Powered by Deep Web Technologies
Note: This page contains sample records for the topic "laboratory thomas jefferson" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Thomas Jefferson National Accelerator Facility  

Science Conference Proceedings (OSTI)

The Thomas Jefferson National Accelerator Facility (Jefferson Lab) in Newport News, Virginia, USA, is one of ten national laboratories under the aegis of the Office of Science of the U.S. Department of Energy (DOE). It is managed and operated by Jefferson Science Associates, LLC. The primary facility at Jefferson Lab is the Continuous Electron Beam Accelerator Facility (CEBAF) as shown in an aerial photograph in Figure 1. Jefferson Lab was created in 1984 as CEBAF and started operations for physics in 1995. The accelerator uses superconducting radio-frequency (srf) techniques to generate high-quality beams of electrons with high-intensity, well-controlled polarization. The technology has enabled ancillary facilities to be created. The CEBAF facility is used by an international user community of more than 1200 physicists for a program of exploration and study of nuclear, hadronic matter, the strong interaction and quantum chromodynamics. Additionally, the exceptional quality of the beams facilitates studies of the fundamental symmetries of nature, which complement those of atomic physics on the one hand and of high-energy particle physics on the other. The facility is in the midst of a project to double the energy of the facility and to enhance and expand its experimental facilities. Studies are also pursued with a Free-Electron Laser produced by an energy-recovering linear accelerator.

Joseph Grames, Douglas Higinbotham, Hugh Montgomery

2010-09-01T23:59:59.000Z

2

2013 Annual Planning Summary for the Thomas Jefferson Site Office...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thomas Jefferson Site Office 2013 Annual Planning Summary for the Thomas Jefferson Site Office 2013 Annual Planning Summary for the Thomas Jefferson Site Office The ongoing and...

3

Labs at-a-Glance: Thomas Jefferson National Accelerator Facility | U.S. DOE  

Office of Science (SC) Website

Thomas Jefferson Thomas Jefferson National Accelerator Facility Laboratories Ames Laboratory Argonne National Laboratory Brookhaven National Laboratory Fermi National Accelerator Laboratory Lawrence Berkeley National Laboratory Oak Ridge National Laboratory Pacific Northwest National Laboratory Princeton Plasma Physics Laboratory SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility Laboratory Policy and Evaluation Safety, Security and Infrastructure Laboratory Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 Labs at-a-Glance: Thomas Jefferson National Accelerator Facility Print Text Size: A A A RSS Feeds FeedbackShare Page Thomas Jefferson National Accelerator Facility Logo

4

Independent Oversight Inspection, Thomas Jefferson National Accelerator  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thomas Jefferson National Thomas Jefferson National Accelerator Facility - August 2008 Independent Oversight Inspection, Thomas Jefferson National Accelerator Facility - August 2008 August 2008 Inspection of Environment, Safety and Health Programs at the Thomas Jefferson National Accelerator Facility The U.S. Department of Energy (DOE) Office of Independent Oversight, within the Office of Health, Safety and Security (HSS), inspected environment, safety, and health (ES&H) programs at the DOE Thomas Jefferson Site Office (TJSO) and the Thomas Jefferson National Accelerator Facility (TJNAF) during May through July 2008. The ES&H inspection was performed by Independent Oversight's Office of Environment, Safety and Health Evaluations. In coordination with TJSO, TJNAF has taken a number of actions to develop a

5

Thomas Jefferson High School for Science & Technology National...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thomas Jefferson High School for Science & Technology National Science Bowl Champion Thomas Jefferson High School for Science & Technology National Science Bowl Champion May 2,...

6

Thomas Jefferson High School for Science & Technology National Science  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thomas Jefferson High School for Science & Technology National Thomas Jefferson High School for Science & Technology National Science Bowl® Champion Thomas Jefferson High School for Science & Technology National Science Bowl® Champion May 2, 2005 - 12:40pm Addthis WASHINGTON, DC -- "The Incompleteness Theorem" was the answer to a question on mathematics that today clinched the 2005 National Science Bowl® championship for the Thomas Jefferson High School for Science & Technology team from Alexandria, Va. The team received its championship trophy after triumphing over 62 other regional team champions this weekend. The team members are: Logan Kearsley, Matthew Isakowitz, Sam Lederer, Lisa Marrone, Charlotte Seid and coach Sharon Baker. The team also won a research trip to Alaska, three Computer Based Laboratories and $1,000 for their school's science

7

Thomas Jefferson Site Office Homepage | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Home Home Thomas Jefferson Site Office (TJSO) TJSO Home About Current Projects Contract Management Environment, Safety and Health (ES&H) Resources Contact Information Thomas Jefferson Site Office U.S. Department of Energy 12000 Jefferson Avenue Newport News, VA 23606 P: (757) 269-7140 Thomas Jefferson Site Office Pictured Right: Thomas Jefferson Site Office Staff TJSO Staff Photo 1 of 2 Print Text Size: A A A RSS Feeds FeedbackShare Page The Thomas Jefferson Site Office (TJSO) is an organization within the U.S. Department of Energy's Office of Science with responsibility to oversee and manage the Management and Operating (M&O) contract for the Thomas Jefferson National Accelerator Facility (TJNAF) in Newport News, Virginia. TJNAF is one of ten Office of Science Laboratories and is a single program

8

2012 Annual Planning Summary for Thomas Jefferson Site Office  

Energy.gov (U.S. Department of Energy (DOE))

The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2012 and 2013 within Thomas Jefferson Site Office.

9

Thomas Jefferson National Accelerator Facility Technologies ...  

Jefferson Lab also conducts a variety of research using its Free-Electron Laser, which is based on the same electron-accelerating technology used in CEBAF.

10

UNITED STATES DEPARTMENT OF ENERGY (DOE) THOMAS JEFFERSON NATIONAL ACCELERATOR FACILITY (JEFFERSON LAB)  

NLE Websites -- All DOE Office Websites (Extended Search)

- 2014 JSAT Application Package - 2014 JSAT Application Package Page 1 of 6 UNITED STATES DEPARTMENT OF ENERGY (DOE) THOMAS JEFFERSON NATIONAL ACCELERATOR FACILITY (JEFFERSON LAB) JLAB SCIENCE ACTIVITIES FOR TEACHERS (JSAT) ATTENTION ALL 5 th , 6 th AND 8 th GRADE MIDDLE SCHOOL SCIENCE TEACHERS! THIS PROGRAM IS FOR YOU! What is it? JSAT is an after school program for 5 th , 6 th and 8 th grade science teachers designed to build teachers' skills in the physical sciences, funded by the Jefferson Science Associates Initiatives Fund. What will I do? The 2013-2014 program will include interactive activities to enhance physical science instruction at the middle school level and lectures by Jefferson Lab staff on the applications of science. And, yes, teachers WILL receive class sets of some activities!

11

SBOT VIRGINIA THOMAS JEFFERSON LAB POC Danny Llyod Telephone  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

VIRGINIA VIRGINIA THOMAS JEFFERSON LAB POC Danny Llyod Telephone (757) 269-7121 Email lloyd@jlab.org ADMINISTATIVE / WASTE / REMEDIATION Facilities Support Services 561210 Employment Placement Agencies 561311 Travel Agencies 561510 Locksmiths 561622 Exterminating and Pest Control Services 561710 Janitorial Services 561720 Landscaping Services 561730 Carpet and Upholstery Cleaning Services 561740 Hazardous Waste Collection 562112 CONSTRUCTION Industrial Building Construction 236210 Commercial and Institutional Building Construction 236220 Water and Sewer Line and Related Structures Construction 237110 Power and Communication Line and Related Structures Construction 237130 Highway, Street, and Bridge Construction 237310 Other Heavy and Civil Engineering Construction 237990 Other Foundation, Structure, and Building Exterior Contractors

12

A LIMITED LIABILITY PARTNERSHIP 1050 Thomas Jefferson Street, NW  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A LIMITED LIABILITY PARTNERSHIP A LIMITED LIABILITY PARTNERSHIP 1050 Thomas Jefferson Street, NW Seventh Floor Washington, DC 20007 (202) 298-1800 Phone (202) 338-2416 Fax MEMORANDUM TO: DOE Office of General Counsel FROM: Doug Smith DATE: August 29, 2013 RE: Record of Communication Concerning Ceiling Fan and Ceiling Fan Light Kit Framework Document-Docket No. EERE-2012-BT-STD-0045 This memo provides an overview of communications made to DOE staff on the subject of possible changes to standards and test procedures for ceiling fans and ceiling fan light kits. The communications occurred at a meeting held at 10:30 a.m. on August 20, 2013, following the close of the comment period on the initial framework document for ceiling fans and light kits. The meeting attendees included:

13

Finding of No Significant Impact Improvements at the Thomas Jefferson National Accelerator Facility Newsport News, Virginia  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IMPROVEMENTS AT THE THOMAS JEFFERSON NATIONAL ACCELERATOR FACILITY IMPROVEMENTS AT THE THOMAS JEFFERSON NATIONAL ACCELERATOR FACILITY NEWPORT NEWS, VIRGINIA AGENCY: U.S. DEPARTMENT OF ENERGY ACTION: FINDING OF NO SIGNIFICANT IMPACT SUMMARY: The U.S. Department of Energy (DOE) has completed an Environmental Assessment (DOE/EA-1384) for proposed Improvements at the Thomas Jefferson National Accelerator Facility (Jefferson Lab). Newport News, Virginia. Based on the results of the impacts analysis reported in the EA, DOE has determined that the proposed action is not a major Federal action that would significantly affect the quality of the human environment within the context of the National Environmental Policy Act of 1969 (NEPA). Therefore, preparation of an environmental impact statement (EIS) is not necessary, and DOE is issuing this Finding of No

14

Thomas Jefferson Site Office CX Determinations | U.S. DOE Office of Science  

Office of Science (SC) Website

Thomas Jefferson Site Office CX Thomas Jefferson Site Office CX Determinations Integrated Support Center (ISC) ISC Home About Services Freedom of Information Act (FOIA) Privacy Act Categorical Exclusion Determinations Contact Information Integrated Support Center Roxanne Purucker U.S. Department of Energy 9800 S. Cass Avenue Argonne, IL 60439 P: (630) 252-2110 Larry Kelly U.S. Department of Energy 200 Administration Road Oak Ridge, TN 37830 P: (865) 576-0885 Categorical Exclusion (CX) Determinations Thomas Jefferson Site Office CX Determinations Print Text Size: A A A RSS Feeds FeedbackShare Page As of October 31, 2010, there have been no CX determinations made. Categorical Exclusion Determination Documents (CX Determinations): * Determination Date Name of Action: Description Categorical Exclusion Number External link

15

Thomas Jefferson Site Office CX Determinations | U.S. DOE Office of Science  

Office of Science (SC) Website

Thomas Jefferson Site Office CX Determinations Thomas Jefferson Site Office CX Determinations Safety, Security and Infrastructure (SSI) SSI Home Facilities and Infrastructure Safeguards & Security Environment, Safety and Health (ES&H) Organization Chart .pdf file (82KB) Phone Listing .pdf file (129KB) SC HQ Continuity of Operations (COOP) Implementation Plan .pdf file (307KB) Categorical Exclusion Determinations SLI & SS Budget Contact Information Safety, Security and Infrastructure U.S. Department of Energy SC-31/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4097 F: (301) 903-7047 Categorical Exclusion (CX) Determinations Thomas Jefferson Site Office CX Determinations Print Text Size: A A A RSS Feeds FeedbackShare Page As of October 31, 2010, there have been no CX determinations made.

16

Thomas Jefferson National Accelerator Facility Site Tour - Accelerator Map  

NLE Websites -- All DOE Office Websites (Extended Search)

Counting House Free Electron Accelerator Facility Machine Control Center Physics Storage Building North Linear Accelerator South Linear Accelerator VEPCO Substation Machine Control Center Annex Machine Control Center Annex II North Access Building South Access Building Central Helium Liquefier Injector Hall A Truck Ramp Hall B Truck Ramp Hall C Truck Ramp Experimental Hall A Experimental Hall B Experimental Hall C East Arc West Arc Counting House Free Electron Accelerator Facility Machine Control Center Physics Storage Building North Linear Accelerator South Linear Accelerator VEPCO Substation Machine Control Center Annex Machine Control Center Annex II North Access Building South Access Building Central Helium Liquefier Injector Hall A Truck Ramp Hall B Truck Ramp Hall C Truck Ramp Experimental Hall A Experimental Hall B Experimental Hall C East Arc West Arc Science Education Jefferson Lab Jefferson Lab Home Search Jefferson Lab Contact Jefferson Lab Science Education Home Teacher Resources Student Zone Games and Puzzles Science Cinema Programs and Events Search Education Privacy and Security Notice Jefferson Lab Site Tour Guided Tour Site Map Accelerator Area Map Administrative Area Map Tour Index

17

Environmental Assessment Proposed Improvements at the Thomas Jefferson National Accelerator Facility Newport News, Virginia  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

84 84 Environmental Assessment Proposed Improvements at the Thomas Jefferson National Accelerator Facility Newport News, Virginia June 2002 U. S. Department of Energy Oak Ridge Operations Oak Ridge, Tennessee DOE/EA-1384 i TABLE OF CONTENTS Executive Summary.....................................................................................................................1 1. INTRODUCTION..................................................................................................................... 6 1.1 PREVIOUS ACTIONS ............................................................................................................................................. 6 1.2 SCOPE OF THIS PROPOSED ACTION..............................................................................................................

18

Questions and Answers - What did Thomas Jefferson do as a scientist?  

NLE Websites -- All DOE Office Websites (Extended Search)

Who invented magnets? Who invented magnets? Previous Question (Who invented magnets?) Questions and Answers Main Index Next Question (Why does the U.S. use Fahrenheit instead of Celsius?) Why does the U.S. useFahrenheit instead of Celsius? What did Thomas Jefferson do as a scientist? It's true that Thomas Jefferson contributed some new knowledge directly to science and technology. But his main scientific contribution was as a statesman of science. For half a century in public office and in private life, he led the growth of American optimism about science, technology, and the future. Jefferson wished he could be a scientist all the time. When he was leaving the presidency in early 1809, he wrote, "Nature intended me for the tranquil pursuits of science, by rendering them my supreme delight." In

19

The Future of Mr. Jefferson's Laboratory (nee CEBAF)  

E-Print Network (OSTI)

We present one viewpoint plus some general information on the plans for energy upgrades and physics research at the Jefferson Laboratory.

Carl E. Carlson

1997-01-27T23:59:59.000Z

20

Brookhaven National Laboratory - Long Island Regional Science...  

Office of Science (SC) Website

Plasma Physics Laboratory SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility Laboratory Policy and Evaluation Safety, Security and...

Note: This page contains sample records for the topic "laboratory thomas jefferson" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Lawrence Berkeley National Laboratory Regional Science Bowl ...  

Office of Science (SC) Website

Plasma Physics Laboratory SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility Laboratory Policy and Evaluation Safety, Security and...

22

Sandia National Laboratories - Las Positas Regional Science Bowl...  

Office of Science (SC) Website

Plasma Physics Laboratory SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility Laboratory Policy and Evaluation Safety, Security and...

23

Sandia National Laboratories/Las Positas College Regional Science...  

Office of Science (SC) Website

Plasma Physics Laboratory SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility Laboratory Policy and Evaluation Safety, Security and...

24

Brookhaven National Laboratory - Long Island | U.S. DOE Office...  

Office of Science (SC) Website

Plasma Physics Laboratory SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility Laboratory Policy and Evaluation Safety, Security and...

25

Jefferson Lab Contract to be Awarded to Jefferson Science Associates, LLC for Management and Operation of World-Class Office of Science Laboratory  

Energy.gov (U.S. Department of Energy (DOE))

OAK RIDGE , TN - The U.S. Department of Energy has selected Jefferson Science Associates, LLC, as the contractor for management and operation of the Thomas Jefferson National Accelerator Facility....

26

The BEAMS Program at Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

the Thomas Jefferson National Accelerator Facility and Newport News City Public Schools The Thomas Jefferson National Accelerator Facility (Jefferson Lab) is a U.S....

27

Thomas Jefferson  

NLE Websites -- All DOE Office Websites (Extended Search)

2 inches, with a freckled face, rather angular features, hazel-gray eyes, and thick sandy- red hair of silky texture. Although a bit awkward, he had an unusually intelligent...

28

The 12 GeV Energy Upgrade at Jefferson Laboratory  

SciTech Connect

Two new cryomodules and an extensive upgrade of the bending magnets at Jefferson Lab has been recently completed in preparation for the full energy upgrade in about one year. Jefferson Laboratory has undertaken a major upgrade of its flagship facility, the CW re-circulating CEBAF linac, with the goal of doubling the linac energy to 12 GeV. I will discuss here the main scope and timeline of the upgrade and report on recent accomplishments and the present status. I will then discuss in more detail the core of the upgrade, the new additional C100 cryomodules, their production, tests and recent successful performance. I will then conclude by looking at the future plans of Jefferson Laboratory, from the commissioning and operations of the 12 GeV CEBAF to the design of the MEIC electron ion collider.

Pilat, Fulvia C. [JLAB

2012-09-01T23:59:59.000Z

29

Thomas Wallner | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne National Laboratory's Omnivorous Engine Argonne National Laboratory's Omnivorous Engine Argonne National Laboratory's Omnivorous Engine Argonne National Laboratory's Omnivorous Engine Browse by Topic Energy Energy efficiency Vehicles Alternative fuels Automotive engineering Biofuels Diesel Fuel economy Fuel injection Heavy-duty vehicles Hybrid & electric vehicles Hydrogen & fuel cells Internal combustion Powertrain research Vehicle testing Building design Manufacturing Energy sources Renewable energy Bioenergy Solar energy Wind energy Fossil fuels Oil Nuclear energy Nuclear energy modeling & simulation Nuclear fuel cycle Geology & disposal Reactors Nuclear reactor safety Nuclear reactor materials Energy usage Energy life-cycle analysis Energy storage Batteries Lithium-ion batteries Lithium-air batteries Smart Grid

30

Optical modeling of the Jefferson Laboratory IR Demo FEL  

Science Conference Proceedings (OSTI)

The Thomas Jefferson National Accelerator Facility (Jefferson Lab) is in the process of building a 1 kW free-electron laser operates at 3 microns. The details of the accelerator driver are given in other papers in these proceedings. The optical cavity consists of a near-concentric resonator with transmissive outcoupling. Though several free-electron lasers have used similar designs, they have not had to confront the high average-power loading present in this laser. It is useful to know the limits of this type of optical cavity design. The optical system of the laser has been modeled using the commercial code GLAD{reg_sign} by using a Beer`s-law region to mimic the FEL interaction. The effects of mirror heating have been calculated and compared with analytical treatments. The magnitude of the distortion for several materials and wave-lengths has been estimated. The model developed here allows one to quickly determine whether the mirror substrates and coatings are adequate for operation at a given optical power level once the absorption of the coatings, substrate, and transmission are known. Results of calculations of the maximum power level expected using several different sets of mirrors will be presented. Measurements of the distortion in calcium fluoride from absorption of carbon dioxide laser light are planned to benchmark the simulations. Multimode simulations using the code ELIXER have been carried out to characterize the saturated optical mode quality. The results will be presented.

Benson, S.V.; Davidson, P.S.; Jain, R.; Kloeppel, P.K.; Neil, G.R.; Shinn, M.D.

1997-11-01T23:59:59.000Z

31

Light Baryon Spectroscopy using the CLAS Spectrometer at Jefferson Laboratory  

Science Conference Proceedings (OSTI)

Baryons are complex systems of confined quarks and gluons and exhibit the characteristic spectra of excited states. The systematics of the baryon excitation spectrum is important to our understanding of the effective degrees of freedom underlying nucleon matter. High-energy electrons and photons are a remarkably clean probe of hadronic matter, providing a microscope for examining the nucleon and the strong nuclear force. Current experimental efforts with the CLAS spectrometer at Jefferson Laboratory utilize highly-polarized frozen-spin targets in combination with polarized photon beams. The status of the recent double-polarization experiments and some preliminary results are discussed in this contribution.

Volker Crede

2011-12-01T23:59:59.000Z

32

Jefferson Lab Contract to be Awarded to Jefferson Science Associates, LLC  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Jefferson Lab Contract to be Awarded to Jefferson Science Jefferson Lab Contract to be Awarded to Jefferson Science Associates, LLC for Management and Operation of World-Class Office of Science Laboratory Jefferson Lab Contract to be Awarded to Jefferson Science Associates, LLC for Management and Operation of World-Class Office of Science Laboratory April 12, 2006 - 10:17am Addthis OAK RIDGE , TN - The U.S. Department of Energy has selected Jefferson Science Associates, LLC, as the contractor for management and operation of the Thomas Jefferson National Accelerator Facility. The contract, which has a potential value of $2 billion, becomes effective on April 17, 2006. "We have selected the team that we believe is best equipped to lead this important Office of Science laboratory for the department, and we look

33

RF Power Upgrade for CEBAF at Jefferson Laboratory  

Science Conference Proceedings (OSTI)

Jefferson Laboratory (JLab) is currently upgrading the 6GeV Continuous Electron Beam Accelerator Facility (CEBAF) to 12GeV. As part of the upgrade, RF systems will be added, bringing the total from 340 to 420. Existing RF systems can provide up to 6.5 kW of CW RF at 1497 MHZ. The 80 new systems will provide increased RF power of up to 13 kW CW each. Built around a newly designed and higher efficiency 13 kW klystron developed for JLab by L-3 Communications, each new RF chain is a completely revamped system using hardware different than our present installations. This paper will discuss the main components of the new systems including the 13 kW klystron, waveguide isolator, and HV power supply using switch-mode technology. Methodology for selection of the various components and results of initial testing will also be addressed. Notice: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. The U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce this manuscript for U.S. Government purposes.

Andrew Kimber,Richard Nelson

2011-03-01T23:59:59.000Z

34

ELECTROSTATIC MODELING OF THE JEFFERSON LABORATORY INVERTED CERAMIC GUN  

SciTech Connect

Jefferson Laboratory (JLab) is currently developing a new 500kV DC electron gun for future use with the FEL. The design consists of two inverted ceramics which support a central cathode electrode. This layout allows for a load-lock system to be located behind the gun chamber. The electrostatic geometry of the gun has been designed to minimize surface electric field gradients and also to provide some transverse focusing to the electron beam during transit between the cathode and anode. This paper discusses the electrode design philosophy and presents the results of electrostatic simulations. The electric field information obtained through modeling was used with particle tracking codes to predict the effects on the electron beam.

P. Evtushenko ,F.E. Hannon, C. Hernandez-Garcia

2010-05-01T23:59:59.000Z

35

Jefferson Lab Technology Transfer  

List the name (s) of Thomas Jefferson National Accelerator Facility's technology of interest: * Does any foreign entity (company, person, ... Select license type:

36

Jefferson Lab Contract to be Awarded to Jefferson Science Associates...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Awarded to Jefferson Science Associates, LLC for Management and Operation of World-Class Office of Science Laboratory Jefferson Lab Contract to be Awarded to Jefferson Science...

37

The 12 GeV CEBAF Upgrade Project at Thomas Jefferson National Accelerator Facility, OAS-RA-L-11-13  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

12 GeV CEBAF Upgrade 12 GeV CEBAF Upgrade Project at Thomas Jefferson National Accelerator Facility OAS-RA-L-11-13 September 2011 Department of Energy Washington, DC 20585 September 30, 2011 MEMORANDUM FOR THE DEPUTY DIRECTOR FOR SCIENCE PROGRAMS, OFFICE OF SCIENCE DIRECTOR, OFFICE OF RISK MANAGEMENT AND FINANCIAL POLICY, OFFICE OF THE CHIEF FINANCIAL OFFICER FROM: David Sedillo, Director NNSA & Science Audits Division Office of Inspector General SUBJECT: INFORMATION: Audit Report on "The 12 GeV CEBAF Upgrade Project at Thomas Jefferson National Accelerator Facility" Audit Report Number: OAS-RA-L-11-13 BACKGROUND In September 2008, the Department of Energy's (Department) Office of Science approved a construction project to double the electron beam energy of the Continuous Electron Beam

38

SPIN Effects, QCD, and Jefferson Laboratory with 12 GeV electrons  

Science Conference Proceedings (OSTI)

QCD and Spin physics are playing important role in our understanding of hadron structure. I will give a short overview of origin of hadron structure in QCD and highlight modern understanding of the subject. Jefferson Laboratory is undergoing an upgrade that will increase the energy of electron beam up to 12 GeV. JLab is one of the leading facilities in nuclear physics studies and once operational in 2015 JLab 12 will be crucial for future of nuclear physics. I will briefly discuss future studies in four experimental halls of Jefferson Lab.

Prokudin, Alexey [JLAB

2013-11-01T23:59:59.000Z

39

Feasibility Test Run of C-12(e,e'K{sup +}) Reaction at Thomas Jefferson National Accelerator Facility  

DOE Green Energy (OSTI)

The high quality and high duty factor (100%) electron beam at Jefferson Lab offers an opportunity to broaden their view of hypernuclear physics by studying the (e,e{prime}K{sup +}) reaction with high resolution. The present data represent a feasibility study of such a reaction on a carbon target. The test run was carried out during experiments E91-16 (Electroproduction of Kaons and Light Hypernuclei) and E93-18 (Kaon Electroproduction on p(e,e{prime}K{sup +})Y). These two experiments used liquid deuterium and hydrogen targets, respectively. There exist data on an aluminum target for the background calibration of the liquid targets which are suitable also for a feasibility study of electroproduction of hypernuclei. These data are still under analysis. The goal of this test run is to evaluate issues concerned with the electroproduction of hypernuclei. These issues include: (1) the quasi-free production rate, which had not been measured previously, (2) random coincidence background, (3) keon identification over a possibly large hadronic background, and (4) possible evaluation of the production rate of the bound hypernuclear structures. This test run will supply significant knowledge for running high quality hypernuclear experiments at Jefferson Lab. The spectroscopy of hypernuclei has been studied mainly in two ways: the strangeness-exchange reaction (K{sup -}, {pi}{sup -}), and associated strangeness production ({pi}{sup +}, K{sup +}). The (e,e{prime}K{sup +}) reaction has the advantage of exciting both natural- and unnatural-parity states and the possibility of obtaining good energy resolution. The cross section for the (e,e{prime}K{sup +}) reaction is about a hundred times smaller than for the corresponding hadronic production reactions but it is compensated for by the availability of high intensity and high duty factor electron beams. In order to optimize the production rate, the kinematic setting requires both the scattered electron and kaon to be detected at very forward angles. The test run was not optimized for hypernuclear production, but it serves as an important technical evaluation for future hypernuclear programs at Jefferson Lab. The first high-resolution spectroscopy experiment on p-shell lambda hypernuclei is tentatively scheduled to run in 1999 in Hall C at Jefferson Lab.

Wendy Hinton

1998-08-01T23:59:59.000Z

40

Jefferson Lab Technology Transfer  

Tool for Breast Cancer Research - Reducing the need for Biopsy. ... Jefferson Lab is a Department of Energy national laboratory for nuclear physics re ...

Note: This page contains sample records for the topic "laboratory thomas jefferson" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Jefferson Lab Technology Transfer - Thomas Jefferson National ...  

Invention Disclosure; CRADA/WFO Routing; Fairness of Opportunity; America Invents Act Summary; Achievements at JLab. Patents; New Inventions; New ...

42

Jefferson Lab Technology Transfer - Thomas Jefferson National ...  

JSA Invention Disclosure; Technology Transfer Issues (Ombudsman) Programs and Facilities. Free-Electron Laser Program (FEL) Applied Research Center ...

43

Jefferson Lab | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

News item slideshow News item slideshow Final Piece Final Piece Workers install a section of the pre-shower calorimeter, or PCAL, which is part of the CLAS12 detector package in Jefferson Lab's Experimental Hall B. The new equipment is being installed for the 12 GeV Upgrade project. <<< Installation of PCAL in Hall B. Upgraded Detector Upgraded Detector Work on the 12 GeV Upgrade project continues at Jefferson Lab. Shown here is the new CLAS12 detector in Experimental Hall B after the recent installation of the pre-shower calorimeter, or PCAL. <<< Installation work on Hall B detector. Neutron Stopper Neutron Stopper Jefferson Lab engineer Paul Brindza holds up samples of a new system of concrete products designed to stop neutrons and other particles from harming sensitive scientific computers and detectors. The new system was

44

Coherent photoproduction of pi+ from He-3 with CLAS at Jefferson Laboratory  

Science Conference Proceedings (OSTI)

We have measured the differential cross section for the {gamma}{sup 3}He {yields} t{pi}{sup +} reaction. This reaction was studied using the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. Real photons produced with the Hall-B bremsstrahlung tagging system in the energy range from 0.5 to 1.55 GeV were incident on a cryogenic liquid {sup 3}He target. The differential cross sections for the {gamma}{sup 3}He {yields} i{pi}{sup +}t reaction were measured as a function of photon-beam energy and pion-scattering angle Theoretical predictions to date cannot explain the large cross sections except at backward angles, showing that additional components must be added to the model.

Rakhsha Nasseripour, Barry Berman

2011-09-01T23:59:59.000Z

45

Exploration of deeply virtual Compton scattering on the neutron in the Hall A of Jefferson Laboratory  

SciTech Connect

Generalized Parton Distributions (GPDs) are universal functions which provide a comprehensive description of hadron properties in terms of quarks and gluons. Deeply Virtual Compton Scattering (DVCS) is the simplest hard exclusive process involving GPDs. In particular, the DVCS on the neutron is mostly sensitive to E, the less constrained GPD, wich allows to access to the quark angular momentum. The first dedicated DVCS experiment on the neutron ran in the Hall A of Jefferson Lab in fall 2004. The high luminosity of the experiment and the resulting background rate recquired specific devices which are decribed in this document. The analysis methods and the experiment results, leading to preliminary constraints on the GPD E, are presented.

Malek Mazouz

2006-12-08T23:59:59.000Z

46

Electroproduction de pions neutres dans le Hall A au Jefferson Laboratory  

SciTech Connect

The past decade has seen a strong evolution of the study of the hadron structure through exclusive processes, allowing to access to a more complete description of this structure. Exclusive processes include DVCS (Deeply Virtual Compton Scattering) as well as hard exclusive meson production. This document is particularly focussed on the latter, and more particularly on exclusive neutral pion production. In this thesis is described the analysis of triple coincidence events H(e, e'{gamma}{gamma})X, which were a consequent by-product of the DVCS experiment which occured during Fall 2004 at Jefferson Lab Hall A, to extract the ep {yields} ep{pi}{sup 0} cross section. This cross section has been measured at two values of four-momentum transfer Q{sup 2} = 1.9 GeV{sup 2} and Q{sup 2} = 2.3 GeV{sup 2}. The statistical precision for these measurements is achieved at better than 5 %. The kinematic range allows to study the evolution of the extracted cross section as a function of Q{sup 2} and W. Results are be confronted with Regge inspired calculations and Generalized (GPD) predictions. An intepretation of our data within the framework of semi-inclusive deep inelastic scattering is also discussed.

Eric Fuchey

2010-06-01T23:59:59.000Z

47

Radiation Transport Thomas A. Brunner Joint Russian-American Five-Laboratory Conference on  

National Nuclear Security Administration (NNSA)

Forms of Approximate Forms of Approximate Radiation Transport Thomas A. Brunner Joint Russian-American Five-Laboratory Conference on Computational Mathematics/Physics 19-23 June 2005 Vienna, Austria Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The Diffusion Approximation * Taylor Expand Intensity in Angle * Fast, robust, and accurate numerical solutions * Flux can be larger than energy density - More stuff moving than is there to move * Flux Limited Diffusion improves robustness - Limits flux so that it's not larger than energy density - Many different flux limiters Spherical Harmonics (PN) * Intensity expanded further in angle than diffusion

48

Undergraduate Research at Jefferson Lab - Analysis of Contamination Levels  

NLE Websites -- All DOE Office Websites (Extended Search)

Compton Scattering Chamber Compton Scattering Chamber Previous Project (Compton Scattering Chamber) Undergraduate Research Main Index Next Project (Non-linear Multidimensional Optimization) Non-linear Multidimensional Optimization Analysis of Contamination Levels of Jefferson Laboratory SRF Clean Room Facilities during Power Outage Using FE-SEM/EDX Studies of Copper Coupons Student: Kaitlyn M. Fields School: College of William and Mary Mentored By: Ari D. Palczewski and Charles E. Reece Superconducting radiofrequency (SRF) accelerating cavities at Thomas Jefferson National Accelerator Facility support high surface electric and magnetic fields with minimal energy dissipation and resistance. The performance of these cavities can be limited by particulate contamination, which can become a source of enhanced field emission. Clean cavity assembly

49

Laboratories | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Laboratories Laboratories Laboratories Ames Laboratory Argonne National Laboratory Brookhaven National Laboratory Fermi National Accelerator Laboratory Lawrence Berkeley National Laboratory Oak Ridge National Laboratory Pacific Northwest National Laboratory Princeton Plasma Physics Laboratory SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility Laboratory Policy and Evaluation Safety, Security and Infrastructure Laboratory Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 Ames Laboratory Ames Laboratory Argonne Argonne National Laboratory BNL NSLS II Brookhaven National Laboratory Fermilab Wilson Hall Fermi National Accelerator Laboratory Lawrence Berkeley National Laboratory

50

Jefferson Lab Technology Transfer  

For more information about Intellectual Property and Inventions, please see the Jefferson Lab Employee Handbook, the Jefferson Lab Administrative ...

51

Petabyte Class Storage at Jefferson Lab (CEBAF)  

E-Print Network (OSTI)

By 1997, the Thomas Jefferson National Accelerator Facility will collect over one Terabyte of raw information per day of Accelerator operation from three concurrently operating Experimental Halls. When post-processing is included, roughly 250 TB of raw and formatted experimental data will be generated each year. By the year 2000, a total of one Petabyte will be stored on-line.

Rita Chambers Mark; Mark Davis

1996-01-01T23:59:59.000Z

52

Thomas G. Cleary  

Science Conference Proceedings (OSTI)

... Thomas G. Cleary is a chemical engineer in the Engineered Fire Safety Group of the Fire Research Division (FRD) of the Engineering Laboratory ...

2010-10-05T23:59:59.000Z

53

Jefferson Lab Coloring Book  

NLE Websites -- All DOE Office Websites (Extended Search)

Programs and Events Search Education Privacy and Security Notice Jefferson Lab Coloring Book The Jefferson Lab Coloring Book, Quarks - More Than Meets the Eye, was written to help...

54

Jefferson Lab Treasure Hunt  

NLE Websites -- All DOE Office Websites (Extended Search)

Jefferson Lab Treasure Hunt Students tour Jefferson Lab's site while searching for answers to challenging questions. Teacher Overview Download this Activity Lab Pages Questions...

55

Labs at-a-Glance: Ames Laboratory | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Ames Laboratory Ames Laboratory Laboratories Ames Laboratory Argonne National Laboratory Brookhaven National Laboratory Fermi National Accelerator Laboratory Lawrence Berkeley National Laboratory Oak Ridge National Laboratory Pacific Northwest National Laboratory Princeton Plasma Physics Laboratory SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility Laboratory Policy and Evaluation Safety, Security and Infrastructure Laboratory Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 Labs at-a-Glance: Ames Laboratory Print Text Size: A A A RSS Feeds FeedbackShare Page Ames Laboratory Logo Visit the Ames Laboratory website External link Ames Laboratory Quick Facts

56

Thomas Jefferson National Accelerator Facility Technology ...  

Energy Innovation Portal Technologies. Search Help ... This invention can produce copious quantities of carbon nanotubes at rates near grams per hour.

57

Thomas Kirchstetter  

NLE Websites -- All DOE Office Websites (Extended Search)

Thomas Kirchstetter Thomas Kirchstetter Sustainable Energy Systems Group Lawrence Berkeley National Laboratory 1 Cyclotron Road MS 70R0108B Berkeley CA 94720 Office Location: 90-2024J (Office), 70-215 (Lab) (510) 486-7071 TWKirchstetter@lbl.gov Dr. Kirchstetter is a Staff Scientist at Lawrence Berkeley National Laboratory, where he is a Deputy Leader in the Sustainable Energy Systems Group and a member of the Heat Island Group. He studies the role of particulate matter in the environment as it relates to energy use, climate, and air quality. He has more than 50 refereed archival journal papers and holds a concurrent appointment at the University of California, Berkeley as an Associate Adjunct Professor in the Civil and Environmental Engineering Department. Tom's current research interests include:

58

Electroweak Physics at Jefferson Lab  

SciTech Connect

The Continuous Electron Beam Accelerator Facility (CEBAF) at the Thomas Jefferson National Accelerator Facility provides CW electron beams with high intensity, remarkable stability, and a high degree of polarization. These capabilities offer new and unique opportunities to search for novel particles and forces that would require extension of the standard model. CEBAF is presently undergoing an upgrade that includes doubling the energy of the electron beam to 12 GeV and enhancements to the experimental equipment. This upgraded facility will provide increased capability to address new physics beyond the standard model.

