National Library of Energy BETA

Sample records for laboratory thirteenth atmospheric

  1. Laboratory for Atmospheric and

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    Laboratory for Atmospheric and Space Physics Activity Report 2013 University of Colorado at Boulder from the Naval Research Center and the Air Force Cambridge Research Laboratory (now the Phillips Laboratory), the University of Colorado formed a research group called the Upper Air Laboratory (UAL

  2. Laboratory for Atmospheric and

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    Laboratory for Atmospheric and Space Physics Activity Report 2012 University of Colorado at Boulder from the Naval Research Center and the Air Force Cambridge Research Laboratory (now the Phillips Laboratory), the University of Colorado formed a research group called the Upper Air Laboratory (UAL

  3. Laboratory for Atmospheric and

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    Laboratory for Atmospheric and Space Physics Activity Report 2008 University of Colorado at Boulder, Jet Propulsion Laboratory) LASP: A Brief History In 1946-47, a handful of American universities joined Laboratory (now the Phillips Laboratory), the University of Colorado formed a research group called the Upper

  4. Laboratory for Atmospheric and

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    1 Laboratory for Atmospheric and Space Physics Activity Report 2010 University of Colorado from the Na- val Research Center and the Air Force Cambridge Research Laboratory (now the Phillips Laboratory), the University of Colorado formed a research group called the Upper Air Laboratory (UAL

  5. Thirteenth National School on Neutron and X-ray Scattering

    E-Print Network [OSTI]

    Thirteenth National School on Neutron and X-ray Scattering June 11 ­ June 25, 2011 at Argonne of the National School on Neutron and X-ray Scattering is to educate graduate students on the utilization of major National Laboratory's Neutron Scattering Science Division. Scientific Directors: Jonathan C. Lang, Suzanne

  6. Laboratory measurements and modeling of trace atmospheric species

    E-Print Network [OSTI]

    Sheehy, Philip M. (Philip Michael)

    2005-01-01

    Trace species play a major role in many physical and chemical processes in the atmosphere. Improving our understanding of the impact of each species requires a combination of laboratory exper- imentation, field measurements, ...

  7. The Atmospheric and Terrestrial Mobile Laboratory (ATML).

    SciTech Connect (OSTI)

    Zak, Bernard Daniel; Rahn, Thom (Los Alamos National Laboratory); Nitschke, Kim (Los Alamos National Laboratory); Ivey, Mark D.; Mora, Claudia (Los Alamos National Laboratory); McDowell, Nate (Los Alamos National Laboratory); Love, Steve (Los Alamos National Laboratory); Dubey, M. (Los Alamos National Laboratory); Michelsen, Hope A.; Guilderson, Tom (Lawrence Livermore National Laboratory); Schubert, William Kent; Costigan, Keeley (Los Alamos National Laboratory); Chylek, Petr (Los Alamos National Laboratory); Bambha, Ray P.; Roskovensky, John K.

    2010-04-01

    The ionospheric disturbance dynamo signature in geomagnetic variations is investigated using the National Center for Atmospheric Research Thermosphere-Ionosphere-Electrodynamics General Circulation Model. The model results are tested against reference magnetically quiet time observations on 21 June 1993, and disturbance effects were observed on 11 June 1993. The model qualitatively reproduces the observed diurnal and latitude variations of the geomagnetic horizontal intensity and declination for the reference quiet day in midlatitude and low-latitude regions but underestimates their amplitudes. The patterns of the disturbance dynamo signature and its source 'anti-Sq' current system are well reproduced in the Northern Hemisphere. However, the model significantly underestimates the amplitude of disturbance dynamo effects when compared with observations. Furthermore, the largest simulated disturbances occur at different local times than the observations. The discrepancies suggest that the assumed high-latitude storm time energy inputs in the model were not quantitatively accurate for this storm.

  8. The Bioelectromagnetic Society Thirteenth Annual Meeting 1991: Program and abstracts

    SciTech Connect (OSTI)

    Not Available

    1992-12-31

    This volume contains author abstracts representing oral and poster presentations made at the Thirteenth Annual Meeting of The Bioelectromagnetic Society held in Salt Lake City, Utah June 23--27, 1991.

  9. Atmospheric radionuclide concentrations measured by Pacific Northwest Laboratory since 1961

    SciTech Connect (OSTI)

    Young, J.A.; Thomas, C.W.

    1981-03-01

    The atmospheric concentrations of a wide spectrum of radionuclides produced by nuclear weapons, nuclear reactors, cosmic rays, radon and thoron decay and the SNAP-9A burn-up ([sup 238]Pu) have been measured at Richland, Washington, since 1961; at Barrow, Alaska, since 1964; and at other stations for shorter periods of time. There has been considerable concern over the health hazard presented by these radionuclides, but it has also been recognized that atmospheric mixing and deposition rates can be determined from their measurement. Therefore, Pacific Northwest Laboratory began the continuous measurement of the atmospheric concentrations of a wide spectrum of radionuclides produced by nuclear weapons, nuclear reactors, cosmic rays, and radon and thoron decay. This report will discuss the concentrations of the longer-lived radionuclides (T 1/2 > 12 days). The concentrations of shorter-lived radionuclides measured following Chinese nuclear tests since 1972 are discussed in another report.

  10. Atmospheric radionuclide concentrations measured by Pacific Northwest Laboratory since 1961

    SciTech Connect (OSTI)

    Young, J.A.; Thomas, C.W.

    1981-03-01

    The atmospheric concentrations of a wide spectrum of radionuclides produced by nuclear weapons, nuclear reactors, cosmic rays, radon and thoron decay and the SNAP-9A burn-up ({sup 238}Pu) have been measured at Richland, Washington, since 1961; at Barrow, Alaska, since 1964; and at other stations for shorter periods of time. There has been considerable concern over the health hazard presented by these radionuclides, but it has also been recognized that atmospheric mixing and deposition rates can be determined from their measurement. Therefore, Pacific Northwest Laboratory began the continuous measurement of the atmospheric concentrations of a wide spectrum of radionuclides produced by nuclear weapons, nuclear reactors, cosmic rays, and radon and thoron decay. This report will discuss the concentrations of the longer-lived radionuclides (T 1/2 > 12 days). The concentrations of shorter-lived radionuclides measured following Chinese nuclear tests since 1972 are discussed in another report.

  11. Thirteenth workshop on geothermal reservoir engineering: Proceedings

    SciTech Connect (OSTI)

    Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Brigham, W.E.; Miller, F.G.; Cook, J.W.

    1988-01-21

    PREFACE The Thirteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 19-21, 1988. Although 1987 continued to be difficult for the domestic geothermal industry, world-wide activities continued to expand. Two invited presentations on mature geothermal systems were a keynote of the meeting. Malcolm Grant presented a detailed review of Wairakei, New Zealand and highlighted plans for new development. G. Neri summarized experience on flow rate decline and well test analysis in Larderello, Italy. Attendance continued to be high with 128 registered participants. Eight foreign countries were represented: England, France, Iceland, Italy, New Zealand, Japan, Mexico and The Philippines. A discussion of future workshops produced a strong recommendation that the Stanford Workshop program continue for the future. There were forty-one technical presentations at the Workshop. All of these are published as papers in this Proceedings volume. Four technical papers not presented at the Workshop are also published. In addition to these forty five technical presentations or papers, the introductory address was given by Henry J. Ramey, Jr. from the Stanford Geothermal Program. The Workshop Banquet speaker was Gustavo Calderon from the Inter-American Development Bank. We thank him for sharing with the Workshop participants a description of the Bank???s operations in Costa Rica developing alternative energy resources, specifically Geothermal, to improve the country???s economic basis. His talk appears as a paper in the back of this volume. The chairmen of the technical sessions made an important contribution to the workshop. Other than Stanford faculty members they included: J. Combs, G. T. Cole, J. Counsil, A. Drenick, H. Dykstra, K. Goyal, P. Muffler, K. Pruess, and S. K. Sanyal. The Workshop was organized by the Stanford Geothermal Program faculty, staff and students. We would like to thank Marilyn King, Pat Oto, Terri Ramey, Bronwyn Jones, Yasmin Gulamani, and Rosalee Benelli for their valued help with the meeting arrangements and preparing the Proceedings. We also owe great thanks to our students who arranged and operated the audio-visual equipment, especially Jeralyn Luetkehans. The Thirteenth Workshop was supported by the Geothermal Technology Division of the U.S. Department of Energy through Contract No. DE-AS07-84ID12529. We deeply appreciate this continued support. Henry J. Ramey, Jr. Paul Kruger Roland N. Horne William E. Brigham Frank G. Miller Jean W. Cook

  12. Atmospheric Environment Center Joint Laboratory cole des Ponts

    E-Print Network [OSTI]

    Ghorbel, Amin

    ) doctoral school and is a member of the EFLUVE Environmental Science Observatory and of the "Urban Futures and accurate observations for wind, temperature, solar radiation, relative humidity, and atmospheric turbulence. Simu- lations are performed with the Code_Saturne com- putational fluid dynamics (CFD) model. Air

  13. THE LOS ALAMOS NATIONAL LABORATORY ATMOSPHERIC TRANSPORT AND DIFFUSION MODELS

    SciTech Connect (OSTI)

    M. WILLIAMS

    1999-08-01

    The LANL atmospheric transport and diffusion models are composed of two state-of-the-art computer codes. The first is an atmospheric wind model called HOThlAC, Higher Order Turbulence Model for Atmospheric circulations. HOTMAC generates wind and turbulence fields by solving a set of atmospheric dynamic equations. The second is an atmospheric diffusion model called RAPTAD, Random Particle Transport And Diffusion. RAPTAD uses the wind and turbulence output from HOTMAC to compute particle trajectories and concentration at any location downwind from a source. Both of these models, originally developed as research codes on supercomputers, have been modified to run on microcomputers. Because the capability of microcomputers is advancing so rapidly, the expectation is that they will eventually become as good as today's supercomputers. Now both models are run on desktop or deskside computers, such as an IBM PC/AT with an Opus Pm 350-32 bit coprocessor board and a SUN workstation. Codes have also been modified so that high level graphics, NCAR Graphics, of the output from both models are displayed on the desktop computer monitors and plotted on a laser printer. Two programs, HOTPLT and RAPLOT, produce wind vector plots of the output from HOTMAC and particle trajectory plots of the output from RAPTAD, respectively. A third CONPLT provides concentration contour plots. Section II describes step-by-step operational procedures, specifically for a SUN-4 desk side computer, on how to run main programs HOTMAC and RAPTAD, and graphics programs to display the results. Governing equations, boundary conditions and initial values of HOTMAC and RAPTAD are discussed in Section III. Finite-difference representations of the governing equations, numerical solution procedures, and a grid system are given in Section IV.

  14. Air Resources Laboratory The Air Resources Laboratory (ARL) is a research laboratory within the National Oceanic and Atmospheric Administration

    E-Print Network [OSTI]

    the National Oceanic and Atmospheric Administration (NOAA). ARL is headquartered at the NOAA Center for Weather in order to improve the Nation's ability to protect human and ecosystem health. What We Do ARL conducts research and development in the fields of atmospheric dispersion, air quality, climate change, and boundary

  15. Atmospheric effects on Quaternary polarization encoding for free space communication, laboratory simulation

    E-Print Network [OSTI]

    Soorat, Ram

    2015-01-01

    We have simulated atmospheric effects such as fog and smoke in laboratory environment to simulate depolarisation due to atmospheric effects during a free space optical communi- cation. This has been used to study noise in two components of quaternary encoding for polarization shift keying. Individual components of a Quaternary encoding, such as vertical and horizontal as well as 45$^\\circ$ and 135$^\\circ$ , are tested separately and indicates that the depo- larization effects are different for these two situation. However, due to a differential method used to extract information bits, the protocol shows extremely low bit error rates. The information obtained is useful during deployment of a fully functional Quaternary encoded PolSK scheme in free space.

  16. Study of the atmospheric chemistry of radon progeny in laboratory and real indoor atmospheres. Final project report

    SciTech Connect (OSTI)

    Hopke, P.K.

    1996-09-01

    This report completes Clarkson University`s study of the chemical and physical behavior of the {sup 218}Po atom immediately following its formation by the alpha decay of radon. Because small changes in size for activity in the sub-10 nm size range result in large changes in the delivered dose per unit exposure, this behavior must be understood if the exposure to radon progeny and it dose to the cells in the respiratory tract are to be fully assessed. In order to pursue this general goal, two areas of radon progeny behavior are being pursued; laboratory studies under controlled conditions to better understand the fundamental physical and chemical processes that affect the progeny`s atmospheric behavior and studies in actual indoor environments to develop a better assessment of the exposure of the occupants of that space to the size and concentration of the indoor radioactive aerosol. Thus, two sets of specific goals have been established for this project. The specific tasks of the controlled laboratory studies are (1) Determine the formation rates of {circ}OH radicals formed by the radiolysis of air following radon decay; (2) Examine the formation of particles by the radiolytic oxidation of substances like SO{sub 2}, ethylene, and H{sub 2}S to lower vapor pressure compounds and determine the role of gas phase additives such as H{sub 2}O and NH{sub 3} in determining the particle size; (3) Measure the rate of ion-induced nucleation using a thermal diffusion cloud chamber, and (4) Measure the neutralization rate of {sup 218}PoO{sub x}{sup +} in O{sub 2} at low radon concentrations.

  17. Pacific Northwest Laboratory annual report for 1985 to the DOE Office of Energy Research. Part 3. Atmospheric sciences

    SciTech Connect (OSTI)

    Elderkin, C.E.

