Powered by Deep Web Technologies
Note: This page contains sample records for the topic "laboratory tracking number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Customer service model for waste tracking at Los Alamos National Laboratory  

SciTech Connect (OSTI)

The deployment of any new software system in a production facility will always face multiple hurtles in reaching a successful acceptance. However, a new waste tracking system was required at the plutonium processing facility at Los Alamos National Laboratory (LANL) where waste processing must be integrated to handle Special Nuclear Materials tracking requirements. Waste tracking systems can enhance the processing of waste in production facilities when the system is developed with a focus on customer service throughout the project life cycle. In March 2010 Los Alamos National Laboratory Waste Technical Services (WTS) replaced the aging systems and infrastructure that were being used to support the plutonium processing facility. The Waste Technical Services (WTS) Waste Compliance and Tracking System (WCATS) Project Team, using the following customer service model, succeeded in its goal to meet all operational and regulatory requirements, making waste processing in the facility more efficient while partnering with the customer.

Dorries, Alison M [Los Alamos National Laboratory; Montoya, Andrew J [Los Alamos National Laboratory; Ashbaugh, Andrew E [Los Alamos National Laboratory

2010-11-10T23:59:59.000Z

2

3D Tracking at the Nanoscale | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICS H.CarbonMarch Value4 3.P D AT E3D3D Tracking

3

Table C5-3 Biomedical Instrumentation Track Curriculum (Department, Number, Title)  

E-Print Network [OSTI]

51 Table C5-3 Biomedical Instrumentation Track Curriculum Course (Department, Number, Title) List Introduction to Biomedical Engineering R 0 F11 & F12 80/84 1st Year - Spring Semester (19 Credits) HUM 102 Programming R 3 F12 & S13 30 BME 301* Electrical Fundamentals of Biomedical Engineering R 3 F12 & S13 25 BME

4

Copy number: Efficient algorithms for single- and multi-track copy number segmentation  

E-Print Network [OSTI]

C, Shah SP, Chin SF et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 2012. doi:10.1038/nature10983. Mathiesen RR, Fjelldal R, Liestřl K et al. High resolution analysis of copy number... C, Shah SP, Chin SF et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 2012. doi:10.1038/nature10983. Mathiesen RR, Fjelldal R, Liestřl K et al. High resolution analysis of copy number...

Nilsen, Gro; Liestřl, Knut; Loo, Peter Van; Moen Vollan, Hans Kristian; Eide, Marianne B; Rueda, Oscar M; Chin, Suet-Feung; Russell, Roslin; Baumbusch, Lars O; Caldas, Carlos; Břrresen-Dale, Anne-Lise; Lingjćrde, Ole Christian

2012-11-04T23:59:59.000Z

5

A Laboratory Study of the Schmidt Number Dependency of Air-Water Gas  

E-Print Network [OSTI]

. Sc = /D denotes the Schmidt number, the ratio of kinematic viscosity of water and the tracersA Laboratory Study of the Schmidt Number Dependency of Air-Water Gas Transfer Kerstin Richter1 of exchange hap- pens with an exponent of 1/2 and links this fraction with a physical property of the wave

Jaehne, Bernd

6

Grant Title: BEHAVIORAL SCIENCE TRACK AWARD FOR RAPID TRANSITION (B/START) (R03) Funding Opportunity Number: PAR-12-251. CFDA Number(s): 93.279.  

E-Print Network [OSTI]

Opportunity Number: PAR-12-251. CFDA Number(s): 93.279. Agency/Department: Department of Health and Human

Farritor, Shane

7

Table C5-1 Biomechanics Track Curriculum (Department, Number, Title)  

E-Print Network [OSTI]

211 Calculus III A R 3 F12 & S13 30 MATH 279 Statistics & Probability for Engineers R 2 F12 & S13 30 was Offered2 Math & Basic Sciences Engineering Topics Check if Contains Significant Design () General Track - List of Approved Engineering & Non-Engineering Electives (3xx/4xx) OPSE 301 Optical Science

8

Circle Track Magazine Project GREEN: New Smyrna Track Testing...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Grassroots Renewable Fuels Revolution Presenters Forrest Jehlik -Argonne National Laboratory Contributors Danny Bocci (Argonne National Laboratory). Bob Bolles (Circle Track...

9

Laboratory-Scale Bismuth Phosphate Extraction Process Simulation To Track Fate of Fission Products  

SciTech Connect (OSTI)

Recent field investigation that collected and characterized vadose zone sediments from beneath inactive liquid disposal facilities at the Hanford 200 Areas show lower than expected concentrations of a long-term risk driver, Tc-99. Therefore laboratory studies were performed to re-create one of the three processes that were used to separate the plutonium from spent fuel and that created most of the wastes disposed or currently stored in tanks at Hanford. The laboratory simulations were used to compare with current estimates based mainly on flow sheet estimates and spotty historical data. Three simulations of the bismuth phosphate precipitation process show that less that 1% of the Tc-99, Cs-135/137, Sr-90, I-129 carry down with the Pu product and thus these isotopes should have remained within the metals waste streams that after neutralization were sent to single shell tanks. Conversely, these isotopes should not be expected to be found in the first and subsequent cycle waste streams that went to cribs. Measurable quantities (~20 to 30%) of the lanthanides, yttrium, and trivalent actinides (Am and Cm) do precipitate with the Pu product, which is higher than the 10% estimate made for current inventory projections. Surprisingly, Se (added as selenate form) also shows about 10% association with the Pu/bismuth phosphate solids. We speculate that the incorporation of some Se into the bismuth phosphate precipitate is caused by selenate substitution into crystal lattice sites for the phosphate. The bulk of the U daughter product Th-234 and Np-237 daughter product Pa-233 also associate with the solids. We suspect that the Pa daughter products of U (Pa-234 and Pa-231) would also co-precipitate with the bismuth phosphate induced solids. No more than 1 % of the Sr-90 and Sb-125 should carry down with the Pu product that ultimately was purified. Thus the current scheme used to estimate where fission products end up being disposed overestimates by one order of magnitude the partitioning Sr-90, Cs-137, and Sb-125 and by at least two orders of magnitude the portioning of Tc-99 to the first and subsequent cycle waste streams that went to cribs. Conversely, the current scheme underestimates the lanthanide and yttrium fission product quantities that went to cribs by a factor of about 3.

Serne, R. JEFFREY; Lindberg, Michael J.; Jones, Thomas E.; Schaef, Herbert T.; Krupka, Kenneth M.

2007-02-28T23:59:59.000Z

10

Title University Physics I Laboratory Number PHYS 2125-2L1  

E-Print Network [OSTI]

: $30. Textbooks required. · Data Reduction and Error Analysis for the Physical Sciences. P. R will test your knowledge of physical theory, error analysis, and laboratory procedure relevant, Mathematics, and Physics College Arts and Sciences Institution Texas A&M International University Term Spring

Milovich, David

11

Laboratory investigation of lateral dispersion within dense arrays of randomly distributed cylinders at transitional Reynolds number  

E-Print Network [OSTI]

Relative (effective) lateral dispersion of a passive solute was examined at transitional Reynolds numbers within a two-dimensional array of randomly distributed circular cylinders of uniform diameter d. The present work ...

Nepf, Heidi

12

Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011 LOSEngineering |LabVideoLaboratories

13

Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011 LOSEngineering |LabVideoLaboratoriesForest fire

14

Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011 LOSEngineering |LabVideoLaboratoriesForest

15

Atlantic Oceanographic and Meteorological LaboratoryNovember-December 2009 Volume 13, Number 6 AOML is an environmental research laboratory of NOAA's Office of Oceanic and Atmospheric  

E-Print Network [OSTI]

is an environmental research laboratory of NOAA's Office of Oceanic and Atmospheric Research located on Virginia KeyAtlantic With an estimated 40% of the carbon dioxide (CO2 ) from fossil fuels having entered the oceans since the start studies in the Atlantic and equatorial Pacific performed by NOAA researchers and their affiliates. Carbon

16

Large scale tracking algorithms.  

SciTech Connect (OSTI)

Low signal-to-noise data processing algorithms for improved detection, tracking, discrimination and situational threat assessment are a key research challenge. As sensor technologies progress, the number of pixels will increase signi cantly. This will result in increased resolution, which could improve object discrimination, but unfortunately, will also result in a significant increase in the number of potential targets to track. Many tracking techniques, like multi-hypothesis trackers, suffer from a combinatorial explosion as the number of potential targets increase. As the resolution increases, the phenomenology applied towards detection algorithms also changes. For low resolution sensors, "blob" tracking is the norm. For higher resolution data, additional information may be employed in the detection and classfication steps. The most challenging scenarios are those where the targets cannot be fully resolved, yet must be tracked and distinguished for neighboring closely spaced objects. Tracking vehicles in an urban environment is an example of such a challenging scenario. This report evaluates several potential tracking algorithms for large-scale tracking in an urban environment.

Hansen, Ross L.; Love, Joshua Alan; Melgaard, David Kennett; Karelitz, David B.; Pitts, Todd Alan; Zollweg, Joshua David; Anderson, Dylan Z.; Nandy, Prabal; Whitlow, Gary L.; Bender, Daniel A.; Byrne, Raymond Harry

2015-01-01T23:59:59.000Z

17

TRACKING SITE  

Energy Science and Technology Software Center (OSTI)

003235MLTPL00 AASG Geothermal Data submissions tracking application and site.  https://github.com/usgin/aasgtrack 

18

Brookhaven National Laboratory Number: Revision  

E-Print Network [OSTI]

of the beam distribution system. The analysis includes both laser (light) and non- laser hazards. A Nominal (ANSI) Hazard Class 3B and 4 laser systems must be documented, reviewed, and approved through use will be addressed in heating operations. Location: The lasers are located in the X17B3 hutch of Building 725. LINE

Ohta, Shigemi

19

Brookhaven National Laboratory Number: Revision  

E-Print Network [OSTI]

circumstance. System description: Time-resolved light scattering Location: X20C Hutch LINE MANAGEMENT. The analysis includes both laser (light) and non-laser hazards. A Nominal Hazard Zone (NHZ) analysis must) Hazard Class 3B and 4 laser systems must be documented, reviewed, and approved through use of this form

Ohta, Shigemi

20

Brookhaven National Laboratory Number: Revision  

E-Print Network [OSTI]

of the beam distribution system. The analysis includes both laser (light) and non-laser hazards. A Nominal (ANSI) Hazard Class 3B and 4 laser systems must be documented, reviewed, and approved through use particular circumstance. System description: Raman fiber optic system with class 3B laser source Location

Ohta, Shigemi

Note: This page contains sample records for the topic "laboratory tracking number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Brookhaven National Laboratory Number: Revision  

E-Print Network [OSTI]

of the beam distribution system. The analysis includes both laser (light) and non-laser hazards. A Nominal) Hazard Class 3B and 4 laser systems must be documented, reviewed, and approved through use of this form circumstance. System description: Pico second pulsed laser Location: Building 740, C30 SLM hutch LINE

Homes, Christopher C.

22

Brookhaven National Laboratory Number: Revision  

E-Print Network [OSTI]

includes both laser (light) and non-laser hazards. A Nominal Hazard Zone (NHZ) analysis must be completed listed below. All American National Standard Institute (ANSI) Hazard Class 3b and 4 laser systems must description: Pulsed laser deposition system for thin films growth. Location: NSLS-X21 LINE MANAGEMENT

Ohta, Shigemi

23

Brookhaven National Laboratory Number: Revision  

E-Print Network [OSTI]

includes both laser (light) and non-laser hazards. A Nominal Hazard Zone (NHZ) analysis must be completed (ANSI) Hazard Class 3B and 4 laser systems must be documented, reviewed, and approved through use Lab Location: 703, E2/E4 LINE MANAGEMENT RESPONSIBILITIES The Owner/Operator(s) for this laser is

Ohta, Shigemi

24

Brookhaven National Laboratory Number: Revision  

E-Print Network [OSTI]

and the configuration of the beam distribution system. The analysis includes both laser (light) and non-laser hazards (ANSI) Hazard Class 3B and 4 laser systems must be documented, reviewed, and approved through use diode lasers Location: Associated with beamline X26-C at the NSLS LINE MANAGEMENT RESPONSIBILITIES

Ohta, Shigemi

25

Volume, Number of Shipments Surpass Goals  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Laboratory," said Pete Maggiore, assistant manager for environmental operations at the NNSA Los Alamos Site Office. "We exceeded our goals and are on track to double both volume...

26

Global Radiological Source Sorting, Tracking, and Monitoring Project: Phase I Final Report  

SciTech Connect (OSTI)

As a proof of concept tested in an operational context, the Global Radiological Source Sorting, Tracking, and Monitoring (GRadSSTraM) Project successfully demonstrated that radio frequency identification (RFID) and Web 2.0* technologies can be deployed to track controlled shipments between the United States and the European Union. Between November 2009 and May 2010, a total of 19 shipments were successfully shipped from Oak Ridge National Laboratory (ORNL) by the U.S. Postal Service (USPS) and tracked to their delivery at England's National Physical Laboratory (NPL) by the United Kingdom Royal Mail. However, the project can only be viewed as a qualified success as notable shortcomings were observed. Although the origin and terminus of all RFID-enabled shipments were recorded and no shipments were lost, not all the waypoints between ORNL and NPL were incorporated into the pilot. Given limited resources, the project team was able to install RFID listeners/actuators at three waypoints between the two endpoints. Although it is likely that all shipments followed the same route between ORNL and NPL, it cannot be determined beyond question that all 19 shipments were routed on identical itineraries past the same three waypoints. The pilot also raises the distinct possibility that unattended RFID tracking alone, without positive confirmation that a tagged item has been properly recorded by an RFID reader, does not meet a rigorous standard for shipping controlled items. Indeed, the proof of concept test strongly suggests that a multifaceted approach to tracking may be called for, including tracking methods that are capable of reading and accepting multiple inputs for individual items [e.g., carrier-provided tracking numbers, Universal Product Codes (UPCs), and RFID tags]. For controlled items, another apparent requirement is a confirmation feature, human or otherwise, which can certify that an item's RFID tag, UPC, or tracking number has been recorded.

Walker, Randy M [ORNL; Hill, David E [ORNL; Gorman, Bryan L [ORNL

2010-09-01T23:59:59.000Z

27

Tracking Radioactive Sources in Commerce  

E-Print Network [OSTI]

Area Network­mobile phone, ethernet and/or satellite � security--encryption, short broadcast bursts Randy Walker, Robert Abercrombie, Rocky Cline, Sabrina Phillips; Oak Ridge National Laboratory Frederick security by commercial shippers � Knowledge of routes routinely taken � Inability to track location

28

Novel Nanoparticle Tracking Device | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andDataNationalNewportBig Eddyof H-2Novel CatalystsandPortal

29

Tracking Individual Gold Nanoparticles | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2Topo II: An EnzymePersonal ComputersoMarchTracey02

30

Tracking the Sun VI: An Historical Summary of the Installed Price of Photovoltaics in the United States from 1998 to 2012  

E-Print Network [OSTI]

Laboratory. Tracking the Sun VI: The Installed Price ofRange ?10 kW Tracking the Sun VI: The Installed Price ofRange ?10 kW Tracking the Sun VI: The Installed Price of

Barbose, Galen

2014-01-01T23:59:59.000Z

31

Two-axis tracking solar collector mechanism  

DOE Patents [OSTI]

This invention is a novel solar tracking mechanism incorporating a number of practical features that give it superior environmental resilience and exceptional tracking accuracy. The mechanism comprises a lightweight space-frame assembly supporting an array of point-focus Fresnel lenses in a two-axis tracking structure. The system is enclosed under a glass cover which isolates it from environmental exposure and enhances tracking accuracy by eliminating wind loading. Tracking accuracy is also enhanced by the system's broad-based tracking support. The system's primary intended application would be to focus highly concentrated sunlight into optical fibers for transmission to core building illumination zones, and the system may also have potential for photovoltaic or photothermal solar energy conversion.

Johnson, Kenneth C. (201 W. California Ave., #401, Sunnyvale, CA 94086)

1990-01-01T23:59:59.000Z

32

Two-axis tracking solar collector mechanism  

DOE Patents [OSTI]

This invention is a novel solar tracking mechanism incorporating a number of practical features that give it superior environmental resilience and exceptional tracking accuracy. The mechanism comprises a lightweight space-frame assembly supporting an array of point-focus Fresnel lenses in a two-axis tracking structure. The system is enclosed under a glass cover which isolates it from environmental exposure and enhances tracking accuracy by eliminating wind loading. Tracking accuracy is also enhanced by the system's broad-based tracking support. The system's primary intended application would be to focus highly concentrated sunlight into optical fibers for transmission to core building illumination zones, and the system may also have potential for photovoltaic or photothermal solar energy conversion.

Johnson, Kenneth C. (201 W. California Ave. #705, Sunnyvale, CA 94086)

1992-01-01T23:59:59.000Z

33

Two-axis tracking solar collector mechanism  

DOE Patents [OSTI]

This invention is a novel solar tracking mechanism incorporating a number of practical features that give it superior environmental resilience and exceptional tracking accuracy. The mechanism comprises a lightweight space-frame assembly supporting an array of point-focus Fresnel lenses in a two-axis tracking structure. The system is enclosed under a glass cover which isolates it from environmental exposure and enhances tracking accuracy by eliminating wind loading. Tracking accuracy is also enhanced by the system's broad-based tracking support. The system's primary intended application would be to focus highly concentrated sunlight into optical fibers for transmission to core building illumination zones, and the system may also have potential for photovoltaic or photothermal solar energy conversion. 16 figs.

Johnson, K.C.

1992-12-08T23:59:59.000Z

34

Cycle Track Lessons Learned  

E-Print Network [OSTI]

Cycle Track Lessons Learned #12;Presentation Overview · Bicycling trends · Cycle track lessons learned · What is a "Cycle track"? · Essential design elements of cycle tracks Separation Width Crossing driveways & low-volume streets Signalized intersections #12;Trend in kilometers cycled per year

Bertini, Robert L.

35

Track 2: Worker Engagement  

Broader source: Energy.gov [DOE]

ISM Workshop Presentations Knoxville Convention Center, Knoxville, TN August 2009 Track 2: Worker Engagement

36

Track 3: Exposure Hazards  

Broader source: Energy.gov [DOE]

ISM Workshop Presentations Knoxville Convention Center, Knoxville, TN August 2009 Track 3: Exposure Hazards

37

Track 9: Quality Assurance  

Broader source: Energy.gov [DOE]

ISM Workshop Presentations Knoxville Convention Center, Knoxville, TN August 2009 Track 9: Quality Assurance

38

VOLUME 77, NUMBER 4 P H Y S I C A L R E V I E W L E T T E R S 22 JULY 1996 Measurement of MeV Ion Track Structure in an Organic Solid  

E-Print Network [OSTI]

[15­17]. Here we demonstrate the use of high resolu- tion time-of-flight mass spectrometry. Using these data, the radial profiles of the energy and momentum density in an individual MeV ion track of the evolution of energy deposited around the path of an ion has not progressed markedly since early works

Johnson, Robert E.

39

E-Print Network 3.0 - atms tracking shipments Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

To track or void... on the Void Report. ... Source: Ohio State University, Department of Industrial, Welding, and Systems Engineering, Biodynamics Laboratories Collection:...

40

Solar tracking apparatus  

DOE Patents [OSTI]

The invention relates to a solar tracking device which tracks the position of the sun using paired, partially-shaded photocells. Auxiliary photocells are used for initial acquisition of the sun and for the suppression of false tracking when the sun is obscured by clouds.

Hammons, Burrell E. (Albuquerque, NM)

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "laboratory tracking number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Photovoltaic technology development at Sandia National Laboratories  

SciTech Connect (OSTI)

This report describes the following investigations being pursued under photovoltaic technology development at Sandia National Laboratories: photovoltaic systems technology; concentrator technology; concentrator arrays and tracking structures; concentrator solar cell development; system engineering; subsystem development; and test and applications.

NONE

1981-12-31T23:59:59.000Z

42

Technical Report Computer Laboratory  

E-Print Network [OSTI]

the opportunity to consider a physical attack, with very little to lose. We thus set out to analyse the deviceTechnical Report Number 592 Computer Laboratory UCAM-CL-TR-592 ISSN 1476-2986 Unwrapping J. Murdoch Technical reports published by the University of Cambridge Computer Laboratory are freely

Haddadi, Hamed

43

johnson2 | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

johnson2 Ames Laboratory Profile Stacie Johnson Lab Assistant-X Environmental & Protective Sciences 5 Spedding Phone Number: 515-294-2069 Email Address: johnson2...

44

Particle Tracking in Circular Accelerators Using the Exact Hamiltonian in SixTrack  

E-Print Network [OSTI]

Particle motion in accelerators is in general complex. Tracking codes are developed to simulate beam dynamics in accelerators. SixTrack is a long lived particle tracking code maintained at CERN, the European Organization for Nuclear Research. A particle accelerator consists of a large number of magnets and other electromagnetic devices that guide the particle through the accelerator. Each device defines its own equation of motion, which often cannot be solved exactly. For this purpose, a number of approximations are introduced in order to facilitate the solution and to speed up the computation. In a high-energy accelerator, the particle has small transverse momentum components. This is exploited in the small-angle approximation. In this approximation the equations of motion are expanded to a low order in the transverse momentum components. In low-energy particle accelerators, or in tracking with large momentum deviations, this approximation is invalid. The equations of motion of a particle passing through a f...

Fjellstrom, Mattias; Hansson, Johan

2013-12-13T23:59:59.000Z

45

Sandia National Laboratories: Reynolds number effects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik SpoerkeSolarCybernetics: DynamicCybernetics: Weigh & Leak CheckReynolds

46

PARTICLE FILTER WITH EFFICIENT IMPORTANCE SAMPLING AND MODE TRACKING (PF-EIS-MT) AND ITS APPLICATION TO LANDMARK SHAPE TRACKING  

E-Print Network [OSTI]

PARTICLE FILTER WITH EFFICIENT IMPORTANCE SAMPLING AND MODE TRACKING (PF-EIS-MT) AND ITS a practically implementable particle filtering (PF) method called "PF-EIS-MT" for tracking on large dimensional dimensions and (b) direct application of PF requires an impractically large number of particles. PF-EIS

Vaswani, Namrata

47

Energy Tracking Software Platform  

SciTech Connect (OSTI)

Acceleration has created an interactive energy tracking and visualization platform that supports decreasing electric, water, and gas usage. Homeowners have access to tools that allow them to gauge their use and track progress toward a smaller energy footprint. Real estate agents have access to consumption data, allowing for sharing a comparison with potential home buyers. Home builders have the opportunity to compare their neighborhood's energy efficiency with competitors. Home energy raters have a tool for gauging the progress of their clients after efficiency changes. And, social groups are able to help encourage members to reduce their energy bills and help their environment. EnergyIT.com is the business umbrella for all energy tracking solutions and is designed to provide information about our energy tracking software and promote sales. CompareAndConserve.com (Gainesville-Green.com) helps homeowners conserve energy through education and competition. ToolsForTenants.com helps renters factor energy usage into their housing decisions.

Ryan Davis; Nathan Bird; Rebecca Birx; Hal Knowles

2011-04-04T23:59:59.000Z

48

Track 10: Feedback and Improvement  

Broader source: Energy.gov [DOE]

ISM Workshop Presentations Knoxville Convention Center, Knoxville, TN August 2009 Track 10: Feedback and Improvement

49

WIPP Transparency Project - container tracking and monitoring demonstration using the Authenticated Tracking and Monitoring System (ATMS)  

SciTech Connect (OSTI)

The Authenticated Tracking and Monitoring System (ATMS) is designed to answer the need for global monitoring of the status and location of proliferation-sensitive items on a worldwide basis, 24 hours a day. ATMS uses wireless sensor packs to monitor the status of the items within the shipment and surrounding environmental conditions. Receiver and processing units collect a variety of sensor event data that is integrated with GPS tracking data. The collected data are transmitted to the International Maritime Satellite (INMARSAT) communication system, which then sends the data to mobile ground stations. Authentication and encryption algorithms secure the data during communication activities. A typical ATMS application would be to track and monitor the stiety and security of a number of items in transit along a scheduled shipping route. The resulting tracking, timing, and status information could then be processed to ensure compliance with various agreements.

SCHOENEMAN, J. LEE; SMARTT, HEIDI ANNE; HOFER, DENNIS

2000-01-27T23:59:59.000Z

50

ATLAS Tracking Event Data Model  

E-Print Network [OSTI]

In this report the event data model (EDM) relevant for tracking in the ATLAS experiment is presented. The core component of the tracking EDM is a common track object which is suited to describe tracks in the innermost tracking sub-detectors and in the muon detectors in offline as well as online reconstruction. The design of the EDM was driven by a demand for modularity and extensibility while taking into account the different requirements of the clients. The structure of the track object and the representation of the tracking-relevant information are described in detail.

Ĺkesson, P F; Costa, M J; Elsing, M; Fleischmann, S; Gaponenko, A N; Liebig, W; Moyse, E; Salzburger, A; Siebel, M

2006-01-01T23:59:59.000Z

51

TAGGING, TRACKING AND LOCATING WITHOUT GPS  

SciTech Connect (OSTI)

The Savannah River National Laboratory (SRNL) was requested to lead a Law Enforcement Working Group that was formed to collaborate on common operational needs. All agencies represented on the working group ranked their need to tag, track, and locate a witting or unwitting target as their highest priority. Specifically, they were looking for technologies more robust than Global Positioning Satellite (GPS), could communicate back to the owner, and worked where normal cell phone communications did not work or were unreliable. SRNL brought together multiple technologies in a demonstration that was held in in various Alaska venues, including metropolitan, wilderness, and at-sea that met the working group's requirements. Using prototypical technologies from Boeing, On Ramp, and Fortress, SRNL was able to demonstrate the ability to track personnel and material in all scenarios including indoors, in heavily wooden areas, canyons, and in parking garages. In all cases GPS signals were too weak to measure. Bi-directional communication was achieved in areas that Wi-Fi, cell towers, or traditional radios would not perform. The results of the exercise will be presented. These technologies are considered ideal for tracking high value material such has nuclear material with a platform that allows seamless tracking anywhere in the world, indoors or outdoors.

Cordaro, J.; Coleman, T.; Shull, D.

2012-07-08T23:59:59.000Z

52

The Virtual Robotics Laboratory  

SciTech Connect (OSTI)

The growth of the Internet has provided a unique opportunity to expand research collaborations between industry, universities, and the national laboratories. The Virtual Robotics Laboratory (VRL) is an innovative program at Oak Ridge National Laboratory (ORNL) that is focusing on the issues related to collaborative research through controlled access of laboratory equipment using the World Wide Web. The VRL will provide different levels of access to selected ORNL laboratory secondary education programs. In the past, the ORNL Robotics and Process Systems Division has developed state-of-the-art robotic systems for the Army, NASA, Department of Energy, Department of Defense, as well as many other clients. After proof of concept, many of these systems sit dormant in the laboratories. This is not out of completion of all possible research topics. but from completion of contracts and generation of new programs. In the past, a number of visiting professors have used this equipment for their own research. However, this requires that the professor, and possibly his/her students, spend extended periods at the laboratory facility. In addition, only a very exclusive group of faculty can gain access to the laboratory and hardware. The VRL is a tool that enables extended collaborative efforts without regard to geographic limitations.

Kress, R.L.; Love, L.J.

1999-09-01T23:59:59.000Z

53

08/17/2006 12:09 PMOak Ridge National Laboratory -U.S. ITER Project Completes Management Team Page 1 of 2http://www.ornl.gov/ornlhome/print/press_release_print.cfm?ReleaseNumber=mr20060817-00  

E-Print Network [OSTI]

the nation's course for one of the largest energy-science projects in history," Sauthoff said. "Each member08/17/2006 12:09 PMOak Ridge National Laboratory - U.S. ITER Project Completes Management Team Page Sauthoff, head of the U.S. ITER Project Office at Oak Ridge National Laboratory. "This team will help chart

54

Pollution Prevention Tracking and Reporting System | Department...  

Energy Savers [EERE]

Pollution Prevention Tracking and Reporting System Pollution Prevention Tracking and Reporting System Welcome to the Department of Energy's Pollution Prevention Tracking and...

55

Sandia National Laboratories: Geomechanics Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science: Latest News and Events Earth Science: Facilities and Equipment Bureau of Land Management Fossil Energy Liquid Natural Gas (LNG) Clean Coal Geomechanics Laboratory User...

56

Technical Report Computer Laboratory  

E-Print Network [OSTI]

process by examining the relationship between human perception of depth and three-dimensional computerTechnical Report Number 546 Computer Laboratory UCAM-CL-TR-546 ISSN 1476-2986 Depth perception-generated imagery (3D CGI). Depth is perceived when the human visual system combines various different sources

Haddadi, Hamed

57

Technical Report Computer Laboratory  

E-Print Network [OSTI]

for criminal activity. One general attack route to breach the security is to carry out physical attack afterTechnical Report Number 829 Computer Laboratory UCAM-CL-TR-829 ISSN 1476-2986 Microelectronic report is based on a dissertation submitted January 2009 by the author for the degree of Doctor

Haddadi, Hamed

58

Chicago Office NEPA Tracking Number U. S. DEPARTMENT OF ENERGY  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth DayFuels Chemical KineticCheronChicago JoinsSFCH F

59

Chicago Office NEPA Tracking Number U. S. DEPARTMENT OF ENERGY  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth DayFuels Chemical KineticCheronChicago JoinsSFCH

60

BY THE NUMBERS FY14 Tenure-track faculty 16  

E-Print Network [OSTI]

VETERINARY & ANIMAL SCIENCES 431 Integrated Sciences Building T (413) 545-2312 F (413) 545-6326 www of Radihika Goenka '08 PhD was selected for the Journal of Experimental Medicine's 2014 t-shirt design

Auerbach, Scott M.

Note: This page contains sample records for the topic "laboratory tracking number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Chicago Office NEPA Tracking Number U. S. DEPARTMENT OF ENERGY  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top FiveDepartment ofCarrie Noonan AboutDepartment of -1Department of

62

MICROSYSTEMS LABORATORIES  

E-Print Network [OSTI]

15 nm MICROSYSTEMS TECHNOLOGY LABORATORIES ANNUAL RESEARCH REPORT 2014 MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MA AUGUST 2014 #12;MTL Annual Research Report 2014 Director JesĂşs A. del Alamo Project........................................................................ 47 Energy: Photovoltaics, Energy Harvesting, Batteries, Fuel Cells

Culpepper, Martin L.

63

Argonne National Laboratory 1985 publications  

SciTech Connect (OSTI)

This report is a bibliography of scientific and technical 1985 publications of Argonne National Laboratory. Some are ANL contributions to outside organizations' reports published in 1985. This compilation, prepared by the Technical Information Services Technical Publications Section (TPB), lists all nonrestricted 1985 publications submitted to TPS by Laboratory's Divisions. The report is divided into seven parts: Journal Articles - Listed by first author, ANL Reports - Listed by report number, ANL and non-ANL Unnumbered Reports - Listed by report number, Non-ANL Numbered Reports - Listed by report number, Books and Book Chapters - Listed by first author, Conference Papers - Listed by first author, Complete Author Index.

Kopta, J.A. (ED.); Hale, M.R. (comp.)