R. D. McKeown

2012-03-01T23:59:59.000Z

59

Labs at-a-Glance: Oak Ridge National Laboratory | U.S. DOE Office of  

Office of Science (SC) Website

Oak Ridge Oak Ridge National Laboratory Laboratories Ames Laboratory Argonne National Laboratory Brookhaven National Laboratory Fermi National Accelerator Laboratory Lawrence Berkeley National Laboratory Oak Ridge National Laboratory Pacific Northwest National Laboratory Princeton Plasma Physics Laboratory SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility Laboratory Policy and Evaluation Safety, Security and Infrastructure Laboratory Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 Labs at-a-Glance: Oak Ridge National Laboratory Print Text Size: A A A RSS Feeds FeedbackShare Page Oak Ridge National Laboratory Logo Visit the Oak Ridge National Laboratory

60

Labs at-a-Glance: Brookhaven National Laboratory | U.S. DOE Office of  

Office of Science (SC) Website

Brookhaven Brookhaven National Laboratory Laboratories Ames Laboratory Argonne National Laboratory Brookhaven National Laboratory Fermi National Accelerator Laboratory Lawrence Berkeley National Laboratory Oak Ridge National Laboratory Pacific Northwest National Laboratory Princeton Plasma Physics Laboratory SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility Laboratory Policy and Evaluation Safety, Security and Infrastructure Laboratory Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 Labs at-a-Glance: Brookhaven National Laboratory Print Text Size: A A A RSS Feeds FeedbackShare Page Brookhaven National Laboratory Logo Visit the Brookhaven National Laboratory

Note: This page contains sample records for the topic "laboratory thomas jefferson" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Labs at-a-Glance: Argonne National Laboratory | U.S. DOE Office of Science  

Office of Science (SC) Website

Argonne National Argonne National Laboratory Laboratories Ames Laboratory Argonne National Laboratory Brookhaven National Laboratory Fermi National Accelerator Laboratory Lawrence Berkeley National Laboratory Oak Ridge National Laboratory Pacific Northwest National Laboratory Princeton Plasma Physics Laboratory SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility Laboratory Policy and Evaluation Safety, Security and Infrastructure Laboratory Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 Labs at-a-Glance: Argonne National Laboratory Print Text Size: A A A RSS Feeds FeedbackShare Page Argonne National Laboratory Logo Visit the Argonne National Laboratory

62

Labs at-a-Glance: Pacific Northwest National Laboratory | U.S. DOE Office  

Office of Science (SC) Website

Pacific Pacific Northwest National Laboratory Laboratories Ames Laboratory Argonne National Laboratory Brookhaven National Laboratory Fermi National Accelerator Laboratory Lawrence Berkeley National Laboratory Oak Ridge National Laboratory Pacific Northwest National Laboratory Princeton Plasma Physics Laboratory SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility Laboratory Policy and Evaluation Safety, Security and Infrastructure Laboratory Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 Labs at-a-Glance: Pacific Northwest National Laboratory Print Text Size: A A A RSS Feeds FeedbackShare Page Pacific Northwest National Laboratory Logo Visit the Pacific Northwest National

63

Labs at-a-Glance: Fermi National Accelerator Laboratory | U.S. DOE Office  

Office of Science (SC) Website

Fermi National Fermi National Accelerator Laboratory Laboratories Ames Laboratory Argonne National Laboratory Brookhaven National Laboratory Fermi National Accelerator Laboratory Lawrence Berkeley National Laboratory Oak Ridge National Laboratory Pacific Northwest National Laboratory Princeton Plasma Physics Laboratory SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility Laboratory Policy and Evaluation Safety, Security and Infrastructure Laboratory Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 Labs at-a-Glance: Fermi National Accelerator Laboratory Print Text Size: A A A RSS Feeds FeedbackShare Page Fermi National Accelerator Laboratory Logo Visit the Fermi National Accelerator

64

Labs at-a-Glance: SLAC National Accelerator Laboratory | U.S. DOE Office of  

Office of Science (SC) Website

SLAC National SLAC National Accelerator Laboratory Laboratories Ames Laboratory Argonne National Laboratory Brookhaven National Laboratory Fermi National Accelerator Laboratory Lawrence Berkeley National Laboratory Oak Ridge National Laboratory Pacific Northwest National Laboratory Princeton Plasma Physics Laboratory SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility Laboratory Policy and Evaluation Safety, Security and Infrastructure Laboratory Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 Labs at-a-Glance: SLAC National Accelerator Laboratory Print Text Size: A A A RSS Feeds FeedbackShare Page SLAC National Accelerator Laboratory Logo Visit the SLAC National Accelerator

65

Labs at-a-Glance: Princeton Plasma Physics Laboratory | U.S. DOE Office of  

Office of Science (SC) Website

Princeton Plasma Princeton Plasma Physics Laboratory Laboratories Ames Laboratory Argonne National Laboratory Brookhaven National Laboratory Fermi National Accelerator Laboratory Lawrence Berkeley National Laboratory Oak Ridge National Laboratory Pacific Northwest National Laboratory Princeton Plasma Physics Laboratory SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility Laboratory Policy and Evaluation Safety, Security and Infrastructure Laboratory Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 Labs at-a-Glance: Princeton Plasma Physics Laboratory Print Text Size: A A A RSS Feeds FeedbackShare Page Princeton Plasma Physics Laboratory Logo Visit the Princeton Plasma Physics

66

Labs at-a-Glance: Lawrence Berkeley National Laboratory | U.S. DOE Office  

Office of Science (SC) Website

Lawrence Lawrence Berkeley National Laboratory Laboratories Ames Laboratory Argonne National Laboratory Brookhaven National Laboratory Fermi National Accelerator Laboratory Lawrence Berkeley National Laboratory Oak Ridge National Laboratory Pacific Northwest National Laboratory Princeton Plasma Physics Laboratory SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility Laboratory Policy and Evaluation Safety, Security and Infrastructure Laboratory Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 Labs at-a-Glance: Lawrence Berkeley National Laboratory Print Text Size: A A A RSS Feeds FeedbackShare Page Lawrence Berkeley National Laboratory Logo Visit the Lawrence Berkeley National

67

Steven Thomas  

Energy.gov (U.S. Department of Energy (DOE))

Dr.Steven R. Thomas serves as theFeedstock Supply and Logistics Team Lead for the Bioenergy Technologies Office.

68

Jefferson Lab Technology Transfer  

What is Technology Transfer at Jefferson Lab? The transfer of technology (intellectual property) developed at JLab to the private sector is an ...

69

The Jefferson Lab program: From 6 GeV operations to the 12 GeV upgrade  

Science Conference Proceedings (OSTI)

The Thomas Jefferson National Laboratory and the CEBAF accelerator operated for more than a decade, running a comprehensive scientific program that improved our understanding of the strong interaction. The facility is now moving toward an upgrade of the machine, from 6 to 12 GeV; a new experimental hall will be added and the equipment of the three existing halls will be enhanced. In this contribution some selected results from the rich physics program run at JLab, as well as the prospects for the near future, will be presented.

Marco Battaglieri

2012-04-01T23:59:59.000Z

70

Thomas Richardson  

NLE Websites -- All DOE Office Websites (Extended Search)

Richardson Richardson Electrochemical Technologies Group Lawrence Berkeley National Laboratory 1 Cyclotron Road MS 62-0203 Berkeley CA 94720 Office Location: 62-0321 (510) 486-8619 TJRichardson@lbl.gov This publications database is an ongoing project, and not all Division publications are represented here yet. Publications 2012 Liu, Xiaosong, Jun Liu, Ruimin Qiao, Yan Yu, Hong Li, Liumin Suo, Yong-sheng Hu, Yi-De Chuang, Guojiun Shu, Fangcheng Chou et al. "Phase Transformation and Lithiation Effect on Electronic Structure of LixFePO4: An In-Depth Study by Soft X-ray and Simulations." Journal of the American Chemical Society 134, no. 33 (2012): 13708-13715. 2011 Chen, Guoying, Alpesh K. Shukla, Xiangyun Song, and Thomas J. Richardson. "Improved Kinetics and Stabilities in Mg-Sybstained Li-MnPO4." J. of

71

Finding of no significant impact, decontamination and decommissioning of Battelle Columbus Laboratories in Columbus and West Jefferson, Ohio  

Science Conference Proceedings (OSTI)

This Environmental Assessment has been developed by the Department of Energy in accordance with the requirements of the National Environmental Policy Act of 1969 for the proposed decommissioning of contaminated areas at the Battelle Memorial Institute, Columbus, Ohio. The discussions in Section 1.0 provide general background information on the proposed action. Section 2.0 describes the existing radiological and non-radiological condition of the Battelle Columbus Laboratories. Section 3.0 identifies the alternatives considered for the proposed action and describes in detail the proposed decommissioning project. Section 4.0 evaluates the potential risks the project poses to human health and the environment. Section 5.0 presents the Department of Energy's proposed action. As a result of nuclear research and development activities conducted over a period of approximately 43 years performed for the Department of Energy, its predecessor agencies, and under commercial contracts, the 15 buildings became contaminated with varying amounts of radioactive material. The Department of Energy no longer has a need to utilize the facilities and is contractually obligate to remove that contamination such that they can be used by their owners without radiological restrictions. This Environmental Assessment for the Battelle Columbus Laboratories Decommissioning Project is consistent with the direction from the Secretary of Energy that public awareness and participation be considered in sensitive projects and is an appropriate document to determine action necessary to satisfy the requirements of the National Environmental Policy Act. 30 refs., 6 figs., 9 tabs.

Not Available

1990-01-01T23:59:59.000Z

72

Jefferson Lab Coloring Book  

NLE Websites -- All DOE Office Websites (Extended Search)

Programs and Events Search Education Privacy and Security Notice Jefferson Lab Coloring Book Use the multi-colored crayon on the left-hand side of the screen to select a color....

73

Jefferson Lab's Open House  

NLE Websites -- All DOE Office Websites (Extended Search)

Currently, the date for Jefferson Lab's next Open House hasn't been announced. If you would like to be notified when a date has been set, you can subscribe to the Science Education...

74

Implementation of a level 1 trigger system using high speed serial (VXS) techniques for the 12GeV high luminosity experimental programs at Thomas Jefferson National Accelerator Facility  

SciTech Connect

We will demonstrate a hardware and firmware solution for a complete fully pipelined multi-crate trigger system that takes advantage of the elegant high speed VXS serial extensions for VME. This trigger system includes three sections starting with the front end crate trigger processor (CTP), a global Sub-System Processor (SSP) and a Trigger Supervisor that manages the timing, synchronization and front end event readout. Within a front end crate, trigger information is gathered from each 16 Channel, 12 bit Flash ADC module at 4 nS intervals via the VXS backplane, to a Crate Trigger Processor (CTP). Each Crate Trigger Processor receives these 500 MB/S VXS links from the 16 FADC-250 modules, aligns skewed data inherent of Aurora protocol, and performs real time crate level trigger algorithms. The algorithm results are encoded using a Reed-Solomon technique and transmission of this Level 1 trigger data is sent to the SSP using a multi-fiber link. The multi-fiber link achieves an aggregate trigger data transfer rate to the global trigger at 8 Gb/s. The SSP receives and decodes Reed-Solomon error correcting transmission from each crate, aligns the data, and performs the global level trigger algorithms. The entire trigger system is synchronous and operates at 250 MHz with the Trigger Supervisor managing not only the front end event readout, but also the distribution of the critical timing clocks, synchronization signals, and the global trigger signals to each front end readout crate. These signals are distributed to the front end crates on a separate fiber link and each crate is synchronized using a unique encoding scheme to guarantee that each front end crate is synchronous with a fixed latency, independent of the distance between each crate. The overall trigger signal latency is <3 uS, and the proposed 12GeV experiments at Jefferson Lab require up to 200KHz Level 1 trigger rate.

C. Cuevas, B. Raydo, H. Dong, A. Gupta, F.J. Barbosa, J. Wilson, W.M. Taylor, E. Jastrzembski, D. Abbott

2009-11-01T23:59:59.000Z

75

Thomas Durkin  

NLE Websites -- All DOE Office Websites (Extended Search)

Thomas Durkin Sr. Partner LEED, AP tdurkin@dvpe.net This speaker was a visiting speaker who delivered a talk or talks on the date(s) shown at the links below. This speaker is not...

76

Baryon spectroscopy with CLAS at Jefferson Lab  

Science Conference Proceedings (OSTI)

A substantial part of the experimental efforts at the experimental Hall-B of Jefferson Laboratory is dedicated to this studies of light baryon spectroscopy. In this report a general overview of the experimental capabilities in the Experimental Hall-B will be presented together with preliminary results of recent double polarization measurements and finally overall status of the program.

Eugene Pasyuk, CLAS Collaboration

2012-04-01T23:59:59.000Z

77

NREL: Energy Sciences - Thomas Gennett  

NLE Websites -- All DOE Office Websites (Extended Search)

Thomas Gennett Thomas Gennett Senior Scientist Photo of Thomas Gennett Phone: (303) 384-6628 Email: thomas.gennett@nrel.gov Thomas Gennett is currently a senior scientist at NREL and holds Professor Emeritus of Chemistry and Materials Science status with the Rochester Institute of Technology (RIT). At NREL, Dr. Gennett leads three distinct projects. One focuses on the mechanism of room temperature hydrogen adsorption for carbon based sorbents, the second on the development of advanced materials for direct methanol fuel cell anode catalysts, and the third on development of next generation transparent conductive oxides (TCOs) for photovoltaic applications. Previously, while a Professor at RIT, he was co-founder and director (2001-2003) of the highly successful NanoPower Research Laboratory. Dr. Gennett has had a strong collaboration

78

Thomas W. Vetter  

Science Conference Proceedings (OSTI)

Thomas W. Vetter. Thomas is an inorganic analytical chemist. During his first few years at NIST he determined gases in ...

2012-11-15T23:59:59.000Z

79

JeffersonSTM09.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

AOS: Measurements of Aerosol Optical and AOS: Measurements of Aerosol Optical and AOS: Measurements of Aerosol Optical and Cloud-forming Properties Cloud-forming Properties Anne Jefferson and John Ogren NOAA Environmental Science Research Laboratory CIRES, University of Colorado ARM STM 2009 Aerosol Observing Systems In-situ surface measurements of aerosol optical, chemical, size, hygroscopic and cloud-forming properties * SGP - ARM central facility Lamont, OK *AMF - Pt Reyes, CA 3/2005 - 9/2005 - Niamey, Niger 12/2005-1/2007 - Murg Valley, Germany 4/2007 -1/2008 - Shouxian China 5/2008 - 12/2008 - Graciosa Island, Azores 4/2009 *BRW/NSA - Barrow Alaska *AMF2 ? Darwin? - What instruments support the science? AMF deployment in Shouxian China, HFE HFE was located at a rural, agricultural area ~120 km from Hefei, ~200 km from Nanking

80

JEFFERSON LAB 12 GEV CEBAF UPGRADE  

Science Conference Proceedings (OSTI)

The existing continuous electron beam accelerator facility (CEBAF) at Thomas Jefferson National Accelerator Facility (TJNAF) is a 5-pass, recirculating cw electron Linac operating at approx6 GeV and is devoted to basic research in nuclear physics. The 12 GeV CEBAF Upgrade is a $310 M project, sponsored by the Department of Energy (DOE) Office of Nuclear Physics, that will expand its research capabilities substantially by doubling the maximum energy and adding major new experimental apparatus. The project received construction approval in September 2008 and has started the major procurement process. The cryogenic aspects of the 12 GeV CEBAF Upgrade includes: doubling the accelerating voltages of the Linacs by adding ten new high-performance, superconducting radiofrequency (SRF) cryomodules (CMs) to the existing 42 1/4 cryomodules; doubling of the 2 K cryogenics plant; and the addition of eight superconducting magnets.

Rode, C. H. [Thomas Jefferson National Accelerator Facility, Newport News, Virginia, 23606 (United States)

2010-04-09T23:59:59.000Z

Note: This page contains sample records for the topic "laboratory thomas jefferson" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Overview of Nuclear Physics at Jefferson Lab  

E-Print Network (OSTI)

The Continuous Electron Beam Accelerator Facility (CEBAF) and associated experimental equipment at Jefferson Lab comprise a unique facility for experimental nuclear physics. This facility is presently being upgraded, which will enable a new experimental program with substantial discovery potential to address important topics in nuclear, hadronic, and electroweak physics. Further in the future, it is envisioned that the Laboratory will evolve into an electron-ion colliding beam facility.

R. D. McKeown

2013-03-26T23:59:59.000Z

82

Overview of Nuclear Physics at Jefferson Lab  

E-Print Network (OSTI)

The Continuous Electron Beam Accelerator Facility (CEBAF) and associated experimental equipment at Jefferson Lab comprise a unique facility for experimental nuclear physics. This facility is presently being upgraded, which will enable a new experimental program with substantial discovery potential to address important topics in nuclear, hadronic, and electroweak physics. Further in the future, it is envisioned that the Laboratory will evolve into an electron-ion colliding beam facility.

McKeown, R D

2013-01-01T23:59:59.000Z

83

Science Education at Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

regional and national education community. Jefferson Lab's long-term commitment to science education continues to focus on increasing the number and quality of undergraduate...

84

Undergraduate Research at Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

As a Department of Energy National Lab, Jefferson Lab has a responsibility to help train the next generation of scientists. See the research projects students participating in the...

85

Jefferson Lab Technology Transfer - JLab  

What is Technology Transfer at Jefferson Lab? The transfer of technology (intellectual property) developed at JLab to the private sector is an important element of ...

86

Thomas Jefferson Site Office Categorical Exclusions | U.S. DOE...  

Office of Science (SC) Website

Safety & Health Organization Chart .pdf file (82KB) Phone Listing .pdf file (129KB) SC Categorical Exclusions and NEPA Documents SLI & SS Budget Contact Information Safety,...

87

2010 DOE National Science Bowl Photos - Thomas Jefferson High...  

Office of Science (SC) Website

Facebook Facebook External link Share with Twitter Twitter External link Share with Google Bookkmarks Google Bookmarks External link Email a Friend Email link to: send 2010 DOE...

88

BNL | Thomas Roser  

NLE Websites -- All DOE Office Websites (Extended Search)

Roser Roser Thomas Roser Chair of the Collider-Accelerator Department photo of Thomas Roser With about 400 employees and an annual budget of $140 million, C-AD develops, improves and operates a suite of accelerators used for experiments by an international community of about 1,500 scientists. The department also designs and constructs new accelerators in support of the Laboratory's and national missions. Roser earned a Ph.D. in physics from the Swiss Federal Institute of Technology in Zurich in 1984. He became a research fellow at the University of Michigan in the same year and was appointed assistant professor of physics at the university in 1990. He joined Brookhaven Lab as an associate physicist in 1991, and, in 1994, he became the head of the Accelerator Division for Brookhaven's Alternating Gradient Synchrotron Department,

89

SF6 Emissions Management at Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

SF 6 Emissions Management at Jefferson Lab Kevin Jordan PE Jefferson Lab November 16, 2010 Emissions Management Overview * SF 6 Gas Usage * SF 6 Transfer System * Remote Cesiator *...

90

Jefferson Lab Treasure Hunt - Teacher Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

a chance to see more of Jefferson Lab. Objectives: In this activity students will: - tour Jefferson Lab - collect information to answer questions in the BEAMS Lab Book Notes: -...

91

Neutron Transversity at Jefferson Lab  

SciTech Connect

Nucleon transversity and single transverse spin asymmetries have been the recent focus of large efforts by both theorists and experimentalists. On-going and planned experiments from HERMES, COMPASS and RHIC are mostly on the proton or the deuteron. Presented here is a planned measurement of the neutron transversity and single target spin asymmetries at Jefferson Lab in Hall A using a transversely polarized {sup 3}He target. Also presented are the results and plans of other neutron transverse spin experiments at Jefferson Lab. Finally, the factorization for semi-inclusive DIS studies at Jefferson Lab is discussed.

Jian-Ping Chen; Xiaodong Jiang; Jen-chieh Peng; Lingyan Zhu

2005-09-07T23:59:59.000Z

92

The Jefferson Lab 12 GeV Upgrade  

Science Conference Proceedings (OSTI)

A major upgrade of the Continuous Electron Beam Accelerator Facility (CEBAF) at the Thomas Jefferson National Accelerator Facility is in progress. Construction began in 2008 and the project should be completed in 2015. The upgrade includes doubling the energy of the electron beam to 12 GeV, the addition of a new fourth experimental hall, and new experimental equipment in three of the experimental halls. A brief overview of this upgrade project is presented along with some highlights of the anticipated experimental program.

R.D. McKeown

2011-10-01T23:59:59.000Z

93

Jefferson Lab Technology Transfer  

Title to invention of sponsor or laboratory operator goes to sponsor under class patent waiver and sponsor ... Disclosure to sponsor of laboratory ...

94

Iran Thomas Auditorium, 8600 Charged Domain Walls in Ferroelectrics  

NLE Websites -- All DOE Office Websites (Extended Search)

Monday, February 4, 2013 11:00 am Iran Thomas Auditorium, 8600 Charged Domain Walls in Ferroelectrics Alexander K. Tagantsev Ceramics Laboratory, Swiss Federal Institute of...

95

Spin Asymmetries on Nucleon Experiment at Jefferson Lab  

SciTech Connect

The Spin Asymmetries of the Nucleon Experiment (SANE) of Jefferson Lab is a comprehensive measurement of double spin asymmetries of the proton for both parallel and almost perpendicular spin configurations of the proton spin and the electron beam polarization directions. The experiment will provide both spin structure functions, g2 and g1 and spin observable A2 and A1 of the proton over Q2 region from 2.5 to 6.5 GeV2/c2 and Bjorken x region of 0.3 to 0.8. Using the polarized electron beam of Thomas Jefferson National Accelerator Facility and the polarized frozen NH3 target, the data were taken early 2009 in Hall C of Jefferson Lab. Scattered electrons from the inclusive reaction were detected by the Big Electron Telescope Array (BETA), a new non-magnetic detector with a large acceptance of 194 msr. The current analysis effort is focused on the proton spin structure functions g2 and g1. Physics motivations with the experimental methods will be presented with an overvew of the current status of the data analysis.

Seonho Choi

2011-10-01T23:59:59.000Z

96

Spin Asymmetries on Nucleon Experiment at Jefferson Lab  

SciTech Connect

The Spin Asymmetries of the Nucleon Experiment (SANE) of Jefferson Lab is a comprehensive measurement of double spin asymmetries of the proton for both parallel and almost perpendicular spin configurations of the proton spin and the electron beam polarization directions. The experiment will provide both spin structure functions, g{sub 2} and g{sub 1} and spin observable A{sub 2} and A{sub 1} of the proton over Q{sup 2} region from 2.5 to 6.5 GeV{sup 2}/c{sup 2} and Bjorken x region of 0.3 to 0.8. Using the polarized electron beam of Thomas Jefferson National Accelerator Facility and the polarized frozen NH{sub 3} target, the data were taken early 2009 in Hall C of Jefferson Lab. Scattered electrons from the inclusive reaction were detected by the Big Electron Telescope Array (BETA), a new non-magnetic detector with a large acceptance of 194 msr. The current analysis effort is focused on the proton spin structure functions g{sub 2} and g{sub 1}. Physics motivations with the experimental methods will be presented with an overview of the current status of the data analysis.

Choi, Seonho [Department of Physics, Seoul National University, Seoul 151-747 (Korea, Republic of)

2011-10-21T23:59:59.000Z

97

An Overview of Dark Matter Experiments at Jefferson Lab  

Science Conference Proceedings (OSTI)

Dark Matter research at Jefferson Lab started in 2006 with the LIght Pseudoscalar and Scalar Search (LIPSS) collaboration to check the validity of results reported by the PVLAS collaboration. In the intervening years interest in dark matter laboratory experiments has grown at Jefferson Lab. Current research underway or in planning stages probe various mass regions covering 14 orders of magnitude: from 10{sup -6} eV to 100 MeV. This presentation will be an overview of our dark matter efforts, three of which focus on the hypothesized A' gauge boson.

James Boyce

2012-09-01T23:59:59.000Z

98

Jefferson Offshore | Open Energy Information  

Open Energy Info (EERE)

Jefferson Offshore Jefferson Offshore Facility Jefferson Offshore Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Coastal Point Energy LLC Developer Coastal Point Energy LLC Location Gulf of Mexico TX Coordinates 29.568°, -93.957° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.568,"lon":-93.957,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

99

Teacher Night at Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Night at Jefferson Lab Night at Jefferson Lab Region II Physical Science Teacher Night for Elementary and Middle School Teachers April 2nd, 2014 6:30 pm - 8:00 pm Come for the FUN! You won't want to miss the annual Virginia Region II Teacher Night at Jefferson Lab! This year's focus is on physical science activities for upper elementary and middle school teachers. Format for the Evening Think of a Science Fair with enthusiactic students lined up at tables waiting to show you their projects... Teacher Night will be similar, except enthusiactic teachers will be waiting to share one of their favorite classroom activities with YOU! All teachers will have handouts and many will have starter supplies to accompany the handouts - that's right, FREE MATERIALS! Activity Topics Friction - Electrolysis - Water Cycle - Engineering Design Challenge -

100

What's used to steer Jefferson Lab's...  

NLE Websites -- All DOE Office Websites (Extended Search)

What's used to steer Jefferson Lab's electron beam? Although it may not look like it at first, the Jefferson Lab accelerator really works much like your TV set. Electrons are...

Note: This page contains sample records for the topic "laboratory thomas jefferson" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Thomas Peterka | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

of flow field data Telephone (630) 252-7198 E-mail tpeterka@mcs.anl.gov Publications View Publications Website www.mcs.anl.govtpeterka Projects DIY: Do-it-Yourself Analysis...

102

Neutron Structure at Large X | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 3:30PM to 4:30PM Presenter Cynthia Keppel, Thomas Jefferson National Accelerator Facility Location Building 203, Room R150 Type Seminar Series Physics Division Seminar...

103

Laboratory Directed Research and Development Program FY 2001  

E-Print Network (OSTI)

Brookhaven National Laboratory to measure the coherent far-infrared emitted from a bend magnet in the Jefferson Lab

Hansen, Todd; Levy, Karin

2002-01-01T23:59:59.000Z

104

Iran Thomas Auditorium, 8600  

NLE Websites -- All DOE Office Websites (Extended Search)

Thursday, December 6, 2012 11:00 am Iran Thomas Auditorium, 8600 1000 Shapes and 1000 Uses of Designer Carbon Nanostructures David Tomnek Physics and Astronomy Department,...

105

Iran Thomas Auditorium, 8600  

NLE Websites -- All DOE Office Websites (Extended Search)

October 8, 2010 11:00am Iran Thomas Auditorium, 8600 Growth and interface properties of oxide heterostructures Guus Rijnders MESA+ Institute for Nanotechnology University of...

106

Iran Thomas Auditorium, 8600  

NLE Websites -- All DOE Office Websites (Extended Search)

February 17, 2011 2:00 pm Iran Thomas Auditorium, 8600 Field-Based Simulations for the Design of Polymer Nanostructures Glenn H. Fredrickson Mitsubishi Professor of Chemical...

107

Iran Thomas Auditorium, 8600  

NLE Websites -- All DOE Office Websites (Extended Search)

Tuesday, March 5, 2013 2:00 pm Iran Thomas Auditorium, 8600 Materials-related aspects of photocatalysis: Insights from first principles simulations Annabella Selloni Princeton...

108

Iran Thomas Auditorium, 8600  

NLE Websites -- All DOE Office Websites (Extended Search)

April 19, 2013 11:00 am Iran Thomas Auditorium, 8600 New Methods for Controlling the Structures and Functions of Synthetic Polymers Christopher Bielawski University of Texas at...

109

Iran Thomas Auditorium, 8600  

NLE Websites -- All DOE Office Websites (Extended Search)

August 27, 2010 11:00 am Iran Thomas Auditorium, 8600 Theory of dielectric and ferroelectric properties of ultrathin films and superlattices David Vanderbilt Department of Physics...

110

Iran Thomas Auditorium, 8600  

NLE Websites -- All DOE Office Websites (Extended Search)

December 10, 2010 11:00am Iran Thomas Auditorium, 8600 Viscoelastic effect on formation of mesoglobular phase (nanoparticles) in dilute solutions: A point of view different from...

111

Iran Thomas Auditorium, 8600  

NLE Websites -- All DOE Office Websites (Extended Search)

March 22, 2013 11:00 am Iran Thomas Auditorium, 8600 Dynamics of Polymers in Polymer Nanocomposites Dieter Richter Jlich Centre for Neutron Science, Institute for Complex...

112

Iran Thomas Auditorium, 8600  

NLE Websites -- All DOE Office Websites (Extended Search)

8, 2012 4:00 pm Iran Thomas Auditorium, 8600 Systematic theory-guided nano-engineering of molecular order, lattice dimensionality, and viscoelastic properties of organic...

113

10 Questions for an Automotive Engineer: Thomas Wallner | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10 Questions for an Automotive Engineer: Thomas Wallner 10 Questions for an Automotive Engineer: Thomas Wallner 10 Questions for an Automotive Engineer: Thomas Wallner June 17, 2011 - 3:30pm Addthis Argonne mechanical engineer Thomas Wallner adjusts Argonne's "omnivorous engine," an automobile engine that Wallner and his colleagues have tailored to efficiently run on blends of gasoline, ethanol and butanol. | Courtesy of: Argonne National Laboratory. Argonne mechanical engineer Thomas Wallner adjusts Argonne's "omnivorous engine," an automobile engine that Wallner and his colleagues have tailored to efficiently run on blends of gasoline, ethanol and butanol. | Courtesy of: Argonne National Laboratory. Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs Meet Thomas Wallner - automotive engineer extraordinaire, who hails from

114

John Thomas - Research Staff - FEERC  

NLE Websites -- All DOE Office Websites (Extended Search)

John Thomas John Thomas R&D Staff Member Specialty: Automotive Fuel Economy, Emissions, and Aftertreatment John began his career at Oak Ridge National Laboratory in 1978 and has broad experience in fossil energy technology, fuels, combustion, energy conversion, combined heat and power and power generation systems. His most recent R&D efforts include the effects of intermediate ethanol fuel blends on the legacy vehicle fleet and non-road engines, ethanol/gasoline blend engine and vehicle performance and exploring emerging fuel and/or petroleum saving technologies on vehicles. Other recent work includes R&D involving a range of diesel exhaust emissions aftertreatment technologies including soot filters, NOx adsorber catalysts, hydrocarbon SCR, and urea

115

Jefferson Lab 12 GeV CEBAF Upgrade  

Science Conference Proceedings (OSTI)

The existing continuous electron beam accelerator facility (CEBAF) at Thomas Jefferson National Accelerator Facility (TJNAF) is a 5-pass, recirculating cw electron Linac operating at ~6 GeV and is devoted to basic research in nuclear physics. The 12 GeV CEBAF Upgrade is a $310 M project, sponsored by the Department of Energy (DOE) Office of Nuclear Physics, that will expand its research capabilities substantially by doubling the maximum energy and adding major new experimental apparatus. The project received construction approval in September 2008 and has started the major procurement process. The cryogenic aspects of the 12 GeV CEBAF Upgrade includes: doubling the accelerating voltages of the Linacs by adding ten new high-performance, superconducting radiofrequency (SRF) cryomodules (CMs) to the existing 42 1/4 cryomodules; doubling of the 2 K cryogenics plant; and the addition of eight superconducting magnets.

Claus Rode

2010-04-01T23:59:59.000Z

116

Thomas Edison | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Thomas Edison Tesla vs. Edison 62 likes Thomas Edison Inventor Known as "The Wizard of Menlo Park," Edison was an American inventor who developed the first commercially practical...

117

High School Research at Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

As a Department of Energy National Lab, Jefferson Lab has a responsibility to help train the next generation of scientists. See the research projects students participating in the...

118

Vascular Flora of the Rocky Flats Area, Jefferson County, Colorado...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vascular Flora of the Rocky Flats Area, Jefferson County, Colorado, USA Vascular Flora of the Rocky Flats Area, Jefferson County, Colorado, USA August 2010 Jody K. Nelson Vascular...

119

Jefferson Utilities | Open Energy Information  

Open Energy Info (EERE)

Jefferson Utilities Jefferson Utilities Place Wisconsin Utility Id 9690 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cp-1 Small Power Service between 50kW and 200kW Demand with Parallel Generation(20kW or less) Industrial Cp-1 Small Power Service between 50kW and 200kW Demand Industrial Cp-1 TOD Small Power Service between 50kW and 200kW Demand Optional Time-of-Day Service 7am-9pm with Parallel Generation(20kW or less) Industrial Cp-1 TOD Small Power Service between 50kW and 200kW Demand Optional

120

Iran Thomas Auditorium, 8600  

NLE Websites -- All DOE Office Websites (Extended Search)

May 3, 2012 4:00 pm Iran Thomas Auditorium, 8600 Understanding the Behavior of Nanoscale Magnetic Heterostructures: How Microscopy Can Help Amanda K. Petford-Long Center for...

Note: This page contains sample records for the topic "laboratory thomas jefferson" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Thomas Reddinger Director, Steam  

E-Print Network (OSTI)

(Distribution) Deborah Moorhead Office Coordinator III Martin Bower Steam Plant Operator Richard Redfield SteamThomas Reddinger Director, Steam Operations Steven Richards Assistant Manager of Maintenance Plant Operator Bohdan Sawa Steam Plant Operator Robert Tedesco Steam Plant Operator James Bradley

Raina, Ramesh

122

Iran Thomas Auditorium, 8600  

NLE Websites -- All DOE Office Websites (Extended Search)

September 27, 2012 2:00 pm Iran Thomas Auditorium, 8600 Exploring the Physics of Graphene with Local Probes Joseph A. Stroscio Center for Nanoscale Science and Technology, NIST...

123

Pilar Thomas | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pilar Thomas Pilar Thomas About Us Pilar Thomas - Deputy Director, Office of Indian Energy Policy and Programs Pilar Thomas Pilar Thomas (Pascua Yaqui) is the Deputy Director in the Office of Indian Energy Policy and Programs. As Deputy Director, Ms. Thomas assists the Director in developing national energy policy and programs related to Indian energy development. Ms. Thomas is also responsible for developing and implementing policy efforts within the Department and federal government to achieve the Office's Indian Energy policy objectives. Prior to joining the Department, Ms. Thomas served as the Deputy Solicitor for Indian Affairs in the U.S. Department of the Interior. Appointed as Deputy Solicitor in September 2009, Ms. Thomas was responsible for providing day to day legal advice and counsel to the Secretary, the

124

Math and Science Activities from Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

BEAMS is a program in which classes of 6th, 7th and 8th grade students are exposed to the scientific environment of Jefferson Lab. For five consecutive days during school hours, classes of 6th grade students and their teachers participate in science and math activities conducted with Jefferson Lab staff. The students return to the lab in the 7th and 8th grades for additional activities which reinforce their 6th grade experience. Feel free to copy and alter these activities for use in your class. 6th Grade Background Materials Vocabulary List What is Matter? What is Jefferson Lab? Careers at Jefferson Lab Periodic Table of Elements Puzzles and Games BEAMS Word Search Element Word Search Geometry Word Search BEAMS Bingo Element Bingo BEAMS Crossword Puzzle BEAMS Cryptograph

125

Thomas H. Smouse Memorial Fellowship  

Science Conference Proceedings (OSTI)

Awarded to a graduate student doing research in areas of interest to AOCS. Thomas H. Smouse Memorial Fellowship Thomas H. Smouse Memorial Fellowship graduate research scholastically outstanding Smouse Award Student Award Student Awards achievemen

126

Thomas Reddinger Director, Steam  

E-Print Network (OSTI)

Supervisor (Distribution) Deborah Moorhead Office Coordinator III Martin Bower Steam Plant Operator RichardThomas Reddinger Director, Steam Operations Steven Richards Assistant Manager of Maintenance Redfield Steam Plant Operator SU Steam Station/Chilled Water Plant Bohdan Sawa Steam Plant Operator Robert

McConnell, Terry

127

Optical modeling of the Jefferson Lab IR Demo FEL  

Science Conference Proceedings (OSTI)

The Thomas Jefferson National Accelerator Facility (formerly known as CEBAF) has embarked on the construction of a 1 kW free-electron laser operating initially at 3 microns that is designed for laser-material interaction experiments and to explore the feasibility of scaling the system in power and wavelength for industrial and Navy defense applications. The superconducting radio-frequency linac, and single-pass transport which accelerates the beam from injector to wiggler, followed by energy-recovery deceleration to a dump. The electron and optical beam time structure in the design consists of a train of pecosecond pulses at a 37.425 MHz pulse repetition rate. The initial optical configuration is a conventional near-concentric resonator with transmissive outcoupling. Future upgrades of the system will increase the power and shorten the operating wavelength, and utilize a more advanced resonator system capable of scaling to high powers. The optical system of the laser has been mode led using the GLAD code by using a Beer's-law region to mimic the FEL interaction. Effects such as mirror heating have been calculated and compared with analytical treatments. The magnitude of the distorium for several materials and wavelengths has been estimated. The advantages as well as the limitations of this approach are discussed.

G. Neil; S. Benson; Michelle D. Shinn; P. Davidson; P. Kloppel

1997-01-01T23:59:59.000Z

128

Mr. Thomas Dwyer  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thomas Dwyer Thomas Dwyer 5007 Clarevalley Drive Cincinnati, OH 45238 Dear Mr. Dwyer: Department of Energy Washington, DC 20585 OCT -4 2000 Re: OHA Case No. VBB-0005 This letter concerns the complaint of reprisal that you submitted to the Department of Energy under 10 C.F.R. Part 708. You have filed a petition for Secretarial review of the appeal decision issued to you on July 24, 2000. The Part 708 regulations applicable to the petition provide that the Secretary will reverse or revise an appeal decision by the Director of the Office of Hearings and Appeals only under extraordinary circumstances. 10 C.F.R. § 708.35(d). After fully evaluating all the issues that you raised in your filing dated September 8, 2000, I have determined that you have not shown that

129

Thomas B. Watson | BNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Thomas B. Watson Thomas B. Watson Chemist Watson is a Chemist and has been the leader of the Tracer Technology Group for 7 years. He has more than 21 years experience in atmospheric transport and dispersion research using intentionally released tracer compounds. His research has been focused on the processes of short- and long-range atmospheric diffusion, dispersion, and transport, and on the chemical transformation of natural and anthropogenic compounds in the atmosphere. Most of his work has been in the design, execution, and interpretation of field measurement programs and has been used in the development of predictive tools for the national security and emergency response communities. He has supervised tracer, release, sampling, and analysis for two field campaigns for Urban Dispersion Program and four programs for the

130

Jefferson Power Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Biomass Facility Biomass Facility Jump to: navigation, search Name Jefferson Power Biomass Facility Facility Jefferson Power Sector Biomass Owner Jefferson Power LLC Location Monticello, Florida Coordinates 30.5452022°, -83.8701636° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.5452022,"lon":-83.8701636,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

131

JEFFERSON LAB HIGH SCHOOL SUMMER HONORS PROGRAM Application Procedure  

NLE Websites -- All DOE Office Websites (Extended Search)

JEFFERSON LAB HIGH SCHOOL SUMMER HONORS PROGRAM JEFFERSON LAB HIGH SCHOOL SUMMER HONORS PROGRAM Application Procedure Dear Student Applicant: To be eligible to participate in the Jefferson Lab High School Summer Honors Program, you must attend a local high school (within 60 miles of Jefferson Lab), be at least 16 years old by the start date of the program, be in good academic standing, and maintain at least a 3.3 grade point average. Students who are selected to participate in the Jefferson Lab High School Summer Honors Program are chosen on the basis of demonstrated skills and merit. Dependents of Jefferson Lab employees are not eligible for this program. The 2014 Jefferson Lab High School Summer Honors Program begins on June 23, 2014 and concludes on August 1, 2014. To apply to the Jefferson Lab High School Summer Honors Program, follow the

132

Jefferson Lab Guided Tour - What is an accelerator?  

