Nuclear Regulatory Commission. In addition, a link is needed between the current research and development program and the production of disposition mission fuel. This link would also help provide a knowledge base for US regulators. Early MOX fabrication and irradiation testing in commercial nuclear reactors would provide a positive demonstration to Russia (and to potential vendors, designers, fabricators, and utilities) that the US has serious intent to proceed with plutonium disposition. This report summarizes an approach to fabricating lead assembly MOX fuel using the existing MOX fuel-fabrication infrastructure at the Laboratory.

Buksa, J.J.; Eaton, S.L.; Trellue, H.R.; Chidester, K.; Bowidowicz, M.; Morley, R.A.; Barr, M.

1997-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "laboratory vorbeck materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Sandia National Laboratories: Geothermal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Funding Award On December 15, 2014, in Advanced Materials Laboratory, Capabilities, Energy, Facilities, Geothermal, Materials Science, News, News & Events, Partnership,...

202

Inquiry into the De-Inventory of Special Nuclear Material at Lawrence Livermore National Laboratory, OAS-L-12-11  

Broader source: Energy.gov (indexed) [DOE]

Inquiry into the De-Inventory of Special Nuclear Material at Lawrence Livermore National Laboratory OAS-L-12-11 September 2012 Department of Energy Washington, DC 20585 September 21, 2012 MEMORANDUM FOR THE MANAGER, LIVERMORE SITE OFFICE FROM: David Sedillo Director, Western Audits Division Office of Inspector General SUBJECT: INFORMATION: Special Report on "Inquiry into the De-Inventory of Special Nuclear Material at Lawrence Livermore National Laboratory" BACKGROUND The Lawrence Livermore National Laboratory (Livermore) is a Department of Energy facility managed and operated by Lawrence Livermore National Security, LLC (LLNS), for the Department's National Nuclear Security Administration (NNSA). Livermore's mission is to

203

Heat diffusion The objective of this laboratory is for you to use measurements of the diffusion of heat in a material to  

E-Print Network [OSTI]

Heat diffusion Objective The objective of this laboratory is for you to use measurements of the diffusion of heat in a material to enhance your understanding of solutions of the diffusion equation, computerbased oscilloscope. Introduction In MSE 307, we studied the heat capacity of materials. The heat

Braun, Paul

204

NNSAs Management of the $245 million Nuclear Materials Safeguards and Security Upgrades Project Phase II at Los Alamos National Laboratory  

Broader source: Energy.gov (indexed) [DOE]

NNSA's Management of the $245 NNSA's Management of the $245 Million Nuclear Materials Safeguards and Security Upgrades Project Phase II DOE/IG-0901 January 2014 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 January 2, 2014 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Special Report on "NNSA's Management of the $245 million Nuclear Materials Safeguards and Security Upgrades Project Phase II at Los Alamos National Laboratory" BACKGROUND The National Nuclear Security Administration's Los Alamos National Laboratory (LANL) is responsible for the protection and control of a significant portion of the Nation's special nuclear

205

A review of vacuum insulation research and development in the Building Materials Group of the Oak Ridge National Laboratory  

SciTech Connect (OSTI)

This report is a summary of the development work on flat-vacuum insulation performed by the Building Materials Group (BMG) in the Metals and Ceramics Division of the Oak Ridge National Laboratory (ORNL) during the last two years. A historical review of the technology of vacuum insulation is presented, and the role that ORNL played in this development is documented. The ORNL work in vacuum insulation has been concentrated in Powder-filled Evacuated Panels (PEPs) that have a thermal resistivity over 2.5 times that of insulating foams and seven times that of many batt-type insulations, such as fiberglass. Experimental results of substituting PEPs for chlorofluorocarbon (CFC) foal insulation in Igloo Corporation ice coolers are summarized. This work demonstrated that one-dimensional (1D) heat flow models overestimated the increase in thermal insulation of a foam/PEP-composite insulation, but three-dimensional (3D) models provided by a finite-difference, heat-transfer code (HEATING-7) accurately predicted the resistance of the composites. Edges and corners of the ice coolers were shown to cause the errors in the 1D models as well as shunting of the heat through the foam and around the PEPs. The area of coverage of a PEP in a foam/PEP composite is established as an important parameter in maximizing the resistance of such composites. 50 refs., 27 figs,. 22 tabs.

Kollie, T.G.; McElroy, D.L.; Fine, H.A.; Childs, K.W.; Graves, R.S.; Weaver, F.J.

1991-09-01T23:59:59.000Z

206

Safety Analysis Report for the use of hazardous production materials in photovoltaic applications at the National Renewable Energy Laboratory  

SciTech Connect (OSTI)

To ensure the continued safety of SERI's employees, the community, and the environment, NREL commissioned an internal audit of its photovoltaic operations that used hazardous production materials (HPMs). As a result of this audit, NREL management voluntarily suspended all operations using toxic and/or pyrophoric gases. This suspension affected seven laboratories and ten individual deposition systems. These activities are located in Building 16, which has a permitted occupancy of Group B, Division 2 (B-2). NREL management decided to do the following. (1) Exclude from this SAR all operations which conformed, or could easily be made to conform, to B-2 Occupancy requirements. (2) Include in this SAR all operations that could be made to conform to B-2 Occupancy requirements with special administrative and engineering controls. (3) Move all operations that could not practically be made to conform to B-2 Occupancy requirements to alternate locations. In addition to the layered set of administrative and engineering controls set forth in this SAR, a semiquantitative risk analysis was performed on 30 various accident scenarios. Twelve presented only routine risks, while 18 presented low risks. Considering the demonstrated safe operating history of NREL in general and these systems specifically, the nature of the risks identified, and the layered set of administrative and engineering controls, it is clear that this facility falls within the DOE Low Hazard Class. Each operation can restart only after it has passed an Operational Readiness Review, comparing it to the requirements of this SAR, while subsequent safety inspections will ensure future compliance.

Crandall, R.S.; Nelson, B.P. (National Renewable Energy Lab., Golden, CO (United States)); Moskowitz, P.D.; Fthenakis, V.M. (Brookhaven National Lab., Upton, NY (United States))

1992-07-01T23:59:59.000Z

207

from Astrophysical Implications of the Laboratory Study of Presolar Materials, edited by T. J. Bernatowicz and E. Zinner, AIP CP402, 1997, pp.5982  

E-Print Network [OSTI]

from Astrophysical Implications of the Laboratory Study of Presolar Materials, edited by T. J unusual O-isotopic ratios have been found in acid-resistant residues of five primitive meteorites. Thirty-up of this isotope in early thermal pulses in AGB stars or an origin in low-mass red giants of unusually high

Nittler, Larry R.

208

Heat Capacity and Latent Heat The objective of this laboratory is for you to explore the heat capacity of materials due to atomic  

E-Print Network [OSTI]

Heat Capacity and Latent Heat Objective The objective of this laboratory is for you to explore the heat capacity of materials due to atomic vibrations and the latent heat of phase, dataacquisition software, plotting and analysis software Introduction Knowledge of the heat capacity

Braun, Paul

209

Safety Analysis Report for the use of hazardous production materials in photovoltaic applications at the National Renewable Energy Laboratory  

SciTech Connect (OSTI)

To ensure the continued safety of SERI`s employees, the community, and the environment, NREL commissioned an internal audit of its photovoltaic operations that used hazardous production materials (HPMs). As a result of this audit, NREL management voluntarily suspended all operations using toxic and/or pyrophoric gases. This suspension affected seven laboratories and ten individual deposition systems. These activities are located in Building 16, which has a permitted occupancy of Group B, Division 2 (B-2). NREL management decided to do the following. (1) Exclude from this SAR all operations which conformed, or could easily be made to conform, to B-2 Occupancy requirements. (2) Include in this SAR all operations that could be made to conform to B-2 Occupancy requirements with special administrative and engineering controls. (3) Move all operations that could not practically be made to conform to B-2 Occupancy requirements to alternate locations. In addition to the layered set of administrative and engineering controls set forth in this SAR, a semiquantitative risk analysis was performed on 30 various accident scenarios. Twelve presented only routine risks, while 18 presented low risks. Considering the demonstrated safe operating history of NREL in general and these systems specifically, the nature of the risks identified, and the layered set of administrative and engineering controls, it is clear that this facility falls within the DOE Low Hazard Class. Each operation can restart only after it has passed an Operational Readiness Review, comparing it to the requirements of this SAR, while subsequent safety inspections will ensure future compliance.

Crandall, R.S.; Nelson, B.P. [National Renewable Energy Lab., Golden, CO (United States); Moskowitz, P.D.; Fthenakis, V.M. [Brookhaven National Lab., Upton, NY (United States)

1992-07-01T23:59:59.000Z

210

Sandia National Laboratories: RO  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RO ECIS-UNM: Biomimetic Membranes for Water Purification On February 20, 2013, in Advanced Materials Laboratory, Energy Efficiency, Facilities, Global Climate & Energy, Materials...

211

Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 MAG LAB REPORTS Volume 18 No. 1 CONDENSED MATTER SCIENCE Technique development, graphene, magnetism & magnetic materials, topological insulators, quantum fl uids & solids,...

212

From Lab to Market: DOE's America's Next Top Energy Innovator Program |  

Broader source: Energy.gov (indexed) [DOE]

From Lab to Market: DOE's America's Next Top Energy Innovator From Lab to Market: DOE's America's Next Top Energy Innovator Program From Lab to Market: DOE's America's Next Top Energy Innovator Program April 5, 2013 - 3:08pm Addthis Testing materials in the lab at Vorbeck Materials Corp. | Photo courtesy of Vorbeck Materials Corp. Testing materials in the lab at Vorbeck Materials Corp. | Photo courtesy of Vorbeck Materials Corp. Erica Pincus Student Volunteer at OSTP Doug Rand Senior Policy Advisor at OSTP How does it work? If your startup company qualifies, find a technology by searching the Energy Innovation Portal to can see most of the technologies available for licensing. Once you've found a technology you'd like to license, submit an inquiry to the relevant lab indicating interest in the technology. The final step in the process is the submission of a business plan

213

Vehicle Technologies Office Merit Review 2014: Post-Test Analysis of Lithium-Ion Battery Materials at Argonne National Laboratory  

Broader source: Energy.gov [DOE]

Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about post-test...

214

NREL Explores Earth-Abundant Materials for Future Solar Cells (Fact Sheet), Innovation: The Spectrum of Clean Energy Innovation, NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Explores Earth-Abundant Explores Earth-Abundant Materials for Future Solar Cells Researchers at the National Renewable Energy Laboratory (NREL) are using a theory-driven technique-sequential cation mutation-to understand the nature and limitations of promising solar cell materials that can replace today's technologies. Finding new materials that use Earth-abundant elements and are easily manufactured is important for large-scale solar electricity deployment. The goal of the U.S. Department of Energy SunShot Initiative is to reduce the installed cost of solar energy systems by about 75% by the end of the decade. Obtaining that goal calls for photovoltaic (PV) technologies to improve in three main areas: solar-cell efficiencies, material processing costs, and scalability to the terawatt (TW), or 10

215

Environmental Assessment for Proposed Corrective Measures at Material Disposal Area H within Technical Area 54 at Los Alamos National Laboratory, Los Alamos, New Mexico  

Broader source: Energy.gov (indexed) [DOE]

64 64 Environmental Assessment for Proposed Corrective Measures at Material Disposal Area H within Technical Area 54 at Los Alamos National Laboratory, Los Alamos, New Mexico June 14, 2004 Department of Energy National Nuclear Security Administration Los Alamos Site Office EA for the Proposed Corrective Measures at MDA H within TA-54 at LANL DOE LASO June 14, 2004 iii Contents Acronyms and Terms..................................................................................................................................v Executive Summary ..................................................................................................................................vii 1.0 Purpose and Need ..............................................................................................................................1

216

DOE A9024 Final Report Functional and Nanoscale Materials Systems: Frontier Programs of Science at the Frederick Seitz Materials Research Laboratory  

SciTech Connect (OSTI)

The scientific programs of the FSMRL supported under the DOE A9024 Grant consisted of four interdisciplinary research clusters, as described. The clusters were led by Professors Tai Chiang (Physics), Jeffrey Moore (Chemistry), Paul Goldbart (Physics), and Steven Granick (Materials Science and Engineering). The completed work followed a dominant theme--Nanoscale Materials Systems--and emphasized studies of complex phenomena involving surfaces, interfaces, complex materials, dynamics, energetics, and structures and their transformations. A summary of our key accomplishments is provided for each cluster.

Lewis, Jennifer A.

2009-03-24T23:59:59.000Z

217

Cooperation between the United States Department of Energy National Laboratories and Mayak Production Association for enhancements to material protection control and accounting systems  

SciTech Connect (OSTI)

The Agreement Between the Department of Defense of the United States and The Ministry of the Russian Federation for Atomic Energy (MINATOM) Concerning Control, Accounting, and Physical Protection of Nuclear Material, as well as a subsequent amendment to that agreement and a joint statement signed by the Department of Energy (DOE) and MINATOM, resulted in the selection of the Mayak Production Association (MPA) as one of the Russian enterprises that would participate with DOE Laboratories in expanded cooperation aimed at enhancing Material protection, Control and Accounting (MPC&A) systems in both countries. This paper describes the nature and scope of the expanded cooperation involving MPA and six DOE laboratories at an operating civilian, spent-nuclear-fuel reprocessing plant designated RT-1. RT-1 produces, among other materials, reactor-grade plutonium dioxide, a direct-use material that is stored within the boundaries of this plant. Initial efforts at expanded cooperation will focus on enhancements to the existing MPC&A systems at MPA`s RT-1 plant.

Starodubtsev, G.S.; Prishchepov, A.I.; Zatorsky, Y.M. [Mayak Production Association (Russia); James, L.T. [Sandia National Labs., Albuquerque, NM (United States); Ehinger, M.H. [Oak Ridge National Lab., TN (United States); Manatt, D.R. [Lawrence Livermore National Lab., CA (United States); Olinger, C.T. [Los Alamos National Lab., NM (United States); Runyon, L. [Pacific Northwest Lab., Richland, WA (United States); Suda, S.C. [Brookhaven National Lab., Upton, NY (United States)

1996-08-01T23:59:59.000Z

218

Laboratory Evaluation of Base Materials for Neutralization of the Contaminated Aquifer at the F-Area Seepage Basins  

SciTech Connect (OSTI)

Laboratory studies were performed to support field-testing of base injection into the F-Area Seepage Basins groundwater. The general purpose of these experiments is to provide information to guide the test of base injection and to identify potential adverse effects.

Serkiz, S.M.

2001-09-11T23:59:59.000Z

219

Heat Transfer Laboratory | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Heat Transfer Laboratory Materials in solids or fluid forms play an important role in a wide range of mechanical systems and vehicle cooling applications. Understanding how...

220

Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Materials and methods are available as supplementary materials on Science Online. 16. W. Benz, A. G. W. Cameron, H. J. Melosh, Icarus 81, 113 (1989). 17. S. L. Thompson, H. S. Lauson, Technical Rep. SC-RR-710714, Sandia Nat. Labs (1972). 18. H. J. Melosh, Meteorit. Planet. Sci. 42, 2079 (2007). 19. S. Ida, R. M. Canup, G. R. Stewart, Nature 389, 353 (1997). 20. E. Kokubo, J. Makino, S. Ida, Icarus 148, 419 (2000). 21. M. M. M. Meier, A. Reufer, W. Benz, R. Wieler, Annual Meeting of the Meteoritical Society LXXIV, abstr. 5039 (2011). 22. C. B. Agnor, R. M. Canup, H. F. Levison, Icarus 142, 219 (1999). 23. D. P. O'Brien, A. Morbidelli, H. F. Levison, Icarus 184, 39 (2006). 24. R. M. Canup, Science 307, 546 (2005). 25. J. J. Salmon, R. M. Canup, Lunar Planet. Sci. XLIII, 2540 (2012). Acknowledgments: SPH simulation data are contained in tables S2 to S5 of the supplementary materials. Financial support

Note: This page contains sample records for the topic "laboratory vorbeck materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Work of the All-Russian Scientific Research Institute of Automatics with the U.S. laboratory-to-laboratory program for cooperation on nuclear materials protection, control, and accounting  

SciTech Connect (OSTI)

The All-Russian Scientific Research Institute of Automatics (VNIIA) is one of the scientific research institutes participating in the US/Russian Laboratory-to-Laboratory Program in Nuclear Materials Protection, Control, and Accounting (MPC and A). The Institute has provided instrumentation and measurement techniques to the Russian defense program and to the medical, gas and oil, and manufacturing industries. VNIIA is improving MPC and A in Russia by providing support to the Russian institutes and enterprises in the Ministry of Atomic Energy. VNIIA has a primary role in determining the requirements and specifications and developing procedures for testing and certification of MPC and A equipment, and is instrumental in strengthening the Russian infrastructure for supplying MPC and A equipment. Contracts have been placed with VNIIA by Russian suppliers to test, certify, and prepare for manufacturing hand-held special nuclear material detection equipment they have developed. A contract also is in place with VNIIA to test and evaluate a US-manufactured pedestrian portal monitor. Work for 1996 includes certifying these portal monitors and portable radiation detection equipment for use in Russian facilities, testing and evaluating a US active well coincidence counter and gamma-ray isotopic measurement methods, and developing guidelines for statistical evaluation methods used in MPC and A. This paper reviews the status of this effort and describes the plans for continuing this work in 1996.

Griggs, J.R.; Smoot, J.L. [Pacific Northwest National Lab., Richland, WA (United States); Hoida, Hiroshi [Los Alamos National Lab., NM (United States)] [and others

1996-12-31T23:59:59.000Z

222

First Name Last Name Title Company Email David Alman Director-Material Performance Division National Energy Technology Laboratory david.alman@netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technologies Collaborative National Conference - June 10, 2013 - Attendees Technologies Collaborative National Conference - June 10, 2013 - Attendees First Name Last Name Title Company Email David Alman Director-Material Performance Division National Energy Technology Laboratory david.alman@netl.doe.gov Tim Avampato Program Manager Eaton timjavampato@eaton.com Sharon Beermann-Curtin Program Officer Office of Naval Research sharon.beermanncurti@navy.mil Seth Blumsack Associate Professor Pennsylvania State University sab51@psu.edu Phil Bolin Chief Engineer Power Systems Group Mitsubishi Electric Power Products, Inc. phil.bolin@meppi.com Dushan Boroyevich Professor. Co-Director Virginia Tech - CPES mhawthor@vt.edu Steve Bossart Senior Analyst National Energy Technology Laboratory steven.bossart@netl.doe.gov Gary Bowers Commercial-Industrial Director S&C Electric Company gary.bowers@sandc.com

223

Assessment of the Integrated Facility Disposition Project at Oak Ridge National Laboratory & Y-12 for Transfer of Facilities & Materials to EM  

Broader source: Energy.gov (indexed) [DOE]

Integrated Facilities Disposition Project Integrated Facilities Disposition Project Technical Assistance Page 1 of 2 Oak Ridge National Laboratory Y-12 National Security Complex Tennessee Tennessee Assessment of the Integrated Facility Disposition Project at ORNL & Y-12 for Transfer of Facilities & Materials to EM Challenge In December 2007, the Assistant Secretary for Environmental Management (EM-1) invited the DOE Program Secretarial Offices (PSOs) of Nuclear Energy (NE), Science (SC), and the National Nuclear Security Administration (NNSA) to propose facilities and legacy waste for transfer to Environmental Management (EM) for final disposition or deactivation and decommissioning (D&D). In parallel with the EM-1 initiative, the Oak Ridge Reservation was conducting a Critical

224

Materials and process engineering projects for the Sandia National Laboratories/Newly Independent States Industrial Partnering Program. Volume 1  

SciTech Connect (OSTI)

In July, 1994, a team of materials specialists from Sandia and U S Industry traveled to Russia and the Ukraine to select and fund projects in materials and process technology in support of the Newly Independent States/Industrial Partnering Program (NIS/IPP). All of the projects are collaborations with scientists and Engineers at NIS Institutes. Each project is scheduled to last one year, and the deliverables are formatted to supply US Industry with information which will enable rational decisions to be made regarding the commercial value of these technologies. This work is an unedited interim compilation of the deliverables received to date.