1987-08-01T23:59:59.000Z

64

DOE Vehicular Tank Workshop Sandia National Laboratories  

E-Print Network [OSTI]

DOE Vehicular Tank Workshop Sandia National Laboratories Livermore, CA April 29, 2010 Thursday the deployment of hydrogen storage tanks in early market fuel cell applications for vehicles Workshop Objectives at the first workshop in more detail, including Type 4 tank and PRD testing, tank service life and tracking

65

The MROI fringe tracker: laboratory tracking with ICONN  

E-Print Network [OSTI]

. A., “ICONN - The Infrared Coherencing Nearest Neighbor Tracker,” Journal Astronomical Instrumentation 02(02), 1340006 (2013). 3. Armstrong, J. T., Mozurkewich, D., Pauls, T. A., and Hajian, A. R., “Bootstrapping the NPOI: keeping long baselines...

McCracken, T. M.; Jurgenson, C. A.; Young, J. S.; Seneta, E. B.; Buscher, D. F.; Haniff, C. A.; Creech-Eakman, M. J.; Santoro, F. G.; Shtromberg, A. V.; Schmidt, L. M.; Rochelle, S.

2014-07-24T23:59:59.000Z

66

Permanent Home Number: Residential Number  

E-Print Network [OSTI]

Permanent Home Number: Residential Number: Mobile: Please update my contact details. Signature nominated correspondence address as indicated below. Permanent Home Adress Residential Address Other Address (Must not be a PO Box) Residential Address (Must not be a PO Box) Other - Postal/Optional Address

Viglas, Anastasios

67

UNIT NUMBER:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

193 UNIT NUMBER: 197 UNIT NAME: CONCRETE RUBBLE PILE (30) REGULATORY STATUS: AOC LOCATION: Outside plant security fence, north of the plant on Big Bayou Creek on private property....

68

Experimental Target Injection and Tracking System  

SciTech Connect (OSTI)

Targets must be injected into an IFE power plant with an accuracy of and plusmn; 5 mm at a rate of approximately 5 to 10 each second. Targets must be tracked very accurately to allow driver beams to be aligned with defined points on the targets with accuracy {+-}200{mu}m for indirect drive and {+-}20{mu}m for direct drive. An experimental target injection and tracking system has been designed and is being constructed at General Atomics to investigate injection and tracking of both direct drive and indirect drive targets. The design is modular to allow testing of alternate target acceleration and tracking methods. The injector system will be used as a tool for testing the survivability of various target designs and provide feed back to the target designers. This 30 m long system will be the centerpiece of a Facility for developing IFE target fabrication and injection technologies. A high-speed high-flow gas valve (designed and built by Oak Ridge National Laboratory) will provide helium propellant gas to the targets. To avoid target damage from excessive acceleration, an 8 m gun barrel is being built to achieve 400 m/s target speed while not exceeding 10,000 m/s{sup 2} acceleration. Direct-drive targets are protected in the barrel by sabots that are spring loaded to separate into two halves after acceleration. A sabot deflector directs the sabot halves away from the target injection path. Gas expansion chambers and orifices, keep propellant gas out of the target-tracking region. Targets will be optically tracked with laser beams and line scan cameras. High-speed computations will calculate target position in less than 2 ms based on the output from the line-scan cameras. Target position and arrival time to a plane in the reaction chamber center will be predicted in real-time based on early target position measurements. The system design, construction progress, and early testing results will be presented.

Petzoldt, R.W. [General Atomics (United States); Alexander, N.B. [General Atomics (United States); Drake, T.J. [General Atomics (United States); Goodin, D.T. [General Atomics (United States); Stemke, R.W. [General Atomics (United States); Jonestrask, K

2003-07-15T23:59:59.000Z

69

An interface tracking model for droplet electrocoalescence.  

SciTech Connect (OSTI)

This report describes an Early Career Laboratory Directed Research and Development (LDRD) project to develop an interface tracking model for droplet electrocoalescence. Many fluid-based technologies rely on electrical fields to control the motion of droplets, e.g. microfluidic devices for high-speed droplet sorting, solution separation for chemical detectors, and purification of biodiesel fuel. Precise control over droplets is crucial to these applications. However, electric fields can induce complex and unpredictable fluid dynamics. Recent experiments (Ristenpart et al. 2009) have demonstrated that oppositely charged droplets bounce rather than coalesce in the presence of strong electric fields. A transient aqueous bridge forms between approaching drops prior to pinch-off. This observation applies to many types of fluids, but neither theory nor experiments have been able to offer a satisfactory explanation. Analytic hydrodynamic approximations for interfaces become invalid near coalescence, and therefore detailed numerical simulations are necessary. This is a computationally challenging problem that involves tracking a moving interface and solving complex multi-physics and multi-scale dynamics, which are beyond the capabilities of most state-of-the-art simulations. An interface-tracking model for electro-coalescence can provide a new perspective to a variety of applications in which interfacial physics are coupled with electrodynamics, including electro-osmosis, fabrication of microelectronics, fuel atomization, oil dehydration, nuclear waste reprocessing and solution separation for chemical detectors. We present a conformal decomposition finite element (CDFEM) interface-tracking method for the electrohydrodynamics of two-phase flow to demonstrate electro-coalescence. CDFEM is a sharp interface method that decomposes elements along fluid-fluid boundaries and uses a level set function to represent the interface.

Erickson, Lindsay Crowl

2013-09-01T23:59:59.000Z

70

Initiatives in the US nuclear material tracking system  

SciTech Connect (OSTI)

The Department of Energy (DOE) Office of Nonproliferation and National Security is in the process of developing a new worldwide nuclear materials tracking system. Its purpose is for DOE to better fulfill its international and domestic nuclear material tracking obligations and needs. The Lawrence Livermore National Laboratory (LLNL), is developing the International Nuclear Analysis (INA) Program to meet this goal. LLNL will assume the function and duties of the current Nuclear Materials management and Safeguards System (NMMSS) operated by Martin Marietta Energy Systems. The program is jointly funded by the DOE, the Nuclear Regulatory Commission and the US Enrichment Corporation.

Smith, M.R.; Kuzmycz, G. [Department of Energy, Washington, DC (United States); Heaton, E.R. [Pacific Northwest Lab., Richland, WA (United States)

1994-07-01T23:59:59.000Z

71

FY2007 Laboratory Directed Research and Development Annual Report  

SciTech Connect (OSTI)

The Laboratory Directed Research and Development (LDRD) annual report for fiscal year 2007 (FY07) provides a summary of LDRD-funded projects for the fiscal year and consists of two parts: An introduction to the LDRD Program, the LDRD portfolio-management process, program statistics for the year, and highlights of accomplishments for the year. A summary of each project, submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to Department of Energy (DOE)/National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laboratory (LLNL) mission areas, the technical progress achieved in FY07, and a list of publications that resulted from the research in FY07. Summaries are organized in sections by research category (in alphabetical order). Within each research category, the projects are listed in order of their LDRD project category: Strategic Initiative (SI), Exploratory Research (ER), Laboratory-Wide Competition (LW), and Feasibility Study (FS). Within each project category, the individual project summaries appear in order of their project tracking code, a unique identifier that consists of three elements. The first is the fiscal year the project began, the second represents the project category, and the third identifies the serial number of the proposal for that fiscal year.

Craig, W W; Sketchley, J A; Kotta, P R

2008-03-20T23:59:59.000Z

72

REC Tracking Systems Design Guide  

SciTech Connect (OSTI)

OAK-B135 The Design Guide is presented in three parts. Section II describes the need for REC tracking, the two principal tracking methods available, and, in simple terms, the operation of certificate-based systems. Section III presents the major issues in the design of certificate-based tracking systems and discusses the advantages and disadvantages of alternative solutions. Finally, Section IV offers design principles or recommendations for most of these issues.

Meredith Wingate

2004-02-03T23:59:59.000Z

73

Final Report for DE-SC0002298 Agency Number: DE-PS02-09ER09-01 An Advanced Network and distributed Storage Laboratory (ANDSL) for Data Intensive Science  

SciTech Connect (OSTI)

The original intent of this project was to build and operate an Advanced Network and Distributed Storage Laboratory (ANDSL) for Data Intensive Science that will prepare the Open Science Grid (OSG) community for a new generation of wide area communication capabilities operating at a 100Gb rate. Given the significant cut in our proposed budget we changed the scope of the ANDSL to focus on the software aspects of the laboratory – workload generators and monitoring tools and on the offering of experimental data to the ANI project. The main contributions of our work are twofold: early end-user input and experimental data to the ANI project and software tools for conducting large scale end-to-end data placement experiments.

Livny, Miron [Computer Sciences Department, University of Wisconsin - Madison

2014-08-17T23:59:59.000Z

74

CHEMICAL LABORATORY SAFETY AND METHODOLOGY  

E-Print Network [OSTI]

CHEMICAL LABORATORY SAFETY AND METHODOLOGY MANUAL August 2013 #12;ii Emergency Numbers UNBC Prince-Emergency Numbers UNBC Prince George Campus Chemstores 6472 Chemical Safety 6472 Radiation Safety 6472 Biological the safe use, storage, handling, waste and emergency management of chemicals on the University of Northern

Northern British Columbia, University of

75

Intelligent Sun Tracking for a CPV Power Plant  

SciTech Connect (OSTI)

The output of a solar panel is strongly dependent on the amount of perpendicular light flux falling on its surface, and a tracking system tries to parallel the vector area of the solar panel surface to the incident solar flux. We present a tracking technique based on a two-axis sun sensor which can be used to increase the power output from a number of CPV arrays connected together in a solar power plant. The outdoor testing procedure of the developed two-axis sun sensor is discussed. The detail of the algorithm used together with the related sun tracking equipment is also presented and discussed for the new two axes sun tracking system.

Maqsood, Ishtiaq; Emziane, Mahieddine [Solar Energy Materials and Devices Lab., Masdar Institute of Science and Technology, P.O. Box 54224, Abu Dhabi (United Arab Emirates)

2010-10-14T23:59:59.000Z

76

SULI at Ames Laboratory  

SciTech Connect (OSTI)

A video snapshot of the Science Undergraduate Laboratory Internship (SULI) program at Ames Laboratory.

None

2011-01-01T23:59:59.000Z

77

BSTBacterial Source Tracking Conference Proceedings  

E-Print Network [OSTI]

BSTBacterial Source Tracking Conference Proceedings 2012 Bacterial Source Tracking State Conference Conference Proceedings Prepared by: Lucas Gregory, Texas Water Resources Institute Courtney Smith of the Science Conference Texas Water Resources Institute TR-427 June 2012 #12;#12;Texas Water Resources

78

Laboratory Directed  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocs space controlAppraisal Process Laboratory

79

Laboratory Directors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocs space controlAppraisalLaboratory Directors

80

Robust Multi-Person Tracking from a Mobile Andreas Ess, Bastian Leibe, Konrad Schindler, and Luc van Gool  

E-Print Network [OSTI]

1 Robust Multi-Person Tracking from a Mobile Platform Andreas Ess, Bastian Leibe, Konrad Schindler the combination of and careful interplay between A. Ess is with the Computer Vision Laboratory at ETH Zurich

Schindler, Konrad

Note: This page contains sample records for the topic "laboratory tracking number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

CDC's National Environmental Public Health Tracking Network NEW MEXICO Keeping Track, Promoting Health  

E-Print Network [OSTI]

CS225774_D CDC's National Environmental Public Health Tracking Network NEW MEXICO Keeping Track Tracking Matters in New Mexico The New Mexico Tracking Program affords a better understanding of how diseases. The New Mexico Tracking Program has already begun using its state Tracking Network to monitor

82

Towards optimal energy-quality tradeoff in tracking via sensor Alessio Benavoli and Luigi Chisci  

E-Print Network [OSTI]

proportional to the number of active sensors, energy efficiency calls for the implementation, inside about the current sensor energy status. This is certainly efficient in terms of tracking qualityTowards optimal energy-quality tradeoff in tracking via sensor networks Alessio Benavoli and Luigi

Chisci, Luigi

83

Midwest Renewable Energy Tracking System (Multiple States)  

Broader source: Energy.gov [DOE]

The Midwest Renewable Energy Tracking System (M-RETS®) tracks renewable energy generation in participating States and Provinces and assists in verifying compliance with individual state/provincial...

84

Increasing Scientific Productivity by Tracking Data  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Data Tracking Increases Scientific Productivity Data Tracking Increases Scientific Productivity July 20, 2011 | Tags: HPSS, NERSC Linda Vu, lvu@lbl.gov, +1 510 486 2402 HPSS...

85

SOFTWARE QUALITY & SYSTEMS ENGINEERING PROGRAM: Project Tracking...  

Office of Environmental Management (EM)

Project Tracking Checklist SOFTWARE QUALITY & SYSTEMS ENGINEERING PROGRAM: Project Tracking Checklist The following checklist is intended to provide system owners, project...

86

Laboratory Operations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011 CERN 73-11 Laboratory I | Nuclear

87

NGSI: FUNCTION REQUIREMENTS FOR A CYLINDER TRACKING SYSTEM  

SciTech Connect (OSTI)

While nuclear suppliers currently track uranium hexafluoride (UF{sub 6}) cylinders in various ways, for their own purposes, industry practices vary significantly. The NNSA Office of Nonproliferation and International Security's Next Generation Safeguards Initiative (NGSI) has begun a 5-year program to investigate the concept of a global monitoring scheme that uniquely identifies and tracks UF{sub 6} cylinders. As part of this effort, NGSI's multi-laboratory team has documented the 'life of a UF{sub 6} cylinder' and reviewed IAEA practices related to UF{sub 6} cylinders. Based on this foundation, this paper examines the functional requirements of a system that would uniquely identify and track UF{sub 6} cylinders. There are many considerations for establishing a potential tracking system. Some of these factors include the environmental conditions a cylinder may be expected to be exposed to, where cylinders may be particularly vulnerable to diversion, how such a system may be integrated into the existing flow of commerce, how proprietary data generated in the process may be protected, what a system may require in terms of the existing standard for UF{sub 6} cylinder manufacture or modifications to it and what the limiting technology factors may be. It is desirable that a tracking system should provide benefit to industry while imposing as few additional constraints as possible and still meeting IAEA safeguards objectives. This paper includes recommendations for this system and the analysis that generated them.

Branney, S.

2012-06-06T23:59:59.000Z

88

Cooperative Modeling and Design History Tracking Using Design Tracking Matrix  

E-Print Network [OSTI]

This thesis suggests a new framework for cooperative modeling which supports concurrency design protocol with a design history tracking function. The proposed framework allows designers to work together while eliminating design conflicts...

Kim, Jonghyun

2010-10-12T23:59:59.000Z

89

Abrasion resistant track shoe grouser  

DOE Patents [OSTI]

A track shoe for a track-type vehicle. The track shoe includes a base plate and a grouser projecting away from the base plate. A capping surface structure of substantially horseshoe shaped cross-section is disposed across a distal portion of the grouser. The capping surface structure covers portions of a distal edge surface and adjacent lateral surfaces. The capping surface structure is formed from an material characterized by enhanced wear resistance relative to portions of the grouser underlying the capping surface structure.

Fischer, Keith D; Diekevers, Mark S; Afdahl, Curt D; Steiner, Kevin L; Barnes, Christopher A

2013-04-23T23:59:59.000Z

90

Fluorescent image tracking velocimeter  

DOE Patents [OSTI]

A multiple-exposure fluorescent image tracking velocimeter (FITV) detects and measures the motion (trajectory, direction and velocity) of small particles close to light scattering surfaces. The small particles may follow the motion of a carrier medium such as a liquid, gas or multi-phase mixture, allowing the motion of the carrier medium to be observed, measured and recorded. The main components of the FITV include: (1) fluorescent particles; (2) a pulsed fluorescent excitation laser source; (3) an imaging camera; and (4) an image analyzer. FITV uses fluorescing particles excited by visible laser light to enhance particle image detectability near light scattering surfaces. The excitation laser light is filtered out before reaching the imaging camera allowing the fluoresced wavelengths emitted by the particles to be detected and recorded by the camera. FITV employs multiple exposures of a single camera image by pulsing the excitation laser light for producing a series of images of each particle along its trajectory. The time-lapsed image may be used to determine trajectory and velocity and the exposures may be coded to derive directional information.

Shaffer, Franklin D. (Library, PA)

1994-01-01T23:59:59.000Z

91

National Laboratory Impact Initiative  

Broader source: Energy.gov [DOE]

The National Laboratory Impact Initiative supports the relationship between the Office of Energy Efficiency & Renewable Energy and the national laboratory enterprise.  The national laboratories...

92

Remote Sensing Laboratory - RSL  

SciTech Connect (OSTI)

One of the primary resources supporting homeland security is the Remote Sensing Laboratory, or RSL. The Laboratory creates advanced technologies for emergency response operations, radiological incident response, and other remote sensing activities. RSL emergency response teams are on call 24-hours a day, and maintain the capability to deploy domestically and internationally in response to threats involving the loss, theft, or release of nuclear or radioactive material. Such incidents might include Nuclear Power Plant accidents, terrorist incidents involving nuclear or radiological materials, NASA launches, and transportation accidents involving nuclear materials. Working with the US Department of Homeland Security, RSL personnel equip, maintain, and conduct training on the mobile detection deployment unit, to provide nuclear radiological security at major national events such as the super bowl, the Indianapolis 500, New Year's Eve celebrations, presidential inaugurations, international meetings and conferences, just about any event where large numbers of people will gather.

None

2014-11-06T23:59:59.000Z

93

Remote Sensing Laboratory - RSL  

ScienceCinema (OSTI)

One of the primary resources supporting homeland security is the Remote Sensing Laboratory, or RSL. The Laboratory creates advanced technologies for emergency response operations, radiological incident response, and other remote sensing activities. RSL emergency response teams are on call 24-hours a day, and maintain the capability to deploy domestically and internationally in response to threats involving the loss, theft, or release of nuclear or radioactive material. Such incidents might include Nuclear Power Plant accidents, terrorist incidents involving nuclear or radiological materials, NASA launches, and transportation accidents involving nuclear materials. Working with the US Department of Homeland Security, RSL personnel equip, maintain, and conduct training on the mobile detection deployment unit, to provide nuclear radiological security at major national events such as the super bowl, the Indianapolis 500, New Year's Eve celebrations, presidential inaugurations, international meetings and conferences, just about any event where large numbers of people will gather.

None

2015-01-09T23:59:59.000Z

94

Tribology Laboratory | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatusButlerTransportation From919-660-2694Tribology Laboratory

95

Laboratory Events | Brookhaven National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocs space controlAppraisalLaboratoryGet the tools you

96

Geoscience Laboratory | Sample Preparation Laboratories  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor'sshort version)UnveilsGeorgeGeoscience Laboratory

97

Laboratory Information Management Systems for Forensic Laboratories: A White Paper for Directors and Decision Makers  

SciTech Connect (OSTI)

Modern, forensics laboratories need Laboratory Information Management Systems (LIMS) implementations that allow the lab to track evidentiary items through their examination lifecycle and also serve all pertinent laboratory personnel. The research presented here presents LIMS core requirements as viewed by respondents serving in different forensic laboratory capacities as well as different forensic laboratory environments. A product-development methodology was employed to evaluate the relative value of the key features that constitute a LIMS, in order to develop a set of relative values for these features and the specifics of their implementation. In addition to the results of the product development analysis, this paper also provides an extensive review of LIMS and provides an overview of the preparation and planning process for the successful upgrade or implementation of a LIMS. Analysis of the data indicate that the relative value of LIMS components are viewed differently depending upon respondents' job roles (i.e., evidence technicians, scientists, and lab management), as well as by laboratory size. Specifically, the data show that: (1) Evidence technicians place the most value on chain of evidence capabilities and on chain of custody tracking; (2) Scientists generally place greatest value on report writing and generation, and on tracking daughter evidence that develops during their analyses; (3) Lab. Managers place the greatest value on chain of custody, daughter evidence, and not surprisingly, management reporting capabilities; and (4) Lab size affects LIMS preference in that, while all labs place daughter evidence tracking, chain of custody, and management and analyst report generation as their top three priorities, the order of this prioritization is size dependent.

Anthony Hendrickson; Brian Mennecke; Kevin Scheibe; Anthony Townsend; ,

2005-10-01T23:59:59.000Z

98

Laboratory Directed Research and Development FY2008 Annual Report  

SciTech Connect (OSTI)

The Laboratory Directed Research and Development (LDRD) Program, authorized by Congress in 1991 and administered by the Institutional Science and Technology Office at Lawrence Livermore, is our primary means for pursuing innovative, long-term, high-risk, and potentially high-payoff research that supports the full spectrum of national security interests encompassed by the missions of the Laboratory, the Department of Energy, and National Nuclear Security Administration. The accomplishments described in this annual report demonstrate the strong alignment of the LDRD portfolio with these missions and contribute to the Laboratory's success in meeting its goals. The LDRD budget of $91.5 million for fiscal year 2008 sponsored 176 projects. These projects were selected through an extensive peer-review process to ensure the highest scientific quality and mission relevance. Each year, the number of deserving proposals far exceeds the funding available, making the selection a tough one indeed. Our ongoing investments in LDRD have reaped long-term rewards for the Laboratory and the nation. Many Laboratory programs trace their roots to research thrusts that began several years ago under LDRD sponsorship. In addition, many LDRD projects contribute to more than one mission area, leveraging the Laboratory's multidisciplinary team approach to science and technology. Safeguarding the nation from terrorist activity and the proliferation of weapons of mass destruction will be an enduring mission of this Laboratory, for which LDRD will continue to play a vital role. The LDRD Program is a success story. Our projects continue to win national recognition for excellence through prestigious awards, papers published in peer-reviewed journals, and patents granted. With its reputation for sponsoring innovative projects, the LDRD Program is also a major vehicle for attracting and retaining the best and the brightest technical staff and for establishing collaborations with universities, industry, and other scientific and research institutions. By keeping the Laboratory at the forefront of science and technology, the LDRD Program enables us to meet our mission challenges, especially those of our ever-evolving national security mission. The Laboratory Directed Research and Development (LDRD) annual report for fiscal year 2008 (FY08) provides a summary of LDRD-funded projects for the fiscal year and consists of two parts: A broad description of the LDRD Program, the LDRD portfolio-management process, program statistics for the year, and highlights of accomplishments for the year. A summary of each project, submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to Department of Energy (DOE)/National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laboratory (LLNL) mission areas, the technical progress achieved in FY08, and a list of publications that resulted from the research in FY08. Summaries are organized in sections by research category (in alphabetical order). Within each research category, the projects are listed in order of their LDRD project category: Strategic Initiative (SI), Exploratory Research (ER), Laboratory-Wide Competition (LW), and Feasibility Study (FS). Within each project category, the individual project summaries appear in order of their project tracking code, a unique identifier that consists of three elements. The first is the fiscal year the project began, the second represents the project category, and the third identifies the serial number of the proposal for that fiscal year.

Kammeraad, J E; Jackson, K J; Sketchley, J A; Kotta, P R

2009-03-24T23:59:59.000Z

99

Track 4: Employee Health and Wellness  

Broader source: Energy.gov [DOE]

ISM Workshop Presentations Knoxville Convention Center, Knoxville, TN August 2009 Track 4: Employee Health and Wellness

100

Final environmental impact statement for the construction and operation of an independent spent fuel storage installation to store the Three Mile Island Unit 2 spent fuel at the Idaho National Engineering and Environmental Laboratory. Docket Number 72-20  

SciTech Connect (OSTI)

This Final Environmental Impact Statement (FEIS) contains an assessment of the potential environmental impacts of the construction and operation of an Independent Spent Fuel Storage Installation (ISFSI) for the Three Mile Island Unit 2 (TMI-2) fuel debris at the Idaho National Engineering and Environmental laboratory (INEEL). US Department of Energy-Idaho Operations Office (DOE-ID) is proposing to design, construct, and operate at the Idaho Chemical Processing Plant (ICPP). The TMI-2 fuel debris would be removed from wet storage, transported to the ISFSI, and placed in storage modules on a concrete basemat. As part of its overall spent nuclear fuel (SNF) management program, the US DOE has prepared a final programmatic environmental impact statement (EIS) that provides an overview of the spent fuel management proposed for INEEL, including the construction and operation of the TMI-2 ISFSI. In addition, DOE-ID has prepared an environmental assessment (EA) to describe the environmental impacts associated with the stabilization of the storage pool and the construction/operation of the ISFSI at the ICPP. As provided in NRC`s NEPA procedures, a FEIS of another Federal agency may be adopted in whole or in part in accordance with the procedures outlined in 40 CFR 1506.3 of the regulations of the Council on Environmental Quality (CEQ). Under 40 CFR 1506.3(b), if the actions covered by the original EIS and the proposed action are substantially the same, the agency adopting another agency`s statement is not required to recirculate it except as a final statement. The NRC has determined that its proposed action is substantially the same as actions considered in DOE`s environmental documents referenced above and, therefore, has elected to adopt the DOE documents as the NRC FEIS.

NONE

1998-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "laboratory tracking number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Environmental | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Environmental Management Program at the Ames Laboratory includes Waste Management, Pollution Prevention, Recycling, Cultural Resources, and the Laboratory's Environmental...

102

Argonne National Laboratory 1986 publications  

SciTech Connect (OSTI)

This report is a bibliography of scientific and technical 1986 publications of Argonne National Laboratory. Some are ANL contributions to outside organizations' reports published in 1986. This compilation, prepared by the Technical Information Services Technical Publications Section (TPS), lists all nonrestricted 1986 publications submitted to TPS by the Laboratory's Divisions. Author indexes list ANL authors only. If a first author is not an ANL employee, an asterisk in the bibliographic citation indicates the first ANL author. The report is divided into seven parts: Journal Articles -- Listed by first author; ANL Reports -- Listed by report number; ANL and non-ANL Unnumbered Reports -- Listed by report number; Non-ANL Numbered Reports -- Listed by report number; Books and Book Chapters -- Listed by first author; Conference Papers -- Listed by first author; and Complete Author Index.

Kopta, J.A.; Springer, C.J.

1987-12-01T23:59:59.000Z

103

How many objects can you track?: Evidence for a resource-limited attentive tracking mechanism  

E-Print Network [OSTI]

How many objects can you track?: Evidence for a resource-limited attentive tracking mechanism can you track?: Evidence for a resource-limited attentive tracking mechanism. Journal of Vision, 7 model), or whether the limit on tracking is set by a resource that can be flexibly allocated to objects

Alvarez, George A.

104

Originally from Venice, Italy Martina studied in Liverpool (UK) for her PhD in Nuclear Physics. In 2003 she started a post-doc at the Lawrence Berkeley National Laboratory, working on the development of gamma-ray tracking detectors for nuclear physics exp  

E-Print Network [OSTI]

Originally from Venice, Italy Martina studied in Liverpool (UK) for her PhD in Nuclear Physics of gamma-ray tracking detectors for nuclear physics experiments. Since May 2005, she is a postdoctoral and, the department! Martina Descovich PhD Education Ph.D. in Nuclear Physics (2003) University

Pouliot, Jean

105

HOW CAN YOU TELL IF A LABORATORY IS NVLAPACCREDITED?  

E-Print Network [OSTI]

. The technical competence of a laboratory depends on a number of factors including: · the qualifications. For the manufacturer or supplier, choosing a technically competent laboratory minimizes the risk of producing

106

The Majorana Parts Tracking Database  

E-Print Network [OSTI]

The Majorana Demonstrator is an ultra-low background physics experiment searching for the neutrinoless double beta decay of $^{76}$Ge. The Majorana Parts Tracking Database is used to record the history of components used in the construction of the Demonstrator. The tracking implementation takes a novel approach based on the schema-free database technology CouchDB. Transportation, storage, and processes undergone by parts such as machining or cleaning are linked to part records. Tracking parts provides a great logistics benefit and an important quality assurance reference during construction. In addition, the location history of parts provides an estimate of their exposure to cosmic radiation. A web application for data entry and a radiation exposure calculator have been developed as tools for achieving the extreme radio-purity required for this rare decay search.

Abgrall, N; Avignone, F T; Bertrand, F E; Brudanin, V; Busch, M; Byram, D; Caldwell, A S; Chan, Y-D; Christofferson, C D; Combs, D C; Cuesta, C; Detwiler, J A; Doe, P J; Efremenko, Yu; Egorov, V; Ejiri, H; Elliott, S R; Esterline, J; Fast, J E; Finnerty, P; Fraenkle, F M; Galindo-Uribarri, A; Giovanetti, G K; Goett, J; Green, M P; Gruszko, J; Guiseppe, V E; Gusev, K; Hallin, A L; Hazama, R; Hegai, A; Henning, R; Hoppe, E W; Howard, S; Howe, M A; Keeter, K J; Kidd, M F; Kochetov, O; Kouzes, R T; LaFerriere, B D; Leon, J Diaz; Leviner, L E; Loach, J C; MacMullin, J; Martin, R D; Meijer, S J; Mertens, S; Miller, M L; Mizouni, L; Nomachi, M; Orrell, J L; O'Shaughnessy, C; Overman, N R; Petersburg, R; Phillips, D G; Poon, A W P; Pushkin, K; Radford, D C; Rager, J; Rielage, K; Robertson, R G H; Romero-Romero, E; Ronquest, M C; Shanks, B; Shima, T; Shirchenko, M; Snavely, K J; Snyder, N; Soin, A; Suriano, A M; Tedeschi, D; Thompson, J; Timkin, V; Tornow, W; Trimble, J E; Varner, R L; Vasilyev, S; Vetter, K; Vorren, K; White, B R; Wilkerson, J F; Wiseman, C; Xu, W; Yakushev, E; Young, A R; Yu, C -H; Zhitnikov, I

2015-01-01T23:59:59.000Z

107

The Majorana Parts Tracking Database  

E-Print Network [OSTI]

The Majorana Demonstrator is an ultra-low background physics experiment searching for the neutrinoless double beta decay of $^{76}$Ge. The Majorana Parts Tracking Database is used to record the history of components used in the construction of the Demonstrator. The tracking implementation takes a novel approach based on the schema-free database technology CouchDB. Transportation, storage, and processes undergone by parts such as machining or cleaning are linked to part records. Tracking parts provides a great logistics benefit and an important quality assurance reference during construction. In addition, the location history of parts provides an estimate of their exposure to cosmic radiation. A web application for data entry and a radiation exposure calculator have been developed as tools for achieving the extreme radio-purity required for this rare decay search.