    1986-02-01

    The goals of atmospheric research at Pacific Northwest Laboratory (PNL) are to describe and predict the nature and fate of atmospheric contaminants and to develop an understanding of the atmospheric processes contributing to their distribution on local, regional, and continental scales. In 1985, this research has examined the transport and diffusion of atmospheric contaminants in areas of complex terrain, summarized the field studies and analyses of dry deposition and resuspension conducted in past years, and begun participation in a large, multilaboratory program to assess the precipitation scavenging processes important to the transformation and wet deposition of chemicals composing ''acid rain.'' The description of atmospheric research at PNL is organized in terms of the following study areas: Atmospheric Studies in Complex Terrain; Dispersion, Deposition, and Resuspension of Atmospheric Contaminants; and Processing of Emissions by Clouds and Precipitation (PRECP).

  18. Pacific Northwest Laboratory annual report for 1984 to the DOE Office of Energy Research. Part 3. Atmospheric sciences

    SciTech Connect (OSTI)

    Elderkin, C.E.

    1985-02-01

    The goals of atmospheric research at Pacific Northwest Laboratory (PNL) are to assess, describe, and predict the nature and fate of atmospheric contaminants and to study the impacts of contaminants on local, regional, and global climates. The contaminants being investigated are those resulting from the development and use of conventional resources (coal, gas, oil, and nuclear power) as well as alternative energy sources. The description of the research is organized into 3 sections: (1) Atmospheric Studies in Complex Terrain (ASCOT); (2) Boundary Layer Meteorology; and (3) Dispersion, Deposition, and Resuspension of Atmospheric Contaminants. Separate analytics have been done for each of the sections and are indexed and contained in the EDB. (MDF)

  19. Introduction and Welcome Welcome to the Thirteenth International Conference on Modern Trends in Activation Analysis (MTAA-13) and

    E-Print Network [OSTI]

    i Introduction and Welcome Welcome to the Thirteenth International Conference on Modern Trends:00 to 6:00 p.m. preceding the Welcome Reception at the George Bush Presidential Library. Monday, March 14

  20. Pacific Northwest Laboratory: Annual report for 1986 to the DOE Office of Energy Research: Part 3, Atmospheric sciences

    SciTech Connect (OSTI)

    Elderkin, C.E.

    1987-06-01

    The goals of atmospheric research at Pacific Northwest Laboratory (PNL) are to describe and predict the nature and fate of atmospheric contaminants and to develop an understanding of the atmospheric processes contributing to their distribution on local, regional, and continental scales. In 1986, atmospheric research examined the transport and diffusion of atmospheric contaminants in areas of complex terrain and participated in a large, multilaboratory program to assess the precipitation scavenging processes important to the transformation and wet deposition of chemicals composing ''acid rain.'' In addition, during 1986, a special opportunity for measuring the transport and removal of radioactivity occurred after the Chernobyl reactor accident in April 1986. Separate abstracts were prepared for individual projects.

  1. Pacific Northwest Laboratory annual report for 1987 to the DOE Office of Energy Research: Part 3, Atmospheric sciences

    SciTech Connect (OSTI)

    Elderkin, C.E.

    1988-08-01

    Currently, the broad goals of atmospheric research at Pacific Northwest Laboratory (PNL) are to describe and predict the nature and fate of atmospheric contaminants and to develop an understanding of the atmospheric processes contributing to their distribution on local, regional, and continental scales in the air, in clouds, and on the surface. For several years, studies of transport and diffusion have been extended to mesoscale areas of complex terrain. Atmospheric cleansing research has expanded to a regional scale, multilaboratory investigation of precipitation scavenging processes involving the transformation and wet deposition of chemicals composing ''acid rain.'' In addition, the redistribution and long-range transport of transformed contaminants passing through clouds is recognized as a necessary extension of our research to even larger scales in the future. A few long-range tracer experiments conducted in recent years and the special opportunity for measuring the transport and removal of radioactivity following the Chernobyl reactor accident of April 1986 offer important initial data bases for studying atmospheric processes at these super-regional scales.

  2. A model for eastward and westward jets in laboratory experiments and planetary atmospheres

    E-Print Network [OSTI]

    Marcus, Philip S.

    ; accepted 21 October 1997 Flows in a rotating annular tank J. Sommeria, S. D. Meyers, and H. L. Swinney of the laboratory flow that is based on a Bickley jet; this raises concerns about previous calculations of Physics. S1070-6631 98 01405-6 I. INTRODUCTION In laboratory flows in rotating annuli that were designed

  3. This paper was prepared for presentation at the SPE/DOE Thirteenth Symposium on Improved Oil Recovery held in Tulsa, Oklahoma, 1317 April 2002.

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    This paper was prepared for presentation at the SPE/DOE Thirteenth Symposium on Improved Oil and are subject to correction by the author(s). The material, as presented, does not necessarily reflect any

  4. is typical of atmospheric chemistry. Years of field, laboratory and modelling studies indi-

    E-Print Network [OSTI]

    Shoubridge, Eric

    that, in the atmosphere, particle nuclea- tion and growth might involve both gas and condensed happenswhenotheratmosphericcomponents, such as anthropogenic hydrocarbons and nitrogen oxides, are added to the mix, as these compounds­41 (2008). 2. Kiendler-Scharr, A. etal. Nature 461, 381­384 (2009). 3. Tunved, P. etal. Science 312, 261

  5. Pacific Northwest Laboratory annual report for 1991 to the DOE Office of Energy Research. Part 3, Atmospheric and climate research

    SciTech Connect (OSTI)

    Not Available

    1992-05-01

    Within the US Department of Energy`s (DOE`s) Office of Health and Environmental Research (OHER), the atmospheric sciences and carbon dioxide research programs are part of the Environmental Sciences Division (ESD). One of the central missions of the division Is to provide the DOE with scientifically defensible information on the local, regional, and global distributions of energy-related pollutants and their effects on climate. This information is vital to the definition and Implementation of a sound national energy strategy. This volume reports on the progress and status of all OHER atmospheric science and climate research projects at the Pacific Northwest Laboratory (PNL). Research at PNL provides basic scientific underpinnings to DOE`s program of global climate research. Research projects within the core carbon dioxide and ocean research programs are now integrated with those in the Atmospheric Radiation Measurements (ARM), the Computer Hardware, Advanced Mathematics and Model Physics (CHAMMP), and quantitative links programs to form DOEs contribution to the US Global Change Research Program. Climate research in the ESD has the common goal of improving our understanding of the physical, chemical, biological, and social processes that influence the Earth system so that national and international policymaking relating to natural and human-induced changes in the Earth system can be given a firm scientific basis. This report describes the progress In FY 1991 in each of these areas.

  6. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mexican pueblo preserves cultural history through collaborative tours with Los Alamos National Laboratory August 24, 2015 Students gain new insights into their ancestry LOS ALAMOS,...

  7. Droplet Number Prediction in the NCAR Community Atmosphere Model Steven Ghan Pacific Northwest National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratory |Sectorfor $1.14 Per Gallon Driving forDrone Zone

  8. Lawrence Livermore National Laboratory interests and capabilities for research on the ecological effects of global climatic and atmospheric change

    SciTech Connect (OSTI)

    Amthor, J.S.; Houpis, J.L.; Kercher, J.R.; Ledebuhr, A.; Miller, N.L.; Penner, J.E.; Robison, W.L.; Taylor, K.E.

    1994-09-01

    The Lawrence Livermore National Laboratory (LLNL) has interests and capabilities in all three types of research that must be conducted in order to understand and predict effects of global atmospheric and climatic (i.e., environmental) changes on ecological systems and their functions (ecosystem function is perhaps most conveniently defined as mass and energy exchange and storage). These three types of research are: (1) manipulative experiments with plants and ecosystems; (2) monitoring of present ecosystem, landscape, and global exchanges and pools of energy, elements, and compounds that play important roles in ecosystem function or the physical climate system, and (3) mechanistic (i.e., hierarchic and explanatory) modeling of plant and ecosystem responses to global environmental change. Specific experimental programs, monitoring plans, and modeling activities related to evaluation of ecological effects of global environmental change that are of interest to, and that can be carried out by LLNL scientists are outlined. Several projects have the distinction of integrating modeling with empirical studies resulting in an Integrated Product (a model or set of models) that DOE or any federal policy maker could use to assess ecological effects. The authors note that any scheme for evaluating ecological effects of atmospheric and climatic change should take into account exceptional or sensitive species, in particular, rare, threatened, or endangered species.

  9. AOML is an environmental laboratory of NOAA's Office of Oceanic and Atmospheric Research on Virginia Key in Miami, Florida January-February 2012

    E-Print Network [OSTI]

    to assessing the tropical ocean current system partly responsible for the fresh water budget. AOML will alsoAOML is an environmental laboratory of NOAA's Office of Oceanic and Atmospheric Research Administra- tor of NOAA's Office of Oceanic and Atmo- spheric Research in January and began his new duties

  10. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResource andfirstDeviceLabLabor ComplianceLaboratories

  11. Pacific Northwest Laboratory annual report for 1989 to the DOE (Department of Energy) Office of Energy Research - Part 3: Atmospheric Sciences

    SciTech Connect (OSTI)

    Not Available

    1990-06-01

    This 1989 Annual Report from Pacific Northwest Laboratory (PNL) to the US Department of Energy (DOE) describes research in environment, safety, and health conducted during fiscal year 1989. The report again consists of five parts, each in a separate volume. This volume contains research in the atmospheric sciences. Currently, the broad goals of atmospheric research at PNL are to describe and predict the nature and fate of atmospheric contaminants and to develop an understanding of the atmospheric processes contributing to their distribution on local, regional, continental, and global scales in the air, in clouds, and on the surface. The redistribution and long-range transport of transformed contaminants passing through clouds is recognized as a necessary extension of our research to even larger scales in the future. Eventually, large-scale experiments on cloud processing and redistribution of contaminants will be integrated into the national program on global change, investigating how energy pollutants affect aerosols and clouds and the transfer of radiant energy through them. As the significance of this effect becomes clear, its global impact on climate will be studied through experimental and modeling research. The description of ongoing atmospheric research at PNL is organized in terms of the following study areas: atmospheric studies in complex terrain, large-scale atmospheric transport and processing of emissions, and climate change. This report describes the progress in FY 1989 in each of these areas. A divider page summarizes the goals of each area and lists project titles that support research activities. 9 refs., 2 figs., 3 tabs.

  12. Laboratory for Atmospheric and

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    ------------------------------------------------------------------------------------------- 4 LASP Appropriated Funding ------------------------------------------------------------------------------- 8 Solar Influences Group

  13. Laboratory for Atmospheric and

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    ($42M) block of funding for solar irradiance measurements. This came directly from the ARRA (Federal -------------------------------------------------------------------------------------------- 4 LASP Appropriated Funding stimulus) funding program. We fully expect to utilize these funds in an efficient and effective way, along

  14. Atlantic Oceanographic and Meteorological LaboratoryMarch-April 2002 Volume 6, Number 3-4 AOML is a research laboratory of NOAA's Office of Oceanic and Atmospheric Research

    E-Print Network [OSTI]

    atmospheric CO2 and its "green- house" warming effect. As anticipated, the addition of iron in both patches global warming. The R/V Revelle scientific team distributed several tons of iron sulfate and the inert

  15. Laboratory Studies of Processing of Carbonaceous Aerosols by Atmospheric Oxidants/Hygroscopicity and CCN Activity of Secondary & Processed Primary Organic Aerosols

    SciTech Connect (OSTI)

    Ziemann, P.J.; Arey, J.; Atkinson, R.; Kreidenweis, S.M.; Petters, M.D.

    2012-06-13

    The atmosphere is composed of a complex mixture of gases and suspended microscopic aerosol particles. The ability of these particles to take up water (hygroscopicity) and to act as nuclei for cloud droplet formation significantly impacts aerosol light scattering and absorption, and cloud formation, thereby influencing air quality, visibility, and climate in important ways. A substantial, yet poorly characterized component of the atmospheric aerosol is organic matter. Its major sources are direct emissions from combustion processes, which are referred to as primary organic aerosol (POA), or in situ processes in which volatile organic compounds (VOCs) are oxidized in the atmosphere to low volatility reaction products that subsequent condense to form particles that are referred to as secondary organic aerosol (SOA). POA and VOCs are emitted to the atmosphere from both anthropogenic and natural (biogenic) sources. The overall goal of this experimental research project was to conduct laboratory studies under simulated atmospheric conditions to investigate the effects of the chemical composition of organic aerosol particles on their hygroscopicity and cloud condensation nucleation (CCN) activity, in order to develop quantitative relationships that could be used to more accurately incorporate aerosol-cloud interactions into regional and global atmospheric models. More specifically, the project aimed to determine the products, mechanisms, and rates of chemical reactions involved in the processing of organic aerosol particles by atmospheric oxidants and to investigate the relationships between the chemical composition of organic particles (as represented by molecule sizes and the specific functional groups that are present) and the hygroscopicity and CCN activity of oxidized POA and SOA formed from the oxidation of the major classes of anthropogenic and biogenic VOCs that are emitted to the atmosphere, as well as model hydrocarbons. The general approach for this project was to carry out reactions of representative anthropogenic and biogenic VOCs and organic particles with ozone (O3), and hydroxyl (OH), nitrate (NO3), and chlorine (Cl) radicals, which are the major atmospheric oxidants, under simulated atmospheric conditions in large-volume environmental chambers. A combination of on-line and off-line analytical techniques were used to monitor the chemical and physical properties of the particles including their hygroscopicity and CCN activity. The results of the studies were used to (1) improve scientific understanding of the relationships between the chemical composition of organic particles and their hygroscopicity and CCN activity, (2) develop an improved molecular level theoretical framework for describing these relationships, and (3) establish a large database that is being used to develop parameterizations relating organic aerosol chemical properties and SOA sources to particle hygroscopicity and CCN activity for use in regional and global atmospheric air quality and climate models.