NLE Websites -- All DOE Office Websites (Extended Search)

What is an accelerator? Welcome to Jefferson Lab Why was Jefferson Lab built? How do scientists study quarks? What is an accelerator? How does the accelerator work? Why use...

133

Jefferson Lab Guided Tour - How does the accelerator work?  

NLE Websites -- All DOE Office Websites (Extended Search)

How does the accelerator work? Welcome to Jefferson Lab Why was Jefferson Lab built? How do scientists study quarks? What is an accelerator? How does the accelerator work? Why use...

134

NREL: Biomass Research - Thomas Foust  

NLE Websites -- All DOE Office Websites (Extended Search)

Thomas Foust Thomas Foust Photo of Thomas Foust Dr. Thomas Foust is an internationally recognized expert in the biomass field. His areas of expertise include feedstock production, biomass-to-fuels conversion technologies, and environmental and societal sustainability issues associated with biofuels. He has more than 20 years of research and research management experience, specializing in biomass feedstocks and conversion technologies. As National Bioenergy Center Director, Dr. Foust guides and directs NREL's research efforts to develop biomass conversion technologies via biochemical and thermochemical routes, as well as critical research areas addressing the sustainability of biofuels. This research focuses on developing the necessary science and technology for converting biomass to biofuels,

135

Nucleon spin structure at Jefferson Lab  

Science Conference Proceedings (OSTI)

In the past decade an extensive experimental program to measure the spin structure of the nucleon has been carried out in the three halls at Jefferson Lab. Using a longitudinally polarized beam scattering off longitudinally or transversely polarized 3 He NH 3 and ND 3 targets

The CLAS collaboration

2011-01-01T23:59:59.000Z

136

NREL: Energy Analysis - Thomas Jenkin  

NLE Websites -- All DOE Office Websites (Extended Search)

Thomas Jenkin Thomas Jenkin Photo of Thomas Jenkin. Thomas Jenkin is a member of the Washington D.C. Office in the Strategic Energy Analysis Center. Senior Energy Analyst On staff since August 2004 Phone number: 202-488-2219 E-mail: thomas.jenkin@nrel.gov Areas of expertise Valuation and risk management Market structure and operation of natural gas and power markets Economic analysis of storage technologies Research and development (R&D) Primary research interests R&D and commercialization of energy technologies Risk and uncertainty The value of storage Economic and market analysis of renewable energy technologies Education and background training MPPM, Yale School of Management D.Phil. in physics, University of Oxford B.Sc. in physics, University of Bristol Teaching experience

137

Thomas Edison | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thomas Edison Thomas Edison Tesla vs. Edison 62 likes Thomas Edison Inventor Known as "The Wizard of Menlo Park," Edison was an American inventor who developed the first commercially practical incandescent light bulb. A savvy businessman, he invented a number of other technologies that are still in use today -- including the an early stock ticker, a sound-recording phonograph and a two-way telegraph -- and holds the record for the most patents, ever. Learn more interesting facts about Edison in our Top 8 Things You Didn't Know About Thomas Alva Edison. Innovators Sort by: Random | Alphabetical | Rating (High to Low) | Rating (Low to High) Nikola Tesla Inventor 435 likes Nikola Tesla was born in the Austrian Empire (now Croatia) but moved to the United States to work for Thomas Edison

138

Douglas S. Thomas  

Science Conference Proceedings (OSTI)

... Position: Economist Engineering Laboratory Applied Economics Office. Education: Western Michigan University. Contact. ...

2013-02-14T23:59:59.000Z

139

Design and implementation of a slow orbit control package at Thomas Jefferson National Accelerator Facility  

SciTech Connect

The authors describe the design and implementation of a C++ client/server based slow orbit and energy control package based on the CDEV software control bus. Several client applications are described and operational experience is given.

Zeijts, J. van; Witherspoon, S.; Watson, W.A.

1997-06-01T23:59:59.000Z

140

Iran Thomas Auditorium, 8600  

NLE Websites -- All DOE Office Websites (Extended Search)

1, 2012 1, 2012 4:00 pm Iran Thomas Auditorium, 8600 Simulating the Formation of Carbonate Minerals: The Role of Nanoscale Phenomena in Non-Classical Nucleation Julian Gale Nanochemistry Research Institute Department of Chemistry, Curtin University, Australia CNMS D D I I S S C C O O V V E E R R Y Y SEMINAR SERIES Abstract: Calcium carbonate is an abundant mineral that exhibits three crystalline polymorphs, as well as an amorphous form, and represents a natural form of sequestered carbon. While the most stable calcite polymorph can grow as macroscopic single crystals, the process of biomineralisation can alternatively lead to complex polycrystalline assembles that serve as functional materials in nature. As such, the

Note: This page contains sample records for the topic "laboratory thomas jefferson" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

12 GeV Upgrade | Jefferson Lab  

NLE Websites -- All DOE Office Websites

Science Science A Schematic of the 12 GeV Upgrade The 12 GeV Upgrade will greatly expand the research capabilities of Jefferson Lab, adding a fourth experimental hall, upgrading existing halls and doubling the power of the lab's accelerator. A D D I T I O N A L L I N K S: 12 GeV Home Public Interest Scientific Opportunities Hall D Status Updates Contacts Three-Year Accelerator Schedule 2014 - 2016 top-right bottom-left-corner bottom-right-corner 12 GeV Upgrade Physicists at Jefferson Lab are trying to find answers to some of nature's most perplexing questions about the universe by exploring the nucleus of the atom. Their goal is to answer such questions as: "What is the universe made of?" and "What holds everyday matter together?" In their search for answers, physicists smash electrons into atoms using

142

Studies of the Electromagnetic Structure of Mesons at Jefferson Lab  

SciTech Connect

The Jefferson Laboratory Hall B PrimEx Collaboration is using tagged photons to perform an absolute 1.4% level cross section measurement of the photoproduction of neutral pions in the Coulomb field of a nucleus. The absolute cross section for this process is directly proportional to the neutral pion radiative decay width and consequently the uncertainty in the luminosity is directly reflected in the final error bar of the measurement. The PI has taken primary responsibility for the photon flux determination and in this technical report, we outline the steps taken to limit the uncertainty in the tagged photon flux to the 1% level. These include the use of a total absorption counter for absolute flux calibration, a pair spectrometer for online relative flux monitoring, and updated procedures for postbremsstrahlung electron counting. The photon tagging technique has been used routinely in its various forms to provide quasimonochromatic photons for absolute photonuclear cross section measurements. The analysis of such experiments in the context of bremsstrahlung photon tagging was summarized by Owens in 1990. Since then, a number of developments have made possible significant improvements in the implementation of this technique. Here, we describe the steps taken by the PrimEx Collaboration in Hall B of Jefferson Laboratory to limit the systematic uncertainty in the absolute photon flux to 1%. They include an absolute flux calibration at low intensity with a total absorption counter, online relative flux monitoring with a pair spectrometer, and the use of multihit time to digital converters for post bremsstrahlung electron counting during production data runs. While this discussion focuses on the analysis techniques utilized by the PrimEx Collaboration which involves a bremsstrahlung based photon tagging system to measure the neutral pion lifetime, the methods described herein readily apply to other types of photon tagging systems.

Dale, Daniel, S.

2012-11-11T23:59:59.000Z

143

Thomas D. Williams Assistant Administrator  

Gasoline and Diesel Fuel Update (EIA)

Thomas D. Williams Thomas D. Williams Assistant Administrator for Resource and Tecnology Management Duties Thomas D. Williams is the Assistant Administrator for Resource & Technology Management. He provides leadership and direction to oversee the management and operation of EIA's employee services, information technology policy and operations, and integrated planning, budget, procurement, evaluation and project management activity. Biography Thom is a career member of the Senior Executive Service with more than 27 years of professional experience in developing, linking, and implementing successful strategic, financial, human capital, operational, technology, and administrative policies and plans for federal research, science, engineering, and regulatory programs.

144

EA-1937: Pacific Direct Intertie Upgrade Project, Lake, Jefferson...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lake, Jefferson, Crook, Deschutes, and Wasco Co, OR SUMMARY This project would replace aging equipment at BPA's Celilo converter station and to upgrade equipment on the...

145

Baryon Resonances in the Double Pion Channel at Jefferson Lab (CEBAF): Experimental and Physical Analysis Status and Perspectives  

E-Print Network (OSTI)

Decay of light quark excited baryons in the double pion channel is discussed, as a particular way of investigating poorly know baryon resonances and searching for "missing states" predicted by quark models. A possible approach to the data analysis is discussed and some preliminary data from the CLAS collaboration at Jefferson Laboratory are presented.

Marco Ripani

1999-02-18T23:59:59.000Z

146

Browse by Discipline -- E-print Network Subject Pathways: Renewable...  

Office of Scientific and Technical Information (OSTI)

Thomas Jefferson National Accelerator Facility - Hall A Thomas Jefferson National Accelerator Facility - Hall B Thomas Jefferson National Accelerator Facility - Hall C Thomas...

147

Thomas Wallner resume  

NLE Websites -- All DOE Office Websites (Extended Search)

Wallner Wallner Argonne National Laboratory Center for Transportation Research 9700 South Cass Avenue, Building 362 Argonne, IL 60439 phone: 630/252-3003, fax: 630/252-3443 e-mail: twallner@anl.gov Professional Experience  2006-Present. Staff employee at Argonne National Laboratory, Center for Transportation Research  2005-2006. Postdoctoral appointee at Argonne National Laboratory, Center for Transportation Research  2004-2005. Authorized contact person and Team leader for Graz University of Technology's European Integrated Project "Hydrogen Internal Combustion Engine"  2001-2004. Scientific assistant at the Institute of Internal Combustion Engines and Thermodynamics at Graz University of Technology, Engine Research/Combustion Process Department

148

Jefferson Lab Science Videos on YouTube  

DOE Data Explorer (OSTI)

Jefferson Lab, a DOE physics research lab located in Virgina, has approximately 100 lab-produced videos on YouTube. These include selected presentations from the Jefferson Lab Science Series, short clips of simple experiments for educational purposes, clips from Frostbite Theater, and clips from the Physics Out Loud series.

149

Jefferson Lab Science Series - Current Schedule  

NLE Websites -- All DOE Office Websites (Extended Search)

Current Science Series Schedule Current Science Series Schedule Lectures are free and open to students and adults with an interest in science. All lectures begin at 7:00 pm in CEBAF Center Auditorium [Download a Map] [Locate Jefferson Lab on Google Maps] [Display a QR Code for Scanning] and last for about an hour. Seating in the CEBAF Center Auditorium and overflow area is limited to about 300 people. Seating is on a first come, first served basis. Unfortunately, people arriving once capacity has been reached will be turned away. A live video stream will be available for those not able to attend in person. Lectures will be added to the video archive for on-demand viewing upon approval from the presenter. NOTICE: For security purposes, everyone over 16 is asked to carry a photo I.D. Security guards may inspect vehicles, book bags and purses.

150

Jefferson Renewable Energy | Open Energy Information  

Open Energy Info (EERE)

Renewable Energy Renewable Energy Jump to: navigation, search Name Jefferson Renewable Energy Place Warwick, Rhode Island Zip 2886 Product Rhode Island-based waste-to-energy and biofuel project developer. Coordinates 41.698591°, -71.461686° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.698591,"lon":-71.461686,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

151

The Jefferson Lab Frozen Spin Target  

SciTech Connect

A frozen spin polarized target, constructed at Jefferson Lab for use inside a large acceptance spectrometer, is described. The target has been utilized for photoproduction measurements with polarized tagged photons of both longitudinal and circular polarization. Protons in TEMPO-doped butanol were dynamically polarized to approximately 90% outside the spectrometer at 5 T and 200-300 mK. Photoproduction data were acquired with the target inside the spectrometer at a frozen-spin temperature of approximately 30 mK with the polarization maintained by a thin, superconducting coil installed inside the target cryostat. A 0.56 T solenoid was used for longitudinal target polarization and a 0.50 T dipole for transverse polarization. Spin relaxation times as high as 4000 hours were observed. We also report polarization results for deuterated propanediol doped with the trityl radical OX063.

Christopher Keith, James Brock, Christopher Carlin, Sara Comer, David Kashy, Josephine McAndrew, David Meekins, Eugene Pasyuk, Joshua Pierce, Mikell Seely

2012-08-01T23:59:59.000Z

152

The Jefferson Lab High Power Light Source  

Science Conference Proceedings (OSTI)

Jefferson Lab has designed, built and operated two high average power free-electron lasers (FEL) using superconducting RF (SRF) technology and energy recovery techniques. Between 1999-2001 Jefferson Lab operated the IR Demo FEL. This device produced over 2 kW in the mid-infrared, in addition to producing world record average powers in the visible (50 W), ultraviolet (10 W) and terahertz range (50 W) for tunable, short-pulse (power demonstration of an accelerator configuration that is being exploited for a number of new accelerator-driven light source facilities that are currently under design or construction. The driver accelerator for the IR Demo FEL uses an Energy Recovered Linac (ERL) configuration that improves the energy efficiency and lowers both the capital and operating cost of such devices by recovering most of the power in the spent electron beam after optical power is extracted from the beam. The IR Demo FEL was de-commissioned in late 2001 for an upgraded FEL for extending the IR power to over 10 kW and the ultraviolet power to over 1 kW. The FEL Upgrade achieved 10 kW of average power in the mid-IR (6 microns) in July of 2004, and its IR operation currently is being extended down to 1 micron. In addition, we have demonstrated the capability of on/off cycling and recovering over a megawatt of electron beam power without diminishing machine performance. A complementary UV FEL will come on-line within the next year. This paper presents a summary of the FEL characteristics, user community accomplishments with the IR Demo, and planned user experiments.

James R. Boyce

2006-01-01T23:59:59.000Z

153

Network Worms Thomas M. Chen*  

E-Print Network (OSTI)

Network Worms Thomas M. Chen* Dept. of Electrical Engineering Southern Methodist University PO Box is the possible rate of infection. Since worms are automated programs, they can spread without any human action. Historical examples of worms have included: · Trojan horses: software with a hidden malicious function, e

Chen, Thomas M.

154

The proton form factor ratio results from Jefferson Lab  

Science Conference Proceedings (OSTI)

The ratio of the proton form factors, GE p/GMp, has been measured extensively, from Q2 of 0.5 GeV2 to 8.5 GeV2, at the Jefferson Laboratory, using the polarization transfer method. This ratio is extracted directly from the measured ratio of the transverse and longitudinal polarization components of the recoiling proton in elastic electron-proton scattering. The polarization transfer results are of unprecedented high precision and accuracy, due in large part to the small systematic uncertainties associated with the experimental technique. There is an approved experiment at JLab, GEP(5), to continue the ratio measurements to 12 GeV2. A dedicated experimental setup, the Super Bigbite Spectrometer (SBS), will be built for this purpose. It will be equipped with a focal plane polarimeter to measure the polarization of the recoil protons. The scattered electrons will be detected in an electromagnetic calorimeter. In this presentation, I will review the status of the proton elastic electromagnetic form factors and discuss a number of theoretical approaches to describe nucleon form factors.

Vina Punjabi

2012-09-01T23:59:59.000Z

155

Frostbite Theater - Just for Fun - Jefferson Lab Open House (2010)  

NLE Websites -- All DOE Office Websites (Extended Search)

Nitrogen Viewer Requests! Nitrogen Viewer Requests! Previous Video (Liquid Nitrogen Viewer Requests!) Frostbite Theater Main Index Next Video (Season One Bloopers) Season One Bloopers Jefferson Lab Open House (2010) Highlights from Jefferson Lab's 2010 Open House including portions of our electron accelerator, a peek inside an end station, and a visit to the Free Electron Laser. [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: And we're here at Jefferson Lab's Open House! If you're interested in science, this is the place to be! Steve: Thousands of people have come to Jefferson Lab today to learn more about science, what we do here and to just have fun! Joanna: So what are some of the things that people can do when they're

156

Jim Thomas, 1946-2010  

Science Conference Proceedings (OSTI)

Jim Thomas, a visionary scientist and inspirational leader, died on 6 August 2010 in Richland, Washington. His impact on the fields of computer graphics, user interface software, and visualization was extraordinary, his ability to personally change peoples lives even more so. He is remembered for his enthusiasm, his mentorship, his generosity, and, most of all, his laughter. This collection of remembrances images him through the eyes of his many friends.

Stone, Maureen; Kasik, David; Bailey, Mike; van Dam, Andy; Dill, John; Rhyne, Theresa-Marie; Foley, Jim; Encarnacao, L. M.; Rosenblum, Larry; Earnshaw, Rae; Ma, Kwan-Liu; Wong, Pak C.; Encarnacao, Jose; Fellner, Dieter; Urban, Bodo

2010-11-01T23:59:59.000Z

157

Dr. Thomas W. LeBrun  

Science Conference Proceedings (OSTI)

*. Bookmark and Share. Dr. Thomas W. LeBrun. Dr. LeBrun is a research physicist in the Nanoscale Metrology Group (683.03 ...

2011-10-06T23:59:59.000Z

158

Iran Thomas Auditorium, 8600 Environmental Transmission Electron...  

NLE Websites -- All DOE Office Websites (Extended Search)

April 26, 2012 11:00 am Iran Thomas Auditorium, 8600 Environmental Transmission Electron Microscopy for Catalysis Research: The Example of Carbon Nanotubes Eric A. Stach Center for...

159

Info-Exch 2012- Thomas Johnson Presentation  

Energy.gov (U.S. Department of Energy (DOE))

EM Recovery Act Program Director Thomas Johnson gave a presentation on Recovery Act lessons learned at the 2012 Recovery Act Information Exchange.

160

Land Mine Detection at TJNAF | U.S. DOE Office of Science (SC...  

Office of Science (SC) Website

A A RSS Feeds FeedbackShare Page Applicationinstrumentation: Land Mine detection and security imaging using THz radiation Developed at: Thomas Jefferson National Laboratory...

Note: This page contains sample records for the topic "laboratory thomas jefferson" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Hampton2012report  

NLE Websites -- All DOE Office Websites (Extended Search)

Thomas Jefferson National Accelerator Laboratory. The summer 2012 workshop included a tour of the CMS e-Lab, talks by Vassilis Vassilikopolous and Josh Erlich, and explorations...

162

VEE-0032- In the Matter of Thomas Oil Company  

Energy.gov (U.S. Department of Energy (DOE))

On September 13, 1996, Thomas Oil Company (Thomas Oil) filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy (DOE). In its application, Thomas...

163

Leavenworth-Jefferson E C, Inc | Open Energy Information  

Open Energy Info (EERE)

Leavenworth-Jefferson E C, Inc Leavenworth-Jefferson E C, Inc Jump to: navigation, search Name Leavenworth-Jefferson E C, Inc Place Kansas Utility Id 10801 Utility Location Yes Ownership C NERC Location SPP Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Outdoor Area Lighting Service (HPS 100 W) Lighting Outdoor Area Lighting Service (HPS 250 W) Lighting Outdoor Area Lighting Service (HPS 400 W) Lighting Outdoor Area Lighting Service (MH 100 W) Lighting Outdoor Area Lighting Service (MH 250 W) Lighting Outdoor Area Lighting Service (MH 400 W) Lighting Outdoor Area Lighting Service (MV 175 W) Lighting

164

EA-1937: Pacific Direct Intertie Upgrade Project, Lake, Jefferson, Crook,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

37: Pacific Direct Intertie Upgrade Project, Lake, Jefferson, 37: Pacific Direct Intertie Upgrade Project, Lake, Jefferson, Crook, Deschutes, and Wasco Co, OR EA-1937: Pacific Direct Intertie Upgrade Project, Lake, Jefferson, Crook, Deschutes, and Wasco Co, OR SUMMARY This project would replace aging equipment at BPA's Celilo converter station and to upgrade equipment on the Celilo-Sylmar 500-kilovolt (kV) transmission line from the Celilo converter station in The Dalles, Oregon to the Nevada-Oregon border. As part of the project, BPA would remove and salvage the converter terminals 1 and 2 at its Celilo converter station and install a new two-converter terminal. A 20-acre expansion of the existing substation would accommodate the new terminal equipment. About 265 miles of transmission towers on the Celilo-Sylmar 500-kV transmission line would be

165

Thomas Edison vs. Nikola Tesla | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Thomas Edison vs. Nikola Tesla Thomas Edison vs. Nikola Tesla Addthis Duration 46:00 Topic Alternative Fuel Vehicles Renewables Smart Grid Transmission Innovation Washington, DC...

166

NREL: Energy Analysis - Thomas R. Schneider  

NLE Websites -- All DOE Office Websites (Extended Search)

Thomas R. Schneider Thomas R. Schneider Photo of Thomas R. Schneider Thomas R. Schneider is a member of the Washington D.C. Office in the Strategic Energy Analysis Center. Principal Analyst - Strategic Energy Analysis On staff since March 2009 Phone number: 202-488-2206 E-mail: thomas.schneider@nrel.gov Areas of expertise Distributed generation and storage Advanced power generation and transmission technologies Technology assessment Strategic and scenario planning R&D policy and management Primary research interests Variable renewable resources and the grid Role of electrification in society Energy efficiency and demand response Energy storage Education and background training Ph.D. in physics, University of Pennsylvania B.S., Stevens Institute of Technology (High Honors) Prior work experience

167

Development of digital feedback systems for beam position and energy at the Thomas Jefferson National Accelerator Facility  

SciTech Connect

The development of beam-based digital feedback systems for the CEBAF accelerator has gone through several stages. As the accelerator moved from commissioning to operation for the nuclear physics program, the top priority was to stabilize the beam against slow energy and position drifts (<1 Hz). These slow drifts were corrected using the existing accelerator monitors and actuators driven by software running on top of the EPICS control system. With slow drifts corrected, attention turned to quantifying the higher frequency disturbances on the beam and to designing the required feedback systems needed to achieve the CEBAF design stability requirements. Results from measurements showed the major components in position and energy to be at harmonics of the power line frequencies of 60, 120, and 180 Hz. Hardware and software was installed in two locations of the accelerator as prototypes for the faster feedback systems needed. This paper gives an overview of the measured beam disturbances and the feedback systems developed.

Karn, J.; Chowdhary, M.; Hutton, A. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)] [and others

1997-06-01T23:59:59.000Z

168

VEE-0086 - In the Matter of Jefferson City Oil Co., Inc. | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 - In the Matter of Jefferson City Oil Co., Inc. 6 - In the Matter of Jefferson City Oil Co., Inc. VEE-0086 - In the Matter of Jefferson City Oil Co., Inc. On April 18, 2002, Jefferson City Oil Co., Inc. (Jefferson City Oil) filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy (DOE). Jefferson City Oil requests that it be relieved of the requirement to prepare and file the Energy Information Administration's (EIA) form entitled "Resellers'/Retailers' Monthly Petroleum Product Sales Report" (Form EIA-782(b)). As explained below, we have concluded that Jefferson City Oil has not demonstrated that it is entitled to exception relief. vee0086.pdf More Documents & Publications VEE-0074 - In the Matter of H.A. Mapes, Inc. VEE-0081 - In the Matter of North Side Coal & Oil Co., Inc.

169

ORISE: Faculty Research Experiences - Dr. Thomas Liu  

NLE Websites -- All DOE Office Websites (Extended Search)

Thomas Liu Thomas Liu Professor and student team develops flexible, free alternative to proprietary data analytics software Dr. Thomas Liu and Monty Bains Dr. Thomas Liu and Monty Bains research free web-based data analysis and visualization application as an alternative to common fee-based software. They are participating in the U.S. Department of Homeland Security's Summer Research Team Program for Minority Serving Institutions. The program is administered by the Oak Ridge Institute for Science and Education. Photo courtesy of Tamra Carpenter, Rutgers University. Click image to enlarge. Fifteen years ago people could not imagine the capabilities they would soon have through the Internet and supporting programs. The evolution of web technology moves at such a fast pace that most people focus on keeping pace

170

Old Jefferson, Louisiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Jefferson, Louisiana: Energy Resources Jefferson, Louisiana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 30.3826922°, -91.0170468° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.3826922,"lon":-91.0170468,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

171

Jefferson West High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

High School Wind Project High School Wind Project Jump to: navigation, search Name Jefferson West High School Wind Project Facility Jefferson West High School Sector Wind energy Facility Type Community Wind Location KS Coordinates 39.193382°, -95.560616° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.193382,"lon":-95.560616,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

172

A dynamically polarized hydrogen and deuterium target at Jefferson Lab  

DOE Green Energy (OSTI)

Polarized electron beams have been successfully used at Jefferson Lab for over a year. The authors now report the successful achievement of polarized targets for nuclear and particle physics experiments using the dynamic nuclear polarization (DNP)technique. The technique involves initial irradiation of frozen ammonia crystals (NH{sub 3} and ND{sub 3}) using the electron beam from the new Free Electron Laser (FEL) facility at Jefferson Lab, and transferring the crystals to a special target holder for use in Experimental Halls. By subjecting the still ionized and frozen ammonia crystals to a strong magnetic field and suitably tuned RF, the high electron polarization is transmitted to the nucleus thus achieving target polarization. Details of the irradiation facility, the target holder, irradiation times, ionized crystal shelf life, and achieved polarization are discussed.

Boyce, J.R.; Keith, C.; Mitchell, J.; Seely, M.

1998-07-01T23:59:59.000Z

173

Jefferson County, Alabama: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Jefferson County, Alabama: Energy Resources Jefferson County, Alabama: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.4914122°, -86.9824288° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.4914122,"lon":-86.9824288,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

174

An overview of the planned Jefferson Lab 12-GeV helium refrigerator upgrade  

SciTech Connect

In February 2006, Jefferson Laboratory in Newport News, VA, received Critical Decision 1 (CD-1) approval to proceed with the engineering and design of the long anticipated upgrade to increase the beam energy of CEBAF, the Continuous Electron Beam Accelerator Facility, from 6 GeV to 12 GeV. This will require the installation of 10 new cryomodules, and additional 2.1-K refrigeration beyond the available 4600 W to handle the increased heat loads. Additionally, a new experimental hall, Hall D, is planned that will require the installation of a small, available refrigerator. This paper will present an overview of the integration of the new proposed refrigeration system into CEBAF, the installation of the available refrigerator for Hall D, and includes planned work scope, current schedule plans and project status.

Arenius, Dana; Creel, Jonathan; Dixon, Kelly; Ganni, Venkatarao; Knudsen, Peter; Sidi-Yekhlef, Ahmed; Wright, Mathew

2008-03-01T23:59:59.000Z

175

Recent Results from Jefferson Lab RSS Spin Physics Program  

Science Conference Proceedings (OSTI)

The spin physics program in Jefferson Labs Hall C concentrates on high precision and high resolution studies of the nucleon spin structure that can be extracted from inclusive polarized scattering experiments. The Resonances Spin Structure RSS experiment has measured nucleon spin structure functions in the resonances region at an intermediate four?momentum transfer Q 2 ?1.3? GeV 2 . The polarized target in Hall C could be polarized longitudinally and transversely

Mahbub Khandaker; the RSS Collaboration

2009-01-01T23:59:59.000Z

176

Thomas R. Cech, RNA, and Ribozymes  

NLE Websites -- All DOE Office Websites (Extended Search)

Thomas R. Cech, RNA, and Ribozymes Resources with Additional Information · Videos Thomas Cech Courtesy of Glenn Asakawa/ University of Colorado Thomas R. Cech conducted ground-breaking research that ‘established that RNA, like a protein, can act as a catalyst in living cells.'1 'Prior to Cech's research, most scientists believed that proteins were the only catalysts in living cells. In 1982, his research group showed that an RNA molecule from Tetrahymena, a single-celled pond organism, cut and rejoined chemical bonds in the complete absence of proteins. This discovery of self-splicing RNA provided the first exception to the long-held belief that biological reactions are always catalyzed by proteins. In 1989, Cech was awarded the Nobel Prize in Chemistry.'2

177

Statement of Thomas E. Mason Director, Oak Ridge National Laboratory  

E-Print Network (OSTI)

, and national security benefits. The main cost lies in the intellectual content and high-end manufacturing, both of which are hallmarks of American industrial strength, so in addition to providing an attractive solution creates opportunities for U.S. industry to manufacture the high-technology components that make up roughly

178

Thomas Klähn  

NLE Websites -- All DOE Office Websites (Extended Search)

Personal Details Personal Details Address: Theory Group Physics Division, Building 203 Argonne National Laboratory 9700 South Cass Avenue Argonne, IL 60439, USA Phone: +1 (630) 252-3442 Fax: +1 (630) 252-3903 e-mail: klaehn@anl.gov Biographical sketch 2007-Present : PostDoc, Theory Group, Argonne National Laboratory, USA 2006-2007 : Visiting Scientist, GSImbH , Darmstadt, Germany 2005-2006 : PostDoc, Institute of Physics , University of Rostock, Germany, supported by the Helmholtz Association 2004 : Dr. rer. nat. (PhD), University of Rostock, Germany Publications A citation summary is available from SPIRES. Single-flavor CSL phase in compact stars. David Blaschke, Fredrik Sandin, T.K., Jens Berdermann e-Print: astro-ph/arXiv:0808.1369 Constraints on the High-Density Nuclear Equation of State from

179

EM Calorimeters for SoLID at Jefferson Lab  

SciTech Connect

Several approved experiments at Jefferson Lab for the 12 GeV era will use the proposed Solenoid Large Intensity Device (SoLID) spectrometer. Two EM calorimeters with a total area of 15 square meters are required for electron identification and electron-pion separation. The challenge is to build calorimeters that can withstand high radiation doses in high magnetic field region and bring photon signals to low field region for readout. Several types of calorimeters were considered and we are favoring Shashlyk type as a result of balancing performance and cost. Our preliminary design and simulation of SoLID EM calorimeters are presented.

Z.W. Zhao, J. Huang, M. Meziane, X. Zheng, P.E. Reimer, D. Armstrong, T. Averett, W. Deconinck

2012-12-01T23:59:59.000Z

180

Engineering Light Course instructor: Dr. Thomas Bifano  

E-Print Network (OSTI)

from a laser pointer, to make a light bulb like Thomas Edison's, to discover how engineers ruined achievements/challenges Course goals Why study light 9/10/12 Lecture 2: Edison's light bulb, light and color bulbs o Observing blackbody radiation color 9/12/12 Field Trip: Museum of Science Light exhibits

Guenther, Frank

Note: This page contains sample records for the topic "laboratory thomas jefferson" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Engineering Light Course instructor: Dr. Thomas Bifano  

E-Print Network (OSTI)

from a laser pointer, to make a light bulb like Thomas Edison's, to discover how engineers ruined · Smart lighting 9/10/12 Lecture 2: Edison's light bulb, light and color · What engineers do, engineering bulbs o Observing blackbody radiation color 9/12/12 Field Trip: Museum of Science · Light exhibits

Bifano, Thomas

182

EMC effect for light nuclei: new results from Jefferson Lab  

Science Conference Proceedings (OSTI)

High energy lepton scattering has been the primary tool for mapping out the quark distributions of nucleons and nuclei. Measurements of deep inelastic scattering in nuclei show that the quark distributions in heavy nuclei are not simply the sum of the quark distributions of the constituent proton and neutron, as one might expect for a weakly bound system. This modification of the quark distributions in nuclei is known as the EMC effect. I will discuss the results from Jefferson Lab (JLab) experiment E03-103, a precise measurement of the EMC effect in few-body nuclei with emphasis on the large x region. Data from the light nuclei suggests that the nuclear dependence of the high x quark distribution may depend on the nucleon's local environment, rather than being a purely bulk effect. In addition, I will also discuss about a future experiment at the upgraded 12 GeV Jefferson Lab facility which will further investigate the role of the local nuclear environment and the influence of detailed nuclear structure to the modification of quark distributions.

Daniel, A. [Dept. of Physics and Astronomy, Ohio University, Athens OH 45701 (United States)

2011-10-24T23:59:59.000Z

183

Geothermometry At Honokowai Area (Thomas, 1986) | Open Energy Information  

Open Energy Info (EERE)

Geothermometry At Honokowai Area (Thomas, 1986) Geothermometry At Honokowai Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Honokowai Area (Thomas, 1986) Exploration Activity Details Location Honokowai Area Exploration Technique Geothermometry Activity Date Usefulness not indicated DOE-funding Unknown Notes Temperature and groundwater chemistry analyses were performed on three wells along the alluvial fan above Honokowai. Water temperatures were approximately 20degrees C and normal basal aquifer water chemistry was observed (Table 4). References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii Retrieved from "http://en.openei.org/w/index.php?title=Geothermometry_At_Honokowai_Area_(Thomas,_1986)&oldid=387033"

184

Wind Power Opportunities in St. Thomas, USVI: A Site-Specific Evaluation and Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Opportunities in Power Opportunities in St. Thomas, USVI: A Site-Specific Evaluation and Analysis E. Lantz, A. Warren, J.O. Roberts, and V. Gevorgian Technical Report NREL/TP-7A20-55415 September 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Wind Power Opportunities in St. Thomas, USVI: A Site-Specific Evaluation and Analysis E. Lantz, A. Warren, J.O. Roberts, and V. Gevorgian Prepared under Task No. IDVI.1020 Technical Report NREL/TP-7A20-55415 September 2012 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

185

Jefferson Davis Elec Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Davis Elec Coop, Inc Davis Elec Coop, Inc Jump to: navigation, search Name Jefferson Davis Elec Coop, Inc Place Louisiana Utility Id 9682 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes RTO SPP Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png All Electric Farm and Home Service Residential All Electric Farm and Home Service - Seasonal Residential Commercial and Industrial Services Commercial Extra Large Power Service Commercial Farm and Rice Dryers Residential Flood Lighting Service: 1000 watt- 140,000 Lumen High Pressure Sodium Lighting

186

Jefferson Lab Science Series - You Already Know This Physics!  

NLE Websites -- All DOE Office Websites (Extended Search)

Living and Working in the Freezer Living and Working in the Freezer Previous Video (Living and Working in the Freezer) Science Series Video Archive Next Video (The Origin of the Elements) The Origin of the Elements You Already Know This Physics! Mr. Jack McKisson - Jefferson Lab, Detector and Imaging Group October 9, 2012 From a research path that includes a little bit of rocket science, under sea measurements, radiation detection and measurement, space experimentation and two expeditions to the Antarctic, Mr. McKisson brings a different view of how much physics most people already know from observing the world around them. With a minimal amount of math, attendees will learn a little of the history of physics and may discover that they know more than they thought about what some view as an inscrutable subject

187

Undergraduate Research at Jefferson Lab - Determining Electron Beam Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Pretzelosity Distribution Pretzelosity Distribution Previous Project (Pretzelosity Distribution) Undergraduate Research Main Index Next Project (Buffered Chemical Polishing) Buffered Chemical Polishing Determining Electron Beam Energy through Spin Precession Methods Student: Gina Mayonado School: McDaniel College Mentored By: Douglas Higinbotham Nuclear physics experiments at Jefferson Lab require that the beam energy of the Continuous Electron Beam Accelerator Facility (CEBAF) accelerator be known to 0.01%. The g-2 spin precession of the electrons as they circulate in the machine can be used to determine the beam energy without relying on the absolute calibration of magnets and devices required for other methods. The precision of this approach needed to be fully investigated. Spin precession methods were investigated by writing an Apple application to

188

Probing the nucleon structure with SIDIS at Jefferson Lab  

Science Conference Proceedings (OSTI)

In recent years, measurements of azimuthal moments of polarized hadronic cross sections in hard processes have emerged as a powerful tool to probe nucleon structure. Many experiments worldwide are currently trying to pin down various effects related to nucleon structure through Semi-Inclusive Deep-Inelastic Scattering (SIDIS). Azimuthal distributions of final-state particles in semi-inclusive deep inelastic scattering, in particular, are sensitive to the orbital motion of quarks and play an important role in the study of Transverse Momentum Dependent parton distribution functions (TMDs) of quarks in the nucleon. The CLAS spectrometer, installed in Hall-B at Jefferson Lab, has collected semi-inclusive data using the CEBAF 6 GeV polarized electron beam on polarized solid NH{sub 3} and ND{sub 3} targets. An overview of these measurements is presented.