The Majorana Collaboration; N. Abgrall; E. Aguayo; F. T. Avignone III; A. S. Barabash; F. E. Bertrand; V. Brudanin; M. Busch; D. Byram; A. S. Caldwell; Y-D. Chan; C. D. Christofferson; D. C. Combs; C. Cuesta; J. A. Detwiler; P. J. Doe; Yu. Efremenko; V. Egorov; H. Ejiri; S. R. Elliott; J. Esterline; J. E. Fast; P. Finnerty; F. M. Fraenkle; A. Galindo-Uribarri; G. K. Giovanetti; J. Goett; M. P. Green; J. Gruszko; V. E. Guiseppe; K. Gusev; A. L. Hallin; R. Hazama; A. Hegai; R. Henning; E. W. Hoppe; S. Howard; M. A. Howe; K. J. Keeter; M. F. Kidd; O. Kochetov; S. I. Konovalov; R. T. Kouzes; B. D. LaFerriere; J. Diaz Leon; L. E. Leviner; J. C. Loach; J. MacMullin; R. D. Martin; S. J. Meijer; S. Mertens; M. L. Miller; L. Mizouni; M. Nomachi; J. L. Orrell; C. O'Shaughnessy; N. R. Overman; R. Petersburg; D. G. Phillips II; A. W. P. Poon; K. Pushkin; D. C. Radford; J. Rager; K. Rielage; R. G. H. Robertson; E. Romero-Romero; M. C. Ronquest; B. Shanks; T. Shima; M. Shirchenko; K. J. Snavely; N. Snyder; A. Soin; A. M. Suriano; D. Tedeschi; J. Thompson; V. Timkin; W. Tornow; J. E. Trimble; R. L. Varner; S. Vasilyev; K. Vetter; K. Vorren; B. R. White; J. F. Wilkerson; C. Wiseman; W. Xu; E. Yakushev; A. R. Young; C. -H. Yu; V. Yumatov; I. Zhitnikov

2015-02-05T23:59:59.000Z

108

Robotic vehicle with multiple tracked mobility platforms  

DOE Patents [OSTI]

A robotic vehicle having two or more tracked mobility platforms that are mechanically linked together with a two-dimensional coupling, thereby forming a composite vehicle of increased mobility. The robotic vehicle is operative in hazardous environments and can be capable of semi-submersible operation. The robotic vehicle is capable of remote controlled operation via radio frequency and/or fiber optic communication link to a remote operator control unit. The tracks have a plurality of track-edge scallop cut-outs that allow the tracks to easily grab onto and roll across railroad tracks, especially when crossing the railroad tracks at an oblique angle.

Salton, Jonathan R. (Albuquerque, NM); Buttz, James H. (Albuquerque, NM); Garretson, Justin (Albuquerque, NM); Hayward, David R. (Wetmore, CO); Hobart, Clinton G. (Albuquerque, NM); Deuel, Jr., Jamieson K. (Albuquerque, NM)

2012-07-24T23:59:59.000Z

109

CHEMISTRY DEPARTMENT SAFETY RULES FOR TEACHING LABORATORIES  

E-Print Network [OSTI]

CHEMISTRY DEPARTMENT SAFETY RULES FOR TEACHING LABORATORIES Important Phone Numbers: Duncan Hall to the laboratory. There should be minimum skin exposure. Shorts, swim suites, tank tops, etc. leave large amounts injury, and a faculty or staff member is not available, call 4-4921 or 4-5000 in Duncan Hall or 4

Su, Xiao

110

Compendium of Experimental Cetane Numbers  

SciTech Connect (OSTI)

This report is an updated version of the 2004 Compendium of Experimental Cetane Number Data and presents a compilation of measured cetane numbers for pure chemical compounds. It includes all available single compound cetane number data found in the scientific literature up until March 2014 as well as a number of unpublished values, most measured over the past decade at the National Renewable Energy Laboratory. This Compendium contains cetane values for 389 pure compounds, including 189 hydrocarbons and 201 oxygenates. More than 250 individual measurements are new to this version of the Compendium. For many compounds, numerous measurements are included, often collected by different researchers using different methods. Cetane number is a relative ranking of a fuel's autoignition characteristics for use in compression ignition engines; it is based on the amount of time between fuel injection and ignition, also known as ignition delay. The cetane number is typically measured either in a single-cylinder engine or a constant volume combustion chamber. Values in the previous Compendium derived from octane numbers have been removed, and replaced with a brief analysis of the correlation between cetane numbers and octane numbers. The discussion on the accuracy and precision of the most commonly used methods for measuring cetane has been expanded and the data has been annotated extensively to provide additional information that will help the reader judge the relative reliability of individual results.

Yanowitz, J.; Ratcliff, M. A.; McCormick, R. L.; Taylor, J. D.; Murphy, M. J.

2014-08-01T23:59:59.000Z

111

Renewable Energy Finance Tracking Initiative (REFTI) Solar Trend Analysis  

SciTech Connect (OSTI)

This report is a summary of the finance trends for small-scale solar photovoltaic (PV) projects (PV <1 MW), large-scale PV projects (PV greater than or equal to 1 MW), and concentrated solar power projects as reported in the National Renewable Energy Laboratory's Renewable Energy Finance Tracking Initiative (REFTI). The report presents REFTI data during the five quarterly periods from the fourth quarter of 2009 to the first half of 2011. The REFTI project relies exclusively on the voluntary participation of industry stakeholders for its data; therefore, it does not offer a comprehensive view of the technologies it tracks. Despite this limitation, REFTI is the only publicly available resource for renewable energy project financial terms. REFTI analysis offers usable inputs into the project economic evaluations of developers and investors, as well as the policy assessments of public utility commissions and others in the renewable energy industry.

Hubbell, R.; Lowder, T.; Mendelsohn, M.; Cory, K.

2012-09-01T23:59:59.000Z

112

Comparison of Current LCD Tracking Options  

E-Print Network [OSTI]

Comparison of Current LCD Tracking Options Bruce Schumm Santa Cruz Institute for Particle Physics tracking somewhat more pressed for new S design (pattern recognition, ` resolution) S detector in real

California at Santa Cruz, University of

113

Childhood Cancer Tracking Initiative in Massachusetts  

E-Print Network [OSTI]

Childhood Cancer Tracking Initiative in Massachusetts: Developing a New Electronic Tool Presented (CEH) Massachusetts Department of Public Health (MDPH) #12;Childhood Cancer Tracking Initiative "Develop methods for linking environmental databases with childhood cancer incidence data to identify

114

Monitoring Massive Appliances by a Minimal Number of Smart Meters  

E-Print Network [OSTI]

56 Monitoring Massive Appliances by a Minimal Number of Smart Meters YONGCAI WANG, XIAOHONG HAO. This article presents a framework for deploying a minimal number of smart meters to accurately track the ON of required smart meters is studied by an entropy-based approach, which qualifies the impact of meter

Wang, Yongcai

115

DYNAMIC TRACKING PHASED ARRAY DATA LINKS K. D. Brown Dr. Chris Allen  

E-Print Network [OSTI]

DYNAMIC TRACKING PHASED ARRAY DATA LINKS K. D. Brown Dr. Chris Allen NNSA-KCP University of Kansas link developed by National Nuclear Safety Administration's Kansas City Plant (NNSA-KCP) and the University of Kansas (KU) in support of NNSA's Remote Sensing Laboratory (NNSA-RSL) located at the Nevada

Kansas, University of

116

Tracking planes in omnidirectional stereovision Guillaume Caron, Eric Marchand and El Mustapha Mouaddib  

E-Print Network [OSTI]

Tracking planes in omnidirectional stereovision Guillaume Caron, Eric Marchand and El Mustapha laboratory, Amiens, FRANCE; e-mail: {guillaume.caron, mouaddib}@u-picardie.fr Eric Marchand is with Universit´e de Rennes 1, IRISA, INRIA Lagadic, Rennes, France; e-mail: eric.marchand@irisa.fr in the image plane

Boyer, Edmond

117

Review on single track vehicle and motorcycle simulators L. Nehaoua and H. Arioui and S. Mammar  

E-Print Network [OSTI]

Review on single track vehicle and motorcycle simulators L. Nehaoua and H. Arioui and S. Mammar of a motorcycle simulator, designed at INRETS-IBISC laboratory is given. Mechatronics aspects and the various consideration to built such a simulation tool will be discussed. Index Terms-- Motorcycle riding simulators. I

Paris-Sud XI, Université de

118

Lagrangian air-mass tracking with smart balloons during ACE-2 Randy Johnson  

E-Print Network [OSTI]

of the boundary layer h = zi). It is the result of entrainment of air from above into the boundary layerLagrangian air-mass tracking with smart balloons during ACE-2 Randy Johnson National Oceanic and Atmospheric Administration, Air Resources Laboratory, Field Research Division, Idaho Falls, Idaho 83402 Steven

Businger, Steven

119

Track 5: Integration of Safety Into Design  

Broader source: Energy.gov [DOE]

ISM Workshop Presentations Knoxville Convention Center, Knoxville, TN August 2009 Track 5: Integration of Safety Into Design

120

Track 6: Integrating Safety Into Security Operations  

Broader source: Energy.gov [DOE]

ISM Workshop Presentations Knoxville Convention Center, Knoxville, TN August 2009 Track 6: Integrating Safety Into Security Operations

Note: This page contains sample records for the topic "laboratory tracking number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

The RIT Visual Perception Laboratory Members of RIT's Visual Perception Laboratory (VPL), housed in the Chester F. Carlson Center  

E-Print Network [OSTI]

in the Chester F. Carlson Center for Imaging Science, make use of state-of-the-art instrumentation monitor-based eyetrackers manufactured by Applied Science Laboratories and ISCAN are used to track participants' gaze, Apple 22" Cinema Display, and a Pioneer 503CMX 50" plasma display. In addition to the commercially

Zanibbi, Richard

122

Rail ClipsRail Clips Track Renewal  

E-Print Network [OSTI]

Rail ClipsRail Clips and Track Renewal ver. 1 ME 6222: Manufacturing Processes and Systems Prof. J 2009 7 #12;Track Renewal ­ Tie replacement ballast packingTie replacement, ballast packing ME 6222: Manufacturing Processes and Systems Prof. J.S. Colton © GIT 2009 8 #12;Track Renewal ME 6222: Manufacturing

Colton, Jonathan S.

123

Train track expansions of measured foliations February 16, 2003  

E-Print Network [OSTI]

Train track expansions of measured foliations Lee Mosher February 16, 2003 Contents 1 Introduction foliations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.5 Train tracks and train track's classification of mapping classes . . . . . . . . . . . . . . 47 3 Train tracks 49 3.1 Pretracks

Mosher, Lee

124

Train track expansions of measured foliations December 28, 2003  

E-Print Network [OSTI]

Train track expansions of measured foliations Lee Mosher December 28, 2003 Contents 1 Introduction foliations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.5 Train tracks and train track's classification of mapping classes . . . . . . . . . . . . . . 53 3 Train tracks 55 3.1 Pretracks

Mosher, Lee

125

Course Name University Physics I Laboratory Catalog Number MATH 1325  

E-Print Network [OSTI]

Mifflin. ISBN: 0-547-22748-5. · Recommended: Data Reduction and Error Analysis for the Physical Sciences communication and collaboration as well as measurement methods, uncertainty, and basic error analysis. Student) and Data Analysis 1-Sep Measurement Instruments (Mass, Volume, and Density) 8-Sep The Scientific Method

Milovich, David

126

BROOKHAVEN NATIONAL LABORATORY Number:4.0.3 PHYSICS DEPARTMENT  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6 M. Babzien, I. Ben-Zvi, P. Study ofJ U LY 2 9 - AU G U S T

127

Los Alamos National Laboratory attracts record number of students this  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocsCenterCentera A B C D »LANL announces Top

128

Ames Laboratory Site Sustainability Plan | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICEAmes Laboratory Site Sustainability Plan Version Number:

129

National Renewable Energy Laboratory  

E-Print Network [OSTI]

National Renewable Energy Laboratory Innovation for Our Energy Future ponsorship Format Reversed Color:White rtical Format Reversed-A ertical Format Reversed-B National Renewable Energy Laboratory National Renewable Energy Laboratory Innovation for Our Energy Future National Renewable Energy Laboratory

130

Development of an inventory/archive program for the retention, management, and disposition of tank characterization samples at the 222-S laboratory  

SciTech Connect (OSTI)

The Hanford Tank Waste Remediation Systems (TWRS) Characterization Program is responsible for coordinating the sampling and analysis of the 177 large underground storage tanks at the Hanford site. The 222-S laboratory has been the primary laboratory for chemical analysis of this highly-radioactive material and has been accumulating these samples for many years. As part of the Fiscal Year 1998 laboratory work scope, the 222-S laboratory has performed a formal physical inventory of all tank characterization samples which are currently being stored. In addition, an updated inventory/archive program has been designed. This program defines sample storage, retention, consolidation, maintenance, and disposition activities which will ensure that the sample integrity is preserved to the greatest practical extent. In addition, the new program provides for continued availability of waste material in a form which will be useful for future bench-scale studies. Finally, when the samples have exceeded their useful lifetime, the program provides for sample disposition from,the laboratory in a controlled, safe and environmentally compliant manner. The 222-S laboratory maintains custody over samples of tank waste material which have been shipped to the laboratory for chemical analysis. The storage of these samples currently requires an entire hotcell, fully dedicated to sample archive storage, and is rapidly encroaching on additional hotcell space. As additional samples are received, they are beginning to limit the 222-S laboratory hotcell utility for other activities such as sample extrusion and subsampling. The 222-S laboratory tracks the number of sample containers and the mass of each sample through an internal database which has recently been verified and updated via a physical inventory.

Seidel, C.M.

1998-04-29T23:59:59.000Z

131

Infrared tag and track technique  

DOE Patents [OSTI]

A method of covertly tagging an object for later tracking includes providing a material capable of at least one of being applied to the object and being included in the object, which material includes deuterium; and performing at least one of applying the material to the object and including the material in the object in a manner in which in the appearance of the object is not changed, to the naked eye.

Partin, Judy K. (Idaho Falls, ID); Stone, Mark L. (Idaho Falls, ID); Slater, John (Albuquerque, NM); Davidson, James R. (Idaho Falls, ID)

2007-12-04T23:59:59.000Z

132

Materials Design Laboratory | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Design Laboratory, scheduled for completion in FY 2020, is designed to meet U.S. Green Building Council Leadership in Energy and Environmental Design (LEED) Gold...

133

Tracking topic birth and death in LDA.  

SciTech Connect (OSTI)

Most topic modeling algorithms that address the evolution of documents over time use the same number of topics at all times. This obscures the common occurrence in the data where new subjects arise and old ones diminish or disappear entirely. We propose an algorithm to model the birth and death of topics within an LDA-like framework. The user selects an initial number of topics, after which new topics are created and retired without further supervision. Our approach also accommodates many of the acceleration and parallelization schemes developed in recent years for standard LDA. In recent years, topic modeling algorithms such as latent semantic analysis (LSA)[17], latent Dirichlet allocation (LDA)[10] and their descendants have offered a powerful way to explore and interrogate corpora far too large for any human to grasp without assistance. Using such algorithms we are able to search for similar documents, model and track the volume of topics over time, search for correlated topics or model them with a hierarchy. Most of these algorithms are intended for use with static corpora where the number of documents and the size of the vocabulary are known in advance. Moreover, almost all current topic modeling algorithms fix the number of topics as one of the input parameters and keep it fixed across the entire corpus. While this is appropriate for static corpora, it becomes a serious handicap when analyzing time-varying data sets where topics come and go as a matter of course. This is doubly true for online algorithms that may not have the option of revising earlier results in light of new data. To be sure, these algorithms will account for changing data one way or another, but without the ability to adapt to structural changes such as entirely new topics they may do so in counterintuitive ways.

Wilson, Andrew T.; Robinson, David Gerald

2011-09-01T23:59:59.000Z

134

Tracking thermal fronts with temperature-sensitive, chemically reactive tracers  

SciTech Connect (OSTI)

Los Alamos is developing tracer techniques using reactive chemicals to track thermal fronts in fractured geothermal reservoirs. If a nonadsorbing tracer flowing from the injection to production well chemically reacts, its reaction rate will be a strong function of temperature. Thus the extent of chemical reaction will be greatest early in the lifetime of the system, and less as the thermal front progresses from the injection to production well. Early laboratory experiments identified tracers with chemical kinetics suitable for reservoirs in the temperature range of 75 to 100/sup 0/C. Recent kinetics studies have focused on the kinetics of hydrolysis of derivatives of bromobenzene. This class of reactions can be used in reservoirs ranging in temperature from 150 to 275/sup 0/C, which is of greater interest to the geothermal industry. Future studies will include laboratory adsorption experiments to identify possibly unwanted adsorption on granite, development of sensitive analytical techniques, and a field demonstration of the reactive tracer concept.

Robinson, B.A.; Birdsell, S.A.

1987-01-01T23:59:59.000Z

135

Tracking the Sun II: The Installed Cost of Photovoltaics in the U.S. from 1998-2008  

E-Print Network [OSTI]

Investigation of Photovoltaic Cost Trends in California,Investigation of Photovoltaic Cost Trends in California.photovoltaic (PV) systems have grown in number, so too has the desire to track the installed cost

Barbose, Galen L

2010-01-01T23:59:59.000Z

136

Tracking Honey Bees Using LIDAR (Light Detection and Ranging) Technology  

SciTech Connect (OSTI)

The Defense Advanced Research Projects Agency (DARPA) has recognized that biological and chemical toxins are a real and growing threat to troops, civilians, and the ecosystem. The Explosives Components Facility at Sandia National Laboratories (SNL) has been working with the University of Montana, the Southwest Research Institute, and other agencies to evaluate the feasibility of directing honeybees to specific targets, and for environmental sampling of biological and chemical ''agents of harm''. Recent work has focused on finding and locating buried landmines and unexploded ordnance (UXO). Tests have demonstrated that honeybees can be trained to efficiently and accurately locate explosive signatures in the environment. However, it is difficult to visually track the bees and determine precisely where the targets are located. Video equipment is not practical due to its limited resolution and range. In addition, it is often unsafe to install such equipment in a field. A technology is needed to provide investigators with the standoff capability to track bees and accurately map the location of the suspected targets. This report documents Light Detection and Ranging (LIDAR) tests that were performed by SNL. These tests have shown that a LIDAR system can be used to track honeybees. The LIDAR system can provide both the range and coordinates of the target so that the location of buried munitions can be accurately mapped for subsequent removal.

BENDER, SUSAN FAE ANN; RODACY, PHILIP J.; SCHMITT, RANDAL L.; HARGIS JR., PHILIP J.; JOHNSON, MARK S.; KLARKOWSKI, JAMES R.; MAGEE, GLEN I.; BENDER, GARY LEE

2003-01-01T23:59:59.000Z

137

Audit Report, "Fire Protection Deficiencies at Los Alamos National Laboratory"  

SciTech Connect (OSTI)

The Department of Energy's Los Alamos National Laboratory (Los Alamos) maintains some of the Nation's most important national security assets, including nuclear materials. Many of Los Alamos' facilities are located in close proximity to one another, are occupied by large numbers of contract and Federal employees, and support activities ranging from nuclear weapons design to science-related activities. Safeguarding against fires, regardless of origin, is essential to protecting employees, surrounding communities, and national security assets. On June 1, 2006, Los Alamos National Security, LLC (LANS), became the managing and operating contractor for Los Alamos, under contract with the Department's National Nuclear Security Administration (NNSA). In preparation for assuming its management responsibilities at Los Alamos, LANS conducted walk-downs of the Laboratory's facilities to identify pre-existing deficiencies that could give rise to liability, obligation, loss or damage. The walk-downs, which identified 812 pre-existing fire protection deficiencies, were conducted by subject matter professionals, including fire protection experts. While the Los Alamos Site Office has overall responsibility for the effectiveness of the fire protection program, LANS, as the Laboratory's operating contractor, has a major, day-to-day role in minimizing fire-related risks. The issue of fire protection at Los Alamos is more than theoretical. In May 2000, the 'Cerro Grande' fire burned about 43,000 acres, including 7,700 acres of Laboratory property. Due to the risk posed by fire to the Laboratory's facilities, workforce, and surrounding communities, we initiated this audit to determine whether pre-existing fire protection deficiencies had been addressed. Our review disclosed that LANS had not resolved many of the fire protection deficiencies that had been identified in early 2006: (1) Of the 296 pre-existing deficiencies we selected for audit, 174 (59 percent) had not been corrected; and, (2) A substantial portion of the uncorrected deficiencies, 86 (49 percent) were considered by the walk-down teams to be significant enough to warrant compensatory actions until the deficiency was corrected or was tracked to closure through implementation of corrective actions. Further, we found that 32 of the significant deficiencies had been closed by the previous Los Alamos contractor, prior to LANS assuming responsibility for operation of the Laboratory, even though the deficiencies had not been corrected. A fire protection expert provided technical support during the audit. As an example of uncorrected problems, LANS had not resolved, by performing periodic tests, a deficiency identified in 2006 regarding a kitchen hood fire suppression system in a facility located within the Los Alamos Neutron Science Center. Such systems are required to be tested twice a year by the National Fire Protection Association standard, a standard that had been adopted by Department of Energy under DOE Order 420.1B. Yet, in 2006, the LANS walk-down team recognized that this system had not been inspected since May 2004 and noted that deficient suppression systems could result in significantly high levels of property damage and loss. After we brought this issue to management's attention on February 6, 2009, LANS officials stated that the Laboratory would correct this deficiency. As with the problems involving the fire suppression system, we observed that LANS had not always corrected life safety deficiencies involving building exits at one of its primary facilities. This included providing a secondary emergency exit for a building with occupants on multiple floor levels. LANS had removed personnel from the third floor and improved the sprinkler system of the facility, but it had still not provided a secondary exit for personnel on the second floor by the time we completed our review. NNSA has since stated that this fire protection issue will be completely addressed by relocating personnel from the second floor. Perhaps most serious, our testing revealed that a number of deficien

None

2009-06-01T23:59:59.000Z

138

Installing and Commissioning a New Radioactive Waste Tracking System - Lessons Learned  

SciTech Connect (OSTI)

Ontario Power Generation (OPG) recognizes the importance of information management particularly with regards to its low and intermediate level waste program. Various computer based waste tracking systems have been used in OPG since the 1980s. These systems tracked the physical receipt, processing, storage, and inventory of the waste. As OPG moved towards long-term management (e.g. disposal), it was recognized that tracking of more detailed waste characterization information was important. This required either substantial modification of the existing system to include a waste characterization module or replacing it entirely with a new system. After a detailed review of available options, it was decided that the existing waste tracking application would be replaced with the Idaho National Laboratory’s (INL) Integrated Waste Tracking System (IWTS). Installing and commissioning a system which must receive historical operational waste management information (data) and provide new features, required much more attention than was originally considered. The operational readiness of IWTS required extensive vetting and preparation of historic data (which itself had been created from multiple databases in varied formats) to ensure a consistent format for import of some 30,000-container records, and merging and linking these container records to a waste stream based characterization database. This paper will discuss some of the strengths and weaknesses contributing to project success or hindrance so that others can understand and minimize the difficulties inherent in a project of this magnitude.

Robert S. Anderson; Miklos Garamszeghy; Fred Rodrigues; Ed Nicholls

2005-05-01T23:59:59.000Z

139

ISO 14001 IMPLEMENTATION AT A NATIONAL LABORATORY.  

SciTech Connect (OSTI)

After a tumultuous year discovering serious lapses in environment, safety and health management at Brookhaven National Laboratory, the Department of Energy established a new management contract. It called for implementation of an IS0 14001 Environmental Management System and registration of key facilities. Brookhaven Science Associates, the managing contractor for the Laboratory, designed and developed a three-year project to change culture and achieve the goals of the contract. The focus of its efforts were to use IS0 14001 to integrate environmental stewardship into all facets of the Laboratory's mission, and manage its programs in a manner that protected the ecosystem and public health. A large multidisciplinary National Laboratory with over 3,000 employees and 4,000 visiting scientists annually posed significant challenges for IS0 14001 implementation. Activities with environmental impacts varied from regulated industrial waste generation, to soil activation from particle accelerator operations, to radioactive groundwater contamination from research reactors. A project management approach was taken to ensure project completion on schedule and within budget. The major work units for the Environmental Management System Project were as follows: Institutional EMS Program Requirements, Communications, Training, Laboratory-wide Implementation, and Program Assessments. To minimize costs and incorporate lessons learned before full-scale deployment throughout the Laboratory, a pilot process was employed at three facilities. Brookhaven National Laboratory has completed its second year of the project in the summer of 2000, successfully registering nine facilities and self-declaring conformance in all remaining facilities. Project controls, including tracking and reporting progress against a model, have been critical to the successful implementation. Costs summaries are lower than initial estimates, but as expected legal requirements, training, and assessments are key cost centers. Successes to date include the pilot process, heightened employee awareness, registration of the first DOE National Laboratory facility, line ownership of the program, and senior management commitment.

BRIGGS,S.L.K.

2001-06-01T23:59:59.000Z

140

Tiger Team assessment of the Lawrence Berkeley Laboratory, Washington, DC  

SciTech Connect (OSTI)

This report documents the results of the Department of Energy's (DOE's) Tiger Team Assessment of the Lawrence Berkeley Laboratory (LBL) conducted from January 14 through February 15, 1991. The purpose of the assessment was to provide the Secretary of Energy with the status of environment, safety, and health (ES H) programs at LBL. The Tiger Team concluded that curtailment of cessation of any operations at LBL is not warranted. However, the number and breadth of findings and concerns from this assessment reflect a serious condition at this site. In spite of its late start, LBL has recently made progress in increasing ES H awareness at all staff levels and in identifying ES H deficiencies. Corrective action plans are inadequate, however, many compensatory actions are underway. Also, LBL does not have the technical expertise or training programs nor the tracking and followup to effectively direct and control sitewide guidance and oversight by DOE of ES H activities at LBL. As a result of these deficiencies, the Tiger Team has reservations about LBL's ability to implement effective actions in a timely manner and, thereby, achieve excellence in their ES H program. 4 figs., 24 tabs.

Not Available

1991-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "laboratory tracking number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Inspection Report "Personal Property Management at Lawrence Livermore National Laboratory"  

SciTech Connect (OSTI)

The Department of Energy's (DOE's) Lawrence Livermore National Laboratory (Livermore) is a premier research and development institution for science and technology supporting the core mission of national security. According to Livermore, as of November 2008 the Laboratory managed 64,933 items of Government personal property valued at about $1 billion. At the beginning of Fiscal Year 2008, Livermore reported 249 DOE property items valued at about $1.3 million that were missing, unaccounted for, or stolen during Fiscal Year 2007. Livermore centrally tracks property utilizing the Sunflower Assets system (Sunflower), which reflects the cradle to grave history of each property item. Changes in the custodianship and/or location of a property item must be timely reported by the custodian to the respective property center representative for updating in Sunflower. In Fiscal Year 2008, over 2,000 individuals were terminated as a result of workforce reduction at Livermore, of which about 750 received a final notification of termination on the same day that they were required to depart the facility. All of these terminations potentially necessitated updates to the property database, but the involuntary terminations had the potential to pose particular challenges because of the immediacy of individuals departures. The objective of our inspection was to evaluate the adequacy of Livermore's internal controls over Government property. Based upon the results of our preliminary field work, we particularly focused on personal property assigned to terminated individuals and stolen laptop computers. We concluded that Livermore's internal controls over property could be improved, which could help to reduce the number of missing, unaccounted for, or stolen property items. Specifically, we found that: (1) The location and/or custodian of approximately 18 percent of the property items in our sample, which was drawn from the property assigned to individuals terminated on short notice in 2008, was inaccurately reflected in Sunflower. The data in this system is relied upon for tracking purposes, so inaccurate entries could increase the probability of property not being located during inventories and, thus, being reported as 'lost' or 'missing'. We believe that providing formal training to property custodians, which was not being done at the time of our inspection, could help improve this situation. (2) Some property custodians were not adequately protecting their Government laptop computers when taking them offsite, and they were not held accountable for the subsequent theft of the laptops. We made several recommendations to management intended to improve property controls at Livermore.

None

2009-05-01T23:59:59.000Z

142

Tracking system for solar collectors  

DOE Patents [OSTI]

A tracking system is provided for pivotally mounted spaced-apart solar collectors. A pair of cables is connected to spaced-apart portions of each collector, and a driver displaces the cables, thereby causing the collectors to pivot about their mounting, so as to assume the desired orientation. The collectors may be of the cylindrical type as well as the flat-plate type. Rigid spar-like linkages may be substituted for the cables. Releasable attachments of the cables to the collectors is also described, as is a fine tuning mechanism for precisely aligning each individual collector.

Butler, B.

1980-10-01T23:59:59.000Z

143

Tracking system for solar collectors  

DOE Patents [OSTI]

A tracking system is provided for pivotally mounted spaced-apart solar collectors. A pair of cables is connected to spaced-apart portions of each collector, and a driver displaces the cables, thereby causing the collectors to pivot about their mounting, so as to assume the desired orientation. The collectors may be of the cylindrical type as well as the flat-plate type. Rigid spar-like linkages may be substituted for the cables. Releasable attachments of the cables to the collectors is also described, as is a fine tuning mechanism for precisely aligning each individual collector.

Butler, Barry L. (Golden, CO)

1984-01-01T23:59:59.000Z

144

Argonne National Laboratory's Nondestructive  

E-Print Network [OSTI]

Argonne National Laboratory's Nondestructive Evaluation Technologies NDE #12;Over45yearsexperienceinNondestructiveEvaluation... Argonne National Laboratory's world-renowned researchers have a proven the safe operationof advanced nuclear reactors. Argonne's World-Class Nondestructive Evaluation

Kemner, Ken

145

Naval Civil Engineering Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Naval Civil Engineering Laboratory Personnel from the Power Systems Department have participated in numerous distribution equipment research, development, demonstration, testing,...

146

Energy Intensity Baselining and Tracking Guidance  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Learn more at betterbuildings.energy.gov Energy Intensity Baselining and Tracking Guidance i Preface The U.S. Department of Energy's (DOE) Better Buildings, Better Plants Program...

147

Energy Intensity Baselining and Tracking Guidance  

Broader source: Energy.gov (indexed) [DOE]

Learn more at betterbuildings.energy.gov Energy Intensity Baselining and Tracking Guidance i Preface The U.S. Department of Energy's (DOE's) Better Buildings, Better Plants Program...

148

Automated micro-tracking planar solar concentrators  

E-Print Network [OSTI]

tracking mechanics. Solar trackers rotate the solar panel orwith traditional solar trackers but its unique geometrysolar intensity depends on the role the micro micro-tracker

Hallas, Justin Matthew

2011-01-01T23:59:59.000Z

149

DOE/ID-Number  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engineers INL Idaho National Laboratory ISO International Standards Organization ISV Integrated System Validation LCS Local Control Station LOCA Loss of Coolant Accident LP...

150

Prepared for the U.S. Department of Energy under Contract DE-AC02-09CH11466. Princeton Plasma Physics Laboratory  

E-Print Network [OSTI]

Physics Laboratory PPPL- 4535PPPL-4535 A Midsize Tokamak As Fast Track To Burning Plasmas July, 2010 Ernesto Mazzucato #12;Princeton Plasma Physics Laboratory Report Disclaimers Full Legal Disclaimer Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543, USA ABSTRACT This paper describes

Mazzucato, Ernesto

151

Eye-Tracking: Characteristics and Methods Eye-Tracking: Research Areas and Applications  

E-Print Network [OSTI]

1 Part 1 Eye-Tracking: Characteristics and Methods Part 2 Eye-Tracking: Research Areas. & Bowlin, G. (Eds.) [ PREPRINT, FEB 2004. PLEASE DO NOT QUOTE ] #12;2 Eye-Tracking: Characteristics and Methods Introduction Eye movements are arguably the most frequent of all human movements (Bridgeman, 1992

Richardson, Daniel C.

152

April 6, 2010 Fast Track and Back Track between Master's and Doctoral Programs  

E-Print Network [OSTI]

April 6, 2010 Fast Track and Back Track between Master's and Doctoral Programs Procedures for Graduate Programs and Students "Transfer" from the Master's to Doctoral Program (Fast tracking procedures) Upon recommendation by the program and approval by Graduate and Postdoctoral Studies (GPS

Barthelat, Francois

153

TANG et al.: DETECTION AND TRACKING OF OCCLUDED PEOPLE 1 Detection and Tracking of Occluded People  

E-Print Network [OSTI]

with many subjects that partially occlude each other. This limitation is due to the fact that current peopleTANG et al.: DETECTION AND TRACKING OF OCCLUDED PEOPLE 1 Detection and Tracking of Occluded People We consider the problem of detection and tracking of multiple people in crowded street scenes. State

154

Going green earns Laboratory gold  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Going green earns Laboratory gold Going green earns Laboratory gold The Laboratory's newest facility is its first to achieve both the Leadership in Energy and Environmental Design...