Zanner, F.J.; Moffatt, W.C.

1995-07-01T23:59:59.000Z

225

Materials and process engineering projects for the Sandia National Laboratories/Newly Independent States Industrial Partnering Program. Volume 2  

SciTech Connect (OSTI)

In July, 1994, a team of materials specialists from Sandia and US. Industry traveled to Russia and the Ukraine to select and fund projects in materials and process technology in support of the Newly Independent States/Industrial Partnering Program (NIS/IPP). All of the projects are collaborations with scientists and Engineers at NIS Institutes. Each project is scheduled to last one year, and the deliverables are formatted to supply US. Industry with information which will enable rational decisions to be made regarding the commercial value of these technologies. This work is an unedited interim compilation of the deliverables received to date.

Zanner, F.J.; Moffatt, W.C.

1995-07-01T23:59:59.000Z

226

Laboratory Equipment & Supplies | Sample Preparation Laboratories  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Equipment & Supplies Equipment & Supplies John Bargar, SSRL Scientist Equipment is available to serve disciplines from biology to material science. All laboratories contain the following standard laboratory equipment: pH meters with standard buffers, analytical balances, microcentrifuges, vortex mixers, ultrasonic cleaning baths, magnetic stirrers, hot plates, and glassware. Most laboratories offer ice machines and cold rooms. Specialty storage areas for samples include a -80 freezer, argon and nitrogen glove boxes, radiation contamination areas, inert atmosphere chambers, and cold rooms. For specific information please see: Equipment Inventory Checkout Equipment & Supplies To view equipment inventory by laboratory, refer to the following pages: Biology Chemistry & Material Science Laboratory 1 Inventory

227

Laboratory Access | Sample Preparation Laboratories  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Access Access Planning Ahead Planning Ahead Please complete the Beam Time Request (BTR) and Support Request forms thourgh the User Portal. Thorough chemical and sample information must be included in your BTR. Support Request forms include a list of collaborators that require laboratory access and your group's laboratory equipment requests. Researcher safety is taken seriously at SLAC. Please remember that radioactive materials, nanomaterials, and biohazardous materials have additional safety requirements. Refer to the SSRL or LCLS Safety Offices for further guidance. Upon Arrival Upon Arrival Once you arrive you must complete training and access forms before accessing the Sample Preparation Laboratories (SPL). All Sample Prep Lab doors are locked with access key codes. Once your SPL

228

Materials Design Laboratory Concepts | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

---Automotive engineering ---Hybrid & electric vehicles -Energy sources --Nuclear energy -Energy usage --Energy storage ---Batteries --Smart Grid Environment -Biology...

229

Volume II, Environment, Safety, and Health Special Review of Work Practices for Nanoscale Material Activities at Department of Energy Laboratories, August 2008  

Broader source: Energy.gov [DOE]

At the request of the Secretary of Energy, the U.S. Department of Energy (DOE) Office of Independent Oversight, within the office of Health, Safety and Security (HSS), performed a Special Review of Work Practices for Nanoscale Material Activities at Department of Energy Laboratories. The Special Review included onsite field reviews of work practices at the 8 of the 16 laboratories currently performing nanoscale activities. The eight selected DOE sites, which were reviewed during May-July 2008. This volume is a compilation of field reports of the eight selected DOE sites, which were reviewed during May-July 2008. The field reviews focused on collecting data by reviewing nanomaterial program documents, observing activities involving nanomaterials, conducting facility walkthroughs, and interviewing personnel. The data for each site was analyzed and subject to an internal HSS quality review board. Reports were validated with site representatives and revised as appropriate to ensure factual accuracy. Closeout meetings were conducted with DOE site managers and laboratory management to discuss results. The individual sites are responsible for evaluating and addressing weaknesses identified on the field reviews.

230

DOE/EA-1651: FINDING OF NO SIGNIFICANT IMPACT Uranium-233 Material Downblending and Disposition Project at the Oak Ridge National Laboratory, Oak Ridge, Tennessee (01/13/10)  

Broader source: Energy.gov (indexed) [DOE]

URANIUM-233 MATERIAL DOWNBLENDING AND DISPOSITION PROJECT URANIUM-233 MATERIAL DOWNBLENDING AND DISPOSITION PROJECT AT THE OAK RIDGE NATIONAL LABORATORY, OAK RIDGE, TENNESSEE AGENCY: U.S. Department of Energy (DOE) ACTION: Finding of No Significant Impact (FONSI) SUMMARY: DOE has completed the Final Environmental Assessment for U-233 Material Downblending and Disposition Project at the Oak Ridge National Laboratory [DOE/EA-1651]. This environmental assessment (EA) evaluates the impacts of planned activities to modify selected Oak Ridge National Laboratory (ORNL) facilities; process the ORNL inventory of uranium-233 (U-233); and transport the processed material to a long-term disposal facility. Small quantities of similar material currently stored at other DOE sites may also be included in this initiative. The

231

Sandia National Laboratories: TCES  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

TCES Sandia Researchers Win CSP:ELEMENTS Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy Storage, Facilities, National...

232

Sandia National Laboratories: perovskites  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

perovskites Sandia Researchers Win CSP:ELEMENTS Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy Storage, Facilities,...

233

Sandia National Laboratories: NSTTF  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NSTTF Sandia Researchers Win CSP:ELEMENTS Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy Storage, Facilities, National...

234

budko | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

budko Ames Laboratory Profile Serguei Budko Scientist I Division of Materials Science & Engineering A111 Zaffarano Phone Number: 515-294-3986 Email Address: budko@ameslab.gov...

235

Sandia National Laboratories: desalination  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to saltwater to meet their water ... ECIS-UNM: Biomimetic Membranes for Water Purification On February 20, 2013, in Advanced Materials Laboratory, Energy Efficiency,...

236

materials | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Laboratory Manuscript Presentation Desulfurization of Coal Timothy R. Armstrong, Oak Ridge National Laboratory Presentation Materials for Advanced Heat Exchange...

237

Sandia National Laboratories: Energy Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

UNM On September 16, 2014, in Advanced Materials Laboratory, Capabilities, Energy, Energy Storage, Facilities, Materials Science, News, News & Events, Partnership, Research...

238

2010 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond  

SciTech Connect (OSTI)

This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Sites Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from May 1, 2010 through October 31, 2010. The report contains the following information: Facility and system description Permit required effluent monitoring data and loading rates Groundwater monitoring data Status of special compliance conditions Discussion of the facilitys environmental impacts During the 2010 partial reporting year, an estimated 3.646 million gallons of wastewater were discharged to the Industrial Waste Ditch and Pond which is well below the permit limit of 13 million gallons per year. The concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the Ground Water Quality Rule Primary and Secondary Constituent Standards.

David B. Frederick

2011-02-01T23:59:59.000Z

239

Critical Materials Institute  

ScienceCinema (OSTI)

Ames Laboratory Director Alex King talks about the goals of the Critical Materials Institute in diversifying the supply of critical materials, developing substitute materials, developing tools and techniques for recycling critical materials, and forecasting materials needs to avoid future shortages.

Alex King

2013-06-05T23:59:59.000Z

240

Sandia National Laboratories: advanced materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Renewable Energy, Solar, Systems Engineering On May 21st, the Department of Energy SunShot Initiative announced 10M for six new R&D projects that will advance innovative...

Note: This page contains sample records for the topic "laboratory vorbeck materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Sandia National Laboratories: materials technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

industriell og teknisk forskning) will now tackle energy challenges such as renewable-energy integration, grid modernization, gas technologies, and algae-based biofuels. SINTEF is...

242

Sandia National Laboratories: Materials Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of New Mexico have enjoyed a close relationship for many years in the areas of research, education, and technology development and deployment," said Sandia Vice President and...

243

Sandia National Laboratories: Materials Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for on-chip applications, many of which (e.g., imaging, multiplex communica-tion, data storage) desire high beam quality and spectral purity-conditions that can be satisfied...

244

Review of the International Atomic Energy Agency International database on reactor pressure vessel materials and US Nuclear Regulatory Commission/Oak Ridge National Laboratory embrittlement data base  

SciTech Connect (OSTI)

The International Atomic Energy Agency (IAEA) has supported neutron radiation effects information exchange through meetings and conferences since the mid-1960s. Through an International Working Group on Reliability of Reactor Pressure Components, information exchange and research activities were fostered through the Coordinated Research Program (CRP) sponsored by the IAEA. The final CRP meeting was held in November 1993, where it was recommended that the IAEA coordinate the development of an International Database on Reactor Pressure Vessel Material (IDRPVM) as the first step in generating an International Database on Aging Management. The purpose of this study was to provide special technical assistance to the NRC in monitoring and evaluating the IAEA activities in developing the IAEA IDRPVM, and to compare the IDRPVM with the Nuclear Regulatory Commission (NRC) - Oak Ridge National Laboratory (ORNL) Power Reactor Embrittlement Data Base (PR-EDB) and provide recommendations for improving the PR-EDB. A first test version of the IDRPVM was distributed at the First Meeting of Liaison Officers to the IAEA IDRPVM, in November 1996. No power reactor surveillance data were included in this version; the testing data were mainly from CRP Phase III data. Therefore, because of insufficient data and a lack of power reactor surveillance data received from the IAEA IDRPVM, the comparison is made based only on the structure of the IDRPVM. In general, the IDRPVM and the EDB have very similar data structure and data format. One anticipates that because the IDRPVM data will be collected from so many different sources, quality assurance of the data will be a difficult task. The consistency of experimental test results will be an important issue. A very wide spectrum of material characteristics of RPV steels and irradiation environments exists among the various countries. Hence the development of embrittlement prediction models will be a formidable task. 4 refs., 2 figs., 4 tabs.

Wang, J.A.; Kam, F.B.K.

1998-02-01T23:59:59.000Z

245

Enterprise Assessments Targeted Review, Idaho National Laboratory December 2014  

Broader source: Energy.gov [DOE]

Review of the Idaho National Laboratory Fire Protection Program as Implemented at the Irradiated Materials Characterization Laboratory

246

Characterization of Materials, Two Volume Set Edited by Elton Kaufmann (Argonne National Laboratory). J. Wiley & Sons, Inc.:? Hoboken. 2003. 1392 pp. $400.00. ISBN 0-471-26882-8.  

Science Journals Connector (OSTI)

Characterization of Materials, Two Volume Set Edited by Elton Kaufmann (Argonne National Laboratory). ... The coverage includes general vacuum techniques, X-ray powder diffraction, high strain rate testing, deep-level transient spectroscopy, cyclic voltammetry, nuclear magnetic resonance imaging, low energy electron diffraction, thermogravimetric analysis, magnetometry, transmission electron microscopy, and ultraviolet photoelectron spectroscopy. ...

2003-03-12T23:59:59.000Z

247

Argonne Tribology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tribology Laboratory Tribology Laboratory CemeCon coating chamber CemeCon coating chamber Engineers in Argonne's Tribology Laboratory conduct research on advanced tribological systems (surface engineered materials, lubricants, fuels, and fuel/lubricant additives) for use in aggressive environments (for example, where two surfaces are rubbing together). The Laboratory is equipped with a full range of coating development, friction and wear testing, and characterization facilities. Evaluation of Coatings and Systems The Tribology Laboratory evaluates high performance coatings primarily intended to protect engine-component surfaces that undergo sliding and rolling contact in advanced transportation systems. Also tested are systems powered by diesel and gasoline engines, as well as

248

Independent Oversight Inspection, Idaho National Laboratory ...  

Broader source: Energy.gov (indexed) [DOE]

Inspection, Idaho National Laboratory - August 2007 August 2007 Inspection of Environment, Safety, and Health Programs at the Idaho National Laboratory's Materials and Fuels...

249

Savannah River National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Savannah River National Laboratory Savannah River National Laboratory srnl.doe.gov SRNL is a DOE National Laboratory operated by Savannah River Nuclear Solutions. At a glance Additive Manufacturing (3D Printing): Selectively Printed Conductive Pathways Researchers at the Savannah River National Laboratory (SRNL) have developed a rapid prototype conductive material that can be used for electrical shielding or circuit fabrication. Background Several rapid prototype technologies currently exist. A few of the technologies produce metallic parts, but the majority produce nonconductive parts made from various grades of plastic. In all of these technologies however, only conductive material or nonconductive material can be used within one part created. There is no known option for 3D printing conductive material for

250

From Laboratory to Industry: Unlocking the Potential of Graphene...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Return to Search From Laboratory to Industry: Unlocking the Potential of Graphene Brookhaven Lab and Graphene Laboratories collaborate to bring atom-thin material to...

251

Sandia National Laboratories: CSP: ELEMENTS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CSP: ELEMENTS Sandia Researchers Win CSP:ELEMENTS Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy Storage, Facilities,...

252

Sandia National Laboratories: Systems Engineering  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sandia Researchers Win CSP:ELEMENTS Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy Storage, Facilities, National Solar...

253

Sandia National Laboratories: NSTTF Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NSTTF Capabilities Sandia Researchers Win CSP:ELEMENTS Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy Storage,...

254

Los Alamos National Laboratory ships  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Laboratory and its neighbors," said Michael Graham, Los Alamos's associate director for environmental programs. Through this effort, approximately 20 percent of the material at...

255

about Savannah River National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

has a unique capability unlike any other laboratory in the world. By investigating the Hydrogen Helium embrittlement of materials, SRNL is able to drive the design codes for...

256

MagLab - Microanalysis Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Microanalysis Laboratory BSCCO Sample of the superconducting material bismuth strontium calcium copper oxide (BSCCO). Section pictured measures 120 microns wide. Click on photo for...

257

Sandia National Laboratories: reverse osmosis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

reverse osmosis ECIS-UNM: Biomimetic Membranes for Water Purification On February 20, 2013, in Advanced Materials Laboratory, Energy Efficiency, Facilities, Global Climate &...

258

Sandia National Laboratories: water scarcity  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hightower, head of the Water for ... ECIS-UNM: Biomimetic Membranes for Water Purification On February 20, 2013, in Advanced Materials Laboratory, Energy Efficiency,...

259

Materials Characterization Capabilities at the High Temperature...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Laboratory and HTML User Program Success Stories Materials Characterization Capabilities at the High Temperature Materials Laboratory: Focus on Carbon Fiber and Composites...

260

Sandia National Laboratories: Sandia Wins DOE Geothermal Technologies...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Funding Award On December 15, 2014, in Advanced Materials Laboratory, Capabilities, Energy, Facilities, Geothermal, Materials Science, News, News & Events, Partnership,...

Note: This page contains sample records for the topic "laboratory vorbeck materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Sandia National Laboratories (SNL)  

National Nuclear Security Administration (NNSA)

Sandia National Laboratories (SNL) Sandia National Laboratories (SNL) Current Projects with the Russian Federation Project Title: Development of Models of Energy Transfer in Nanostructured Materials. Russian Institute: Institute for Problems in Mechanical Engineering, Russian Academy of Sciences (IPME RAS), St. Petersburg. Brief Description: To develop modeling approaches and simulations to examine energy transport and transfer in materials with structural features at the nanoscale. Tasks include developing such a model for thin crystal structures subjected to short duration laser excitation, and using atomic-scale simulations to evaluate microscopic expressions for stress and heat flux in crystals containing defects such as vacancies, dislocations and bi-material interfaces.

262

Materials Characterization Capabilities at the High Temperature...  

Broader source: Energy.gov (indexed) [DOE]

Characterization Capabilities at the High Temperature Materials Laboratory: Focus on Carbon Fiber and Composites Materials Characterization Capabilities at the High...

263

High-Temperature Thermoelectric Materials Characterization for...  

Broader source: Energy.gov (indexed) [DOE]

Technologies Program's subprograms in Lightweight Materials, Propulsion Materials, Energy Storage, and Thermoelectric Conversion at the Oak Ridge National Laboratory. * This...

264

Site Visit Report, Lawrence Livermore National Laboratory- March 2010  

Broader source: Energy.gov [DOE]

Review of the Lawrence Livermore National Laboratory Identified Defective Department of Transportation Hazardous Material Packages

265

Independent Oversight Inspection, Idaho National Laboratory- August 2007  

Broader source: Energy.gov [DOE]

Inspection of Environment, Safety, and Health Programs at the Idaho National Laboratory's Materials and Fuels Complex

266

Safeguards Laboratory (SL) | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Safeguards Laboratory Safeguards Laboratory May 30, 2013 The Safeguards Laboratory is a Department of Energy user facility equipped with a comprehensive set of field-deployable instrumentation for safeguards system development and personnel training. Mock-ups using industrial equipment and reference nuclear materials simulate real-world conditions for training, testing, and evaluations. The lab's openness and availability to the private sector enable development of new technologies that combat the proliferation of weapons of mass destruction. Applications Training and International Outreach Nondestructive Analysis Measurements Instrument Evaluations Integrated Safeguards Methodologies Measurement Technique Development Specifications Gamma and X-ray detection systems Handheld survey instruments

267

Science @WIPP: Underground Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

WIPP WIPP Underground Laboratory Double Beta Decay Dark Matter Biology Repository Science Renewable Energy Underground Laboratory The deep geologic repository at WIPP provides an ideal environment for experiments in many scientific disciplines, including particle astrophysics, waste repository science, mining technology, low radiation dose physics, fissile materials accountability and transparency, and deep geophysics. The designation of the Carlsbad Department of Energy office as a "field" office has allowed WIPP to offer its mine operations infrastructure and space in the underground to researchers requiring a deep underground setting with dry conditions and very low levels of naturally occurring radioactive materials. Please contact Roger Nelson, chief scientist of the Department of

268

DOE Science Showcase - Startup Stars | OSTI, US Dept of Energy, Office of  

Office of Scientific and Technical Information (OSTI)

DOE Science Showcase - Startup Stars DOE Science Showcase - Startup Stars The Next Top Energy Innovator Iowa Powder Atomization Technologies, Inc. (IPAT) using gas atomization technology developed by AMES Laboratory Umpqua Energy using gasoline technology developed by ANL Vorbeck Materials using lithium-ion battery technology developed by PNNL The America's Next Top Energy Innovator Challenge, a part of the Startup America initiative, made it easier for start-ups to use inventions and technology developed at the U.S. Department of Energy's 17 National Laboratories and the Y-12 National Security Complex. Read about all 14 companies that entered the challenge. 2012 ARPA-E Energy Innovation Summit Secretary Chu Recognizes America's Next Top Energy Innovators Energy Innovation Portal Technology Transfer

269

Hydrogen Compatible Materials Workshop | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Compatible Materials Workshop Hydrogen Compatible Materials Workshop The U.S. Department of Energy (DOE) and Sandia National Laboratories hosted the Hydrogen Compatible Materials...