Pereira, Sergio Anafalos [INFN-Frascati

2013-01-01T23:59:59.000Z

189

Status of Jefferson Lab's Load Locked Polarized Electron Beam  

DOE Green Energy (OSTI)

A new 100 kV load locked polarized electron gun has been built at Jefferson Lab. The gun is installed in a test stand on a beam line that resembles the first few meters of the CEBAF nuclear physics photoinjector. With this gun, a GaAs photocathode can be loaded from atmosphere, hydrogen cleaned, activated and taken to high voltage in less than 8 hours. The gun is a three chamber design, with all of the moving parts remaining at ground potential during gun operation. Studies of gun performance, photocathode life times, transverse emittance at high bunch charge, helicity correlated effects and beam polarizations from new photocathode samples will all be greatly facilitated by the use of this load locked gun.

M.L. Stutzman; P. Adderley; M. Baylac; J. Clark; A. Day; J. Grames; J. Hansknecht; M. Poelker

2002-09-01T23:59:59.000Z

190

RICH detector at Jefferson Lab, design, performance and physics results  

Science Conference Proceedings (OSTI)

Since 2004 the hadron spectrometer of Hall A at Jefferson Lab is equipped with a proximity focusing RICH. This detector is capable of identify kaon from pion and proton with an angular separation starting from 6 sigma at 2 GeV/c. The RICH design is conceptually similar to the ALICE HMPID RICH; it uses a C6F14 liquid radiator and a 300 nm layer of CsI deposited on the cathode pad plane of an asymmetric MWPC. The RICH has operated for the Hypernuclear Spectroscopy Experiment E94-107, which took data in the last two years. Design details and performance along with first physics results from the hypernuclear experiment are shortly presented.

E. Cisbani; S. Colilli; F. Cusanno; S. Frullani; R. Frantoni; F. Garibaldi; F. Giuliani; M. Gricia; M. Lucentini; M.L. Magliozzi; L. Pierangeli; F. Santavenere; P. Veneroni; G.M. Urciuoli; M. Iodice; G. De Cataldo; R. De Leo; L. Lagamba; S. Marrone; E. Nappi; V. Paticchio; R. Feuerbach; D. Higinbotham; J. Lerose; B. Kross; R. Michaels; Y. Qiang; B. Reitz; J. Segal; B. Wojtsekhowski; C. Zorn; A. Acha; P. Markowitz; C.C. Chang; H. Breuer

2006-04-01T23:59:59.000Z

191

Geothermometry At Lahaina-Kaanapali Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Lahaina-Kaanapali Area (Thomas, 1986) Lahaina-Kaanapali Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Lahaina-Kaanapali Area (Thomas, 1986) Exploration Activity Details Location Lahaina-Kaanapali Area Exploration Technique Geothermometry Activity Date Usefulness not indicated DOE-funding Unknown Notes Groundwater temperature and chemistry surveys were similarly unable to identify any detectable thermal influence on the basal groundwaters. Silica concentrations and water temperatures (Table 4) were within the normal range expected for basal groundwaters receiving a limited amount of irrigation return water; chloride/magnesium ratios ranged downward from normal seawater values. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In

192

MEMORANDUM FOR THOMAS P. D'AGOSTINO ADMINISTRATOR NATIONAL NUCLEAR...  

NLE Websites -- All DOE Office Websites (Extended Search)

16,20 10 MEMORANDUM FOR THOMAS P. D'AGOSTINO ADMINISTRATOR NATIONAL NUCLEAR SECURITY ADMINISTRATION WILLIAM F. BRINKMAN DIRECTOR OFFICE OF SCIENCE INES TRIAY ASSISTANT SECRETARY...

193

Water Sampling At Hualalai Northwest Rift Area (Thomas, 1986...  

Open Energy Info (EERE)

Water Sampling At Hualalai Northwest Rift Area (Thomas, 1986) Exploration Activity Details Location Hualalai Northwest Rift Area Exploration Technique Water Sampling Activity Date...

194

Water Sampling At Lualualei Valley Area (Thomas, 1986) | Open...  

Open Energy Info (EERE)

Water Sampling At Lualualei Valley Area (Thomas, 1986) Exploration Activity Details Location Lualualei Valley Area Exploration Technique Water Sampling Activity Date Usefulness not...

195

Geothermometry At Olowalu-Ukumehame Canyon Area (Thomas, 1986...  

Open Energy Info (EERE)

of the water produced by this aquifer indicates that the chloridemagnesium ion ratio has been significantly altered by thermal processes. References Donald M. Thomas (1...

196

Questions and Answers - Why did it take so long to build Jefferson Lab? Why  

NLE Websites -- All DOE Office Websites (Extended Search)

are the Halls inbio-dome shapes? are the Halls in<br>bio-dome shapes? Previous Question (Why are the Halls in bio-dome shapes?) Questions and Answers Main Index Next Question (What would happen if part of the accelerator were to break?) What would happen if part ofthe accelerator were to break? Why did it take so long to build Jefferson Lab? Why was Jefferson Lab built in Newport News? Newport News was one of several places around the nation that competed for Jefferson Lab. The Southeastern Universities Research Association (SURA) won the contract to build and run Jefferson Lab in Newport News. A couple reasons helped bring the Lab to this area: 1) The city and state governments worked hard with SURA to earn the Department of Energy's approval to bring the Lab here. (Good teamwork means

197

Jefferson Park : case study of a public housing project in transformation  

E-Print Network (OSTI)

This study focuses on the redevelopment of Jefferson Park, a public housing project in Cambridge, Massachusetts. The work establishes the historical political, social, and physical context in which that redevelopment takes ...

Powers, David Thomas

1984-01-01T23:59:59.000Z

198

HDice, Highly-Polarized Low-Background Frozen-Spin HD Targets for CLAS experiments at Jefferson Lab  

Science Conference Proceedings (OSTI)

Large, portable frozen-spin HD (Deuterium-Hydride) targets have been developed for studying nucleon spin properties with low backgrounds. Protons and Deuterons in HD are polarized at low temperatures (~10mK) inside a vertical dilution refrigerator (Oxford Kelvinox-1000) containing a high magnetic field (up to 17T). The targets reach a frozen-spin state within a few months, after which they can be cold transferred to an In-Beam Cryostat (IBC). The IBC, a thin-walled dilution refrigerator operating either horizontally or vertically, is use with quasi-4? detector systems in open geometries with minimal energy loss for exiting reaction products in nucleon structure experiments. The first application of this advanced target system has been used for Spin Sum Rule experiments at the LEGS facility in Brookhaven National Laboratory. An improved target production and handling system has been developed at Jefferson Lab for experiments with the CEBAF Large Acceptance Spectrometer, CLAS.

Wei, Xiangdong [JLAB; Bass, Christopher [JLAB; D'Angelo, Annalisa [INFN-Roma Tor Vegata; Deur, Alexandre P. [JLAB; Dezern, Gary L. [JLAB; Ho, Dao Hoang [Carnegie Mellon U.; Kageya, Tsuneo [JLAB; Khandaker, Mahbubul A, [Idaho State U.; Kashy, David H. [JLAB; Laine, Vivien Eric [Universite de Clermont Ferrand; Lowry, Michael M. [JLAB; O'Connell, Thomas Robert [University of Connecticut; Sandorfi, Andrew M. [JLAB; Teachey, II, Robert W. [JLAB; Whisnant, Charles Steven [James Madison U.; Zarecky, Michael R. [JLAB

2012-12-01T23:59:59.000Z

199

Evolution of the Generic Lock System at Jefferson Lab  

SciTech Connect

The Generic Lock system is a software framework that allows highly flexible feedback control of large distributed systems. It allows system operators to implement new feedback loops between arbitrary process variables quickly and with no disturbance to the underlying control system. Several different types of feedback loops are provided and more are being added. This paper describes the further evolution of the system since it was first presented at ICALEPCS 2001 and reports on two years of successful use in accelerator operations. The framework has been enhanced in several key ways. Multiple-input, multiple-output (MIMO) lock types have been added for accelerator orbit and energy stabilization. The general purpose Proportional-Integral-Derivative (PID) locks can now be tuned automatically. The generic lock server now makes use of the Proxy IOC (PIOC) developed at Jefferson Lab to allow the locks to be monitored from any EPICS Channel Access aware client. (Previously clients had to be Cdev aware.) The dependency on the Qt XML parser has been replaced with the freely available Xerces DOM parser from the Apache project.

Brian Bevins; Yves Roblin

2003-10-13T23:59:59.000Z

200

Aeromagnetic Survey At Kawaihae Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Kawaihae Area (Thomas, 1986) Kawaihae Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aeromagnetic Survey At Kawaihae Area (Thomas, 1986) Exploration Activity Details Location Kawaihae Area Exploration Technique Aeromagnetic Survey Activity Date Usefulness useful DOE-funding Unknown Notes The aeromagnetic data noted above refer to a low-level aeromagnetic survey that was flown over the entire island of Hawaii at an altitude of approximately 300 m. The results of the survey over Kawaihae clearly indicate an anomalously magnetized body between the town of Waimea and Kawaihae Bay to the west. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii Retrieved from "http://en.openei.org/w/index.php?title=Aeromagnetic_Survey_At_Kawaihae_Area_(Thomas,_1986)&oldid=402415

Note: This page contains sample records for the topic "laboratory thomas jefferson" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Thomas P. D'Agostino | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thomas P. D'Agostino Thomas P. D'Agostino About Us Thomas P. D'Agostino - Under Secretary for Nuclear Security & Administrator, National Nuclear Security Administration Photo of Thomas D’Agostino Mr. Thomas Paul D'Agostino was sworn in on August 30, 2007, as the Under Secretary for Nuclear Security and Administrator of the National Nuclear Security Administration (NNSA). On September 3, 2009, President Obama announced that Mr. D'Agostino was his choice to continue serving as the Under Secretary for Nuclear Security and NNSA Administrator. The NNSA plays a critical role in ensuring the security of our Nation by maintaining the safety, security, and effectiveness of the U.S. nuclear weapons stockpile without nuclear testing; reducing the global danger from the proliferation of nuclear weapons and materials; providing the U.S. Navy

202

Mr. Thomas Mahl Granite City Steel Company  

Office of Legacy Management (LM)

8&v/ 8&v/ Mr. Thomas Mahl Granite City Steel Company 20th and State Streets Granite City, IL 62040 Dear Mr. Mahl: This is to notify you that the U.S. Department of Energy (DOE) has designated your company's facility for remedial action as a part of the Formerly Utilized Sites Remedial Action Program. Remedial activities are managed by the DOE Oak Ridge Field Office, and Ms. Teresa Perry (615-576-8956) will be the site manager. As a result of the designation decision, Ms. Perry will be the appropriate point of contact in the future. If you have any questions, please call me at 301-903-8149. W. Alexander Williams, PhD Designation and Certification Manager Division of Off-Site Programs Office of Eastern Area Programs Office of Environmental Restoration

203

Charged Pion Photoproduction from Hydrogen and Deuterium at Jefferson Lab  

DOE Green Energy (OSTI)

The {gamma}n {yields} {pi}{sup -}p and {gamma}p {yields} {pi}{sup +}n reactions are essential probes of the transition from meson-nucleon degrees of freedom to quark-gluon degrees of freedom in exclusive processes. The cross sections of these processes are also, advantageous, for the investigation of oscillatory behavior around the quark counting prediction, since they decrease relatively slower with energy compared with other photon-induced processes. Moreover, these photoreactions in nuclei can probe the QCD nuclear filtering and color transparency effects. In this talk, I discuss the preliminary results on the {gamma}p {yields} {pi}{sup +}n and {gamma}n {yields} {pi}{sup -}p processes at a center-of-mass angle of 90{sup o} from Jefferson Lab experiment E94-104. I also discuss a new experiment in which singles {gamma}p {yields} {pi}{sup +}n measurement from hydrogen, and coincidence {gamma}n {yields} {pi}{sup -}p measurements at the quasifree kinematics from deuterium and {sup 12}C for photon energies between 2.25 GeV to 5.8 GeV in fine steps at a center-of-mass angle of 90{sup o} are planned. The proposed measurement will allow a detailed investigation of the oscillatory scaling behavior in photopion production processes and the study of the nuclear dependence of rather mysterious oscillations with energy that previous experiments have indicated. The various nuclear and perturbative QCD approaches, ranging from Glauber theory, to quark-counting, to Sudakov-corrected independent scattering, make dramatically different predictions for the experimental outcomes.

Haiyan Gao

2003-02-01T23:59:59.000Z

204

Results of Cavity Series Fabrication at Jefferson Laboratory for the Cryomodule R100  

SciTech Connect

A series production of eight superconducting RF cavities for the cryomodule R100 was conducted at JLab in 2010. The cavities underwent chemical post-processing prior to vertical high power testing and routinely exceeded the envisaged performance specifications. After cryomodule assembly, cavities were successfully high power acceptance tested. In this paper, we present the achievements paving the way for the first demonstration of 100 MV (and beyond) in a single cryomodule to be operated at CEBAF.

F. Marhauser, W.A. Clemens, M.A. Drury, D. Forehand, J. Henry, S. Manning, R.B. Overton, R.S. Williams

2011-09-01T23:59:59.000Z

205

Mercury Vapor At Haleakala Volcano Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Mercury Vapor At Haleakala Volcano Area (Thomas, 1986) Mercury Vapor At Haleakala Volcano Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Haleakala Volcano Area (Thomas, 1986) Exploration Activity Details Location Haleakala Volcano Area Exploration Technique Mercury Vapor Activity Date Usefulness not indicated DOE-funding Unknown Notes The field survey program on the northwest rift zone consisted of soil mercury and radon emanometry surveys, groundwater temperature and chemistry studies, Schlumberger resistivity soundings and self-potential profiles. Geophysical and geochemical surveys along this rift (southwest) were limited by difficult field conditions and access limitations. The geophysical program consisted of one Schlumberger sounding, one

206

Geothermometry At Haleakala Volcano Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Geothermometry At Haleakala Volcano Area (Thomas, 1986) Geothermometry At Haleakala Volcano Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Haleakala Volcano Area (Thomas, 1986) Exploration Activity Details Location Haleakala Volcano Area Exploration Technique Geothermometry Activity Date Usefulness not indicated DOE-funding Unknown Notes The field survey program on the northwest rift zone consisted of soil mercury and radon emanometry surveys, groundwater temperature and chemistry studies, Schlumberger resistivity soundings and self-potential profiles. Geophysical and geochemical surveys along this rift (southwest) were limited by difficult field conditions and access limitations. The geophysical program consisted of one Schlumberger sounding, one

207

VEE-0091 - In the Matter of Jefferson Smurfit Corp. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 - In the Matter of Jefferson Smurfit Corp. 1 - In the Matter of Jefferson Smurfit Corp. VEE-0091 - In the Matter of Jefferson Smurfit Corp. This Decision decides the merits of five Applications for Exception filed with the Office of Hearings and Appeals (OHA) of the U.S. Department of Energy (DOE) under the provisions of 10 C.F.R. § 1003.20. See infra Appendix. These Applications concern annual revenues and sales data pertaining to each firm's sale of electricity that the DOE Energy Information Administration (EIA) collects through Form EIA-861, "Annual Electric Power Industry Report." EIA publishes this data, by state, in firm-specific form. The present exception request seeks to have the Applicants' data withheld as confidential. In their Applications for Exception, the Applicants incorporated an Application for Stay to prevent release of some of the

208

Thomas Mason Oak Ridge National Lab July 10 2012 SB Summit  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Laboratory Presented to the DOE/NNSA Regional Small Business Summit Thomas E. Mason Director, Oak Ridge National Laboratory Knoxville, Tennessee July 10, 2012 2 Managed by UT-Battelle for the U.S. Department of Energy RegionalSummit_1207 ORNL is DOE's largest science and energy laboratory 2 Managed by UT-Battelle for the U.S. Department of Energy $1.65B budget World's most intense neutron source 4,400 employees World-class research reactor 3,000 research guests annually $500M modernization investment Nation's largest materials research portfolio Most powerful open scientific computing facility Nation's most diverse energy portfolio Managing billion-dollar U.S. ITER project 3 Managed by UT-Battelle for the U.S. Department of Energy RegionalSummit_1207

209

Administrator Thomas D'Agostino, National Nuclear Security  

NLE Websites -- All DOE Office Websites (Extended Search)

Thomas D'Agostino, National Nuclear Security Thomas D'Agostino, National Nuclear Security Administration, Addresses United Nations on Nuclear Disarmament | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Speeches > Administrator Thomas D'Agostino, National Nuclear Security Administration, ... Speech Administrator Thomas D'Agostino, National Nuclear Security

210

Field Mapping At Mokapu Penninsula Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Field Mapping At Mokapu Penninsula Area (Thomas, Field Mapping At Mokapu Penninsula Area (Thomas, 1986) Exploration Activity Details Location Mokapu Penninsula Area Exploration Technique Field Mapping Activity Date Usefulness useful DOE-funding Unknown Notes Geological mapping on Mokapu (Cox and Sinton, 1982) identified at least three separate volcanic vents within the study area and several other vents forming small islets around Mokapu. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii Retrieved from "http://en.openei.org/w/index.php?title=Field_Mapping_At_Mokapu_Penninsula_Area_(Thomas,_1986)&oldid=510748" Category: Exploration Activities What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load)

211

Administrator Thomas D'Agostino, National Nuclear Security  

National Nuclear Security Administration (NNSA)

Thomas D'Agostino, National Nuclear Security Thomas D'Agostino, National Nuclear Security Administration, Addresses United Nations on Nuclear Disarmament | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Speeches > Administrator Thomas D'Agostino, National Nuclear Security Administration, ... Speech Administrator Thomas D'Agostino, National Nuclear Security

212

Water Sampling At Kauai Area (Thomas, 1986) | Open Energy Information  

Open Energy Info (EERE)

Kauai Area (Thomas, 1986) Kauai Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Kauai Area (Thomas, 1986) Exploration Activity Details Location Kauai Area Exploration Technique Water Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Groundwater geochemical data compiled for Kauai during the preliminary assessment identified a few very weak water chemistry anomalies, and although these anomalies could be interpreted to be the result of residual heat associated with Kauai's late-stage volcanism, the great age of this activity as well as the absence of any other detectable thermal effects suggests that this is very unlikely. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In

213

Geothermometry At Lualualei Valley Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Geothermometry At Lualualei Valley Area (Thomas, 1986) Geothermometry At Lualualei Valley Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Lualualei Valley Area (Thomas, 1986) Exploration Activity Details Location Lualualei Valley Area Exploration Technique Geothermometry Activity Date Usefulness useful DOE-funding Unknown Notes Yhe extensive set of groundwater chemical data compiled for the wells in the valley (Table 1) showed that two of the primary indicators that have been commonly used in Hawaii for identifying geothermal potential (i.e. silica concentration and chloride to magnesium ion ratios) were anomalous in the groundwater of this survey area (Cox and Thomas, 1979). Several wells located on the caldera boundaries were found to have both

214

Mercury Vapor At Lualualei Valley Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Mercury Vapor At Lualualei Valley Area (Thomas, 1986) Mercury Vapor At Lualualei Valley Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Lualualei Valley Area (Thomas, 1986) Exploration Activity Details Location Lualualei Valley Area Exploration Technique Mercury Vapor Activity Date Usefulness useful DOE-funding Unknown Notes Soil mercury and radon emanation surveys were performed over much of the accessible surface of Lualualei Valley (Cox and Thomas, 1979). The results of these surveys (Figs 7 and 8) delineated several areas in which soil mercury concentrations or radon emanation rates were substantially above normal background values. Some of these areas were apparently coincident with the mapped fracture systems associated with the caldera boundaries.

215

DEL 1 T' I991 Mr. Thomas Jorling Commissioner  

Office of Legacy Management (LM)

I991 Mr. Thomas Jorling Commissioner State of New York Department of Environmental Conservation Albany, New York 12233-1010 Dear Mr. Jorling: I am responding to your November 25,...

216

Iran Thomas Auditorium, 8600 Fighting Cancer with Nanoparticle...  

NLE Websites -- All DOE Office Websites (Extended Search)

October 13, 2011 4:00 pm Iran Thomas Auditorium, 8600 Fighting Cancer with Nanoparticle Medicines Mark E. Davis Chemical Engineering California Institute of Technology CNMS D D I I...

217

Iran Thomas Auditorium, 8600 Determination of CO, H  

NLE Websites -- All DOE Office Websites (Extended Search)

February 9, 2012 4:00 pm Iran Thomas Auditorium, 8600 Determination of CO, H 2 and H 2 O Coverage by XANES on Pt and Au During Water Gas Shift Reaction: Experiment and DFT Modeling...

218

Iran Thomas Auditorium, 8600 Materials For Energy: In Situ Synchrotron...  

NLE Websites -- All DOE Office Websites (Extended Search)

December 15, 2011 4:00 pm Iran Thomas Auditorium, 8600 Materials For Energy: In Situ Synchrotron X-Ray Studies for Materials Design and Discovery Stephen K. Streiffer Deputy...

219

Iran Thomas Auditorium, 8600 Shape-Controlled Synthesis of Metal...  

NLE Websites -- All DOE Office Websites (Extended Search)

January 25, 2013 10:00 am Iran Thomas Auditorium, 8600 Shape-Controlled Synthesis of Metal Nanocrystals Younan Xia Georgia Institute of Technology CNMS D D I I S S C C O O V V E E...

220

Iran Thomas Auditorium, 8600 Nano Carbon: From Solar Cells to...  

NLE Websites -- All DOE Office Websites (Extended Search)

November 3, 2011 4:00 pm Iran Thomas Auditorium, 8600 Nano Carbon: From Solar Cells to Atomic Drums Paul McEuen Goldwin Smith Professor of Physics, Cornell University and Kavli...

Note: This page contains sample records for the topic "laboratory thomas jefferson" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

TBU-0082- In the Matter of Thomas L. Townsend  

Energy.gov (U.S. Department of Energy (DOE))

Thomas L. Townsend (Townsend) appeals the dismissal of his complaint of retaliation and request for investigation filed under 10 C.F.R. Part 7081 by the Oak Ridge Operations Office (OR) of the...

222

Manhattan Project: Generals Leslie Groves and Thomas Farrell  

Office of Scientific and Technical Information (OSTI)

Generals Leslie Groves and Thomas Farrell Events > Dawn of the Atomic Era, 1945 > Debate Over How to Use the Bomb, Washington, D.C., Late Spring 1945 Generals Leslie Groves and...

223

Recirculating Beam Breakup Study for the 12 GeV Upgrade at Jefferson Lab  

Science Conference Proceedings (OSTI)

Two new high gradient C100 cryomodules with a total of 16 new cavities were installed at the end of the CEBAF south linac during the 2011 summer shutdown as part of the 12-GeV upgrade project at Jefferson Lab. We surveyed the higher order modes (HOMs) of these cavities in the Jefferson Lab cryomodule test facility and CEBAF tunnel. We then studied recirculating beam breakup (BBU) in November 2011 to evaluate CEBAF low energy performance, measure transport optics, and evaluate BBU thresholds due to these HOMs. This paper discusses the experiment setup, cavity measurements, machine setup, optics measurements, and lower bounds on BBU thresholds by new cryomodules.

Ilkyoung Shin, Todd Satogata, Shahid Ahmed, Slawomir Bogacz, Mircea Stirbet, Haipeng Wang, Yan Wang, Byung Yunn, Ryan Bodenstein

2012-07-01T23:59:59.000Z

224

Thomas selected as American Chemical Society Fellow  

NLE Websites -- All DOE Office Websites (Extended Search)

program manager on Hanford Waste Tanks characterization, leader of LANL's role in the Yucca Mountain Project, and numerous leadership roles in the Laboratory's Chemistry...

225

The Nuclear Thomas-Fermi Model  

DOE R&D Accomplishments (OSTI)

The statistical Thomas-Fermi model is applied to a comprehensive survey of macroscopic nuclear properties. The model uses a Seyler-Blanchard effective nucleon-nucleon interaction, generalized by the addition of one momentum-dependent and one density-dependent term. The adjustable parameters of the interaction were fitted to shell-corrected masses of 1654 nuclei, to the diffuseness of the nuclear surface and to the measured depths of the optical model potential. With these parameters nuclear sizes are well reproduced, and only relatively minor deviations between measured and calculated fission barriers of 36 nuclei are found. The model determines the principal bulk and surface properties of nuclear matter and provides estimates for the more subtle, Droplet Model, properties. The predicted energy vs density relation for neutron matter is in striking correspondence with the 1981 theoretical estimate of Friedman and Pandharipande. Other extreme situations to which the model is applied are a study of Sn isotopes from {sup 82}Sn to {sup 170}Sn, and the rupture into a bubble configuration of a nucleus (constrained to spherical symmetry) which takes place when Z{sup 2}/A exceeds about 100.

Myers, W. D.; Swiatecki, W. J.

1994-08-01T23:59:59.000Z

226

A FULL-ORDER, ALMOST-DETERMINISTIC OPTICAL MATCHING Yu-Chiu Chao, Thomas Jefferson National Accelerator Facility, Newport News, VA 23606  

E-Print Network (OSTI)

to provide input to this algorithm. Preliminary on-line testing on the CEBAF accelerator has positively, the numerical tool for obtaining global solutions, adaptation to realistic matching problems at CEBAF 3.1 Transport Matching at CEBAF In the CEBAF accelerator proper where electron beam passes through 2

227

Cornell Cooperative Extension of Jefferson County Saving $6,000 per Year on Lighting  

E-Print Network (OSTI)

,000 square foot building. The building was formerly a manufacturing plant for air freshenersCornell Cooperative Extension of Jefferson County Saving $6,000 per Year on Lighting Energy comfort and client experience throughout the building · More money to spend on other things Project Cost

Keinan, Alon

228

Lawrence Livermore National Laboratory Kimberly S. Budil  

E-Print Network (OSTI)

. Steven E. Koonin Under Secretary for Nuclear Security/NNSA Administrator Thomas P. D'Agostino Asst Livermore National Laboratory Historically, most HEDS research has been sponsored by NNSA NNSA's HEDP) Motivated and encouraged by National Academy/workshop reports: Federal response SC/NNSA: Joint Program

Shyy, Wei

229

Geothermometry At Kawaihae Area (Thomas, 1986) | Open Energy Information  

Open Energy Info (EERE)

Geothermometry At Kawaihae Area (Thomas, 1986) Geothermometry At Kawaihae Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Kawaihae Area (Thomas, 1986) Exploration Activity Details Location Kawaihae Area Exploration Technique Geothermometry Activity Date Usefulness useful DOE-funding Unknown Notes Groundwater chemical data are limited due to the small number of wells near Kawaihae; however, the data that are available strongly substantiate the presence of a thermal resource. A measured water temperature of 31 degrees C in one well is clearly above normal ambient temperatures, and the chloride/magnesium ion ratio in the same well is elevated substantially above the normal range (Table 8). Both of these data provide strong evidence that at least a low-level thermal anomaly is present in the area.

230

Mercury Vapor At Mokapu Penninsula Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Mokapu Penninsula Area (Thomas, 1986) Mokapu Penninsula Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Mokapu Penninsula Area (Thomas, 1986) Exploration Activity Details Location Mokapu Penninsula Area Exploration Technique Mercury Vapor Activity Date Usefulness not useful DOE-funding Unknown Notes The high degree of cultural activity (e.g. residential areas, streets, jet runways, etc.) on Mokapu both limited the extent of the soil geochemical surveys performed and rendered their interpretation much more difficult. Soil mercury concentrations and radon emanometry data on the peninsula showed a few localized high values (Figs 13, 14), but no consistent correlation between the anomalous zones and geologic features could be

231

Geothermometry At Mauna Loa Northeast Rift Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

Geothermometry At Mauna Loa Northeast Rift Area (Thomas, 1986) Geothermometry At Mauna Loa Northeast Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Mauna Loa Northeast Rift Area (Thomas, 1986) Exploration Activity Details Location Mauna Loa Northeast Rift Area Exploration Technique Geothermometry Activity Date Usefulness useful DOE-funding Unknown Notes A reexamination of all groundwater sources in the Keaau area was undertaken in an effort to confirm the chemical and temperature anomalies that formed the primary basis on which the Keaau area was identified during the preliminary assessment survey. The data generated by this survey (Table 9) determined that all of the anomalous data present in the earlier data base were spurious and that the groundwater chemistry and temperatures in this

232

Soil Sampling At Molokai Area (Thomas, 1986) | Open Energy Information  

Open Energy Info (EERE)

Soil Sampling At Molokai Area (Thomas, 1986) Soil Sampling At Molokai Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Soil Sampling At Molokai Area (Thomas, 1986) Exploration Activity Details Location Molokai Area Exploration Technique Soil Sampling Activity Date Usefulness useful DOE-funding Unknown Notes Due to the very small potential market on the island of Molokai for geothermal energy, only a limited effort was made to confirm a resource in the identified PGRA. An attempt was made to locate the (now abandoned) water well that was reported to have encountered warm saline fluids. The well was located but had caved in above the water table and thus no water sampling was possible. Temperature measurements in the open portion of the well were performed, but no temperatures significantly above ambient were

233

Aeromagnetic Survey At Mokapu Penninsula Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Aeromagnetic Survey At Mokapu Penninsula Area (Thomas, 1986) Aeromagnetic Survey At Mokapu Penninsula Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aeromagnetic Survey At Mokapu Penninsula Area (Thomas, 1986) Exploration Activity Details Location Mokapu Penninsula Area Exploration Technique Aeromagnetic Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes A separate geophysical analysis performed on the Koolau caldera area (Kauahikaua, 1981 a) synthesized existing self-potential, gravity, seismic and aeromagnetic data with recently acquired resistivity soundings. An analysis of the observed remnant magnetization within the caldera complex suggested that subsurface temperatures ranged from less than 300degrees C to no more than 540degrees C. The resistivity data indicated that the

234

Mercury Vapor At Kawaihae Area (Thomas, 1986) | Open Energy Information  

Open Energy Info (EERE)

Mercury Vapor At Kawaihae Area (Thomas, 1986) Mercury Vapor At Kawaihae Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Kawaihae Area (Thomas, 1986) Exploration Activity Details Location Kawaihae Area Exploration Technique Mercury Vapor Activity Date Usefulness not useful DOE-funding Unknown Notes The soil geochemistry yielded quite complex patterns of mercury concentrations and radonemanation rates within the survey area (Cox and Cuff, 1981c). Mercury concentrations (Fig. 38) showed a general minimum along the Kawaihae-Waimea roads and a broad trend of increasing mercury concentrations toward both the north and south. There is no correlation apparent between the mercury patterns and either the resistivity sounding data or the surface geology in the area. The radon emanometry data (Fig.

235

Static Temperature Survey At Molokai Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Molokai Area (Thomas, 1986) Molokai Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Static Temperature Survey At Molokai Area (Thomas, 1986) Exploration Activity Details Location Molokai Area Exploration Technique Static Temperature Survey Activity Date Usefulness useful DOE-funding Unknown Notes Due to the very small potential market on the island of Molokai for geothermal energy, only a limited effort was made to confirm a resource in the identified PGRA. An attempt was made to locate the (now abandoned) water well that was reported to have encountered warm saline fluids. The well was located but had caved in above the water table and thus no water sampling was possible. Temperature measurements in the open portion of the well were performed, but no temperatures significantly above ambient were

236

Remarks by Administrator Thomas D'Agostino, National Nuclear Security  

NLE Websites -- All DOE Office Websites (Extended Search)

on NRC International Regulators Conference on Nuclear on NRC International Regulators Conference on Nuclear Security | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Speeches > Remarks by Administrator Thomas D'Agostino, National Nuclear ... Speech Remarks by Administrator Thomas D'Agostino, National Nuclear Security

237

Remarks by Administrator Thomas D'Agostino, National Nuclear Security  

National Nuclear Security Administration (NNSA)

on NRC International Regulators Conference on Nuclear on NRC International Regulators Conference on Nuclear Security | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Speeches > Remarks by Administrator Thomas D'Agostino, National Nuclear ... Speech Remarks by Administrator Thomas D'Agostino, National Nuclear Security

238

OPERATION AND COMMISSIONING OF THE JEFFERSON LAB UV FEL USING AN SRF DRIVER ERL  

Science Conference Proceedings (OSTI)

We describe the operation and commissioning of the Jefferson Lab UV FEL using a CW SRF ERL driver. Based on the same 135 MeV linear accelerator as the Jefferson Lab 10 kW IR Upgrade FEL, the UV driver ERL uses a bypass geometry to provide transverse phase space control, bunch length compression, and nonlinear aberration compensation necessitating a unique set of commissioning and operational procedures. Additionally, a novel technique to initiate lasing is described. To meet these constraints and accommodate a challenging installation schedule, we adopted a staged commissioning plan with alternating installation and operation periods. This report addresses these issues and presents operational results from on-going beam operations.

R. Legg; S. Benson; G. Biallas; K. Blackburn; J. Boyce; D. Bullard; J. Coleman; C. Dickover; D. Douglas; F. Ellingsworth; P. Evtushenko; F. Hannon; C. Hernandez-Garcia; C. Gould; J. Gubeli; D. Hardy; K. Jordan; M. Klopf; J. Kortze; M. Marchlik; W. Moore; G. Neil; T. Powers; D. Sexton; Michelle D. Shinn; C. Tennant; R. Walker; G. Wilson

2011-03-01T23:59:59.000Z

239

ADVANTAGES OF THE PROGRAM-BASED LOGBOOK SUBMISSION GUI AT JEFFERSON LAB  

Science Conference Proceedings (OSTI)

DTlite is a Tcl/Tk script that is used as the primary interface for making entries into Jefferson Lab's electronic logbooks. DTlite was originally written and implemented by a user to simplify submission of entries into Jefferson Lab?s electronic logbook, but has subsequently been maintained and developed by the controls software group. The use of a separate, script-based tool for logbook submissions (as opposed to a web-based submission tool bundled with the logbook database/interface) provides many advantages to the users, as well as creating many challenges to the programmers and maintainers of the electronic logbook system. The paper describes the advantages and challenges of this design model and how they have affected the development lifecycle of the electronic logbook system.

T. McGuckin

2006-10-24T23:59:59.000Z

240

Thomas H Zurbuchen, Department of Atmospheric, Oceanic and Space Sciences  

E-Print Network (OSTI)

Thomas H Zurbuchen, Department of Atmospheric, Oceanic and Space Sciences Plasmas Near Mercury: Solar Wind Driving and Surface Interac>ons #12;#12;Mercury Venus.4 kg Power: 2.0 W! 8! #12;9! #12;#12;11! MESSENGER ORBIT! Local Time Definition! 12! 0! 6! 18! Study

Note: This page contains sample records for the topic "laboratory thomas jefferson" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Copyright Notice Copyright 2003 Jeffrey Thomas Hein, P.E.  

E-Print Network (OSTI)

V System Willamette Falls-Portland, Maine for Street Lighting - Westinghouse - 1890 1886 1st Multiple lamp lighting system for street lighting, which he put to use in Cleveland, Ohio. That same year Thomas Alva Edison (Figure 2-2) and his team of researchers invented the incandescent light bulb for home

242

High Speed Rail in America Thomas Ducharme, Matt Schena,  

E-Print Network (OSTI)

://m.wikitravel.org/en/Frankfurt #12;Possible effects on Freight Rail · High speed rail usually hauls passengers, though new Resulting in improvement to those lines o Reducing operating costs due to sharing rail · Increase in freightHigh Speed Rail in America Thomas Ducharme, Matt Schena, and Dan Bellis #12;The US Current

Nagurney, Anna

243

Matrix models and stochastic growth in Donaldson-Thomas theory  

SciTech Connect

We show that the partition functions which enumerate Donaldson-Thomas invariants of local toric Calabi-Yau threefolds without compact divisors can be expressed in terms of specializations of the Schur measure. We also discuss the relevance of the Hall-Littlewood and Jack measures in the context of BPS state counting and study the partition functions at arbitrary points of the Kaehler moduli space. This rewriting in terms of symmetric functions leads to a unitary one-matrix model representation for Donaldson-Thomas theory. We describe explicitly how this result is related to the unitary matrix model description of Chern-Simons gauge theory. This representation is used to show that the generating functions for Donaldson-Thomas invariants are related to tau-functions of the integrable Toda and Toeplitz lattice hierarchies. The matrix model also leads to an interpretation of Donaldson-Thomas theory in terms of non-intersecting paths in the lock-step model of vicious walkers. We further show that these generating functions can be interpreted as normalization constants of a corner growth/last-passage stochastic model.