155

DATA RECOVERY EFFORTS AT IDAHO NATIONAL LABORATORY, OAK RIDGE NATIONAL LABORATORY, AND SAVANNAH RIVER NATIONAL LABORATORY  

SciTech Connect (OSTI)

Abstract was already submitted. Could not find the previous number. Would be fine with attaching/update of old number. Abstract Below: Modern nuclear facilities will have significant process monitoring capability for their operators. These systems will also be used for domestic safeguards applications, which has led to research over new diversion-detection algorithms. Curiously missing from these efforts are verification and validation data sets. A tri-laboratory project to locate the existing data sets and recover their data has yielded three major potential sources of data. The first is recovery of the process monitoring data of the Idaho Chemical Processing Plant, which now has a distributable package for algorithm developers. The second data set is extensive sampling and process data from Savannah River National Laboratory’s F- and H-canyon sites. Finally, high fidelity data from the start-up tests at the Barnwell Reprocessing Facility is in recovery. This paper details the data sets and compares their relative attributes.

Richard Metcalf; Saleem Salaymeh; Michael Ehinger

2010-07-01T23:59:59.000Z

156

Project number: Faculty name  

E-Print Network [OSTI]

oversee apprentice Elizabeth Murphy Position of person overseeing apprentice Lab laboratory for the first time, the apprentice would work side-byside with the laboratory technician to feed to examine the feeding strategies used to capture these prey. The apprentice would receive training

Siegelmann , Hava T

157

Position and orientation tracking system  

DOE Patents [OSTI]

A position and orientation tracking system presents a laser scanning apparatus having two measurement pods, a control station, and a detector array. The measurement pods can be mounted in the dome of a radioactive waste storage silo. Each measurement pod includes dual orthogonal laser scanner subsystems. The first laser scanner subsystem is oriented to emit a first line laser in the pan direction. The second laser scanner is oriented to emit a second line laser in the tilt direction. Both emitted line lasers scan planes across the radioactive waste surface to encounter the detector array mounted on a target robotic vehicle. The angles of incidence of the planes with the detector array are recorded by the control station. Combining measurements describing each of the four planes provides data for a closed form solution of the algebraic transform describing the position and orientation of the target robotic vehicle. 14 figs.

Burks, B.L.; DePiero, F.W.; Armstrong, G.A.; Jansen, J.F.; Muller, R.C.; Gee, T.F.

1998-05-05T23:59:59.000Z

158

Position and orientation tracking system  

DOE Patents [OSTI]

A position and orientation tracking system presents a laser scanning appaus having two measurement pods, a control station, and a detector array. The measurement pods can be mounted in the dome of a radioactive waste storage silo. Each measurement pod includes dual orthogonal laser scanner subsystems. The first laser scanner subsystem is oriented to emit a first line laser in the pan direction. The second laser scanner is oriented to emit a second line laser in the tilt direction. Both emitted line lasers scan planes across the radioactive waste surface to encounter the detector array mounted on a target robotic vehicle. The angles of incidence of the planes with the detector array are recorded by the control station. Combining measurements describing each of the four planes provides data for a closed form solution of the algebraic transform describing the position and orientation of the target robotic vehicle.

Burks, Barry L. (Oak Ridge, TN); DePiero, Fred W. (Knoxville, TN); Armstrong, Gary A. (Oak Ridge, TN); Jansen, John F. (Knoxville, TN); Muller, Richard C. (Oak Ridge, TN); Gee, Timothy F. (Riceville, TN)

1998-01-01T23:59:59.000Z

159

Rotorcraft Trajectory Tracking by Supervised NLI Control  

E-Print Network [OSTI]

for a four rotor aircraft with fixed pitch blades, or rotorcraft, are considered. One important limitation tracking by a four rotor aircraft is considered. After introducing the flight dynamics equations for the four rotor aircraft, a trajectory tracking control structure based on a two layer non linear inverse

Boyer, Edmond

160

Energy-Efficient Computing for Wildlife Tracking  

E-Print Network [OSTI]

Energy-Efficient Computing for Wildlife Tracking: Design Tradeoffs and Early Experiences with ZebraNet Philo Juang Hidekazu Oki Yong Wang Margaret Martonosi Li-Shiuan Peh Dan Rubenstein Dept. of Electrical Princeton University ZebraNet Project VET TES EN NOV TAM TVM Current Tracking Technology Most common: VHF

Singh, Jaswinder Pal

Note: This page contains sample records for the topic "laboratory tracking number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

User centered story tracking Ilija Subasic  

E-Print Network [OSTI]

and their evolu- tion and comprehending the general the story development. This situation calls for systems thatUser centered story tracking Ilija Subasi´c Katholieke Universiteit Leuven Leuven-Heverlee, Belgium is to identify and highlight these changes to better enable readers to track stories. In this work we restrict

Hammerton, James

162

DISTRIBUTED EVENT LOCALIZATION AND TRACKING ALGORITHM (DELTA)  

E-Print Network [OSTI]

in a distributed event localization and tracking algorithm (DELTA). DELTA is extended with energy-efficient network management, event classification functionality and an energy based source localization. The energy;#12;Abstract Different approaches to do event detection, tracking, localization and classification have been

Braun, Torsten

163

Status Report on REC Verification, Tracking  

E-Print Network [OSTI]

RECs 11. Ability to prevent double-selling of attributes 12. Coordination between electricity tracking · Acceptance and support of REC market by the regulatory community, OR · Policy driver (GHG regulation · Mission: Provide a forum for coordination and cooperation of certificate tracking systems in North America

164

GPU COMPUTING FOR PARTICLE TRACKING  

SciTech Connect (OSTI)

This is a feasibility study of using a modern Graphics Processing Unit (GPU) to parallelize the accelerator particle tracking code. To demonstrate the massive parallelization features provided by GPU computing, a simplified TracyGPU program is developed for dynamic aperture calculation. Performances, issues, and challenges from introducing GPU are also discussed. General purpose Computation on Graphics Processing Units (GPGPU) bring massive parallel computing capabilities to numerical calculation. However, the unique architecture of GPU requires a comprehensive understanding of the hardware and programming model to be able to well optimize existing applications. In the field of accelerator physics, the dynamic aperture calculation of a storage ring, which is often the most time consuming part of the accelerator modeling and simulation, can benefit from GPU due to its embarrassingly parallel feature, which fits well with the GPU programming model. In this paper, we use the Tesla C2050 GPU which consists of 14 multi-processois (MP) with 32 cores on each MP, therefore a total of 448 cores, to host thousands ot threads dynamically. Thread is a logical execution unit of the program on GPU. In the GPU programming model, threads are grouped into a collection of blocks Within each block, multiple threads share the same code, and up to 48 KB of shared memory. Multiple thread blocks form a grid, which is executed as a GPU kernel. A simplified code that is a subset of Tracy++ [2] is developed to demonstrate the possibility of using GPU to speed up the dynamic aperture calculation by having each thread track a particle.

Nishimura, Hiroshi; Song, Kai; Muriki, Krishna; Sun, Changchun; James, Susan; Qin, Yong

2011-03-25T23:59:59.000Z

165

Energy Systems Integration Laboratory (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Energy Systems Integration Laboratory at the Energy Systems Integration Facility. The Energy Systems Integration Laboratory at NREL's Energy Systems Integration Facility (ESIF) provides a flexible, renewable-ready platform for research, development, and testing of state-of-the-art hydrogen-based and other energy storage systems. The main focus of the laboratory is assessment of the technical readiness, performance characterization, and research to help industry move these systems towards optimal renewable-based production and efficient utilization of hydrogen. Research conducted in the Energy Systems Integration Laboratory will advance engineering knowledge and market deployment of hydrogen technologies to support a growing need for versatile distributed electricity generation, applications in microgrids, energy storage for renewables integration, and home and station-based hydrogen vehicle fueling. Research activities are targeted to improve the technical readiness of the following: (1) Low and high temperature electrolyzers, reformers and fuel cells; (2) Mechanical and electrochemical compression systems; (3) Hydrogen storage; (4) Hydrogen vehicle refueling; and (5) Internal combustion or turbine technology for electricity production. Examples of experiments include: (1) Close- and direct-coupling of renewable energy sources (PV and wind) to electrolyzers; (2) Performance and efficiency validation of electrolyzers, fuel cells, and compressors; (3) Reliability and durability tracking and prediction; (4) Equipment modeling and validation testing; (5) Internal combustion or turbine technology for electricity production; and (6) Safety and code compliance.

Not Available

2011-10-01T23:59:59.000Z

166

NUMBER: BUSF 3.30 SECTION: Business and Finance  

E-Print Network [OSTI]

by the unit for each program offering. B. Department Operating Accounts ­ Units of the University use `E' fund number of `E' fund accounts exist to track the quasi-endowment funding provided by University endowment. Transfer of these funds to other activities is internally restricted by the University. F. Facility

Almor, Amit

167

Detection and track of a stochastic target using multiple measurements  

SciTech Connect (OSTI)

The authors are interested in search and tracking problems. In a search, the target might be located among a number of hiding places. Multiple measurements from various locations might be used to determine the likelihood that a particular hiding place is occupied. An obvious example would be a search for a weak radiation source in a building. Search teams might make many measurements with radiation detectors and analyze this data to determine likely areas for further searching. In this paper the authors present a statistical interpretation of the implications of measurements made on a stochastic system, one which makes random state transitions with known average rates. Knowledge of the system is represented as a statistical ensemble of instances which accord with measurements and prior information. The evolution of ratios of populations in this ensemble due to measurements and stochastic transitions may be calculated efficiently. Applied to target detection and tracking, this approach allows a rigorous definition of probability of detection and probability of false alarm and reveals a computationally useful functional relationship between the two. An example of a linear array of simple counters is considered in detail. For it, accurate analytic approximations are developed for detection and tracking statistics as functions of system parameters. A single measure of effectiveness for individual sensors is found which is a major determinant of system performance and which would be useful for initial sensor design.

Cunningham, C.T.

1995-11-01T23:59:59.000Z

168

ATLAS Tracking Event Data Model -- 12.0.0  

E-Print Network [OSTI]

viewcvs-all.cgi/offline/? cvsroot=atlas : Tracking/TrkEvent/all.cgi/ offline/? cvsroot=atlas : Tracking/TrkEvent/all.cgi/offline/? cvsroot=atlas : Tracking/TrkDetDescr/

Akesson, F.; ATLAS

2009-01-01T23:59:59.000Z

169

Idaho National Laboratory’s Greenhouse Gas FY08 Baseline  

SciTech Connect (OSTI)

A greenhouse gas (GHG) inventory is a systematic attempt to account for the production and release of certain gasses generated by an institution from various emission sources. The gasses of interest are those which have become identified by climate science as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during fiscal year (FY) 2008 by Idaho National Laboratory (INL), a Department of Energy (DOE)-sponsored entity, located in southeastern Idaho. Concern about the environmental impact of GHGs has grown in recent years. This, together with a desire to decrease harmful environmental impacts, would be enough to encourage the calculation of a baseline estimate of total GHGs generated at INL. Additionally, INL has a desire to see how its emissions compare with similar institutions, including other DOE national laboratories. Executive Order 13514 requires that federal agencies and institutions document reductions in GHG emissions in the future, and such documentation will require knowledge of a baseline against which reductions can be measured. INL's FY08 GHG inventory was calculated according to methodologies identified in federal GHG guidance documents using operational control boundaries. It measures emissions generated in three Scopes: (1) INL emissions produced directly by stationary or mobile combustion and by fugitive emissions, (2) the share of emissions generated by entities from which INL purchased electrical power, and (3) indirect or shared emissions generated by outsourced activities that benefit INL (occur outside INL's organizational boundaries but are a consequence of INL's activities). This inventory found that INL generated a total of 113,049 MT of CO2-equivalent emissions during FY08. The following conclusions were made from looking at the results of the individual contributors to INL's baseline GHG inventory: (1) Electricity (including the associated transmission and distribution losses) is the largest contributor to INL's GHG inventory, with over 50% of the CO2e emissions; (2) Other sources with high emissions were stationary combustion (facility fuels), waste disposal (including fugitive emissions from the onsite landfill and contracted disposal), mobile combustion (fleet fuels), employee commuting, and business air travel; and (3) Sources with low emissions were wastewater treatment (onsite and contracted), fugitive emissions from refrigerants, and business ground travel (in personal and rental vehicles). This report details the methods behind quantifying INL's GHG inventory and discusses lessons learned on better practices by which information important to tracking GHGs can be tracked and recorded. It is important to note that because this report differentiates between those portions of INL that are managed and operated by the Battelle Energy Alliance (BEA) and those managed by other contractors, it includes only that large proportion of Laboratory activities overseen by BEA. It is assumed that other contractors will provide similar reporting for those activities they manage, where appropriate.

Jennifer D. Morton

2011-06-01T23:59:59.000Z

170

Renewable Energy Finance Tracking Initiative (REFTI): Snapshot of Recent Geothermal Financing Terms, Fourth Quarter 2009 - Second Half 2011  

SciTech Connect (OSTI)

This report is a review of geothermal project financial terms as reported in the National Renewable Energy Laboratory's Renewable Energy Finance Tracking Initiative (REFTI). The data were collected over seven analysis periods from the fourth quarter (Q4) of 2009 to the second half (2H) of 2011.

Lowder, T.; Hubbell, R.; Mendelsohn, M.; Cory, K.

2012-09-01T23:59:59.000Z

171

IMMERSIVE SOUND RENDERING USING LASER-BASED TRACKING Panayiotis G. Georgiou, Athanasios Mouchtaris, Stergios I. Roumeliotis, Chris Kyriakakis  

E-Print Network [OSTI]

IMMERSIVE SOUND RENDERING USING LASER-BASED TRACKING Panayiotis G. Georgiou, Athanasios Mouchtaris behind the spatial sound renderer built at the University of Southern California's Immersive Audio Laboratory. In creating this sound rendering system, we were faced with three main challenges. First

Roumeliotis, Stergios I.

172

Hyper Space Complex Number  

E-Print Network [OSTI]

A new kind of numbers called Hyper Space Complex Numbers and its algebras are defined and proved. It is with good properties as the classic Complex Numbers, such as expressed in coordinates, triangular and exponent forms and following the associative and commutative laws of addition and multiplication. So the classic Complex Number is developed from in complex plane with two dimensions to in complex space with N dimensions and the number system is enlarged also.

Shanguang Tan

2007-04-23T23:59:59.000Z

173

Los Alamos National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

23, 2013-Nearly 400 Los Alamos National Laboratory employees on 47 teams received Pollution Prevention awards for protecting the environment and saving taxpayers more than 8...

174

Los Alamos National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

involving a rail car, a clandestine laboratory, transportation and industrial piping scenarios, a simulated radiological release, and a confined space, said Chris Rittner...

175

Laborativ matematik; Laboratory mathematics.  

E-Print Network [OSTI]

?? Research indicates that a more hands-on education in mathematics could improve how students relate to mathematics. Laboratory mathematics is a way of making mathematics… (more)

Kĺresjö, Ida

2010-01-01T23:59:59.000Z

176

Los Alamos National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

environmental service to northern New Mexico," said Jeff Mousseau, associate director for environmental programs at the Laboratory. "Having local companies of this high caliber...

177

Los Alamos National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

commitment to the environment and the public," said Jeff Mousseau, associate director for Environmental Programs at the Laboratory. This is the fifth master task order agreement...

178

Exercise Design Laboratory  

Broader source: Energy.gov [DOE]

The Emergency Operations Training Academy (EOTA), NA 40.2, Readiness and Training, Albuquerque, NM is pleased to announce the EXR231, Exercise Design Laboratory course

179

National Laboratory Photovoltaics Research  

Broader source: Energy.gov [DOE]

DOE supports photovoltaic (PV) research and development and facilities at its national laboratories to accelerate progress toward achieving the SunShot Initiative's technological and economic...

180

High resolution 3D insider detection and tracking.  

SciTech Connect (OSTI)

Vulnerability analysis studies show that one of the worst threats against a facility is that of an active insider during an emergency evacuation. When a criticality or other emergency alarm occurs, employees immediately proceed along evacuation routes to designated areas. Procedures are then implemented to account for all material, classified parts, etc. The 3-Dimensional Video Motion Detection (3DVMD) technology could be used to detect and track possible insider activities during alarm situations, as just described, as well as during normal operating conditions. The 3DVMD technology uses multiple cameras to create 3-dimensional detection volumes or zones. Movement throughout detection zones is tracked and high-level information, such as the number of people and their direction of motion, is extracted. In the described alarm scenario, deviances of evacuation procedures taken by an individual could be immediately detected and relayed to a central alarm station. The insider could be tracked and any protected items removed from the area could be flagged. The 3DVMD technology could also be used to monitor such items as machines that are used to build classified parts. During an alarm, detections could be made if items were removed from the machine. Overall, the use of 3DVMD technology during emergency evacuations would help to prevent the loss of classified items and would speed recovery from emergency situations. Further security could also be added by analyzing tracked behavior (motion) as it corresponds to predicted behavior, e.g., behavior corresponding with the execution of required procedures. This information would be valuable for detecting a possible insider not only during emergency situations, but also during times of normal operation.

Nelson, Cynthia Lee

2003-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "laboratory tracking number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Enhancements to System for Tracking Radioactive Waste Shipments...  

Energy Savers [EERE]

Multiple Users January 30, 2013 - 12:00pm Addthis Transportation Tracking and Communication System users can now track shipments of radioactive materials and access...

182

Extracting and Using Data From Tracking Systems | Department...  

Energy Savers [EERE]

Extracting and Using Data From Tracking Systems Extracting and Using Data From Tracking Systems Better Buildings Neighborhood Program Data and Evaluation Peer Exchange Call:...

183

ORO Verification of Employment Tracking System(VETS) PIA, Oak...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Verification of Employment Tracking System(VETS) PIA, Oak ridge Operations Office ORO Verification of Employment Tracking System(VETS) PIA, Oak ridge Operations Office ORO...

184

ORO Office Safeguards and Security Clearance Tracking System...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Office Safeguards and Security Clearance Tracking System and Visitor Control System PIA, Oak Ridge Operations Office ORO Office Safeguards and Security Clearance Tracking System...

185

DOE/ID-Number  

Office of Scientific and Technical Information (OSTI)

INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance INLEXT-09-15321 National SCADA Test Bed Substation Automation Evaluation Report October...

186

Laboratory Director PRINCETON PLASMA PHYSICS LABORATORY  

E-Print Network [OSTI]

.C. Zarnstorff Deputy Director for Operations A.B. Cohen Laboratory Management Council Research Council Associate Diagnostics D.W. Johnson Electrical Systems C. Neumeyer Lab Astrophysics M. Yamada, H. Ji Projects: MRX, MRI Science Education A. Post-Zwicker Quality Assurance J.A. Malsbury Tech. Transfer Patents & Publications L

Princeton Plasma Physics Laboratory

187

Sandia National Laboratories: Federal Laboratory Consortium Regional...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

cell cars. (Photo by Juan Contreras, California Fuel Cell Partnership) As hydrogen fuel cell vehicles continue to roll out in increasing numbers, the infrastructure for fueling...

188

Class 3 Tracking and Monitoring System Report  

SciTech Connect (OSTI)

The objective of Class 3 tracking system are to assist DOE in tracking and performance and progress of these projects and to capture the technical and financial information collected during the projects' monitoring phase. The captured information was used by DOE project managers and BDM-Oklahoma staff for project monitoring and evaluation, and technology transfer activities. The proposed tracking system used the Class Evaluation Executive Report (CLEVER), a relation database for storing and disseminating class project data; GeoGraphix, a geological and technical analysis and mapping software system; the Tertiary Oil Recovery Information System (TORIS) database; and MS-Project, a project management software system.

Safely, Eugene; Salamy, S. Phillip

1999-11-29T23:59:59.000Z

189

TRACKING CODE DEVELOPMENT FOR BEAM DYNAMICS OPTIMIZATION  

SciTech Connect (OSTI)

Dynamic aperture (DA) optimization with direct particle tracking is a straight forward approach when the computing power is permitted. It can have various realistic errors included and is more close than theoretical estimations. In this approach, a fast and parallel tracking code could be very helpful. In this presentation, we describe an implementation of storage ring particle tracking code TESLA for beam dynamics optimization. It supports MPI based parallel computing and is robust as DA calculation engine. This code has been used in the NSLS-II dynamics optimizations and obtained promising performance.

Yang, L.

2011-03-28T23:59:59.000Z

190

Latent ion tracks in amorphous silicon  

SciTech Connect (OSTI)

We present experimental evidence for the formation of ion tracks in amorphous Si induced by swift heavy ion irradiation. An underlying core-shell structure consistent with remnants of a high density liquid structure was revealed by small-angle x-ray scattering and molecular dynamics simulations. Ion track dimensions dier for as-implanted and relaxed Si as attributed to dierent microstructures and melting temperatures. The identication and characterisation of ion tracks in amorphous Si yields new insight into mechanisms of damage formation due to swift heavy ion irradiation in amorphous semiconductors.

Bierschenk, Thomas [Australian National University, Canberra, Australia] [Australian National University, Canberra, Australia; Giulian, Raquel [Australian National University, Canberra, Australia] [Australian National University, Canberra, Australia; Afra, Boshra [Australian National University, Canberra, Australia] [Australian National University, Canberra, Australia; Rodriguez, Matias D [Australian National University, Canberra, Australia] [Australian National University, Canberra, Australia; Schauries, D [Australian National University, Canberra, Australia] [Australian National University, Canberra, Australia; Mudie, Stephen [Australian Synchrotron] [Australian Synchrotron; Pakarinen, Olli H [ORNL] [ORNL; Djurabekova, Flyura [University of Helsinki] [University of Helsinki; Nordlund, Kai [University of Helsinki] [University of Helsinki; Osmani, Orkhan [University of Duisburg-Essen, Germany] [University of Duisburg-Essen, Germany; Medvedev, Nikita [University of Kaiserslautern, Germany] [University of Kaiserslautern, Germany; Rethfield, Baerbel [University of Kaiserslautern, Germany] [University of Kaiserslautern, Germany; Ridgway, Mark C [Australian National University, Canberra, Australia] [Australian National University, Canberra, Australia; Kluth, Patrick [Australian National University, Canberra, Australia] [Australian National University, Canberra, Australia

2013-01-01T23:59:59.000Z

191

Seasonal variation of upper-level mobile trough development upstream of the Pacific storm track  

E-Print Network [OSTI]

is to provide at least a partial explanation of midwinter suppression of the Pacific storm track. From 19 years of analysis, a strong stretching deformation zone (DZ) is defined over East Asia. We examine the number, average intensity and intensity change...

Myoung, Boksoon

2002-01-01T23:59:59.000Z

192

Five Years of Tracking Heavy Ion Collisions at RHIC  

E-Print Network [OSTI]

Five years have passed since the first collisions of Au nuclei at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) on Long Island. With nucleon-nucleon center-of-mass energies of up to sqrt(s_NN)=200GeV RHIC provides the highest energy heavy ion collisions at any existing collider. To study the dynamics of nuclear matter at extreme temperatures and pressures hundreds of produced particles need to be tracked and identified, which provides a sizable challenge to the four experiments. This article tries to summarize these first years of RHIC operation from the detector point of view and give a glimpse at the future of the accelerator and its experiments.

A. Franz

2006-03-13T23:59:59.000Z

193

Russell Furr Laboratory Safety &  

E-Print Network [OSTI]

Russell Furr Director 8/20/13 Laboratory Safety & Compliance #12;#12;Research Safety Full Time Students Part- Time #12; Organizational Changes Office of Research Safety Research Safety Advisors Safety Culture Survey Fire Marshal Inspections Laboratory Plans Review New Research Safety Initiatives

194

LABORATORY V ELECTRIC CIRCUITS  

E-Print Network [OSTI]

Lab V -1 LABORATORY V ELECTRIC CIRCUITS Electrical devices are the cornerstones of our modern world understanding of them. In the previous laboratory, you studied the behavior of electric fields and their effect on the motion of electrons using a cathode ray tube (CRT). This beam of electrons is one example of an electric

Minnesota, University of

195

LABORATORY IV ELECTRIC CIRCUITS  

E-Print Network [OSTI]

LABORATORY IV ELECTRIC CIRCUITS Lab IV - 1 In the first laboratory, you studied the behavior of electric fields and their effect on the motion of electrons using a cathode ray tube (CRT). This beam of electrons is one example of an electric current ­ charges in motion. The current in the CRT was simple

Minnesota, University of

196

Federal Laboratory Technology Transfer  

E-Print Network [OSTI]

Federal Laboratory Technology Transfer Fiscal Year 2007 Prepared by: National Institute to present to the President and the Congress this Federal Laboratory Technology Transfer Report summarizing the achievements of Federal technology transfer and partnering programs of the Federal research and development

Perkins, Richard A.

197

LABORATORY I: GEOMETRIC OPTICS  

E-Print Network [OSTI]

Lab I - 1 LABORATORY I: GEOMETRIC OPTICS In this lab, you will solve several problems related to the formation of optical images. Most of us have a great deal of experience with the formation of optical images this laboratory, you should be able to: · Describe features of real optical systems in terms of ray diagrams

Minnesota, University of

198

Heavy Ion Fusion Science Virtual National Laboratory  

E-Print Network [OSTI]

by the Lawrence Berkeley and Lawrence Livermore National Laboratories under Contract Numbers DE-AC02-05CH1123 Jan 29, 2011- We presented to NAS a requested R&D plan based on presumed success of NIF: three R. Its not premature to consider a "Plan B" that allows more time to assess NIF results and to make

199

Brookhaven National Laboratory National Synchrotron Light Source  

E-Print Network [OSTI]

Brookhaven National Laboratory National Synchrotron Light Source Number: Revision: LS-ESH-0027 06 copy of this file is the one on-line in the NSLS ESH website. Before using a printed copy, verify that it is the most current version by checking the document issue date on the NSLS ESH website. BROOKHAVEN NATIONAL

Ohta, Shigemi

200

Brookhaven National Laboratory National Synchrotron Light Source  

E-Print Network [OSTI]

Brookhaven National Laboratory National Synchrotron Light Source Number: Revision: LS-ESH-0026 4 (ANSI) Hazard Class 3B and 4 laser systems must be documented, reviewed, and approved through use) CrystaLaser Compact Solid State Laser (Class 3B) Location: All four lasers are located in the U2A

Ohta, Shigemi

Note: This page contains sample records for the topic "laboratory tracking number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Contract Number: DE-AC05-76RL01830 Modification M957  

E-Print Network [OSTI]

Contract Number: DE-AC05-76RL01830 Modification M957 APPENDIX E STANDARDS OF PERFORMANCE-BASED FEE OF THE PACIFIC NORTHWEST NATIONAL LABORATORY #12;Contract Number: DE-AC05-76RL01830 Modification M957 APPENDIX E FOR MANAGEMENT AND OPERATIONS OF THE PACIFIC NORTHWEST NATIONAL LABORATORY #12;Contract Number: DE-AC05-76RL01830

202

Elements of number theory  

E-Print Network [OSTI]

The dissertation argues for the necessity of a morphosemantic theory of number, that is, a theory of number serviceable both to semantics and morphology. The basis for this position, and the empirical core of the dissertation, ...

Harbour, Daniel, 1975-

2003-01-01T23:59:59.000Z

203

Comparison of Current LCD Tracking Options  

E-Print Network [OSTI]

Comparison of Current LCD Tracking Options Bruce Schumm Santa Cruz Institute for Particle Physics for new S design (pattern recognition, resolution) S detector in real trouble at low angle w/out beam

California at Santa Cruz, University of

204

HCI gesture tracking using wearable passive tags  

E-Print Network [OSTI]

In this thesis. a wearable system is developed to track hand gestures with passive RFID sensor tags. This system was composed of an ultra-high frequency reader and small, passive, finger-worn tags powered by scavenged RFID ...

Bainbridge, Rachel M

2010-01-01T23:59:59.000Z

205

Spin Rotation of Formalism for Spin Tracking  

SciTech Connect (OSTI)

The problem of which coefficients are adequate to correctly represent the spin rotation in vector spin tracking for polarized proton and deuteron beams in synchrotrons is here re-examined in the light of recent discussions. The main aim of this note is to show where some previous erroneous results originated and how to code spin rotation in a tracking code. Some analysis of a recent experiment is presented that confirm the correctness of the assumptions.

Luccio,A.

2008-02-01T23:59:59.000Z

206

Laboratory Equipment & Supplies | Sample Preparation Laboratories  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocs space controlAppraisalLaboratory

207

Laboratory Graduate Research Appointment | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocs space controlAppraisalLaboratoryGet the

208

ENVIRONMENTAL STUDIES TRACK (B.S.) 2013-2014 CATALOG  

E-Print Network [OSTI]

June 2012 ENVIRONMENTAL STUDIES TRACK (B.S.) 2013-2014 CATALOG There are three tracks in Interdisciplinary Studies (IS). This handout is for the Environmental Studies track. Office Classroom I ­ Suite 302 for students seeking a combination of studies. The Environmental Studies track is designed for students who

Wu, Shin-Tson

209

On-Line Selection of Discriminative Tracking Features  

E-Print Network [OSTI]

in lighting conditions. Tracking success/failure is highly correlated with our ability to distinguish object

Collins, Robert T.

210

Location-Tracking Applications ecent technological advances in wireless loca-  

E-Print Network [OSTI]

areas they have visited. #12;Location-Tracking Applications broker as part of their service contract

Gruteser, Marco

211

Original Article Clinician-Educator Tracks for Residents  

E-Print Network [OSTI]

, and graduate outcomes. Results: Common elements in the tracks are faculty mentor- ship, formal didactics

Yoo, S. J. Ben

212

Sonication standard laboratory module  

DOE Patents [OSTI]

A standard laboratory module for automatically producing a solution of cominants from a soil sample. A sonication tip agitates a solution containing the soil sample in a beaker while a stepper motor rotates the sample. An aspirator tube, connected to a vacuum, draws the upper layer of solution from the beaker through a filter and into another beaker. This beaker can thereafter be removed for analysis of the solution. The standard laboratory module encloses an embedded controller providing process control, status feedback information and maintenance procedures for the equipment and operations within the standard laboratory module.

Beugelsdijk, Tony (Los Alamos, NM); Hollen, Robert M. (Los Alamos, NM); Erkkila, Tracy H. (Los Alamos, NM); Bronisz, Lawrence E. (Los Alamos, NM); Roybal, Jeffrey E. (Santa Fe, NM); Clark, Michael Leon (Menan, ID)

1999-01-01T23:59:59.000Z

213

20 | Issue No. 5wpahospitalnews.com Laboratory Science Workforce  

E-Print Network [OSTI]

treatment is expected to nearly triple by 2020, according to the Substance Abuse and Mental Health Services their highest health- care consuming years, an increasing number of laboratory tests will exacerbate the need

Cui, Yan

214

Idaho National Laboratory  

ScienceCinema (OSTI)

INL is the leading laboratory for nuclear R&D. Nuclear engineer Dr. Kathy McCarthy talks aobut the work there and the long-term benefits it will provide.