270

Laboratory Protection Division, Brookhaven National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Points of Contact Points of Contact Organization Chart (pdf) Groups Emergency Services Emergency Management Security Operations BNL Site Access Main Gate Access Forms Welcome to the... Laboratory Protection Division (LP) Mission Statement: To serve and protect Brookhaven National Laboratory's staff, guests, and interests from the undesirable consequences of unwanted events by providing preparedness, assessment, engineering, and immediate response services for all types of security and non-security related emergencies. Protect DOE special nuclear materials, classified matter, sensitive information, and property against theft, diversion, or destruction; prevent the sabotage of programs that could result in significant scientific or financial impact; prevent the malevolent release of hazardous materials including radiological, chemical, and infectious agents or other criminal acts protecting people, property, and national security, providing a safe and secure environment for employees, the public, and the environment.

271

Laboratory Fellows  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

were confirmed by the Laboratory Director. Brenda Dingus has pioneered work in gamma-ray bursts and is a major contributor to the relatively young scientific field of...

272

Laboratory Operations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

hydrological controls on carbon cycling in flood plain ecosystems into Earth System Models. - 5814 A neutron detector like this one at Los Alamos National Laboratory is...

273

Geopolymer Sealing Materials  

Broader source: Energy.gov [DOE]

DOE Geothermal Peer Review 2010 - Presentation. Project objectives: Develop and characterize field-applicable geopolymer temporary sealing materials in the laboratory and to transfer this developed material technology to geothermal drilling service companies as collaborators for field validation tests.

274

Hydrogen Compatibility of Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Compatibility of Materials Compatibility of Materials August 13, 2013 DOE EERE Fuel Cell Technologies Office Webinar Chris San Marchi Sandia National Laboratories Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000 SAND2013-6278P 2 Webinar Objectives * Provide context for hydrogen embrittlement and hydrogen compatibility of materials - Distinguish embrittlement, compatibility and suitability - Examples of hydrogen embrittlement * Historical perspective - Previous work on hydrogen compatibility - Motivation of "Materials Guide" * Identify the landscape of materials compatibility documents

275

Alamos National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

record neutron beam at Los record neutron beam at Los Alamos National Laboratory July 10, 2012 New method has potential to advance materials measurement LOS ALAMOS, New Mexico, July 10, 2012-Using a one-of-a-kind laser system at Los Alamos National Laboratory, scientists have created the largest neutron beam ever made by a short-pulse laser, breaking a world record. Neutron beams are usually made with particle accelerators or nuclear reactors and are commonly used in a wide variety of scientific research, particularly in advanced materials science. Using the TRIDENT laser, a unique and powerful 200 trillion-watt short-pulse laser, scientists from Los Alamos, the Technical University of Darmstadt, Germany, and Sandia National Laboratories focus high-intensity light on an ultra-thin plastic sheet

276

Laboratory disputes citizens' lawsuit  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lab disputes ctizens' lawsuit Lab disputes ctizens' lawsuit Laboratory disputes citizens' lawsuit Lab officials expressed surprise to a lawsuit alleging noncompliance with the federal Clean Water Act filed today by citizens groups. February 7, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Contact James E. Rickman

277

Evaluation of Alternate Materials for Coated Particle Fuels for the Gas-Cooled Fast Reactor. Laboratory Directed Research and Development Program FY 2006 Final Report  

SciTech Connect (OSTI)

Candidate ceramic materials were studied to determine their suitability as Gas-Cooled Fast Reactor particle fuel coatings. The ceramics examined in this work were: TiC, TiN, ZrC, ZrN, AlN, and SiC. The studies focused on (i) chemical reactivity of the ceramics with fission products palladium and rhodium, (ii) the thermomechanical stresses that develop in the fuel coatings from a variety of causes during burnup, and (iii) the radiation resiliency of the materials. The chemical reactivity of TiC, TiN, ZrC, and ZrN with Pd and Rh were all found to be much lower than that of SiC. A number of important chemical behaviors were observed at the ceramic-metal interfaces, including the formation of specific intermetallic phases and a variation in reaction rates for the different ceramics investigated. Based on the data collected in this work, the nitride ceramics (TiN and ZrN) exhibit chemical behavior that is characterized by lower reaction rates with Pd and Rh than the carbides TiC and ZrC. The thermomechanical stresses in spherical fuel particle ceramic coatings were modeled using finite element analysis, and included contributions from differential thermal expansion, fission gas pressure, fuel kernel swelling, and thermal creep. In general the tangential stresses in the coatings during full reactor operation are tensile, with ZrC showing the lowest values among TiC, ZrC, and SiC (TiN and ZrN were excluded from the comprehensive calculations due to a lack of available materials data). The work has highlighted the fact that thermal creep plays a critical role in the development of the stress state of the coatings by relaxing many of the stresses at high temperatures. To perform ion irradiations of sample materials, an irradiation beamline and high-temperature sample irradiation stage was constructed at the University of Wisconsins 1.7MV Tandem Accelerator Facility. This facility is now capable of irradiating of materials to high dose while controlling sample temperature up to 800C.

Paul A. Demkowicz; Karen Wright; Jian Gan; David Petti; Todd Allen; Jake Blanchard

2006-09-01T23:59:59.000Z

278

Materials - Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

* Coatings & Lubricants * Coatings & Lubricants * Nanofluids * Deformation Joining * Recycling * Catalysts * Assessment * Illinois Center for Advanced Tribology Modeling, Simulation & Software Plug-In Hybrid Electric Vehicles PSAT Smart Grid Student Competitions Technology Analysis Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Materials ring on liner reciprocating tester Tribology Lab: Ring-on-liner reciprocating tester. Argonne National Laboratory plays an important role in the Department of Energy's (DOE's) efforts to develop advanced materials for transportation. The materials are developed with DOE support from the EERE Office of Vehicle Technology and Office of Hydrogen, Fuel Cells, and Infrastructure Technologies in collaboration with worldwide industrial partners. Examples

279

Tom Lograsso, Ames Laboratory (Iowa State University), Future...  

Broader source: Energy.gov (indexed) [DOE]

Tom Lograsso, Ames Laboratory (Iowa State University), Future Directions in Rare Earth Research: Critical Materials for 21st Century Industry Tom Lograsso, Ames Laboratory (Iowa...

280

Remote Sensing Laboratory - RSL  

ScienceCinema (OSTI)

One of the primary resources supporting homeland security is the Remote Sensing Laboratory, or RSL. The Laboratory creates advanced technologies for emergency response operations, radiological incident response, and other remote sensing activities. RSL emergency response teams are on call 24-hours a day, and maintain the capability to deploy domestically and internationally in response to threats involving the loss, theft, or release of nuclear or radioactive material. Such incidents might include Nuclear Power Plant accidents, terrorist incidents involving nuclear or radiological materials, NASA launches, and transportation accidents involving nuclear materials. Working with the US Department of Homeland Security, RSL personnel equip, maintain, and conduct training on the mobile detection deployment unit, to provide nuclear radiological security at major national events such as the super bowl, the Indianapolis 500, New Year's Eve celebrations, presidential inaugurations, international meetings and conferences, just about any event where large numbers of people will gather.

None

2015-01-09T23:59:59.000Z

Note: This page contains sample records for the topic "laboratory vorbeck materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Remote Sensing Laboratory - RSL  

SciTech Connect (OSTI)

One of the primary resources supporting homeland security is the Remote Sensing Laboratory, or RSL. The Laboratory creates advanced technologies for emergency response operations, radiological incident response, and other remote sensing activities. RSL emergency response teams are on call 24-hours a day, and maintain the capability to deploy domestically and internationally in response to threats involving the loss, theft, or release of nuclear or radioactive material. Such incidents might include Nuclear Power Plant accidents, terrorist incidents involving nuclear or radiological materials, NASA launches, and transportation accidents involving nuclear materials. Working with the US Department of Homeland Security, RSL personnel equip, maintain, and conduct training on the mobile detection deployment unit, to provide nuclear radiological security at major national events such as the super bowl, the Indianapolis 500, New Year's Eve celebrations, presidential inaugurations, international meetings and conferences, just about any event where large numbers of people will gather.

None

2014-11-06T23:59:59.000Z

282

Other: Advancing Materials Science using Neutrons at Oak Ridge...  

Office of Scientific and Technical Information (OSTI)

Advancing Materials Science using Neutrons at Oak Ridge National Laboratory Citation Details Title: Advancing Materials Science using Neutrons at Oak Ridge National Laboratory...

283

Measuring of electrical changes induced by in situ combustion through flow-through electrodes in a laboratory sample of core material  

DOE Patents [OSTI]

Method and apparatus are provided for obtaining accurate dynamic measurements for passage of phase fronts through a core sample in a test fixture. Flow-through grid structures are provided for electrodes to permit data to be obtained before, during and after passage of a front there through. Such electrodes are incorporated in a test apparatus for obtaining electrical characteristics of the core sample. With the inventive structure a method is provided for measurement of instabilities in a phase front progressing through the medium. Availability of accurate dynamic data representing parameters descriptive of material characteristics before, during and after passage of a front provides a more efficient method for enhanced recovery of oil using a fire flood technique. 12 figs.

Lee, D.O.; Montoya, P.C.; Wayland, J.R. Jr.

1986-12-09T23:59:59.000Z

284

Crack growth rates and metallographic examinations of Alloy 600 and Alloy 82/182 from field components and laboratory materials tested in PWR environments.  

SciTech Connect (OSTI)

In light water reactors, components made of nickel-base alloys are susceptible to environmentally assisted cracking. This report summarizes the crack growth rate results and related metallography for field and laboratory-procured Alloy 600 and its weld alloys tested in pressurized water reactor (PWR) environments. The report also presents crack growth rate (CGR) results for a shielded-metal-arc weld of Alloy 182 in a simulated PWR environment as a function of temperature between 290 C and 350 C. These data were used to determine the activation energy for crack growth in Alloy 182 welds. The tests were performed by measuring the changes in the stress corrosion CGR as the temperatures were varied during the test. The difference in electrochemical potential between the specimen and the Ni/NiO line was maintained constant at each temperature by adjusting the hydrogen overpressure on the water supply tank. The CGR data as a function of temperature yielded activation energies of 252 kJ/mol for a double-J weld and 189 kJ/mol for a deep-groove weld. These values are in good agreement with the data reported in the literature. The data reported here and those in the literature suggest that the average activation energy for Alloy 182 welds is on the order of 220-230 kJ/mol, higher than the 130 kJ/mol commonly used for Alloy 600. The consequences of using a larger value of activation energy for SCC CGR data analysis are discussed.

Alexandreanu, B.; Chopra, O. K.; Shack, W. J.

2008-05-05T23:59:59.000Z

285

Laboratory Directors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

S. Hecker (1985-1997) Donald M. Kerr (1979-1985) Harold M. Agnew (1970-1979) Norris Bradbury (1945-1970) J. Robert Oppenheimer (1943-1945) Laboratory Directors Harold M. Agnew...

286

MICROSYSTEMS LABORATORIES  

E-Print Network [OSTI]

15 nm MICROSYSTEMS TECHNOLOGY LABORATORIES ANNUAL RESEARCH REPORT 2014 MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MA AUGUST 2014 #12;MTL Annual Research Report 2014 Director Jesús A. del Alamo Project........................................................................ 47 Energy: Photovoltaics, Energy Harvesting, Batteries, Fuel Cells

Culpepper, Martin L.

287

Argonne National Laboratory - Enforcement Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Enforcement Documents Enforcement Documents Argonne National Laboratory Preliminary Notice of Violation issued to the University of Chicago related to Nuclear Safety Program Deficiencies at Argonne National Laboratory, March 7, 2006 (EA-2006-02) - University of Chicago/Argonne National Laboratory - Press Release, March 7, 2006 Preliminary Notice of Violation issued to the University of Chicago related to the Uncontrolled Release of Radioactive Material at Argonne National Laboratory-East, August 14, 2001 (EA-2001-05) - Argonne National Laboratory - Press Release, August 17, 2001 Preliminary Notice of Violation issued to the University of Chicago related to Programmatic Management Failures at Argonne National Laboratory-West, February 28, 2001 (EA-2001-01) - Argonne National Laboratory-West - Press Release, March 2, 2001

288

Pacific Northwest National Laboratory | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Pacific Northwest National Laboratory Pacific Northwest National Laboratory Pacific Northwest National Laboratory Pacific Northwest National Laboratory | June 2010 Aerial View Pacific Northwest National Laboratory | June 2010 Aerial View Pacific Northwest National Laboratory (PNNL) conducts research for national security missions, nuclear materials stewardship, non-proliferation missions, the nuclear fuel life cycle, energy production. PNNL is engaged in expanding the beneficial use of nuclear materials such as nuclear process engineering, radiomaterials characterization, separation and processing. PNNL also supports the Hanford Site cleanup and river corridor protection missions. Enforcement January 8, 2008 Preliminary Notice of Violation,Battelle Memorial Institute - EA-2007-07 Preliminary Notice of Violation issued to Battelle Memorial Institute

289

Sandia National Laboratories: Concentrating Solar Power: Efficiently...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Equilibrium Mechanisms for Engineering New Thermochemical Storage Sandia Researchers Win CSP:ELEMENTS Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating...

290

Laboratory hosts 12th annual HAZMAT Challenge  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

HAZMAT Challenge Laboratory hosts 12th annual HAZMAT Challenge Teams from New Mexico, Oklahoma, and Arizona will demonstrate their hazardous materials response skills and learn new...

291

Los Alamos National Laboratory names cleanup subcontractors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory...

292

Sandia National Laboratories: Marine Hydrokinetics Technology...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

assessments. Laboratory-scale testing will be done to investigate materials and coatings, hydrofoil performance, and small-scale array effects. Test and evaluation is initially...

293

Sandia National Laboratories: Geothermal Technologies Office  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technologies Office Sandia Wins DOE Geothermal Technologies Office Funding Award On December 15, 2014, in Advanced Materials Laboratory, Capabilities, Energy, Facilities,...

294

Sandia National Laboratories: desalination energy requirements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to saltwater to meet their water ... ECIS-UNM: Biomimetic Membranes for Water Purification On February 20, 2013, in Advanced Materials Laboratory, Energy Efficiency,...

295

Sandia National Laboratories: industrial water use  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to saltwater to meet their water ... ECIS-UNM: Biomimetic Membranes for Water Purification On February 20, 2013, in Advanced Materials Laboratory, Energy Efficiency,...

296

Sandia National Laboratories: fuel cell catalyst  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

fuel cell catalyst ECIS and Compass Metals: Platinum Nanostructures for Enhanced Catalysis On March 29, 2013, in Advanced Materials Laboratory, Capabilities, Energy, Energy...

297

Alkali deposits found in biomass boilers: The behavior of inorganic material in biomass-fired power boilers -- Field and laboratory experiences. Volume 2  

SciTech Connect (OSTI)

This report documents the major findings of the Alkali Deposits Investigation, a collaborative effort to understand the causes of unmanageable ash deposits in biomass-fired electric power boilers. Volume 1 of this report provide an overview of the project, with selected highlights. This volume provides more detail and discussion of the data and implications. This document includes six sections. The first, the introduction, provides the motivation, context, and focus for the investigation. The remaining sections discuss fuel properties, bench-scale combustion tests, a framework for considering ash deposition processes, pilot-scale tests of biomass fuels, and field tests in commercially operating biomass power generation stations. Detailed chemical analyses of eleven biomass fuels representing a broad cross-section of commercially available fuels reveal their properties that relate to ash deposition tendencies. The fuels fall into three broad categories: (1) straws and grasses (herbaceous materials); (2) pits, shells, hulls and other agricultural byproducts of a generally ligneous nature; and (3) woods and waste fuels of commercial interest. This report presents a systematic and reasonably detailed analysis of fuel property, operating condition, and boiler design issues that dictate ash deposit formation and property development. The span of investigations from bench-top experiments to commercial operation and observations including both practical illustrations and theoretical background provide a self-consistent and reasonably robust basis to understand the qualitative nature of ash deposit formation in biomass boilers. While there remain many quantitative details to be pursued, this project encapsulates essentially all of the conceptual aspects of the issue. It provides a basis for understanding and potentially resolving the technical and environmental issues associated with ash deposition during biomass combustion. 81 refs., 124 figs., 76 tabs.

Baxter, L.L. [Sandia National Labs., Livermore, CA (United States). Combustion Research Facility; Miles, T.R.; Miles, T.R. Jr. [Miles (Thomas R.), Portland, OR (United States); Jenkins, B.M. [California Univ., Davis, CA (United States); Dayton, D.C.; Milne, T.A. [National Renewable Energy Lab., Golden, CO (United States); Bryers, R.W. [Foster Wheeler Development Corp., Livingston, NJ (United States); Oden, L.L. [Bureau of Mines, Albany, OR (United States). Albany Research Center

1996-03-01T23:59:59.000Z

298

Federal Laboratory Consortium | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Federal Laboratory Consortium The Federal Laboratory Consortium for Technology Transfer (FLC) is the nationwide network of federal laboratories that provides the forum to develop...

299

Los Alamos National Laboratory | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Los Alamos National Laboratory Los Alamos National Laboratory Los Alamos National Laboratory Los Alamos National Laboratory At Los Alamos National Laboratory, $94 million in Recovery Act funding is being used to clean up the Lab’s oldest waste disposal site, Material Disposal Area B (MDA-B), which was used from 1944 to 1948 At Los Alamos National Laboratory, $94 million in Recovery Act funding is being used to clean up the Lab's oldest waste disposal site, Material Disposal Area B (MDA-B), which was used from 1944 to 1948 Employees load transuranic waste into a shipping container at Vallecitos Nuclear Center Employees load transuranic waste into a shipping container at Vallecitos Nuclear Center Los Alamos National Laboratory At Los Alamos National Laboratory, $94 million in Recovery Act funding is being used to clean up the Lab's oldest waste disposal site, Material Disposal Area B (MDA-B), which was used from 1944 to 1948

300

Thomas Wallner | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Argonne National Laboratory's Omnivorous Engine Argonne National Laboratory's Omnivorous Engine Argonne National Laboratory's Omnivorous Engine Argonne National Laboratory's Omnivorous Engine Browse by Topic Energy Energy efficiency Vehicles Alternative fuels Automotive engineering Biofuels Diesel Fuel economy Fuel injection Heavy-duty vehicles Hybrid & electric vehicles Hydrogen & fuel cells Internal combustion Powertrain research Vehicle testing Building design Manufacturing Energy sources Renewable energy Bioenergy Solar energy Wind energy Fossil fuels Oil Nuclear energy Nuclear energy modeling & simulation Nuclear fuel cycle Geology & disposal Reactors Nuclear reactor safety Nuclear reactor materials Energy usage Energy life-cycle analysis Energy storage Batteries Lithium-ion batteries Lithium-air batteries Smart Grid

Note: This page contains sample records for the topic "laboratory vorbeck materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Home | Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ABOUT | NEED A MATERIAL | NEWS CENTER | RESEARCH | TECH ABOUT | NEED A MATERIAL | NEWS CENTER | RESEARCH | TECH TRANSFER | CONTACT search LOG IN | RARE EARTH METALS | CRITICAL MATERIALS INSTITUTE | STAFF/ASSOCIATES | VISITORS | BE A PART OF AMES LAB | STUDENTS | EDUCATORS | FUNDING AGENCIES | INDUSTRY | RESEARCHERS | COMMUNITY RARE EARTH METALS Current Market Prices About Rare Earth Metals Materials Preparation STAFF/ASSOCIATES Operations Forms & Documents Find People VISITORS How To Get Here Tours of Ames Laboratory Local Events Calendar BE A PART OF AMES LAB Job News Human Resources Ames Lab At A Glance STUDENTS K-12 Resources Undergraduates Graduates and Others EDUCATORS Science Bowl SULI Program VFP Program FUNDING AGENCIES DOE/Contractor Research Highlights Contract INDUSTRY Technology Transfer Unique Capabilities

302

Sandia National Laboratories: American Chemical SocietyInternational...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials LaboratoryAmerican Chemical Society International-Domestic Student Summit American Chemical Society International-Domestic Student Summit...