  16. Pacific Northwest Laboratory annual report for 1993 to the DOE Office of Energy Research. Part 3: Atmospheric and climate research

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    The US Department of Energy`s (DOE`s) Office of Health and Environmental Research (OHER) atmospheric sciences and carbon dioxide research programs provide the DOE with scientifically defensible information on the local, regional, and global distributions of energy-related pollutants and their effects on climate. PNL has had a long history of technical leadership in the atmospheric sciences research programs within OHER. Within the Environmental Sciences Division of OHER, the Atmospheric Chemistry Program continues DOE`s long-term commitment to understanding the local, regional, and global effects of energy-related air pollutants. Research through direct measurement, numerical modeling, and analytical studies in the Atmospheric Chemistry Program emphasizes the long-range transport, chemical transformation, and removal of emitted pollutants, photochemically produced oxidant species, nitrogen-reservoir species, and aerosols. The atmospheric studies in Complex Terrain Program applies basic research on atmospheric boundary layer structure and evolution over inhomogeneous terrain to DOE`s site-specific and generic mission needs in site safety, air quality, and climate change. Research at PNL provides basic scientific underpinnings to DOE`s program of global climate research. Research projects within the core carbon dioxide and ocean research programs are now integrated with those in the Atmospheric Radiation Measurements, the Computer Hardware, Advanced Mathematics and Model Physics, and Quantitative Links program to form DOE`s contribution to the US Global Change Research Program. The description of ongoing atmospheric and climate research at PNL is organized in two broad research areas: atmospheric research; and climate research. This report describes the progress in fiscal year 1993 in each of these areas. Individual papers have been processed separately for inclusion in the appropriate data bases.

  17. Pacific Northwest Laboratory annual report for 1980 to the DOE Assistant Secretary for Environment. Part 3. Atmospheric sciences.

    SciTech Connect (OSTI)

    Elderkin, C.E.

    1981-02-01

    Separate absracts were prepared for the 15 sections of this progress report which is a description of atmospheric research at PNL organized in terms of the following energy technologies: coal, gas and oil; fission and fusion; and oil shale. (KRM)

  18. The Laboratory Complex for the Calibration of Photometers Using the Optical Method for Determination of the Water Vapor Content in the Earth Atmosphere

    E-Print Network [OSTI]

    Galkin, V D; Nikanorova, I N; Leiterer, U; Niebert, T; Alekseeva, G A; Novikov, V V; Ilyin, G N; Pakhomov, V P

    2010-01-01

    We describe the laboratory complex for the calibration of photometers that are used in weather service to measure the water vapor content in the Earth atmosphere. The complex was built up in Pulkovo Observatory and developed within the framework of collaboration between Pulkovo Observatory and Lindenberg Meteorological Observatory (Meteorologisches Observatorium Lindenberg - Richard-A{\\ss}mann-Observatorium, Lindenberg, Germany). It is used to obtain calibration dependences for individual devices, and also to develop and compare various methods of construction of calibration dependences. These techniques are based on direct calibration of the photometers, on the use of spectral laboratory transmission functions for water vapor, on calculation methods using spectroscopical databases for individual lines. We hope that when the parameters of the equipment are taken into account in detail and new results for the absorptive power of water vapor are used, the accuracy of determination of the water vapor content in ...

  19. Atmospheric Radiation Measurement (ARM) Data from Steamboat Springs, Colorado, for the Storm Peak Laboratory Cloud Property Validation Experiment (STORMVEX)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    In October 2010, the initial deployment of the second ARM Mobile Facility (AMF2) took place at Steamboat Springs, Colorado, for the Storm Peak Laboratory Cloud Property Validation Experiment (STORMVEX). The objective of this field campaign was to obtain data about liquid and mixed-phase clouds using AMF2 instruments in conjunction with Storm Peak Laboratory (located at an elevation of 3220 meters on Mt. Werner), a cloud and aerosol research facility operated by the Desert Research Institute. STORMVEX datasets are freely available for viewing and download. Users are asked to register with the ARM Archive; the user's email address is used from that time forward as the login name.

  20. Effect of Solar Radiation on the Optical Properties and Molecular Composition of Laboratory Proxies of Atmospheric Brown Carbon

    E-Print Network [OSTI]

    Nizkorodov, Sergey

    Effect of Solar Radiation on the Optical Properties and Molecular Composition of Laboratory Proxies, making it challenging to estimate its contribution to radiative forcing. Furthermore, optical properties were observed to photobleach (i.e., lose their ability to absorb visible radiation) with an effective

  1. Effect of Solar Radiation on the Optical Properties and Molecular Composition of Laboratory Proxies of Atmospheric Brown Carbon

    SciTech Connect (OSTI)

    Lee, Hyun Ji; Aiona, Paige K.; Laskin, Alexander; Laskin, Julia; Nizkorodov, Sergey

    2014-09-02

    Sources, optical properties, and chemical composition of atmospheric brown carbon (BrC) aerosol are uncertain, making it challenging to estimate its contribution to radiative forcing. Furthermore, optical properties of BrC may change significantly during its atmospheric aging. We examined the effect of solar photolysis on the molecular composition, mass absorption coefficient, and fluorescence of secondary organic aerosol prepared by high-NOx photooxidation of naphthalene (NAP SOA). The aqueous solutions of NAP SOA was observed to photobleach with an effective half-time of ?15 hours (with sun in its zenith) for the loss of the near-UV (300 -400 nm) absorbance. The molecular composition of NAP SOA was significantly modified by photolysis, with the average SOA formula changing from C14.1H14.5O5.1N0.08 to C11.8H14.9O4.5N0.02 after 4 hours of irradiation. The average O/C ratio did not change significantly, however, suggesting that it is not a good metric for assessing the extent of photolysis-driven aging in NAP SOA (and in BrC in general). In contrast to NAP SOA, the photolysis of BrC material produced by aqueous reaction of limonene+O3 SOA (LIM/O3 SOA) with ammonium sulfate was much faster, but it did not result in a significant change in the molecular level composition. The characteristic absorbance of the aged LIM/O3 SOA in the 450-600 nm range decayed with an effective half-time of <0.5 hour. This result emphasizes the highly variable and dynamic nature of different types of atmospheric BrC.

  2. THE {nu}{sub 8} BENDING MODE OF DIACETYLENE: FROM LABORATORY SPECTROSCOPY TO THE DETECTION OF {sup 13}C ISOTOPOLOGUES IN TITAN'S ATMOSPHERE

    SciTech Connect (OSTI)

    Jolly, A.; Benilan, Y.; Fayt, A.; Jacquemart, D.; Nixon, C. A.; Jennings, D. E.

    2010-05-01

    The strong {nu}{sub 8} band of diacetylene at 627.9 cm{sup -1} has been investigated to improve the spectroscopic line data used to model the observations, particularly in Titan's atmosphere by Cassini/Composite Infrared Spectrometer. Spectra have first been recorded in the laboratory at 0.5 and 0.1 cm{sup -1} resolution and temperature as low as 193 K. Previous analysis and line lists present in the GEISA database appeared to be insufficient to model the measured spectra in terms of intensity and hot band features. To improve the situation and in order to be able to take into account all rovibrational transitions with a non-negligible intensity, a global analysis of C{sub 4}H{sub 2} has been carried out to improve the description of the energy levels up to E{sub v} = 1900 cm{sup -1}. The result is a new extensive line list which enables us to model very precisely the temperature variation as well as the numerous hot band features observed in the laboratory spectra. One additional feature, observed at 622.3 cm{sup -1}, was assigned to the {nu}{sub 6} mode of a {sup 13}C isotopologue of diacetylene. The {nu}{sub 8} bands of both {sup 13}C isotopomers were also identified in the 0.1 cm{sup -1} resolution spectrum. Finally, a {sup 13}C/C{sub 4}H{sub 2} line list was added to the model for comparison with the observed spectra of Titan. We obtain a clear detection of {sup 13}C monosubstituted diacetylene at 622.3 cm{sup -1} and 627.5 cm{sup -1} (blended {nu}{sub 8} bands), deriving a mean {sup 12}C/{sup 13}C isotopic ratio of 90 {+-} 8. This value agrees with the terrestrial (89.4, inorganic standard) and giant planet values (88 {+-} 7), but is only marginally consistent with the bulk carbon value in Titan's atmosphere, measured in CH{sub 4} by Huygens GCMS to be 82 {+-} 1, indicating that isotopic fractionation during chemical processing may be occurring, as suggested for ethane formation.

  3. Historical Doses from Tritiated Water and Tritiated Hydrogen Gas Released to the Atmosphere from Lawrence Livermore National Laboratory (LLNL). Part 6. Summary

    SciTech Connect (OSTI)

    Peterson, S

    2007-09-05

    Throughout fifty-three years of operations, an estimated 792,000 Ci (29,300 TBq) of tritium have been released to the atmosphere at the Livermore site of Lawrence Livermore National Laboratory (LLNL); about 75% was tritium gas (HT) primarily from the accidental releases of 1965 and 1970. Routine emissions contributed slightly more than 100,000 Ci (3,700 TBq) HT and about 75,000 Ci (2,800 TBq) tritiated water vapor (HTO) to the total. A Tritium Dose Reconstruction was undertaken to estimate both the annual doses to the public for each year of LLNL operations and the doses from the few accidental releases. Some of the dose calculations were new, and the others could be compared with those calculated by LLNL. Annual doses (means and 95% confidence intervals) to the potentially most exposed member of the public were calculated for all years using the same model and the same assumptions. Predicted tritium concentrations in air were compared with observed mean annual concentrations at one location from 1973 onwards. Doses predicted from annual emissions were compared with those reported in the past by LLNL. The highest annual mean dose predicted from routine emissions was 34 {micro}Sv (3.4 mrem) in 1957; its upper confidence limit, based on very conservative assumptions about the speciation of the release, was 370 {micro}Sv (37 mrem). The upper confidence limits for most annual doses were well below the current regulatory limit of 100 {micro}Sv (10 mrem) for dose to the public from release to the atmosphere; the few doses that exceeded this were well below the regulatory limits of the time. Lacking the hourly meteorological data needed to calculate doses from historical accidental releases, ingestion/inhalation dose ratios were derived from a time-dependent accident consequence model that accounts for the complex behavior of tritium in the environment. Ratios were modified to account for only those foods growing at the time of the releases. The highest dose from an accidental release was calculated for a release of about 1,500 Ci HTO that occurred in October 1954. The likely dose for this release was probably less than 360 {micro}Sv (36 mrem), but, because of many unknowns (e.g., release-specific meteorological and accidental conditions) and conservative assumptions, the uncertainty was very high. As a result, the upper confidence limit on the predictions, considered a dose that could not have been exceeded, was estimated to be 2 mSv (200 mrem). The next highest dose, from the 1970 accidental release of about 290,000 Ci (10,700 TBq) HT when wind speed and wind direction were known, was one-third as great. Doses from LLNL accidental releases were well below regulatory reporting limits. All doses, from both routine and accidental releases, were far below the level (3.6 mSv [360 mrem] per year) at which adverse health effects have been documented in the literature.

  4. Atmospheric Environment ] (

    E-Print Network [OSTI]

    Raman, Sethu

    that the influence of the urban region on wind patterns and atmospheric stability could be studied. HeightAtmospheric Environment ] (

  5. A Comprehensive Parameterization of Heterogeneous Ice Nucleation of Dust Surrogate: Laboratory Study with Hematite Particles and Its Application to Atmospheric Models

    SciTech Connect (OSTI)

    Hiranuma, Naruki; Paukert, Marco; Steinke, Isabelle; Zhang, Kai; Kulkarni, Gourihar R.; Hoose, Corinna; Schnaiter, Martin; Saathoff, Harald; Mohler, Ottmar

    2014-12-10

    A new heterogeneous ice nucleation parameterization that covers a wide temperature range (-36 ?C to -78 ?C) is presented. Developing and testing such an ice nucleation parameterization, which is constrained through identical experimental conditions, is critical in order to accurately simulate the ice nucleation processes in cirrus clouds. The surface-scaled ice nucleation efficiencies of hematite particles, inferred by ns, were derived from AIDA (Aerosol Interaction and Dynamics in the Atmosphere) cloud chamber measurements under water subsaturated conditions that were realized by continuously changing temperature (T) and relative humidity with respect to ice (RHice) in the chamber. Our measurements showed several different pathways to nucleate ice depending on T and RHice conditions. For instance, almost independent freezing was observed at -60 ?C < T < -50 ?C, where RHice explicitly controlled ice nucleation efficiency, while both T and RHice played roles in other two T regimes: -78 ?C < T < -60 ?C and -50 ?C < T < -36 ?C. More specifically, observations at T colder than -60 ?C revealed that higher RHice was necessary to maintain constant ns, whereas T may have played a significant role in ice nucleation at T warmer than -50 ?C. We implemented new ns parameterizations into two cloud models to investigate its sensitivity and compare with the existing ice nucleation schemes towards simulating cirrus cloud properties. Our results show that the new AIDA-based parameterizations lead to an order of magnitude higher ice crystal concentrations and inhibition of homogeneous nucleation in colder temperature regions. Our cloud simulation results suggest that atmospheric dust particles that form ice nuclei at lower temperatures, below -36 ?C, can potentially have stronger influence on cloud properties such as cloud longevity and initiation when compared to previous parameterizations.

  6. Analytical Chemistry Laboratory. Progress report for FY 1996

    SciTech Connect (OSTI)

    Green, D.W.; Boparai, A.S.; Bowers, D.L.