Szabo, Richard J. [Department of Mathematics, Heriot-Watt University, Colin Maclaurin Building, Riccarton, Edinburgh EH14 4AS, United Kingdom and Maxwell Institute for Mathematical Sciences, Edinburgh (United Kingdom); Tierz, Miguel [Grupo de Fisica Matematica, Complexo Interdisciplinar da Universidade de Lisboa, Av. Prof. Gama Pinto, 2, PT-1649-003 Lisboa (Portugal); Departamento de Analisis Matematico, Facultad de Ciencias Matematicas, Universidad Complutense de Madrid, Plaza de Ciencias 3, 28040 Madrid (Spain)

2012-10-15T23:59:59.000Z

244

Direct-Current Resistivity Survey At Hualalai Northwest Rift Area (Thomas,  

Open Energy Info (EERE)

Hualalai Northwest Rift Area (Thomas, Hualalai Northwest Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Hualalai Northwest Rift Area (Thomas, 1986) Exploration Activity Details Location Hualalai Northwest Rift Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes A total of seven Schlumberger soundings were performed on Hualalai. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii Retrieved from "http://en.openei.org/w/index.php?title=Direct-Current_Resistivity_Survey_At_Hualalai_Northwest_Rift_Area_(Thomas,_1986)&oldid=510528" Category: Exploration Activities What links here Related changes

245

CO2 EMISSION CALCULATIONS AND TRENDS Thomas A. Boden and Gregg Marland  

NLE Websites -- All DOE Office Websites (Extended Search)

EMISSION CALCULATIONS AND TRENDS EMISSION CALCULATIONS AND TRENDS Thomas A. Boden and Gregg Marland Environmental Sciences Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37830-6335 Robert J. Andres Institute of Northern Engineering School of Engineering University of Alaska-Fairbanks Fairbanks, Alaska 99775-5900 ABSTRACT FEB 05 ZS3 OSTI The submitted manuscript has been authored by a contractor of the U.S. Government under contract No. DE- ACO5-840R21400. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so. for U.S. Government purposes." This paper describes the compilation, calculation, and availability of the most comprehensive CO2 emissions database currently available. The database offers global, regional, and national annual

246

Thermal Gradient Holes At Hualalai Northwest Rift Area (Thomas, 1986) |  

Open Energy Info (EERE)

Hualalai Northwest Rift Hualalai Northwest Rift Area (Thomas, 1986) Exploration Activity Details Location Hualalai Northwest Rift Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness not useful DOE-funding Unknown Notes Although not part of the current effort, two deep (approximately 2000 m) exploratory wells were drilled on the north flank of Hualalai near Puu Waawaa cinder cone. The geophysical data used for siting these wells were proprietary and hence unavailable for publication; however, the temperatures measured at the bottoms of the wells were reported to be below 20degrees C. Chemical analysis of water samples taken from these wells did not provide useful geothermal data due to contamination of the well water with drilling muds References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In

247

Remarks by Administrator Thomas D'Agostino, National Nuclear Security  

National Nuclear Security Administration (NNSA)

to the Energy Facility Contractors Group | National Nuclear to the Energy Facility Contractors Group | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Speeches > Remarks by Administrator Thomas D'Agostino, National Nuclear ... Speech Remarks by Administrator Thomas D'Agostino, National Nuclear Security Administration, to the Energy Facility Contractors Group

248

Mr. Richard T. Thomas General Counsel for Petroleum Operations  

Office of Legacy Management (LM)

j&,J"[Di-' JAQ--- j&,J"[Di-' JAQ--- hl 3. ) :j .I Y ' ! <' Department of Energy Washington, D.C. 20545 NOV 1 1984 Mr. Richard T. Thomas General Counsel for Petroleum Operations P.O. Box 391 Ashland, Kentucky 41114 Dear Mr. Thomas: I am enclosing a copy of the radiological survey report for the Ashland Oil Company (former Haist property), Tonawanda, New York (Enclosure l), which was conducted in July 1976 (copies were sent to your Buffalo, New York, office on August 17, 1978). The results of the survey indicate levels of radioactive contamination above current guidelines. As noted in the report, the radioactive residues on the site do not pose a health hazard provided they (the residues) were not disturbed in the past or will not be disturbed in the future; i.e.,

249

Self Potential At Mokapu Penninsula Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Self Potential At Mokapu Penninsula Area (Thomas, Self Potential At Mokapu Penninsula Area (Thomas, 1986) Exploration Activity Details Location Mokapu Penninsula Area Exploration Technique Self Potential Activity Date Usefulness not indicated DOE-funding Unknown Notes A separate geophysical analysis performed on the Koolau caldera area (Kauahikaua, 1981 a) synthesized existing self-potential, gravity, seismic and aeromagnetic data with recently acquired resistivity soundings. An analysis of the observed remnant magnetization within the caldera complex suggested that subsurface temperatures ranged from less than 300degrees C to no more than 540degrees C. The resistivity data indicated that the electrical basement, to a depth of 900 m, had resistivities ranging from 42 ohm.m to more than 1000 ohm.m, which is considered to be within the

250

Water Sampling At Mokapu Penninsula Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Water Sampling At Mokapu Penninsula Area (Thomas, Water Sampling At Mokapu Penninsula Area (Thomas, 1986) Exploration Activity Details Location Mokapu Penninsula Area Exploration Technique Water Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Chemical analysis of groundwater from Mokapu was severely restricted by the absence of drilled wells; the only groundwater sources present were five shallow, brackish ponds, Chemical data indicated that all of the ponds consisted of seawater diluted by varying amounts of fresh surface water; no thermal alteration was revealed by the water chemistry (Table 2). Available temperature and water chemistry data on the Koolau caldera area were also assessed as part of the Mokapu study. The results of this analysis (Table

251

Thomas County, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Thomas County, Georgia: Energy Resources Thomas County, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 30.8417409°, -83.8473015° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.8417409,"lon":-83.8473015,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

252

Time Series Dependent Analysis of Unparametrized Thomas Networks  

Science Conference Proceedings (OSTI)

This paper is concerned with the analysis of labeled Thomas networks using discrete time series. It focuses on refining the given edge labels and on assessing the data quality. The results are aimed at being exploitable for experimental design and include ... Keywords: Time series analysis,Regulators,Computational modeling,Time measurement,Bioinformatics,Computational biology,Labeling,constraint satisfaction.,Time series analysis,model checking,temporal logic,biology and genetics

Hannes Klarner; Heike Siebert; Alexander Bockmayr

2012-09-01T23:59:59.000Z

253

Hadronic Multi-Particle Final State Measurements with CLAS at Jefferson Lab  

E-Print Network (OSTI)

Precision measurements in the neutrino sector are becoming increasingly feasible due to the development of relatively high-rate experimental capabilities. These important developments command renewed attention to the systematic corrections needed to interpret the data. Hadronic multi-particle final state measurements made using CLAS at Jefferson Lab, together with a broad theoretical effort that links electro-nucleus and neutrino-nucleus data, will address this problem, and will elucidate long-standing problems in intermediate energy nuclear physics. This new work will ultimately enable precision determinations of fundamental quantities such as the neutrino mixing matrix elements in detailed studies of neutrino oscillations.

W. K. Brooks

2003-11-04T23:59:59.000Z

254

The GlueX experiment: Search for gluonic excitations via photoproduction at Jefferson Lab  

Science Conference Proceedings (OSTI)

Studies of meson spectra via strong decays provide insight regarding QCD at the confinement scale. These studies have led to phenomenological models for QCD such as the constituent quark model. However, QCD allows for a much richer spectrum of meson states which include extra states such as exotics, hybrids, multi-quarks, and glueballs. First discussion of the status of exotic meson searches is given followed by an overview of the progress at Jefferson Lab to double the energy of the machine to 12 GeV, which will allow us to access photoproduction of mesons in search for gluonic excited states.

Eugenio, Paul [Florida State U.

2013-07-01T23:59:59.000Z

255

The study of the elementary photo- and electro-production of kaons at Jefferson Lab  

DOE Green Energy (OSTI)

The subject of electromagnetic production of strangeness, covers an important part of the planned CEBAF experimental program at Jefferson Lab. In this review we will mainly focus on those experiments aiming to investigate the elementary mechanism of the associated production of kaon--hyperon pairs, on hydrogen target, induced by electron and by real photon beams. Complementary experiments, proposed for all the three experimental halls, allow to access a wide kinematical region where different theoretical approaches can be used for the interpretation of the (upcoming) data.

M. Iodice; E. Cisbani; S. Frullani; F. Garibaldi; G.M. Urciuoli; R. De Leo; R. Perrino; M. Sotona

1996-10-01T23:59:59.000Z

256

National Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratories Los Alamos National Laboratory (the Laboratory) is one of 17 National Laboratories in the United States and is one of the two located in New Mexico. The Laboratory has...

257

Characteristics and fabrication of a 499 MHz superconducting deflecting cavity for the Jefferson Lab 12 geV Upgrade  

Science Conference Proceedings (OSTI)

A 499 MHz parallel bar superconducting deflecting cavity has been designed and optimized for a possible implementation at the Jefferson Lab. Previously the mechanical analysis, mainly stress, was performed. Since then pressure sensitivity was studied further and the cavity parts were fabricated. The prototype cavity is not completed due to the renovation at Jefferson Lab which resulted in the temporary shutdown of the electron beam welding facility. This paper will present the analysis results and facts encountered during fabrication. The unique geometry of the cavity and its required mechanical strength present interesting manufacturing challenges.

HyeKyoung Park, S.U. De Silva, J.R. Delayen

2012-07-01T23:59:59.000Z

258

Direct-Current Resistivity At Lualualei Valley Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

Lualualei Valley Area (Thomas, 1986) Lualualei Valley Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At Lualualei Valley Area (Thomas, 1986) Exploration Activity Details Location Lualualei Valley Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes Three Schlumberger resistivity soundings were performed in Lualualei Valley (Mattice and Kauahikaua, 1979). K840 Interpretation of the resistivity soundings suggests that the source of the warm water layer within the valley was the dense dike complex associated with the ancient magma chamber of Waianae volcano. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii Retrieved from

259

Direct-Current Resistivity Survey At Lualualei Valley Area (Thomas, 1986) |  

Open Energy Info (EERE)

Lualualei Valley Area (Thomas, 1986) Lualualei Valley Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Lualualei Valley Area (Thomas, 1986) Exploration Activity Details Location Lualualei Valley Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes Three Schlumberger resistivity soundings were performed in Lualualei Valley (Mattice and Kauahikaua, 1979). K840 Interpretation of the resistivity soundings suggests that the source of the warm water layer within the valley was the dense dike complex associated with the ancient magma chamber of Waianae volcano. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii

260

High School Research at Jefferson Lab - The Setup and Monitoring of a  

NLE Websites -- All DOE Office Websites (Extended Search)

12 GeV Safety Systems 12 GeV Safety Systems Previous Project (12 GeV Safety Systems) High School Research Main Index Next Project (Computational Physics) Computational Physics The Setup and Monitoring of a Honeypot at Jefferson Lab A honeypot is software that emulates an operating system and therefore can be used in many projects that should not be tested on a computer that could lose data. For my project it was put onto the network unprotected to see what hackers would do to it. This way we can research what the new or common methods of hacking are. Also, the honeypot does not install any of the malicious software, yet it saves a copy for further analysis. This allows Systems Security to see what bug the program exploits and the information found gives them the ability to fix the issue before hackers

Note: This page contains sample records for the topic "laboratory thomas jefferson" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

The New 2nd-Generation SRF R&D Facility at Jefferson Lab: TEDF  

Science Conference Proceedings (OSTI)

The US Department of Energy has funded a near-complete renovation of the SRF-based accelerator research and development facilities at Jefferson Lab. The project to accomplish this, the Technical and Engineering Development Facility (TEDF) Project has completed the first of two phases. An entirely new 3,100 m{sup 2} purpose-built SRF technical work facility has been constructed and was occupied in summer of 2012. All SRF work processes with the exception of cryogenic testing have been relocated into the new building. All cavity fabrication, processing, thermal treatment, chemistry, cleaning, and assembly work is collected conveniently into a new LEED-certified building. An innovatively designed 800 m2 cleanroom/chemroom suite provides long-term flexibility for support of multiple R&D and construction projects as well as continued process evolution. The characteristics of this first 2nd-generation SRF facility are described.

Reece, Charles E.; Reilly, Anthony V.

2012-09-01T23:59:59.000Z

262

Options for an 11 GeV RF Beam Separator for the Jefferson Lab CEBAF Upgrade  

Science Conference Proceedings (OSTI)

The CEBAF accelerator at Jefferson Lab has had, since first demonstration in 1996, the ability to deliver a 5-pass electron beam to experimental halls (A, B, and C) simultaneously. This capability was provided by a set of three, room temperature 499 MHz rf separators in the 5th pass beamline. The separator was two-rod, TEM mode type resonator, which has a high shunt impedance. The maximum rf power to deflect the 6 GeV beams was about 3.4kW. The 12 GeV baseline design does not preserve the capability of separating the 5th pass, 11 GeV beam for the 3 existing halls. Several options for restoring this capability, including extension of the present room temperature system or a new superconducting design in combination with magnetic systems, are under investigation and are presented.

Jean Delayen, Michael Spata, Haipeng Wang

2009-05-01T23:59:59.000Z

263

Recent Results of Target Single-Spin Asymmetry Experiments at Jefferson Lab  

SciTech Connect

We report recent results from Jefferson Lab Hall A Neutron Transversity experiment (E06-010). Transversely polarized target single-spin asymmetry AUT and beam-target double-spin asymmetry A{sub LT} have been measured in semi-inclusive deep-inelastic scattering (SIDIS) reactions on a polarized neutron ({sup 3}He) target. Collins-type and Sivers-type asymmetries have been extracted from A{sub UT} for charged pion SIDIS productions, which are sensitive to quark transversity and Sivers distributions, correspondingly. Double spin asymmetry A{sub LT} is sensitive to a specific quark transverse momentum dependent parton distribution (TMD), the so-called transverse helicity (g{sub 1T} ) distributions. In addition, target single-spin asymmetries A{sub y} in inclusive electron scattering on a transversely polarized {sup 3}He target in quasi-elastic and deep inelastic kinematics were also measured in Hall A.

Jiang, Xiaodong [Los Alamos National Lab

2013-08-01T23:59:59.000Z

264

Performance and results of the RICH detector for kaon physics in Hall A at Jefferson Lab  

SciTech Connect

A proximity focusing RICH detector has been constructed for the hadron High Resolution Spectrometer (HRS) of Jefferson Lab Experimental Hall-A. This detector is intended to provide excellent hadron identification up to a momentum of 2.5 GeV/c. The RICH uses a 15 mm thick liquid perfluorohexane radiator in proximity focusing geometry to produce Cherenkov photons traversing a 100 mm thick proximity gap filled with pure methane and converted into electrons by a thin film of CsI deposited on the cathode plane of a MWPC. The detector has been successfully employed in the fixed target, high luminosity and high resolution hypernuclear spectroscopy experiment. With its use as a kaon identifier in the 2 GeV/c region, the very large contribution from pions and protons to the hypernuclear spectrum was reduced to a negligible level. The basic parameters and the resulting performance obtained during the experiment are reported in this paper.

M. Iodice; E. Cisbani; S. Colilli; F. Cusanno; S. Frullani; R. Fratoni; F. Garibaldi; M. Gricia; M. Lucentini; L. Pierangeli; F. Santavenere; G.M. Urciuoli; P. Veneroni; G. De Cataldo; R. De Leo; D. Di Bari; L. Lagamba; E. Nappi; S. Marrone; B. Kross; J.J. LeRose; B. Reitz; J. Segal; C. Zorn and H. Breuer

2005-11-01T23:59:59.000Z

265

Preliminary Results from Integrating Compton Photon Polarimetry in Hall A of Jefferson Lab  

SciTech Connect

A wide range of nucleon and nuclear structure experiments in Jefferson Lab's Hall A require precise, continuous measurements of the polarization of the electron beam. In our Compton polarimeter, electrons are scattered off photons in a Fabry-Perot cavity; by measuring an asymmetry in the integrated signal of the scattered photons detected in a GSO crystal, we can make non-invasive, continuous measurements of the beam polarization. Our goal is to achieve 1% statistical error within two hours of running. We discuss the design and commissioning of an upgrade to this apparatus, and report preliminary results for experiments conducted at beam energies from 3.5 to 5.9 GeV and photon rates from 5 to 100 kHz.

D. Parno, M. Friend, F. Benmokhtar, G. Franklin, R. Michaels, S. Nanda, B. Quinn, P. Souder

2011-09-01T23:59:59.000Z

266

Studienleiter Chemie und Molekulare Wissenschaften Sekretariat Studienleitung Prof. Thomas Wandlowski Sandra Zbinden  

E-Print Network (OSTI)

Studienleiter Chemie und Molekulare Wissenschaften Sekretariat Studienleitung Prof. Thomas Wandlowski Sandra Zbinden Departement für Chemie und Biochemie Departement für Chemie und Biochemie 6318057 e-mail: thomas.wandlowski@dcb.unibe.ch e-mail: sandra.zbinden@dcb.unibe.ch Bachelor in Chemie und

Mühlemann, Oliver

267

Fuel Cell and Battery Electric Vehicles Compared By C. E. (Sandy) Thomas, Ph.D., President  

E-Print Network (OSTI)

reduction goals1 . As shown in Figure 1, hybrid electric vehicles (HEV's) and plugin hybrid electric electric vehicle; H2 ICE HEV = hydrogen internal combustion engine hybrid electric vehicle) C.E. Thomas Fuel Cell and Battery Electric Vehicles Compared By C. E. (Sandy) Thomas, Ph.D., President H2Gen

268

New photomultiplier active base for Hall C Jefferson Lab lead tungstate calorimeter  

Science Conference Proceedings (OSTI)

A new photomultiplier tube active base was designed and tested. The base combines active voltage division circuit and fast amplifier, powered by the current flowing through voltage divider. This base is developed to upgrade older photomultiplier bases of Jefferson Lab lead-tungsten calorimeter (about ?1200 crystals of PbWO{sub 4} from the PrimEx experimental setup). This is needed for the extension of detectors' rate capability to meet requirements of new Hall C proposal PR12-11-102 of measurements of the L/T separated cross sections and their ratio R = ?L/?T in neutral-pion p(e,e??0)p deep exclusive and p(p(e,e??{sup 0})p)X semi-inclusive scattering regions. New active base is direct replacement of older passive base circuit without adding of additional power or signal lines. However, it extends detectors rate capability with factor over 20. Moreover, transistorized voltage divider improves detector's amplitude resolution due to reduction of photomultiplier gain dependence from tube anode current. The PMT active base is the invention disclosed in V. Popov's U.S. Patent No. 6,791,269, which successfully works over ten years in several Jefferson Lab Cherenkov detectors. The following design is a new revised and improved electronic circuit with better gain stability and linearity in challenge to meet requirements of new Hall C experimental setup. New active base performance was tested using fast LED light source and Pr:LuAG scintillator and gamma sources. Electronics radiation hardness was tested on JLab accelerator. Results of testing R4125 Hamamatsu photomultiplier tube in new active base are presented.

Popov, Vladimir E. [JLAB; Mkrtchyan, Hamlet G. [Artem Alikhanian National Laboratory

2012-11-01T23:59:59.000Z

269

Self Potential At Mauna Loa Southwest Rift Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

Southwest Rift Area (Thomas, 1986) Southwest Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Self Potential At Mauna Loa Southwest Rift Area (Thomas, 1986) Exploration Activity Details Location Mauna Loa Southwest Rift Area Exploration Technique Self Potential Activity Date Usefulness not indicated DOE-funding Unknown Notes Field surveys in the South Point area were limited to a series of Schlumberger soundings and a self-potential traverse across the rift zone. The absence of groundwater wells and time and funding constraints precluded any geochemical field surveys. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii Retrieved from "http://en.openei.org/w/index.php?title=Self_Potential_At_Mauna_Loa_Southwest_Rift_Area_(Thomas,_1986)&oldid=389751

270

Refraction Survey At Kilauea East Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Kilauea East Rift Area (Thomas, 1986) Kilauea East Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Refraction Survey At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Refraction Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes Seismic refraction surveys conducted by Broyles and Furumoto (1978) and Suyenaga et al. (1978) developed a cross-sectional model of the rift zone near the present site of HGP-A that proposed a 12- 17 km wide dike complex lying at a depth of 2 to 3 km (Fig. 51). References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii Retrieved from "http://en.openei.org/w/index.php?title=Refraction_Survey_At_Kilauea_East_Rift_Area_(Thomas,_1986)&oldid=386690"

271

Mercury Vapor At Mauna Loa Northeast Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Mauna Loa Northeast Rift Area (Thomas, 1986) Mauna Loa Northeast Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Mauna Loa Northeast Rift Area (Thomas, 1986) Exploration Activity Details Location Mauna Loa Northeast Rift Area Exploration Technique Mercury Vapor Activity Date Usefulness not indicated DOE-funding Unknown Notes Soil mercury and radon emanometry sampling conducted in the Keaau prospect were similarly unable to define any anomalies that could reasonably be interpreted to be due to subsurface thermal effects. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii Retrieved from "http://en.openei.org/w/index.php?title=Mercury_Vapor_At_Mauna_Loa_Northeast_Rift_Area_(Thomas,_1986)&oldid=390060

272

VBH-0005 - In the Matter of Thomas Dwyer | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

VBH-0005 - In the Matter of Thomas Dwyer VBH-0005 - In the Matter of Thomas Dwyer VBH-0005 - In the Matter of Thomas Dwyer This Decision involves a whistleblower complaint filed by Thomas Dwyer under the Department of Energy's (DOE) Contractor Employee Protection Program. From January 1996 to October 1997, Mr. Dwyer was employed as a pipefitter by Fluor Daniel Fernald (FDF), a DOE contractor responsible for the cleanup of the Fernald Environmental Management Project, a former DOE uranium production facility located about 18 miles northwest of Cincinnati, Ohio. Mr. Dwyer alleges that FDF first suspended him and then terminated him in retaliation for taking certain actions and making health and safety disclosures. vbh0005.pdf More Documents & Publications VBA-0005 - In the Matter of Thomas Dwyer

273

Aeromagnetic Survey At Mauna Loa Northeast Rift Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

Rift Area (Thomas, 1986) Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aeromagnetic Survey At Mauna Loa Northeast Rift Area (Thomas, 1986) Exploration Activity Details Location Mauna Loa Northeast Rift Area Exploration Technique Aeromagnetic Survey Activity Date Usefulness useful DOE-funding Unknown Notes Aeromagnetic data (Godson et al., 1981) for the lower northeast rift of Mauna Loa tend to substantiate this conclusion as well. The lower extension of the rift zone does not exhibit any significant magnetic features that would correspond to a thermal source within the inferred trace of the rift zone. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii Retrieved from "http://en.openei.org/w/index.php?title=Aeromagnetic_Survey_At_Mauna_Loa_Northeast_Rift_Area_(Thomas,_1986)&oldid=40242

274

Gas Flux Sampling At Mauna Loa Northeast Rift Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

Gas Flux Sampling At Mauna Loa Northeast Rift Area (Thomas, 1986) Gas Flux Sampling At Mauna Loa Northeast Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Mauna Loa Northeast Rift Area (Thomas, 1986) Exploration Activity Details Location Mauna Loa Northeast Rift Area Exploration Technique Gas Flux Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Soil mercury and radon emanometry sampling conducted in the Keaau prospect were similarly unable to define any anomalies that could reasonably be interpreted to be due to subsurface thermal effects. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii Retrieved from "http://en.openei.org/w/index.php?title=Gas_Flux_Sampling_At_Mauna_Loa_Northeast_Rift_Area_(Thomas,_1986)&oldid=389039"

275

VWA-0018 - Deputy Secretary Decision - In the Matter of Thomas T. Tiller |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Deputy Secretary Decision - In the Matter of Thomas T. Deputy Secretary Decision - In the Matter of Thomas T. Tiller VWA-0018 - Deputy Secretary Decision - In the Matter of Thomas T. Tiller This is a request for review by complainant Thomas T. Tiller of an Initial Agency Decision, issued by the Office of Hearings and Appeals (OHA), denying the two reprisal complaints that he filed pursuant to 10 C.F.R. Part 708, the regulation establishing the DOE Contractor Employee Protection Program. Mr. Tiller was employed by Wackenhut Services, Inc. (Wackenhut), a DOE contractor that provides paramilitary security support services at DOE's Savannah River Site in Aiken, South Carolina. Deputy Secretary Decision Affirming VWA-0018 Decision and Order More Documents & Publications OHA Whistleblower Cases Archive File VWA-0018 - In the Matter of Thomas T. Tiller

276

Direct-Current Resistivity Survey At Mauna Loa Southwest Rift Area (Thomas,  

Open Energy Info (EERE)

Area (Thomas, Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Mauna Loa Southwest Rift Area (Thomas, 1986) Exploration Activity Details Location Mauna Loa Southwest Rift Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes Field surveys in the South Point area were limited to a series of Schlumberger soundings and a self-potential traverse across the rift zone. The absence of groundwater wells and time and funding constraints precluded any geochemical field surveys. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii Retrieved from "http://en.openei.org/w/index.php?title=Direct-Current_Resistivity_Survey_At_Mauna_Loa_Southwest_Rift_Area_(Thomas,_1986)&oldid=510541"

277

Nobel Prize | Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Nobel Prize Nobel Prize Nobel Prize Home 2009 2003 2002 1988 1980 1976 1957 Other Prizes Brookhaven National Laboratory is home to world-class research facilities and scientific departments which attract resident and visiting scientists in many fields. This outstanding mix of machine- and mind-power has on seven occasions produced research deemed worthy of the greatest honor in science: the Nobel Prize. placeholder 2009 Steitz, Ramakrishnan 2009 Nobel Prize in Chemistry Venkatraman Ramakrishnan, of the Medical Research Council Laboratory of Molecular Biology in Cambridge, UK, a former employee in Brookhaven's biology department, and a long-time user of Brookhaven's National Synchrotron Light Source (NSLS), and Thomas A. Steitz of Yale University, also a long-time NSLS user, shared the prize with Ada E. Yonath of the

278

Record Series Descriptions: Lawrence Berkeley Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Berkeley Laboratory Berkeley Laboratory LBL Business Manager/Research and Development Administrative Files Life Sciences Division Administrative Files of Baird Whaley,Administrator Administrative Files of Administrative Assistants to the Directors of the Biology and Medicine Division and Donner Laboratory Donner Clinic and Donner Pavilion Patients/Subjects Index Card Master File Donner Laboratory Clinical Logs and Notebooks Donner Laboratory R&D Project Case Files High-Altitude/Decompression Studies Patient Medical Records Research Medicine and Radiation Biophysics Historical Files Statistical Summaries Thomas Budinger Files Patricia Durbin Files John W. Gofman Files Joseph G. Hamilton Records Joseph G. Hamilton Materials: Edwin M. McMillan Papers Hardin Jones Files John Hundale Lawrence Files

279

MEMORANDUM FROM: THOMAS E. BROWN, DIRECTOR OFFICE OF CONTRACT MANAGEMENT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

,2008 ,2008 MEMORANDUM FROM: THOMAS E. BROWN, DIRECTOR OFFICE OF CONTRACT MANAGEMENT OFFICE OF PROCUREMENT AND ASSISTANCE MANAGEMENT SUBJECT: Contract Change Order Administration of Department of Energy Prime Contracts The purpose of this memorandum is to highlight the need for good contract administration of Department of Energy (DOE) contracts (non management and operating contracts) including those covered by DOE Order 413.3A, Program and Project Management for the Acquisition of Capital Assets. One of the focus areas of the DOE's efforts to improve contract and project management is the recopition that effectrve contract change order administration is critical to ensuring that contract and project requirements are met. Fundamentally, the award of an appropriate contract type that best

280

Ground Gravity Survey At Mokapu Penninsula Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

Ground Gravity Survey At Mokapu Penninsula Area Ground Gravity Survey At Mokapu Penninsula Area (Thomas, 1986) Exploration Activity Details Location Mokapu Penninsula Area Exploration Technique Ground Gravity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes A separate geophysical analysis performed on the Koolau caldera area (Kauahikaua, 1981 a) synthesized existing self-potential, gravity, seismic and aeromagnetic data with recently acquired resistivity soundings. An analysis of the observed remnant magnetization within the caldera complex suggested that subsurface temperatures ranged from less than 300degrees C to no more than 540degrees C. The resistivity data indicated that the electrical basement, to a depth of 900 m, had resistivities ranging from 42 ohm.m to more than 1000 ohm.m, which is considered to be within the

Note: This page contains sample records for the topic "laboratory thomas jefferson" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Time-Domain Electromagnetics At Haleakala Volcano Area (Thomas, 1986) |  

Open Energy Info (EERE)

Time-Domain Electromagnetics At Haleakala Volcano Time-Domain Electromagnetics At Haleakala Volcano Area (Thomas, 1986) Exploration Activity Details Location Haleakala Volcano Area Exploration Technique Time-Domain Electromagnetics Activity Date Usefulness useful DOE-funding Unknown Notes Controlled-source electromagnetic soundings were found to be substantially more successful in the southwest rift than either the Schlumberger or the self-potential studies. This was largely due to the ability of time-domain methods to penetrate high-resistivity surface layers and thus to define lower-resistivity sections at depth. The results of this sounding study, which was conducted at elevations ranging from 75 to 497 m a.s.l., generally indicated moderate- to lowresistivity (6 - 7 ohm.m) sections to depths of 1 km on the lower rift zone and higher resistivities (12-16

282

Aeromagnetic Survey At Hualalai Northwest Rift Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

Aeromagnetic Survey At Hualalai Northwest Rift Area Aeromagnetic Survey At Hualalai Northwest Rift Area (Thomas, 1986) Exploration Activity Details Location Hualalai Northwest Rift Area Exploration Technique Aeromagnetic Survey Activity Date Usefulness useful DOE-funding Unknown Notes Aeromagnetic survey data for Hualalai (Godson et al., 1981) clearly indicate an elongate northwest to southeast trending zone of extremely low total magnetic field over the summit region of Hualalai that extends into the upper northwest rift zone. It is extremely unlikely that the summit region is underlain by intrusive material old enough (greater than 700,000 years of age) to have been emplaced during a period of reversed magnetic field; therefore, the only alternative explanation possible (presuming the data are accurate) is that this region is underlain by material with very

283

Mr. Thomas A. Dickerson Supervisor of Environmental Affairs  

Office of Legacy Management (LM)

3 3 932. . . - ,_ ' ,;. Department of Energy Washinglon.DC 20545 tie c"rT SEP 05 1990 pff, (>-.I Mr. Thomas A. Dickerson Supervisor of Environmental Affairs Carpenter Technology Corporation Engineering and Construction P. 0. Box 14662 Reading, Pennsylvania 19612-4662 Dear Mr. Dickerson: The Department of Energy (DOE) has completed its review of the preliminary radiological data from the surveys of your facility in Reading, Pennsylvania, completed in July and August 1988. We are pleased to inform you that the survey has verified that the radiological condition of your facility is in compliance with applicable DOE Guidelines and that no remedial action or further investigations are necessary. I am enclosing a copy of the survey report prepared by our

284

Commander, Seneca Army Depot Attention: Thomas Stincic, Safety Officer  

Office of Legacy Management (LM)

9 1986 9 1986 Department of Energy Washington, D .C. 20545 . Commander, Seneca Army Depot Attention: Thomas Stincic, Safety Officer Romulus, New York 14541 Dear Mr. Stincic: As you are aware, the Department of Energy is evaluating the radiological condition of sites formerly used by Department predecessors during the early years of nuclear energy development , and a portion of the Seneca Army Depot was identified as one such site. While our preliminary inves-tiga- tions did identify residual radioactive material on the site, it is our understanding that the Department of Army assumed responsibility for this residual radioactivity and has completed remedial action. We have not received a final report of this work and would appreciate receiving a copy

285

Division Personnel - Argonne National Laboratories, Materials...  

NLE Websites -- All DOE Office Websites (Extended Search)

All Title Thomas Proslier Thomas Sampson Timothy Benseman Timothy Kendall Ulrich Welp Urs W. Geiser Ursula Perez-Salas Utpal Chatterjee Valentin Stanev Valentyn Novosad Valerii...

286

Division Personnel - Argonne National Laboratories, Materials...  

NLE Websites -- All DOE Office Websites (Extended Search)

Tao Xu Thomas Proslier Thomas Sampson Timothy Benseman Timothy Kendall Ulrich Welp Urs W. Geiser Ursula Perez-Salas Utpal Chatterjee Valentin Stanev Valentyn Novosad Valerii...

287

Gas Flux Sampling At Haleakala Volcano Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Gas Flux Sampling At Haleakala Volcano Area (Thomas, 1986) Gas Flux Sampling At Haleakala Volcano Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Haleakala Volcano Area (Thomas, 1986) Exploration Activity Details Location Haleakala Volcano Area Exploration Technique Gas Flux Sampling Activity Date Usefulness useful DOE-funding Unknown Notes The field survey program on the northwest rift zone consisted of soil mercury and radon emanometry surveys, groundwater temperature and chemistry studies, Schlumberger resistivity soundings and self-potential profiles. Geophysical and geochemical surveys along this rift (southwest) were limited by difficult field conditions and access limitations. The geophysical program consisted of one Schlumberger sounding, one

288

Laboratory Reagents  

SciTech Connect

Replaced by WMH-310, Section 4.17. This document outlined the basic methodology for preparing laboratory reagents used in the 222-S Standards Laboratory. Included were general guidelines for drying, weighing, transferring, dissolving, and diluting techniques common when preparing laboratory reagents and standards. Appendix A contained some of the reagents prepared by the laboratory.

CARLSON, D.D.

1999-10-08T23:59:59.000Z

289

Molecular Imaging for Bio-medical Research with Mice  

Molecular Imaging Researchers at the Department of Energys Thomas Jefferson National Accelerator Facility (Jefferson Lab) are collaborating with the ...

290

elementbingo_all.id  

NLE Websites -- All DOE Office Websites (Extended Search)

Jefferson National Accelerator Facility - Office of Science Education http:education.jlab.org Thomas Jefferson National Accelerator Facility - Office of Science Education http:...

291

Design of the Proposed Low Energy Ion Collider Ring at Jefferson Lab  

SciTech Connect

The polarized Medium energy Electron-Ion Collider (MEIC) envisioned at Jefferson Lab will cover a range of center-of-mass energies up to 65 GeV. The present MEIC design could also allow the accommodation of low energy electron-ion collisions (LEIC) for additional science reach. This paper presents the first design of the low energy ion collider ring which is converted from the large ion booster of MEIC. It can reach up to 25 GeV energy for protons and equivalent ion energies of the same magnetic rigidity. An interaction region and an electron cooler designed for MEIC are integrated into the low energy collider ring, in addition to other required new elements including crab cavities and ion spin rotators, for later reuse in MEIC itself. A pair of vertical chicanes which brings the low energy ion beams to the plane of the electron ring and back to the low energy ion ring are also part of the design.

Nissen, Edward W. [JLAB; Lin, Fanglei [JLAB; Morozov, Vasiliy [JLAB; Zhang, Yuhong [JLAB

2013-06-01T23:59:59.000Z

292

Natural radioactivity in geothermal waters, Alhambra Hot Springs and nearby areas, Jefferson County, Montana  

DOE Green Energy (OSTI)

Radioactive hot springs issue from a fault zone in crystalline rock of the Boulder batholith at Alhambra, Jefferson County, in southwestern Montana. The discharge contains high concentrations of radon, and the gross activity and the concentration of radium-226 exceed maximum levels recommended by the Environmental Protection Agency for drinking water. Part of the discharge is diverted for space heating, bathing, and domestic use. The radioactive thermal waters at measured temperatures of about 60/sup 0/C are of the sodium bicarbonate type and saturated with respect to calcium carbonate. Radium-226 in the rock and on fractured surfaces or coprecipitated with calcium carbonate probably is the principal source of radon that is dissolved in the thermal water and discharged with other gases from some wells and springs. Local surface water and shallow ground water are of the calcium bicarbonate type and exhibit low background radioactivity. The temperature, percent sodium, and radioactivity of mixed waters adjacent to the fault zone increase with depth. Samples from most of the major hot springs in southwestern Montana have been analyzed for gross alpha and beta. The high level of radioactivity at Alhambra appears to be related to leaching of radioactive material from fractured siliceous veins by ascending thermal waters, and is not a normal characteristic of hot springs issuing from fractured crystalline rock in Montana.

Leonard, R.B.; Janzer, W.J.

1977-08-01T23:59:59.000Z

293

VWA-0018 - In the Matter of Thomas T. Tiller | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

In the Matter of Thomas T. Tiller In the Matter of Thomas T. Tiller VWA-0018 - In the Matter of Thomas T. Tiller This Decision concerns two whistleblower complaints filed by Thomas T. Tiller (Tiller) under the Department of Energy's (DOE) Contractor Employee Protection Program, 10 C.F.R. Part 708. At all times relevant to this proceeding, Tiller was employed by Wackenhut Services, Incorporated (Wackenhut), a DOE contractor that provides paramilitary security support services at the DOE's Savannah River Site in Aiken, South Carolina. Tiller contends in his first complaint that Wackenhut demoted him after he alleged that a senior level manager at Wackenhut had engaged in unethical and possible criminal conduct. In his second complaint, Tiller charges that Wackenhut retaliated against him after learning he had filed a Part 708

294

Gas Flux Sampling At Lualualei Valley Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Gas Flux Sampling At Lualualei Valley Area (Thomas, 1986) Gas Flux Sampling At Lualualei Valley Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Lualualei Valley Area (Thomas, 1986) Exploration Activity Details Location Lualualei Valley Area Exploration Technique Gas Flux Sampling Activity Date Usefulness useful DOE-funding Unknown Notes Soil mercury and radon emanation surveys were performed over much of the accessible surface of Lualualei Valley (Cox and Thomas, 1979). The results of these surveys (Figs 7 and 8) delineated several areas in which soil mercury concentrations or radon emanation rates were substantially above normal background values. Some of these areas were apparently coincident with the mapped fracture systems associated with the caldera boundaries.