303

Enforcement Letter, Savannah River Ecology Laboratory- June 7, 2000  

Broader source: Energy.gov [DOE]

Issued to Savannah River Ecology Laboratory related to Radioactive Material Control Deficiencies at the Savannah River Site

304

Sandia National Laboratories: Federal Laboratory Consortium Regional...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

& CapabilitiesCapabilitiesFederal Laboratory Consortium Regional Technology-Transfer Awards Salute Innovation, Commercialization at Sandia Federal Laboratory...

305

Laboratory program helps small businesses  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Laboratory program helps small businesses Laboratory program helps small businesses Laboratory program helps small businesses The NMSBA allows for-profit small businesses to request technical assistance that capitalizes on the unique expertise and capabilities of Los Alamos and Sandia national laboratories. June 23, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

306

National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Homesteading on the Pajarito Plateau Homesteading on the Pajarito Plateau topic of inaugural lecture at Los Alamos National Laboratory January 4, 2013 Lecture series begins yearlong commemoration of 70th anniversary LOS ALAMOS, NEW MEXICO, Jan. 3, 2013-In commemoration of its 70th anniversary, Los Alamos National Laboratory kicks off a yearlong lecture series on Wednesday, Jan. 9, at 5:30 p.m. with a presentation about homesteading on the Pajarito Plateau at the Bradbury Science Museum, 1350 Central Avenue, Los Alamos. - 2 - The inaugural lecture is based on a book by local writers Dorothy Hoard, Judy Machen and Ellen McGehee about the area's settlement between 1887 and 1942. On hikes across the Pajarito Plateau, Hoard envisioned the Los Alamos area before modern roads and bridges made transportation much easier. The trails she walked

307

Environment, Safety, and Health Special Review, Department of Energy Laboratories- August 2008  

Broader source: Energy.gov [DOE]

Special Review of Work Practices for Nanoscale Material Activities at Department of Energy Laboratories

308

NREL: Concentrating Solar Power Research - Laboratory Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Laboratory Capabilities Laboratory Capabilities To research, develop, and test a variety of concentrating solar power technologies, NREL features the following laboratory capabilities: High-Flux Solar Furnace (HFSF) Large Payload Solar Tracker Advanced Optical Materials Laboratory Advanced Thermal Storage Materials Laboratory Optical Testing Laboratory and Beam Characterization System Receiver Test Laboratory Heat Collection Element (HCE) Temperature Survey Photo of NREL's High-Flux Solar Furnace. NREL's High-Flux Solar Furnace. High-Flux Solar Furnace (HFSF) The power generated at NREL's High-Flux Solar Furnace (HFSF) can be used to expose, test, and evaluate many components-such as receivers, collectors, and reflector materials-used in concentrating solar power systems. The 10-kilowatt HFSF consists of a tracking heliostat and 25 hexagonal

309

Materials Discovery Design, Synthesis & Processing | The Ames...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Discovery Design, Synthesis & Processing Vision: AMES will be the premier U.S. laboratory lusing an "atoms to applications" approach to discover and design new materials....

310

High-Temperature Thermoelectric Materials Characterization for...  

Broader source: Energy.gov (indexed) [DOE]

Materials Laboratory (HTML) User Program Characterization of Li-ion Batteries using Neutron Diffraction and Infrared Imaging Techniques Characterization of Materials for Li-ion...

311

SULI at Ames Laboratory  

SciTech Connect (OSTI)

A video snapshot of the Science Undergraduate Laboratory Internship (SULI) program at Ames Laboratory.

None

2011-01-01T23:59:59.000Z

312

Center for Nanophase Materials Sciences - Newsletter January...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for Nanophase Materials Sciences Oak Ridge National Laboratory is a collaborative nanoscience user research facility for the synthesis, characterization, theorymodeling...

313

Division Personnel - Argonne National Laboratories, Materials Sicence  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Alexei Koshelev 2011-03-29T14:56:16+00:00 Alexei Koshelev 2011-03-29T14:56:16+00:00 2011-03-29T14:56:16+00:00 http://www.msd.anl.gov/koshelev Lacey Bersano lbersano@anl.gov   Alexei Koshelev

314

Division Personnel - Argonne National Laboratories, Materials Sicence  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

em Sun, 12 Jan 2014 01:06:52 em Sun, 12 Jan 2014 01:06:52 +0000 Joomla! 1.6 - Open Source Content Management en-gb Arief Wibowo http://www.msd.anl.gov/wibowo http://www.msd.anl.gov/wibowo tkendall@anl.gov (Tim Kendall) Wed, 21 Sep 2011 20:56:14 +0000 Bum Joon Kim http://www.msd.anl.gov/b-kim http://www.msd.anl.gov/b-kim mleece@anl.gov (Matt Leece) Tue, 29 Mar 2011 19:52:00 +0000 Constantinos Stoumpos http://www.msd.anl.gov/stoumpos http://www.msd.anl.gov/stoumpos lbersano@anl.gov (Lacey Bersano) Thu, 12 Jan 2012 16:10:16 +0000 Daniel Bugaris http://www.msd.anl.gov/bugaris http://www.msd.anl.gov/bugaris lbersano@anl.gov (Lacey Bersano) Thu, 12 Jan 2012 16:10:16 +0000 Daniel Shoemaker http://www.msd.anl.gov/shoemaker http://www.msd.anl.gov/shoemaker mleece@anl.gov (Matt Leece) Tue, 05 Apr 2011 18:51:24 +0000 David Hinks

315

Division Personnel - Argonne National Laboratories, Materials Sicence  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Anand Bhattacharya 2011-03-29T15:50:34+00:00 Anand Bhattacharya 2011-03-29T15:50:34+00:00 2011-03-29T15:50:34+00:00 http://www.msd.anl.gov/bhattacharya Lacey Bersano lbersano@anl.gov   Anand Bhattacharya Physicist Bldg. 440, A-233 Phone: 630-252-6518  anand@anl.gov

316

Division Personnel - Argonne National Laboratories, Materials Sicence  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

nxrs Sun, 12 Jan 2014 01:06:54 nxrs Sun, 12 Jan 2014 01:06:54 +0000 Joomla! 1.6 - Open Source Content Management en-gb Bogdan Dabrowski http://www.msd.anl.gov/dabrowski http://www.msd.anl.gov/dabrowski lbersano@anl.gov (Lacey Bersano) Tue, 05 Apr 2011 19:32:54 +0000 Fanny M. Simoes http://www.msd.anl.gov/division-personnel/personnel/personnel-nxrs/fanny-m-simoes http://www.msd.anl.gov/division-personnel/personnel/personnel-nxrs/fanny-m-simoes mleece@anl.gov (Matt Leece) Mon, 27 Jun 2011 19:54:06 +0000 Gian P. Felcher http://www.msd.anl.gov/felcher http://www.msd.anl.gov/felcher lbersano@anl.gov (Lacey Bersano) Tue, 05 Apr 2011 19:31:01 +0000 Jared Allred http://www.msd.anl.gov/division-personnel/personnel/personnel-nxrs/jared-allred http://www.msd.anl.gov/division-personnel/personnel/personnel-nxrs/jared-allred

317

Mercouri Kanatzidis - Argonne National Laboratories, Materials Sicence  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EM > Mercouri Kanatzidis EM > Mercouri Kanatzidis Mercouri G. Kanatzidis Senior Chemist Bldg. 223 B203 Phone: (630) 252-5544 Fax: (630) 252-9595 This e-mail address is being protected from spambots. You need JavaScript enabled to view it. Biography Mercouri Kanatzidis obtained his BSc from Aristotle University in Greece and his PhD in chemistry from the University of Iowa in 1984. He was a post-doctoral research associate at the University of Michigan and Northwestern University from 1985 to 1987 and is currenly the the Charles E. and Emma H. Morrison Professor of Chemistry at Northwestern University. Mercouri in the fall of 2006 from Michigan State University where he was a University Distinguished Professor of Chemistry since 1987. Mercouri is the editor-in-chief of the Journal of Solid State Chemistry.

318

Division Personnel - Argonne National Laboratories, Materials Sicence  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bogdan Dabrowski 2011-04-05T19:32:54+00:00 Bogdan Dabrowski 2011-04-05T19:32:54+00:00 2011-04-05T19:32:54+00:00 http://www.msd.anl.gov/dabrowski Lacey Bersano lbersano@anl.gov   Bogdan Dabrowski STA Faculty Appointee Bldg. 223,D-225 Phone: 630-252-5541 dabrowski@anl.gov

319

Division Personnel - Argonne National Laboratories, Materials Sicence  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

administrative-staff Sun, 12 Jan administrative-staff Sun, 12 Jan 2014 01:06:50 +0000 Joomla! 1.6 - Open Source Content Management en-gb Catherine Beles http://www.msd.anl.gov/division-personnel/personnel/administrative-staff/catherine-beles http://www.msd.anl.gov/division-personnel/personnel/administrative-staff/catherine-beles tkendall@anl.gov (Tim Kendall) Tue, 29 Mar 2011 14:20:22 +0000 George Beranek http://www.msd.anl.gov/beranek http://www.msd.anl.gov/beranek tkendall@anl.gov (Tim Kendall) Tue, 29 Mar 2011 14:20:22 +0000 George W. Crabtree http://www.msd.anl.gov/crabtree http://www.msd.anl.gov/crabtree msditadmin@anl.gov (Administrator) Thu, 31 Mar 2011 23:12:00 +0000 Janice M. Coble http://www.msd.anl.gov/coble http://www.msd.anl.gov/coble mleece@anl.gov (Matt Leece) Mon, 27 Jun 2011 21:51:12 +0000 Julie Emery

320

Division Personnel - Argonne National Laboratories, Materials Sicence  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

sc Sun, 12 Jan 2014 01:06:55 sc Sun, 12 Jan 2014 01:06:55 +0000 Joomla! 1.6 - Open Source Content Management en-gb Alex Martinson http://www.msd.anl.gov/martinson http://www.msd.anl.gov/martinson lbersano@anl.gov (Lacey Bersano) Tue, 05 Apr 2011 16:26:49 +0000 Alexander Zinovev http://www.msd.anl.gov/zinovev http://www.msd.anl.gov/zinovev lbersano@anl.gov (Lacey Bersano) Tue, 05 Apr 2011 17:23:36 +0000 Cornel Emil Tripa http://www.msd.anl.gov/tripa http://www.msd.anl.gov/tripa lbersano@anl.gov (Lacey Bersano) Tue, 05 Apr 2011 16:31:49 +0000 David G. Willingham http://www.msd.anl.gov/willingham http://www.msd.anl.gov/willingham lbersano@anl.gov (Lacey Bersano) Tue, 05 Apr 2011 18:02:49 +0000 Dieter M. Gruen http://www.msd.anl.gov/gruen http://www.msd.anl.gov/gruen lbersano@anl.gov (Lacey Bersano) Tue, 29 Mar

Note: This page contains sample records for the topic "laboratory vorbeck materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Division Personnel - Argonne National Laboratories, Materials Sicence  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

srs Sun, 12 Jan 2014 01:06:56 srs Sun, 12 Jan 2014 01:06:56 +0000 Joomla! 1.6 - Open Source Content Management en-gb Andi M. Barbour http://www.msd.anl.gov/barbour http://www.msd.anl.gov/barbour lbersano@anl.gov (Lacey Bersano) Tue, 05 Apr 2011 15:49:48 +0000 Boyd W. Veal Jr. http://www.msd.anl.gov/veal http://www.msd.anl.gov/veal lbersano@anl.gov (Lacey Bersano) Tue, 05 Apr 2011 16:03:26 +0000 Carol Thompson http://www.msd.anl.gov/thompson http://www.msd.anl.gov/thompson lbersano@anl.gov (Lacey Bersano) Tue, 05 Apr 2011 15:46:45 +0000 Chad Folkman http://www.msd.anl.gov/folkman http://www.msd.anl.gov/folkman lbersano@anl.gov (Lacey Bersano) Tue, 05 Apr 2011 15:52:47 +0000 Chenhui Zhu http://www.msd.anl.gov/c-zhu http://www.msd.anl.gov/c-zhu lbersano@anl.gov (Lacey Bersano) Tue, 29 Mar 2011 18:35:00 +0000 Daniel

322

Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5:58+00:00 Joomla! 1.6 - Open Source 5:58+00:00 Joomla! 1.6 - Open Source Content Management Frontpage of site 2011-03-03T12:02:20+00:00 2011-03-03T12:02:20+00:00 http://www.msd.anl.gov/content/uncategorised/frontpage-of-site Administrator msditadmin@anl.gov

FEATURED ARTICLE

323

Division Personnel - Argonne National Laboratories, Materials Sicence  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

personnel Sun, 12 Jan 2014 01:06:11 +0000 personnel Sun, 12 Jan 2014 01:06:11 +0000 Joomla! 1.6 - Open Source Content Management en-gb Alan McArthur http://www.msd.anl.gov/mcarthur http://www.msd.anl.gov/mcarthur mleece@anl.gov (Matt Leece) Mon, 27 Jun 2011 21:47:53 +0000 Alex Martinson http://www.msd.anl.gov/martinson http://www.msd.anl.gov/martinson lbersano@anl.gov (Lacey Bersano) Tue, 05 Apr 2011 16:26:49 +0000 Alexander Zinovev http://www.msd.anl.gov/zinovev http://www.msd.anl.gov/zinovev lbersano@anl.gov (Lacey Bersano) Tue, 05 Apr 2011 17:23:36 +0000 Alexei Abrikosov http://www.msd.anl.gov/abrikosov http://www.msd.anl.gov/abrikosov lbersano@anl.gov (Lacey Bersano) Tue, 29 Mar 2011 18:49:38 +0000 Alexei Koshelev http://www.msd.anl.gov/koshelev http://www.msd.anl.gov/koshelev lbersano@anl.gov (Lacey Bersano) Tue, 29 Mar 2011 14:56:16 +0000 Alexey

324

Division Personnel - Argonne National Laboratories, Materials Sicence  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

mm Sun, 12 Jan 2014 01:06:53 mm Sun, 12 Jan 2014 01:06:53 +0000 Joomla! 1.6 - Open Source Content Management en-gb Bryan S. Ringstrand http://www.msd.anl.gov/ringstrand http://www.msd.anl.gov/ringstrand mleece@anl.gov (Matt Leece) Mon, 27 Jun 2011 21:50:25 +0000 Chunrong Yin http://www.msd.anl.gov/yin http://www.msd.anl.gov/yin lbersano@anl.gov (Lacey Bersano) Tue, 05 Apr 2011 18:59:07 +0000 David Horner http://www.msd.anl.gov/horner http://www.msd.anl.gov/horner lbersano@anl.gov (Lacey Bersano) Thu, 31 Mar 2011 14:41:22 +0000 Gihan Kwon http://www.msd.anl.gov/kwon http://www.msd.anl.gov/kwon mleece@anl.gov (Matt Leece) Mon, 27 Jun 2011 19:56:06 +0000 Glen Ferguson http://www.msd.anl.gov/ferguson http://www.msd.anl.gov/ferguson lbersano@anl.gov (Lacey Bersano) Tue, 05 Apr 2011 18:40:19 +0000 Haiying He http://www.msd.anl.gov/he

325

Division Personnel - Argonne National Laboratories, Materials Sicence  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

06+00:00 Joomla! 1.6 - Open Source 06+00:00 Joomla! 1.6 - Open Source Content Management Alan McArthur 2011-06-27T21:47:53+00:00 2011-06-27T21:47:53+00:00 http://www.msd.anl.gov/mcarthur Matt Leece mleece@anl.gov   Alan McArthur STA Electrical Engineer Bldg. 211, A-102A Phone:(630)252-2757 mcarthur@anl.gov     Alan McArthur

326

Division Personnel - Argonne National Laboratories, Materials Sicence  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

cmt Sun, 12 Jan 2014 01:06:51 cmt Sun, 12 Jan 2014 01:06:51 +0000 Joomla! 1.6 - Open Source Content Management en-gb Alexei Abrikosov http://www.msd.anl.gov/abrikosov http://www.msd.anl.gov/abrikosov lbersano@anl.gov (Lacey Bersano) Tue, 29 Mar 2011 18:49:38 +0000 Alexey Galda http://www.msd.anl.gov/galda http://www.msd.anl.gov/galda lbersano@anl.gov (Lacey Bersano) Tue, 29 Mar 2011 19:17:50 +0000 Andreas Glatz http://www.msd.anl.gov/glatz http://www.msd.anl.gov/glatz lbersano@anl.gov (Lacey Bersano) Tue, 29 Mar 2011 18:55:34 +0000 Arthur J. Fedro http://www.msd.anl.gov/fedro http://www.msd.anl.gov/fedro lbersano@anl.gov (Lacey Bersano) Tue, 29 Mar 2011 18:53:28 +0000 Brian Skinner http://www.msd.anl.gov/skinner http://www.msd.anl.gov/skinner lbersano@anl.gov (Lacey Bersano) Tue, 29 Mar 2011 19:03:06 +0000 Gian

327

Division Personnel - Argonne National Laboratories, Materials Sicence  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

tdag Sun, 12 Jan 2014 01:06:56 tdag Sun, 12 Jan 2014 01:06:56 +0000 Joomla! 1.6 - Open Source Content Management en-gb Alan McArthur http://www.msd.anl.gov/mcarthur http://www.msd.anl.gov/mcarthur mleece@anl.gov (Matt Leece) Mon, 27 Jun 2011 21:47:53 +0000 Barbara L. Hall http://www.msd.anl.gov/hall http://www.msd.anl.gov/hall mherman@anl.gov (Matt Herman) Fri, 01 Apr 2011 19:17:45 +0000 Dean A. Bass http://www.msd.anl.gov/bass http://www.msd.anl.gov/bass tkendall@anl.gov (Tim Kendall) Wed, 23 Mar 2011 01:45:09 +0000 Donald A. Peterson http://www.msd.anl.gov/peterson http://www.msd.anl.gov/peterson tkendall@anl.gov (Tim Kendall) Wed, 23 Mar 2011 01:45:09 +0000 John F. Schneider http://www.msd.anl.gov/schneider http://www.msd.anl.gov/schneider tkendall@anl.gov (Tim Kendall) Wed, 23 Mar 2011 01:45:09 +0000 Kenneth L.