McCarthy, Kathy

2013-05-28T23:59:59.000Z

215

Alamos National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Economic development in Northern New Mexico focus of new podcast from Los Alamos National Laboratory November 25, 2013 Podcast part of Lab's new multi-channel effort to better...

216

Statistical Laboratory established 1933  

E-Print Network [OSTI]

Statistical Laboratory established 1933 Biennial Report July 1, 1997 to June 30, 1999 #12;Index 50 years of statistics ....................... 1 Self study & external review .......... 2 Social sciences statistics ................ 3 On the lighter side........................... 6 Publications 1997

217

Radiochemical Radiochemical Processing Laboratory  

E-Print Network [OSTI]

capabilities, supports the design and testing of advanced nuclear fuel recycling technologies. Expert Chemical is a critical facility at the Pacific Northwest National Laboratory, supporting environmental, nuclear, national and development. Capabilities include comprehensive nuclear counting instrumentation radionuclide separations

218

Argonne National Laboratory  

Broader source: Energy.gov [DOE]

HISTORYThe Argonne National Laboratory (ANL) site is approximately 27 miles southwest of downtown Chicago in DuPage County, Illinois.  The 1,500 acre ANL site is completely surrounded by the 2,240...

219

Brookhaven National Laboratory  

Broader source: Energy.gov [DOE]

Site OverviewThe Brookhaven National Laboratory (BNL) was established in 1947 by the Atomic Energy Commission (AEC) (predecessor to U.S. Department of Energy [DOE]). Formerly Camp Upton, a U.S....

220

Sandia National Laboratories: Nuclear Energy Systems Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-Salt StorageNo More Green WasteTheSystems Laboratory

Note: This page contains sample records for the topic "laboratory tracking number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Ames Laboratory Metrics | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OFFuelsPropaneSecurityhere!American-MadeAmes Laboratory

222

Strategic Laboratory Leadership Program | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBiSiteNeutron Scattering4American'!StoresStrategic Laboratory

223

Sandia National Laboratories: Los Alamos National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS ExhibitIowaLos Alamos National Laboratory Consortium for

224

CDC's National Environmental Public Health Tracking Network VERMONT Keeping Track, Promoting Health  

E-Print Network [OSTI]

exposures such as air pollution and drinking water contaminants. The health department began receiving monitoring data show that this county also has the most days per year of air pollution from fine particulateCS225774_O CDC's National Environmental Public Health Tracking Network VERMONT Keeping Track

225

Tracking Graphics State forTracking Graphics State for Network RenderingNetwork Rendering  

E-Print Network [OSTI]

Tracking Graphics State forTracking Graphics State for Network RenderingNetwork Rendering Ian Buck 2000 Distributed GraphicsDistributed Graphics Application Application Application Renderer Renderer Renderer Network How to manage distributed graphics applications, renderers, and displays? #12;HWWS 2000

Pratt, Vaughan

226

High Temperature Materials Laboratory third annual report  

SciTech Connect (OSTI)

The High Temperature Materials Laboratory has completed its third year of operation as a designated DOE User Facility at the Oak Ridge National Laboratory. Growth of the user program is evidenced by the number of outside institutions who have executed user agreements since the facility began operation in 1987. A total of 88 nonproprietary agreements (40 university and 48 industry) and 20 proprietary agreements (1 university, 19 industry) are now in effect. Sixty-eight nonproprietary research proposals (39 from university, 28 from industry, and 1 other government facility) and 8 proprietary proposals were considered during this reporting period. Research projects active in FY 1990 are summarized.

Tennery, V.J.; Foust, F.M.

1990-12-01T23:59:59.000Z

227

Los Alamos National Laboratory Institutes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

research interests are important to the Laboratory. Sponsoring, partnering with, and funding university professors and students in areas that are important to meet Laboratory...

228

Edward Daniels | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Edward Daniels Edward Daniels Deputy Associate Laboratory Director - Energy and Global Security Mr. Daniels is currently a deputy associate laboratory director in the Energy...

229

Los Alamos National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

response capabilities, integrates a number of sustainability practices. These include sustainable site selection and development, reduced water use, optimized energy...

230

Definitions Numbered Space  

E-Print Network [OSTI]

Definitions · Numbered Space ­ a single space marked with a number and reserved for a single permit 24/7 · Unnumbered Space ­ a space which can be used by any customer allowed to park in that lot. High Low Average Question 4: If I buy a staff permit for an UNNUMBERED* space in a non-gated surface

Behmer, Spencer T.

231

Training | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatusButler Tina ButlerToday inm"TopoTrackingEmergency

232

Oversight Reports - Argonne National Laboratory | Department...  

Broader source: Energy.gov (indexed) [DOE]

Argonne National Laboratory Oversight Reports - Argonne National Laboratory August 24, 2012 Independent Activity Report, Argonne National Laboratory - July 2012 Operational...

233

Materials Characterization Laboratory (Fact Sheet), NREL (National...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Characterization Laboratory may include: * PEMFC industry * Certification laboratories * Universities * Other National laboratories Contact Us If you are interested in...

234

Automatically processed alpha-track radon monitor  

DOE Patents [OSTI]

An automatically processed alpha-track radon monitor is provided which includes a housing having an aperture allowing radon entry, and a filter that excludes the entry of radon daughters into the housing. A flexible track registration material is located within the housing that records alpha-particle emissions from the decay of radon and radon daughters inside the housing. The flexible track registration material is capable of being spliced such that the registration material from a plurality of monitors can be spliced into a single strip to facilitate automatic processing of the registration material from the plurality of monitors. A process for the automatic counting of radon registered by a radon monitor is also provided.

Langner, G.H. Jr.

1993-01-12T23:59:59.000Z

235

Tracking Provenance in ORNL's Flexible Research Platforms  

SciTech Connect (OSTI)

Provenance is dened as information about the origin of objects, a concept that applies to both physical and digital objects and often overlaps both. The use of provenance in systems designed for research is an important but forgotten feature. Provenance allows for proper and exact tracking of information, its use, its lineage, its derivations and other metadata that are important for correctly adhering to the scien- tic method. In our project's prescribed use of provenance, researchers can determine detailed information about the use of sensor data in their experiments on ORNL's Flexible Research Platforms (FRPs). Our project's provenance system, Provenance Data Management System (ProvDMS), tracks information starting with the creation of information by an FRP sensor. The system determines station information, sensor information, and sensor channel information. The system allows researchers to derive generations of experiments from the sensor data and tracks their hierarchical flow. Key points can be seen in the history of the information as part of the information's workflow. The concept of provenance and its usage in science is relatively new and while used in other cases around the world, our project's provenance diers in a key area. To keep track of provenance, most systems must be designed or redesigned around the new provenance system. Our system is designed as a cohesive but sepa- rate entity and allows for researchers to continue using their own methods of analysis without being constrained in their ways in order to track the provenance. We have designed ProvDMS using a lightweight provenance library, Core Provenance Library (CPL) v.6 In addition to keeping track of sensor data experiments and its provenance, ProvDMS also provides a web-enabled visualization of the inheritance.

Hensley, Zachary P [ORNL; Sanyal, Jibonananda [ORNL; New, Joshua Ryan [ORNL

2013-08-01T23:59:59.000Z

236

Advanced Hydride Laboratory  

SciTech Connect (OSTI)

Metal hydrides have been used at the Savannah River Tritium Facilities since 1984. However, the most extensive application of metal hydride technology at the Savannah River Site is being planned for the Replacement Tritium Facility, a $140 million facility schedules for completion in 1990 and startup in 1991. In the new facility, metal hydride technology will be used to store, separate, isotopically purify, pump, and compress hydrogen isotopes. In support of the Replacement Tritium Facility, a $3.2 million, cold,'' process demonstration facility, the Advanced Hydride Laboratory began operation in November of 1987. The purpose of the Advanced Hydride Laboratory is to demonstrate the Replacement Tritium Facility's metal hydride technology by integrating the various unit operations into an overall process. This paper will describe the Advanced Hydride Laboratory, its role and its impact on the application of metal hydride technology to tritium handling.

Motyka, T.

1989-01-01T23:59:59.000Z

237

Advanced Hydride Laboratory  

SciTech Connect (OSTI)

Metal hydrides have been used at the Savannah River Tritium Facilities since 1984. However, the most extensive application of metal hydride technology at the Savannah River Site is being planned for the Replacement Tritium Facility, a $140 million facility schedules for completion in 1990 and startup in 1991. In the new facility, metal hydride technology will be used to store, separate, isotopically purify, pump, and compress hydrogen isotopes. In support of the Replacement Tritium Facility, a $3.2 million, ``cold,`` process demonstration facility, the Advanced Hydride Laboratory began operation in November of 1987. The purpose of the Advanced Hydride Laboratory is to demonstrate the Replacement Tritium Facility`s metal hydride technology by integrating the various unit operations into an overall process. This paper will describe the Advanced Hydride Laboratory, its role and its impact on the application of metal hydride technology to tritium handling.

Motyka, T.

1989-12-31T23:59:59.000Z

238

Chemical tracking at the Rocky Flats Plant  

SciTech Connect (OSTI)

EG&G Rocky Flats, Inc., has developed a chemical tracking system to support compliance with the Emergency Planning and community Right-to-Know Act (EPCRA) at the Rocky Flats Plant. This system, referred to as the EPCRA Chemical Control system (ECCS), uses bar code technology to uniquely identify and track the receipt, distribution, and use of chemicals. Chemical inventories are conducted using hand-held electronic scanners to update a site wide chemical database on a VAX 6000 computer. Information from the ECCS supports preparation of the EPCRA Tier II and Form R reports on chemical storage and use.

Costain, D.B.

1994-04-01T23:59:59.000Z

239

Analytical laboratory quality audits  

SciTech Connect (OSTI)

Analytical Laboratory Quality Audits are designed to improve laboratory performance. The success of the audit, as for many activities, is based on adequate preparation, precise performance, well documented and insightful reporting, and productive follow-up. Adequate preparation starts with definition of the purpose, scope, and authority for the audit and the primary standards against which the laboratory quality program will be tested. The scope and technical processes involved lead to determining the needed audit team resources. Contact is made with the auditee and a formal audit plan is developed, approved and sent to the auditee laboratory management. Review of the auditee's quality manual, key procedures and historical information during preparation leads to better checklist development and more efficient and effective use of the limited time for data gathering during the audit itself. The audit begins with the opening meeting that sets the stage for the interactions between the audit team and the laboratory staff. Arrangements are worked out for the necessary interviews and examination of processes and records. The information developed during the audit is recorded on the checklists. Laboratory management is kept informed of issues during the audit so there are no surprises at the closing meeting. The audit report documents whether the management control systems are effective. In addition to findings of nonconformance, positive reinforcement of exemplary practices provides balance and fairness. Audit closure begins with receipt and evaluation of proposed corrective actions from the nonconformances identified in the audit report. After corrective actions are accepted, their implementation is verified. Upon closure of the corrective actions, the audit is officially closed.

Kelley, William D.

2001-06-11T23:59:59.000Z

240

Laboratory Shuttle Bus Routes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011 CERN 73-11 Laboratory I | NuclearLaboratoryRear

Note: This page contains sample records for the topic "laboratory tracking number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Laboratory Organization Chart  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocs space controlAppraisalLaboratoryGet theLaboratory

242

Lawrence Berkeley National Laboratory Overview  

Office of Energy Efficiency and Renewable Energy (EERE)

Presentation about the history, structure, and projects of the Lawrence Berkeley National Laboratory.

243

Telco Laboratory Prof. Riccardo Melen  

E-Print Network [OSTI]

. Collaborations · Internal: OpenIT laboratory, GAS project · Industry: Lottomatica (security certifications), UGIS

Schettini, Raimondo

244

Digital Technology Group Computer Laboratory  

E-Print Network [OSTI]

Digital Technology Group 1/20 Computer Laboratory Digital Technology Group Computer Laboratory William R Carson Building on the presentation by Francisco Monteiro Matlab #12;Digital Technology Group 2/20 Computer Laboratory Digital Technology Group Computer Laboratory The product: MATLAB® - The Language

Cambridge, University of

245

DOE/ID-Number  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

performance and PSC in NPPs and the latest information on mobile devices and software technology in order to explore a number of usage scenarios. In their research, the team...

246

Sealion Database: Tracking and Characterization of Legacy Wastes  

SciTech Connect (OSTI)

The Radioactive Scrap and Waste Facility Liner-by-Liner Characterization Project was initiated to support waste management planning and disposition activities at the Materials and Fuels Complex located at the Idaho National Laboratory. The project scope consisted of a detailed examination of available historical records to consolidate information and eliminate discrepancies between sources. This information was captured in a new comprehensive searchable online database dubbed Sealion (Searchable Liner Online). For each storage liner and associated waste container, Sealion tracks the physical configuration, radiological data (e.g., source term, transuranic content, fissile content, and direct gamma radiation reading), Resource Conservation and Recovery Act characterization data, contents descriptions, and a variety of other waste management data. Historical hard-copy records were scanned and are stored in the database for easy access. In addition to storing the consolidated data in a library for easy retrieval or linking, Sealion serves as a tool in the development of batching plans for retrieving, transporting, processing, and, ultimately, dispositioning the waste. An integral search function allows the user to query for a variety of parameters in order to plan custom batches and account for facility or regulatory limitations (e.g., U.S. Department of Transportation limits, hazard category determinations, and fissile gram equivalent limitations). Liners can be combined or batched together and the combined results displayed in real-time graphs and tables showing the cumulative characteristics. The basic database architecture has proven to be adaptable to a variety of other similar applications. Sealion is capable of tracking segmented inventories (i.e., the liners can be replaced with storage drums, racks in a warehouse, or grids overlaid on a landfill). Additionally, the batching functions allow for the ability to combine inventory sub-locations into real-time graphs that summarize the characteristics of the contents for ease in comparison of characteristics to established thresholds or decision-making modeling needed to support waste-management operations.

Michel Hall; Brady Orchard; Brett Welty; James Rivera; Paul Walker; Reese Gannon

2010-03-01T23:59:59.000Z

247

Tracked pellets - a way to improve the efficiency of charmonium studies  

E-Print Network [OSTI]

We investigate the possibility of tracking individual hydrogen micro-spheres from an internal pellet target. Such a method aims to provide the primary vertex of a reaction to within about 100 micrometres, without utilizing any detector response. Apart from background considerations the knowledge of the reaction vertex may be essential for the reconstruction of many physics channels. This is in particular true for the study of the Psi(3770) decay into D-mesons planned at the PANDA detector at the future FAIR facility. Here, the reconstruction of displaced vertices is especially difficult since neutral particles are involved. Studies with a pellet target at The Svedberg Laboratory, Uppsala, show the technical feasibility of a tracking system utilizing fast CCD line-scan cameras. Simulations for the reaction p-bar p to Psi(3770) to D+ D- prove the large impact such a system would have on the data taking and reconstruction at PANDA.

Nordhage, O; Lith, J; Friden, C J; Wiedner, U

2006-01-01T23:59:59.000Z

248

Identifying Software Usage at HPC Centers with the Automatic Library Tracking Database  

SciTech Connect (OSTI)

A library tracking database has been developed to monitor software/library usage. This Automatic Library Tracking Database (ALTD) automatically and transparently stores, into a database, information about the libraries linked into an application at compilation time and also the executables launched in a batch job. Information gathered into the database can then be mined to provide reports. Analyzing the results from the data collected will help to identify, for example, the most frequently used and the least used libraries and codes, and those users that are using deprecated libraries or applications. We will illustrate the usage of libraries and executables on the Cray XT platforms hosted at the National Institute for Computational Sciences and the Oak Ridge Leadership Computing Facility (both located at Oak Ridge National Laboratory).

Hadri, Bilel [ORNL; Fahey, Mark R [ORNL; Jones, Nicholas A [ORNL

2010-01-01T23:59:59.000Z

249

Energy Systems Laboratory Groundbreaking  

ScienceCinema (OSTI)

INL recently broke ground for a research facility that will house research programs for bioenergy, advanced battery systems, and new hybrid energy systems that integrate renewable, fossil and nuclear energy sources. Here's video from the groundbreaking ceremony for INL's new Energy Systems Laboratory. You can learn more about CAES research at http://www.facebook.com/idahonationallaboratory.

Hill, David; Otter, C.L.; Simpson, Mike; Rogers, J.W.;

2013-05-28T23:59:59.000Z

250

LABORATORY IV OSCILLATIONS  

E-Print Network [OSTI]

some of these laboratory problems before your lecturer addresses this material. It is very important, a stopwatch, a balance, a set of weights, and a computer with a video analysis application written in Lab with basic physics principles, show how you get an equation that gives the solution to the problem for each

Minnesota, University of

251

FUTURE LOGISTICS LIVING LABORATORY  

E-Print Network [OSTI]

FUTURE LOGISTICS LIVING LABORATORY Delivering Innovation The Future Logistics Living Lab is a collaboration between NICTA, SAP and Fraunhofer. Australia's first Living Lab provides a platform for industry and research to work together, to investigate real-world problems and to demonstrate innovative technology

Heiser, Gernot

252

Federal Laboratory Technology Transfer  

E-Print Network [OSTI]

Federal Laboratory Technology Transfer Fiscal Year 2009 Prepared by: National Institute to submit this fiscal year 2009 Technology Transfer Summary Report to the President and the Congress in accordance with 15 USC Sec 3710(g)(2) for an annual summary on the implementation of technology transfer

Perkins, Richard A.

253

Federal Laboratory Technology Transfer  

E-Print Network [OSTI]

Federal Laboratory Technology Transfer Fiscal Year 2008 Prepared by: National Institute to submit this fiscal year 2008 Technology Transfer Summary Report to the President and the Congress transfer authorities established by the Technology Transfer Commercialization Act of 2000 (P.L. 106

Perkins, Richard A.

254

BROOKHAVENNATIONAL LABORATORY Building 510  

E-Print Network [OSTI]

BROOKHAVENNATIONAL LABORATORY Building 510 P.O. Box 5000 Upton, NY 11973-5000 Phone 631 344 in C-AD buildings. Work Planning and Control for Experiments The intent of this agreement is to ensure or modification work on experiments performed by Physics personnel or guests in C-AD buildings. The Collider

Homes, Christopher C.

255

National Laboratory Contacts  

Broader source: Energy.gov [DOE]

Several of the U.S. Department of Energy (DOE) national laboratories host multidisciplinary transportation research centers. A wide-range of cutting-edge transportation research occurs at these facilities, funded by both DOE and cooperative research and development agreements (CRADAs) with industry

256

ECOLOGY LABORATORY BIOLOGY 341  

E-Print Network [OSTI]

Page 1 ECOLOGY LABORATORY BIOLOGY 341 Fall Semester 2008 Bighorn Sheep Rams at Bison Range National ecological data; and 3) oral and written communication skills. Thus, these ecology labs, and statistical analyses appropriate for ecological data. A major goal of this class will be for you to gain

Vonessen, Nikolaus

257

Sandia National Laboratories  

E-Print Network [OSTI]

Sandia National Laboratories 7011 East Ave. Livermore, CA 94550 Las Positas College 3000 Campus competitions scheduled for the California Bay Area. The Science Bowl is a Jeopardy-like highly competitive Area competitions: Date (all on Saturdays): Location: Host: Regional HIGH SCHOOL Science Bowls January

258

LABORATORY III POTENTIAL ENERGY  

E-Print Network [OSTI]

LABORATORY III POTENTIAL ENERGY Lab III - 1 In previous problems, you have been introduced to the concepts of kinetic energy, which is associated with the motion of an object, and internal energy, which is associated with the internal structure of a system. In this section, you work with another form of energy

Minnesota, University of

259

Geothermal programs at Lawrence Livermore National Laboratory  

SciTech Connect (OSTI)

Lawrence Livermore National Laboratory has a number of geothermal programs supported through two offices in the Department of Energy: the Office of Renewable Technologies, Geothermal Technologies Division, and the Office of Basic Energy Sciences, Division of Engineering, Mathematics and Geosciences. Within these programs, we are carrying out research in injection monitoring, optical instrumentation for geothermal wells, seismic imaging methods, geophysical and drilling investigations of young volcanic systems in California, and fundamental studies of the rock and mineral properties.

Kasameyer, P.W.; Younker, L.W.

1987-07-10T23:59:59.000Z

260

Economics UMass Lowell Commonwealth Honors Track  

E-Print Network [OSTI]

Economics UMass Lowell Commonwealth Honors Track Fall 2013 and Beyond Freshman Year/ Fall Semester.201 (H) Honors Economics I 3 49.202 Economics II 3 92.121 Pre-calc or any higher level 3 92.109 First Year Seminar 1 16 16 Sophomore Year/Fall Semester Cr Sophomore/Spring Semester 49.3/4 Economics

Massachusetts at Lowell, University of

Note: This page contains sample records for the topic "laboratory tracking number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Locating and tracking assets using RFID  

E-Print Network [OSTI]

. In this research, we will focus on how to ?nd the location of an item by using RFID in real time indoors to track equipment. When an item needs to be located, the purpose of using RFID is to minimize the searching time, e?ort, and investment cost. Thus...

Kim, Gak Gyu

2009-05-15T23:59:59.000Z

262

Tracking Mobile Units for Dependable Message Delivery  

E-Print Network [OSTI]

Tracking Mobile Units for Dependable Message Delivery Amy L. Murphy, Member, IEEE Computer Society at their disposal at any time, mobile computing is developing as an important research area. One of the fundamental problems in mobility is maintaining connectivity through message passing as the user moves through

Zhou, Yuanyuan

263

Software for precise tracking of cell proliferation  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer We developed software for analyzing cultured cells that divide as well as migrate. Black-Right-Pointing-Pointer The active contour model (Snakes) was used as the core algorithm. Black-Right-Pointing-Pointer The time backward analysis was also used for efficient detection of cell division. Black-Right-Pointing-Pointer With user-interactive correction functions, the software enables precise tracking. Black-Right-Pointing-Pointer The software was successfully applied to cells with fluorescently-labeled nuclei. -- Abstract: We have developed a multi-target cell tracking program TADOR, which we applied to a series of fluorescence images. TADOR is based on an active contour model that is modified in order to be free of the problem of locally optimal solutions, and thus is resistant to signal fluctuation and morphological changes. Due to adoption of backward tracing and addition of user-interactive correction functions, TADOR is used in an off-line and semi-automated mode, but enables precise tracking of cell division. By applying TADOR to the analysis of cultured cells whose nuclei had been fluorescently labeled, we tracked cell division and cell-cycle progression on coverslips over an extended period of time.

Kurokawa, Hiroshi [Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako-city, Saitama 351-0198 (Japan) [Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako-city, Saitama 351-0198 (Japan); School of Life Science, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 (Japan); Noda, Hisayori [Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako-city, Saitama 351-0198 (Japan) [Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako-city, Saitama 351-0198 (Japan); Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Sugiyama, Mayu [Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako-city, Saitama 351-0198 (Japan) [Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako-city, Saitama 351-0198 (Japan); School of Life Science, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 (Japan); Sakaue-Sawano, Asako [Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako-city, Saitama 351-0198 (Japan) [Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako-city, Saitama 351-0198 (Japan); Life Function and Dynamics, ERATO, JST, 2-1 Hirosawa, Wako-city, Saitama 351-0198 (Japan); Fukami, Kiyoko [School of Life Science, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 (Japan)] [School of Life Science, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 (Japan); Miyawaki, Atsushi, E-mail: matsushi@brain.riken.jp [Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako-city, Saitama 351-0198 (Japan) [Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako-city, Saitama 351-0198 (Japan); Life Function and Dynamics, ERATO, JST, 2-1 Hirosawa, Wako-city, Saitama 351-0198 (Japan)

2012-01-20T23:59:59.000Z

264

Copyright Siemens Business Services Patient Tracking  

E-Print Network [OSTI]

© Copyright Siemens Business Services Patient Tracking based on RFID labels ThomasThomas JellJell Principal ConsultantPrincipal Consultant DirectorDirector SBS SI 22 #12;2 Siemens One Projects · SBS Companies / Goverment #12;3 Siemens One Projects · Showroom GfM Furniture · Designer Knock Offs ( · Theft

Manstein, Dietmar J.

265

Double tracks test site characterization report  

SciTech Connect (OSTI)

This report presents the results of site characterization activities performed at the Double Tracks Test Site, located on Range 71 North, of the Nellis Air Force Range (NAFR) in southern Nevada. Site characterization activities included reviewing historical data from the Double Tracks experiment, previous site investigation efforts, and recent site characterization data. The most recent site characterization activities were conducted in support of an interim corrective action to remediate the Double Tracks Test Site to an acceptable risk to human health and the environment. Site characterization was performed using a phased approach. First, previously collected data and historical records sere compiled and reviewed. Generalized scopes of work were then prepared to fill known data gaps. Field activities were conducted and the collected data were then reviewed to determine whether data gaps were filled and whether other areas needed to be investigated. Additional field efforts were then conducted, as required, to adequately characterize the site. Characterization of the Double Tracks Test Site was conducted in accordance with the US Department of Energy`s (DOE) Streamlined Approach for Environmental Restoration (SAFER).

NONE

1996-05-01T23:59:59.000Z

266

Ubiquitous Computing, Customer Tracking, and Price Discrimination  

E-Print Network [OSTI]

Ubiquitous Computing, Customer Tracking, and Price Discrimination Alessandro Acquisti H. John Heinz's analysis is the possibility of combining context, historical, location and other personal data to dynamically alter the price of a product for each consumer - a form of price discrimination also known

Sadeh, Norman M.

267

Situational Awareness: Personalizing Issue Tracking Systems  

E-Print Network [OSTI]

Situational Awareness: Personalizing Issue Tracking Systems Olga Baysal, Reid Holmes, and Michael W. Godfrey Software Architecture Group (SWAG) David R. Cheriton School of Computer Science, University role in ongoing software development; they are used by developers to support collaborative bug fixing

Godfrey, Michael W.

268

Predictive tracking control of constrained nonlinear systems  

E-Print Network [OSTI]

"diffusive" and "constant" parameter dynamics, by means of a simulation example. Finally Section 6 draws some of constrained nonlinear systems are proposed. Simulation experiments demonstrate the good tracking properties, the controller directly synthesizes the plant control input and, hence, has more freedom than the RG which can

Chisci, Luigi

269

Additive manufacturing of metallic tracks on  

E-Print Network [OSTI]

Additive manufacturing of metallic tracks on green ceramic/dielectrics Problem this technology microelectronics such as manufacture of LTCC ceramic/ Dielectric antenna and rapid PCB prototyping or repair (note: may require additional tooling/ set up time) · Rapid Prototyping & small scale manufacture

Painter, Kevin

270

Prof. Alessandro De Luca Trajectory Tracking Control  

E-Print Network [OSTI]

Robotics 2 Prof. Alessandro De Luca Trajectory Tracking Control #12;Inverse dynamics control given the robot dynamic model ! B(q)q + n(q,q) = u and a twice-differentiable desired trajectory for t [0,T] ! qd state) ! c(q,q) + g(q) + friction model Robotics 2 2 . . #12;In practice ... " initial state is "not

De Luca, Alessandro

271

Cloud Tracking in Cloud-Resolving Models  

E-Print Network [OSTI]

Cloud Tracking in Cloud-Resolving Models RMetS Conference 4th September 2007 Bob Plant Department of Meteorology, University of Reading, UK #12;Introduction Obtain life cycle statistics for clouds in CRM simulations What is the distribution of cloud lifetimes? What factors determine the lifetime of an individual

Plant, Robert

272

Optical Blade Position Tracking System Test  

SciTech Connect (OSTI)

The Optical Blade Position Tracking System Test measures the blade deflection along the span of the blade using simple off-the-shelf infrared security cameras along with blade-mounted retro-reflective tape and video image processing hardware and software to obtain these measurements.

Fingersh, L. J.

2006-01-01T23:59:59.000Z

273

Plastics Engineering UMass Lowell Commonwealth Honors Track  

E-Print Network [OSTI]

Plastics Engineering UMass Lowell Commonwealth Honors Track Fall 2013 and Beyond Freshman Year Sophomore Year/Fall Semester Cr Sophomore/Spring Semester 26.001 Plastics Safety Lecture 0 26.002 Plastics Safety Lecture 0 26.201 Polymeric Materials I 3 26.202 Polymeric Materials II 3 26.215 Plastics Proc. Eng

Massachusetts at Lowell, University of

274

Nuclear Engineering Catalog 2013 Traditional Track  

E-Print Network [OSTI]

Nuclear Engineering Catalog 2013 Traditional Track Fall Math 141 or 147 (4) FA, SP, SU English 101-approved by the department advisor. Courses in Nuclear Engineering other than 500, 502 and 598 may also be used as technical, which depends on academic performance. Factors considered include overall grade point average

Tennessee, University of

275

Gas Filled Detectors counting & tracking of  

E-Print Network [OSTI]

Gas Filled Detectors counting & tracking of particles energy loss generation of electron-ion+ pairs #12;Gas Filled Detectors Primary and Total Ionization fast charged particles ionize the atoms of a gas fraction of resulting primary electrons have enough kinetic energy to ionize other atoms #12;Gas Filled

Peletier, Reynier

276

Chemistry UMass Lowell Commonwealth Honors Track  

E-Print Network [OSTI]

Chemistry UMass Lowell Commonwealth Honors Track Scholarship Rises. Freshman Year/ Fall Semester Cr) Honors Chemistry I 3 84.136 (H) Honors Chemistry II 3 84.123 (H) Honors Chemistry I Lab 1 84.124 (H) Honors Chemistry II Lab 1 92.131 Calculus I 4 92.132 Honors Calculus II 4 Hon 110 Honors FYSH (AH) 3 Gen

Massachusetts at Lowell, University of

277

Assessment of University Sustainability Activities SUSTAINABILITY TRACKING,  

E-Print Network [OSTI]

Assessment of University Sustainability Activities under the SUSTAINABILITY TRACKING, ASSESSMENT Rashed-Ali, PhD. Prepared for: The UTSA Sustainability Council May 3rd , 2011 #12;yhd/s ^hDD Zz 2 | P a g-Ali, Assistant Professor in the College of Architecture, conducted a survey and assessment of UTSA sustainability

Dodla, Ramana

278

ADAPTIVE ROBUST TRACKING CONTROL OF PRESSURE  

E-Print Network [OSTI]

accuracy of pressure trajectory in the chamber when the pneumatic cylinder is moving. Off-line fitting, it is necessary to utilize the adaptive model compensation for improving the tracking accuracy of pressure and attenuation in pneumatic lines, valve dynamics, flow nonlinearities through the valve orifice, piston friction

Yao, Bin

279

SunShot Award Helps Solar Tracking Company Expand Internationally...  

Office of Environmental Management (EM)

SunShot Award Helps Solar Tracking Company Expand Internationally SunShot Award Helps Solar Tracking Company Expand Internationally October 30, 2014 - 5:46pm Addthis SunShot...

280

Peak power tracking for a solar buck charger  

E-Print Network [OSTI]

This thesis discusses the design, implementation, and testing of a buck converter with peak power tracking. The peak power tracker uses a perturb and observe algorithm to actively track the solar panel's peak power point ...