295

Aeromagnetic Survey At Kilauea East Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Thomas, 1986) Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aeromagnetic Survey At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Aeromagnetic Survey Activity Date Usefulness useful DOE-funding Unknown Notes More recent aeromagnetic data (Godson et al., 1981) generally substantiate the presence of a nearly continuous rift zone from the Kilauea summit down to sea level; the apparent width of the magnetic anomaly does not appear to match that projected by Furumoto (1978a) or Broyles et al. (1979); however, to date, no detailed analysis of the more recent data has been completed (R. B. Moore, pers. commun., 1984). References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In

296

Remarks by NNSA Administrator Thomas P. D'Agostino, 12th Annual Small  

NLE Websites -- All DOE Office Websites (Extended Search)

NNSA Administrator Thomas P. D'Agostino, 12th Annual Small NNSA Administrator Thomas P. D'Agostino, 12th Annual Small Business Conference & Expo, Kansas City, Missouri | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Speeches > Remarks by NNSA Administrator Thomas P. D'Agostino, ... Speech Remarks by NNSA Administrator Thomas P. D'Agostino, 12th Annual Small

297

Aeromagnetic Survey At Kilauea Southwest Rift And South Flank Area (Thomas,  

Open Energy Info (EERE)

Thomas, Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aeromagnetic Survey At Kilauea Southwest Rift And South Flank Area (Thomas, 1986) Exploration Activity Details Location Kilauea Southwest Rift And South Flank Area Exploration Technique Aeromagnetic Survey Activity Date Usefulness useful DOE-funding Unknown Notes Aeromagnetic data (Godson et al., 1981) for the southwest rift appears to substantiate the presence of a thermal resource; there is a marked bipolar magnetic anomaly paralleling the rift zone from the summit to the lower rift near the coast suggesting either that intense hydrothermal alteration has occurred or that subsurface temperatures exceed the Curie temperature. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In

298

VBA-0005 - In the Matter of Thomas Dwyer | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

VBA-0005 - In the Matter of Thomas Dwyer VBA-0005 - In the Matter of Thomas Dwyer VBA-0005 - In the Matter of Thomas Dwyer This Decision considers an Appeal of an Initial Agency Decision (IAD) issued on May 2, 2000, involving a complaint filed by Thomas Dwyer (Dwyer or the complainant) under the Department of Energy (DOE) Contractor Employee Protection Program, 10 C.F.R. Part 708. In his complaint, Dwyer claims that Fluor Daniel Fernald (FDF), a DOE contractor, suspended and then terminated his employment in retaliation for his making disclosures that are protected under Part 708. In the IAD, however, the Hearing Officer determined that FDF had shown that it would have terminated the complainant for his misconduct, even in the absence of the protected disclosures. As set forth in this decision, I have determined that Dwyer's Appeal must be

299

Mercury Vapor At Hualalai Northwest Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Mercury Vapor At Hualalai Northwest Rift Area (Thomas, 1986) Mercury Vapor At Hualalai Northwest Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Hualalai Northwest Rift Area (Thomas, 1986) Exploration Activity Details Location Hualalai Northwest Rift Area Exploration Technique Mercury Vapor Activity Date Usefulness not indicated DOE-funding Unknown Notes The Hualalai lower northwest rift and southern flank were sampled for soil mercury concentration and radon emanation rates (Cox and Cuff, 1981d). The data generated by these surveys yielded complex patterns of mercury concentrations and radon emanation rates that generally did not show coincident anomalies (Figs 42, 43). References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In

300

FIA-12-0023 - In the Matter of Thomas R. Thielen | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

23 - In the Matter of Thomas R. Thielen 23 - In the Matter of Thomas R. Thielen FIA-12-0023 - In the Matter of Thomas R. Thielen The Department of Energy's (DOE) Office of Hearings and Appeals (OHA) Director granted in part and denied in all other respects a Privacy Act Appeal filed by Thomas R. Thielen. Mr. Thielen filed a request with the DOE's Richland Operations Office for documents regarding a safety concern he raised to CH2M Hill Plateau Remediation Company (CHPRC). Richland issued a determination letter which stated that, according to CHPRC's contract with DOE, CHPRC's employee concern records are the property of the contractor and not subject to the provisions of the Freedom of Information Act or Privacy Act. Richland released a copy of Mr. Thielen's DOE employee concern file, but withheld portions of the

Note: This page contains sample records for the topic "laboratory thomas jefferson" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Direct-Current Resistivity At Honokowai Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Honokowai Area (Thomas, 1986) Honokowai Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At Honokowai Area (Thomas, 1986) Exploration Activity Details Location Honokowai Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not useful DOE-funding Unknown Notes Three Schlumberger resistivity surveys were attempted on the alluvial plain around Honokowai (Fig. 22). Two of the soundings penetrated to a moderate-resistivity basement, interpreted to be seawater-saturated basalt, whereas the other sounding encountered a high-resistivity intermediate layer which could not be adequately penetrated to allow resolution of the basement resistivity (Mattice, 1981). References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In

302

Direct-Current Resistivity Survey At Honokowai Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

Honokowai Area (Thomas, 1986) Honokowai Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Honokowai Area (Thomas, 1986) Exploration Activity Details Location Honokowai Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not useful DOE-funding Unknown Notes Three Schlumberger resistivity surveys were attempted on the alluvial plain around Honokowai (Fig. 22). Two of the soundings penetrated to a moderate-resistivity basement, interpreted to be seawater-saturated basalt, whereas the other sounding encountered a high-resistivity intermediate layer which could not be adequately penetrated to allow resolution of the basement resistivity (Mattice, 1981). References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In

303

Gas Flux Sampling At Hualalai Northwest Rift Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

Hualalai Northwest Rift Area (Thomas, 1986) Hualalai Northwest Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Hualalai Northwest Rift Area (Thomas, 1986) Exploration Activity Details Location Hualalai Northwest Rift Area Exploration Technique Gas Flux Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes The Hualalai lower northwest rift and southern flank were sampled for soil mercury concentration and radon emanation rates (Cox and Cuff, 1981d). The data generated by these surveys yielded complex patterns of mercury concentrations and radon emanation rates that generally did not show coincident anomalies (Figs 42, 43). References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In

304

An Interview with Thomas Kalil: Where politics, policy, technology and science converge  

Science Conference Proceedings (OSTI)

From the White House to Berkeley, Thomas Kalil has worked on shaping the national agenda for science and technology research initiatives. Kalil, President Clinton's former science and technology advisor, now holds a similar post at the University of ...

Ubiquity staff

2004-01-01T23:59:59.000Z

305

Atoms with nuclei of finite extension at finite temperature: A Thomas-Fermi approximation  

Science Conference Proceedings (OSTI)

Atoms at finite temperature and with a nucleus of finite extension are analyzed by a modification of the Thomas-Fermi model for {ital T}{ne}0. Applications to strange-matter atoms are included.

Epele, L.N.; Fanchiotti, H.; Garcriaaa Canal, C.A.; Guillen, J.C. (Laboratorio de Fisica Teorica, Departamento de Fisica, Universidad Nacional de La Plata, Casilla de Correo 67, 1900 La Plata (Argentina))

1990-08-01T23:59:59.000Z

306

Microsoft PowerPoint - 7-02 Thomas Suttora Tech Echange - 435...  

NLE Websites -- All DOE Office Websites (Extended Search)

Order 435.1 Radioactive Waste Management Revision Status Linda Suttora, DOE HQ, EM-41 Steve Thomas, SRR EM Waste Processing Technical Exchange November 17, 2010 Print Close What is...

307

U.S. Department of Energy Information Bridge MARC Records System  

Office of Scientific and Technical Information (OSTI)

DOE National Labs DOE National Labs Please select the type, or types, of records for which you wish to search: (you may select more than one) Author: Research Org: Sponsor: Subject: Please specify the DOE National Laboratory with which the research may be affiliated Lab: Ames Laboratory Argonne National Laboratory Brookhaven National Laboratory Fermi National Accelerator Laboratory Idaho National Laboratory Lawrence Berkeley National Laboratory Lawrence Livermore National Laboratory Los Alamos National Laboratory National Energy Technology Laboratory National Renewable Energy Laboratory Oak Ridge National Laboratory Pacific Northwest National Laboratory Princeton Plasma Physics Laboratory SLAC National Accelerator Laboratory Sandia National Laboratories Savannah River National Laboratory Thomas Jefferson National Laboratory

308

Mr. Thomas Lingafeter Environmental Control Department Dow Chemical  

Office of Legacy Management (LM)

screening survey of the site was performed by DOE Chicago Operations Office and Argonne National Laboratory personnel on December 8, 1977. No readings above background were...

309

10 Questions for an Automotive Engineer: Thomas Wallner | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wallner and his colleagues have tailored to efficiently run on blends of gasoline, ethanol and butanol. | Courtesy of: Argonne National Laboratory. Argonne mechanical engineer...

310

Venkatraman Ramakrishnan, Thomas A. Steitz, Ada E. Yonath, and...  

Office of Scientific and Technical Information (OSTI)

to be successfully studied via x-ray crystallography. Researchers including Venkatraman R. Ramakrishnan from the University of Utah; the Medical Research Council Laboratory of...

311

Physics Opportunities with the 12 GeV Upgrade at Jefferson Lab  

SciTech Connect

We are at the dawn of a new era in the study of hadronic nuclear physics. The non-Abelian nature of Quantum Chromodynamics (QCD) and the resulting strong coupling at low energies represent a significant challenge to nuclear and particle physicists. The last decade has seen the development of new theoretical and experimental tools to quantitatively study the nature of confinement and the structure of hadrons comprised of light quarks and gluons. Together these will allow both the spectrum and the structure of hadrons to be elucidated in unprecedented detail. Exotic mesons that result from excitation of the gluon field will be explored. Multidimensional images of hadrons with great promise to reveal the dynamics of the key underlying degrees of freedom will be produced. In particular, these multidimensional distributions open a new window on the elusive spin content of the nucleon through observables that are directly related to the orbital angular momenta of quarks and gluons. Moreover, computational techniques in Lattice QCD now promise to provide insightful and quantitative predictions that can be meaningfully confronted with, and elucidated by, forthcoming experimental data. In addition, the development of extremely high intensity, highly polarized and extraordinarily stable beams of electrons provides innovative opportunities for probing (and extending) the Standard Model, both through parity violation studies and searches for new particles. Thus the 12 GeV upgrade of the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab will enable a new experimental program with substantial discovery potential to address these and other important topics in nuclear, hadronic and electroweak physics.

Dudek, Jozef; Essig, Rouven; Kumar, Krishna; Meyer, Curtis; McKeown, Robert; Meziani, Zein Eddine; Miller, Gerald A; Pennington, Michael; Richards, David; Weinstein, Larry

2012-08-01T23:59:59.000Z

312

Thomas A. Boden, Environmental Data Science & Systems Staff  

NLE Websites -- All DOE Office Websites (Extended Search)

Sciences Division Oak Ridge National Laboratory Oak Ridge, TN 37831-4842 Phone: (865)241-4842 Fax: (865)574-2232 bodenta@ornl.gov Professional Interests Archival, analysis,...

313

The search for gluonic degrees of freedom in QCD using the GlueX facility at Jefferson Lab  

Science Conference Proceedings (OSTI)

The search for gluonic degrees of freedom in mesons is an experimental challenge. The most promising approach is to look for mesons with exotic quantum numbers that can not be described by quark degrees of freedom only. The GlueX experiment at Jefferson Lab in Hall-D, currently under construction, will search for such hybrid mesons with exotic quantum numbers by scattering a linearly polarized high energetic photon beam off a liquid hydrogen target. An amplitude analysis will be employed to search for such resonances in the data and determine their quantum numbers.

Benedikt Zihlmann

2011-05-01T23:59:59.000Z

314

Light Vector Meson Photoproduction off of H at Jefferson Lab and rho-omega Interference in the Leptonic Decay Channel  

SciTech Connect

Recent studies of light vector meson production in heavy nuclear targets has generated interest in {rho}-{omega} interference in the leptonic e{sup +}e{sup -} decay channel. An experimental study of the elementary process provides valuable input for theoretical models and calculations. In experiment E04-005 (g12), high statistics photoproduction data has been taken in Jefferson Lab's Hall B with the Cebaf Large Acceptance Spectrometer (CLAS). The invariant mass spectrum is fitted with two interfering relativistic Breit-Wigner functions to determine the interference phase. Preliminary analysis indicate a measurable {rho}-{omega} interference.

Chaden Djalali

2011-12-01T23:59:59.000Z

315

Resources | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Thomas Jefferson Site Office (TJSO) TJSO Home About TJSO Current Projects Contract Management Environment, Safety and Health (ES&H) Resources Contact Information Thomas...

316

Current Projects | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Thomas Jefferson Site Office (TJSO) TJSO Home About TJSO Current Projects Contract Management Environment, Safety and Health (ES&H) Resources Contact Information Thomas...

317

The design and performance of the electromagnetic calorimeters in Hall C at Jefferson Lab  

Science Conference Proceedings (OSTI)

The design and performance of the electromagnetic calorimeters in the magnetic spectrometers in Hall C at Jefferson Lab are presented. For the existing HMS and SOS spectrometers, construction information and comparisons of simulated and experimental results are presented. The design and simulated performance for a new calorimeter to be used in the new SHMS spectrometer is also presented. We have developed and constructed electromagnetic calorimeters from TF-1 type lead-glass blocks for the HMS and SOS magnetic spectrometers at JLab Hall C. The HMS/SOS calorimeters are of identical design and construction except for their total size. Blocks of dimension 10 cm 10 cm 70 cm are arranged in four planes and stacked 13 and 11 blocks high in the HMS and SOS respectively. The energy resolution of these calorimeters is better than 6%/?E, and pion/electron (?/e) separation of about 100:1 has been achieved in energy range 15 GeV. Good agreement has been observed between the experimental and GEANT4 simulated energy resolutions. The HMS/SOS calorimeters have been used nearly in all Hall C experiments, providing good energy resolution and a high pion suppression factor. No significant deterioration in their performance has been observed in the course of use since 1994. For the SHMS spectrometer, presently under construction, details on the calorimeter design and accompanying GEANT4 simulation efforts are given. A Preshower+Shower design was selected as the most cost-effective among several design choices. The preshower will consist of a layer of 28 modules with TF-1 type lead glass radiators, stacked in two columns. The shower part will consist of 224 modules with F-101 type lead glass radiators, stacked in a fly's eye configuration of 14 columns and 16 rows. The active area of 120 130 cm(2) will encompass the beam envelope at the calorimeter. The anticipated performance of the new calorimeter is simulated over the full momentum range of the SHMS, predicting resolution and yields similar to the HMS calorimeter. Good electron/hadron separation can be achieved by using energy deposition in the Preshower along with total energy deposition in the calorimeter. In this case the PID capability is similar to or better than that attainable with HMS calorimeter, with a pion suppression factor of a few hundreds predicted for 99% electron detection efficiency.

Vardan Tadevosyan, Hamlet Mkrtchyan, Arshak Asaturyan, Arthur Mkrtchyan, Simon Zhamkochyan

2012-12-01T23:59:59.000Z

318

The Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

existing programs in climate change science and infrastructure. The Laboratory has a 15- year history in climate change science. The Climate, Ocean and Sea Ice Modeling (COSIM)...

319

Former Worker Medical Screening Program - Battelle Laboratories...  

NLE Websites -- All DOE Office Websites (Extended Search)

West Jefferson Former Construction Workers Former Worker Medical Screening Program (FWP) Project Name: Building Trades National Medical Screening Program Covered DOE Site: Battelle...

320

Depleted uranium risk assessment for Jefferson Proving Ground using data from environmental monitoring and site characterization. Final report  

SciTech Connect

This report documents the third risk assessment completed for the depleted uranium (DU) munitions testing range at Jefferson Proving Ground (JPG), Indiana, for the U.S. Army Test and Evaluation command. Jefferson Proving Ground was closed in 1995 under the Base Realignment and Closure Act and the testing mission was moved to Yuma Proving Ground. As part of the closure of JPG, assessments of potential adverse health effects to humans and the ecosystem were conducted. This report integrates recent information obtained from site characterization surveys at JPG with environmental monitoring data collected from 1983 through 1994 during DU testing. Three exposure scenarios were evaluated for potential adverse effects to human health: an occasional use scenario and two farming scenarios. Human exposure was minimal from occasional use, but significant risk were predicted from the farming scenarios when contaminated groundwater was used by site occupants. The human health risk assessments do not consider the significant risk posed by accidents with unexploded ordnance. Exposures of white-tailed deer to DU were also estimated in this study, and exposure rates result in no significant increase in either toxicological or radiological risks. The results of this study indicate that remediation of the DU impact area would not substantially reduce already low risks to humans and the ecosystem, and that managed access to JPG is a reasonable model for future land use options.

Ebinger, M.H.; Hansen, W.R.

1996-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "laboratory thomas jefferson" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Direct-Current Resistivity At Kilauea East Rift Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

Kilauea East Rift Area (Thomas, 1986) Kilauea East Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes Electrical resistivity studies performed on the Kilauea East Rift Zone have employed a variety of techniques. Bipole mapping was conducted by Keller et al. (1977a) as part of the Hawaii Geothermal Project (HGP) geoscience program and was able to provide data on the regional resistivity structure of the summit and eastern flank of Kilauea. The model developed indicated several different types of resistivity sections depending on the location

322

Direct-Current Resistivity At Kawaihae Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Kawaihae Area (Thomas, 1986) Kawaihae Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At Kawaihae Area (Thomas, 1986) Exploration Activity Details Location Kawaihae Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes In addition to the aeromagnetic data, the field survey program in Kawaihae included six Schlumberger resistivity soundings between Kawaihae and Waimea (Kauahikaua and Mattice, 1981). The results of these sounding (Fig. 35) detected apparent resistivity differences in the surface rock depending on whether the soundings were done on Kohala or Mauna Kea lavas (Figs 36, 37), whereas uniform resistivities of 650- 850 ohm.m were found at depths of

323

Thomas B. Cook,1971 | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Thomas B. Cook,1971 Thomas B. Cook,1971 The Ernest Orlando Lawrence Award Lawrence Award Home Nomination & Selection Guidelines Award Laureates 2000's 1990's 1980's 1970's 1960's Ceremony The Life of Ernest Orlando Lawrence Contact Information The Ernest Orlando Lawrence Award U.S. Department of Energy SC-2/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-9395 E: lawrence.award@science.doe.gov 1970's Thomas B. Cook,1971 Print Text Size: A A A RSS Feeds FeedbackShare Page Weapons: For his significant contributions to the study of nuclear weapons effects, for his original work in the translation of this knowledge into advanced technology for peaceful and military uses of atomic energy, and for his outstanding contributions to the nation through his service as an

324

Thomas P. Guilderson, 2011 | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Thomas P. Guilderson, 2011 Thomas P. Guilderson, 2011 The Ernest Orlando Lawrence Award Lawrence Award Home Nomination & Selection Guidelines Award Laureates 2000's 1990's 1980's 1970's 1960's Ceremony The Life of Ernest Orlando Lawrence Contact Information The Ernest Orlando Lawrence Award U.S. Department of Energy SC-2/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-9395 E: lawrence.award@science.doe.gov 2000's Thomas P. Guilderson, 2011 Print Text Size: A A A RSS Feeds FeedbackShare Page Biological and Environmental Sciences: For ground-breaking radiocarbon measurements of corals, advancements in understanding the paleo-history of ocean currents and ocean processes revealing past climate variability, and the elucidation of how physical and biogeochemical oceanic processes affect

325

Mercury Vapor At Lahaina-Kaanapali Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Mercury Vapor At Lahaina-Kaanapali Area (Thomas, 1986) Mercury Vapor At Lahaina-Kaanapali Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Lahaina-Kaanapali Area (Thomas, 1986) Exploration Activity Details Location Lahaina-Kaanapali Area Exploration Technique Mercury Vapor Activity Date Usefulness not indicated DOE-funding Unknown Notes The soil mercury concentration and radon emanometry patterns observed for the Lahaina prospect were similar to those found in Olowalu. Several localized zones of high mercury concentration or enhanced radon emanation were observed, but showed little relationship to each other or to the recognized geologic structure in the area. The data were interpreted to suggest that there might be a small thermal anomaly to the northeast of the

326

Microsoft PowerPoint - Ralph_Thomas Energy Teaming Agreement Presentation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ralph C. Thomas III, Esquire Ralph C. Thomas III, Esquire Partner Barton Baker Thomas & Tolle LLP McLean, VA 10 th Annual U.S. Department of Energy Small Business Conference Small Businesses Leading the Way to Recovery and Reinvestment Presenters Name Page # 2 INTRODUCTION: WHAT IS A TEAMING AGREEMENT? ► "An arrangement pursuant to which . . . ► A. Two or more companies form a partnership or joint venture to act as a potential prime contractor; or ► B. A potential prime contractor agrees with one or more other companies to have them act as its subcontractor under a specified government contract or acquisition program" FAR 9.601 3 5 Reasons Why a Prime Would Be Interested in You Two Questions to Ask to Determine Which Reason Applies to You 4 SMALL BUSINESS'S OBJECTIVE IN NEGOTIATING

327

Direct-Current Resistivity Survey At Kilauea East Rift Area (Thomas, 1986)  

Open Energy Info (EERE)

Kilauea East Rift Area (Thomas, 1986) Kilauea East Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes Electrical resistivity studies performed on the Kilauea East Rift Zone have employed a variety of techniques. Bipole mapping was conducted by Keller et al. (1977a) as part of the Hawaii Geothermal Project (HGP) geoscience program and was able to provide data on the regional resistivity structure of the summit and eastern flank of Kilauea. The model developed indicated several different types of resistivity sections depending on the location

328

Thomas A. Weaver, 1985 | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Thomas A. Weaver, 1985 Thomas A. Weaver, 1985 The Ernest Orlando Lawrence Award Lawrence Award Home Nomination & Selection Guidelines Award Laureates 2000's 1990's 1980's 1970's 1960's Ceremony The Life of Ernest Orlando Lawrence Contact Information The Ernest Orlando Lawrence Award U.S. Department of Energy SC-2/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-9395 E: lawrence.award@science.doe.gov 1980's Thomas A. Weaver, 1985 Print Text Size: A A A RSS Feeds FeedbackShare Page National Security: For his exceptional contributions to national security in the physics, design and leadership of x-ray laser experiments, which include work in atomic physics, radiate transfer and hydrodynamics, material science, and the development of complex diagnostics. These major

329

Thomas E. Wainwright, 1973 | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Thomas E. Wainwright, 1973 Thomas E. Wainwright, 1973 The Ernest Orlando Lawrence Award Lawrence Award Home Nomination & Selection Guidelines Award Laureates 2000's 1990's 1980's 1970's 1960's Ceremony The Life of Ernest Orlando Lawrence Contact Information The Ernest Orlando Lawrence Award U.S. Department of Energy SC-2/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-9395 E: lawrence.award@science.doe.gov 1970's Thomas E. Wainwright, 1973 Print Text Size: A A A RSS Feeds FeedbackShare Page Weapons: For fundamental and original contributions to the theory of design and outputs of nuclear explosives for the original development of computational methods for the calculation of statistical physics phenomena, and for many innovative advances in the study of transport and

330

VBB-0005 - In the Matter of Thomas Dwyer | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

05 - In the Matter of Thomas Dwyer 05 - In the Matter of Thomas Dwyer VBB-0005 - In the Matter of Thomas Dwyer This letter concerns the complaint of reprisal that you submitted to the Department of Energy under 10 C.F.R. Part 708. You have filed a petition for Secretarial review of the appeal decision issued to you on July 24, 2000. The Part 708 regulations applicable to the petition provide that the Secretary will reverse or revise an appeal decision by the Director of the Office of Hearings and Appeals only under extraordinary circumstances. 10 C.F.R. § 708.35(d). After fully evaluating all the issues that you raised in your filing dated September 8, 2000, I have determined that you have not shown that extraordinary circumstances warranting Secretarial review exist in this case. No modification to the appeal decision by the OHA Director is

331

Thermal Gradient Holes At Kilauea East Rift Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

Thermal Gradient Holes At Kilauea East Rift Area (Thomas, 1986) Thermal Gradient Holes At Kilauea East Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness useful DOE-funding Unknown Notes Two separate phases of geothermal exploratory drilling have occurred on the lower East Rift. The first was essentially a wildcat venture with relatively little surface exploratory data having been gathered, whereas the second was initiated after somewhat more geoscience information had been acquired under the Hawaii Geothermal Project. The results of the successful exploratory drilling program on the Kilauea

332

Gas Flux Sampling At Lahaina-Kaanapali Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Gas Flux Sampling At Lahaina-Kaanapali Area (Thomas, 1986) Gas Flux Sampling At Lahaina-Kaanapali Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Lahaina-Kaanapali Area (Thomas, 1986) Exploration Activity Details Location Lahaina-Kaanapali Area Exploration Technique Gas Flux Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes The soil mercury concentration and radon emanometry patterns observed for the Lahaina prospect were similar to those found in Olowalu. Several localized zones of high mercury concentration or enhanced radon emanation were observed, but showed little relationship to each other or to the recognized geologic structure in the area. The data were interpreted to suggest that there might be a small thermal anomaly to the northeast of the

333

Gas Flux Sampling At Mokapu Penninsula Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Gas Flux Sampling At Mokapu Penninsula Area (Thomas, 1986) Gas Flux Sampling At Mokapu Penninsula Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Mokapu Penninsula Area (Thomas, 1986) Exploration Activity Details Location Mokapu Penninsula Area Exploration Technique Gas Flux Sampling Activity Date Usefulness not useful DOE-funding Unknown Notes The high degree of cultural activity (e.g. residential areas, streets, jet runways, etc.) on Mokapu both limited the extent of the soil geochemical surveys performed and rendered their interpretation much more difficult. Soil mercury concentrations and radon emanometry data on the peninsula showed a few localized high values (Figs 13, 14), but no consistent correlation between the anomalous zones and geologic features could be

334

Gas Flux Sampling At Olowalu-Ukumehame Canyon Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

Gas Flux Sampling At Olowalu-Ukumehame Canyon Area (Thomas, 1986) Gas Flux Sampling At Olowalu-Ukumehame Canyon Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Olowalu-Ukumehame Canyon Area (Thomas, 1986) Exploration Activity Details Location Olowalu-Ukumehame Canyon Area Exploration Technique Gas Flux Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Soil mercury concentration and radon emanometry surveys were conducted along the stream beds in both Olowalu and Ukumehame Canyons and on the coastal alluvial fans (Cox and Cuff, 1981a). The results of these surveys indicated that a few minor -nomalies might be present. However, the extreme topographic relief in the area did not permit sufficient coverage of the

335

Self Potential At Hualalai Northwest Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Self Potential At Hualalai Northwest Rift Area (Thomas, 1986) Self Potential At Hualalai Northwest Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Self Potential At Hualalai Northwest Rift Area (Thomas, 1986) Exploration Activity Details Location Hualalai Northwest Rift Area Exploration Technique Self Potential Activity Date Usefulness not indicated DOE-funding Unknown Notes Self-potential surveys conducted over the summit and flank of Hualalai (Jackson and Sako, 1982; D. B. Jackson, pers. commun., 1983) indicate an elongate self-potential anomaly extending across the summit and down the northwest rift to Kaupulehu Crater. The positively polarized anomaly extends over an area of approximately 6 km 2 and has been interpreted to be the result of one or more buried high-temperature intrusive bodies (Jackson

336

U.S. Department of Energy Research News - Text Only  

NLE Websites -- All DOE Office Websites (Extended Search)

Research News Research News Science for America's Future Search Releases and Features: Go! Publications Image Gallery News Release Archive Features Archive Library Contacts Privacy Policy Graphical Version Site Map Labs Ames Laboratory Argonne National Laboratory Brookhaven National Laboratory Fermi National Accelerator Laboratory Idaho National Engineering & Environmental Laboratory Lawrence Berkeley National Laboratory Lawrence Livermore National Laboratory Los Alamos National Laboratory National Energy Technology Laboratory National Renewable Energy Laboratory Oak Ridge National Laboratory Pacific Northwest National Laboratory Princeton Plasma Physics Laboratory Sandia National Laboratories Stanford Linear Accelerator Center Thomas Jefferson National Accelerator Facility

337

Design, fabrication, commissioning, and testing of a 250 g/s, 2-K helium cold compressor system  

Science Conference Proceedings (OSTI)

In June 1999 the Thomas Jefferson National Accelerator Facility (TJNAF) Cryogenic Systems Group had completed the design

V. Ganni; D. M. Arenius; B. S. Bevins; W. C. Chronis; J. D. Creel; J. D. Wilson Jr.

2002-01-01T23:59:59.000Z

338

A High-Energy High-Luminosity p+-p* Collider David V. Neuffer, CEBAF', 12000 Jefferson Avenue, Newport News VA 23692  

E-Print Network (OSTI)

A High-Energy High-Luminosity p+-p* Collider David V. Neuffer, CEBAF', 12000 Jefferson Avenue be costly and does not use our ability to recirculate p's. A recirculating linac (RLA) like CEBAF" can and M. S. Zolotorev, Phys. Rev. Lett.71, 4146 (1993). 11. CEBAF Design Report, CEBAF, Newport News VA

McDonald, Kirk

339

Configuration et CSP avec variables `a existence conditionnee Thomas van Oudenhove  

E-Print Network (OSTI)

Configuration et CSP avec variables `a existence conditionn´ee Thomas van Oudenhove Directeurs de contraintes, par le biais des CSP, ´etait une approche adapt´ee `a cette probl´ematique. Cependant, le concept ces approches. Mots-cl´es configuration de produit -- contraintes -- CSP -- r´esolution -- filtrage 1

Paris-Sud XI, Université de

340

FDR3 --A Modern Refinement Checker for CSP Thomas Gibson-Robinson, Philip Armstrong,  

E-Print Network (OSTI)

FDR3 -- A Modern Refinement Checker for CSP Thomas Gibson-Robinson, Philip Armstrong, Alexandre.roscoe}@cs.ox.ac.uk Abstract. FDR3 is a complete rewrite of the CSP refinement checker FDR2, incorporating a significant number describe the new algorithm that FDR3 uses to construct its in- ternal representation of CSP processes

Oxford, University of

Note: This page contains sample records for the topic "laboratory thomas jefferson" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

HOG on a WIM Aaron Stafford Wayne Piekarski Bruce H. Thomas  

E-Print Network (OSTI)

HOG on a WIM Aaron Stafford Wayne Piekarski Bruce H. Thomas Wearable Computer Lab School-mail: aaron.stafford@unisa.edu.au e-mail: wayne.piekarski@unisa.edu.au e-mail: bruce display system as presented in Stafford et al. [10]. With a projector based display, objects such as hands

Thomas, Bruce

342

Comparison of techniques for mixed-space collaborative navigation Aaron Stafford Bruce H. Thomas Wayne Piekarski  

E-Print Network (OSTI)

Comparison of techniques for mixed-space collaborative navigation Aaron Stafford Bruce H. Thomas Lakes Blvd, Mawson Lakes, South Australia, 5095 Email: {aaron.stafford reality (AR) system (Stafford et al. 2006). The 3D reconstruction tabletop display (HOG table), as seen

Thomas, Bruce

343

Efficiency of Techniques for Mixed-Space Collaborative Navigation Aaron Stafford Bruce H. Thomas Wayne Piekarski  

E-Print Network (OSTI)

Efficiency of Techniques for Mixed-Space Collaborative Navigation Aaron Stafford Bruce H. Thomas consuming to remotely navigate a person using only voice commands. e-mail: aaron.stafford@unisa.edu.au e desktop collaborative virtual environments. Virtual Reality, 7(3-4):164­174, Jun 2004. [4] A. Stafford, W

Thomas, Bruce

344

Impact of EPS on Digestion of Waste Activate Sludge Thomas Gostanian  

E-Print Network (OSTI)

is by either aerobic or anaerobic self-digestion, in which the bacteria consume their own mass. Currently are particular in their assistance of either aerobic or anaerobic digestion. Direct samples of activated sludgeImpact of EPS on Digestion of Waste Activate Sludge Thomas Gostanian Faculty Mentor: Professor Chul

Mountziaris, T. J.

345

THOMAS PEYTON LYON Dow Chair of Sustainable Science, Technology and Commerce  

E-Print Network (OSTI)

of State Regulation," Journal of Regulatory Economics, v. 2, no. 3, 1990, pp. 299-326. "Natural Gas Policy-183. "The Structure and Regulation of the Natural Gas Industry," (principal author), Chapter 5, North New Order in Natural Gas: Markets versus Regulation by Arthur S. De #12;Thomas P. Lyon / Page 6 Vany

Lyon, Thomas P.

346

Policy Quarterly Volume 9, Issue 1 February 2013 Page 9 Thomas Hoppe, Sandra Bellekom  

E-Print Network (OSTI)

Policy Quarterly ­ Volume 9, Issue 1 ­ February 2013 ­ Page 9 Thomas Hoppe, Sandra Bellekom and Kris Lulofs Energy Efficiency in the Dutch Residential Sector: reflections on policy implementation into a comprehensive, long-term Dutch climate change policy programme, which started in 1998 after the country signed

Al Hanbali, Ahmad

347

Solar-powered WirelessMesh Networksfor Environmental Monitoring Torsten Braun, Thomas Staub, Benjamin Nyffenegger  

E-Print Network (OSTI)

Solar-powered WirelessMesh Networksfor Environmental Monitoring Torsten Braun, Thomas Staub the development and experiencesof a solar-power driven wirelessmesh network for connectingsensorsin rural is available. II. SOLAR-POWER DRIVEN WIRELESS MESH NETWORK DEPLYOMENT AND OPERATION In a technology project

Braun, Torsten

348

Mastering Windows: Improving Reconstruction Thomas Theul Helwig Hauser Eduard Groller \\Lambda  

E-Print Network (OSTI)

Mastering Windows: Improving Reconstruction Thomas Theu?l Helwig Hauser Eduard Gr¨oller \\Lambda­Rom spline and derivative and (c) Kaiser windowed sinc and cosc of width three with numerically optimal. This can be accomplished by multiplying them with windowing functions. In this paper we discuss and assess

349

Book reviews Lynn K. Nyhart and Thomas H. Broman (eds.), Science and Civil Society. By Leigh  

E-Print Network (OSTI)

Book reviews Lynn K. Nyhart and Thomas H. Broman (eds.), Science and Civil Society. By Leigh D and intense group of thinkers and experimenters, this approach is highly appropriate. His book is very learned; but one-third of the book is concerned with Goethe and his `scientific revolution'. Here we meet `the

Richards, Robert J.

350

Nuclear diagnostics for the National Ignition Facility ,,invited... Thomas J. Murphy,a)  

E-Print Network (OSTI)

Nuclear diagnostics for the National Ignition Facility ,,invited... Thomas J. Murphy,a) Cris W unprecedented opportunities for the use of nuclear diagnostics in inertial confinement fusion experiments to produce up to 1019 DT neutrons. In addition to a basic set of nuclear diagnostics based on previous

351

Paul Thomas, TOFE, Nashville, August 2012 Page 1 The Impact of Burning Plasma on  

E-Print Network (OSTI)

­ personnel dose rates · Remote Handling · Blanket and Divertor · Diagnostics · Dust and tritium control must be handled and maintained using remote handling methods. by Blanket RH System by Divertor RH Remote Handling ­ ITER RH philosophy #12;Page 15Paul Thomas, TOFE, Nashville, August 2012 Transfer Casks

352

Environments for Remote Teaching in Embedded Systems Courses Christian Trodhandl Thomas Handl Markus Proske Bettina Weiss  

E-Print Network (OSTI)

Environments for Remote Teaching in Embedded Systems Courses Christian Tr¨odhandl Thomas Handl points for discussion at the workshop: How to handle remote access? In a distance lab with a limited/2, 1040 Vienna, Austria {troedhandl,handl,proske,bw}@ecs.tuwien.ac.at 1 Introduction Embedded systems lab

353

Large area, high spatial resolution tracker for new generation of high luminosity experiments in Hall A at Jefferson Lab  

Science Conference Proceedings (OSTI)

In 2014 the CEBAF electron accelerator at Jefferson Lab (JLab) will deliver a longitudinally polarized (up to 85%), high intensity (up to 100 ?A) beam with maximum energy of 12 GeV, twice the present value. To exploit the new opportunities that the energy upgrade will offer, a new spectrometer (Super BigBite - SBS) is under development, featuring very forward angle, large acceptance and ability to operate in high luminosity environment. The tracking system of SBS will consist of large area (40150 cm2 and 50200 cm2), high spatial resolution (better than 100 ?m) chambers based on the GEM technology and 2 small (1020 cm) Silicon Strip Detector planes. The design of the GEM chambers and its sub-components such as the readout electronics is resented here.

Bellini, V; Castelluccio, D; Colilli, S; Cisbani, E; De Leo, R; Fratoni, R; Frullani, S; Garibaldi, F; Guiliani, F; Guisa, A; Gricia, M; Lucentini, M; Meddi, F; Minutoli, S; Musico, P; Noto, F; De Oliveira, R; Santavenere, F; Sutera, M C

2011-06-01T23:59:59.000Z

354

Jefferson Lab Science Series - DNA: The Strand That Connects Us All  

NLE Websites -- All DOE Office Websites (Extended Search)

The Mysterious Universe The Mysterious Universe Previous Video (The Mysterious Universe) Science Series Video Archive Next Video (The Science of Chocolate) The Science of Chocolate DNA: The Strand That Connects Us All Dr. Matt Kaplan - University of Arizona Genetics Core March 29, 2011 Learn how the methods and discoveries of human population genetics are applied for personal genealogical reconstruction and anthropological testing. We will start with a short general review of human genetics and the biology behind this form of DNA testing. We will look at how DNA testing is performed and how samples are processed in our laboratory. We will also examine examples of personal genealogical results from Family Tree DNA and personal anthropological results from the Genographic Project. Finally, I will describe the newest project in our laboratory, the DNA

355

Laboratory Access | Sample Preparation Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

Access Access Planning Ahead Planning Ahead Please complete the Beam Time Request (BTR) and Support Request forms thourgh the User Portal. Thorough chemical and sample information must be included in your BTR. Support Request forms include a list of collaborators that require laboratory access and your group's laboratory equipment requests. Researcher safety is taken seriously at SLAC. Please remember that radioactive materials, nanomaterials, and biohazardous materials have additional safety requirements. Refer to the SSRL or LCLS Safety Offices for further guidance. Upon Arrival Upon Arrival Once you arrive you must complete training and access forms before accessing the Sample Preparation Laboratories (SPL). All Sample Prep Lab doors are locked with access key codes. Once your SPL

356

National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Homesteading on the Pajarito Plateau Homesteading on the Pajarito Plateau topic of inaugural lecture at Los Alamos National Laboratory January 4, 2013 Lecture series begins yearlong commemoration of 70th anniversary LOS ALAMOS, NEW MEXICO, Jan. 3, 2013-In commemoration of its 70th anniversary, Los Alamos National Laboratory kicks off a yearlong lecture series on Wednesday, Jan. 9, at 5:30 p.m. with a presentation about homesteading on the Pajarito Plateau at the Bradbury Science Museum, 1350 Central Avenue, Los Alamos. - 2 - The inaugural lecture is based on a book by local writers Dorothy Hoard, Judy Machen and Ellen McGehee about the area's settlement between 1887 and 1942. On hikes across the Pajarito Plateau, Hoard envisioned the Los Alamos area before modern roads and bridges made transportation much easier. The trails she walked

357

Department of Energy National Laboratories  

Idaho National Laboratory SLAC National Accelerator Laboratory Department of Energy National Laboratories. Laboratory or Facility Website ...