328

Division Personnel - Argonne National Laboratories, Materials Sicence  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Arief Wibowo 2011-09-21T20:56:14+00:00 Arief Wibowo 2011-09-21T20:56:14+00:00 2011-09-21T20:56:14+00:00 http://www.msd.anl.gov/wibowo Tim Kendall tkendall@anl.gov

Arief Wibowo Arief Wibowo Postdoctoral Appointee Bldg. 223, A-110 Phone: 630-252-3996 awibowo@anl.gov

329

Awards - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Awards Awards Awards ACA Bertram E. Warren Award D. Price - 1997 ACCA Programming Competition N. Adams - 2009 - 2nd place Alumni Achievement Awards J. D. Jorgensen - 1992 - Honored Alumnus from Brigham Young University College of Physical and Mathematical Sciences B. J. Kestel (1957) - 1998 - Distinguished Alumni Achievement Award from Joliet Junior College Dieter Gruen - 2001 - Alumni Merit Award from Northwestern University American Academy of Arts and Sciences A. A. Abrikosov - Foreign Honorary Member - 1991 American Physical Society Axel Hoffmann - Fellow - 2012 Alder Award S. Bader - 2007 Oliver E. Buckley Condensed Matter Prize J. C. Campuzano - 2011 - for physics work in spectroscopy American Vacuum Society S. Bader - 1999 S. Bader - 2001 - John A. Thornton Memorial Award

330

Division Personnel - Argonne National Laboratories, Materials Sicence  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

sm Sun, 12 Jan 2014 01:06:56 sm Sun, 12 Jan 2014 01:06:56 +0000 Joomla! 1.6 - Open Source Content Management en-gb Alexei Koshelev http://www.msd.anl.gov/koshelev http://www.msd.anl.gov/koshelev lbersano@anl.gov (Lacey Bersano) Tue, 29 Mar 2011 14:56:16 +0000 Andrey Sokolov http://www.msd.anl.gov/sokolov http://www.msd.anl.gov/sokolov lbersano@anl.gov (Lacey Bersano) Tue, 05 Apr 2011 20:47:47 +0000 Arnaud Demortiere http://www.msd.anl.gov/demortiere http://www.msd.anl.gov/demortiere lbersano@anl.gov (Lacey Bersano) Thu, 06 Oct 2011 15:06:40 +0000 Carlos A. Chaparro http://www.msd.anl.gov/chaparro http://www.msd.anl.gov/chaparro lbersano@anl.gov (Lacey Bersano) Tue, 05 Apr 2011 20:56:05 +0000 David L. Piet http://www.msd.anl.gov/piet http://www.msd.anl.gov/piet lbersano@anl.gov (Lacey Bersano) Tue, 05 Apr

331

Division Personnel - Argonne National Laboratories, Materials Sicence  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5+00:00 Joomla! 1.6 - Open Source 5+00:00 Joomla! 1.6 - Open Source Content Management Alex Martinson 2011-04-05T16:26:49+00:00 2011-04-05T16:26:49+00:00 http://www.msd.anl.gov/martinson Lacey Bersano lbersano@anl.gov   Alex Martinson   Alex Martinson Principal Investigator, Assistant Chemist Bldg. 200,D-169 Phone: 630-252-7520 martinson@anl.gov

332

Educational Materials | Savannah River Ecology Laboratory Environmenta...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

science games, and more SPARC herp map SPARC - Student Partners in Amphibian and Reptile Conservation Explore amphibian and reptile biodiversity with the SPARC 'Herps of the...

333

Materials Capability Review Los Alamos National Laboratory  

E-Print Network [OSTI]

Basov University of California, San Diego dbasov@physics.ucsd.edu Michael Kaufman Colorado School (Robbie) Vogt California Institute of Technology vogt@caltech.edu University of California Observer Robert

334

Sandia National Laboratories: Joint Hire Increases Materials...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science Collaboration for Sandia, UNM Sandia Funded to Model Power Pods for Utility-Scale Wave-Energy Converter Mapping Water Availability in the Western US Joint Hire Increases...

335

Ris National Laboratory Materials Research Department  

E-Print Network [OSTI]

: +45 46 77 57 58 (Department). Present address: Rambøll Oil & Gas, Willemoesgade 2, DK-6700 Esbjerg, Denmark 1 #12;1 Introduction The partial oxidation of methanol to formaldehyde on silver is an important is approximately 90 % and the conversion of oxygen approach 100 % [1, 2]. Steam is added to increase selectivity

336

Ris National Laboratory Materials Research Department  

E-Print Network [OSTI]

, Oxy- gen. 2 #12;1 Introduction The partial oxidation of methanol to formaldehyde is an important % and the conversion of oxygen approach 100 %, and slightly more water than hydrogen is produced [1, 9]. Formaldehyde) [8], and is viewed as a pyrolytic gas phase reaction [4, 6]. Despite the fact that the formaldehyde

337

Chemistry Controls Material's Nanostructure | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

selenium and sulfur precursors. The more strongly bound the selenium or sulfur is to phosphorous in the precursor, the lower the reactivity. The lower the reactivity, the longer...

338

Isotope Research Materials Laboratory | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

rolling metal foils Melting and ceramic powder consolidation Scanning electron microscopyEnergy dispersive X-ray spectroscopy Pyrochemical conversions Wire rolling Crucible...

339

Ris National Laboratory Materials Research Department  

E-Print Network [OSTI]

in sodium aluminum hydrides - a combined quasielastic neutron scattering and density functional theory study aluminum hydrides - a combined quasielastic neutron scattering and density functional theory study, Journal quasielastic neutron scattering and density functional theory study Q. Shi a,b ,J. Voss a,c ,H.S. Jacobsen a

340

Sandia National Laboratories: Blade Materials and Substructures...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engine Test Facility Central Receiver Test Facility Power Towers for Utilities Solar Furnace Dish Test Facility Optics Lab Parabolic Dishes Work For Others (WFO) User...

Note: This page contains sample records for the topic "laboratory vorbeck materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Sandia National Laboratories: Materials & Components Compatibility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engine Test Facility Central Receiver Test Facility Power Towers for Utilities Solar Furnace Dish Test Facility Optics Lab Parabolic Dishes Work For Others (WFO) User...

342

Sandia National Laboratories: Materials, Reliability, & Standards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engine Test Facility Central Receiver Test Facility Power Towers for Utilities Solar Furnace Dish Test Facility Optics Lab Parabolic Dishes Work For Others (WFO) User...

343

Division Personnel - Argonne National Laboratories, Materials Sicence  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

im Sun, 12 Jan 2014 01:06:52 im Sun, 12 Jan 2014 01:06:52 +0000 Joomla! 1.6 - Open Source Content Management en-gb Becky Videtic http://www.msd.anl.gov/videtic http://www.msd.anl.gov/videtic mleece@anl.gov (Matt Leece) Tue, 05 Apr 2011 20:10:42 +0000 Bin Liu http://www.msd.anl.gov/b-liu http://www.msd.anl.gov/b-liu mleece@anl.gov (Matt Leece) Tue, 05 Apr 2011 20:19:19 +0000 Charudatta Phatak http://www.msd.anl.gov/phatak http://www.msd.anl.gov/phatak mleece@anl.gov (Matt Leece) Tue, 05 Apr 2011 20:07:38 +0000 Geunhee Lee http://www.msd.anl.gov/g-lee http://www.msd.anl.gov/g-lee mleece@anl.gov (Matt Leece) Tue, 05 Apr 2011 20:18:00 +0000 Guo-Ren Bai http://www.msd.anl.gov/bai http://www.msd.anl.gov/bai lbersano@anl.gov (Lacey Bersano) Tue, 29 Mar 2011 19:25:57 +0000 Jeffery Klug http://www.msd.anl.gov/klug http://www.msd.anl.gov/klug mleece@anl.gov

344

Sandia National Laboratories: Materials and Components Compatibilitiy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Doppler Velocimeter EC Top Publications A Comparison of Platform Options for Deep-water Floating Offshore Vertical Axis Wind Turbines: An Initial Study Nonlinear Time-Domain...

345

Sandia National Laboratories: wind turbine blade materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Doppler Velocimeter EC Top Publications A Comparison of Platform Options for Deep-water Floating Offshore Vertical Axis Wind Turbines: An Initial Study Nonlinear Time-Domain...

346

Sandia National Laboratories: Composite Materials Database  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Doppler Velocimeter EC Top Publications A Comparison of Platform Options for Deep-water Floating Offshore Vertical Axis Wind Turbines: An Initial Study Nonlinear Time-Domain...

347

Sandia National Laboratories: hydrogen-storage materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Doppler Velocimeter EC Top Publications A Comparison of Platform Options for Deep-water Floating Offshore Vertical Axis Wind Turbines: An Initial Study Nonlinear Time-Domain...

348

Educational Materials | Savannah River Ecology Laboratory Environmenta...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Radiocesium in Pond B Soil Remediation Using In Situ Immobilization Techniques Wetlands, Birds, and Airports Phytoremediation Research Radiocesium in White-tailed Deer on...

349

materials | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Director, U.S. DOE-NETL Session I - Functional Materials Moderators: Timothy R. Armstrong, Oak Ridge National Laboratory Bulk Carbon Dioxide Removal By Adsorption: Current...

350

Enforcement Documents - Lawrence Livermore National Laboratory | Department  

Broader source: Energy.gov (indexed) [DOE]

Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Enforcement Documents - Lawrence Livermore National Laboratory July 22, 2013 Enforcement Letter, NEL-2013-03 Issued to Lawrence Livermore National Security, LLC related to Programmatic Deficiencies in the Software Quality Assurance Program at the Lawrence Livermore National Laboratory February 23, 2006 Preliminary Notice of Violation, University of California - EA-2006-01 Preliminary Notice of Violation issued to the University of California related to Radiological Uptakes, a Radioactive Material Spill, and Radiological Protection Program, Quality Assurance, and Safety Basis Deficiencies at the Lawrence Livermore National Laboratory June 2, 2005 Enforcement Letter, Lawrence Livermore National Laboratory - June 2, 2005

351

Compositional Analysis Laboratory (Poster), NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Compositional Analysis Laboratory Compositional Analysis Laboratory * Provide customized analytical method development for a wide variety of feedstocks and process intermediates * Derive comprehensive biomass analysis results backed by 20 years of experience supporting the biomass conversion industry * Write publicly available Laboratory Analytical Procedures, several of which have been adapted by ASTM International and used and referenced worldwide * Provide training classes on biomass analysis and method development to help companies and institutions rapidly improve their analytical results * For analyzing solid samples to measure structural carbohydrates (glucose, xylose, galactose, arabinose, and mannose), lignin, extractable materials, protein, and ash * For analyzing liquid samples to measure oligomeric and monomeric

352

Characterization of Materials for Li-ion Batteries: Success Stories...  

Broader source: Energy.gov (indexed) [DOE]

Characterization of Materials for Li-ion Batteries: Success Stories from the High Temperature Materials Laboratory (HTML) User Program Characterization of Materials for Li-ion...

353

Hydrogen Compatible Materials Workshop  

Broader source: Energy.gov [DOE]

Summary of the Hydrogen Compatible Materials Workshop held November, 3, 2010, at Sandia National Laboratories in Livermore, California. Summary includes the workshop agenda, an overview of the morning presentations, a discussion of the afternoon meeting, and a list of participants.

354

Lab Spotlight: Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lab Spotlight: Argonne National Laboratory Lab Spotlight: Argonne National Laboratory ultrananocrystalline diamond (UNCD) technology Researchers John Carlisle (left) and Orlando Auciello (right) are developing an ultrathin biocompatible coating for the device. Creating Diamond Coatings for the Retinal Implant Argonne National Laboratory (ANL) plays a critical role in the success of the electrode implants used in the Artificial Retina Project. That's where researchers Orlando Auciello and colleague John Carlisle are using their patented ultrananocrystalline diamond (UNCD) technology to apply a revolutionary new coating to the retinal prosthetic device. The new packaging promises to provide a very thin, ultrasmooth film that will be far more compact and biocompatible than the bulky materials used to encase

355

Argonne National Laboratory | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Argonne National Laboratory Argonne National Laboratory Argonne National Laboratory With the help of $79 million from the Recovery Act, Argonne National Laboratory continues to dramatically reduce its inventory of radioactive materials and waste while making significant progress in its decontamination and demolition (D&D) program With the help of $79 million from the Recovery Act, Argonne National Laboratory continues to dramatically reduce its inventory of radioactive materials and waste while making significant progress in its decontamination and demolition (D&D) program With the help of $79 million from the Recovery Act, Argonne National Laboratory continues to dramatically reduce its inventory of radioactive materials and waste while making significant progress in its decontamination and demolition (D&D) program

356

Sandia National Laboratories: Research: Facilities: Technology Deployment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engineering Sciences Experimental Facilities (ESEF) Engineering Sciences Experimental Facilities (ESEF) Technology Deployment Centers Advanced Power Sources Laboratory Engineering Sciences Experimental Facilities (ESEF) Trisonic Wind Tunnel Hypersonic Wind Tunnel High Altitude Chamber Explosive Components Facility Ion Beam Laboratory Materials Science and Engineering Center Pulsed Power and Systems Validation Facility Radiation Detection Materials Characterization Laboratory Shock Thermodynamic Applied Research Facility (STAR) Weapon and Force Protection Center Design, Evaluation and Test Technology Facility Research Engineering Sciences Experimental Facilities (ESEF) The ESEF complex contains several independent laboratories for experiments and advanced diagnostics in the fields of thermodynamics, heat transfer,

357

Lawrence Livermore National Laboratory  

Broader source: Energy.gov [DOE]

Lawrence Livermore National Laboratorys (LLNL) primary mission is research and development in support of national security.

358

Sandia National Laboratories: photovoltaic  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PV Facilities On November 10, 2010, in Photovoltaic System Evaluation Laboratory Distributed Energy Technologies Laboratory Microsystems and Engineering Sciences Applications...

359

Facilities | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engineering Research Facility Distributed Energy Research Center Engine Research Facility Heat Transfer Laboratory Tribology Laboratory Transportation Beamline at the Advanced...

360

Argonne Tribology Laboratory Photo Tour  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Laboratory Photo Tour Laboratory Photo Tour Engineers use Argonne's Tribology Laboratory to conduct research on advanced tribological systems (surface engineered materials, lubricants, fuels and fuel/lubricant additives) for use in aggressive environments. The Lab's "toolbox" includes the following: Nanoindenter Nanoindenter This Hysitron brand surface characterization tool is used to obtain accurate elastic modulus and hardness measurements of thin-film and bulk materials on the nanometer and micrometer level. In this method a diamond stylus is pressed against the sample surface and the force and distance is measured. The modulus is related to the slope of the force/distance unloading curve, and the hardness is related to the projected angle of contact and applied load. In addition, the tool can be used to obtain high-resolution topographic images of the sample surface. Download high resolution image.

Note: This page contains sample records for the topic "laboratory vorbeck materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Center for Materials at Irradiation and Mechanical Extremes:...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Quanxi Jia image of George Gray Contact Information Laboratory Fellow Los Alamos National Laboratory Materials Physics and Applications Division Phone: (505) 667-2716...

362

Center for Materials at Irradiation and Mechanical Extremes:...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Yongqiang Wang image of George Gray Contact Information Los Alamos National Laboratory Ion Beam Materials Laboratory, Team Leader Phone: (505) 665-1596 yqwang@lanl.gov Bio...

363

Center for Materials at Irradiation and Mechanical Extremes:...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

George T. (Rusty) Gray III image of George Gray Contact Information Laboratory Fellow Los Alamos National Laboratory Dynamic Materials Properties, Testing, and Modeling Los Alamos,...

364

Process Development and Integration Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

* 1617 Cole Boulevard, Golden, Colorado 80401-3305 * 303-275-3000 * www.nrel.gov * 1617 Cole Boulevard, Golden, Colorado 80401-3305 * 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U. S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. NREL/FS-5200-48351 * June 2011 Process Development and Integration Laboratory Scope. The Process Development and Integration Laboratory (PDIL) within the National Renewable Energy Laboratory (NREL) is operated by the National Center for Photovoltaics (NCPV). The PDIL is a unique collaborative facility where industry and universities can work closely with NREL scientists on integrated equipment to answer pressing questions related to photovoltaics (PV) development. We work with a wide range of PV materials-from crystalline silicon to thin films (amorphous, nano- and

365

Laboratory directed research and development  

SciTech Connect (OSTI)

The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory's R D capabilities, and further the development of its strategic initiatives. Among the aims of the projects supported by the Program are establishment of engineering proof-of-principle''; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these project are closely associated with major strategic thrusts of the Laboratory as described in Argonne's Five Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne. Areas of emphasis are (1) advanced accelerator and detector technology, (2) x-ray techniques in biological and physical sciences, (3) advanced reactor technology, (4) materials science, computational science, biological sciences and environmental sciences. Individual reports summarizing the purpose, approach, and results of projects are presented.

Not Available

1991-11-15T23:59:59.000Z

366

Chemical and Materials Sciences Building | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Materials Advanced Materials Research Areas Research Highlights Facilities and Capabilities Science to Energy Solutions News & Awards Events and Conferences Supporting Organizations Advanced Materials Home | Science & Discovery | Advanced Materials | Facilities and Capabilities SHARE Chemical and Materials Sciences Building Chemical and Materials Sciences Building, 411 ORNL's Chemical and Materials Sciences Building provides modern laboratory and office space for researchers studying and developing materials and chemical processes for energy-related technologies. The Chemical and Materials Sciences Building is a 160,000 square foot facility that provides modern laboratory and office space for ORNL researchers who are studying and developing materials and chemical

367

BCM 2 Equipment Inventory | Sample Preparation Laboratories  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

& Material Science Laboratory 2 Title Equipment Type Description Accumet Basic AB15 pH meter pH Meter pH meters with combination AgAgCl electrode and ATC probe. Corning 430 pH...

368

Sandia National Laboratories: Research: Facilities: Technology Deployment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Explosive Components Facility Explosive Components Facility The 98,000 square foot Explosive Components Facility (ECF) is a state-of-the-art facility that provides a full-range of chemical, material, and performance analysis capabilities for energetic materials and explosive components: advanced design of energetic devices and subsystems optical ordnance energetic materials testing of explosives and explosive components and subsystems advanced explosives diagnostics reliability analyses failure modes evaluation safety evaluation The ECF has the full-range of capabilities necessary to support the understanding of energetic materials and components: Optical and Semiconductor Bridge (SCB) Initiation Laboratories Characterization Laboratories thermal properties gas analyses powder characterization

369

Using Web-Based Technology in Laboratory  

E-Print Network [OSTI]

Using Web-Based Technology in Laboratory Instruction to Reduce Costs RITA M. POWELL,1 HELEN curriculum while reducing their costs through the application of web-based teaching tools. The project.interscience. wiley.com.); DOI 10.1002/cae.10029 Keywords: engineering education; laboratory materials; World Wide Web

Plotkin, Joshua B.

370

Ames Laboratory Logos | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ames Laboratory Logos The Ames Laboratory Logo comes in several formats. EPS files are vector graphics created in Adobe Illustrator and saved with a tiff preview so they will...