    1996-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1996. This annual report is the thirteenth for the ACL. It describes effort on continuing and new projects and contributions of the ACL staff to various programs at ANL. The ACL operates in the ANL system as a full-cost-recovery service center, but has a mission that includes a complementary research and development component: The Analytical Chemistry Laboratory will provide high-quality, cost-effective chemical analysis and related technical support to solve research problems of our clients -- Argonne National Laboratory, the Department of Energy, and others -- and will conduct world-class research and development in analytical chemistry and its applications. Because of the diversity of research and development work at ANL, the ACL handles a wide range of analytical chemistry problems. Some routine or standard analyses are done, but the ACL usually works with commercial laboratories if our clients require high-volume, production-type analyses. It is common for ANL programs to generate unique problems that require significant development of methods and adaption of techniques to obtain useful analytical data. Thus, much of the support work done by the ACL is very similar to our applied analytical chemistry research.

  7. Historical Doses from Tritiated Water and Tritiated Hydrogen Gas Released to the Atmosphere from Lawrence Livermore National Laboratory (LLNL). Part 5. Accidental Releases

    SciTech Connect (OSTI)

    Peterson, S

    2007-08-15

    Over the course of fifty-three years, LLNL had six acute releases of tritiated hydrogen gas (HT) and one acute release of tritiated water vapor (HTO) that were too large relative to the annual releases to be included as part of the annual releases from normal operations detailed in Parts 3 and 4 of the Tritium Dose Reconstruction (TDR). Sandia National Laboratories/California (SNL/CA) had one such release of HT and one of HTO. Doses to the maximally exposed individual (MEI) for these accidents have been modeled using an equation derived from the time-dependent tritium model, UFOTRI, and parameter values based on expert judgment. All of these acute releases are described in this report. Doses that could not have been exceeded from the large HT releases of 1965 and 1970 were calculated to be 43 {micro}Sv (4.3 mrem) and 120 {micro}Sv (12 mrem) to an adult, respectively. Two published sets of dose predictions for the accidental HT release in 1970 are compared with the dose predictions of this TDR. The highest predicted dose was for an acute release of HTO in 1954. For this release, the dose that could not have been exceeded was estimated to have been 2 mSv (200 mrem), although, because of the high uncertainty about the predictions, the likely dose may have been as low as 360 {micro}Sv (36 mrem) or less. The estimated maximum exposures from the accidental releases were such that no adverse health effects would be expected. Appendix A lists all accidents and large routine puff releases that have occurred at LLNL and SNL/CA between 1953 and 2005. Appendix B describes the processes unique to tritium that must be modeled after an acute release, some of the time-dependent tritium models being used today, and the results of tests of these models.

  8. Atmospheric evolution on Venus Bruce Fegley, Jr.

    E-Print Network [OSTI]

    1 Atmospheric evolution on Venus Bruce Fegley, Jr. Planetary Chemistry Laboratory Department by Hunten et al. (1983), of Magellan results by Bougher et al. (1997), and atmospheric chemistry on Venus and Ancient Environments Edited by Vivien Gornitz January 2004 #12;2 ATMOSPHERIC EVOLUTION ON VENUS Overview

  9. Atmospheric Neutrinos

    E-Print Network [OSTI]

    Thomas K. Gaisser

    2006-12-11

    This paper is a brief overview of the theory and experimental data of atmospheric neutrino production at the fiftieth anniversary of the experimental discovery of neutrinos.

  10. Atmospheric and Climate Science | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagneticInexpensive 2-Nek5000 |ER-ARM-0403 3

  11. NREL: Process Development and Integration Laboratory - Atmospheric

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatial Toolkit TheCompetitiveMattPhoto of WilliamProcessing

  12. Profiling atmospheric aerosols | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgramExemptions | NationalProcurementwork up forJackProbability

  13. LABORATORY SAFETY CHECKLIST LABORATORY: DATE

    E-Print Network [OSTI]

    Fleming, Andrew J.

    LABORATORY SAFETY CHECKLIST LABORATORY: DATE: RESPONSIBLE OFFICER: INSPECTION BY: Boxes/A indicates the item does not apply to this laboratory. 1 HAZARD IDENTIFICATION /x/NA Comments 1 in the laboratory? 1.2 Are current copies available of: (a) permits for notifiable or prohibited carcinogens, (b

  14. Real-time state estimation of laboratory flows

    E-Print Network [OSTI]

    Stransky, Scott (Scott M.)

    2007-01-01

    In this project, we use a real time computer model to simulate a differentially heated laboratory annulus. The laboratory annulus allows us to study chaotic flows typical of the atmosphere. Our objective is to bring the ...

  15. Phase Transitions of Aqueous Atmospheric Particles Scot T. Martin*

    E-Print Network [OSTI]

    Transformations of Polar Stratospheric Cloud Particles," in 1995-1996 at MIT in Atmospheric Chemistry. He was an Assistant Professor in Aquatic and Atmospheric Chemistry in the Department of Environmental Sciences and Engineers in the Atmospheric Chemistry Program). His laboratory research group is currently active in two

  16. National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on the Pajarito Plateau topic of inaugural lecture at Los Alamos National Laboratory January 4, 2013 Lecture series begins yearlong commemoration of 70th anniversary LOS...

  17. Characterization of atmospheric ammonia near Fort Worth, TX Part I. Dynamics of gaseous ammonia

    E-Print Network [OSTI]

    Hampshire, Durham, NH, USA 7 Earth and Sun Systems Laboratory, Atmospheric Chemistry Division, National of the region. The dynamic behavior of NH319 highlights its importance in atmospheric chemistry and indicates (NH3) plays a significant role in atmospheric2 chemistry. It is emitted into the atmosphere from

  18. Investigating the Impacts of Atmospheric Aerosols on Cloud Formation Relevant to Weather and Climate 

    E-Print Network [OSTI]

    Mckeown, Megan Alexandra

    2014-12-10

    on weather, climate, visibility, air quality, and human health. In this project, the impacts of aerosols on cloud formation potential in the atmosphere have been assessed using several laboratory experimental approaches. To study the effects of atmospheric...

  19. Visgraf Laboratory IMPA Visgraf Laboratory IMPA

    E-Print Network [OSTI]

    de Figueiredo, Luiz Henrique

    1 Visgraf Laboratory ­ IMPA Visgraf Laboratory ­ IMPA Visgraf Laboratory ­ IMPA CNMAC 99 CNMAC 99 jonas@impa.br @impa.br Visgraf Laboratory ­ IMPA Visgraf Laboratory ­ IMPA Rio de Janeiro Rio de Janeiro www.visgraf.impa.br www.visgraf.impa.br Visgraf Laboratory ­ IMPA Visgraf Laboratory ­ IMPA Visgraf

  20. Ames Laboratory Argonne National Laboratory

    E-Print Network [OSTI]

    that advance knowl- edge and provide the foundation for American innovation. From unlocking atomic energy's electric vehicles, solar panels, and wind turbines, the National Labs have pushed the boundaries Energy Technology Laboratory Morgantown, West Virginia Pittsburgh, Pennsylvania Albany, Oregon National

  1. EE 448 Laboratory Preface Laboratory Introduction

    E-Print Network [OSTI]

    Kumar, Ratnesh

    EE 448 Laboratory Preface Laboratory Introduction -1- EE 448 Preface 2/26/2007 Laboratory Introduction #12;EE 448 Laboratory Preface Laboratory Introduction -2- I. INTRODUCTION The electric machinery laboratory provides students with the opportunity to examine and experiment with different types

  2. Laboratory 12 Control Systems Laboratory ECE3557 Laboratory 12

    E-Print Network [OSTI]

    Laboratory 12 Control Systems Laboratory ECE3557 Laboratory 12 State Feedback Controller for Position Control of a Flexible Link 12.1 Objective The objective of this laboratory is to design a full of the combined system (i.e., servomotor and flexible link) introduced in the Laboratory 9 (refer to [1

  3. Laboratory 10 Control Systems Laboratory ECE3557 Laboratory 10

    E-Print Network [OSTI]

    Laboratory 10 Control Systems Laboratory ECE3557 Laboratory 10 State Feedback Controller for Position Control of a DC Servo 10.1 Objective The objective of this laboratory is to position the gears, we will use the state space model of the DC servo introduced in the laboratory 3 (refer to [1

  4. Laboratory Director

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse Bergkamp Graduate studentScience (SC) Directed ResearchLaboratory

  5. Donner Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratory |Sector Full reportTown2008Donald Raby Donald_ -

  6. Atmospheric Transport of Radionuclides

    SciTech Connect (OSTI)

    Crawford, T.V.

    2003-03-03

    The purpose of atmospheric transport and diffusion calculations is to provide estimates of concentration and surface deposition from routine and accidental releases of pollutants to the atmosphere. This paper discusses this topic.

  7. Atmospheric chemistry and global change

    E-Print Network [OSTI]

    Prather, MJ

    1999-01-01

    and particles. Thus Atmospheric Chemistry and Global Changethe future of atmospheric chemistry. BROWSINGS Tornadothe complexity of atmospheric chemistry well, but trips a

  8. Tribology Laboratory | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAbout / TransformingTransuranic SolicitationTribology Laboratory

  9. Laboratory Activities

    SciTech Connect (OSTI)

    Brown, Christopher F.; Serne, R. Jeffrey

    2008-01-17

    This chapter summarizes the laboratory activities performed by PNNL’s Vadose Zone Characterization Project in support of the Tank Farm Vadose Zone Program, led by CH2M HILL Hanford Group, Inc. The results of these studies are contained in numerous reports (Lindenmeier et al. 2002; Serne et al. 2002a, 2002b, 2002c, 2002d, 2002e; Lindenmeier et al. 2003; Serne et al. 2004a, 2004b; Brown et al. 2005, 2006a, 2007; Serne et al. 2007) and have generated much of the data reported in Chapter 22 (Geochemistry-Contaminant Movement), Appendix G (Geochemistry-Contaminant Movement), and Cantrell et al. (2007, SST WMA Geochemistry Data Package – in preparation). Sediment samples and characterization results from PNNL’s Vadose Zone Characterization Project are also shared with other science and technology (S&T) research projects, such as those summarized in Chapter 12 (Associated Science Activities).

  10. Laboratory 11 Control Systems Laboratory ECE3557 Laboratory 11

    E-Print Network [OSTI]

    for Position Control of a Flexible Joint 11.1 Objective The objective of this laboratory is to design a full in this laboratory is illustrated. For this laboratory, the servo is used in the high gear ratio configuration (refer = 2.6 · Km: one of the motor torque constants. Km = 0.00767 · Kg: gear ratio of the motor

  11. Atmospheric Neutrino Fluxes

    E-Print Network [OSTI]

    Thomas K. Gaisser

    2005-02-18

    Starting with an historical review, I summarize the status of calculations of the flux of atmospheric neutrinos and how they compare to measurements.

  12. Atmospheric Pressure Plasma Process And Applications

    SciTech Connect (OSTI)

    Peter C. Kong; Myrtle

    2006-09-01

    This paper provides a general discussion of atmospheric-pressure plasma generation, processes, and applications. There are two distinct categories of atmospheric-pressure plasmas: thermal and nonthermal. Thermal atmospheric-pressure plasmas include those produced in high intensity arcs, plasma torches, or in high intensity, high frequency discharges. Although nonthermal plasmas are at room temperatures, they are extremely effective in producing activated species, e.g., free radicals and excited state atoms. Thus, both thermal and nonthermal atmosphericpressure plasmas are finding applications in a wide variety of industrial processes, e.g. waste destruction, material recovery, extractive metallurgy, powder synthesis, and energy conversion. A brief discussion of recent plasma technology research and development activities at the Idaho National Laboratory is included.

  13. The Atmosphere as a Laboratory: Aerosols, Air Quality, and Climate |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired Solar FuelTechnologyTel: Name: Rm. Tel:Test1The Ames ProjectPrinceton

  14. Oceanography and Atmospheric Sciences

    E-Print Network [OSTI]

    Kurapov, Alexander

    Oceanography and Atmospheric Sciences 1959­2009 WayneBurt. #12;Oceanography and Atmospheric in Oceanography (TENOC). Wayne Burt immediately responds with proposal to President Strand of Oregon State College to start a graduate Department of Oceanography. 1959 Oregon State Board of Higher Education approves

  15. SHIPBOARD LABORATORY SAFETY PROGRAM

    E-Print Network [OSTI]

    SHIPBOARD LABORATORY SAFETY PROGRAM INTEGRATED OCEAN DRILLING PROGRAM U.S. IMPLEMENTING ORGANIZATION AUGUST 2013 #12;IODP Shipboard Laboratory Safety: Introduction 2 CONTENTS Introduction ................................................................................................................................6 TAMU EHSD: Laboratory Safety Manual

  16. Commercial Fisheries Biological Laboratory

    E-Print Network [OSTI]

    Bureau of Commercial Fisheries Biological Laboratory Oxford, Maryland #12;Chart of the Tred Avon River, showing the location of the BCF Biological Laboratory and the orientation of this area modern laboratories for chem- ical, histological, microbiological, and physiological re- search

  17. LABORATORY SAFETY October 2012

    E-Print Network [OSTI]

    Chan, Hue Sun

    of the program are: 1) the adherence to appropriate design criteria when designing and constructing a laboratoryLABORATORY SAFETY PROGRAM October 2012 #12;OUTLINE 1.0 INTRODUCTION AND SCOPE ...................................................................................................................................6 4.0 LABORATORY DESIGN, CONSTRUCTION, DECOMMISSIONING

  18. Carbonyl sulfide: potential agent of atmospheric sulfur corrosion

    SciTech Connect (OSTI)

    Graedel, T.E.; Kammlott, G.W.; Franey, J.P.