358

Mercury Vapor At Olowalu-Ukumehame Canyon Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Mercury Vapor At Olowalu-Ukumehame Canyon Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Olowalu-Ukumehame Canyon Area (Thomas, 1986) Exploration Activity Details Location Olowalu-Ukumehame Canyon Area Exploration Technique Mercury Vapor Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Soil mercury concentration and radon emanometry surveys were conducted along the stream beds in both Olowalu and Ukumehame Canyons and on the coastal alluvial fans (Cox and Cuff, 1981a). The results of these surveys

359

Field Mapping At Olowalu-Ukumehame Canyon Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Field Mapping At Olowalu-Ukumehame Canyon Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Olowalu-Ukumehame Canyon Area (Thomas, 1986) Exploration Activity Details Location Olowalu-Ukumehame Canyon Area Exploration Technique Field Mapping Activity Date Usefulness not useful DOE-funding Unknown Notes Geologic mapping (Diller, 1982) in this area has identified several trachitic and alkalic dikes, plugs, and vents within the area bounded by the canyons (Fig. 21). The frequency distribution of those dikes in the two

360

Gas Flux Sampling At Kilauea East Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Gas Flux Sampling At Kilauea East Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Gas Flux Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Radon emanometry data for the same locality (Fig. 61) (Cox, 1980) similarly presented a complicated pattern of radon outgassing along the lower rift zone. Even though complexities are present within the rift zone, there

Note: This page contains sample records for the topic "laboratory thomas jefferson" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Gas Flux Sampling At Kawaihae Area (Thomas, 1986) | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Gas Flux Sampling At Kawaihae Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Kawaihae Area (Thomas, 1986) Exploration Activity Details Location Kawaihae Area Exploration Technique Gas Flux Sampling Activity Date Usefulness not useful DOE-funding Unknown Notes The soil geochemistry yielded quite complex patterns of mercury concentrations and radonemanation rates within the survey area (Cox and Cuff, 1981c). Mercury concentrations (Fig. 38) showed a general minimum along the Kawaihae-Waimea roads and a broad trend of increasing mercury

362

Direct-Current Resistivity At Haleakala Volcano Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Direct-Current Resistivity At Haleakala Volcano Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At Haleakala Volcano Area (Thomas, 1986) Exploration Activity Details Location Haleakala Volcano Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes The field survey program on the northwest rift zone consisted of soil mercury and radon emanometry surveys, groundwater temperature and chemistry studies, Schlumberger resistivity soundings and self-potential profiles.

363

Mercury Vapor At Kilauea East Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Mercury Vapor At Kilauea East Rift Area (Thomas, Mercury Vapor At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Mercury Vapor Activity Date Usefulness not indicated DOE-funding Unknown Notes The sampling network for soil mercury concentrations undertaken by Cox (1981) identified a complicated pattern of mercury concentrations throughout the lower Puna area (Fig. 60). The highest soil mercury concentrations found were generally located within the rift zone, but an analysis of the data showed that soil type and soil pH also had a marked impact on mercury concentration. Making corrections for these effects improved the correspondence between the surface geological expression of the rift zone and the mercury concentrations observed; interpretation of

364

Ground Gravity Survey At Kilauea East Rift Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

Ground Gravity Survey At Kilauea East Rift Area Ground Gravity Survey At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Ground Gravity Survey Activity Date Usefulness useful DOE-funding Unknown Notes This model was later expanded through the examination of detailed and regional gravity data (Krivoy and Eaton, 1961) and regional aeromagnetic data (Malahoff and Woollard, 1966) to a three-dimensional map of the rift zone (Furumoto, 1978b). This model projected a dike complex (presumably at high temperatures) which has a width of approximately 20 km near the summit of Kilauea that narrows to approximately 12 km at the lower quarter of the subaerial portion of the rift (Fig. 52). References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In

365

Self Potential At Kilauea East Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Self Potential At Kilauea East Rift Area (Thomas, Self Potential At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Self Potential Activity Date Usefulness useful DOE-funding Unknown Notes An extensive network of self-potential surveys have been performed over the summit and flanks of Kilauea as part of the HGP exploration surveys and in separate studies of the source mechanism for the potential anomalies observed (Zablocki, 1976, 1977). The geothermal exploration surveys were performed primarily on the lower East Rift Zone and identified four separate self-potential anomalies (Fig. 59) (Zablocki, 1977). The source mechanism for the anomalies observed was inferred to be the result of electrokinetic phenomena; thermal groundwater escaping from a geothermal

366

Micro-Earthquake At Kilauea East Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Micro-Earthquake At Kilauea East Rift Area (Thomas, Micro-Earthquake At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Micro-Earthquake Activity Date Usefulness not indicated DOE-funding Unknown Notes Microseismic and ground noise studies were performed along the East Rift Zone in an effort to identify areas in which earthquake activity might suggest rock fracturing as a result of cold water coming into contact with heated reservoir rocks (Furumoto, 1978a). One of the microseismic surveys utilized an array of seven seismometers to monitor earthquake activity in the vicinity of the then proposed site of the HGP-A well (Fig. 53) (Suyenaga and Furumoto, 1978). The second microearthquake study utilized only two seismometers located near the junction of the Pahoa-Kalapana and

367

Water Sampling At Kilauea East Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Water Sampling At Kilauea East Rift Area (Thomas, Water Sampling At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Water Sampling Activity Date Usefulness useful DOE-funding Unknown Notes Studies of groundwater and coastal spring- sources that have identified thermal fluids on the lower East Rift Zone date back to the early part of this century (Guppy, 1906). More recent investigations of temperature and groundwater chemistry were performed for the HGP geoscience program (Macdonald, 1977; McMurtry et al., 1977; Epp and Halunen, 1979). Epp and Halunen (1979) identified several warm water wells, one having a temperature in excess of 90degrees C, and coastal springs in lower Puna; temperature profiles obtained by this study indicated that in some

368

Direct-Current Resistivity Survey At Lahaina-Kaanapali Area (Thomas, 1986)  

Open Energy Info (EERE)

Survey At Survey At Lahaina-Kaanapali Area (Thomas, 1986) Exploration Activity Details Location Lahaina-Kaanapali Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes Four Schlumberger soundings were performed along the coastal strip adjacent to Lahaina town (Fig. 22). Three of the four soundings were able to detect a moderate to low-resistivity basement that was interpreted to be basalt saturated with seawater at 20degrees C (Mattice, 1981). None of the resistivity sounding data in this area indicated subsurface resistivities lower than could be accounted for by local ambient temperatures (Mattice and Lienert, 1980). References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In

369

Direct-Current Resistivity At Lahaina-Kaanapali Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

At Lahaina-Kaanapali Area At Lahaina-Kaanapali Area (Thomas, 1986) Exploration Activity Details Location Lahaina-Kaanapali Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes Four Schlumberger soundings were performed along the coastal strip adjacent to Lahaina town (Fig. 22). Three of the four soundings were able to detect a moderate to low-resistivity basement that was interpreted to be basalt saturated with seawater at 20degrees C (Mattice, 1981). None of the resistivity sounding data in this area indicated subsurface resistivities lower than could be accounted for by local ambient temperatures (Mattice and Lienert, 1980). References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii

370

Field Mapping At Kilauea East Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Field Mapping At Kilauea East Rift Area (Thomas, Field Mapping At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Field Mapping Activity Date Usefulness useful DOE-funding Unknown Notes Geologic mapping on the East Rift Zone (ERZ) conducted by Peterson (1967), J. Moore (1971), and Wright and Fiske (1971) detailed historic lava flows originating in the ERZ and developed structural models of the rift based on the locations and progressions of recorded eruptive cycles. These studies have more recently been expanded by Holcomb (1980, 1981) and R. Moore (1982, 1983) who have presented more detailed mapping of all surface flows (historic and prehistoric), fissures and faulting on the eastern flank of the Kilauea shield. The model developed from these studies is of a rift

371

Direct-Current Resistivity Survey At Kawaihae Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Direct-Current Resistivity Survey At Kawaihae Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Kawaihae Area (Thomas, 1986) Exploration Activity Details Location Kawaihae Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes In addition to the aeromagnetic data, the field survey program in Kawaihae included six Schlumberger resistivity soundings between Kawaihae and Waimea (Kauahikaua and Mattice, 1981). The results of these sounding (Fig. 35)

372

New Inventions - Jefferson Lab | Jefferson Lab  

Invention Disclosure; CRADA/WFO Routing; Fairness of Opportunity; America Invents Act Summary; Achievements at JLab. Patents; New Inventions; New ...

373

Virtual Laboratories  

E-Print Network (OSTI)

At the frontier of most areas in science, computer simulations play a central role. The traditional division of natural science into experimental and theoretical investigations is now completely outdated. Instead, theory, simulation, and experimentation form three equally essential aspects, each with its own unique flavor and challenges. Yet, education in computational science is still lagging far behind, and the number of text books in this area is minuscule compared to the many text books on theoretical and experimental science. As a result, many researchers still carry out simulations in a haphazard way, without properly setting up the computational equivalent of a well equipped laboratory. The art of creating such a virtual laboratory, while providing proper extensibility and documentation, is still in its infancy. A new approach is described here, Open Knowledge, as an extension of the notion of Open Source software. Besides open source code, manuals, and primers, an open knowledge project provides simulated dialogues between code developers, thus sharing not only the code, but also the motivations behind the code.

Piet Hut

2006-10-07T23:59:59.000Z

374

The Search for Exotic Mesons in gamma p -> pi+pi+pi-n with CLAS at Jefferson Lab  

E-Print Network (OSTI)

The $\\pi_1(1600)$, a $J^{PC} = 1^{-+}$ exotic meson has been observed by experiments using pion beams. Theorists predict that photon beams could produce gluonic hybrid mesons, of which the $\\pi_1(1600)$ is a candidate, at enhanced levels relative to pion beams. The g12 rungroup at Jefferson Lab's CEBAF Large Acceptance Spectrometer (CLAS) has recently acquired a large photoproduction dataset, using a liquid hydrogen target and tagged photons from a 5.71 GeV electron beam. A partial-wave analysis of 502K $\\gamma p \\to \\pi^+\\pi^+\\pi^-n$ events selected from the g12 dataset has been performed, and preliminary fit results show strong evidence for well-known states such as the $a_1(1260)$, $a_2(1320)$, and $\\pi_2(1670)$. However, we observe no evidence for the production of the $\\pi_1(1600)$ in either the partial-wave intensities or the relative complex phase between the $1^{-+}$ and the $2^{-+}$ (corresponding to the $\\pi_2$) partial waves.

Craig Bookwalter

2011-08-31T23:59:59.000Z

375

The Search for Exotic Mesons in gammap-->pi+pi+pi?n with CLAS at Jefferson Lab  

DOE Green Energy (OSTI)

In addition to ordinary qq-bar pairs, quantum chromodynamics (QCD) permits many other possibilities in meson spectra, such as gluonic hybrids, glueballs, and tetraquarks. Experimental discovery and study of these exotic states provides insight on the nonperturbative regime of QCD. Over the past twenty years, some searches for exotic mesons have met with controversial results, especially those obtained in the three-pion system. Prior theoretical work indicates that in photoproduction one should find gluonic hybrids at significantly enhanced levels compared to that found in pion production. To that end, the CLAS g12 run was recently completed at Jefferson Lab, using a liquid hydrogen target and tagged photons from a 5.71 GeV electron beam. The CLAS experimental apparatus was modified to maximize forward acceptance for peripheral production of mesons. The resulting data contains the world's largest 3pi photoproduction dataset, with gammap-->pi+pi+pi?n events numbering in the millions. Early results describing the data quality, kinematics, and dysnamics will be shown.

Craig Bookwalter

2010-08-01T23:59:59.000Z

376

The Search for Exotic Mesons in gamma p -> pi+pi+pi-n with CLAS at Jefferson Lab  

DOE Green Energy (OSTI)

The {pi}{sub 1}(1600), a J{sup PC} = 1{sup {-+}} exotic meson has been observed by experiments using pion beams. Theorists predict that photon beams could produce gluonic hybrid mesons, of which the {pi}{sub 1}(1600) is a candidate, at enhanced levels relative to pion beams. The g12 rungroup at Jefferson Lab's CEBAF Large Acceptance Spectrometer (CLAS) has recently acquired a large photoproduction dataset, using a liquid hydrogen target and tagged photons from a 5.71 GeV electron beam. A partial-wave analysis of 502K {gamma}p {yields} {pi}{sup +}{pi}{sup +}{pi}{sup -}n events selected from the g12 dataset has been performed, and preliminary fit results show strong evidence for well-known states such as the a{sub 1}(1260), a{sub 2}(1320), and {pi}{sub 2}(1670). However, we observe no evidence for the production of the {pi}{sub 1}(1600) in either the partial-wave intensities or the relative complex phase between the 1{sup {-+}} and the 2{sup {-+}} (corresponding to the {pi}{sub 2}) partial waves.

Craig Bookwalter

2011-12-01T23:59:59.000Z

377

Laboratory Activities  

Science Conference Proceedings (OSTI)

This chapter summarizes the laboratory activities performed by PNNLs Vadose Zone Characterization Project in support of the Tank Farm Vadose Zone Program, led by CH2M HILL Hanford Group, Inc. The results of these studies are contained in numerous reports (Lindenmeier et al. 2002; Serne et al. 2002a, 2002b, 2002c, 2002d, 2002e; Lindenmeier et al. 2003; Serne et al. 2004a, 2004b; Brown et al. 2005, 2006a, 2007; Serne et al. 2007) and have generated much of the data reported in Chapter 22 (Geochemistry-Contaminant Movement), Appendix G (Geochemistry-Contaminant Movement), and Cantrell et al. (2007, SST WMA Geochemistry Data Package in preparation). Sediment samples and characterization results from PNNLs Vadose Zone Characterization Project are also shared with other science and technology (S&T) research projects, such as those summarized in Chapter 12 (Associated Science Activities).

Brown, Christopher F.; Serne, R. Jeffrey

2008-01-17T23:59:59.000Z

378

Study of Generalized Parton Distributions and Deeply Virtual Compton Scattering on the nucleon with the CLAS and CLAS12 detectors at the Jefferson Laboratory  

SciTech Connect

The exclusive leptoproduction of a real photon is considered to be the "cleanest" way to access the Generalized Parton Distribution (GPD). This process is called Deeply Virtual Compton Scattering (DVCS) lN {yields} lN{gamma} , and is sensitive to all the four GPDs. Measuring the DVCS cross section is one of the main goals of this thesis. In this thesis, we present the work performed to extract on a wide phase-space the DVCS cross-section from the JLab data at a beam energy of 6 GeV.

Baptiste Guegan

2012-11-01T23:59:59.000Z

379

Audit Report: OAS-RA-L-11-13 | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 Audit Report: OAS-RA-L-11-13 September 30, 2011 The 12 GeV CEBAF Upgrade Project at Thomas Jefferson National Accelerator Facility In September 2008, the Department of Energy's (Department) Office of Science approved a construction project to double the electron beam energy of the Continuous Electron Beam Accelerator Facility at the Thomas Jefferson National Accelerator Facility (Jefferson Laboratory) from 6 to 12 billion electron volts (GeV). We found that the 12 GeV Upgrade Project (Upgrade Project) generally complied with the American Recovery Act and Reinvestment Act of 2009 requirements we tested and was, for the most part, on schedule. However, we identified several opportunities to strengthen project monitoring and control. Specifically, we found that: 1)

380

Environment, Safety and Health (ES&H) | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Environment, Safety and Health (ES&H) Thomas Jefferson Site Office (TJSO) TJSO Home About Current Projects Contract Management Environment, Safety and Health (ES&H) Resources Contact Information Thomas Jefferson Site Office U.S. Department of Energy 12000 Jefferson Avenue Newport News, VA 23606 P: (757) 269-7140 Environment, Safety and Health (ES&H) Print Text Size: A A A RSS Feeds FeedbackShare Page The Office of Science (SC) has a NEPA Compliance Officer on staff to coordinate all NEPA compliance and support matters at its laboratories. Responsibilities include managing the review and approval of NEPA documentation of SC Headquarter programs, and working with Department of Energy (DOE) Science programs and other DOE Headquarters Program Offices conducting research at SC facilities. SC takes a proactive approach in

Note: This page contains sample records for the topic "laboratory thomas jefferson" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Strategic Laboratory Leadership Program | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Erik Gottschalk (F); Devin Hodge (A); Jeff Chamberlain (A); Brad Ullrick (A); Bill Rainey (J). Image courtesy of Argonne National Laboratory. Strategic Laboratory Leadership...

382

Geology and geothermal resources of the Santiam Pass area of the Oregon Cascade Range, Deschutes, Jefferson and Linn Counties, Oregon  

DOE Green Energy (OSTI)

This open-file report presents the results of the Santiam Pass drilling program. The first phase of this program was to compile all available geological, geophysical and geothermal data for the Santiam Pass area and select a drill site on the basis of these data (see Priest and others, 1987a), A summary of the drilling operations and costs associated with the project are presented in chapter 1 by Hill and Benoit. An Overview of the geology of the Santiam Pass area is presented by Hill and Priest in chapter 2. Geologic mapping and isotopic age determinations in the Santiam Pass-Mount Jefferson area completed since 1987 are summarized in chapter 2. One of the more important conclusions reached in chapter 2 is that a minimum of 2 km vertical displacement has occurred in the High Cascade graben in the Santiam Pass area. The petrology of the Santiam Pass drill core is presented by Hill in chapter 3. Most of the major volcanic units in the core have been analyzed for major, minor, and trace element abundances and have been studied petrographically. Three K-Ar ages are interpreted in conjunction with the magnetostratigraphy of the core to show that the oldest rocks in the core are approximately 1.8 Ma. Geothermal and geophysical data collected from the Santiam Pass well are presented by Blackwell in chapter 4. The Santiam Pass well failed to penetrate beneath the zone of lateral groundwater flow associated with highly permeable Quaternary volcanic rocks. Calculated geothermal gradients range from about 50[degree]C/km at depth 700-900 m, to roughly 110[degree]C/km from 900 m to the bottom of the well at 929 m. Heat-flow values for the bottom part of the hole bracket the regional average for the High Cascades. Blackwell concludes that heat flow along the High Cascades axis is equal to or higher than along the western edge of the High Cascades.

Hill, B.E. (ed.)

1992-10-01T23:59:59.000Z

383

ARGONNE NATIONAL LABORATORY is....  

NLE Websites -- All DOE Office Websites (Extended Search)

Scattering June 12-18, 2010 - Argonne National Laboratory June 19-26, 2010 - Oak Ridge National Laboratory Argonne National Laboratory is a U.S. Department of Energy laboratory...

384

State Laboratory Contacts IL  

Science Conference Proceedings (OSTI)

State Laboratory Contact Information IL. Idaho. ... State of Iowa Metrology Laboratory Ellsworth Community College 1100 College Ave. ...

2013-11-07T23:59:59.000Z

385

Thomas Roser  

NLE Websites -- All DOE Office Websites (Extended Search)

Roser Roser ! NSAC Subcommittee on Scientific Facilities ! February 15, 2013 ! eRHIC Project! ! ! Performance requirements! ! eRHIC design! ! R&D for eRHIC! ! Cost and schedule! 2 Performance requirements! ! ! Highly polarized (> 70%) electron, proton and neutron (He-3) beams! ! Ion beams from deuteron to the heaviest nuclei (uranium) ! ! Center of mass energy range: ~ 20 GeV to ~ 150 GeV ! ! Non-zero crossing angle to minimize synchrotron radiation background! ! Possibility to have multiple interaction regions ! ! High luminosity: 10 33 - 10 34 cm -2 s -1 ! ! First stage to reach CM energy of ≳ 70 GeV and luminosity of 
 10 32 - 10 34 cm -2 s -1 ! ! 3 RHIC! NSRL! LINAC! Booster! AGS! Tandems! STAR! 6:00 o'clock! PHENIX! 8:00 o'clock! 10:00 o'clock! Polarized Jet Target! 12:00 o'clock! RF! 4:00 o'clock!

386

John Thomas  

NLE Websites -- All DOE Office Websites (Extended Search)

analytics and privacy protections. This Speaker's Seminars Insights and Early Results from the Pecan Street Consortium's Research on Residential Electricity, Gas and Water Usage...

387

Thomas Lam  

Science Conference Proceedings (OSTI)

... TEM) and scanning electron microscopy (SEM) to analyze skutterudite material, gasifier refractories, and mixtures of synthetic coal and petcoke ...

2011-08-30T23:59:59.000Z

388

Thomas Wenzel  

NLE Websites -- All DOE Office Websites (Extended Search)

Wenzel is a Research Scientist at LBNL working in transportation energy and environmental policy analysis. Tom has been analyzing in-use vehicle emission data since 1992; he is a...

389

Brinda Thomas  

NLE Websites -- All DOE Office Websites (Extended Search)

and an LED technology assessment at Navigant Consulting, and supported the DOE Hydrogen Fuel Cell program at SRA, Intl. She has a B.S. in Physics from Stanford. This Speaker's...

390

On Raviart-Thomas and VMS formulations for flow in heterogeneous materials.  

SciTech Connect

It is well known that the continuous Galerkin method (in its standard form) is not locally conservative, yet many stabilized methods are constructed by augmenting the standard Galerkin weak form. In particular, the Variational Multiscale (VMS) method has achieved popularity for combating numerical instabilities that arise for mixed formulations that do not otherwise satisfy the LBB condition. Among alternative methods that satisfy local and global conservation, many employ Raviart-Thomas function spaces. The lowest order Raviart-Thomas finite element formulation (RT0) consists of evaluating fluxes over the midpoint of element edges and constant pressures within the element. Although the RT0 element poses many advantages, it has only been shown viable for triangular or tetrahedral elements (quadrilateral variants of this method do not pass the patch test). In the context of heterogenous materials, both of these methods have been used to model the mixed form of the Darcy equation. This work aims, in a comparative fashion, to evaluate the strengths and weaknesses of either approach for modeling Darcy flow for problems with highly varying material permeabilities and predominantly open flow boundary conditions. Such problems include carbon sequestration and enhanced oil recovery simulations for which the far-field boundary is typically described with some type of pressure boundary condition. We intend to show the degree to which the VMS formulation violates local mass conservation for these types of problems and compare the performance of the VMS and RT0 methods at boundaries between disparate permeabilities.

Turner, Daniel Zack

2010-11-01T23:59:59.000Z

391

Wind Power Opportunities in St. Thomas, USVI: A Site-Specific Evaluation and Analysis  

DOE Green Energy (OSTI)

This NREL technical report utilizes a development framework originated by NREL and known by the acronym SROPTTC to assist the U.S. Virgin Islands in identifying and understanding concrete opportunities for wind power development in the territory. The report covers each of the seven components of the SROPTTC framework: Site, Resource, Off-take, Permitting, Technology, Team, and Capital as they apply to wind power in the USVI and specifically to a site in Bovoni, St. Thomas. The report concludes that Bovoni peninsula is a strong candidate for utility-scale wind generation in the territory. It represents a reasonable compromise in terms of wind resource, distance from residences, and developable terrain. Hurricane risk and variable terrain on the peninsula and on potential equipment transport routes add technical and logistical challenges but do not appear to represent insurmountable barriers. In addition, integration of wind power into the St. Thomas power system will present operational challenges, but based on experience in other islanded power systems, there are reasonable solutions for addressing these challenges.

Lantz, E.; Warren, A.; Roberts, J. O.; Gevorgian, V.

2012-09-01T23:59:59.000Z

392

Preliminary Notice of Violation issued to Sandia National Laboratories  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 1,2010 June 1,2010 OFFICE OF THE ADMINISTRATOR CERTIFIED MAIL RETURN RECEIPT REQUESTED Dr. Thomas O. Hunter President and Laboratories Director Sandia National Laboratories P.O. Box 5800, MS 0101 Albuquerque, New Mexico 87185-0101 WEA-2010-03 Dear Dr. Hunter: This letter refers to a U.S. Department of Energy (DOE) investigation into the facts and circumstances associated with the inadvertent ignition of a rocket motor at the 1O,000-foot sled track facility at Sandia National LaboratorieslNew Mexico site on October 9,2008. The results of the investigation were provided to Sandia Corporation (Sandia) in an Investigation Report dated December 2, 2009. An enforcement conference was held on February 4,2010, with members of your staff to discuss the report's findings and Sandia's corrective action plan. A

393
394

Jefferson Lab Technology Transfer  

This site's design is only visible in a graphical browser that supports web standards, but its content is accessible to any browser. Concerns? Technology Transfer.

395

Jefferson Lab Technology Transfer  

Invention Disclosure; CRADA/WFO Routing; Fairness of Opportunity; Achievements at JLab. Patents; New Inventions; New Technologies; New Advances; ...

396

Jefferson Lab Technology Transfer  

Invention Disclosure; CRADA/WFO Routing; Fairness ... Every JLab employee who has an idea that may be patentable is encouraged to follow the simple In ...

397

Jefferson Lab Technology Transfer  

Research was done in collaboration with the Department of Biology at the College of William and Mary which obtained a grant from NSF and with the support of the ...

398

Jefferson Lab Technology Transfer  

Cryogenic Liquid Level Measuring Apparatus; Uniform Raster Pattern Generating System; ... Injection Mode-locking Ti-Sapphire Laser System; Radial ...

399

Laboratory Equipment & Supplies | Sample Preparation Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

Equipment & Supplies Equipment & Supplies John Bargar, SSRL Scientist Equipment is available to serve disciplines from biology to material science. All laboratories contain the following standard laboratory equipment: pH meters with standard buffers, analytical balances, microcentrifuges, vortex mixers, ultrasonic cleaning baths, magnetic stirrers, hot plates, and glassware. Most laboratories offer ice machines and cold rooms. Specialty storage areas for samples include a -80 freezer, argon and nitrogen glove boxes, radiation contamination areas, inert atmosphere chambers, and cold rooms. For specific information please see: Equipment Inventory Checkout Equipment & Supplies To view equipment inventory by laboratory, refer to the following pages: Biology Chemistry & Material Science Laboratory 1 Inventory

400

Time-Domain Electromagnetics At Kilauea East Rift Area (Thomas, 1986) |  

Open Energy Info (EERE)

Time-Domain Electromagnetics At Kilauea East Rift Time-Domain Electromagnetics At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Time-Domain Electromagnetics Activity Date Usefulness useful DOE-funding Unknown Notes A series of time-domain electromagnetic (TDEM) soundings were also performed in the lower East Rift Zone as part of the HGP exploration program (Klein and Kauahikaua, 1975; Kauahikaua and Klein, 1977); this work was recently expanded to include additional TDEM and vertical electrical soundings, and the entire data set was reinterpreted (Kauahikaua, 1981b; Kauahikaua and Mattice, 1981). The resistivity model presented by Kauahikaua (1981b) suggests that moderate to high basement resistivities, corresponding to cold freshwater saturated basalts, are present north of

Note: This page contains sample records for the topic "laboratory thomas jefferson" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Direct-Current Resistivity Survey At Mokapu Penninsula Area (Thomas, 1986)  

Open Energy Info (EERE)

Direct-Current Resistivity Survey At Mokapu Direct-Current Resistivity Survey At Mokapu Penninsula Area (Thomas, 1986) Exploration Activity Details Location Mokapu Penninsula Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes Geophysical surveys on Mokapu were restricted to three Schlumberger soundings (Fig. 17). The results of these soundings appeared to indicate a highly resistive surface section underlain by one or more layers of intermediate to low resistivity (Fig. 18). Basement resistivities in all cases were less than 3 ohm.m and were interpreted to correspond to alluvial layers saturated with cold seawater (Lienert, 1982). --- A separate geophysical analysis performed on the Koolau caldera area (Kauahikaua, 1981 a) synthesized existing self-potential, gravity, seismic and aeromagnetic

402

MEMORANDUM FOR ELIZABETH MONTOYA TRANSITION TEAM FROM THOMAS N. PYKE, J  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

^ g December 1, 200S ^ g December 1, 200S MEMORANDUM FOR ELIZABETH MONTOYA TRANSITION TEAM FROM THOMAS N. PYKE, J CHIEF INFORMATION OFFICER SUBJECT: Follow-up to our meeting this morning Carl Staton and I appreciated the opportunity to brief you this morning on our office's activities, including the cyber security issue. We noted four follow-up actions: 1. The breakdown ofOCIO Federal and contracting FTE at all of our sites is: Federal Contractor a. Forrestal 51 144 b. Germantown 85 213 c. Albuquerque 1 39 d. Pittsburgh 1 0 c. Linthicum, Maryland 0 8 f. Las Vegas 3 39 Total: 141 443 2. The number of Federal FTE in the OCIO cyber security office is 16. 3. We have some additional infbrmation about the detailee from NNSA that we mentioned. The detailee, Mr. Robbie Green, is in the process of being

403

CRANE CO. 757 THIRD AVENUE NEW YORK. N.Y. THOMAS UNGERLAND ASSOCIATE GENERAL COUNSEL  

Office of Legacy Management (LM)

? ? z _ - c 0-e . CRANE CO. 757 THIRD AVENUE NEW YORK. N.Y. THOMAS UNGERLAND ASSOCIATE GENERAL COUNSEL December 14, 1987 James J. Fiore Director Office of Nuclear Energy Department of Energy Washington, D.C. Re: Crane - Indian Orchard Dear M r. Fiore: W e acknowledge receipt of your letter to Paul Hundt, dated September 29, 1987, which requests certain information about Crane's plant site in Indian Orchard, Massachusetts. The plant is not currently operating. Crane was unable to locate any records concerning the machining of uranium in the 1947-48 period for a customer, Brookhaven Labs, at the Indian Orchard, facility. It is believed that the records, which were kept on the second floor at 305 Hamshire Street, Indian Orchard, Massachusetts were moved ten or fifteen years ago

404

Direct-Current Resistivity Survey At Mauna Loa Northeast Rift Area (Thomas,  

Open Energy Info (EERE)

Direct-Current Resistivity Survey At Mauna Loa Direct-Current Resistivity Survey At Mauna Loa Northeast Rift Area (Thomas, 1986) Exploration Activity Details Location Mauna Loa Northeast Rift Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes The vertical electrical sounding surveys encountered few difficulties and were able to resolve basement resistivities in all locations. The resistivity sections derived indicated a 3000- 20,000 ohm.m surface layer underlain by a 500- 900 ohm-m cold freshwatersaturated layer and a basement layer of less than 100 ohm.m (Kauahikaua and Mattice, 1981). The depth of penetration of these soundings was estimated to be about 800 m to 900 m b.s.1. and thus the basement resistivities probably correspond to basalts

405

Time-Domain Electromagnetics At Hualalai Northwest Rift Area (Thomas, 1986)  

Open Energy Info (EERE)

Time-Domain Electromagnetics At Hualalai Northwest Time-Domain Electromagnetics At Hualalai Northwest Rift Area (Thomas, 1986) Exploration Activity Details Location Hualalai Northwest Rift Area Exploration Technique Time-Domain Electromagnetics Activity Date Usefulness useful DOE-funding Unknown Notes Three time-domain electromagnetic soundings were conducted on the middle northwest rift at elevations of 280-320 m (Fig. 40) (Kauahikaua and Mattice, 1981). These soundings penetrated to a greater depth than the Schlumberger soundings and two of them were able to resolve basement resistivities ranging from 9 to 12 ohm-m at depths of 1500 to 1800 m. One sounding detected a 9 ohm.m layer at 600 m depth that was underlain by a more resistive basement. These results suggest that thermal fluids may be responsible for the low-resistivity basement, whereas the high-resistivity

406

Direct-Current Resistivity Survey At Haleakala Volcano Area (Thomas, 1986)  

Open Energy Info (EERE)

Direct-Current Resistivity Survey At Haleakala Direct-Current Resistivity Survey At Haleakala Volcano Area (Thomas, 1986) Exploration Activity Details Location Haleakala Volcano Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes The field survey program on the northwest rift zone consisted of soil mercury and radon emanometry surveys, groundwater temperature and chemistry studies, Schlumberger resistivity soundings and self-potential profiles. Geophysical and geochemical surveys along this rift (southwest) were limited by difficult field conditions and access limitations. The geophysical program consisted of one Schlumberger sounding, one self-potential profile and one controlled-source electromagnetic sounding. The geochemical data collected included a reconnaissance soil mercury and

407

Solar-cooling-system performance, Frenchman's Reef Hotel, St. Thomas, US Virgin Islands. Final report  

DOE Green Energy (OSTI)

The Solar Cooling System installed in the Frenchman's Reef Resort Hotel Test Site, St. Thomas, US Virgin Islands, used 956 Sunmaster Corporation evacuated glass tube collector modules which provide an effective solar collector aperture of 13,384 square feet. The system consists of the collectors, two 2500 gallon tanks, pumps, an Andover Controls Corporation computerized controller, a large solar optimized Carrier Corporation industrial sized lithium bromide absorption chiller, and associated plumbing. Solar heated water is pumped through the system to the designed public areas such as lobby, lounges, restaurant and hallways. Auxiliary heat is provided by steam and a heat exchanger to supplement the solar heat. The system, its operation sequence, and performance are described.

Harber, H.

1981-09-25T23:59:59.000Z

408

Liquid-gas phase transition in nuclei in the relativistic Thomas-Fermi theory  

E-Print Network (OSTI)

The equation of state (EOS) of finite nuclei is constructed in the relativistic Thomas-Fermi theory using the non-linear $\\sigma-\\omega -\\rho$ model. The caloric curves are calculated by confining the nuclei in the freeze-out volume taken to be a sphere of size about 4 to 8 times the normal nuclear volume. The results obtained from the relativistic theory are not significantly different from those obtained earlier in a non-relativistic framework. The nature of the EOS and the peaked structure of the specific heat $C_v$ obtained from the caloric curves show clear signals of a liquid-gas phase transition in finite nuclei. The temperature evolution of the Gibbs potential and the entropy at constant pressure indicate that the characteristics of the transition are not too different from the first-order one.

Tapas Sil; B. K. Agrawal; J. N. De; S. K. Samaddar

2000-12-16T23:59:59.000Z

409

ARM - Laboratory Partners  

NLE Websites -- All DOE Office Websites (Extended Search)

Archive Data Management Facility Data Quality Program Engineering Support External Data Center Laboratory Partners Nine DOE national laboratories share the responsibility of...

410

BROOKHAVEN NATIONAL LABORATORY - Energy  

Laboratory Plan FY 2010-2019 June2,2010 BROOKHAVEN NATIONAL LABORATORY Accelerating Innovation Alane for Hydrogen Storage and Delivery June 2012

411

EML: Environmental Measurements Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Security and Privacy Notices History of the Environmental Measurements Laboratory The Manhattan ProjectAtomic Energy Commission (1942 1975) Our Laboratory traces its roots...

412

BATT Fabrication Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Scientist working in battery lab BATT Fabrication Laboratory The BATT Fab Lab (Batteries for Advanced Transportation Technologies Fabrication Laboratory) conducts battery cell...

413

Lawrence Livermore National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Lawrence Livermore National Laboratory Lawrence Livermore National Laboratorys (LLNL) primary mission is research and development in support of national security. As a...

414

Sandia National Laboratories: Locations  

NLE Websites -- All DOE Office Websites (Extended Search)

around the world. Sandia's executive management offices and larger laboratory complex are located in Albuquerque, New Mexico. Our second principal laboratory is located...

415

New Brunswick Laboratory - Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Reports New Brunswick Laboratory Activity Reports 2012 Operational Awareness Oversight of the New Brunswick Laboratory, July 2012 Activity Reports 2011 Orientation Visit to the New...

416

Nuclear Energy Advisory Committee, Facility Subcommittee visit to Idaho National Laboratory May 19-20, 2010  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Committee, Facility Subcommittee visit to Idaho National Committee, Facility Subcommittee visit to Idaho National Laboratory May 19-20, 2010 The Nuclear Energy Advisory Committee, Facility Subcommittee visited the Idaho National Laboratory on 19-20 May 2010 to tour the nuclear infrastructure and to discuss the INL plans for facility modernization as a dimension of the DOE Office of Nuclear Energy's (NE) mission. Team Members: Dr. John Ahearne, Sigma Xi, Research Triangle Park, NC Dr. Dana Christensen, Oak Ridge National Laboratory Dr. Thomas Cochran, Natural Resource Defense Council, Washington DC Dr. Andrew Klein, Oregon State University (second day only) Mr. Paul Murray, AREVA Federal Services Dr. John I. Sackett, Idaho National Laboratory, Retired, Support: Andrew Griffith, DOE/NE

417

Oak Ridge National Laboratory - Laboratory Directed Research...  

NLE Websites -- All DOE Office Websites (Extended Search)

Seed Money Fund Overview The Seed Money Fund of the ORNL LDRD program supports innovative ideas that have the potential of enhancing the Laboratory's core scientific and technical...

418

About Berkeley Lab: Laboratory Director, Associate Laboratory...  

NLE Websites -- All DOE Office Websites (Extended Search)

2009, replacing former laboratory Director Steve Chu, who was sworn in as U.S. Energy Secretary. Before becoming interim director, Alivisatos was the deputy director of Berkeley...

419

Sandia National Laboratories: Research: Laboratory Directed Research...  

NLE Websites -- All DOE Office Websites (Extended Search)

Encouraging creative research to innovate solutions for our nation's greatest challenges. National laboratories have been entrusted with the role of serving as incubators for...

420

Annual Report Alfvn Laboratory  

E-Print Network (OSTI)

is plasma research using small-scale laboratory experiments, where low-density plasmas are generated

Haviland, David

Note: This page contains sample records for the topic "laboratory thomas jefferson" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Laboratory Management (Quality) Systems  

Science Conference Proceedings (OSTI)

Laboratory Management (Quality) Systems. NISTIR 7028 Type Evaluation Quality Manual Template. This NISTIR has been ...