371

Los Alamos National Laboratory | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Los Alamos National Laboratory Los Alamos National Laboratory Los Alamos National Laboratory Los Alamos National Laboratory | September 2006 Aerial View Los Alamos National Laboratory | September 2006 Aerial View Los Alamos National Laboratory's (LANL) primary mission is to provide scientific and engineering support to national security programs. LANL performs R&D, design, maintenance, and testing in support of the nuclear weapons stockpile. LANL also performs theoretical and applied R&D in such areas as materials science, physics, environmental science, energy, and health. Enforcement February 12, 2013 Enforcement Letter, NEL-2013-02 Issued to Los Alamos National Security, LLC related to a Radiological Contamination Event at the Los Alamos Neutron Science Center at Los Alamos National Laboratory

372

Sandia National Laboratories: Research: Facilities: Technology Deployment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Radiation Detection Materials Characterization Laboratory Radiation Detection Materials Characterization Laboratory This facility provides assistance to users from federal laboratories, U.S. industry and academia in the following areas: (1) testing and characterizing radiation detector materials and devices; and (2) determining the relationships between the physical properties of the detector materials and the device response. Systems of interest include scintillators and room-temperature semiconductors for detection arrays of x-rays, gamma rays and neutrons. User Support The facility's special capabilities include: low-noise environment to test solid-state detectors for x-ray, gamma-ray, and neutron response mass spectrometry to quantify contaminants in detectors and detector-grade materials photoluminescence and thermally-stimulated current to measure

373

Sandia National Laboratories: SAND2014-4761P  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

761P Sandia Researchers Win CSP:ELEMENTS Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy Storage, Facilities, National...

374

Sandia National Laboratories: thermochemical energy-storage systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

energy-storage systems Sandia Researchers Win CSP:ELEMENTS Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy Storage,...

375

Sandia National Laboratories: concentrates sunlight onto a fall...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy Storage, Facilities, National Solar Thermal Test Facility,...

376

Los Alamos National Laboratory, Sandia Labs, other major employers...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory...

377

Los Alamos National Laboratory's environmental data now viewable...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory...

378

Los Alamos National Laboratory receives Recovery Act funds  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory...

379

Los Alamos National Laboratory, LANS develop new mentor-protg...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory...

380

Area schools get new computers through Los Alamos National Laboratory...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory...

Note: This page contains sample records for the topic "laboratory vorbeck materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Printing 3D Catalytic Devices | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Printing 3D Catalytic Devices Ames Laboratory scientist Igor Slowing discusses using 3D printers to create new materials, including catalysts...

382

Sandia National Laboratories: enhanced geothermal systems R&D  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

enhanced geothermal systems R&D Sandia Wins DOE Geothermal Technologies Office Funding Award On December 15, 2014, in Advanced Materials Laboratory, Capabilities, Energy,...

383

Sandia National Laboratories: National Solar Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy Storage, Facilities, National Solar Thermal Test Facility,...

384

Working with SRNL - Our Facilities- High Pressure Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The High Pressure Laboratory provides a comprehensive test facility providing the annual testing certification of various nuclear material shipping packages and leak testing...

385

News | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

News Argonne Laboratory Director Peter Littlewood (left) talks with a small business owner during the second annual "Doing Business with Argonne and Fermi National Laboratories"...

386

jevans | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

jevans Ames Laboratory Profile James Evans Associate 315 Wilhelm Phone Number: 515-294-1638 Email Address: evans@ameslab.gov Ames Laboratory Associate and Professor, Iowa State...

387

Sustainability | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sustainability Ames Laboratory is committed to environmental sustainability in all of its operations as outlined in the Laboratory's Site Sustainability Plan. Executive orders set...

388

Superconductivity and Magnetism: Materials Properties  

E-Print Network [OSTI]

#12;#12;Superconductivity and Magnetism: Materials Properties and Developments #12;Copyright 2003 and Magnetism: Materials Properties and Developments Extended abstracts of the 24th Risø International Symposium LABORATORY ROSKILDE, DENMARK #12;Risø International Symposium on Superconductivity and Magnetism: Material

389

Forest fire near Los Alamos National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Forest fire near Los Alamos National Laboratory Forest fire near Los Alamos National Laboratory Forest fire near Los Alamos National Laboratory The Las Conchas fire burning in the Jemez Mountains approximately 12 miles southwest of the boundary of LANL has not entered Lab property at this time. June 26, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

390

Betsy Sutherland - Brookhaven National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Betsy M. Sutherland (Deceased) Brookhaven National Laboratory From: 07/01/1977 - 10/7/2009 Passed Areas of Interest Betsy Sutherland heads the Biology Department's User Support Team for the NASA Space Radiation Laboratory (NSRL) at BNL. The NSRL project, carried out jointly with BNL's Collider-Accelerator and Medical Departments, provides the only source in the US of high energy heavy charged particles, used in assessing the effects of space radiation on biological systems, materials and instruments. The Biology Department NSRL support team consists of eight scientific, professional and administrative staffers. They provide scientific and facilities support to over 200 User groups from all over the world, and collaborate in development and maintenance of the NSRL. Betsy Sutherland also chairs the BNL Scientific Advisory Committee for Radiation Research, advisory to NASA and to the BNL Associate Laboratory Director for Nuclear and Particle Physics on research at the NSRL.

391

Cost Effective Production of Giant Magneto-Caloric Materials...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cost Effective Production of Giant Magneto-Caloric Materials Ames Laboratory Contact AMES About This Technology Technology Marketing SummaryThe giant magnetocaloric material...

392

Ames Lab 101: Improving Materials with Advanced Computing  

ScienceCinema (OSTI)

Ames Laboratory's Chief Research Officer Duane Johnson talks about using advanced computing to develop new materials and predict what types of properties those materials will have.

Johnson, Duane

2014-06-04T23:59:59.000Z

393

Selection of a Wear-Resistant Tractor Drivetrain Material: Success...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Selection of a Wear-Resistant Tractor Drivetrain Material: Success stories at the High Temperature Materials Laboratory (HTML) User Program Selection of a Wear-Resistant Tractor...

394

Vehicle Technologies Office Merit Review 2014: Novel Anode Materials...  

Broader source: Energy.gov (indexed) [DOE]

Novel Anode Materials Vehicle Technologies Office Merit Review 2014: Novel Anode Materials Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells...

395

Light-Material Interactions in Energy Conversion - Energy Frontier...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Leader John A. Rogers John A. Rogers, Swanlund Chair, Professor of Materials Science and Engineering, Professor of Chemistry, Director, F. Seitz Materials Research Laboratory...

396

Achievements By The Department of Energy's National Laboratories  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Laboratories National Laboratories Argonne National Laboratory (ANL) Argonne Accomplishments and Discoveries Argonne: America's First National Laboratory Biomedical Engineering Research at DOE National Labs A Brief History of Materials R&D at Argonne Medical Applications of Non-Medical Research ANL History Listing of National Labs Top Brookhaven National Laboratory (BNL) Biomedical Engineering Research at DOE National Labs Brookhaven Discoveries Brookhaven National Laboratory Science & Technology Highlights Converting Energy to Medical Progress [Nuclear Medicine] Medical Applications of Non-Medical Research BNL History Listing of National Labs Top Fermi National Accelerator Laboratory (FNAL) Biomedical Engineering Research at DOE National Labs Discoveries at Fermilab

397

Materialism and materiality  

Science Journals Connector (OSTI)

Accountants and auditors in recent financial scandals have been pictured as materialistic, simply calculating consequences and ignoring duties. This paper potentially explains this apparently materialistic behaviour in what has historically been a truthtelling profession. Materiality, which drives audit priorities, has been institutionalised in accounting and auditing standards. But a materiality focus inherently implies that all amounts that are not 'materially' misstated are equally true. This leads to habitual immaterial misstatements and promotes the view that auditors do not care about truth at all. Auditors' lack of commitment to truth undermines their claim to be professionals in the classic sense.

Michael K. Shaub

2005-01-01T23:59:59.000Z

398

Center for Nanophase Materials Sciences - Summer Newsletter 2010  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for Nanophase Materials Sciences Oak Ridge National Laboratory is a collaborative nanoscience user research facility for the synthesis, characterization, theorymodeling...

399

ORNL material is in new cookware, more upcoming products  

ScienceCinema (OSTI)

Researchers at Oak Ridge National Laboratory have come up with a material that could change the way you cook.

None

2010-01-08T23:59:59.000Z

400

Tube Investments Group Research Laboratory, Hinxton Hall (195488)  

Science Journals Connector (OSTI)

...Laboratory was made. Bill Graham as Technical Director and Bill Matthews as Commercial...research departments, Materials and Processes and...for compressor or turbine casings, could be...a lot of expensive material. Rolling the ring...

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "laboratory vorbeck materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

DOE Vehicular Tank Workshop Sandia National Laboratories  

E-Print Network [OSTI]

DOE Vehicular Tank Workshop Sandia National Laboratories Livermore, CA Nondestructive Evaluation for Ultrasonic Testing of Flat Panel Composites and Sandwich Core Materials Used in Aerospace Applications ­ E2581-07 Std Practice for Shearography of Polymer Matrix Composites, Sandwich Core Materials

402

The national voluntary laboratory accreditation program  

Science Journals Connector (OSTI)

Formally established in 1976 by the U.S. Department of Commerce the National Voluntary Laboratory Accreditation Program (NVLAP) is designed to examine the professional and technical competence of private and public testing laboratories at their request. The Department will grant or deny accreditation to testing laboratories based on its assessment of their competence. Actions undertaken in NVLAP are based on established standards and test methods in specific product area. NVLAP benefits consumers and manufacturers by assuring more consistent product testing. It benefits government agencies and industry associations by providing procedures for accrediting laboratories which could be used as part of their product certification programs. Additionally NVLAP benefits laboratories by providing a focus for increased professionalism and by minimizing the number of bodies whose approvals the laboratory may find it necessary to obtain. The first accreditations were granted on 12 October 1979 to 30 laboratories that test thermal insulation materials. The Department currently has programs for three product areas: thermal insulations materials freshly mixed field concrete and carpet. Laboratories applying under these three programs are currently being assessed. New programs for accrediting laboratories that test other products are being considered.

Howard I. Forman

1980-01-01T23:59:59.000Z

403

Commercial Fisheries Biological Laboratory  

E-Print Network [OSTI]

scientists; a substation with a laboratory on Chincoteague Bay; and a sampling substation at Point Pleasant

404

Preliminary Notice of Violation, Los Alamos National Laboratory- EA-2004-05  

Broader source: Energy.gov [DOE]

Issued to the University of California related to Multiple Radioactive Material Uptakes at the Los Alamos National Laboratory

405

Submitting Organization Sandia National Laboratories  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

P.O. Box 5800 Albuquerque, NM 87185 Susan Brozik Address: P.O. Box 5800, MS 0892 City/State: Albuquerque, NM Zip/Postal Code: 87185 Country: USA Phone: 505-844-5105 Fax: 505-845-8161 smbrozi@sandia.gov Contact Person Glenn Kubiak Sandia National Laboratories Director, Biological and Materials Science Center Address: 7011 East Avenue, MS 9405 City/State: Livermore, CA Zip/Postal Code: 94551

406

Argonne National Laboratory | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Argonne National Laboratory Fighting friction Graphene offers dramatic improvement over conventional mechanical lubricants Read More Forecasting supply Researchers use real-world...

407

Sandia National Laboratories: National Renewable Energy Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar Newsletter, SunShot, Systems Analysis The solar industry is now more than 60% of the way toward achieving...

408

Sandia National Laboratories: Idaho National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Idaho National Laboratory Biofuels Blend Right In: Researchers Show Ionic Liquids Effective for Pretreating Mixed Blends of Biofuel Feedstocks On February 26, 2013, in Biofuels,...

409

Nuclear Forensics at Los Alamos National Laboratory  

SciTech Connect (OSTI)

The overview of this presentation is: (1) Introduction to nonproliferation efforts; (2) Scope of activities at Los Alamos National Laboratory; (3) Facilities for radioanalytical work at LANL; (4) Radiochemical characterization capabilities; and (5) Bulk chemical and materials analysis capabilities. Some conclusions are: (1) Analytical chemistry measurements on plutonium and uranium matrices are critical to numerous defense and non-defense programs including safeguards accountancy verification measurements; (2) Los Alamos National Laboratory operates capable actinide analytical chemistry and material science laboratories suitable for nuclear material forensic characterization; (3) Actinide analytical chemistry uses numerous means to validate and independently verify that measurement data quality objectives are met; and (4) Numerous LANL nuclear facilities support the nuclear material handling, preparation, and analysis capabilities necessary to evaluate samples containing nearly any mass of an actinide (attogram to kilogram levels).

Podlesak, David W [Los Alamos National Laboratory; Steiner, Robert E. [Los Alamos National Laboratory; Burns, Carol J. [Los Alamos National Laboratory; LaMont, Stephen P. [Los Alamos National Laboratory; Tandon, Lav [Los Alamos National Laboratory

2012-08-09T23:59:59.000Z

410

Photovoltaic Materials  

SciTech Connect (OSTI)

The goal of the current project was to help make the US solar industry a world leader in the manufacture of thin film photovoltaics. The overall approach was to leverage ORNLs unique characterization and processing technologies to gain a better understanding of the fundamental challenges for solar cell processing and apply that knowledge to targeted projects with industry members. ORNL has the capabilities in place and the expertise required to understand how basic material properties including defects, impurities, and grain boundaries affect the solar cell performance. ORNL also has unique processing capabilities to optimize the manufacturing process for fabrication of high efficiency and low cost solar cells. ORNL recently established the Center for Advanced Thin-film Systems (CATS), which contains a suite of optical and electrical characterization equipment specifically focused on solar cell research. Under this project, ORNL made these facilities available to industrial partners who were interested in pursuing collaborative research toward the improvement of their product or manufacturing process. Four specific projects were pursued with industrial partners: Global Solar Energy is a solar industry leader in full scale production manufacturing highly-efficient Copper Indium Gallium diSelenide (CIGS) thin film solar material, cells and products. ORNL worked with GSE to develop a scalable, non-vacuum, solution technique to deposit amorphous or nanocrystalline conducting barrier layers on untextured stainless steel substrates for fabricating high efficiency flexible CIGS PV. Ferro Corporations Electronic, Color and Glass Materials (ECGM) business unit is currently the worlds largest supplier of metallic contact materials in the crystalline solar cell marketplace. Ferros ECGM business unit has been the world's leading supplier of thick film metal pastes to the crystalline silicon PV industry for more than 30 years, and has had operational cells and modules in the field for 25 years. Under this project, Ferro leveraged world leading analytical capabilities at ORNL to characterize the paste-to-silicon interface microstructure and develop high efficiency next generation contact pastes. Ampulse Corporation is developing a revolutionary crystalline-silicon (c-Si) thin-film solar photovoltaic (PV) technology. Utilizing uniquely-textured substrates and buffer materials from the Oak Ridge National Laboratory (ORNL), and breakthroughs in Hot-Wire Chemical Vapor Deposition (HW-CVD) techniques in epitaxial silicon developed at the National Renewable Energy Laboratory (NREL), Ampulse is creating a solar technology that is tunable in silicon thickness, and hence in efficiency and economics, to meet the specific requirements of multiple solar PV applications. This project focused on the development of a high rate deposition process to deposit Si, Ge, and Si1-xGex films as an alternate to hot-wire CVD. Mossey Creek Solar is a start-up company with great expertise in the solar field. The primary interest is to create and preserve jobs in the solar sector by developing high-yield, low-cost, high-efficiency solar cells using MSC-patented and -proprietary technologies. The specific goal of this project was to produce large grain formation in thin, net-shape-thickness mc-Si wafers processed with high-purity silicon powder and ORNL's plasma arc lamp melting without introducing impurities that compromise absorption coefficient and carrier lifetime. As part of this project, ORNL also added specific pieces of equipment to enhance our ability to provide unique insight for the solar industry. These capabilities include a moisture barrier measurement system, a combined physical vapor deposition and sputtering system dedicated to cadmium-containing deposits, adeep level transient spectroscopy system useful for identifying defects, an integrating sphere photoluminescence system, and a high-speed ink jet printing system. These tools were combined with others to study the effect of defects on the performance of crystalline silicon and

Duty, C.; Angelini, J.; Armstrong, B.; Bennett, C.; Evans, B.; Jellison, G. E.; Joshi, P.; List, F.; Paranthaman, P.; Parish, C.; Wereszczak, A.

2012-10-15T23:59:59.000Z

411

DOE Designated User Facilities Multiple Laboratories * ARM Climate Research Facility  

Broader source: Energy.gov (indexed) [DOE]

Designated User Facilities Designated User Facilities Multiple Laboratories * ARM Climate Research Facility Argonne National Laboratory * Advanced Photon Source (APS) * Electron Microscopy Center for Materials Research * Argonne Tandem Linac Accelerator System (ATLAS) * Center for Nanoscale Materials (CNM) * Argonne Leadership Computing Facility (ALCF) * Brookhaven National Laboratory * National Synchrotron Light Source (NSLS) * Accelerator Test Facility (ATF) * Relativistic Heavy Ion Collider (RHIC) * Center for Functional Nanomaterials (CFN) * National Synchrotron Light Source II (NSLS-II ) (under construction) Fermi National Accelerator Laboratory * Fermilab Accelerator Complex Idaho National Laboratory * Advanced Test Reactor ** * Wireless National User Facility (WNUF)

412

Argonne National Laboratory Scientists Invent Breakthrough Technique in  

Broader source: Energy.gov (indexed) [DOE]

Argonne National Laboratory Scientists Invent Breakthrough Argonne National Laboratory Scientists Invent Breakthrough Technique in Nanotechnology Argonne National Laboratory Scientists Invent Breakthrough Technique in Nanotechnology March 17, 2011 - 9:36am Addthis Gold and carbon nanoparticles strung together using a breakthrough new technique for materials design known as "optically directed assembly" | Courtesy of Argonne National Laboratory Gold and carbon nanoparticles strung together using a breakthrough new technique for materials design known as "optically directed assembly" | Courtesy of Argonne National Laboratory Elizabeth Meckes Elizabeth Meckes Director of User Experience & Digital Technologies, Office of Public Affairs What are the key facts? With a low-power laser, similar in intensity to those in

413

DOE - Office of Legacy Management -- Argonne National Laboratory - West -  

Office of Legacy Management (LM)

Argonne National Laboratory - West Argonne National Laboratory - West - 014 FUSRAP Considered Sites Site: Argonne National Laboratory - West (014) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: The primary mission of the Argonne National Laboratory-West was to support liquid metal reactor research and development for the Department of Energy¿s Integral Fast Reactor Program, but the program was terminated. Activities at the Laboratory now include technology development for spent nuclear fuel and waste treatment, reactor and fuel cycle safety, and facility decommissioning. The decommissioning and other clean up is being

414

MST: Organizations: Organic Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Adhesive Bonding Adhesive Bonding Composites Encapsulation Materials Characterization Mechanical Testing Molding, Thermoforming, & Compounding Organizations Organic Materials Composite-to-metal adhesive bond Experimental/analytical study of composit-to-metal adhesive bond. The Organic Materials department in the Advanced Manufacturing and Processing Laboratory provides innovative prototype fabrication, full service small lot production, materials technology, processing expertise, and a broad range of organic material characterization and mechanical testing techniques. We encapsulate, we join and bond, we foam, we analyze and image, we build composite structures. We strive to make you, our customers, successful! We partner with you to find the right combination of materials, processing, and fixturing that will result in the highest value

415

NMR imaging of materials  

SciTech Connect (OSTI)

Interest in the area of NMR imaging has been driven by the widespread success of medical imaging. John M. Listerud of the Pendergrass Diagnostic Research Laboratories, Steven W. Sinton of Lockheed, and Gary P. Drobny of the University of Washington describe the principal image reconstruction methods, factors limiting spatial resolution, and applications of imaging to the study of materials.