    1981-05-08

    Laboratory exposure experiments demonstrate that carbonyl sulfide in wet air corrodes copper at 22/sup 0/C at a rate that is approximately linear with total exposure (the product of exposure time and carbonyl sulfide concentration). The corrosion rate is similar to that of hydrogen sulfide, a widely recognized corrodant. The much greater average atmospheric abundance of carbonyl sulfide compared with that of hydrogen sulfide or sulfur dioxide suggests that carbonyl sulfide may be a major agent of atmospheric sulfur corrosion.

  19. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    associate director for Environmental Programs at the Laboratory. This is the fifth master task order agreement the Laboratory has issued in the past two years to support...

  20. Ensemble Atmospheric Dispersion Modeling

    SciTech Connect (OSTI)

    Addis, R.P.

    2002-06-24

    Prognostic atmospheric dispersion models are used to generate consequence assessments, which assist decision-makers in the event of a release from a nuclear facility. Differences in the forecast wind fields generated by various meteorological agencies, differences in the transport and diffusion models, as well as differences in the way these models treat the release source term, result in differences in the resulting plumes. Even dispersion models using the same wind fields may produce substantially different plumes. This talk will address how ensemble techniques may be used to enable atmospheric modelers to provide decision-makers with a more realistic understanding of how both the atmosphere and the models behave.

  1. Toxicity of atmospheric aerosols on marine phytoplankton

    E-Print Network [OSTI]

    2009-01-01

    address: Center for Atmospheric Chemistry Study, Departmenttween phytoplankton, atmospheric chemistry, and climate areno. 12 ? 4601– 4605 CHEMISTRY Atmospheric aerosol deposition

  2. Atmospheric optical calibration system

    DOE Patents [OSTI]

    Hulstrom, Roland L. (Bloomfield, CO); Cannon, Theodore W. (Golden, CO)

    1988-01-01

    An atmospheric optical calibration system is provided to compare actual atmospheric optical conditions to standard atmospheric optical conditions on the basis of aerosol optical depth, relative air mass, and diffuse horizontal skylight to global horizontal photon flux ratio. An indicator can show the extent to which the actual conditions vary from standard conditions. Aerosol scattering and absorption properties, diffuse horizontal skylight to global horizontal photon flux ratio, and precipitable water vapor determined on a real-time basis for optical and pressure measurements are also used to generate a computer spectral model and for correcting actual performance response of a photovoltaic device to standard atmospheric optical condition response on a real-time basis as the device is being tested in actual outdoor conditions.

  3. Atmospheric optical calibration system

    DOE Patents [OSTI]

    Hulstrom, R.L.; Cannon, T.W.

    1988-10-25

    An atmospheric optical calibration system is provided to compare actual atmospheric optical conditions to standard atmospheric optical conditions on the basis of aerosol optical depth, relative air mass, and diffuse horizontal skylight to global horizontal photon flux ratio. An indicator can show the extent to which the actual conditions vary from standard conditions. Aerosol scattering and absorption properties, diffuse horizontal skylight to global horizontal photon flux ratio, and precipitable water vapor determined on a real-time basis for optical and pressure measurements are also used to generate a computer spectral model and for correcting actual performance response of a photovoltaic device to standard atmospheric optical condition response on a real-time basis as the device is being tested in actual outdoor conditions. 7 figs.

  4. Autumn 2014 Atmospheric Circulation

    E-Print Network [OSTI]

    Doty, Sharon Lafferty

    to perform atmospheric chemistry measurements in this remote region of ubiquitous oil and gas drilling 30 days they raised $12,000, enough to support Maria's travel to Utah and to cover the costs

  5. LABORATORY II MECHANICAL OSCILLATIONS

    E-Print Network [OSTI]

    Minnesota, University of

    Lab II - 1 LABORATORY II MECHANICAL OSCILLATIONS Most of the laboratory problems so far have was constant. In this set of laboratory problems, the total force acting on an object, and thus its's oscillation frequency. OBJECTIVES: After successfully completing this laboratory, you should be able to

  6. LABORATORY IV ELECTRIC CIRCUITS

    E-Print Network [OSTI]

    Minnesota, University of

    LABORATORY IV ELECTRIC CIRCUITS Lab IV - 1 In the first laboratory, you studied the behavior of conservation. OBJECTIVES After successfully completing this laboratory, you should be able to: · Apply that you will be doing these laboratory problems before your lecturer addresses this material. The purpose

  7. LABORATORY IV CIRCULAR MOTION

    E-Print Network [OSTI]

    Minnesota, University of

    Lab IV - 1 LABORATORY IV CIRCULAR MOTION The problems in this laboratory will help you investigate. OBJECTIVES: After successfully completing this laboratory, you should be able to: · Determine Laboratories I, II, and III. Before coming to the lab you should be able to: · Determine an object

  8. National Renewable Energy Laboratory

    E-Print Network [OSTI]

    National Renewable Energy Laboratory Innovation for Our Energy Future ponsorship Format Reversed Color:White rtical Format Reversed-A ertical Format Reversed-B National Renewable Energy Laboratory National Renewable Energy Laboratory Innovation for Our Energy Future National Renewable Energy Laboratory

  9. Analytical Chemistry Laboratory | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemistry Laboratory provides a broad range of analytical chemistry support services to the scientific and engineering programs. AnalyticalChemistryLaboratoryfactsheet...

  10. Chemistry of carbonaceous aerosols : studies of atmospheric processing and OH-initiated oxidation

    E-Print Network [OSTI]

    Johnson, Kirsten S. (Kirsten Sue)

    2008-01-01

    Carbonaceous aerosols are among the most prevalent yet least understood constituents of the atmosphere, particularly in urban environments. We have performed analyses of field samples and laboratory studies to probe the ...

  11. AFFILIATIONS: Mass and Baars--Department of Atmospheric Sciences, University of Washington, Seattle, Washington; Joslyn--

    E-Print Network [OSTI]

    Raftery, Adrian

    AFFILIATIONS: Mass and Baars--Department of Atmospheric Sciences, University of Washington, Seattle, Washington; Joslyn-- Department of Psychology, University of Washington, Seattle, Washington; Pyle, Tewson, Jones--Applied Physics Laboratory, University of Washington, Seattle, Washington; GneiTinG, raf

  12. 13, 1479714822, 2013 Atmospheric waves

    E-Print Network [OSTI]

    Lovejoy, Shaun

    .5194/acpd-13-14797-2013 © Author(s) 2013. CC Attribution 3.0 License. Sciences ss Atmospheric Chemistry and Physics OpenAccess Atmospheric Chemistry and Physics OpenAccess Discussions Atmospheric Measurement s Discussions This discussion paper is/has been under review for the journal Atmospheric Chemistry and Physics

  13. The middle Martian atmosphere

    SciTech Connect (OSTI)

    Jaquin, R.F.

    1989-01-01

    Profiles of scattered light above the planetary limb from 116 Viking Orbiter images are used to constrain the temporal and spatial behavior of aerosols suspended in the Martian atmosphere. The data cover a wide range of seasons, locations, and viewing geometry, providing information about the aerosol optical properties and vertical distribution. The typical atmospheric column contains one or more discrete, optically thin, ice-like haze layers between 30 and 90 km elevation whose composition is inferred to be water ice. Below the detached hazes, a continuous haze, interpreted to have a large dust component, extends from as much as 50 km to the surface. The haze distribution exhibits an annual variation that reflects a seasonally driven circulation in the middle atmosphere. The potential role of stationary gravity waves in modifying the middle atmosphere circulation is explored using a linear theory applied to a realistic Martian environment. Martian topography derived from radar observations is decomposed into Fourier harmonics and used to linearly superpose gravity waves arising from each component. The larger amplitude topography on Mars combined with the absence of extended regions of smooth topography like oceans generates larger wave amplitudes than on the Earth. The circulation of the middle atmosphere is examined using a two-dimensional, linearized, axisymmetric model successfully employed in the study of the terrestrial mesosphere. Illustrations of temperature and wind speeds are presented for the southern summer solstice and southern spring equinox.

  14. Connectivity to National Atmospheric Release Advisory Center (NARAC)

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-08-11

    To establish requirements for connectivity with the National Atmospheric Release Advisory Center (NARAC) at Lawrence Livermore National Laboratory for all DOE and NNSA sites and facilities with potential for hazardous materials releases at levels that require emergency response. The requirements of this Notice have been incorporated into DOE O 151.1C, Comprehensive Emergency Management System, dated 11-2-05. No cancellations.

  15. Lesson Summary Students will use models of Earth's atmosphere

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    to Do Scientific Inquiry Physical Science Transfer of Energy Earth and Space Science Structure the greenhouse from the captured solar energy. Certain gases in Earth's atmosphere ­ especially water vapor by storing and releasing energy from the sun. Materials: Large pickle jars, smaller jelly jar, laboratory

  16. Performance of the STACEE Atmospheric Cherenkov Telescope

    E-Print Network [OSTI]

    STACEE Collaboration; D. A. Williams; D. Bhattacharya; L. M. Boone; M. C. Chantell; Z. Conner; C. E. Covault; M. Dragovan; P. Fortin; D. Gingrich; D. T. Gregorich; D. S. Hanna; G. Mohanty; R. Mukherjee; R. A. Ong; S. Oser; K. Ragan; R. A. Scalzo; D. R. Schuette; C. G. Theoret; T. O. Tumer; F. Vincent; J. A. Zweerink

    2000-10-17

    The Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) is located at the National Solar Thermal Test Facility of Sandia National Laboratories in Albuquerque, New Mexico, USA. The field of solar tracking mirrors (heliostats) around a central receiver tower is used to direct Cherenkov light from atmospheric showers onto secondary mirrors on the tower, which in turn image the light onto cameras of photomultiplier tubes. The STACEE Collaboration has previously reported a detection of the Crab Nebula with approximately 7 standard deviation significance, using 32 heliostats (STACEE-32). This result demonstrates both the viability of the technique and the suitability of the site. We are in the process of completing an upgrade to 48 heliostats (STACEE-48) en route to an eventual configuration using 64 heliostats (STACEE-64) in early 2001. In this paper, we summarize the results obtained on the sensitivity of STACEE-32 and our expectations for STACEE-48 and STACEE-64.

  17. Observations of Exoplanet Atmospheres

    E-Print Network [OSTI]

    Crossfield, Ian J M

    2015-01-01

    Detailed characterization of an extrasolar planet's atmosphere provides the best hope for distinguishing the makeup of its outer layers, and the only hope for understanding the interplay between initial composition, chemistry, dynamics & circulation, and disequilibrium processes. In recent years, some areas have seen rapid progress while developments in others have come more slowly and/or have been hotly contested. This article gives an observer's perspective on the current understanding of extrasolar planet atmospheres prior to the considerable advances expected from the next generation of observing facilities. Atmospheric processes of both transiting and directly-imaged planets are discussed, including molecular and atomic abundances, cloud properties, thermal structure, and planetary energy budgets. In the future we can expect a continuing and accelerating stream of new discoveries, which will fuel the ongoing exoplanet revolution for many years to come.

  18. Final Technical Report for earmark project "Atmospheric Science Program at the University of Louisville"

    SciTech Connect (OSTI)

    Dowling, Timothy Edward [University of Louisville

    2014-02-11

    We have completed a 3-year project to enhance the atmospheric science program at the University of Louisville, KY (est. 2008). The goals were to complete an undergraduate atmospheric science laboratory (Year 1) and to hire and support an assistant professor (Years 2 and 3). Both these goals were met on schedule, and slightly under budget.

  19. Princeton Plasma Physics Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Physics Laboratory P.O. Box 451 Princeton, NJ 08543-0451 GPS: 100 Stellarator Road Princeton, NJ 08540 www.pppl.gov 2015 Princeton Plasma Physics Laboratory. A...

  20. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    focused, interdisciplinary research effort to better understand human disease at the cellular level," said Laboratory Director Michael Anastasio. "Integrating measurements,...

  1. Autumn 2012 Atmospheric Circulation

    E-Print Network [OSTI]

    Doty, Sharon Lafferty

    wind, and accumulated precipitation at a designated city. Forecasts are made over a two-week period Department 1 The UW Atmospheric Sciences spring forecast contest has been an annual tradition there will be a marine push or a convergence zone wrecking their forecast for maximum temperature and precipitation

  2. ATMOSPHERIC CHEMISTRY AND PHYSICS

    E-Print Network [OSTI]

    Brandenburg, Axel

    of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com. Library of Congress Cataloging components of the atmosphere, nitrogen, oxygen, water, carbon dioxide, and the noble gases. In the late

  3. LABORATORY VI ROTATIONAL DYNAMICS

    E-Print Network [OSTI]

    Minnesota, University of

    Lab VI - 1 LABORATORY VI ROTATIONAL DYNAMICS So far this semester, you have been asked to think kinematics. OBJECTIVES: Successfully completing this laboratory should enable you to: · Use linear kinematics in a laboratory on earth, before launching the satellite. EQUIPMENT You will use an apparatus that spins

  4. LABORATORY V ELECTRIC CIRCUITS

    E-Print Network [OSTI]

    Minnesota, University of

    Lab V -1 LABORATORY V ELECTRIC CIRCUITS Electrical devices are the cornerstones of our modern world understanding of them. In the previous laboratory, you studied the behavior of electric fields and their effect successfully completing this laboratory, you should be able to: · apply the concept of circuit to any

  5. Interpretation Intelligent Systems Laboratory

    E-Print Network [OSTI]

    Ward, Koren

    1 TENS Text Interpretation Intelligent Systems Laboratory University of Wollongong TENS Text and delivering the text data to the user by electrically stimulating the fingers. Intelligent Systems Laboratory ­ University of Wollongong #12;2 The TENS Unit Intelligent Systems Laboratory ­ University of Wollongong

  6. OXFORD UNIVERSITY COMPUTING LABORATORY

    E-Print Network [OSTI]

    OXFORD UNIVERSITY COMPUTING LABORATORY The Expressive Power of Binary Submodular Functions Stanislav Zivn´y, David Cohen, Peter Jeavons Computing Laboratory, University of Oxford Rutgers, 22 January LABORATORY Problem Which submodular polynomials can be expressed by (or decomposed into) quadratic submodular

  7. Division of Laboratory Sciences

    E-Print Network [OSTI]

    #12;#12;Division of Laboratory Sciences U.S. Department of Health and Human Services Centers and Prevention National Center for Environmental Health Division of Laboratory Sciences Atlanta, Georgia 30341 at the Centers for Disease Control and Prevention's (CDC's) Division of Laboratory Sciences have lots

  8. LABORATORY IV OSCILLATIONS

    E-Print Network [OSTI]

    Minnesota, University of

    LABORATORY IV OSCILLATIONS Lab IV ­ 1 You are familiar with many objects that oscillate this laboratory, you should be able to: · Provide a qualitative explanation of the behavior of oscillating systems some of these laboratory problems before your lecturer addresses this material. It is very important

  9. LABORATORY NEW HIRE NOTICE: LABORATORY DELAYED OPENING OR CLOSURE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LABORATORY NEW HIRE NOTICE: LABORATORY DELAYED OPENING OR CLOSURE DUE TO INCLEAMENT WEATHER During the winter months, the Los Alamos National Laboratory (LANL) may at times...