Cohen, Jeremy Michael, M. Eng. Massachusetts Institute of Technology

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "laboratory tracking number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Advances in Visual Tracking Ming-Hsuan Yang  

E-Print Network [OSTI]

detector [Harris and Stephens, 1988] SIFT (Scale-Invariant Feature Transform) [Lowe, 2004] SURF (Speeded Up at People and Objects Dudek Tracking and appearance modeling Lee walking 3D human tracking Tom and Jerry

Yang, Ming-Hsuan

282

Biomedical Engineering AB Track Rev. October 2012 1/2  

E-Print Network [OSTI]

Biomedical Engineering AB Track Rev. October 2012 1/2 Plan of Study for the Biomedical or summer project resulting in a significant written report _______ #12;Biomedical Engineering AB Track Rev

283

Report number codes  

SciTech Connect (OSTI)

This publication lists all report number codes processed by the Office of Scientific and Technical Information. The report codes are substantially based on the American National Standards Institute, Standard Technical Report Number (STRN)-Format and Creation Z39.23-1983. The Standard Technical Report Number (STRN) provides one of the primary methods of identifying a specific technical report. The STRN consists of two parts: The report code and the sequential number. The report code identifies the issuing organization, a specific program, or a type of document. The sequential number, which is assigned in sequence by each report issuing entity, is not included in this publication. Part I of this compilation is alphabetized by report codes followed by issuing installations. Part II lists the issuing organization followed by the assigned report code(s). In both Parts I and II, the names of issuing organizations appear for the most part in the form used at the time the reports were issued. However, for some of the more prolific installations which have had name changes, all entries have been merged under the current name.

Nelson, R.N. (ed.)

1985-05-01T23:59:59.000Z

284

Tracking in a Spaghetti Bowl: Monitoring Transactions Using Footprints  

E-Print Network [OSTI]

adhere to the best practices such as those ad- vocated by the ITIL specifications to keep track of its

Anandkumar, Animashree

285

Track 7: Environmental Protection, Environmental Management System (EMS), "Greening Initiatives"  

Broader source: Energy.gov [DOE]

ISM Workshop Presentations Knoxville Convention Center, Knoxville, TN August 2009 Track 7: Environmental Protection, Environmental Management System (EMS), "Greening Initiatives"

286

Track 1: Safety Culture- Taking ISMS to the Next Level  

Broader source: Energy.gov [DOE]

ISM Workshop Presentations Knoxville Convention Center, Knoxville, TN August 2009 Track 1: Safety Culture - Taking ISMS to the Next Level

287

Demonstration (DEMO) of Radio Frequency Identification (RFID) system for tracking and monitoring of nuclear materials.  

SciTech Connect (OSTI)

The US Department of Energy (DOE) [Environmental Management (EM), Office of Packaging and Transportation (EM-45)] Packaging Certification Program (PCP) has developed a radiofrequency identification (RFID) tracking and monitoring system for the management of nuclear materials packages during storage and transportation. The system, developed by the PCP team at Argonne National Laboratory, involves hardware modification, application software development, secured database and web server development, and irradiation experiments. In April 2008, Argonne tested key features of the RFID tracking and monitoring system in a weeklong, 1700 mile (2736 km) demonstration employing 14 empty type B fissile material drums of three designs (models 9975, 9977 and ES-3100) that have been certified for shipment by the DOE and the US Nuclear Regulatory Commission. The demonstration successfully integrated global positioning system (GPS) technology for vehicle tracking, satellite/cellular (general packet radio service, or GPRS) technologies for wireless communication, and active RFID tags with multiple sensors (seal integrity, shock, temperature, humidity and battery status) on drums. In addition, the demonstration integrated geographic information system (GIS) technology with automatic alarm notifications of incidents and generated buffer zone reports for emergency response and management of staged incidents. The demonstration was sponsored by EM and the US National Nuclear Security Administration, with the participation of Argonne, Savannah River and Oak Ridge National Laboratories. Over 50 authorised stakeholders across the country observed the demonstration via secured Internet access. The DOE PCP and national laboratories are working on several RFID system implementation projects at selected DOE sites, as well as continuing device and systems development and widening applications beyond DOE sites and possibly beyond nuclear materials to include other radioactive materials.

Tsai, H. C.; Chen, K.; Liu, Y. Y.; Shuler, J. (Decision and Information Sciences); (USDOE)

2010-01-01T23:59:59.000Z

288

ENVIRONMENTAL STUDIES TRACK (B.S.) 2011-2012 CATALOG  

E-Print Network [OSTI]

June 2011 ENVIRONMENTAL STUDIES TRACK (B.S.) 2011-2012 CATALOG There are three tracks in Interdisciplinary Studies (IS). This handout is for the Environmental Studies track. Office Classroom I ­ Suite 302. It is a university-wide program designed for students seeking a combination of studies. The Environmental Studies

Van Stryland, Eric

289

ENVIRONMENTAL STUDIES TRACK (B.S.) 2012-2013 CATALOG  

E-Print Network [OSTI]

June 2012 ENVIRONMENTAL STUDIES TRACK (B.S.) 2012-2013 CATALOG There are three tracks in Interdisciplinary Studies (IS). This handout is for the Environmental Studies track. Office Classroom I ­ Suite 302. It is a university-wide program designed for students seeking a combination of studies. The Environmental Studies

Foroosh, Hassan

290

People Tracking with Human Motion Predictions from Social Forces  

E-Print Network [OSTI]

People Tracking with Human Motion Predictions from Social Forces Matthias Luber Johannes A. Stork Gian Diego Tipaldi Kai O. Arras Abstract-- For many tasks in populated environ- ments, robots need to keep track of current and future motion states of people. Most approaches to people tracking make weak

Arras, Kai O.

291

Tracking Interacting People Stephen J. McKenna  

E-Print Network [OSTI]

people move in groups or interact with other peo- ple cause considerable difficulty to many trackingTracking Interacting People Stephen J. McKenna Department of Applied Computing University of Dundee, wechsler @cs.gmu.edu Abstract A computer vision system for tracking multiple people in relatively

Duric, Zoran

292

Tracking Groups of People Stephen J. McKenna  

E-Print Network [OSTI]

in groups or interact with other people cause considerable difficulty for many tracking schemes. HoweverTracking Groups of People Stephen J. McKenna Department of Applied Computing, University of Dundee, University of Maryland, College Park, MD 20742-3275 A computer vision system for tracking multiple people

Duric, Zoran

293

Verification Challenges at Low Numbers  

SciTech Connect (OSTI)

Many papers have dealt with the political difficulties and ramifications of deep nuclear arms reductions, and the issues of “Going to Zero”. Political issues include extended deterrence, conventional weapons, ballistic missile defense, and regional and geo-political security issues. At each step on the road to low numbers, the verification required to ensure compliance of all parties will increase significantly. Looking post New START, the next step will likely include warhead limits in the neighborhood of 1000 . Further reductions will include stepping stones at1000 warheads, 100’s of warheads, and then 10’s of warheads before final elimination could be considered of the last few remaining warheads and weapons. This paper will focus on these three threshold reduction levels, 1000, 100’s, 10’s. For each, the issues and challenges will be discussed, potential solutions will be identified, and the verification technologies and chain of custody measures that address these solutions will be surveyed. It is important to note that many of the issues that need to be addressed have no current solution. In these cases, the paper will explore new or novel technologies that could be applied. These technologies will draw from the research and development that is ongoing throughout the national laboratory complex, and will look at technologies utilized in other areas of industry for their application to arms control verification.

Benz, Jacob M.; Booker, Paul M.; McDonald, Benjamin S.

2013-06-01T23:59:59.000Z

294

National Renewable Energy Laboratory Solar Radiation Research Laboratory  

E-Print Network [OSTI]

National Renewable Energy Laboratory Solar Radiation Research Laboratory (SRRL) Instrument of Energy (DoE). Objectives · Provide Improved Methods for Radiometer Calibrations · Develop a Solar Energy Resources · Offer Unique Training Methods for Solar Monitoring Network Design, Operation

295

Princeton Plasma Physics Laboratory:  

SciTech Connect (OSTI)

This paper discusses progress on experiments at the Princeton Plasma Physics Laboratory. The projects and areas discussed are: Principal Parameters Achieved in Experimental Devices, Tokamak Fusion Test Reactor, Princeton Large Torus, Princeton Beta Experiment, S-1 Spheromak, Current-Drive Experiment, X-ray Laser Studies, Theoretical Division, Tokamak Modeling, Spacecraft Glow Experiment, Compact Ignition Tokamak, Engineering Department, Project Planning and Safety Office, Quality Assurance and Reliability, and Administrative Operations.

Phillips, C.A. (ed.)

1986-01-01T23:59:59.000Z

296

News | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn CyberNeutronsNew

297

ARM - Laboratory Partners  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC : XDCResearch Related Information CollaborationsOrganizationLaboratory

298

A National Tracking Center for Monitoring Shipments of HEU, MOX, and Spent Nuclear Fuel: How do we implement?  

SciTech Connect (OSTI)

Nuclear material safeguards specialists and instrument developers at US Department of Energy (USDOE) National Laboratories in the United States, sponsored by the National Nuclear Security Administration (NNSA) Office of NA-24, have been developing devices to monitor shipments of UF6 cylinders and other radioactive materials , . Tracking devices are being developed that are capable of monitoring shipments of valuable radioactive materials in real time, using the Global Positioning System (GPS). We envision that such devices will be extremely useful, if not essential, for monitoring the shipment of these important cargoes of nuclear material, including highly-enriched uranium (HEU), mixed plutonium/uranium oxide (MOX), spent nuclear fuel, and, potentially, other large radioactive sources. To ensure nuclear material security and safeguards, it is extremely important to track these materials because they contain so-called “direct-use material” which is material that if diverted and processed could potentially be used to develop clandestine nuclear weapons . Large sources could be used for a dirty bomb also known as a radioactive dispersal device (RDD). For that matter, any interdiction by an adversary regardless of intent demands a rapid response. To make the fullest use of such tracking devices, we propose a National Tracking Center. This paper describes what the attributes of such a center would be and how it could ultimately be the prototype for an International Tracking Center, possibly to be based in Vienna, at the International Atomic Energy Agency (IAEA).

Mark Schanfein

2009-07-01T23:59:59.000Z

299

An Operator Perspective from a Facility Evaluation of an RFID-Based UF6 Cylinder Accounting and Tracking System  

SciTech Connect (OSTI)

An operational field test of a Radio-Frequency Identification (RFID) system for tracking and accounting UF6 cylinders was conducted at the Global Nuclear Fuel Americas (GNF) fuel fabrication plant in 2009. The Cylinder Accountability and Tracking System (CATS) was designed and deployed by Oak Ridge National Laboratory (ORNL) and evaluated in cooperation with GNF. The system required that passive RFID be attached to several UF6 30B cylinders as they were received at the site; then the cylinders were tracked as they proceeded to interim storage, to processing in an autoclave, and eventually to disposition from the site. This CATS deployment also provided a direct integration of scale data from the site accountability scales. The integration of this information into the tracking data provided an attribute for additional safeguards for evaluation. The field test provided insight into the advantages and challenges of using RFID at an operating nuclear facility. The RFID system allowed operators to interact with the technology and demonstrated the survivability of the tags and reader equipment in the process environment. This paper will provide the operator perspective on utilizing RFID technology for locating cylinders within the facility, thereby tracking the cylinders for process and for Material Control & Accounting functions. The paper also will present the operator viewpoint on RFID implemented as an independent safeguards system.

Martyn, Rose [Global Nuclear Fuels; Fitzgerald, Peter [Global Nuclear Fuels; Stehle, Nicholas D [ORNL; Rowe, Nathan C [ORNL; Younkin, James R [ORNL

2011-01-01T23:59:59.000Z

300

ALARA notes, Number 8  

SciTech Connect (OSTI)

This document contains information dealing with the lessons learned from the experience of nuclear plants. In this issue the authors tried to avoid the `tyranny` of numbers and concentrated on the main lessons learned. Topics include: filtration devices for air pollution abatement, crack repair and inspection, and remote handling equipment.

Khan, T.A.; Baum, J.W.; Beckman, M.C. [eds.] [eds.

1993-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "laboratory tracking number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

CHEMICAL SAFETY Emergency Numbers  

E-Print Network [OSTI]

- 1 - CHEMICAL SAFETY MANUAL 2010 #12;- 2 - Emergency Numbers UNBC Prince George Campus Security Prince George Campus Chemstores 6472 Chemical Safety 6472 Radiation Safety 5530 Biological Safety 5530 use, storage, handling, waste and emergency management of chemicals on the University of Northern

Bolch, Tobias

302

A number of organizations,  

E-Print Network [OSTI]

installed solar electric systems on a number of the city's buildings, including the Chicago Center for Green Technology shown here. CityofChicago Aggregated Purchasing--A Clean Energy Strategy SOLAR TODAY Aggregated Purchasing--A Clean Energy Strategy by Lori A. Bird and Edward A. Holt #12;November/December 2002 35 Power

303

History of the Laboratory Protection Division Oak Ridge National Laboratory  

E-Print Network [OSTI]

i i #12;#12;History of the Laboratory Protection Division Oak Ridge National Laboratory 1942, Emergency Preparedness Date Published: March 1992 Prepared by the Oak Ridge National Laboratory Oak Ridge stations should be tucked comfortably away in isolated places. As such, the Oak Ridge area seemed perfect

304

ACCOUNTS PAYABLE VENDOR NUMBER GUIDE  

E-Print Network [OSTI]

ACCOUNTS PAYABLE VENDOR NUMBER GUIDE FOR DEPARTMENTS W-9 AND W-8BEN FORMS TAXPAYER ID NUMBER (TIN), FEDERAL EMPLOYER ID NUMBER (FEIN), AND EMPLOYER'S ID NUMBER (EIN) HOW TO FIND A VENDOR'S ID NUMBER IN BANNER HOW TO DETERMINE IF A VENDOR IS IN BANNER UPDATED MAY 2013 #12;Vendor Number Guide

305

Smart Grid Integration Laboratory  

SciTech Connect (OSTI)

The initial federal funding for the Colorado State University Smart Grid Integration Laboratory is through a Congressionally Directed Project (CDP), DE-OE0000070 Smart Grid Integration Laboratory. The original program requested in three one-year increments for staff acquisition, curriculum development, and instrumentation â?? all which will benefit the Laboratory. This report focuses on the initial phase of staff acquisition which was directed and administered by DOE NETL/ West Virginia under Project Officer Tom George. Using this CDP funding, we have developed the leadership and intellectual capacity for the SGIC. This was accomplished by investing (hiring) a core team of Smart Grid Systems engineering faculty focused on education, research, and innovation of a secure and smart grid infrastructure. The Smart Grid Integration Laboratory will be housed with the separately funded Integrid Laboratory as part of CSUâ??s overall Smart Grid Integration Center (SGIC). The period of performance of this grant was 10/1/2009 to 9/30/2011 which included one no cost extension due to time delays in faculty hiring. The Smart Grid Integration Laboratoryâ??s focus is to build foundations to help graduate and undergraduates acquire systems engineering knowledge; conduct innovative research; and team externally with grid smart organizations. Using the results of the separately funded Smart Grid Workforce Education Workshop (May 2009) sponsored by the City of Fort Collins, Northern Colorado Clean Energy Cluster, Colorado State University Continuing Education, Spirae, and Siemens has been used to guide the hiring of faculty, program curriculum and education plan. This project develops faculty leaders with the intellectual capacity to inspire its students to become leaders that substantially contribute to the development and maintenance of Smart Grid infrastructure through topics such as: (1) Distributed energy systems modeling and control; (2) Energy and power conversion; (3) Simulation of electrical power distribution system that integrates significant quantities of renewable and distributed energy resources; (4) System dynamic modeling that considers end-user behavior, economics, security and regulatory frameworks; (5) Best practices for energy management IT control solutions for effective distributed energy integration (including security with the underlying physical power systems); (6) Experimental verification of effects of various arrangements of renewable generation, distributed generation and user load types along with conventional generation and transmission. Understanding the core technologies for enabling them to be used in an integrated fashion within a distribution network remains is a benefit to the future energy paradigm and future and present energy engineers.

Wade Troxell

2011-09-30T23:59:59.000Z

306

Laboratories to Explore, Explain VLBACHANDRA  

E-Print Network [OSTI]

Princeton Plasma Physics Laboratory Sandia National Laboratory Stone and Webster The Boeing Company on FIRE and fusion science accessible and up to date. A steady stream of about 150 visitors per week log

307

Laboratory compaction of cohesionless sands  

E-Print Network [OSTI]

on the maximum dry unit weight during compaction. Three different laboratory compaction methods were used: 1) Standard Proctor', 2) Modified Proctor; and 3) Vibrating hammer. The effects of the grain size distribution, particle shape and laboratory compaction...

Delphia, John Girard

1998-01-01T23:59:59.000Z

308

Laboratory Directed Research and Development  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish the Department's, including the NNSA's, requirements for laboratory-directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation. Cancels DOE O 413.2. Canceled by DOE O 413.2B.

2001-01-08T23:59:59.000Z

309

Laboratory Directed Research and Development  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order establishes DOE requirements and responsibilities for laboratory directed research and development while providing laboratory directors with broad flexibility for program implementation. Cancels DOE O 413.2A. Admin Chg 1, 1-31-11.

2006-04-19T23:59:59.000Z

310

Message passing with a limited number of DMA byte counters  

DOE Patents [OSTI]

A method for passing messages in a parallel computer system constructed as a plurality of compute nodes interconnected as a network where each compute node includes a DMA engine but includes only a limited number of byte counters for tracking a number of bytes that are sent or received by the DMA engine, where the byte counters may be used in shared counter or exclusive counter modes of operation. The method includes using rendezvous protocol, a source compute node deterministically sending a request to send (RTS) message with a single RTS descriptor using an exclusive injection counter to track both the RTS message and message data to be sent in association with the RTS message, to a destination compute node such that the RTS descriptor indicates to the destination compute node that the message data will be adaptively routed to the destination node. Using one DMA FIFO at the source compute node, the RTS descriptors are maintained for rendezvous messages destined for the destination compute node to ensure proper message data ordering thereat. Using a reception counter at a DMA engine, the destination compute node tracks reception of the RTS and associated message data and sends a clear to send (CTS) message to the source node in a rendezvous protocol form of a remote get to accept the RTS message and message data and processing the remote get (CTS) by the source compute node DMA engine to provide the message data to be sent.

Blocksome, Michael (Rochester, MN); Chen, Dong (Croton on Hudson, NY); Giampapa, Mark E. (Irvington, NY); Heidelberger, Philip (Cortlandt Manor, NY); Kumar, Sameer (White Plains, NY); Parker, Jeffrey J. (Rochester, MN)

2011-10-04T23:59:59.000Z

311

Innovative Mobile Technologies for Asset Tracking  

E-Print Network [OSTI]

ICEBO Session 15 - Innovative Mobile Technologies for Asset Tracking Agenda ? Learn how clients have mobilized their enterprise data to increase the consistent capture and reporting of important building information, from lease data to work... orders to space & occupancy costs. ? Top 5 lessons learned implementing a mobile solution Who We Are ? Experts in both Real Property and Facilities Management Business and Technology ? Over 250 years of combined experience that encompasses facility...

Liko, W.

2013-01-01T23:59:59.000Z

312

Longitudinal and transverse tracking studies for ESS  

SciTech Connect (OSTI)

The techniques currently being employed to model beam transport and injection into the ESS accumulator rings are described. These use a combination of one dimensional (longitudinal) and two-dimensional (transverse) particle tracking codes, incorporating a variety of methods of simulating self-field effects. A description of the proposed mechanism for painting longitudinal and transverse phase-space for ESS is given, and the results of the modeling and subsequent optimization are discussed. {copyright} {ital 1996 American Institute of Physics.}

Prior, C.R. [Rutherford Appleton Laboratory, Chilton, Oxon (United Kingdom)

1996-06-01T23:59:59.000Z

313

Parallel Matlab MIT Lincoln Laboratory  

E-Print Network [OSTI]

Slide-1 Parallel Matlab MIT Lincoln Laboratory Parallel Matlab: The Next Generation Dr. Jeremy Lincoln LaboratorySlide-2 Parallel Matlab · Motivation · Challenges Outline · Introduction · Approach · Performance Results · Future Work and Summary #12;MIT Lincoln LaboratorySlide-3 Parallel Matlab Motivation: Do

Kepner, Jeremy

314

Humidity requirements in WSCF Laboratories  

SciTech Connect (OSTI)

The purpose of this paper is to develop and document a position on Relative Humidity (RH) requirements in the WSCF Laboratories. A current survey of equipment vendors for Organic, Inorganic and Radiochemical laboratories indicate that 25% - 80% relative humidity may meet the environmental requirements for safe operation and protection of all the laboratory equipment.

Evans, R.A.

1994-10-01T23:59:59.000Z

315

Purdue Hydrogen Systems Laboratory  

SciTech Connect (OSTI)

The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up. Efforts continued to explore existing catalytic methods involving nano catalysts for capture of CO2 from the fermentation process.

Jay P Gore; Robert Kramer; Timothee L Pourpoint; P. V. Ramachandran; Arvind Varma; Yuan Zheng

2011-12-28T23:59:59.000Z

316

Princeton Plasma Physics Laboratory  

SciTech Connect (OSTI)

This report discusses the following topics: principal parameters achieved in experimental devices fiscal year 1990; tokamak fusion test reactor; compact ignition tokamak; Princeton beta experiment- modification; current drive experiment-upgrade; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma processing: deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for fiscal year 1990; graduate education; plasma physics; graduate education: plasma science and technology; science education program; and Princeton Plasma Physics Laboratory reports fiscal year 1990.

Not Available

1990-01-01T23:59:59.000Z

317

rfry | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08 Joint JOULECorrectiveResearchrfry Ames Laboratory

318

tdball | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08 JointProgramApplication ofU Ctdball Ames Laboratory

319

xinyufu | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08Intermittent3,19963xinyufu Ames Laboratory Profile

320

Naval Civil Engineering Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn Cyber Security NuclearNewNatural GasNatureNaval

Note: This page contains sample records for the topic "laboratory tracking number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

News | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn CyberNeutronsNew researchInNewsNewsCriticalNews

322

News | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn CyberNeutronsNew researchInNewsNewsCriticalNewsNews

323

News | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn CyberNeutronsNewNews & Events Events Press

324

News | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn CyberNeutronsNewNews & Events Events PressNews

325

News | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn CyberNeutronsNewNews & Events Events

326

Laboratory, Valles Caldera sponsor  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011 CERN 73-11 Laboratory I |Season of Giving

327

Lawrence Livermore National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosion Monitoring:Home| Visitors|UpcomingElectrolyteLaboratory Home

328

Operations | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Regionat CornellInternships,(SC) Laboratories » OPM Home

329

Laboratory Director Search | NREL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region serviceMission Statement TitanProposalsLaboratory Director Search

330

Sandia National Laboratories: RITE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik SpoerkeSolar Regional Test CenterCMCNational LaboratoriesRF &RITE

331

Sandia National Laboratories: RO  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik SpoerkeSolar Regional Test CenterCMCNational LaboratoriesRFRO ECIS-UNM:

332

Sandia National Laboratories: RTC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik SpoerkeSolar Regional Test CenterCMCNational LaboratoriesRFRO

333

baugie | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste andAnniversary, partReview64,783 56,478Tiddbaugie Ames Laboratory

334

eguidez | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture and Storageconvert 2S~ Governmenteguidez Ames Laboratory

335

grootvel | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture andDeepwaterfors | National91 Agrootvel Ames Laboratory

336

hcelliott | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture andDeepwaterfors |hcelliott Ames Laboratory Profile

337

herrman | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture andDeepwaterfors |hcelliott Ames Laboratory

338

mwiley | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08 Joint JOULE J. NoremImwiley Ames Laboratory Profile

339

naa | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08 Joint JOULE J. NoremImwiley Amesnaa Ames Laboratory

340

nbarbee | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08 Joint JOULE J.nbarbee Ames Laboratory Profile Nicole

Note: This page contains sample records for the topic "laboratory tracking number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Partners | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratorySpeedingOptimizingToolstoPartnering MechanismsPartners andPartners

342

Oak Ridge National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratorySpeeding access toSpeedingScientific andScientific NewsHome

343

Oak Ridge National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratorySpeeding access toSpeedingScientific andScientific NewsHomeAbout

344

Ombudsman | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratorySpeeding access1 TechnicalOil inventories inOmbuds

345

Organizations | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratorySpeedingOptimizing I/O performance onAbout MissionOrganizations

346

Overview | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratorySpeedingOptimizing I/O performanceOtherOutreach

347

Sandia National Laboratories: Lumenworks  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS ExhibitIowaLos Alamos National Laboratory ConsortiumLumenworks

348

Sandia National Laboratories: Luxim  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS ExhibitIowaLos Alamos National Laboratory

349

Sandia National Laboratories: MASK  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS ExhibitIowaLos Alamos National LaboratoryEngineersMASK

350

Sandia National Laboratories: MD  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS ExhibitIowaLos Alamos National LaboratoryEngineersMASKMD CINT

351

Sandia National Laboratories: MEMS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS ExhibitIowaLos Alamos National LaboratoryEngineersMASKMD

352

Sandia National Laboratories: MEPV  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS ExhibitIowaLos Alamos National LaboratoryEngineersMASKMDMEPV

353

Sustainability | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAbout »LabSustainability Ames Laboratory is committed to

354

NAME: STUDENT NUMBER (PID): CITY, STATE ZIP: DAYTIME PHONE NUMBER  

E-Print Network [OSTI]

NAME: STUDENT NUMBER (PID): ADDRESS: CITY, STATE ZIP: DAYTIME PHONE NUMBER: CELL PHONE NUMBER of financial institution. 14 Cell Phone Expenses 15 Other ordinary and necessary living expenses. 16 TOTAL (add

355

Sensor Data Processing for Tracking Underwater Threats Using Terascale Optical Core Devices  

SciTech Connect (OSTI)

A critical aspect of littoral surveillance (including port protection) involves the localization and tracking of underwater threats such as manned or unmanned autonomous underwater vehicles. In this article, we present a methodology for locating underwater threat sources from uncertain sensor network data, and illustrate the threat tracking aspects using active sonars in a matched filter framework. The novelty of the latter paradigm lies in its implementation on a tera-scale optical core processor, EnLight , recently introduced by Lenslet Laboratories. This processor is optimized for array operations, which it performs in a fixed point arithmetic architecture at tera-scale throughput. Using the EnLight 64 prototype processor, our results (i) illustrate the ability to reach a robust tracking accuracy, and (ii) demonstrate that a considerable speed-up (a factor of over 13,000) can be achieved when compared to an Intel XeonTM processor in the computation of sets of 80K-sample complex Fourier transforms that are associated with our matched filter techniques.

Barhen, Jacob [ORNL; Imam, Neena [ORNL

2009-01-01T23:59:59.000Z

356

Number | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico:CommunityNorthwest Basin andNsbowde's blog HomeNumber"

357

Pacific Northwest Laboratory annual report for 1980 to the DOE Assistant Secretary for Environment. Part 2 supplement, ecological sciences  

SciTech Connect (OSTI)

This supplement replaces the list of Publications and Presentations in the Pacific Northwest Laboratory Annual Report for 1980 to the Assistant Secretary for Environment, PNL-3700 PT2, Ecological Sciences. The listings in the report as previously distributed were incomplete owing to changeovers in the bibliographic-tracking system.

Vaughan, B.E.

1981-06-01T23:59:59.000Z

358

Mobile Energy Laboratory Procedures  

SciTech Connect (OSTI)

Pacific Northwest Laboratory (PNL) has been tasked to plan and implement a framework for measuring and analyzing the efficiency of on-site energy conversion, distribution, and end-use application on federal facilities as part of its overall technical support to the US Department of Energy (DOE) Federal Energy Management Program (FEMP). The Mobile Energy Laboratory (MEL) Procedures establish guidelines for specific activities performed by PNL staff. PNL provided sophisticated energy monitoring, auditing, and analysis equipment for on-site evaluation of energy use efficiency. Specially trained engineers and technicians were provided to conduct tests in a safe and efficient manner with the assistance of host facility staff and contractors. Reports were produced to describe test procedures, results, and suggested courses of action. These reports may be used to justify changes in operating procedures, maintenance efforts, system designs, or energy-using equipment. The MEL capabilities can subsequently be used to assess the results of energy conservation projects. These procedures recognize the need for centralized NM administration, test procedure development, operator training, and technical oversight. This need is evidenced by increasing requests fbr MEL use and the economies available by having trained, full-time MEL operators and near continuous MEL operation. DOE will assign new equipment and upgrade existing equipment as new capabilities are developed. The equipment and trained technicians will be made available to federal agencies that provide funding for the direct costs associated with MEL use.

Armstrong, P.R.; Batishko, C.R.; Dittmer, A.L.; Hadley, D.L.; Stoops, J.L.

1993-09-01T23:59:59.000Z

359

Independent Oversight Review, Oak Ridge National Laboratory ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

National Laboratory - January 2013 Independent Oversight Review, Oak Ridge National Laboratory - January 2013 January 2013 Review of the Oak Ridge National Laboratory High Flux...

360

Oversight Reports - Oak Ridge National Laboratory | Department...  

Broader source: Energy.gov (indexed) [DOE]

Oak Ridge National Laboratory Oversight Reports - Oak Ridge National Laboratory April 24, 2014 Independent Oversight Targeted Review, Oak Ridge National Laboratory - April 2014...

Note: This page contains sample records for the topic "laboratory tracking number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Idaho National Laboratory's FY13 Greenhouse Gas Report  

SciTech Connect (OSTI)

A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during Fiscal Year (FY) 2013 by Idaho National Laboratory (INL), a Department of Energy (DOE) sponsored entity, located in southeastern Idaho. This report details the methods behind quantifying INL’s GHG inventory and discusses lessons learned on better practices by which information important to tracking GHGs can be tracked and recorded. It is important to note that because this report differentiates between those portions of INL that are managed and operated by Battelle Energy Alliance (BEA) and those managed by other contractors, it includes only the large proportion of Laboratory activities overseen by BEA. It is assumed that other contractors will provide similar reporting for those activities they manage, where appropriate.

Kimberly Frerichs

2014-03-01T23:59:59.000Z

362

Finite-particle-number approach to physics  

SciTech Connect (OSTI)

Starting from a discrete, self-generating and self-organizing, recursive model and self-consistent interpretive rules we construct: the scale constants of physics (3,10,137,1.7x10/sup 38/); 3+1 Minkowski space with a discrete metric and the algebraic bound ..delta.. is an element of ..delta.. tau is greater than or equal to 1; the Einstein-deBroglie relation; algebraic double slit interference; a single-time momentum-space scattering theory connected to laboratory experience; an approximation to wave functions; local phase severance and hence both distant correlations and separability; baryon number, lepton number, charge and helicity; m/sub p//m/sub e/; a cosmology not in disagreement with current observations.

Noyes, H.P.