Listerud, J.M.; Sinton, S.W.; Drobny, G.P.

1989-01-01T23:59:59.000Z

416

New Advances in SuperConducting Materials  

ScienceCinema (OSTI)

Superconducting materials will transform the world's electrical infrastructure, saving billions of dollars once the technical details and installation are in place. At Los Alamos National Laboratory, new materials science concepts are bringing this essential technology closer to widespread industrial use.

None

2014-08-12T23:59:59.000Z

417

California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

April 8, 2013 April 8, 2013 The California Valley Solar Ranch has a capacity of 250 MW -- enough energy to power the equivalent of every home in San Luis Obispo County. | Photo courtesy of SunPower. 5 Super-Sized Solar Projects Transforming the Clean Energy Landscape Counting down a few of the game-changing solar projects that are generating clean electricity for American families and businesses. April 5, 2013 Testing materials in the lab at Vorbeck Materials Corp. | Photo courtesy of Vorbeck Materials Corp. From Lab to Market: DOE's America's Next Top Energy Innovator Program America's Next Top Energy Innovator Program is unleashing the National Labs' unlicensed patents for use by startups -- and helping build businesses and bring energy technologies from the lab to the marketplace.

418

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY  

E-Print Network [OSTI]

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY Fusion Materials Research Steve Zinkle Materials Science & Technology Division Oak Ridge National Laboratory, Oak Ridge, TN Fusion Power Associates Annual Meeting Fusion Energy: Preparing for the NIF and ITER Era Oak Ridge, TN, December 4-5, 2007

419

Material control evaluation  

SciTech Connect (OSTI)

Changes in the Department of Energy`s (DOE) scope of work have stimulated several laboratories and commercial companies to develop and apply technology to enhance nuclear material control. Accountability, inventory, radiation exposure, and insider protection concerns increase as many DOE facilities require increased storage. This paper summarizes a study of the existing material control technologies. The goal of the study is to identify, characterize, and quantify the trade-offs associated with using these technologies to provide real-time information on stored nuclear material that in turn supports decreasing the frequency of inventories conducted by site personnel.

Waddoups, I.G.; Anspach, D.A. [Sandia National Labs., Albuquerque, NM (US); Abbott, J.A. [EG& G Kirtland Operations, Albuquerque, NM (US)

1993-07-01T23:59:59.000Z

420

Biotechnology Laboratory Spring 2012  

E-Print Network [OSTI]

CH369T Biotechnology Laboratory Spring 2012 Instructor: Dr. Gene McDonald Office: WEL 3.270C Phone, and at the same time to introduce you to issues associated with various biotechnology laboratory operations. After

Note: This page contains sample records for the topic "laboratory vorbeck materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Sandia National Laboratories: Photovoltaic  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Microelectronic Photovoltaics On June 13, 2012, in Energy, News, News & Events, Photovoltaic, Renewable Energy, Solar Sandia National Laboratories semiconductor engineer...

422

Sandia National Laboratories: Partnership  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Partnership, Photovoltaic, Photovoltaic Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar Newsletter, Systems Analysis The PV Performance Modeling...

423

Sandia National Laboratories: EC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Partnership, Photovoltaic, Photovoltaic Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar Newsletter, Systems Analysis The PV Performance Modeling...

424

Sandia National Laboratories: News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Partnership, Photovoltaic, Photovoltaic Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar Newsletter, Systems Analysis The PV Performance Modeling...

425

Sandia National Laboratories  

Broader source: Energy.gov [DOE]

Sandia National Laboratories' (SNL) primary mission is to provide scientific and technology support to national security programs.

426

Ion Beam Materials Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facilities » Facilities » Ion Beam Materials Lab Ion Beam Materials Lab A new research frontier awaits! Our door is open and we thrive on mutually beneficial partnerships, collaborations that drive innovations and new technologies. April 12, 2012 Ion Beam Danfysik Implanter High Voltage Terminal. Contact Yongqiang Wang (505) 665-1596 Email Devoted to the characterization and modification of surfaces through the use of ion beams The Ion Beam Materials Laboratory (IBML) is a Los Alamos National Laboratory resource devoted to the characterization and modification of surfaces through the use of ion beams. The IBML provides and operates the core facilities, while supporting the design and implementation of specific apparati needed for experiments requested by users of the facility. The result is a facility with

427

New Materials for Hydrogen Pipelines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

OAK OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY New Materials for Hydrogen Pipelines New Materials for Hydrogen Pipelines Barton Smith, Barbara Frame, Cliff Eberle, Larry Anovitz, James Blencoe and Tim Armstrong Oak Ridge National Laboratory Jimmy Mays University of Tennessee, Knoxville Hydrogen Pipeline Working Group Meeting August 30-31, 2005 Augusta, Georgia 2 OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY Overview Overview - - Barriers and Technical Targets Barriers and Technical Targets * Barriers to Hydrogen Delivery - Existing steel pipelines are subject to hydrogen embrittlement and are inadequate for widespread H 2 distribution. - Current joining technology (welding) for steel pipelines is major cost factor and can exacerbate hydrogen embrittlement issues.

428

Electrochemical Characterization Laboratory (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Electrochemical Characterization Laboratory at the Energy Systems Integration Facility. The research focus at the Electrochemical Characterization Laboratory at NREL's Energy Systems Integration Facility (ESIF) is evaluating the electrochemical properties of novel materials synthesized by various techniques and understanding and delineating the reaction mechanisms to provide practical solutions to PEMFCs commercialization issues of cost, performance and durability. It is also involved in the development of new tools and techniques for electrochemical characterization. The laboratory concentrates on the development and characterization of new materials for PEMFCs such as electrocatalysts, catalyst supports in terms of electrochemical activity, electrochemical surface area and corrosion/durability. The impact of impurities and/or contaminants on the catalyst activity is also under study. Experiments that can be performed include: (1) Determination and benchmarking of novel electrocatalyst activity; (2) Determination of electrochemical surface area; (3) Determination of electrocatalyst and support corrosion resistance and durability; (4) Synthesis and characterization of novel electrocatalyst; (5) Determination of fundamental electrochemical parameters; and (6) Estimation of electrocatalyst utilization.

Not Available

2011-10-01T23:59:59.000Z

429

Cytogenetic Biodosimetry Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cytogenetic Biodosimetry Laboratory Cytogenetic Biodosimetry Laboratory Blood samples are shipped at room temperature to the laboratory. White blood cells, lymphocytes, are cultured under sterile conditions in an incubator for 48 hours using a standard growth medium. Culture tubes are centrifuged, and cells are re-suspended in a weak salt solution, which allows the chromosomes to separate and spread evenly on slides.

430

Frederick Seitz Materials Research Laboratory | 104 South Goodwin Avenue, MC-230 Urbana, IL 61801 | 217.333.1370 | www.mrl.illinois.edu I am pleased to present the  

E-Print Network [OSTI]

(aerospace engineering) on self- healing materials for lithium ion batteries. First observation of individual Andreev bound states in graphene In a paper published earlier this year in Na- ture Physics, a team led of Technology), reported the first observation in graphene of individ- ual, gate-tunable su- perconducting

Braun, Paul

431

Los Alamos National Laboratory sponsors Hazmat Challenge  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hazmat Challenge Hazmat Challenge Los Alamos National Laboratory sponsors Hazmat Challenge The challenge provides hazardous materials responders the opportunity to network and learn new techniques under realistic conditions in a safe environment. July 27, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

432

Independent Oversight Inspection, Brookhaven National Laboratory - April  

Broader source: Energy.gov (indexed) [DOE]

Brookhaven National Laboratory - Brookhaven National Laboratory - April 2004 Independent Oversight Inspection, Brookhaven National Laboratory - April 2004 April 2004 Inspection of Emergency Management at the Brookhaven National Laboratory The Secretary of Energy's Office of Independent Oversight and Performance Assurance (OA), within the newly created Office of Security and Safety Performance Assurance, conducted an inspection of the emergency management program at the U.S. Department of Energy (DOE) Brookhaven National Laboratory (BNL) in March 2004. The inspection was performed by the OA Office of Emergency Management Oversight. A number of positive attributes were identified during this review. Most significant is the aggressive program for reducing hazardous material inventories, minimizing hazardous waste, and evaluating chemical use to

433

Record Series Descriptions: Lawrence Berkeley Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Berkeley Laboratory Berkeley Laboratory LBL Business Manager/Research and Development Administrative Files Life Sciences Division Administrative Files of Baird Whaley,Administrator Administrative Files of Administrative Assistants to the Directors of the Biology and Medicine Division and Donner Laboratory Donner Clinic and Donner Pavilion Patients/Subjects Index Card Master File Donner Laboratory Clinical Logs and Notebooks Donner Laboratory R&D Project Case Files High-Altitude/Decompression Studies Patient Medical Records Research Medicine and Radiation Biophysics Historical Files Statistical Summaries Thomas Budinger Files Patricia Durbin Files John W. Gofman Files Joseph G. Hamilton Records Joseph G. Hamilton Materials: Edwin M. McMillan Papers Hardin Jones Files John Hundale Lawrence Files

434

Leadership | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Message from the Director Board of Governors Organization Chart Argonne Distinguished Fellows Emeritus Scientists & Engineers History Discoveries Prime Contract Contact Us Leadership Argonne integrates world-class science, engineering, and user facilities to deliver innovative research and technologies. We create new knowledge that addresses the scientific and societal needs of our nation. Eric D. Isaacs Eric D. Isaacs, Director, Argonne National Laboratory Director, Argonne National Laboratory Argonne National Laboratory Eric D. Isaacs, a prominent University of Chicago physicist, is President of UChicago Argonne, LLC, and Director of Argonne National Laboratory. Mark Peters Mark Peters, Deputy Lab Director for Programs Deputy Laboratory Director for Programs

435

Recycled Materials Resource Jeffrey S. Melton  

E-Print Network [OSTI]

Recycled Materials Resource Center Jeffrey S. Melton Outreach Director Recycled Materials Resource Center NCC Meeting, April 9th, 2008 #12;Recycled Materials Resource Center Partner laboratory of FHWA Founded in 1998, renewed in 2007 Dedicated to the appropriate use of recycled materials in the highway

436

Laboratory Specific Training Form (APPENDIX L) Checklist for Worker Training in Radiation Laboratories  

E-Print Network [OSTI]

, and contamination survey requirements to minimize radiation exposure. 7. Security requirements for radioactive Laboratories This form needs to be filled by every radiation worker who may work with radioactive material have been instructed as to the type and location of all the radioactive materials and/or radiation

Berdichevsky, Victor

437

Safeguards Implementation: Establishment of Indonesian Safeguards Laboratory  

SciTech Connect (OSTI)

Under the International Nuclear Safeguards and Engagement Program (INSEP), U.S. National Laboratories support the Department of Energy (DOE) National Nuclear Security Administration (NNSA) to ''collaborate with international partners to strengthen international safeguards at all stages of nuclear development.'' This engagement in safeguards implementation cooperation is the basis for the security and safeguards arrangement with the Nuclear Energy Regulatory Agency of the Republic of Indonesia (BAPETEN) and includes strengthening of the State System of Accounting for and Control of Nuclear Material (SSAC). There are many components in a robust SSAC. While INSEP carries on its program in a holistic approach, it is more effective and efficient to address individual components, rather than the entire system at one time, with the objective of strengthening the system as a whole. Nuclear material accountancy is one of these components. Nuclear material accountancy necessitates that a State periodically take an inventory of its material and record changes. To better perform these activities, BAPETEN requested assistance with establishing a safeguards laboratory where its staff could perform independent material characterization, maintain nondestructive assay equipment, and facilitate hands-on training of BAPETEN safeguards inspectors. In compliance with International Atomic Energy Agency (IAEA) guidelines and safety series documents, INSEP and BAPETEN opened the BAPETEN Safeguards Laboratory in February 2010 to provide these competencies. BAPETEN showcased these new capabilities in July 2010 at the IAEA-sponsored Regional Workshop on Nuclear Material Accounting and Control at Facilities where hands-on activities were held at BAPETEN's Headquarters in Jakarta using the equipment supplied by INSEP. Discussions have begun on the establishment of a security and safeguards laboratory at the BAPETEN Training Center located in Cisarua. This paper describes the many steps involved with the Safeguards Laboratory Implementation Plan from its drafting in August 2007 to the completion of the laboratory in February 2010.

Shipwash, Jacqueline L [ORNL] [ORNL; Geist, William H. [Los Alamos National Laboratory (LANL)] [Los Alamos National Laboratory (LANL); Smith, Steven E [ORNL] [ORNL; Solodov, Alexander A [ORNL] [ORNL; Suharyanta, Suharyanta [ORNL] [ORNL; Sunaryadi, Dedi [ORNL] [ORNL

2011-01-01T23:59:59.000Z

438

Independent Oversight Inspection, Brookhaven National Laboratory -  

Broader source: Energy.gov (indexed) [DOE]

September 2008 September 2008 Independent Oversight Inspection, Brookhaven National Laboratory - September 2008 September 2008 Inspection of Emergency Management at the Brookhaven Site Office and Brookhaven National Laboratory The U.S. Department of Energy (DOE) Office of Independent Oversight inspected the emergency management program at DOE's Brookhaven National Laboratory (BNL) in June/July 2008. The inspection was performed by Independent Oversight's Office of Emergency Management Oversight (HS-63). This 2008 inspection found that hazardous material inventories remain low, and the program has been significantly improved by the issuance of a hazards survey, EPHAs, and revised emergency plan, as well as other upgraded program plans and procedures. Additionally, the EOC is better

439

Containment & Surveillance Systems Laboratory (CSSL) | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Containment & Surveillance Systems Laboratory Containment & Surveillance Systems Laboratory May 30, 2013 The Containment and Surveillance Systems Laboratory is an arm of the highly acclaimed ORNL Safeguards Technology Integration Center. This lab is used to evaluate and develop custom technology, as well as integrate, mock up, and stage equipment for evaluation deployments for a variety of containment and surveillance applications. Activities in this lab focus on integrating technology for sealing, monitoring, and tracking nuclear material in a variety of environments. It is well suited for developing, integrating, and deploying active and passive tamper-indicating devices and enclosures, unattended and remote monitoring systems, and wired and wireless attribute-monitoring systems. Applications

440

Argonne National Laboratory - Reports  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reports Reports Argonne National Laboratory Activity Reports 2012 Operational Awareness Oversight of the Argonne National Laboratory Alpha-Gamma Hot Cell Facility, July 2012 Review Reports 2011 Review of the Argonne National Laboratory Alpha-Gamma Hot Cell Facility Readiness Assessment (Implementation Verification Review Sections), November 2011 Nuclear Safety Enforcement Regulatory Assistance Review of UChicago Argonne, LLC at the Argonne National Laboratory, October 3, 2011 Activity Reports 2011 Orientation Visit to the Argonne National Laboratory, August 2011 Review Reports 2005 Independent Oversight Inspection of Environment, Safety and Health Programs at Argonne National Laboratory, Summary Report, Vol. 1, May, 2005 Independent Oversight Inspection of Environment, Safety, and Health Programs at the Argonne National Laboratory, Technical Appendices, Volume II, May 2005

Note: This page contains sample records for the topic "laboratory vorbeck materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Laboratory Computing Resource Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Computing DOE Logo Computing DOE Logo Search BIO ... Search Argonne Home > BIO home > Laboratory Computing Resource Center BIO Home Page About BIO News Releases Research Publications People Contact Us Organization Chart Site Index Inside BIO BIO Safety About Argonne Argonne National Laboratory Logo Laboratory Computing Resource Center In 2002 Argonne National Laboratory established the Laboratory Computing Project to enable and promote the use of high-performance computing (HPC) across the Laboratory in support of its varied research missions. The Laboratory Computing Resource Center (LCRC) was established, and in April 2003 LCRC began full operations with Argonne’s first teraflops computing cluster, Jazz. In 2010 Jazz was replaced by Fusion, with a peak performance of 30 teraflops (and still growing). We just acquired Blues which will a performance of 100 teraflops.

442

Materials Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Science Materials Science Materials Science1354608000000Materials ScienceSome of these resources are LANL-only and will require Remote Access./No/Questions? 667-5809library@lanl.gov Materials Science Some of these resources are LANL-only and will require Remote Access. Key Resources Data Sources Reference Organizations Journals Key Resources CINDAS Materials Property Databases video icon Thermophysical Properties of Matter Database (TPMD) Aerospace Structural Metals Database (ASMD) Damage Tolerant Design Handbook (DTDH) Microelectronics Packaging Materials Database (MPMD) Structural Alloys Handbook (SAH) Proquest Technology Collection Includes the Materials Science collection MRS Online Proceedings Library Papers presented at meetings of the Materials Research Society Data Sources

443

Going green earns Laboratory gold  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Going green earns Laboratory gold Going green earns Laboratory gold The Laboratory's newest facility is its first to achieve both the Leadership in Energy and Environmental Design...

444

ATS materials support  

SciTech Connect (OSTI)

The technology based portion of the Advanced Turbine System Program (ATS) contains several subelements which address generic technology issues for land-base gas turbine systems. One subelement is the Materials/Manufacturing Technology Program which is coordinated by DOE-Oak Ridge Operations and Oak Ridge National laboratory (ORNL) for the Department of Energy. The work in this subelement is being performed predominantly by industry with assistance from national laboratories and universities. Projects in this subelement are aimed toward hastening the incorporation of new materials and components in gas turbines. The materials manufacturing subelement was developed with input from gas turbine manufacturers, material suppliers, government laboratories and universities. Work is currently ongoing on thermal barrier coatings (TBCs), the scale-up of single-crystal airfoil manufacturing technologies, materials characterization and technology information exchange. Westinghouse Power Generation and Pratt and Whitney each have material programs to develop dependable TBCs that enable increased turbine inlet temperatures while maintaining airfoil substrate temperatures at levels to meet the ATS life goals. Howmet and PCC Airfoils each have projects to extend the capability of single-crystal complex-cored airfoil technology to larger sizes so that higher turbine inlet temperatures can be attained in land-based turbines in a cost-effective manner. Materials characterization tasks are ongoing on TBCs in support of the industrial projects. In addition, a project on long-term testing of ceramics and ceramic-matrix composites for gas turbines is being conducted in support of programs at Solar Turbines, Allison Engines, and Westinghouse Power Generation.