  10. Going green earns Laboratory gold

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Going green earns Laboratory gold Going green earns Laboratory gold The Laboratory's newest facility is its first to achieve both the Leadership in Energy and Environmental Design...

  11. Differential atmospheric tritium sampler

    DOE Patents [OSTI]

    Griesbach, O.A.; Stencel, J.R.

    1987-10-02

    An atmospheric tritium sampler is provided which uses a carrier gas comprised of hydrogen gas and a diluting gas, mixed in a nonexplosive concentration. Sample air and carrier gas are drawn into and mixed in a manifold. A regulator meters the carrier gas flow to the manifold. The air sample/carrier gas mixture is pulled through a first moisture trap which adsorbs water from the air sample. The moisture then passes through a combustion chamber where hydrogen gas in the form of H/sub 2/ or HT is combusted into water. The manufactured water is transported by the air stream to a second moisture trap where it is adsorbed. The air is then discharged back into the atmosphere by means of a pump.

  12. ECSI 322 Oceanography Laboratory -Manual 1 ESCI 322 -Oceanography Laboratory

    E-Print Network [OSTI]

    Shull, David H.

    ECSI 322 ­ Oceanography Laboratory - Manual 1 ESCI 322 - Oceanography Laboratory Laboratory Manual ­ Oceanography Laboratory - Manual 2 ESCI 322 - Introduction to Oceanography Laboratory Course Syllabus- 78-79 C+ 73-77 C 69-72C- 67-68 D+ 61-66 D 57-60 D- 0-56 F #12;ECSI 322 ­ Oceanography Laboratory

  13. Atmospheric Chemistry Theodore S. Dibble

    E-Print Network [OSTI]

    Dibble, Theodore

    SYLLABUS FOR Atmospheric Chemistry FCH 511 Fall 2014 Theodore S. Dibble Professor of Chemistry 421 in Required Text Seinfeld, J. H. and Pandis, S. N. Atmospheric Chemistry and Physics: From Air Pollution nineteenth year at ESF, and my seventeenth year teaching FCH 511 (Atmospheric Chemistry). I have done a lot

  14. GREAT LAKES ENVIRONMENTAL RESEARCH LABORATORY

    E-Print Network [OSTI]

    #12;GREAT LAKES ENVIRONMENTAL RESEARCH LABORATORY ANNUAL REPORT FY 1977 October 1977 Eugene J Research Laboratories Great Lakes Environmental Research Laboratory 2300 Washtenaw Avenue Ann Arbor, Michigan 48104. #12;NOTICE The NOAA Environmental Research Laboratories do not approve, recommend

  15. GREAT LAKES ENVIRONMENTAL RESEARCH LABORATORY

    E-Print Network [OSTI]

    #12;GREAT LAKES ENVIRONMENTAL RESEARCH LABORATORY ANNUAL REPORT FY 1978 October 1978 Eugene J of Research and Development Environmental Research Laboratories Great Lakes Environmental Research Laboratory 2300 Washtenaw Avenue Ann Arbor, Michigan 48104 #12;NOTICE The NOAA Environmental Research Laboratories

  16. Chemistry 2B Laboratory Manual

    E-Print Network [OSTI]

    Guo, Ting

    Chemistry 2B Laboratory Manual Standard Operating Procedures Department of Chemistry University # ____________ Laboratory Information Teaching Assistant's Name _______________________ Laboratory Section Number _______________________ Laboratory Room Number _______________________ Dispensary Room Number 1060 Sciences Lab Building Location

  17. AEROSPACE LABORATORY GENERAL INFORMATION MANUAL

    E-Print Network [OSTI]

    Prodiæ, Aleksandar

    AEROSPACE LABORATORY GENERAL INFORMATION MANUAL 1. Introduction 2. Laboratory Format 3. Recommended Guidelines for Experiment Reports 4. Laboratory Notebooks 5. Report Marking Procedures 6. Course Mark compared to the systems you will find in the Undergraduate Laboratory. Typically, experimental setups

  18. Chemistry 2A Laboratory Manual

    E-Print Network [OSTI]

    Guo, Ting

    Chemistry 2A Laboratory Manual Standard Operating Procedures Department of Chemistry University # ____________ Laboratory Information Teaching Assistant's Name _______________________ Laboratory Section Number _______________________ Laboratory Room Number _______________________ Dispensary Room Number 1060 Sciences Lab Building Location

  19. Atlantic Oceanographic and Meteorological Laboratory

    E-Print Network [OSTI]

    Atlantic Oceanographic and Meteorological Laboratory AOML is an environmental research laboratory Laboratory conducts research that seeks to understand the physical, chemical, and biological characteristics;Organizational Structure The Atlantic Oceanographic and Meteorological Laboratory (AOML) fits within

  20. Chemistry 2C Laboratory Manual

    E-Print Network [OSTI]

    Guo, Ting

    Chemistry 2C Laboratory Manual Standard Operating Procedures Department of Chemistry University # ____________ Laboratory Information Teaching Assistant's Name _______________________ Laboratory Section Number _______________________ Laboratory Room Number _______________________ Dispensary Room Number 1060 Sciences Lab Building Location

  1. Study of atmospheric pollution scavenging. [Annotated bibligraphy

    SciTech Connect (OSTI)

    Williams, A.L.

    1990-08-01

    Atmospheric scavenging research conducted by the Illinois State Water Survey under contract with the Department of Energy has been a significant factor in the historical development of the field of precipitation scavenging. Emphasis of the work during the 1980's became focused on the problem of acid rain problem with the Survey being chosen as the Central Analytical Laboratory for sample analysis of the National Atmospheric Deposition Program National Trends Network (NADP/NTN). The DOE research was responsible for laying the groundwork from the standpoint of sampling and chemical analysis that has now become routine features of NADP/NTN. A significant aspect of the research has been the participation by the Water Survey in the MAP3S precipitation sampling network which is totally supported by DOE, is the longest continuous precipitation sampling network in existence, and maintains an event sampling protocol. The following review consists of a short description of each of the papers appearing in the Study of Atmospheric Scavenging progress reports starting with the Eighteenth Progress Report in 1980 to the Twenty- Third Progress Report in 1989. In addition a listing of the significant publications and interviews associated with the program are given in the bibliography.

  2. Lifetimes and eigenstates in atmospheric chemistry

    E-Print Network [OSTI]

    Prather, Michael J

    1994-01-01

    Perturbation dynamics in atmospheric chemistry. J. Geophys.isotopic variations in atmospheric chemistry. Geophys. Res.M. et al. 2001 Atmospheric chemistry and greenhouse gases (

  3. Atmospheric chemistry of an Antarctic volcanic plume

    E-Print Network [OSTI]

    2010-01-01

    L. , et al. (2010), Atmospheric chemistry results from theI. , et al. (2006), Atmospheric chemistry of a 33 – 34 hourvolcanic eruptions on atmospheric chemistry, Chem. Geol. ,

  4. Los Alamos National Laboratory ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    guy" and "a very hard worker." Fanelli began his college education in his native Argentina. By 2005, he was stationed at the National High Magnetic Field Laboratory...

  5. morhaley | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    morhaley Ames Laboratory Profile Haley Morris Office Assistant-X Human Resources Office Environmental, Safety, Health, and Assuarance 105 TASF Phone Number: 515-294-2153 Email...

  6. mmorris | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mmorris Ames Laboratory Profile Max Morris Associate Environmental & Protective Sciences 304A Snedecor Phone Number: 515-294-2775 Email Address: mmorris...

  7. National Laboratory Geothermal Publications

    Broader source: Energy.gov [DOE]

    You can find publications, including technical papers and reports, about geothermal technologies, research, and development at the following U.S. Department of Energy national laboratories.

  8. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for the Laboratory's Environmental Programs directorate and includes work such as environmental engineering design, regulatory support, risk assessment and reporting. - 2 -...

  9. shrotriy | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    shrotriy Ames Laboratory Profile Pranav Shrotriya Associate Environmental & Protective Sciences 2026 Black Engineering Phone Number: 515-294-9719 Email Address: shrotriy...

  10. olafsson | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    olafsson Ames Laboratory Profile Sigurdur Olafsson Associate Environmental & Protective Sciences 3004 Black Engineering Phone Number: 515-294-8908 Email Address: olafsson...

  11. matheneyl | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    matheneyl Ames Laboratory Profile Lindsey Matheney Associate Environmental & Protective Sciences 1095 Black Engineering Phone Number: 515-294-2069 Email Address: matheneyl...

  12. nastaran | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nastaran Ames Laboratory Profile Nastaran Hashemi Associate Environmental & Protective Sciences 2028 Black Engineering Phone Number: 515-294-2877 Email Address: nastaran...

  13. bkl | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bkl Ames Laboratory Profile Barbara Lograsso Associate Environmental & Protective Sciences 2064 Black Engineering Phone Number: 515-294-0380 Email Address: bklogras@iastate.edu...

  14. paytong | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    paytong Ames Laboratory Profile Payton Goodrich Associate Environmental & Protective Sciences 1095 Black Engineering Phone Number: 515-294-2069 Email Address: paytong...

  15. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lawrence Livermore National Laboratory's weapon-physicist Greg Spriggs, leader of the Film Scanning and Reanalysis Project, the work has become a search-and-rescue mission. He...

  16. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3, 2015 Projects save taxpayer dollars, promote environmental stewardship, sustainability LOS ALAMOS, N.M., April 22, 2015-Nearly 400 Los Alamos National Laboratory employees on 32...

  17. Northwest National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    senior author and Laboratory Fellow. The feat is the bacterial equivalent of removing lungs and coaxing the disembodied tissue to breathe. Bio-cells use enzymes to oxidize...

  18. National Laboratory Photovoltaics Research

    Broader source: Energy.gov [DOE]

    DOE supports photovoltaic (PV) research and development and facilities at its national laboratories to accelerate progress toward achieving the SunShot Initiative's technological and economic...

  19. marit | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Honors & Awards: AAAS Fellow, 2007 Regents Award for Faculty Excellence, 2003 Inventor Incentive Award, Ames Laboratory, 2002 Iowa Regents Faculty Citation Award, 2000...

  20. NOAA/Mote Marine Laboratory Joint Publication NOAA Technical Memorandum NOS NCCOS CCMA 168

    E-Print Network [OSTI]

    . Y. Cantillo NOAA National Ocean Service E. Collins NOAA Central Library S. Stover and K. Hale Mote Mote Marine Laboratory National Oceanic and Atmospheric Administration Sarasota, FL Silver Spring, MD National Oceanic and Department of Commerce Atmospheric Administration National Ocean Service Donald L

  1. The Women of Idaho National Laboratory's Space Nuclear Team

    Broader source: Energy.gov [DOE]

    The women of the Space Nuclear program at Idaho National Laboratory consider their work both demanding and enormously rewarding, operating in a high-stakes atmosphere. Read about the women who work in this program and get their insights about their careers.

  2. Visible and near infrared reflectances measured from laboratory ice clouds

    E-Print Network [OSTI]

    Liou, K. N.

    ,aswellasuncertaintiesin data, validation by means of the independent in situ airborne and ground-based measurements that are co. Liou Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles the measured ice particle morphology. We demonstrate that laboratory scat- tering and reflectance data for thin

  3. SUNITA PAYRA VERMA Jet Propulsion Laboratory, California Institute of Technology

    E-Print Network [OSTI]

    Associate · In project entitled "Scale up to obtain super clean coal - Organo-refining and identification1 SUNITA PAYRA VERMA Jet Propulsion Laboratory, California Institute of Technology M/S 183 2001- 2005 Centre for Atmospheric Sciences Indian Institute of Technology Delhi (IIT Delhi), India

  4. Geophysical Fluid Dynamics Laboratory Review May 20 May 22, 2014

    E-Print Network [OSTI]

    Laboratory Review May 20-22, 2014 AM3 (observed SST and Sea Ice) Captures Observations 3 Naik et al. JGR) @ 550 nm AM3 captures the observed zonal mean O3 to within ± 4 ppbv in much of the troposphere AM3 Nitrogen & Sulfur Deposition · Dominant atmospheric oxidizing agent abundance and lifetime of radiatively

  5. ARM - Atmospheric Heat Budget

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.TheoryTuesday, August 10, 20102016Study (CHAPS)Archive CampaignListAtmospheric Heat

  6. ARM - Atmospheric Pressure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.TheoryTuesday, August 10, 20102016Study (CHAPS)Archive CampaignListAtmospheric

  7. Atmospheric PSF Interpolation

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnical Report:Speeding accessby a contractor ofvarDOE PAGES11 PPPL-Atmospheric PSF

  8. APPALACHIAN LABORATORY CHESAPEAKE BIOLOGICAL LABORATORY HORN POINT LABORATORY AN INSTITUTION OF THE UNIVERSITY SYSTEM OF MARYLAND

    E-Print Network [OSTI]

    Boynton, Walter R.