1982-10-01T23:59:59.000Z

363

Idaho National Laboratory’s FY09 & FY10 Greenhouse Gas Report  

SciTech Connect (OSTI)

A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during fiscal year (FY) 2009 and 2010 by Idaho National Laboratory (INL), a Department of Energy (DOE)-sponsored entity, located in southeastern Idaho. In recent years, concern has grown about the environmental impact of GHGs. This, together with a desire to decrease harmful environmental impacts, would be enough to encourage the calculation of an inventory of the total GHGs generated at INL. Additionally, INL has a desire to see how its emissions compare with similar institutions, including other DOE national laboratories. Executive Order 13514 requires that federal agencies and institutions document reductions in GHG emissions. INL's GHG inventory was calculated according to methodologies identified in federal GHG guidance documents using operational control boundaries. It measures emissions generated in three scopes: (1) INL emissions produced directly by stationary or mobile combustion and by fugitive emissions, (2) the share of emissions generated by entities from which INL purchased electrical power, and (3) indirect or shared emissions generated by outsourced activities that benefit INL (occur outside INL's organizational boundaries, but are a consequence of INL's activities). This inventory found that INL generated 103,590 and 102,413 MT of CO2-equivalent emissions during FY09 and FY10, respectively. The following conclusions were made from looking at the results of the individual contributors to INL's FY09 and FY10 GHG inventories: (1) Electricity (including the associated transmission and distribution losses) is the largest contributor to INL's GHG inventory, with over 50% of the CO2e emissions; (2) Other sources with high emissions were stationary combustion (facility fuels), waste disposal (including fugitive emissions from the onsite landfill and contracted disposal), mobile combustion (fleet fuels), employee commuting, and business air travel; and (3) Sources with low emissions were wastewater treatment (onsite and contracted), fugitive emissions from refrigerants, and business ground travel (in personal and rental vehicles). This report details the methods behind quantifying INL's GHG inventory and discusses lessons learned on better practices by which information important to tracking GHGs can be tracked and recorded. It is important to note that because this report differentiates between those portions of INL that are managed and operated by the Battelle Energy Alliance (BEA) and those managed by other contractors, it includes only that large proportion of Laboratory activities overseen by BEA. It is assumed that other contractors will provide similar reporting for those activities they manage, where appropriate.

Jennifer D. Morton

2011-06-01T23:59:59.000Z

364

CX-001714: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-001714: Categorical Exclusion Determination Vehicle Test Location at Bone Yard; National Renewable Energy Laboratory (NREL) Tracking Number...

365

Improved zircon fission-track annealing model based on reevaluation of annealing data  

SciTech Connect (OSTI)

The thermal recovery (annealing) of mineral structure modified by the passage of fission fragments has long been studied by the etching technique. In minerals like apatite and zircon, the annealing kinetics are fairly well constrained from the hour to the million-year timescale and have been described by empirical and semi-empirical equations. On the other hand, laboratory experiments, in which ion beams interact with minerals and synthetic ceramics, have shown that there is a threshold temperature beyond which thermal recovery impedes ion-induced amorphization. In this work, it is assumed that this behavior can be extended to the annealing of fission tracks in minerals. It is proposed that there is a threshold temperature, T0, beyond which fission tracks are erased within a time t0, which is independent of the current state of lattice deformation. This implies that iso-annealing curves should converge to a fanning point in the Arrhenius pseudo-space (ln t vs. 1/T). Based on the proposed hypothesis, and laboratory and geological data, annealing equations are reevaluated. The geological timescale estimations of a model arising from this study are discussed through the calculation of partial annealing zone and closure temperature, and comparison with geological sample constraints found in literature. It is shown that the predictions given by this model are closer to field data on closure temperature and partial annealing zone than predictions given by previous models.

Guedes, Sandro [Instituto de Fisica Gleb Wataghin, Unicamp, Brazil; Moreira, Pedro A.F.P. [Universidade Estadual de Campinas, Sao Paulo; Devanathan, Ram [Pacific Northwest National Laboratory (PNNL); Weber, William J [ORNL; Hadler, Julio C [Instituto de Fisica Gleb Wataghin, Unicamp, Brazil

2013-01-01T23:59:59.000Z

366

Improved zircon fission-track annealing model based on reevaluation of annealing data  

SciTech Connect (OSTI)

The thermal recovery (annealing) of mineral structure modified by the passage of fission fragments has long been studied by the etching technique. In minerals like apatite and zircon, the annealing kinetics are fairly well constrained from the hour to the million-year timescale and have been described by empirical and semi-empirical equations. On the other hand, laboratory experiments, in which ion beams interact with minerals and synthetic ceramics, have shown that there is a threshold temperature beyond which thermal recovery impedes ion-induced amorphization. In this work, it is assumed that this behavior can be extended to the annealing of fission tracks in minerals. It is proposed that there is a threshold temperature, T 0, beyond which fission tracks are erased within a time t 0, which is independent of the current state of lattice deformation. This implies that iso-annealing curves should converge to a fanning point in the Arrhenius pseudo-space (ln t vs. 1/T). Based on the proposed hypothesis, and laboratory and geological data, annealing equations are reevaluated. The geological timescale estimations of a model arising from this study are discussed through the calculation of partial annealing zone and closure temperature, and comparison with geological sample constraints found in literature. It is shown that the predictions given by this model are closer to field data on closure temperature and partial annealing zone than predictions given by previous models.

Guedes, S.; Moreira, Pedro; Devanathan, Ramaswami; Weber, William J.; Hadler, J. C.

2013-02-01T23:59:59.000Z

367

Design and performance of the SLD Vertex Detector, a 120 Mpixel tracking system  

SciTech Connect (OSTI)

This paper describes the design, construction, and initial operation of the SLD Vertex Detector, the first device to employ charge coupled devices (CCDs) on a large scale in a high energy physics experiment. The Vertex Detector comprises 480 CCDs, with a total of 120 Mpixels. Each pixel functions as an independent particle detecting element, providing space point measurements of charged particle tracks with a typical precision of 5 {mu}m in each co-ordinate. The CCDs are arranged in four concentric cylinders just outside the beam pipe which surrounds the e{sup +}e{sup {minus}} collision point of the SLAC Linear Collider (SLC). The Vertex Detector is a powerful tool for distinguishing secondary vertex tracks, produced by decay in flight of heavy flavour hadrons or tau leptons, from tracks produced at the primary event vertex. Because the colliding beam environment imposes severe constraints on the design of such a detector, a six year R&D programme was needed to develop solutions to a number of problems. The requirements include a low-mass structure (to minimise multiple scattering) both for mechanical support and to provide signal paths for the CCDS; operation at low temperature with a high degree of mechanical stability; and relatively high speed CCD readout, signal processing, and data sparsification. The lessons learned through the long R&D period should be useful for the construction of large arrays of CCDs or smart pixel devices in the future, in a number of areas of science and technology.

Agnew, G.D.; Cotton, R. [Brunel Univ., Uxbridge (United Kingdom); Damerell, C.J.S. [Rutherford Appleton Lab., Chilton (United Kingdom)] [and others

1992-03-01T23:59:59.000Z

368

Creating the laboratory`s future; A strategy for Lawrence Livermore National Laboratory  

SciTech Connect (OSTI)

``Creating The Laboratory`s Future`` describes Livermore`s roles and responsibilities as a Department of Energy (DOE) national laboratory and sets the foundation for decisions about the Laboratory`s programs and operations. It summarizes Livermore`s near-term strategy, which builds on recent Lab achievements and world events affecting their future. It also discusses their programmatic and operational emphases and highlights program areas that the authors believe can grow through application of Lab science and technology. Creating the Laboratory`s Future reflects their very strong focus on national security, important changes in the character of their national security work, major efforts are under way to overhaul their administrative and operational systems, and the continuing challenge of achieving national consensus on the role of the government in energy, environment, and the biosciences.

NONE

1997-09-01T23:59:59.000Z

369

Grant Application Package CFDA Number  

E-Print Network [OSTI]

Grant Application Package CFDA Number: Opportunity Title: Offering Agency: Agency Contact: Opportunity Open Date: Opportunity Close Date: CFDA Description: Opportunity Number: Competition ID

Talley, Lynne D.

370

Los Alamos National Laboratory  

SciTech Connect (OSTI)

The purpose of the briefing is to describe general laboratory technical capabilities to be used for various groups such as military cadets or university faculty/students and post docs to recruit into a variety of Los Alamos programs. Discussed are: (1) development and application of high leverage science to enable effeictive, predictable and reliability outcomes; (2) deter, detect, characterize, reverse and prevent the proliferation of weapons of mass destruction and their use by adversaries and terrorists; (3) modeling and simulation to define complex processes, predict outcomes, and develop effective prevention, response, and remediation strategies; (4) energetic materials and hydrodynamic testing to develop materials for precise delivery of focused energy; (5) materials cience focused on fundamental understanding of materials behaviors, their quantum-molecular properties, and their dynamic responses, and (6) bio-science to rapidly detect and characterize pathogens, to develop vaccines and prophylactic remedies, and to develop attribution forensics.

Dogliani, Harold O [Los Alamos National Laboratory

2011-01-19T23:59:59.000Z

371

Optical bullet-tracking algorithms for weapon localization in urban environments  

SciTech Connect (OSTI)

Localization of the sources of small-arms fire, mortars, and rocket propelled grenades is an important problem in urban combat. Weapons of this type produce characteristic signatures, such as muzzle flashes, that are visible in the infrared. Indeed, several systems have been developed that exploit the infrared signature of muzzle flash to locate the positions of shooters. However, systems based on muzzle flash alone can have difficulty localizing weapons if the muzzle flash is obscured or suppressed. Moreover, optical clutter can be problematic to systems that rely on muzzle flash alone. Lawrence Livermore National Laboratory (LLNL) has developed a projectile tracking system that detects and localizes sources of small-arms fire, mortars and similar weapons using the thermal signature of the projectile rather than a muzzle flash. The thermal signature of a projectile, caused by friction as the projectile travels along its trajectory, cannot be concealed and is easily discriminated from optical clutter. The LLNL system was recently demonstrated at the MOUT facility of the Aberdeen Test Center [1]. In the live-fire demonstration, shooters armed with a variety of small-arms, including M-16s, AK-47s, handguns, mortars and rockets, were arranged at several positions in around the facility. Experiments ranged from a single-weapon firing a single-shot to simultaneous fire of all weapons on full automatic. The LLNL projectile tracking system was demonstrated to localize multiple shooters at ranges up to 400m, far greater than previous demonstrations. Furthermore, the system was shown to be immune to optical clutter that is typical in urban combat. This paper describes the image processing and localization algorithms designed to exploit the thermal signature of projectiles for shooter localization. The paper begins with a description of the image processing that extracts projectile information from a sequence of infrared images. Key to the processing is an adaptive spatio-temporal filter developed to suppress scene clutter. The filtered image sequence is further processed to produce a set of parameterized regions, which are classified using several discriminate functions. Regions that are classified as projectiles are passed to a data association algorithm that matches features from these regions with existing tracks, or initializes new tracks as needed. A Kalman filter is used to smooth and extrapolate existing tracks. Shooter locations are determined by solving a combinatorial least-squares solution for all bullet tracks. It also provides an error ellipse for each shooter, quantifying the uncertainty of shooter location. The paper concludes with examples from the live-fire exercise at the Aberdeen Test Center.

Roberts, R S; Breitfeller, E F

2006-03-31T23:59:59.000Z

372

Sandia National Laboratories: Grand Challenge Laboratory-Directed...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Grand Challenge Laboratory-Directed Research and Development project Recent Sandia Secure, Scalable Microgrid Advanced Controls Research Accomplishments On March 3, 2015, in...

373

Pressure transient method for front tracking  

SciTech Connect (OSTI)

A pressure transient technique for tracking the advance of cold water fronts during water flooding and goethermal injection operations has been developed. The technique is based on the concept that the steady state pressure buildup in the reservoir region inside the front can be calculated by a fluid skin factor. By analyzing successive pressure falloff tests, the advance of the front in the reservoir can be monitored. The validity of the methods is demonstrated by application to three numerically simulated data sets, a nonisothermal step-rate injection test, a series of pressure falloffs in a multilayered reservoir, and a series of pressure falloff tests in a water flooded oil reservoir.

Benson, S.M.; Bodvarsson, G.S.

1983-08-01T23:59:59.000Z

374

Vertexing and Tracking Software at LHCb  

E-Print Network [OSTI]

The LHCb experiment is a dedicated heavy flavour experiment at the LHC. Its primary goal is to search for indirect evidence of New Physics in CP violation and rare decays of beauty and charm hadrons. The detector includes a high granularity silicon-strip vertex detector, a silicon-strip detector upstream of the magnet and three stations of silicon-strip detectors and straw drift tubes downstream of the magnet. The software used to perform the track reconstruction and primary vertex reconstruction is described in detail along with a discussion of its performance.

Bowen, Espen Eie

2015-01-01T23:59:59.000Z

375

Marine asset security and tracking (MAST) system  

DOE Patents [OSTI]

Methods and apparatus are described for marine asset security and tracking (MAST). A method includes transmitting identification data, location data and environmental state sensor data from a radio frequency tag. An apparatus includes a radio frequency tag that transmits identification data, location data and environmental state sensor data. Another method includes transmitting identification data and location data from a radio frequency tag using hybrid spread-spectrum modulation. Another apparatus includes a radio frequency tag that transmits both identification data and location data using hybrid spread-spectrum modulation.

Hanson, Gregory Richard (Clinton, TN); Smith, Stephen Fulton (Loudon, TN); Moore, Michael Roy (Corryton, TN); Dobson, Eric Lesley (Charleston, SC); Blair, Jeffrey Scott (Charleston, SC); Duncan, Christopher Allen (Marietta, GA); Lenarduzzi, Roberto (Knoxville, TN)

2008-07-01T23:59:59.000Z

376

CSE: Financial Engineering Track Robbin Tops, SAM  

E-Print Network [OSTI]

CSE: Financial Engineering Track Robbin Tops, SAM robbin.tops@sam.math.ethz.ch CSE: Financial Stochastic Processes: (Brownian Motion, L´evy processes) 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 -2.5 -2 -1-)Differential Equations: (Heat Equation) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Stochastic

Lang, Annika

377

Turkey Track Wind Farm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark JumpDetective:Toyo AluminiumCityTullahoma,Turbo DynamicsTrack

378

Floating Robots Track Water Flow With Smartphones  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor's note: Since the Flickr platformFloating Robots Track

379

Tracking New Coal-Fired Power Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2Topo II: An EnzymePersonalTracking Living Cells(data

380

Tracking New Coal-Fired Power Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2Topo II: An EnzymePersonalTracking Living Cells(data

Note: This page contains sample records for the topic "laboratory tracking number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

OpenCV and TYZX : video surveillance for tracking.  

SciTech Connect (OSTI)

As part of the National Security Engineering Institute (NSEI) project, several sensors were developed in conjunction with an assessment algorithm. A camera system was developed in-house to track the locations of personnel within a secure room. In addition, a commercial, off-the-shelf (COTS) tracking system developed by TYZX was examined. TYZX is a Bay Area start-up that has developed its own tracking hardware and software which we use as COTS support for robust tracking. This report discusses the pros and cons of each camera system, how they work, a proposed data fusion method, and some visual results. Distributed, embedded image processing solutions show the most promise in their ability to track multiple targets in complex environments and in real-time. Future work on the camera system may include three-dimensional volumetric tracking by using multiple simple cameras, Kalman or particle filtering, automated camera calibration and registration, and gesture or path recognition.

He, Jim; Spencer, Andrew; Chu, Eric

2008-08-01T23:59:59.000Z

382

Sim Track User's Manual (v 1.0)  

SciTech Connect (OSTI)

SimTrack is a simple c++ library designed for the numeric particle tracking in the high energy accelerators. It adopts the 4th order symplectic integrator for the optical transport in the magnetic elements. The 4-D and 6-D weak-strong beam-beam treatments are integrated in it for the beam-beam studies. SimTrack is written with c++ class and standard template library. It provides versatile functions to manage elements and lines. It supports a large range of types of elements. New type of element can be easily created in the library. SimTrack calculates Twiss, coupling and fits tunes, chromaticities and corrects closed orbits. AC dipole and AC multipole are available in this library. SimTrack allows change of element parameters during tracking.

Luo, Y.

2010-01-27T23:59:59.000Z

383

ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY  

E-Print Network [OSTI]

LBNL 58752 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Laboratory Evaluation of California. Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer. 3 #12;Abstract A testing program was undertaken at Lawrence Berkeley National Laboratory and an electric utility

384

National Renewable Energy Laboratory's Energy Systems Integration...  

Broader source: Energy.gov (indexed) [DOE]

National Renewable Energy Laboratory's Energy Systems Integration Facility Overview National Renewable Energy Laboratory's Energy Systems Integration Facility Overview This...

385

Independent Oversight Review, Los Alamos National Laboratory...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Laboratory Chemistry and Metallurgy Research Facility - January 2012 Independent Oversight Review, Los Alamos National Laboratory Chemistry and Metallurgy Research Facility -...

386

adaptive phase tracking: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

de 107 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 9, NO. 7, OCTOBER 1999 1025 Adaptive Motion Tracking Block Matching Algorithms for Video Coding...

387

Dominican Republic-Fast-Track Development of TransformativeClimate...  

Open Energy Info (EERE)

Finally, an additional goal is to return the experiences made to the international political level." References "Fast-Track Development of Transformative Climate-Compatible...

388

Control of Articulated Robot Arm by Eye Tracking.  

E-Print Network [OSTI]

??Eye tracking has many comprehensive achievements in the field of human computer interaction. Uses of human eyes as an alternative of hands are an innovative… (more)

Shahzad, Muhammad

2010-01-01T23:59:59.000Z

389

Microsoft Word - Tracking Subgroup CC 3-27-06.doc  

Broader source: Energy.gov (indexed) [DOE]

about a separate CVSA-sponsored tracking survey. He stated that CVSA established an ad hoc committee to analyze the technologies and security procedures associated with the...

390

Atomistic Simulation of Track Formation by Energetic Recoils...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and nuclear waste immobilization. Citation: Moreira PA, R Devanathan, and WJ Weber.2010."Atomistic Simulation of Track Formation by Energetic Recoils in Zircon."Journal...

391

Societal Implicit Memory and his Speed on Tracking Extrema in ...  

E-Print Network [OSTI]

track about 65% of moving peaks traveling up to ten times faster than the ... is fully discussed in section II. ..... specific benchmark were performed in section III.

Vitorino Ramos

2005-11-22T23:59:59.000Z

392

Fission track evidence for widespread early to Middle miocene...  

Open Energy Info (EERE)

and Range province Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: Fission track evidence for widespread early to Middle miocene...

393
394

MagLab - Microanalysis Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Microanalysis Laboratory BSCCO Sample of the superconducting material bismuth strontium calcium copper oxide (BSCCO). Section pictured measures 120 microns wide. Click on photo for...

395

Radiation Protection | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Radiation Protection Radiation Protection Regulations: The Federal Regulation governing the use of radioactive materials at Ames Laboratory is 10 CFR 835. To implement this...

396

Los Alamos National Laboratory begins  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

one of our highest environmental priorities," said Jeff Mousseau, associate director for environmental programs at the Laboratory. "We've committed this to the state and it's the...

397

with Oak Ridge National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Mechanisms for Partnering with Oak Ridge National Laboratory Partnerships-It's our name, but it also represents our driving philosophy and commitment. Oak Ridge National...

398

Sandia National Laboratories: SMART Grid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SMART Grid Vermont and Sandia National Laboratories Announce Energy Research Center On December 20, 2011, in Energy Efficiency, Grid Integration, Microgrid, Modeling & Analysis,...

399

Beyond Laboratories, Beyond Being Green  

Broader source: Energy.gov (indexed) [DOE]

- Labs21 Introductory Course: High Performance, Low- Energy Design - Labs21 Advanced Course: Laboratory Ventilation Design - Labs21 Workshop: Environmental Performance Criteria -...

400

Sandia National Laboratories: Mechanical Testing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EnergyNuclear Energy Systems Laboratory (NESL) Brayton LabMechanical Testing Mechanical Testing Mechanical Testing Overview Mechanical 1-2 (2008). Standard Test Methods for...

Note: This page contains sample records for the topic "laboratory tracking number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Two Los Alamos National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

event in Albuquerque LOS ALAMOS, N.M., March 26, 2015-Los Alamos National Laboratory's Nuclear Material Control and Accountability Group and the Quality and Performance...

402

GUIDELINES FOR SAFE LABORATORY PRACTICES  

E-Print Network [OSTI]

University's Chemical Hygiene Plan (CHP). The CHP was written to comply with the Occupational Safety in Laboratories (29 CFR 1910.1450)). The CHP is the most detailed

Haller, Gary L.

403

Tracking Multiple Topics for Finding Interesting Articles  

SciTech Connect (OSTI)

We introduce multiple topic tracking (MTT) for iScore to better recommend news articles for users with multiple interests and to address changes in user interests over time. As an extension of the basic Rocchio algorithm, traditional topic detection and tracking, and single-pass clustering, MTT maintains multiple interest profiles to identify interesting articles for a specific user given user-feedback. Focusing on only interesting topics enables iScore to discard useless profiles to address changes in user interests and to achieve a balance between resource consumption and classification accuracy. iScore is able to achieve higher quality results than traditional methods such as the Rocchio algorithm. We identify several operating parameters that work well for MTT. Using the same parameters, we show that MTT alone yields high quality results for recommending interesting articles from several corpora. The inclusion of MTT improves iScore's performance by 25% in recommending news articles from the Yahoo! News RSS feeds and the TREC11 adaptive filter article collection. And through a small user study, we show that iScore can still perform well when only provided with little user feedback.

Pon, R K; Cardenas, A F; Buttler, D J; Critchlow, T J

2008-01-03T23:59:59.000Z

404

Tracking Multiple Topics for Finding Interesting Articles  

SciTech Connect (OSTI)

We introduce multiple topic tracking (MTT) for iScore to better recommend news articles for users with multiple interests and to address changes in user interests over time. As an extension of the basic Rocchio algorithm, traditional topic detection and tracking, and single-pass clustering, MTT maintains multiple interest profiles to identify interesting articles for a specific user given user-feedback. Focusing on only interesting topics enables iScore to discard useless profiles to address changes in user interests and to achieve a balance between resource consumption and classification accuracy. Also by relating a topic's interestingness to an article's interestingness, iScore is able to achieve higher quality results than traditional methods such as the Rocchio algorithm. We identify several operating parameters that work well for MTT. Using the same parameters, we show that MTT alone yields high quality results for recommending interesting articles from several corpora. The inclusion of MTT improves iScore's performance by 9% to 14% in recommending news articles from the Yahoo! News RSS feeds and the TREC11 adaptive filter article collection. And through a small user study, we show that iScore can still perform well when only provided with little user feedback.

Pon, R K; Cardenas, A F; Buttler, D J; Critchlow, T J

2007-02-15T23:59:59.000Z

405

The concrete theory of numbers: initial numbers and wonderful properties of numbers repunit  

E-Print Network [OSTI]

In this work initial numbers and repunit numbers have been studied. All numbers have been considered in a decimal notation. The problem of simplicity of initial numbers has been studied. Interesting properties of numbers repunit are proved: $gcd(R_a, R_b) = R_{gcd(a,b)}$; $R_{ab}/(R_aR_b)$ is an integer only if $gcd(a,b) = 1$, where $a\\geq1$, $b\\geq1$ are integers. Dividers of numbers repunit, are researched by a degree of prime number.

Boris V. Tarasov

2007-04-07T23:59:59.000Z

406

WOOD ANATOMY INSTRUCTIONS FOR LABORATORY  

E-Print Network [OSTI]

WOOD ANATOMY INSTRUCTIONS FOR LABORATORY WORK KATARINA CUFAR, MARTIN ZUPANCIC University of Ljubljana Biotechnical Faculty Department of Wood Science and Technology #12;Publisher Department of Wood The publishing of "Wood Anatomy - Instructions for Laboratory Work", a textbook by Katarina Cufar and Martin

Cufar, Katarina

407

Lab VII -1 LABORATORY VII  

E-Print Network [OSTI]

Lab VII - 1 LABORATORY VII TORQUE AND EQUILIBRIUM For most of this course you treated objects, the approximation of objects as point particles gives an incomplete picture of the real world. This laboratory, acceleration, force, mass, kinetic energy, and momentum. We apply these concepts to objects that have three

Minnesota, University of

408

Automatic Control Laboratory ETH, Zurich  

E-Print Network [OSTI]

Automatic Control Laboratory ETH, Z¨urich Physikstrasse 3 8092 Z¨urich, Switzerland +41 44 632 22 from the airport to Z¨urich city and goes directly past ETH. There are ticket machines outside 71 How to get to the Automatic Control Laboratory (IfA) From the Z¨urich airport: · By Taxi. Taxi

Lygeros, John

409

Laboratory Directed Research and Development  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The order establishes DOE requirements for laboratory directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation. Cancels DOE O 413.3A. Admin Chg 1, dated 1-31-11, cancels DOE O 413.3B. Certified 7-14-2011.

2006-04-19T23:59:59.000Z

410

Review of controlled laboratory experiments on physics of magnetic reconnection  

E-Print Network [OSTI]

Lundquist number of S 1 10 as well as in MHD plasmas with S 100 1000. This article puts a special focus Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey Abstract. We review results-correlated plasma parameters at multiple plasma locations simultaneously, while satellites can only provide

411

Experimental design to determine the effect of temperature and Mach number on entropy noise  

E-Print Network [OSTI]

The Osney Laboratory sought to create an entropy noise test rig that could determine the relationship between entropy noise and the flow parameters of temperature change and nozzle Mach number. The apparatus simulates ...

Hake, Mariah I. (Mariah Inez)

2014-01-01T23:59:59.000Z

412

Muon Tracking to Detect Special Nuclear Materials  

SciTech Connect (OSTI)

Previous experiments have proven that nuclear assemblies can be imaged and identified inside of shipping containers using vertical trajectory cosmic-ray muons with two-sided imaging. These experiments have further demonstrated that nuclear assemblies can be identified by detecting fission products in coincidence with tracked muons. By developing these technologies, advanced sensors can be designed for a variety of warhead monitoring and detection applications. The focus of this project is to develop tomographic-mode imaging using near-horizontal trajectory muons in conjunction with secondary particle detectors. This will allow imaging in-situ without the need to relocate the objects and will enable differentiation of special nuclear material (SNM) from other high-Z materials.

Schwellenbach, D. [NSTec; Dreesen, W. [NSTec; Green, J. A. [NSTec; Tibbitts, A. [NSTec; Schotik, G. [NSTec; Borozdin, K. [LANL; Bacon, J. [LANL; Midera, H. [LANL; Milner, C. [LANL; Morris, C. [LANL; Perry, J. [LANL; Barrett, S. [UW; Perry, K. [UW; Scott, A. [UW; Wright, C. [UW; Aberle, D. [NSTec

2013-03-18T23:59:59.000Z

413

Cooperative Vision Based Estimation and Tracking Using Multiple UAVs  

E-Print Network [OSTI]

Cooperative Vision Based Estimation and Tracking Using Multiple UAVs Brett Bethke, Mario Valenti. Unmanned aerial vehicles (UAVs) are excellent platforms for detecting and tracking objects of interest to give better results than could be achieved with a single UAV, while being robust to failures. In addi

How, Jonathan P.

414

The Marginalized Particle Filter for Automotive Tracking Applications  

E-Print Network [OSTI]

1 The Marginalized Particle Filter for Automotive Tracking Applications Andreas Eidehall Thomas Sch surroundings (lane geometry and the position of other vehicles), which is needed for intelligent automotive in a nonlinear estimation problem. For automotive tracking systems, these problems are traditionally handled

Gustafsson, Fredrik

415

The Marginalized Particle Filter for Automotive Tracking Applications  

E-Print Network [OSTI]

The Marginalized Particle Filter for Automotive Tracking Applications Andreas Eidehall Thomas B surroundings (lane geometry and the position of other vehicles), which is needed for intelligent automotive in a nonlinear estimation problem. For automotive tracking systems, these problems are traditionally handled

Schön, Thomas

416

COLORADO STATE UNIVERSITY TENURE/TENURE TRACK GEOENGINEERING FACULTY POSITION  

E-Print Network [OSTI]

COLORADO STATE UNIVERSITY TENURE/TENURE TRACK GEOENGINEERING FACULTY POSITION DEPARTMENT OF CIVIL University (CSU) invites applications for a tenure/tenure-track faculty position in Geoengineering, which expertise in Geoengineering at CSU includes engineered barriers for in situ waste containment, physical

Schumacher, Russ

417

Model Based Vehicle Tracking for Autonomous Driving in Urban Environments  

E-Print Network [OSTI]

Model Based Vehicle Tracking for Autonomous Driving in Urban Environments Anna Petrovskaya environments. This paper describes moving vehicle tracking module that we developed for our autonomous driving in this area. DARPA has organized a series of competitions for autonomous vehicles. In 2005, autonomous

418

No Issue Left Behind: Reducing Information Overload in Issue Tracking  

E-Print Network [OSTI]

No Issue Left Behind: Reducing Information Overload in Issue Tracking Olga Baysal DIRO Université Science University of Waterloo Waterloo, ON, Canada migod@uwaterloo.ca ABSTRACT Modern software issue-tracking tasks. Categories and Subject Descriptors D.2.2 [Software Engineering]: Design Tools

Godfrey, Michael W.

419

Nonlinear filtering in target tracking using cooperative mobile sensors  

E-Print Network [OSTI]

Collaborative signal processing and sensor deployment have been among the most important research tasks in target tracking using networked sensors. In this paper, the mathematical model is formulated for single target tracking using mobile nonlinear scalar range sensors. Then a sensor deployment strategy is proposed for the mobile sensors and a nonlinear convergent filter is built to estimate the trajectory of the target.

Jiangping Hu; Xiaoming Hu

2011-08-09T23:59:59.000Z

420

GENETIC ALGORITHMS FOR A SINGLE-TRACK VEHICLE AUTONOMOUS PILOT  

E-Print Network [OSTI]

GENETIC ALGORITHMS FOR A SINGLE-TRACK VEHICLE AUTONOMOUS PILOT Dana Vrajitoru Intelligent Systems algorithms to an autonomous pilot designed for motorized single-track vehicles (motorcycles). The pilot contribute efficiently to configuring the autonomous pilot. Key Words Genetic algorithms, multi

Vrajitoru, Dana

Note: This page contains sample records for the topic "laboratory tracking number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Incremental Web Search: Tracking Changes in the Web  

E-Print Network [OSTI]

Incremental Web Search: Tracking Changes in the Web by Ziyang Wang A dissertation submitted #12; Abstract A large amount of new information is posted on the Web every day. Large­scale web search. In this thesis, we present our solutions of searching new information from the web by tracking the changes of web

Mohri, Mehryar

422

Incremental Web Search: Tracking Changes in the Web  

E-Print Network [OSTI]

Incremental Web Search: Tracking Changes in the Web by Ziyang Wang A dissertation submitted amount of new information is posted on the Web every day. Large-scale web search engines often update our solutions of searching new information from the web by tracking the changes of web documents

Mohri, Mehryar

423

Tracking butterfly flight paths across the landscape with harmonic radar  

E-Print Network [OSTI]

Tracking butterfly flight paths across the landscape with harmonic radar E. T. Cant1,*, A. D. Smith of five butterfly species were successfully tracked using harmonic radar within an agricultural landscape. Keywords: butterfly flight; harmonic radar; linear landscape features; Aglais urticae; Inachis io 1

Northampton, University of

424

Development of an Automated Tracking System of Tagged Wild Animals  

E-Print Network [OSTI]

Development of an Automated Tracking System of Tagged Wild Animals Mariya Ishutkina1 Timothy Chan2 and there are about a hundred of them living in the wild. For tracking purposes, each animal is outfitted remaining animals and established a captive-breeding program to restore red wolves in the wild. As pointed

425

Sherlock Holmes and the Bicycle Tracks Edward A. Bender  

E-Print Network [OSTI]

Sherlock Holmes and the Bicycle Tracks by Edward A. Bender "This track, as you perceive, was made wheel cannot turn. Therefore it moves in the same direction as the bicycle frame is pointed, which the wheels on the bicycle. If we draw the tangent line to the wrong curve or go in the wrong direction

Bor, Gil

426

FORENSIC TRACKING AND MOBILITY PREDICTION IN VEHICULAR NETWORKS  

E-Print Network [OSTI]

i #12;ii #12;Chapter 1 FORENSIC TRACKING AND MOBILITY PREDICTION IN VEHICULAR NETWORKS Saif Al been especially tailored for forensic analysis then propose several instances emulating different transportation means. We then use these models to build a full-fledged offline multi-modal forensic tracking sys

Sheldon, Nathan D.