Karnitz, M.A.; Wright, I.G.; Ferber, M.K.; Holcomb, R.S. [Oak Ridge National Lab., TN (United States); Rawlins, M.H. [Dept. of Energy, Oak Ridge, TN (United States)

1996-12-31T23:59:59.000Z

445

Old Electrochromic Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrochromic Materials Electrochromic Materials DOE also supports the development of electrochromic coatings through several mechanisms. Three companies are engaged in development of commercial prototypes through the Electrochromics Initiative and an SBIR small business grant. LBNL and another DOE laboratory, the National Renewable Energy Laboratory (NREL) perform a variety of measurements to evaluate the energy performance and durability of these prototypes . Other research activities are intended to assist the efforts of the industry in general. At LBNL, research focuses on rapid development and analysis of electrode materials. Among recent accomplishments was the production of a stoichiometric form of Li0.5Ni0.5O by laser deposition and sputtering with excellent electrochromic properties. Dr. Stuart Cogan of EIC Laboratories tested the films and declared them to have "the highest coloration efficiency of any known anodic electrochromic material." EIC will test the films in their own devices in the near future. We also work on several binary electrodes produced by cosputtering from two targets simultaneously. For example, enhanced forms of tungsten oxide produced in this way have wide application because of the prevalence of tungsten oxide in today's devices. In addition to testing durability, NREL also investigates the degradation mechanisms which lead to failure in the hope of being able to correlate accelerated testing to real time failure as well as to diagnose and correct device problems.

446

Preliminary Notice of Violation, Argonne National Laboratory-East -  

Broader source: Energy.gov (indexed) [DOE]

Argonne National Laboratory-East - Argonne National Laboratory-East - EA-1999-10 Preliminary Notice of Violation, Argonne National Laboratory-East - EA-1999-10 December 14, 1999 Preliminary Notice of Violation issued to the University of Chicago related to the Failure to Control Radioactive Material and Personnel Contamination Events at Argonne National Laboratory-East, December 14, 1999 (EA-1999-10) This letter refers to the Department of Energy's (DOE) evaluation of several events occurring in 1998 and 1999, involving the failure to control radioactive material and unplanned and uncontrolled personnel contamination events at the Argonne National Laboratory-East (ANL-E or the Laboratory) site. The Laboratory attributed these events to a number of causes, including personnel error, legacy contamination and management problems.

447

Reference Material  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reference Materials There are a variety of reference materials the NSSAB utilizes and have been made available on its website. Documents Fact Sheets - links to Department of Energy...

448

Materials Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Science science-innovationassetsimagesicon-science.jpg Materials Science National security depends on science and technology. The United States relies on Los Alamos...

449

Oak Ridge National Laboratory - Physical Sciences Directorate  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Center for Nanophase Materials Sciences Center for Nanophase Materials Sciences The Center for Nanophase Materials Sciences (CNMS) at Oak Ridge National Laboratory (ORNL) is a Department of Energy / Office of Science Nanoscale Science Research Center (NSRC) operating as a highly collaborative and multidisciplinary user research facility. The CNMS is one of five DOE NSRCs that form an integrated national user network. Each NSRC is associated with other major national research facilities at one of DOE's National Laboratories, enabling their application to nanoscale science and technology. The central organizing concept of CNMS is to provide unique opportunities to understand nanoscale materials, assemblies, and phenomena, by creating a set of scientific synergies that will accelerate the process

450

Energistics Laboratory facility  

Science Journals Connector (OSTI)

Energistics Laboratory in Houston Texas is a leading laboratory for the testing of HVAC equipment. For over 15 years this facility has ensured the highest standards in leading?edge HVAC technology and architectural testing capabilities. Testing capabilities include both industry standard rating procedures and mock?up testing to simulate field conditions. The laboratory is open to developers owners architects engineers general contractors manufacturers and others who require independent component testing and evaluation.

2001-01-01T23:59:59.000Z

451

Marius Stan | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Marius Stan Senior Scientist - Nuclear Engineering Dr. Marius Stan is a physicist and a chemist interested in non-equilibrium thermodynamics, heterogeneity, and multi-scale computational science for energy applications. He came to Argonne and the University of Chicago in 2010, from Los Alamos National Laboratory. Marius is a Senior Fellow at the University of Chicago's Computation Institute. The goal of his research is to discover or design materials, structures, and device architectures for nuclear energy and energy storage. To that end, Marius develops theory-based (as opposite to empirical) mathematical models of thermomechanical and chemical properties of imperfect materials. The imperfection comes from defects or deviations from stoichiometry (e.g.,

452

FY 2005 Laboratory Table  

Broader source: Energy.gov (indexed) [DOE]

Congressional Budget Congressional Budget Request Laboratory Tables Preliminary Department of Energy FY 2005 Congressional Budget Request Office of Management, Budget and Evaluation/CFO February 2004 Laboratory Tables Preliminary Department of Energy Department of Energy FY 2005 Congressional Budget FY 2005 Congressional Budget Request Request Office of Management, Budget and Evaluation/CFO February 2004 Laboratory Tables Laboratory Tables Printed with soy ink on recycled paper Preliminary Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. include both the discretionary and mandatory funding in the budget. balances, deferrals, rescissions, or other adjustments appropria ted as offsets to the DOE appropriations by the Congress.

453

levin | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Education and the Ministry of Science and Technology, Lviv State University, Lviv, Ukraine, 1988 - 1998 Visiting Scientist (periodically) at the International Laboratory of...

454

Procurement | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Procurement More than 150 attend second joint Argonne-Fermilab small business fairSeptember 2, 2014 On Thursday, Aug. 28, Illinois' two national laboratories - Argonne and Fermi...

455

Mentoring | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

- Rick Stevens, Associate Laboratory Director, Computing, Environment & Life Sciences Argonne is committed to cultivating a climate that promotes meaningful relationships that...

456

Los Alamos National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

environmental service to northern New Mexico," said Jeff Mousseau, associate director for environmental programs at the Laboratory. "Having local companies of this high caliber...

457

Laboratory disputes citizens' lawsuit  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

showing Laboratory storm water controls," said Susan G. Stiger, associate director for Environmental Programs. "Rather than a lawsuit, we had hoped to continue our work with...

458

Los Alamos National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

commitment to the environment and the public," said Jeff Mousseau, associate director for Environmental Programs at the Laboratory. This is the fifth master task order agreement...

459

National Laboratory Liaisons  

Broader source: Energy.gov [DOE]

The following U.S. Department of Energy national laboratory liaisons serve as primary contacts for the Federal Energy Management Program.

460

Oak Ridge National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About ORNL History Historical Photo Gallery To view historical photographs of the laboratory, browse the collections below. Clinton Engineering Works Department of Energy...

Note: This page contains sample records for the topic "laboratory vorbeck materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Sandia National Laboratories: Photovoltaics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

outfitted with photovoltaic (PV) installations are a real challenge for the nation's real estate industry, but a new tool developed by Sandia National Laboratories and Solar Power...

462

Sandia National Laboratories: PV  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

outfitted with photovoltaic (PV) installations are a real challenge for the nation's real estate industry, but a new tool developed by Sandia National Laboratories and Solar Power...

463

Sandia National Laboratories: Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

News & Events, Photovoltaic, Photovoltaic Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar Newsletter, Systems Analysis Sandia and the Electric Power Research...

464

Laborativ matematik; Laboratory mathematics.  

E-Print Network [OSTI]

?? Research indicates that a more hands-on education in mathematics could improve how students relate to mathematics. Laboratory mathematics is a way of making mathematics (more)

Kresj, Ida

2010-01-01T23:59:59.000Z

465

Sandia National Laboratories: LVOC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Facility Opens at Sandia's California Site On June 13, 2012, in Cyber, Cybersecurity Technologies Research Laboratory, Energy Assurance, Energy Surety, Facilities,...

466

Sandia National Laboratories: Solar  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

outfitted with photovoltaic (PV) installations are a real challenge for the nation's real estate industry, but a new tool developed by Sandia National Laboratories and Solar Power...

467

Sandia National Laboratories: EPRI  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar Newsletter, SunShot, Systems Analysis Sandia and Electric Power Research Institute (EPRI) are delighted...

468

Sandia National Laboratories: RTC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar Newsletter, SunShot, Systems Analysis The solar industry is now more than 60% of the way toward achieving...

469

Sandia National Laboratories: NREL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar Newsletter, SunShot, Systems Analysis The solar industry is now more than 60% of the way toward achieving...

470

Los Alamos National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

that's the hallmark of the Laboratory. This year's stories include alternative energy research, world record magnetic fields, disease tracking, the study of Mars, climate...

471

Sandia National Laboratories: Climate  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geoscience, Climate and Consequence Effect at Sandia National Laboratories presented on "Hydraulic Fracturing: Role of Government-Sponsored R&D." Marianne's presentation was part...

472

Sandia National Laboratories: Workshops  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geoscience, Climate and Consequence Effect at Sandia National Laboratories presented on "Hydraulic Fracturing: Role of Government-Sponsored R&D." Marianne's presentation was part...

473

Disclaimers | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of the United States Government or Iowa State University, and shall not be used for advertising or product endorsements purposes. COPYRIGHT STATUS: Ames Laboratory authored...

474

Sandia National Laboratories: solar  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Interactive Tour Operated by Sandia National Laboratories for the U.S. Department of Energy (DOE), the National Solar Thermal Test Facility (NSTTF) is the only test facility...

475

Sandia National Laboratories: solar  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in Concentrating Solar Power, Customers & Partners, Energy, News, Partnership, Renewable Energy, Solar Areva Solar is collaborating with Sandia National Laboratories on a new...

476

Underwriters Laboratories: Streamlining Interconnection  

SciTech Connect (OSTI)

Summarizes Underwriters Laboratories' work under contract to DOE's Distribution and Interconnection R&D to develop a streamlined system to interconnect distributed generators with the utility grid.

Not Available

2003-01-01T23:59:59.000Z

477

Underwriters Laboratories: Streamlining Interconnection  

SciTech Connect (OSTI)

Summarizes Underwriters Laboratories' work under contract to DOE's Distribution and Interconnection R&D to develop a streamlined system to interconnect distributed generators with the utility grid.

Not Available

2003-10-01T23:59:59.000Z

478

Standards and Calibration Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Our customers and services include: INL programs, the Department of Energy, Bechtel Bettis Inc., the National Oceanic and Atmospheric Administration, Argonne National Laboratory...

479

marit | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

marit Ames Laboratory Profile Marit Nilsen-Hamilton Associate 3206 Molecular Biology Bldg Phone Number: 515-294-9996 Email Address: marit@iastate.edu Education: Postdoctoral Cell...

480

Laboratory announces 2008 Fellows  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lab announces 2008 Fellows Laboratory announces 2008 Fellows Robert C. Albers, Paul A. Johnson and Kurt E. Sickafus recognized for contributions. December 4, 2008 Los Alamos...

Note: This page contains sample records for the topic "laboratory vorbeck materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Sandia National Laboratories: CIRI  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Renewable Energy Laboratory (NREL) will work in support of H2USA, the ... Sandia, SRI International Sign Pact to Advance Hydrogen and Natural Gas Research for...

482

National Laboratory Photovoltaics Research  

Broader source: Energy.gov [DOE]

DOE supports photovoltaic (PV) research and development and facilities at its national laboratories to accelerate progress toward achieving the SunShot Initiative's technological and economic...

483

Education | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The MFRC has established a network of Midwest crime laboratories and university-based forensic science programs. This network has two general goals: help universities become better...

484

Projects | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for Tool Mark Characterization Development of an AccuTOF-DART Database for Use by Forensic Laboratories Forensic Technology Center of Excellence MFRC Training Development &...

485

Sandia National Laboratories: Photovoltaics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

device technology, and advanced PV systems analysis. Learn More Grid Integration The Grid Integration Program at Sandia National Laboratories addresses technical barriers to...

486

PLEASE SCROLL DOWN FOR ARTICLE This article was downloaded by: [Oak Ridge National Laboratory  

E-Print Network [OSTI]

PLEASE SCROLL DOWN FOR ARTICLE This article was downloaded by: [Oak Ridge National Laboratory] On for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A. b Department Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, U

Pennycook, Steve

487

DOE - Office of Legacy Management -- Bettis Atomic Power Laboratories - PA  

Office of Legacy Management (LM)

Bettis Atomic Power Laboratories - Bettis Atomic Power Laboratories - PA 44 FUSRAP Considered Sites Site: Bettis Atomic Power Laboratories (PA.44 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Allegheny County , West Mifflin , Pennsylvania PA.44-1 Evaluation Year: Circa 1987 PA.44-2 Site Operations: Conducted activities directed toward the design, development, testing, and operational follow of nuclear reactor propulsion plants for Naval surface and submarine vessels. PA.44-1 Site Disposition: Eliminated - Active DOE facility PA.44-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Radioactive Materials Associated with Reactor Operation PA.44-3 Radiological Survey(s): None Indicated

488

Enforcement Documents - Argonne National Laboratory | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Argonne National Laboratory Argonne National Laboratory Enforcement Documents - Argonne National Laboratory March 7, 2006 Preliminary Notice of Violation,University of Chicago - EA-2006-02 Preliminary Notice of Violation issued to the University of Chicago related to Nuclear Safety Program Deficiencies at Argonne National Laboratory August 14, 2001 Preliminary Notice of Violation, Argonne National Laboratory-East - EA-2001-05 Preliminary Notice of Violation issued to the University of Chicago related to the Uncontrolled Release of Radioactive Material at Argonne National Laboratory-East, (EA-2001-05) February 28, 2001 Preliminary Notice of Violation, Argonne National Laboratory-West - EA-2001-01 Preliminary Notice of Violation issued to the University of Chicago related to Programmatic Management Failures at Argonne National Laboratory-West,

489

Laboratory awards subcontracts to small businesses  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Subcontracts awarded to small businesses Subcontracts awarded to small businesses Laboratory awards subcontracts to small businesses A company owned and operated by Ohkay Owingeh Pueblo will soon be providing custodial support services to the Lab. October 15, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Contact Steve Sandoval

490

Los Alamos National Laboratory names cleanup subcontractors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cleanup subcontractors named Cleanup subcontractors named Los Alamos National Laboratory names cleanup subcontractors The three companies are Los Alamos Technical Associates (LATA), Portage Inc., and ARSEC Environmental, LLC (ARSEC). August 14, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Contact Fred deSousa

491

Laboratory awards final Recovery Act demolition contracts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Recovery Act demolition contracts Recovery Act demolition contracts Laboratory awards final Recovery Act demolition contracts The two winning bidders will each demolish a portion of the remaining unused buildings at the Lab's historic Technical Area 21. April 20, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

492

Argonne National Laboratory  

Science Journals Connector (OSTI)

Argonne National Laboratory is the nation's senior atomic energy laboratory, and is operated by the University of Chicago under contract mth the U. S. Atomic Energy Commission. In addition to its broad program of basic research activities, it serves as a, ...

1957-04-08T23:59:59.000Z

493

Federal Laboratory Technology Transfer  

E-Print Network [OSTI]

Federal Laboratory Technology Transfer Fiscal Year 2007 Prepared by: National Institute to present to the President and the Congress this Federal Laboratory Technology Transfer Report summarizing the achievements of Federal technology transfer and partnering programs of the Federal research and development

Perkins, Richard A.

494

LABORATORY V ELECTRIC CIRCUITS  

E-Print Network [OSTI]

Lab V -1 LABORATORY V ELECTRIC CIRCUITS Electrical devices are the cornerstones of our modern world understanding of them. In the previous laboratory, you studied the behavior of electric fields and their effect on the motion of electrons using a cathode ray tube (CRT). This beam of electrons is one example of an electric

Minnesota, University of

495

Russell Furr Laboratory Safety &  

E-Print Network [OSTI]

Russell Furr Director 8/20/13 Laboratory Safety & Compliance #12;#12;Research Safety Full Time Students Part- Time #12; Organizational Changes Office of Research Safety Research Safety Advisors Safety Culture Survey Fire Marshal Inspections Laboratory Plans Review New Research Safety Initiatives

496

US/Russian Laboratory-to-Laboratory MPC&A at the RRC Kurchatov Institute  

SciTech Connect (OSTI)

Formal interactions with Kurchatov Institute (KI) began summer 1994 on material protection, control and accountability (MPC&A). Contracts were placed by LANL and Sandia with KI to implement a nuclear material accounting system and a physical security system at a KI demonstration facility which contain two critical assemblies with special nuclear material. LLNL implemented May 1995 a task to measure by gamma-ray spectroscopy the uranium enrichment of fuel in the facility. This laboratory-to-laboratory effort is part of the cooperative program between US and Russian institutes in nuclear material nonproliferation. In 1994-5, KI personnel demonstrated the physical security system. The next facility for work in MPC&A at KI is the Central Storage Facility, which is important for the computerized material accounting system for KI.

Bondarev, N.D.; Sukhoruchkin, V.; Melkof, E.L. [RRC Kurchatov Institute, Moscow (Russian Federation)

1995-07-01T23:59:59.000Z

497

SANDIA NATIONAL LABORATORIES  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Impacts on Sandia and the Nation Impacts on Sandia and the Nation 2 SANDIA NATIONAL LABORATORIES 3 LDRD Impacts on Sandia and the Nation For further information, contact: Wendy R. Cieslak Senior Manager, Science, Technology, and Engineering Strategic Initiatives wrciesl@sandia.gov (505) 844-8633 or Henry R. Westrich LDRD Program Manager hrwestr@sandia.gov 505-844-9092 LDRD Impacts on Sandia and the Nation ABOUT THE COVER: Images from some of the case studies in this brochure: a near-UV light- emitting diode (LED), a cell membrane, a NISAC model, synthetic aperture radar (SAR) image of Washington, D.C. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT 4 SANDIA NATIONAL LABORATORIES 5 LDRD Impacts on Sandia and the Nation Sandia National Laboratories' Laboratory Directed Research and Development (LDRD) Program:

498

FY 2010 Laboratory Table  

Broader source: Energy.gov (indexed) [DOE]

Laboratory Tables Laboratory Tables Preliminary May 2009 Office of Chief Financial Officer FY 2010 Congressional Budget Request Laboratory Tables Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Printed with soy ink on recycled paper Laboratory / Facility Index FY 2010 Congressional Budget Page 1 of 3 (Dollars In Thousands) 2:08:56PM Department Of Energy 5/4/2009 Page Number FY 2008 Appropriation FY 2009 Appropriation FY 2010 Request Laboratory Table 1 1 $1,200

499

G. Brian Stephenson | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

G. Brian Stephenson, Associate Laboratory Director, Photon Sciences G. Brian Stephenson, Associate Laboratory Director, Photon Sciences G. Brian Stephenson Associate Laboratory Director - Photon Sciences G. Brian Stephenson is the associate laboratory director for Photon Sciences. The Photon Sciences directorate consists of the X-ray Science, Accelerator Systems and Advanced Photon Source Engineering Support divisions, which comprise the Advanced Photon Source (APS); and the Argonne Accelerator Institute. The APS is the brightest source of high-energy X-rays in the Western Hemisphere and is used to study the structures of materials and processes at the atomic scale. It is also the largest scientific user facility in the North America, with more than 3,500 users visiting each year. Stephenson's research interests focus on developing and using synchrotron

500

2008 Annual Merit Review Results Summary - 12. Propulsion Materials  

Broader source: Energy.gov (indexed) [DOE]

National Laboratory) 3.50 0.71 12-70 Power Electronics Materials Compatibility (B.L. Armstrong, Oak Ridge National Laboratory) 3.63 1.06 12-75 Residual Stress (Jules Routbort,...