    APPALACHIAN LABORATORY CHESAPEAKE BIOLOGICAL LABORATORY HORN POINT LABORATORY AN INSTITUTION. of Budget and Management Please fax this form to: 410-333-7122 UMCES Agency #12;APPALACHIAN LABORATORY CHESAPEAKE BIOLOGICAL LABORATORY HORN POINT LABORATORY AN INSTITUTION OF THE UNIVERSITY SYSTEM OF MARYLAND

  9. Reservoir Characterization Research Laboratory

    E-Print Network [OSTI]

    Texas at Austin, University of

    Reservoir Characterization Research Laboratory for Carbonate Studies Executive Summary for 2014 Outcrop and Subsurface Characterization of Carbonate Reservoirs for Improved Recovery of Remaining/Al 0.00 0.02 0.04 Eagle Ford Fm #12;#12; Reservoir Characterization Research Laboratory Research Plans

  10. LABORATORY I: GEOMETRIC OPTICS

    E-Print Network [OSTI]

    Minnesota, University of

    Lab I - 1 LABORATORY I: GEOMETRIC OPTICS In this lab, you will solve several problems related to the formation of optical images. Most of us have a great deal of experience with the formation of optical images this laboratory, you should be able to: · Describe features of real optical systems in terms of ray diagrams

  11. Commercial Fisheries Biological Laboratory

    E-Print Network [OSTI]

    , and tidal estuaries with bottom types ranging from soft mud to hard sand and rock. The Laboratory has grown research laboratories, an experimental shell- fish hatchery, administrative offices, a combined library freezer, and quick freezer. The library is limited to publications that have a direct bearing on current

  12. "WEATHER IN A TANK" exploiting Laboratory experiments in the Teaching of

    E-Print Network [OSTI]

    Lee, Sukyoung

    "WEATHER IN A TANK" exploiting Laboratory experiments in the Teaching of meteorology, oceanography revealing midlatitude weather systems (the North Pole is in the middle) "stirring" properties between that govern atmospheric synoptic-scale weather systems. The laboratory model is a simplified system

  13. Paci c Marine Environmental Laboratory Pacific Marine Environmental Laboratory (PMEL)

    E-Print Network [OSTI]

    Paci c Marine Environmental Laboratory #12;#12;Pacific Marine Environmental Laboratory (PMEL Laboratory #12;Contents Overview of PMEL's Strategy 1 Laboratory Structure 5 PMEL Themes 7 Climate Research 8 Contents iv #12;The Pacific Marine environMenTal laboraTory (PMEL) is one of seven federal research

  14. Atmospheric sciences division. Annual report, fiscal year 1981

    SciTech Connect (OSTI)

    Raynor, G.S. (ed.) [ed.

    1981-12-01

    The research activities of the Atmospheric Sciences Division of the Department of Energy and Environment for FY 1981 are presented. Facilities and major items of equipment are described. Research programs are summarized in three categories, modeling, field and laboratory experiments and data management and analysis. Each program is also described individually with title, principal investigator, sponsor and funding levels for FY 1981 and FY 1982. Future plans are summarized. Publications for FY 1981 are listed with abstracts. A list of personnel is included.

  15. Portable air monitoring laboratories

    SciTech Connect (OSTI)

    Ehntholt, D.J.; Beltis, K.J.; McCullough, J.E.; Valentine, J.R. [Arthur D. Little, Inc., Cambridge, MA (United States)

    1995-12-31

    Arthur D. Little, Inc. was contracted by the US Army to design, fabricate, test and deliver a series of portable air monitoring laboratories which could be used to detect trace levels of toxic chemicals on board cargo ships. The labs were designed to be completely self-sufficient, containing all supplies necessary for a 75-day mission, and to operate under rugged conditions. They were used to monitor for parts-per-billion concentrations of chemical agents in air and to provide information equivalent to high quality fixed laboratory analyses. The mission was successfully completed; independent design awards were received for the laboratories, and they were subsequently diverted to other uses.

  16. Sonication standard laboratory module

    DOE Patents [OSTI]

    Beugelsdijk, Tony (Los Alamos, NM); Hollen, Robert M. (Los Alamos, NM); Erkkila, Tracy H. (Los Alamos, NM); Bronisz, Lawrence E. (Los Alamos, NM); Roybal, Jeffrey E. (Santa Fe, NM); Clark, Michael Leon (Menan, ID)

    1999-01-01

    A standard laboratory module for automatically producing a solution of cominants from a soil sample. A sonication tip agitates a solution containing the soil sample in a beaker while a stepper motor rotates the sample. An aspirator tube, connected to a vacuum, draws the upper layer of solution from the beaker through a filter and into another beaker. This beaker can thereafter be removed for analysis of the solution. The standard laboratory module encloses an embedded controller providing process control, status feedback information and maintenance procedures for the equipment and operations within the standard laboratory module.

  17. An active atmospheric methane sink in high Arctic mineral cryosols

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lau, Maggie C.Y.; Stackhouse, B.; Layton, Alice C.; Chauhan, Archana; Vishnivetskaya, T. A.; Chourey, Karuna; Mykytczuk, N. C.S.; Bennett, Phil C.; Lamarche-Gagnon, G.; Burton, N.; et al

    2015-04-14

    The transition of Arctic carbon-rich cryosols into methane (CH?)-emitting wetlands due to global warming is a rising concern. However, the spatially predominant mineral cryosols and their CH? emission potential are poorly understood. Fluxes measured in situ and estimated under laboratory conditions coupled with -omics analysis indicate (1) mineral cryosols in the Canadian high Arctic contain atmospheric CH?-oxidizing bacteria; (2) the atmospheric CH? uptake flux increases with ground temperature; and, as a result, (3) the atmospheric CH? sink strength will increase by a factor of 5-30 as the Arctic warms by 5-15 °C over a century. We demonstrated that acidic mineralmore »cryosols have previously unrecognized potential of negative CH? feedback.« less

  18. Reservoir CharacterizationReservoir Characterization Research LaboratoryResearch Laboratory

    E-Print Network [OSTI]

    Texas at Austin, University of

    Reservoir CharacterizationReservoir Characterization Research LaboratoryResearch Laboratory at Austin Austin, Texas 78713Austin, Texas 78713--89248924 #12;Reservoir Characterization Research Laboratory for Carbonate Studies Research Plans for 2012 Outcrop and Subsurface Characterization of Carbonate

  19. Battery testing at Argonne National Laboratory

    SciTech Connect (OSTI)

    DeLuca, W.H.; Gillie, K.R.; Kulaga, J.E.; Smaga, J.A.; Tummillo, A.F.; Webster, C.E.

    1993-03-25

    Argonne National Laboratory`s Analysis & Diagnostic Laboratory (ADL) tests advanced batteries under simulated electric and hybrid vehicle operating conditions. The ADL facilities also include a post-test analysis laboratory to determine, in a protected atmosphere if needed, component compositional changes and failure mechanisms. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The battery evaluations and post-test examinations help identify factors that limit system performance and life, and the most-promising R&D approaches for overcoming these limitations. Since 1991, performance characterizations and/or life evaluations have been conducted on eight battery technologies (Na/S, Li/S, Zn/Br, Ni/MH, Ni/Zn, Ni/Cd, Ni/Fe, and lead-acid). These evaluations were performed for the Department of Energy`s. Office of Transportation Technologies, Electric and Hybrid Propulsion Division (DOE/OTT/EHP), and Electric Power Research Institute (EPRI) Transportation Program. The results obtained are discussed.

  20. Aeras: A next generation global atmosphere model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Spotz, William F.; Smith, Thomas M.; Demeshko, Irina P.; Fike, Jeffrey A.

    2015-06-01

    Sandia National Laboratories is developing a new global atmosphere model named Aeras that is performance portable and supports the quantification of uncertainties. These next-generation capabilities are enabled by building Aeras on top of Albany, a code base that supports the rapid development of scientific application codes while leveraging Sandia's foundational mathematics and computer science packages in Trilinos and Dakota. Embedded uncertainty quantification (UQ) is an original design capability of Albany, and performance portability is a recent upgrade. Other required features, such as shell-type elements, spectral elements, efficient explicit and semi-implicit time-stepping, transient sensitivity analysis, and concurrent ensembles, were not componentsmore »of Albany as the project began, and have been (or are being) added by the Aeras team. We present early UQ and performance portability results for the shallow water equations.« less

  1. Idaho National Laboratory

    ScienceCinema (OSTI)

    McCarthy, Kathy

    2013-05-28

    INL is the leading laboratory for nuclear R&D. Nuclear engineer Dr. Kathy McCarthy talks aobut the work there and the long-term benefits it will provide.

  2. Brookhaven National Laboratory

    Broader source: Energy.gov [DOE]

    Site OverviewThe Brookhaven National Laboratory (BNL) was established in 1947 by the Atomic Energy Commission (AEC) (predecessor to U.S. Department of Energy [DOE]). Formerly Camp Upton, a U.S....

  3. LABORATORY VII: WAVE OPTICS

    E-Print Network [OSTI]

    Minnesota, University of

    LABORATORY VII: WAVE OPTICS Lab VII - 1 In this lab, you will solve problems in ways that take-like behavior. These conditions may be less familiar to you than the conditions for which geometrical optics

  4. Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    measurement LOS ALAMOS, New Mexico, July 10, 2012-Using a one-of-a-kind laser system at Los Alamos National Laboratory, scientists have created the largest neutron beam...

  5. Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hazardous devices teams showcase skills at Robot Rodeo June 24-27 June 18, 2014 Bomb squads compete in timed scenarios at Los Alamos National Laboratory LOS ALAMOS, N.M., June 19,...

  6. Ames Laboratory Logos | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TAPropaneand Los AlamosAuthorizationAmes Laboratory

  7. Ames Laboratory Hot Canyon | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWith PropaneNaturalTest YourProgramAmes Laboratory Hot Canyon

  8. Status of Laboratory Goals | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effect Photovoltaics -7541C.3X-rays IlluminateStateIntentchange.Status of Laboratory

  9. Sandia National Laboratories: About Sandia: Laboratories' Foundation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcoming Release of the University of2013NationalNewLaboratories

  10. Laboratory Graduate Research Appointment | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse Bergkamp Graduate studentScience (SC) DirectedEquipmentLaboratory

  11. Space Science : Atmosphere Greenhouse Effect

    E-Print Network [OSTI]

    Johnson, Robert E.

    Space Science : Atmosphere Greenhouse Effect Part-5a Solar + Earth Spectrum IR Absorbers Grey Atmosphere Greenhouse Effect #12;Radiation: Solar and Earth Surface B"(T) Planck Ideal Emission Integrate and it emits Note: heat balance Fvis( = Fout = Te 4 z #12;(simple Greenhouse cont.) 0 1 2 3 4 Ground Space Top

  12. Atmospheric science encompasses meteorology and climatology, as well as fields such as atmospheric chemistry and remote sensing.Atmospheric

    E-Print Network [OSTI]

    chemistry and remote sensing.Atmospheric scientists apply physics, mathematics, and chemistry to understandAtmospheric science encompasses meteorology and climatology, as well as fields such as atmospheric the atmosphere and its interactions with land and sea. One of the goals of atmospheric science is to understand

  13. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-04-30

    To establish Department of Energy (DOE) requirements for laboratory directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation

  14. Mark Peters | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory, where he managed the science and engineering testing program at the Yucca Mountain Project. Before joining Los Alamos National Laboratory, Dr. Peters was a...

  15. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    To establish Department of Energy (DOE) requirements for laboratory directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation.

  16. DIVISION OF MARINE AND ATMOSPHERIC CHEMISTRY

    E-Print Network [OSTI]

    Shyu, Mei-Ling

    DIVISION OF MARINE AND ATMOSPHERIC CHEMISTRY The missions of the Division of Marine and Atmospheric Chemistry (MAC) are to carry out broadly based research on the chemistry of the atmosphere and marine and stratosphere. Atmospheric Chemistry Research activities in atmospheric chemistry and modeling are diverse

  17. Daresbury Laboratory STFC Daresbury Laboratory is renowned for its

    E-Print Network [OSTI]

    Daresbury Laboratory STFC Daresbury Laboratory is renowned for its world leading scientific computing. T he Laboratory is part of the Sci ­Tech Daresbury Campus near Warrington in Cheshire to perform cutting-edge research. Key activities Daresbury Laboratory is a hub for pioneering scientific

  18. Laboratory QualityLaboratory Quality ControlControl

    E-Print Network [OSTI]

    Laboratory QualityLaboratory Quality ControlControl Nabil A. NIMER Dept . Biotechnology & Genetic thatQA is defined as the overall program that ensures that the final results reported by the laboratory areensures that the final results reported by the laboratory are correct.correct. ""The aim of quality

  19. Analytical laboratory quality audits

    SciTech Connect (OSTI)

    Kelley, William D.