427

The Optimization of ATLAS Track Reconstruction in Dense Environments  

E-Print Network [OSTI]

This note presents recent changes in the ATLAS track reconstruction chain derived from detailed studies of track reconstruction in dense environments. The cores of high $p_{T}$ jets and $\\tau$-leptons are characterized by charged particle distances comparable to the inner detector sensor dimensions. The ambiguity processor stage of the reconstruction chain was over-halled including an improvement of the usage of a NN based approach to identify clusters created by multiple charge particles. Single particle samples are used to demonstrate the alteration in a simple environment. The impact of these changes on tracks in high $p_{T}$ jets are shown to result in more pixel hits on track, a more meaningful split hit definition, and improved track parameter estimation. A 10% increase in b-jet identification for an equal fake rate has been shown.

The ATLAS collaboration

2015-01-01T23:59:59.000Z

428

On bicycle tire tracks geometry, hatchet planimeter, Menzin's conjecture and oscillation of unicycle tracks  

E-Print Network [OSTI]

The model of a bicycle is a unit segment AB that can move in the plane so that it remains tangent to the trajectory of point A (the rear wheel is fixed on the bicycle frame); the same model describes the hatchet planimeter. The trajectory of the front wheel and the initial position of the bicycle uniquely determine its motion and its terminal position; the monodromy map sending the initial position to the terminal one arises. According to R. Foote's theorem, this mapping of a circle to a circle is a Moebius transformation. We extend this result to multi-dimensional setting. Moebius transformations belong to one of the three types: elliptic, parabolic and hyperbolic. We prove a 100 years old Menzin's conjecture: if the front wheel track is an oval with area at least pi then the respective monodromy is hyperbolic. We also study bicycle motions introduced by D. Finn in which the rear wheel follows the track of the front wheel. Such a ''unicycle" track becomes more and more oscillatory in forward direction. We pr...

Levi, M

2008-01-01T23:59:59.000Z

429

Data Compression with Prime Numbers  

E-Print Network [OSTI]

A compression algorithm is presented that uses the set of prime numbers. Sequences of numbers are correlated with the prime numbers, and labeled with the integers. The algorithm can be iterated on data sets, generating factors of doubles on the compression.

Gordon Chalmers

2005-11-16T23:59:59.000Z

430

Geologic Sequestration The National Energy Technology Laboratory and Los Alamos National Laboratory  

E-Print Network [OSTI]

Geologic Sequestration The National Energy Technology Laboratory and Los Alamos National Laboratory) and the National Energy Technology Laboratory (NETL) are collaborating to develop a national plan to determine

431

Economics Environmental Science Track This track of courses is designed for students who want to couple their training in economics  

E-Print Network [OSTI]

1 of 2 Economics Environmental Science Track This track of courses is designed for students who want to couple their training in economics with additional studies in environmental science. Ideally Sciences Environmental Sciences Land Resource Sciences Economics Electives In addition to the economics

Maxwell, Bruce D.

432

People-Tracking-by-Detection and People-Detection-by-Tracking Mykhaylo Andriluka Stefan Roth Bernt Schiele  

E-Print Network [OSTI]

periods of occlusion, the proposed approach combines recent advances in people de- tection with the power of the limbs. This allows us to use a more powerful dynamical model that extends people detectionPeople-Tracking-by-Detection and People-Detection-by-Tracking Mykhaylo Andriluka Stefan Roth Bernt

Zhu, Zhigang

433

Analysis of parameters for a space-based debris-tracking radar  

E-Print Network [OSTI]

for particles ranging in size from four to 80 millimeters. The system employs an electronically scanned phased array as the primary antenna and is designed to optimize the tracking accuracy for particles vrith velocities as great as 25 km/s. To Dr. Thomas... between each face of the antenna complex. The phase shifters can be arranged in many different ways. The primary design criteria are the number and accuracy of the phase shifting networks which are required in a monopulse tracker. These parameters...

Pollock, Michael A

1987-01-01T23:59:59.000Z

434

Optical Characterization Laboratory (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Optical Characterization Laboratory at the Energy Systems Integration Facility. The Optical Characterization Laboratory at NREL's Energy Systems Integration Facility (ESIF) conducts optical characterization of large solar concentration devices. Concentration solar power (CSP) mirror panels and concentrating solar systems are tested with an emphasis is on measurement of parabolic trough mirror panels. The Optical Characterization Laboratory provides state-of-the-art characterization and testing capabilities for assessing the optical surface quality and optical performance for various CSP technologies including parabolic troughs, linear Fresnel, dishes, and heliostats.

Not Available

2011-10-01T23:59:59.000Z

435

Chemical & Engineering News Serving the chemical, life sciences and laboratory worlds  

E-Print Network [OSTI]

Chemical & Engineering News Serving the chemical, life sciences and laboratory worlds Awards Home of Catalysis Science & Technology (Probationary). Chemical & Engineering Or Petroleum Chemistry February 1, 2010 Volume 88, Number 5 p. 42 Sponsored by the George A. Olah Endowment

436

E-Print Network 3.0 - automatic tracking Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

. Secondly, the analysis is useful for automatic model initialization and recovery of lost tracks. Figure 1... of automatic initialization and robustness of tracking. This...

437

E-Print Network 3.0 - angle tracking procedure Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

peculiarities... affect- ing the track appearances is the total internal reflection and inclination angles of elements... tracing method in studying tracks in SSNTDs D....

438

Integrating Geometric, Motion and Appearance Constraints for Robust Tracking in Aerial Videos  

E-Print Network [OSTI]

P. Pan and D. Schonfeld, “Video tracking based on sequentialand S. Mubarak, “Simultaneous video stabilization and movingAlgorithm 2: GMAC aerial video tracking Data: Unstable

Hasan, Mahmudul

2013-01-01T23:59:59.000Z

439

E-Print Network 3.0 - action tracking system Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Products Collection: Environmental Sciences and Ecology 15 CDC's National Environmental Public Health Tracking Network NEW HAMPSHIRE Keeping Track, Promoting Health Summary: the...

440

E-Print Network 3.0 - alpha-track radon monitor Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Public Health Tracking Network COLORADO Keeping Track, Promoting Health Summary: 's geology, topography and industries shape many of these concerns. For example, uranium,...

Note: This page contains sample records for the topic "laboratory tracking number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Laboratories to Explore, Explain VLBACHANDRA  

E-Print Network [OSTI]

National Laboratory Stone and Webster The Boeing Company University of Illinois University of Wisconsin #12 accessible and up to date. A steady stream of about 150 visitors per week log on to the FIRE web site since

442

Laboratories to Explore, Explain VLBACHANDRA  

E-Print Network [OSTI]

Laboratory Stone and Webster The Boeing Company University of Illinois University of Wisconsin #12;NSO to date. A steady stream of about 150 visitors per week log on to the FIRE web site since the site

443

Laboratories to Explore, Explain VLBACHANDRA  

E-Print Network [OSTI]

Laboratory Stone and Webster The Boeing Company University of Illinois University of Wisconsin #12;NSO visitors per week logs on to the FIRE web site since the site was initiated in early July, 1999. #12

444

Welcome to the Ames Laboratory  

ScienceCinema (OSTI)

Alex King, director of The Ames Laboratory, discusses the state of the Lab for 2011, the goals of the Lab and the importance of the research taking place here.

King, Alex

2013-03-01T23:59:59.000Z

445

PHYSICS 122 LABORATORY (Winter, 2015)  

E-Print Network [OSTI]

lab book): 1. Philip R. Bevington and D. Keith Robinson, Data Reduction and Error Analysis For the Physical Sciences, 3rd edition, McGraw-Hill, 2003. [HIGHLY RECOMMENDED- 1 - PHYSICS 122 LABORATORY (Winter, 2015) COURSE GOALS 1. Learn how

Yoo, S. J. Ben

446

PHYSICS 122 LABORATORY (Winter, 2014)  

E-Print Network [OSTI]

Robinson, Data Reduction and Error Analysis For the Physical Sciences, 3rd edition, Mc Introduction. Lecture on Data, Random Errors and Analysis. Intr- 1 - PHYSICS 122 LABORATORY (Winter, 2014) COURSE GOALS 1. Learn how

Yoo, S. J. Ben

447

Statistical Laboratory & Department of Statistics  

E-Print Network [OSTI]

Statistical Laboratory & Department of Statistics Annual Report July 1, 2005 to December 31, 2006...............................................33 Statistical Computing Section ......................................34 CSSM and statistical methodology in the nutritional sciences. We were also very pleased to secure a permanent lecturer

448

Los Alamos National Laboratory opens  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

opens new waste repackaging facility March 7, 2013 Box line facility is largest of its kind ever built LOS ALAMOS, N. M., March 7, 2013-Los Alamos National Laboratory has brought a...

449

Purity FAQ | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Purity FAQ Why do we need high purity metals? How pure are Ames Laboratory's rare earth metals? What do you mean by 5N or 3N? What is the basis? Atomic versus weight based...

450

Laboratory directed research and development  

SciTech Connect (OSTI)

The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory's R D capabilities, and further the development of its strategic initiatives. Among the aims of the projects supported by the Program are establishment of engineering proof-of-principle''; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these project are closely associated with major strategic thrusts of the Laboratory as described in Argonne's Five Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne. Areas of emphasis are (1) advanced accelerator and detector technology, (2) x-ray techniques in biological and physical sciences, (3) advanced reactor technology, (4) materials science, computational science, biological sciences and environmental sciences. Individual reports summarizing the purpose, approach, and results of projects are presented.

Not Available

1991-11-15T23:59:59.000Z

451

Idaho National Laboratory Visitor Information  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

In addition, DOE owns or leases laboratories and administrative offices in the city of Idaho Falls, some 25 miles east of the INL Site border. About 30 percent of INL's...

452

Strategic Technology JET PROPULSION LABORATORY  

E-Print Network [OSTI]

Strategic Technology Directions JET PROPULSION LABORATORY National Aeronautics and Space Administration 2 0 0 9 #12;© 2009 California Institute of Technology. Government sponsorship acknowledged. #12;Strategic Technology Directions 2009 offers a distillation of technologies, their links to space missions

Waliser, Duane E.

453

Laboratory and New Mexico Consortium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

USDA awards 1 million eor e. coli research by Los Alamos National Laboratory and New Mexico Consortium February 29, 2012 LOS ALAMOS, New Mexico, February 29, 2012-Researchers from...

454

Sandia National Laboratories, California Chemical Management Program annual report.  

SciTech Connect (OSTI)

The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Chemical Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This program annual report describes the activities undertaken during the calender past year, and activities planned in future years to implement the Chemical Management Program, one of six programs that supports environmental management at SNL/CA. SNL/CA is responsible for tracking chemicals (chemical and biological materials), providing Material Safety Data Sheets (MSDS) and for regulatory compliance reporting according to a variety of chemical regulations. The principal regulations for chemical tracking are the Emergency Planning Community Right-to-Know Act (EPCRA) and the California Right-to-Know regulations. The regulations, the Hazard Communication/Lab Standard of the Occupational Safety and Health Administration (OSHA) are also key to the CM Program. The CM Program is also responsible for supporting chemical safety and information requirements for a variety of Integrated Enabling Services (IMS) programs primarily the Industrial Hygiene, Waste Management, Fire Protection, Air Quality, Emergency Management, Environmental Monitoring and Pollution Prevention programs. The principal program tool is the Chemical Information System (CIS). The system contains two key elements: the MSDS library and the chemical container-tracking database that is readily accessible to all Members of the Sandia Workforce. The primary goal of the CM Program is to ensure safe and effective chemical management at Sandia/CA. This is done by efficiently collecting and managing chemical information for our customers who include Line, regulators, DOE and ES and H programs to ensure compliance with regulations and to streamline customer business processes that require chemical information.

Brynildson, Mark E.

2012-02-01T23:59:59.000Z

455

CALiPER Testing Laboratories  

Broader source: Energy.gov [DOE]

CALiPER is not a testing laboratory or an accreditation organization. DOE established the CALiPER program to provide accurate and comparable data on LED products by arranging for reliable independent testing and data reporting of commercially available products. The CALiPER program established a process for qualifying testing laboratories to do this testing during the period when appropriate test standards such as LM-79 were under development and not yet covered by nationally recognized accreditation processes.

456

Gallium Safety in the Laboratory  

SciTech Connect (OSTI)

A university laboratory experiment for the US Department of Energy magnetic fusion research program required a simulant for liquid lithium. The simulant choices were narrowed to liquid gallium and galinstan (Ga-In-Sn) alloy. Safety information on liquid gallium and galinstan were compiled, and the choice was made to use galinstan. A laboratory safety walkthrough was performed in the fall of 2002 to support the galinstan experiment. The experiment has been operating successfully since early 2002.

Lee C. Cadwallader

2003-06-01T23:59:59.000Z

457

Gallium Safety in the Laboratory  

SciTech Connect (OSTI)

A university laboratory experiment for the US Department of Energy magnetic fusion research program required a simulant for liquid lithium. The simulant choices were narrowed to liquid gallium and galinstan (Ga-In-Sn) alloy. Safety information on liquid gallium and galinstan were compiled, and the choice was made to use galinstan. A laboratory safety walkthrough was performed in the fall of 2002 to support the galinstan experiment. The experiment has been operating successfully since early 2002.

Cadwallader, L.C.

2003-05-07T23:59:59.000Z

458

Vapor etching of nuclear tracks in dielectric materials  

DOE Patents [OSTI]

A process involving vapor etching of nuclear tracks in dielectric materials for creating high aspect ratio (i.e., length much greater than diameter), isolated cylindrical holes in dielectric materials that have been exposed to high-energy atomic particles. The process includes cleaning the surface of the tracked material and exposing the cleaned surface to a vapor of a suitable etchant. Independent control of the temperatures of the vapor and the tracked materials provide the means to vary separately the etch rates for the latent track region and the non-tracked material. As a rule, the tracked regions etch at a greater rate than the non-tracked regions. In addition, the vapor-etched holes can be enlarged and smoothed by subsequent dipping in a liquid etchant. The 20-1000 nm diameter holes resulting from the vapor etching process can be useful as molds for electroplating nanometer-sized filaments, etching gate cavities for deposition of nano-cones, developing high-aspect ratio holes in trackable resists, and as filters for a variety of molecular-sized particles in virtually any liquid or gas by selecting the dielectric material that is compatible with the liquid or gas of interest.

Musket, Ronald G. (Danville, CA); Porter, John D. (Berkeley, CA); Yoshiyama, James M. (Fremont, CA); Contolini, Robert J. (Lake Oswego, OR)

2000-01-01T23:59:59.000Z

459

Energy Storage Laboratory (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Energy Storage Laboratory at the Energy Systems Integration Facility. At NREL's Energy Storage Laboratory in the Energy Systems Integration Facility (ESIF), research focuses on the integration of energy storage systems (both stationary and vehicle-mounted) and interconnection with the utility grid. Focusing on battery technologies, but also hosting ultra-capacitors and other electrical energy storage technologies, the laboratory will provide all resources necessary to develop, test, and prove energy storage system performance and compatibility with distributed energy systems. The laboratory will also provide robust vehicle testing capability, including a drive-in environmental chamber, which can accommodate commercial-sized hybrid, electric, biodiesel, ethanol, compressed natural gas, and hydrogen fueled vehicles. The Energy Storage Laboratory is designed to ensure personnel and equipment safety when testing hazardous battery systems or other energy storage technologies. Closely coupled with the research electrical distribution bus at ESIF, the Energy Storage Laboratory will offer megawatt-scale power testing capability as well as advanced hardware-in-the-loop and model-in-the-loop simulation capabilities. Some application scenarios are: The following types of tests - Performance, Efficiency, Safety, Model validation, and Long duration reliability. (2) Performed on the following equipment types - (a) Vehicle batteries (both charging and discharging V2G); (b) Stationary batteries; (c) power conversion equipment for energy storage; (d) ultra- and super-capacitor systems; and (e) DC systems, such as commercial microgrids.

Not Available

2011-10-01T23:59:59.000Z

460

ELECTROSTATIC MODELING OF THE JEFFERSON LABORATORY INVERTED CERAMIC GUN  

SciTech Connect (OSTI)

Jefferson Laboratory (JLab) is currently developing a new 500kV DC electron gun for future use with the FEL. The design consists of two inverted ceramics which support a central cathode electrode. This layout allows for a load-lock system to be located behind the gun chamber. The electrostatic geometry of the gun has been designed to minimize surface electric field gradients and also to provide some transverse focusing to the electron beam during transit between the cathode and anode. This paper discusses the electrode design philosophy and presents the results of electrostatic simulations. The electric field information obtained through modeling was used with particle tracking codes to predict the effects on the electron beam.

P. Evtushenko ,F.E. Hannon, C. Hernandez-Garcia

2010-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "laboratory tracking number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

National Renewable Energy Laboratory Analysis Capabilities  

E-Print Network [OSTI]

National Renewable Energy Laboratory Analysis Capabilities Overview The National Renewable Energy Laboratory (NREL) is the nation's primary laboratory for renewable energy and energy efficiency research and development (R&D). NREL

462

Laborlandschaft : redesigning the industrial laboratory module  

E-Print Network [OSTI]

This thesis proposes to redesign the industrial pharmaceutical laboratory typology by rethinking the composition of the laboratory module; the smallest functional sub-unit of the laboratory type. The design for this thesis ...

Farley, Alexander H. (Alexander Hamilton)

2014-01-01T23:59:59.000Z

463

ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY  

E-Print Network [OSTI]

LBNL-254E ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY ALDEHYDE AND OTHER VOLATILE ORGANIC of California. Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer. #12;LBNL Environment Department Environmental Energy Technologies Division Lawrence Berkeley National Laboratory

464

ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY  

E-Print Network [OSTI]

LBNL 51550 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Evaluation of Flow Capture of California. Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer. 3 #12 available flow hoods for residential applications. Results of laboratory and field tests indicate

465

ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY  

E-Print Network [OSTI]

LBNL 54760 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Improving Air Handler Efficiency Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer. 2 #12;Improving Air National Laboratory, Berkeley, CA ABSTRACT Although furnaces, air conditioners and heat pumps have become

466

ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY  

E-Print Network [OSTI]

LBNL-6349E ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Assessing the Costs and Benefits Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer. Acknowledgment This work Division Lawrence Berkeley National Laboratory Ridah Sabouni and Tracy Evans Energetics Incorporated Paul

467

Los Alamos National Laboratory compliance with cultural resource management legislation  

SciTech Connect (OSTI)

Cultural resources management is one aspect of NEPA-induced legislation increasingly affecting federal land managers. A number of regulations, some of them recent, outline management criteria for protecting cultural resources on federal land. Nearly all construction projects at the 11,135 hectare Los Alamos National Laboratory in northern New Mexico are affected by cultural resource management requirements. A substantial prehistoric Puebloan population occupied the Laboratory area from the 13th to the early 16th centuries. Grazing, timbering, and homesteading followed Indian occupation. Therefore, archaeological and historical ruins and artifacts are abundant. The Laboratory has developed a cultural resources management program which meets both legal and project planning requirements. The program operates in coordination with the New Mexico State Historical Preservation Office. Major elements of the Laboratory program are illustrated by a current project involving relocation of a homesteader's cabin located on land required for a major new facility. The Laboratory cultural resource management program couples routine oversight of all engineering design projects with onsite resource surveys and necessary mitigation prior to construction. The Laboratory has successfully protected major archaeological and historical ruins, although some problems remain. The cultural resource program is intended to be adjustable to new needs. A cultural resource management plan will provide long-term management guidance.

Olinger, C.E.; Rea, K.H.

1984-01-01T23:59:59.000Z

468

Sandia National Laboratories Institutional Plan FY1994--1999  

SciTech Connect (OSTI)

This report presents a five year plan for the laboratory. This plan takes advantage of the technical strengths of the lab and its staff to address issues of concern to the nation on a scope much broader than Sandia`s original mission, while maintaining the general integrity of the laboratory. The plan proposes initiatives in a number of technologies which overlap the needs of its customers and the strengths of its staff. They include: advanced manufacturing technology; electronics; information and computational technology; transportation energy technology and infrastructure; environmental technology; energy research and technology development; biomedical systems engineering; and post-cold war defense imperatives.

Not Available

1993-10-01T23:59:59.000Z

469

Energy Efficiency Adult Tracking Report - Final  

SciTech Connect (OSTI)

Postwave tracking study for the Energy Efficiency Adult Campaign This study serves as measure of key metrics among the campaign’s target audience, homeowners age 25+. Key measures include: Awareness of messages relating to the broad issue; Recognition of the PSAs; Relevant attitudes, including interest, ease of taking energy efficient steps, and likelihood to act; Relevant knowledge, including knowledge of light bulb alternatives and energy efficient options; and Relevant behaviors, including specific energy-saving behaviors mentioned within the PSAs. Wave 1: May 27 – June 7, 2011 Wave 2: May 29 – June 8, 2012 Wave 3: May 29 – June 19, 2014 General market sample of adults 25+ who own their homes W1 sample: n = 704; W2: n=701; W3: n=806 Online Survey Panel Methodology Study was fielded by Lightspeed Research among their survey panel. Sample is US Census representative of US homeowners by race/ethnicity, income, age, region, and family status. At least 30% of respondents were required to have not updated major appliances in their home in the past 5 years (dishwasher, stove, refrigerator, washer, or dryer).

Gibson-Grant, Amy

2014-09-30T23:59:59.000Z

470

The Fast Track to Fusion Power  

SciTech Connect (OSTI)

World energy use is predicted to double in the next 40 years. Today, 80% is provided by burning fossil fuels, but this is not sustainable indefinitely because (i) it is driving climate change, and (ii) fossil fuels will eventually be exhausted (starting with oil). The resulting potential energy crisis requires increased investment in energy research and development (which is currently very small on the scale of the $3 trillion p.a. energy market, and falling). The wide portfolio of energy work that should be supported must include fusion, which is one of very few options that are capable in principle of supplying a large fraction of need in an environmentally responsible manner. The case for fusion has been strengthened by recent advances in plasma physics and fusion technology and by studies of fusion power plants that address safety and cost issues. The big questions are, 'How can we deliver fusion power as fast as possible?' and 'How long is it likely to take?' I will review progress in fusion, and argue for a focused fast-track program that could deliver a working prototype power station in less than 30 years.

Smith, Chris Llewellyn (UKAEA, Culham) [UKAEA, Culham

2005-04-28T23:59:59.000Z

471

TRACKING SURPLUS PLUTONIUM FROM WEAPONS TO DISPOSITION  

SciTech Connect (OSTI)

Supporting nuclear nonproliferation and global security principles, beginning in 1994 the United States has withdrawn more than 50 metric tons (MT) of government-controlled plutonium from potential use in nuclear weapons. The Department of Energy (DOE), including the National Nuclear Security Administration, established protocols for the tracking of this "excess" and "surplus" plutonium, and for reconciling the current storage and utilization of the plutonium to show that its management is consistent with the withdrawal policies. Programs are underway to ensure the safe and secure disposition of the materials that formed a major part of the weapons stockpile during the Cold War, and growing quantities have been disposed as waste, after which they are not included in traditional nuclear material control and accountability (NMC&A) data systems. A combination of resources is used to perform the reconciliations that form the basis for annual reporting to DOE, to U.S. Department of State, and to international partners including the International Atomic Energy Agency.

Allender, J.; Beams, J.; Sanders, K.; Myers, L.

2013-07-16T23:59:59.000Z

472

WIPP Satellite Tracking System Relocates to Carlsbad  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory inApprovedRegionalDOEI For

473

Number  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545*.MSE Cores" _ ,' ,:.'' , /v-i 2 -i 3

474

Opportunities with Laboratories under the Chicago Office  

Broader source: Energy.gov (indexed) [DOE]

Laboratories under the Chicago Office 1 Princeton Plasma Physics Laboratory 1. Mechanical Engineering Services; Larry Dudek; 188,000 2. Phone system; William Bryan; 300,000 3....

475

Biomass Catalyst Characterization Laboratory (Fact Sheet), NREL...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Characterization Laboratory Enabling fundamental understanding of thermochemical biomass conversion catalysis and performance NREL is a national laboratory of the U.S....

476

Independent Oversight Review, Lawrence Livermore National Laboratory...  

Office of Environmental Management (EM)

Livermore National Laboratory - September 2011 September 2011 Review of Integrated Safety Management System Effectiveness at Lawrence Livermore National Laboratory This report...

477

Independent Oversight Review, Los Alamos National Laboratory...  

Broader source: Energy.gov (indexed) [DOE]

Review, Los Alamos National Laboratory - September 2011 Independent Oversight Review, Los Alamos National Laboratory Chemistry and Metallurgy Research Facility - January 2012...

478

Independent Oversight Inspection, Sandia National Laboratories...  

Office of Environmental Management (EM)

National Laboratories, Summary Report - February 2003 February 2003 Inspection of Environment, Safety, and Health and Emergency Management at the Sandia National Laboratories...

479

Independent Oversight Review, Argonne National Laboratory - November...  

Office of Environmental Management (EM)

Oversight Review, Argonne National Laboratory - November 2011 Independent Oversight Review, Argonne National Laboratory - November 2011 November 2011 Review of the Argonne National...

480

ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue  

E-Print Network [OSTI]

ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue Argonne, Illinois 60439 Optimizing the Quality S. Munson Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439

Munson, Todd S.

Note: This page contains sample records for the topic "laboratory tracking number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Enterprise Assessments Targeted Review, Argonne National Laboratory...  

Energy Savers [EERE]

Targeted Review, Argonne National Laboratory - November 2014 Enterprise Assessments Targeted Review, Argonne National Laboratory - November 2014 November 2014 Review of the...

482

Independent Oversight Inspection, Argonne National Laboratory...  

Broader source: Energy.gov (indexed) [DOE]

Inspection, Argonne National Laboratory, Volume 1 - May 2005 Independent Oversight Inspection, Argonne National Laboratory, Volume 1 - May 2005 May 2005 Inspection of Environment,...

483

Independent Oversight Inspection, Argonne National Laboratory...  

Broader source: Energy.gov (indexed) [DOE]

Argonne National Laboratory - East, Summary Report - May 2002 Independent Oversight Inspection, Argonne National Laboratory - East, Summary Report - May 2002 May 2002 Inspection of...

484

Independent Oversight Inspection, Argonne National Laboratory...  

Broader source: Energy.gov (indexed) [DOE]

Inspection, Argonne National Laboratory-West - November 2004 Independent Oversight Inspection, Argonne National Laboratory-West - November 2004 November 2004 Emergency Management...

485

Enforcement Documents - Argonne National Laboratory | Department...  

Broader source: Energy.gov (indexed) [DOE]

Argonne National Laboratory Enforcement Documents - Argonne National Laboratory April 10, 2014 Consent Order, UChicago Argonne, LLC - NCO-2014-01 Issued to UChicago Argonne, LLC,...

486

CRAD, Configuration Management - Oak Ridge National Laboratory...  

Broader source: Energy.gov (indexed) [DOE]

Configuration Management - Oak Ridge National Laboratory High Flux Isotope Reactor CRAD, Configuration Management - Oak Ridge National Laboratory High Flux Isotope Reactor February...

487

Independent Oversight Inspection, Oak Ridge National Laboratory...  

Energy Savers [EERE]

Oak Ridge National Laboratory - October 2008 Independent Oversight Inspection, Oak Ridge National Laboratory - October 2008 October 2008 Inspection of Emergency Management at the...

488

Independent Activity Report, Oak Ridge National Laboratory -...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Oak Ridge National Laboratory - October 2011 Independent Activity Report, Oak Ridge National Laboratory - October 2011 October 2011 Operational Awareness Tour of Building 3525...

489

Independent Oversight Review, Oak Ridge National Laboratory ...  

Broader source: Energy.gov (indexed) [DOE]

Review, Oak Ridge National Laboratory - July 2011 Independent Oversight Review, Oak Ridge National Laboratory - July 2011 July 2011 Review of Selected Elements of Emergency...

490

Independent Oversight Environment, Oak Ridge National Laboratory...  

Broader source: Energy.gov (indexed) [DOE]

Environment, Oak Ridge National Laboratory - June 2006 Independent Oversight Environment, Oak Ridge National Laboratory - June 2006 June 2006 Inspection of the Environmental...

491

CRAD, Configuration Management - Oak Ridge National Laboratory...  

Broader source: Energy.gov (indexed) [DOE]

Configuration Management - Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR CRAD, Configuration Management - Oak Ridge National Laboratory High Flux Isotope...

492

Enforcement Documents - Oak Ridge National Laboratory | Department...  

Broader source: Energy.gov (indexed) [DOE]

Oak Ridge National Laboratory Enforcement Documents - Oak Ridge National Laboratory January 20, 2010 Enforcement Letter, Isotek Systems, LLC - January 20, 2010 Issued to Isotek...

493

Independent Oversight Inspection, Oak Ridge National Laboratory...  

Broader source: Energy.gov (indexed) [DOE]

Oak Ridge National Laboratory - October 2008 Independent Oversight Inspection, Oak Ridge National Laboratory - October 2008 October 2008 Inspection of Nuclear Safety at the Oak...

494

Sandia National Laboratories: Fifth International Conference...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SMART Grid, Solar Sandia National Laboratories, the Electric Power Research Institute (EPRI) and European Distributed Energies Research Laboratories (DERlab) have organized a...

495

Accelerated Laboratory Tests Using Simultaneous UV, Temperature...  

Broader source: Energy.gov (indexed) [DOE]

Accelerated Laboratory Tests Using Simultaneous UV, Temperature, and Moisture for PV Encapsulants, Frontsheets, and Backsheets Accelerated Laboratory Tests Using Simultaneous UV,...

496

Laboratories to Explore and Expand VLBACHANDRA  

E-Print Network [OSTI]

Institute of Technology Idaho National Engineering Laboratory Lawrence Livermore National Laboratory is general agreement that the next large machine should, at least, be one that allows the scientific

497

Atmospheric and Surface Science Research Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Atmospheric and Surface Science Research Laboratory Idaho National Laboratory (INL) researchers are contributing to the scientific understanding of contaminant transport through...

498

Oversight Reports - Los Alamos National Laboratory | Department...  

Broader source: Energy.gov (indexed) [DOE]

Oversight Assessment, Los Alamos National Laboratory - April 2012 Assessment of Nuclear Safety Culture at the Los Alamos National Laboratory Chemistry and Metallurgy Research...

499

www.yorku.ca/research Ergonomics Laboratory  

E-Print Network [OSTI]

www.yorku.ca/research Ergonomics Laboratory -- Biomechanics At York School of Kinesiology Salas The Ergonomics Laboratory creates healthier workplaces by reducing individuals' risk of developing

500

National High Magnetic Field Laboratory: Cryogenics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facilities The Mag Lab's Cryogenics Laboratory is a fully developed facility for conducting low temperature experimental research and development. The laboratory, which...