2012-05-02T23:59:59.000Z

422

National Renewable Energy Laboratory  

E-Print Network (OSTI)

National Renewable Energy Laboratory Innovation for Our Energy Future ponsorship Format Reversed Color:White rtical Format Reversed-A ertical Format Reversed-B National Renewable Energy Laboratory National Renewable Energy Laboratory Innovation for Our Energy Future National Renewable Energy Laboratory

423

State Laboratory Contacts AC  

Science Conference Proceedings (OSTI)

State Laboratory Contact Information AC. Alabama. Mailing Address, ... PDF. Alaska. Mailing Address, Contact Information. Alaska ...

2013-08-01T23:59:59.000Z

424

Nuclear Magnetic Resonance Laboratory  

Science Conference Proceedings (OSTI)

Nuclear Magnetic Resonance Laboratory. ... A 600 MHz Nuclear Magnetic Resonance Spectrometer. Analytical Data Compilation Reference Materials. ...

2012-10-01T23:59:59.000Z

425

Department of Energy National Laboratories  

Office of Science laboratory National Nuclear Security Administration laboratory Office of Fossil Energy laboratory Office of Energy Efficiency and ...

426

National Laboratories - Energy Innovation Portal  

Name Address City, State; Ames Laboratory: Ames Laboratory: Ames, IA: Argonne National Laboratory: 9700 S. Cass Avenue: Argonne, IL: Brookhaven ...

427

National Laboratories - Energy Innovation Portal  

Name Address City, State; Ames Laboratory: Ames Laboratory: Ames, IA: Argonne National Laboratory: 9700 S. Cass Avenue: Argonne, IL: Brookhaven National Laboratory

428

COMPUTER SYSTEMS LABORATORY STANFORD ELECTRONICS LABORATORIES  

E-Print Network (OSTI)

of Data 2.1 Performance and Utilization Data 2.2 Failure Data 5 5 6 3. Preliminary Analysis 3.1 Load Profiles 3.2 Failure Profiles 7 3.3 Analysis and Discussion of Preliminary Results Some ReliabilityCOMPUTER SYSTEMS LABORATORY I I STANFORD ELECTRONICS LABORATORIES DEPARTMENT OF ElECTRiCAl

Stanford University

429

Annual Planning Summaries: 2013 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 3 Annual Planning Summaries: 2013 March 25, 2013 2013 Annual Planning Summary for the Thomas Jefferson Site Office 2013 Annual Planning Summary for the Thomas Jefferson Site Office March 25, 2013 2013 Annual Planning Summary for the Pacific Northwest Site Office 2013 Annual Planning Summary for the Pacific Northwest Site Office March 25, 2013 2013 Annual Planning Summary for the New Brunswick Laboratory 2013 Annual Planning Summary for the New Brunswick Laboratory March 25, 2013 2013 Annual Planning Summary for the Strategic Petroleum Reserve 2013 Annual Planning Summary for the Strategic Petroleum Reserve March 25, 2013 2013 Annual Planning Summary for the Rocky Mountain Oilfield Testing Center 2013 Annual Planning Summary for the Rocky Mountain Oilfield Testing Center

430

Dynamically polarized target for the g{sub 2}{sup p} and G{sub E}{sup p} experiments at Jefferson Lab  

SciTech Connect

Recently, two experiments were concluded in Hall A at Jefferson Lab which utilized a newly assembled, solid, polarized hydrogen target. The primary components of the target are a new, high cooling power {sup 4}He evaporation refrigerator, and a re-purposed, superconducting split-coil magnet. It has been used to polarize protons in irradiated NH{sub 3} at a temperature of 1 K and at fields of 2.5 and 5.0 tesla. Maximum polarizations of 55% and 95% were obtained at those fields, respectively. To satisfy the requirements of both experiments, the magnet had to be routinely rotated between angles of 0, 6, and 90 with respect to the incident electron beam.

Pierce, Joshua J. [JLAB; Maxwell, James D. [MIT; Keith, Christopher D. [JLAB

2014-01-01T23:59:59.000Z

431

Sandia National Laboratories: Z Pulsed Power Facility: Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Z-Machine Z-Machine About Z Z Research Z News Contact Us Facebook Twitter YouTube Flickr RSS Top Z News Publications Z-Machine Publications Archive Inertial Confinement Fusion Dynamic Hohlraums Thomas W. L. Sanford, "Overview of the Dynamic-Hohlraum X-ray Source at Sandia National Laboratories," April 2007 (1.5 MB PDF) T.W.L. Sanford, "Comparative properties of the Interior and Blowoff Plasmas in a dynamic Hohlraum," April 2007 (1.39 KB PDF) Tom Nash, "Current Scaling of Axially Radiated Power in dynamic Hohlraums and Dynamic Hohlraum Load Design for ZR," March 2007 (2.15 PDF) R. A. Vesey, "Target Design for High Fusion Yield with the Double Z-pinch driven Hohlraums," March 2007 (1.65 PDF) T.W.L. Sanford, "Wire Initiation Critical for Radiation symmetry

432

Public Meeting on Oversight of Complex, High Hazard Nuclear Operations - Statement of Thomas P. DAgostino - May 12, 2010  

NLE Websites -- All DOE Office Websites (Extended Search)

of Thomas P. D'Agostino of Thomas P. D'Agostino Administrator, National Nuclear Security Administration Defense Nuclear Facilities Safety Board Public Hearing on Line and Independent Oversight May 12, 2010 Mr. Chairman, members of the Board, thank you for this opportunity to meet with you in this public forum to discuss effective oversight of our nuclear facilities. You provided written lines of inquiry prior to this meeting, and my formal response is organized around them. Of course, I will also be happy to answer any additional questions you may have. Let me begin by describing our overall oversight approach as it currently exists. I will discuss its effectiveness, point out both its strengths and weaknesses, and use it as a basis for describing the changes we are considering. I will then discuss our approach to

433

Investigation of ZnO nanopillars fabrication in a new Thomas Swan close coupled showerhead MOCVD reactor  

Science Conference Proceedings (OSTI)

Self-organized ZnO nanopillars were grown on a-plane Al"2O"3 in a vertical MOCVD reactor using diethylzinc and N"2O as precursors. This is the very first Thomas Swan reactor that is specially designed for the growth of ZnO and GaN. The influence of different ... Keywords: MOCVD, MOVPE, Nanopillars, Zincoxide, ZnO

A. Behrends; A. Bakin; A. Waag

2009-02-01T23:59:59.000Z

434

Mixed waste certification plan for the Lawrence Berkeley Laboratory Hazardous Waste Handling Facility. Revision 1  

SciTech Connect

The purpose of this plan is to describe the organization and methodology for the certification of mixed waste handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan is composed to meet the requirements found in the Westinghouse Hanford Company (WHC) Solid Waste Acceptance Criteria (WAC) and follows the suggested outline provided by WHC in the letter of April 26, 1990, to Dr. R.H. Thomas, Occupational Health Division, LBL. Mixed waste is to be transferred to the WHC Hanford Site Central Waste Complex and Burial Grounds in Hanford, Washington.

1995-01-01T23:59:59.000Z

435

Imitative sequel writing: divine breathings, second part of the Pilgrim's Progress, and the case of T. S. (aka Thomas Sherman)  

E-Print Network (OSTI)

During the period between 1640 and 1700, over forty works were produced by authors identifying themselves as T. S. In the field of early modern literary studies, one T. S. has been particularly important to scholars because of this authors imitative version of John Bunyans popular allegory titled The Second Part of the Pilgrims Progress (1682). This work by T. S., who has become known as Thomas Sherman, achieves minor success and prompts Bunyan to write his own authentic sequel. My research has uncovered an attribution history that identifies four additional textsDivine Breathings (circa 1671); Youths Tragedy (1671); Youths Comedy (1680); Divine Breathings, the Second Part (1680)and credits all of them to a Thomas Sherman. Of the five works attributed to this author, the most impressive printing history belongs to the earliest offering, Divine Breathings, or a Pious Soul Thirsting after Christ in a Hundred Pathetical Meditations, which appears in over 60 printings from 1671 to 1883 in England, Scotland, and North America. My research scrutinizes this attribution history and raises questions about identifying this T. S. as Thomas Sherman. Based on internal and external evidence, I argue that T. S. is not the author of Divine Breathings but establishes his authorial identity as an imitative writer who actively participates in the genre of Protestant meditational literature by providing sequels (i.e., Divine Breathings the Second Part and Second Part of the Pilgrims Progress).

Garrett, Christopher E.

2007-08-01T23:59:59.000Z

436

Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

AOCS provides a Laboratory Proficiency Program (LPP). Formerly the Smalley Check Sample Program LPP is a collaborative proficiency testing service for oil and fat related commodities, oilseeds, oilseed meals, and edible fats. Laboratory Proficiency Testing

437

Leading Testing Laboratories  

Science Conference Proceedings (OSTI)

... Fax: 86-20-6196-8925 E-Mail: york.li@ledtestlab.com Send E-Mail to Laboratory: Leading Testing Laboratories ... [22/S14] EPA Integral LED Lamps v ...

2013-09-06T23:59:59.000Z

438

Mound Laboratory: Analytical Capability  

SciTech Connect

The Monsanto Research Corporation, Mound Laboratory Analytical Capability report is intended to fulfill a customer need for basic information concerning Mound Laboratory's analytical instrumentation and techniques.

Hendrickson, E. L.

1955-03-01T23:59:59.000Z

439

ESnet Site List  

NLE Websites -- All DOE Office Websites (Extended Search)

CA) JLAB Thomas Jefferson National Accelerator Facility (Newport News, VA) KCP Kansas City Plant (Kansas City, MO) KCP-ALBQ Kansas City Plant (Albuquerque, NM) LANL Los Alamos...

440

State Laboratory Contacts DH  

Science Conference Proceedings (OSTI)

State Laboratory Contact Information DH. District of Columbia. ... Lab Closed See State Director's List. No Certificate. Delaware. ...

2013-10-24T23:59:59.000Z

Note: This page contains sample records for the topic "laboratory thomas jefferson" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Lisheng Safety Laboratory  

Science Conference Proceedings (OSTI)

Lisheng Safety Laboratory. NVLAP Lab Code: 200882-0. Address and Contact Information: Electronic & Lighting (Xiamen) Co. Ltd. No. ...

2013-09-27T23:59:59.000Z

442

Savannah River National Laboratory  

At a glance Remote Electrical Throw Device Engineers at the Savannah River National Laboratory ... sufficient manufacturing capacity, established dist ...

443

Engineering Laboratory Homepage  

Science Conference Proceedings (OSTI)

... and InfrastructureDisaster-Resilient Buildings, Infrastructure, and ... of the Manufacturing Engineering Laboratory. ... Net-Zero Energy Residential Test ...

2013-08-12T23:59:59.000Z

444

National Renewable Energy Laboratory  

National Renewable Energy Laboratory Technology Transfer Marine Corps Taps NREL to Help Replace Aging Steam Plant with Efficient Biomass Cogeneration

445

State Laboratory Contacts M  

Science Conference Proceedings (OSTI)

... Maine Department of Agriculture Metrology Laboratory Div. QA&R 28 Station House Road Augusta, ME 04333, 333 Cony Rd. ...

2013-09-25T23:59:59.000Z

446

Price Sound Laboratory  

Science Conference Proceedings (OSTI)

Price Sound Laboratory. NVLAP Lab Code: 200874-0. Address and Contact Information: 638 RALEIGH STREET WINNIPEG ...

2013-10-31T23:59:59.000Z

447

Laboratory Coordinating Council  

Science Conference Proceedings (OSTI)

The nation's network of DOE Laboratories and Facilities hold an extensive store of research and development expertise and unique equipment developed for their various missions. The Laboratory Coordinating Council (LCC) gives US industry access to a ``virtual'' laboratory that can be tailored to meet the specific requirements of almost any research project. Established in 1995, the LCC responds to the major process industries' R and D needs with the capabilities of 16 DOE Laboratories and Facilities.

Chum, H.

1998-12-21T23:59:59.000Z

448

Cytogenetic Biodosimetry Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Cytogenetic Biodosimetry Laboratory Cytogenetic Biodosimetry Laboratory Blood samples are shipped at room temperature to the laboratory. White blood cells, lymphocytes, are cultured under sterile conditions in an incubator for 48 hours using a standard growth medium. Culture tubes are centrifuged, and cells are re-suspended in a weak salt solution, which allows the chromosomes to separate and spread evenly on slides.

449

Division of Laboratory Sciences  

E-Print Network (OSTI)

#12;#12;Division of Laboratory Sciences U.S. Department of Health and Human Services Centers and Prevention National Center for Environmental Health Division of Laboratory Sciences Atlanta, Georgia 30341're also working in concert with state public health laboratories, providing training, proficiency testing

450

The role of superconductivity and cryogenics in the neutrino factory  

E-Print Network (OSTI)

Brookhaven National Laboratory, Upton N Y 11973, USA d. Jefferson Lab,Brookhaven National Laboratory, Upton N Y 11973, U S A d. Jefferson Lab,

2001-01-01T23:59:59.000Z

451

Argonne National Laboratory Physics Division annual report, January--December 1996  

Science Conference Proceedings (OSTI)

The past year has seen several of the Physics Division`s new research projects reach major milestones with first successful experiments and results: the atomic physics station in the Basic Energy Sciences Research Center at the Argonne Advanced Photon Source was used in first high-energy, high-brilliance x-ray studies in atomic and molecular physics; the Short Orbit Spectrometer in Hall C at the Thomas Jefferson National Accelerator (TJNAF) Facility that the Argonne medium energy nuclear physics group was responsible for, was used extensively in the first round of experiments at TJNAF; at ATLAS, several new beams of radioactive isotopes were developed and used in studies of nuclear physics and nuclear astrophysics; the new ECR ion source at ATLAS was completed and first commissioning tests indicate excellent performance characteristics; Quantum Monte Carlo calculations of mass-8 nuclei were performed for the first time with realistic nucleon-nucleon interactions using state-of-the-art computers, including Argonne`s massively parallel IBM SP. At the same time other future projects are well under way: preparations for the move of Gammasphere to ATLAS in September 1997 have progressed as planned. These new efforts are imbedded in, or flowing from, the vibrant ongoing research program described in some detail in this report: nuclear structure and reactions with heavy ions; measurements of reactions of astrophysical interest; studies of nucleon and sub-nucleon structures using leptonic probes at intermediate and high energies; atomic and molecular structure with high-energy x-rays. The experimental efforts are being complemented with efforts in theory, from QCD to nucleon-meson systems to structure and reactions of nuclei. Finally, the operation of ATLAS as a national users facility has achieved a new milestone, with 5,800 hours beam on target for experiments during the past fiscal year.

Thayer, K.J. [ed.

1997-08-01T23:59:59.000Z

452

Argonne Tribology Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Tribology Laboratory Tribology Laboratory CemeCon coating chamber CemeCon coating chamber Engineers in Argonne's Tribology Laboratory conduct research on advanced tribological systems (surface engineered materials, lubricants, fuels, and fuel/lubricant additives) for use in aggressive environments (for example, where two surfaces are rubbing together). The Laboratory is equipped with a full range of coating development, friction and wear testing, and characterization facilities. Evaluation of Coatings and Systems The Tribology Laboratory evaluates high performance coatings primarily intended to protect engine-component surfaces that undergo sliding and rolling contact in advanced transportation systems. Also tested are systems powered by diesel and gasoline engines, as well as

453

Leadership | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Message from the Director Board of Governors Organization Chart Argonne Distinguished Fellows Emeritus Scientists & Engineers History Discoveries Prime Contract Contact Us Leadership Argonne integrates world-class science, engineering, and user facilities to deliver innovative research and technologies. We create new knowledge that addresses the scientific and societal needs of our nation. Eric D. Isaacs Eric D. Isaacs, Director, Argonne National Laboratory Director, Argonne National Laboratory Argonne National Laboratory Eric D. Isaacs, a prominent University of Chicago physicist, is President of UChicago Argonne, LLC, and Director of Argonne National Laboratory. Mark Peters Mark Peters, Deputy Lab Director for Programs Deputy Laboratory Director for Programs

454

DECOMMISSIONING OF HOT CELL FACILITIES AT THE BATTELLE COLUMBUS LABORATORIES  

SciTech Connect

Battelle Columbus Laboratories (BCL), located in Columbus, Ohio, must complete decontamination and decommissioning activities for nuclear research buildings and grounds at its West Jefferson Facilities by 2006, as mandated by Congress. This effort includes decommissioning several hot cells located in the Hot Cell Laboratory (Building JN-1). JN-1 was originally constructed in 1955, and a hot cell/high bay addition was built in the mid 1970s. For over 30 years, BCL used these hot cell facilities to conduct research for the nuclear power industry and several government agencies, including the U.S. Navy, U.S. Army, U.S. Air Force, and the U.S. Department of Energy. As a result of this research, the JN-1 hot cells became highly contaminated with mixed fission and activation products, as well as fuel residues. In 1998, the Battelle Columbus Laboratories Decommissioning Project (BCLDP) began efforts to decommission JN-1 with the goal of remediating the site to levels of residual contamination allowing future use without radiological restrictions. This goal requires that each hot cell be decommissioned to a state where it can be safely demolished and transported to an off-site disposal facility. To achieve this, the BCLDP uses a four-step process for decommissioning each hot cell: (1) Source Term Removal; (2) Initial (i.e., remote) Decontamination; (3) Utility Removal; and (4) Final (i.e., manual) Decontamination/Stabilization. To date, this process has been successfully utilized on 13 hot cells within JN-1, with one hot cell remaining to be decommissioned. This paper will provide a case study of the hot cell decommissioning being conducted by the BCLDP. Discussed will be the methods used to achieve the goals of each of the hot cell decommissioning stages and the lessons learned that could be applied at other sites where hot cells need to be decommissioned.

Weaver, Patrick; Henderson, Glenn; Erickson, Peter; Garber, David

2003-02-27T23:59:59.000Z

455

Argonne National Laboratory - Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Reports Reports Argonne National Laboratory Activity Reports 2012 Operational Awareness Oversight of the Argonne National Laboratory Alpha-Gamma Hot Cell Facility, July 2012 Review Reports 2011 Review of the Argonne National Laboratory Alpha-Gamma Hot Cell Facility Readiness Assessment (Implementation Verification Review Sections), November 2011 Nuclear Safety Enforcement Regulatory Assistance Review of UChicago Argonne, LLC at the Argonne National Laboratory, October 3, 2011 Activity Reports 2011 Orientation Visit to the Argonne National Laboratory, August 2011 Review Reports 2005 Independent Oversight Inspection of Environment, Safety and Health Programs at Argonne National Laboratory, Summary Report, Vol. 1, May, 2005 Independent Oversight Inspection of Environment, Safety, and Health Programs at the Argonne National Laboratory, Technical Appendices, Volume II, May 2005

456

Laboratory Computing Resource Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Computing DOE Logo Computing DOE Logo Search BIO ... Search Argonne Home > BIO home > Laboratory Computing Resource Center BIO Home Page About BIO News Releases Research Publications People Contact Us Organization Chart Site Index Inside BIO BIO Safety About Argonne Argonne National Laboratory Logo Laboratory Computing Resource Center In 2002 Argonne National Laboratory established the Laboratory Computing Project to enable and promote the use of high-performance computing (HPC) across the Laboratory in support of its varied research missions. The Laboratory Computing Resource Center (LCRC) was established, and in April 2003 LCRC began full operations with Argonne’s first teraflops computing cluster, Jazz. In 2010 Jazz was replaced by Fusion, with a peak performance of 30 teraflops (and still growing). We just acquired Blues which will a performance of 100 teraflops.

457

Going green earns Laboratory gold  

NLE Websites -- All DOE Office Websites (Extended Search)

Going green earns Laboratory gold Going green earns Laboratory gold The Laboratory's newest facility is its first to achieve both the Leadership in Energy and Environmental Design...

458

Vehicle Technologies Office: National Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

National Laboratories to someone by E-mail Share Vehicle Technologies Office: National Laboratories on Facebook Tweet about Vehicle Technologies Office: National Laboratories on...

459

Laboratory program helps small businesses  

NLE Websites -- All DOE Office Websites (Extended Search)

Lab helps small businesses Laboratory program helps small businesses The free program, run jointly by Los Alamos and Sandia National Laboratories, leverages the laboratories'...

460

FW Response to Notice of Inquire on Questions Concerning Technology Transfer Tractices at DOE Laboratories.txt - Notepad  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

esponse to Notice of Inquire on Questions Concerning Technology Transfer Tractices at DOE Laboratories. esponse to Notice of Inquire on Questions Concerning Technology Transfer Tractices at DOE Laboratories. From: Malozemoff, Alex [AMalozemoff@amsc.com] Sent: Tuesday, January 27, 2009 4:09 PM To: GC-62 Cc: Ballard, Thomas B.; McGahn, Daniel Subject: FW: Response to Notice of Inquire on Questions Concerning Technology Transfer Tractices at DOE Laboratories > Response to Fed Register 73, no. 229, Nov. 26, 2008 Notices > > DOE Questions Concerning Technology Transfer Practices at DOE > Laboratories > > Answer by > > Dr. Alexis P. Malozemoff > Executive V. P. and Chief Technical Officer > American Superconductor > 64 Jackson Rd., Devens MA 01434 USA > ph: 978-842-3331 > cell: 508-243-9693 > amalozemoff@amsc.com > > 1. American Superconductor (AMSC), a leader in alternative energy

Note: This page contains sample records for the topic "laboratory thomas jefferson" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Is ``smart charging'' policy for electric vehicles worthwhile?$ Thomas P. Lyon n  

E-Print Network (OSTI)

control technology in the Xcel Energy territory," National Renewable Energy Laboratory, NREL/TP-550 particular interest in algorithms for automating the development of proper dynamic mathematical models, i

Lyon, Thomas P.

462

FY 2005 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Congressional Budget Congressional Budget Request Laboratory Tables Preliminary Department of Energy FY 2005 Congressional Budget Request Office of Management, Budget and Evaluation/CFO February 2004 Laboratory Tables Preliminary Department of Energy Department of Energy FY 2005 Congressional Budget FY 2005 Congressional Budget Request Request Office of Management, Budget and Evaluation/CFO February 2004 Laboratory Tables Laboratory Tables Printed with soy ink on recycled paper Preliminary Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. include both the discretionary and mandatory funding in the budget. balances, deferrals, rescissions, or other adjustments appropria ted as offsets to the DOE appropriations by the Congress.

463

News | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

News Argo exascale architecture Click on image to enlarge. Designing a new operating system for exascale architectures Full Story Argonne National Laboratory has been awarded a...

464

ARGONNE NATIONAL LABORATORY  

NLE Websites -- All DOE Office Websites (Extended Search)

National Laboratory wild@mcs.anl.gov ABSTRACT Code optimization in the high-performance computing realm has traditionally focused on reducing execution time. The problem, in...

465

Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

checking the document effective date on the PS Training website. Brookhaven National Laboratory Photon Sciences Directorate Subject: Photon Sciences TECH PROC LN2 Manual Fill...

466

Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

reminder to persons whose area will be inspected (i.e. Cognizant Space Managers) Brookhaven National Laboratory Photon Sciences Directorate Subject: ENVIRONMENTAL, SAFETY AND...

467

Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

current version by checking the document effective date on the PS Training website. Brookhaven National Laboratory Photon Sciences Directorate Subject: Photon Sciences ELEC PPE -...

468

Pacific Northwest National Laboratory  

NLE Websites -- All DOE Office Websites

Pacific Northwest National Laboratory Skip to Main Content U.S. Department of Energy Search PNNL Search PNNL Home About Research Publications Jobs News Contacts Featured Research...

469

NATIONAL ENERGY TECHNOLOGY LABORATORY  

NLE Websites -- All DOE Office Websites (Extended Search)

NATIONAL ENERGY TECHNOLOGY LABORATORY In 2011, the Office of Fossil Energy evaluated the realized and estimated benefits provided by its programs. Implemented by NETL, these...

470

Oak Ridge National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Oak Ridge National Laboratory Search Go Find People Contact Site Index Comments Home News News Releases Story Tips Features Contacts ORNL Review Magazine ORNL in the News...

471

Shared Intellect * Shared Laboratories...  

NLE Websites -- All DOE Office Websites (Extended Search)

VOLUME 3, ISSUE 3 NETL-RUA 2013 SPRING MEETING: Growth Through Collaboration National Energy Technology Laboratory - Regional University Alliance (NETL-RUA) members joined...

472

Hollings Marine Laboratory Homepage  

Science Conference Proceedings (OSTI)

... The Hollings Marine Laboratory (HML) is a ... the Nation's coastal environmental- and health-related problems ... s National Ocean Service, the National ...

2013-08-19T23:59:59.000Z

473

Sandia National Laboratories - Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Reports Sandia National Laboratories Review Reports 2013 Review of the Sandia Site Office Quality Assurance Assessment of the Manzano Nuclear Operations, January 2013 Activity...

474

Los Alamos National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

participants to respond to simulated hazardous materials emergencies involving a rail car, a clandestine laboratory, various modes of transportation, industrial piping...

475

Los Alamos National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 - Hours after a disaster declaration by Los Alamos County, Los Alamos National Laboratory officials on Friday described "millions" of dollars in damage to environmental...

476

Fumonisin Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing service for B1, B2, B3,and total Fumonisin in corn meal samples. Fumonisin Laboratory Proficiency Testing Program Laboratory Proficiency Program (LPP) aocs applicants certified chemist chemists Lab laboratories Laboratory methods

477

Material Measurement Laboratory Professional Research ...  

Science Conference Proceedings (OSTI)

... at the NIST, Gaithersburg Laboratories in Gaithersburg ... NIST Hollings Marine Laboratory (HML) in ... sponsoring institution of higher education and be ...

2013-05-26T23:59:59.000Z

478

SANDIA NATIONAL LABORATORIES  

NLE Websites -- All DOE Office Websites (Extended Search)

Impacts on Sandia and the Nation Impacts on Sandia and the Nation 2 SANDIA NATIONAL LABORATORIES 3 LDRD Impacts on Sandia and the Nation For further information, contact: Wendy R. Cieslak Senior Manager, Science, Technology, and Engineering Strategic Initiatives wrciesl@sandia.gov (505) 844-8633 or Henry R. Westrich LDRD Program Manager hrwestr@sandia.gov 505-844-9092 LDRD Impacts on Sandia and the Nation ABOUT THE COVER: Images from some of the case studies in this brochure: a near-UV light- emitting diode (LED), a cell membrane, a NISAC model, synthetic aperture radar (SAR) image of Washington, D.C. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT 4 SANDIA NATIONAL LABORATORIES 5 LDRD Impacts on Sandia and the Nation Sandia National Laboratories' Laboratory Directed Research and Development (LDRD) Program:

479

FY 2010 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory Tables Laboratory Tables Preliminary May 2009 Office of Chief Financial Officer FY 2010 Congressional Budget Request Laboratory Tables Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Printed with soy ink on recycled paper Laboratory / Facility Index FY 2010 Congressional Budget Page 1 of 3 (Dollars In Thousands) 2:08:56PM Department Of Energy 5/4/2009 Page Number FY 2008 Appropriation FY 2009 Appropriation FY 2010 Request Laboratory Table 1 1 $1,200

480

Laboratory Protection Division, Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Points of Contact Points of Contact Organization Chart (pdf) Groups Emergency Services Emergency Management Security Operations BNL Site Access Main Gate Access Forms Welcome to the... Laboratory Protection Division (LP) Mission Statement: To serve and protect Brookhaven National Laboratory's staff, guests, and interests from the undesirable consequences of unwanted events by providing preparedness, assessment, engineering, and immediate response services for all types of security and non-security related emergencies. Protect DOE special nuclear materials, classified matter, sensitive information, and property against theft, diversion, or destruction; prevent the sabotage of programs that could result in significant scientific or financial impact; prevent the malevolent release of hazardous materials including radiological, chemical, and infectious agents or other criminal acts protecting people, property, and national security, providing a safe and secure environment for employees, the public, and the environment.

Note: This page contains sample records for the topic "laboratory thomas jefferson" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Lawrence Livermore National Laboratory Operational Drill at the B332 Plutonium Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HSS Independent Activity Report - Rev. 0 Report Number: HIAR LLNL-2013-02-27 Site: Lawrence Livermore National Laboratory (LLNL) Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for the Lawrence Livermore National Laboratory Operational Drill at the B332 Plutonium Facility Date of Activity: 02/27/2013 Report Preparer: Thomas Rogers Activity Description/Purpose: The Livermore Site Office (LSO) and Lawrence Livermore National Security, LLC (LLNS) requested personnel from the U.S. Department of Energy (DOE) Office of Safety and Emergency Management Evaluations (HS-45) to observe an operational drill at the Plutonium Facility in Building 332 (B332). LSO and LLNS desired HS-45's participation to help

482

Vehicle Research Laboratory - FEERC  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Research Laboratory Vehicle Research Laboratory Expertise The overall FEERC team has been developed to encompass the many disciplines necessary for world-class fuels, engines, and emissions-related research, with experimental, analytical, and modeling capabilities. Staff members specialize in areas including combustion and thermodynamics, emissions measurements, analytical chemistry, catalysis, sensors and diagnostics, dynamometer cell operations, engine controls and control theory. FEERC engineers have many years of experience in vehicle research, chassis laboratory development and operation, and have developed specialized systems and methods for vehicle R&D. Selected Vehicle Research Topics In-use investigation of Lean NOx Traps (LNTs). Vehicle fuel economy features such as lean operation GDI engines,

483

Safeguards Laboratory (SL) | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Safeguards Laboratory Safeguards Laboratory May 30, 2013 The Safeguards Laboratory is a Department of Energy user facility equipped with a comprehensive set of field-deployable instrumentation for safeguards system development and personnel training. Mock-ups using industrial equipment and reference nuclear materials simulate real-world conditions for training, testing, and evaluations. The lab's openness and availability to the private sector enable development of new technologies that combat the proliferation of weapons of mass destruction. Applications Training and International Outreach Nondestructive Analysis Measurements Instrument Evaluations Integrated Safeguards Methodologies Measurement Technique Development Specifications Gamma and X-ray detection systems Handheld survey instruments

484

Sonication standard laboratory module  

DOE Patents (OSTI)

A standard laboratory module for automatically producing a solution of cominants from a soil sample. A sonication tip agitates a solution containing the soil sample in a beaker while a stepper motor rotates the sample. An aspirator tube, connected to a vacuum, draws the upper layer of solution from the beaker through a filter and into another beaker. This beaker can thereafter be removed for analysis of the solution. The standard laboratory module encloses an embedded controller providing process control, status feedback information and maintenance procedures for the equipment and operations within the standard laboratory module.

Beugelsdijk, Tony (Los Alamos, NM); Hollen, Robert M. (Los Alamos, NM); Erkkila, Tracy H. (Los Alamos, NM); Bronisz, Lawrence E. (Los Alamos, NM); Roybal, Jeffrey E. (Santa Fe, NM); Clark, Michael Leon (Menan, ID)

1999-01-01T23:59:59.000Z

485

Low-level waste certification plan for the Lawrence Berkeley Laboratory Hazardous Waste Handling Facility. Revision 1  

SciTech Connect

The purpose of this plan is to describe the organization and methodology for the certification of low-level radioactive waste (LLW) handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan is composed to meet the requirements found in the Westinghouse Hanford Company (WHC) Solid Waste Acceptance Criteria (WAC) and follows the suggested outline provided by WHC in the letter of April 26, 1990, to Dr. R.H. Thomas, Occupational Health Division, LBL. LLW is to be transferred to the WHC Hanford Site Central Waste Complex and Burial Grounds in Hanford, Washington.

1995-01-10T23:59:59.000Z

486

Radiative Heat Transfer in a Hydrous Mantle Transition Zone Thomas, S.-M.1,2  

E-Print Network (OSTI)

, USA 3 Geophysical Laboratory, Carnegie Institution of Washington, Washington, DC 20015, USA craig spectra reveals an energy transmission "window" in the IR-VIS spectral range, as for both mineral phases-3260 [15] F.C. Marton, T.J. Shankland, D.C. Rubie and Y. Xu (2005) "Effect of variable thermal con

Bina, Craig R.

487

Los Alamos National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

remembers former director Harold remembers former director Harold Agnew September 30, 2013 Manhattan Project pioneer was LANL director from 1970-1979 LOS ALAMOS, N.M., Sept. 30, 2013-Los Alamos National Laboratory Director Charlie McMillan today remembered Harold Agnew as a national treasure who transformed the Laboratory into what it is in the 21st century. "His contributions to the Laboratory made us the institution we are today," McMillan said. "It was his vision - decades ago - that recognized that national security science - 2 - brings value to a broad spectrum of breakthroughs. Los Alamos and the nation will be forever in Harold's debt." Agnew died at home on Sunday, Sept. 29, his family announced. He was the third director of Los Alamos National Laboratory, succeeding Robert

488

FY 2007 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory tables Laboratory tables preliminary Department of Energy FY 2007 Congressional Budget Request February 2006 Printed with soy ink on recycled paper Office of Chief Financial Officer Laboratory tables preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Laboratory / Facility Index FY 2007 Congressional Budget Page 1 of 3 (Dollars In Thousands) 12:10:40PM Department Of Energy 1/31/2006 Page Number FY 2005 Appropriation FY 2006 Appropriation FY 2007

489

Los Alamos National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

employees receive Pollution Prevention employees receive Pollution Prevention Awards April 23, 2013 Protecting environment, saving taxpayer dollars LOS ALAMOS, N.M., April 23, 2013-Nearly 400 Los Alamos National Laboratory employees on 47 teams received Pollution Prevention awards for protecting the environment and saving taxpayers more than $8 million. The employees were recognized at the Laboratory's annual Pollution Prevention Awards ceremony on Monday (April 22), Earth Day. "The Pollution Prevention Awards are the result of people taking the initiative to improve their own operations," said Pat Gallagher of the Laboratory's Environmental - 2 - Stewardship group. "These are clever, innovative, homegrown and home-owned ideas that save the Laboratory and taxpayers millions of dollars each year while reducing

490

FY 2011 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory Tables Laboratory Tables Department of Energy FY 2011 Congressional Budget Request DOE/CF-0055 March 2010 Office of Chief Financial Officer Laboratory Tables Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Department of Energy FY 2011 Congressional Budget Request DOE/CF-0055 Laboratory / Facility Index FY 2011 Congressional Budget Page 1 of 3 (Dollars In Thousands) 6:24:57AM Department Of Energy 1/29/2010 Page

491

FY 2008 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory Table Laboratory Table Preliminary Department of Energy FY 2008 Congressional Budget Request February 2007 Office of Chief Financial Officer Laboratory Table Preliminary Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Laboratory / Facility Index FY 2008 Congressional Budget Page 1 of 3 (Dollars In Thousands) 6:51:02AM Department Of Energy 2/1/2007 Page Number FY 2006 Appropriation FY 2007 Request FY 2008 Request

492

FY 2006 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory Tables Laboratory Tables Preliminary Department of Energy FY 2006 Congressional Budget Request Office of Management, Budget and Evaluation/CFO February 2005 Laboratory Tables Preliminary Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Laboratory / Facility Index FY 2006 Congressional Budget Page 1 of 3 (Dollars In Thousands) 3:43:16PM Department Of Energy 1/27/2005 Page Number FY 2004 Comp/Approp FY 2005 Comp/Approp

493

Fy 2009 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory Tables Laboratory Tables Preliminary February 2008 Office of Chief Financial Officer Department of Energy FY 2009 Congressional Budget Request Laboratory Tables Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Printed with soy ink on recycled paper Laboratory / Facility Index FY 2009 Congressional Budget Page 1 of 3 (Dollars In Thousands) 8:59:25AM Department Of Energy 1/30/2008 Page Number FY 2007 Appropriation FY 2008 Appropriation FY 2009

494

Savannah River National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Savannah River National Laboratory Savannah River National Laboratory srnl.doe.gov SRNL is a DOE National Laboratory operated by Savannah River Nuclear Solutions. At a glance Additive Manufacturing (3D Printing): Selectively Printed Conductive Pathways Researchers at the Savannah River National Laboratory (SRNL) have developed a rapid prototype conductive material that can be used for electrical shielding or circuit fabrication. Background Several rapid prototype technologies currently exist. A few of the technologies produce metallic parts, but the majority produce nonconductive parts made from various grades of plastic. In all of these technologies however, only conductive material or nonconductive material can be used within one part created. There is no known option for 3D printing conductive material for

495

Brookhaven National Laboratory, Office  

NLE Websites -- All DOE Office Websites (Extended Search)

of 2006 the Office of Educational Programs (OEP) at the U.S. Department of Energy's Brookhaven National Laboratory launched the Open Space Stewardship Program as part of its Green...

496

Los Alamos National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

to 150 million over five years LOS ALAMOS, N.M., May 14, 2013-Los Alamos National Laboratory has awarded a master task order agreement in which three small businesses will...

497

Los Alamos National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

to 400 million over five years LOS ALAMOS, N.M., Sept. 23, 2013-Los Alamos National Laboratory has awarded master task order agreements to three small businesses for environmental...

498

Laboratory announces 2008 Fellows  

NLE Websites -- All DOE Office Websites (Extended Search)

Kurt E. Sickafus recognized for contributions. December 4, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as...

499

Alamos National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Economic development in Northern New Mexico focus of new podcast from Los Alamos National Laboratory November 25, 2013 Podcast part of Lab's new multi-channel effort to better...

500

ASHRAE's Living Laboratory  

SciTech Connect

ASHRAE recently remodeled its headquarters building in Atlanta with the intention of making the building a LEED Gold building. As part of that renovation the building was enhanced with additional sensors and monitoring equipment to allow it to serve as a Living Laboratory for use by members and the general public to study the detailed energy use and performance of buildings. This article provides an overview of the Living Laboratory and its capabilities.

Jarnagin, Ronald E.; Brambley, Michael R.

2008-10-01T23:59:59.000Z