    2001-06-11

    Analytical Laboratory Quality Audits are designed to improve laboratory performance. The success of the audit, as for many activities, is based on adequate preparation, precise performance, well documented and insightful reporting, and productive follow-up. Adequate preparation starts with definition of the purpose, scope, and authority for the audit and the primary standards against which the laboratory quality program will be tested. The scope and technical processes involved lead to determining the needed audit team resources. Contact is made with the auditee and a formal audit plan is developed, approved and sent to the auditee laboratory management. Review of the auditee's quality manual, key procedures and historical information during preparation leads to better checklist development and more efficient and effective use of the limited time for data gathering during the audit itself. The audit begins with the opening meeting that sets the stage for the interactions between the audit team and the laboratory staff. Arrangements are worked out for the necessary interviews and examination of processes and records. The information developed during the audit is recorded on the checklists. Laboratory management is kept informed of issues during the audit so there are no surprises at the closing meeting. The audit report documents whether the management control systems are effective. In addition to findings of nonconformance, positive reinforcement of exemplary practices provides balance and fairness. Audit closure begins with receipt and evaluation of proposed corrective actions from the nonconformances identified in the audit report. After corrective actions are accepted, their implementation is verified. Upon closure of the corrective actions, the audit is officially closed.

  20. Laboratory Heat Recovery System 

    E-Print Network [OSTI]

    Burrows, D. B.; Mendez, F. J.

    1981-01-01

    that they will be considerable. The system has been in successful operation since October 1979. 724 ESL-IE-81-04-123 Proceedings from the Third Industrial Energy Technology Conference Houston, TX, April 26-29, 1981 Conoco R&D West The award-winning laboratory heat-recovery... stream_source_info ESL-IE-81-04-123.pdf.txt stream_content_type text/plain stream_size 11112 Content-Encoding ISO-8859-1 stream_name ESL-IE-81-04-123.pdf.txt Content-Type text/plain; charset=ISO-8859-1 LABORATORY HEAT...

  1. GREAT LAKES ENVIRONMENTAL RESEARCH LABORATORY

    E-Print Network [OSTI]

    GREAT LAKES ENVIRONMENTAL RESEARCH LABORATORY ANNUAL REPORT FY 1981 December 1981 Eugene J . Aubert and Development Environmental Research Laboratories Great Lakes Environmental Research Laboratory 2300 Washtenaw Avenue Ann Arbor, Michigan 48104 #12;NOTICE The NOAA Environmental Research Laboratories do not approve

  2. Lab VIII 1 LABORATORY VIII

    E-Print Network [OSTI]

    Minnesota, University of

    Lab VIII ­ 1 LABORATORY VIII MECHANICAL OSCILLATIONS In most of the laboratory problems constant. In this set of laboratory problems the force on an object, and thus its acceleration, will change this laboratory, you should be able to: · provide a qualitative explanation of the behavior of oscillating systems

  3. Lab VIII -1 LABORATORY VIII

    E-Print Network [OSTI]

    Minnesota, University of

    Lab VIII - 1 LABORATORY VIII MECHANICAL OSCILLATIONS Most of the laboratory problems so far have was constant. In this set of laboratory problems, the total force acting on an object, and thus its's oscillation frequency. OBJECTIVES: After successfully completing this laboratory, you should be able to

  4. GREAT LAKES ENVIRONMENTAL RESEARCH LABORATORY

    E-Print Network [OSTI]

    #12;GREAT LAKES ENVIRONMENTAL RESEARCH LABORATORY ANNUAL REPORT FY 1980 December I980 Eugene J of Research and Development Environmental Research Laboratories Great Lakes Environmental Research Laboratory 2300 Washtenaw Avenue Ann Arbor, Michigan 48104 #12;NOTICE The NOAA Environmental Research Laboratories

  5. Lawrence Berkeley National Laboratory Overview

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation about the history, structure, and projects of the Lawrence Berkeley National Laboratory.

  6. ATMOSPHERIC CHEMISTRY - RESPONSE TO HUMAN INFLUENCE

    E-Print Network [OSTI]

    LOGAN, J; PRATHER, M; WOFSY, S; MCELROY, M

    1978-01-01

    Trans. II 70, 253. ATMOSPHERIC CHEMISTRY Clyne, M. A. A. &data for modelling atmospheric chemistry. NBS Technical NoteChem. 80, 2711. ATMOSPHERIC CHEMISTRY Sanadze, G. A. 1963 On

  7. IMPROVED QUASISTEADYSTATEAPPROXIMATION METHODS FOR ATMOSPHERIC CHEMISTRY INTEGRATION #

    E-Print Network [OSTI]

    Jay, Laurent O.

    IMPROVED QUASI­STEADY­STATE­APPROXIMATION METHODS FOR ATMOSPHERIC CHEMISTRY INTEGRATION # L. O. JAY QSSA are presented. Key words. atmospheric chemistry, sti# ordinary di#erential equations, quasi PII. S1064827595283033 1. Introduction. As our scientific understanding of atmospheric chemistry

  8. Global atmospheric chemistry: Integrating over fractional cloud cover

    E-Print Network [OSTI]

    Neu, Jessica L; Prather, Michael J; Penner, Joyce E

    2007-01-01

    trace gases and atmospheric chemistry, in Climate Change2007 Global atmospheric chemistry: Integrating over2007), Global atmospheric chemistry: Integrating over

  9. Infrared Observations of Exoplanet Atmospheres

    E-Print Network [OSTI]

    Crossfield, Ian James Mills

    2012-01-01

    However, atmospheres of cool planets can still be studiedvia outgassing as the planet cools (Rogers & Seager 2010).at low resolution) and the cool, low-mass planet GJ 1214b (

  10. Composition and Reactions of Atmospheric Aerosol Particles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Composition and Reactions of Atmospheric Aerosol Particles Print Microscopic aerosol particles in the atmosphere contain carbonaceous components from mineral dust and combustion...

  11. Visgraf Laboratory -IMPAVisgraf Laboratory -IMPAVisgraf Laboratory -IMPA CNMAC 99CNMAC 99CNMAC 99 Frontiers ofFrontiers of

    E-Print Network [OSTI]

    de Figueiredo, Luiz Henrique

    1 Visgraf Laboratory - IMPAVisgraf Laboratory - IMPAVisgraf Laboratory - IMPA CNMAC 99CNMAC 99CNMAC@impa.br@impa.br Visgraf Laboratory - IMPAVisgraf Laboratory - IMPA Rio de JaneiroRio de Janeiro www.visgraf.impa.brwww.visgraf.impa.br Visgraf Laboratory - IMPAVisgraf Laboratory - IMPAVisgraf Laboratory - IMPA CNMAC 99CNMAC 99CNMAC 99

  12. Metal abundance of the eclipsing binary YZ Cas: discrepancy between atmospheric determinations for the Am component

    E-Print Network [OSTI]

    E. Lastennet; D. Valls-Gabaud; C. Jordi

    2000-11-21

    We review current and new estimates of the eclipsing binary YZ Cassiopeiae metallicity (Z). Since the individual components cover a quite large range of mass (1.35-2.31 Solar masses), YZ Cas is potentially one of the best stellar laboratories to understand the structure and evolution of 1 to 2 Solar masses stars. The derivation of Z from IUE spectra, as well as from photometric indices, provides the chemical composition of the atmosphere (Z_{atmospheric}), while the fit of evolutionary tracks provides the initial chemical composition (Z_{initial}). While a disagreement is expected between Z_{atmospheric} and Z_{initial} because the primary component is an Am star (one expects Z_{atmospheric} to be larger), we find some unexpected discrepancy between atmospheric determinations of Z for this star.

  13. Battery testing at Argonne National Laboratory

    SciTech Connect (OSTI)

    DeLuca, W.H.; Gillie, K.R.; Kulaga, J.E.; Smaga, J.A.; Tummillo, A.F.; Webster, C.E.

    1993-03-25

    Argonne National Laboratory's Analysis Diagnostic Laboratory (ADL) tests advanced batteries under simulated electric and hybrid vehicle operating conditions. The ADL facilities also include a post-test analysis laboratory to determine, in a protected atmosphere if needed, component compositional changes and failure mechanisms. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The battery evaluations and post-test examinations help identify factors that limit system performance and life, and the most-promising R D approaches for overcoming these limitations. Since 1991, performance characterizations and/or life evaluations have been conducted on eight battery technologies (Na/S, Li/S, Zn/Br, Ni/MH, Ni/Zn, Ni/Cd, Ni/Fe, and lead-acid). These evaluations were performed for the Department of Energy's. Office of Transportation Technologies, Electric and Hybrid Propulsion Division (DOE/OTT/EHP), and Electric Power Research Institute (EPRI) Transportation Program. The results obtained are discussed.

  14. Laser Atmospheric Studies with VERITAS

    E-Print Network [OSTI]

    C. M. Hui; for the VERITAS collaboration

    2007-09-25

    As a calibrated laser pulse propagates through the atmosphere, the amount of Rayleigh-scattered light arriving at the VERITAS telescopes can be calculated precisely. This technique was originally developed for the absolute calibration of ultra-high-energy cosmic-ray fluorescence telescopes but is also applicable to imaging atmospheric Cherenkov telescopes (IACTs). In this paper, we present two nights of laser data taken with the laser at various distances away from the VERITAS telescopes and compare it to Rayleigh scattering simulations.

  15. Atmospheric science and power production

    SciTech Connect (OSTI)

    Randerson, D.

    1984-07-01

    This is the third in a series of scientific publications sponsored by the US Atomic Energy Commission and the two later organizations, the US Energy Research and Development Adminstration, and the US Department of Energy. The first book, Meteorology and Atomic Energy, was published in 1955; the second, in 1968. The present volume is designed to update and to expand upon many of the important concepts presented previously. However, the present edition draws heavily on recent contributions made by atmospheric science to the analysis of air quality and on results originating from research conducted and completed in the 1970s. Special emphasis is placed on how atmospheric science can contribute to solving problems relating to the fate of combustion products released into the atmosphere. The framework of this book is built around the concept of air-quality modeling. Fundamentals are addressed first to equip the reader with basic background information and to focus on available meteorological instrumentation and to emphasize the importance of data management procedures. Atmospheric physics and field experiments are described in detail to provide an overview of atmospheric boundary layer processes, of how air flows around obstacles, and of the mechanism of plume rise. Atmospheric chemistry and removal processes are also detailed to provide fundamental knowledge on how gases and particulate matter can be transformed while in the atmosphere and how they can be removed from the atmosphere. The book closes with a review of how air-quality models are being applied to solve a wide variety of problems. Separate analytics have been prepared for each chapter.

  16. EARTHQUAKE PREPAREDNESS FOR LABORATORIES

    E-Print Network [OSTI]

    Polly, David

    EARTHQUAKE PREPAREDNESS FOR LABORATORIES By: Christopher E. Kohler (Environmental Health and Safety, principal investigators, lab supervisors, and lab personnel assess their areas of responsibility to determine safety procedures and use this information to mitigate situations that may pose a problem in case

  17. LABORATORY VII ROTATIONAL DYNAMICS

    E-Print Network [OSTI]

    Minnesota, University of

    OF A COMPLEX SYSTEM While examining the engine of your friend's snow blower you notice that the starter cord wraps around a cylindrical ring. This ring is fastened to the top of a heavy, solid disk, "a flywheel of the system. To test this idea you decide to build a laboratory model described below to determine the moment

  18. Energy Systems Laboratory Groundbreaking

    ScienceCinema (OSTI)

    Hill, David; Otter, C.L.; Simpson, Mike; Rogers, J.W.;

    2013-05-28

    INL recently broke ground for a research facility that will house research programs for bioenergy, advanced battery systems, and new hybrid energy systems that integrate renewable, fossil and nuclear energy sources. Here's video from the groundbreaking ceremony for INL's new Energy Systems Laboratory. You can learn more about CAES research at http://www.facebook.com/idahonationallaboratory.

  19. PHYSICAL GEOLOGY LABORATORY MANUAL

    E-Print Network [OSTI]

    Merguerian, Charles

    PHYSICAL GEOLOGY LABORATORY MANUAL Geology 001 Eleventh Edition by Professors Charles Merguerian and J Bret Bennington Department of Geology Hofstra University © 2010 #12;ii Table of Contents Lab and Find Out More about Geology at Hofstra Email: Geology professors can be contacted via Email: Full

  20. PENNSYLVANIA APPALACHIAN LABORATORY

    E-Print Network [OSTI]

    Boynton, Walter R.

    , coordinates, and catalyzes environmental research and graduate education within the University System. UMCES), in which UMCES has a leading role. UMCES also delivers its services through environmental science education LABORATORY INSTITUTE OF MARINE AND ENVIRONMENTAL TECHNOLOGY MARYLAND SEA GRANT ANNAPOLIS CHESAPEAKE

  1. LABORATORY III POTENTIAL ENERGY

    E-Print Network [OSTI]

    Minnesota, University of

    LABORATORY III POTENTIAL ENERGY Lab III - 1 In previous problems, you have been introduced to the concepts of kinetic energy, which is associated with the motion of an object, and internal energy, which is associated with the internal structure of a system. In this section, you work with another form of energy

  2. National Laboratory Contacts

    Broader source: Energy.gov [DOE]

    Several of the U.S. Department of Energy (DOE) national laboratories host multidisciplinary transportation research centers. A wide-range of cutting-edge transportation research occurs at these facilities, funded by both DOE and cooperative research and development agreements (CRADAs) with industry

  3. Laboratory Density Functionals

    E-Print Network [OSTI]

    B. G. Giraud

    2007-07-26

    We compare several definitions of the density of a self-bound system, such as a nucleus, in relation with its center-of-mass zero-point motion. A trivial deconvolution relates the internal density to the density defined in the laboratory frame. This result is useful for the practical definition of density functionals.

  4. FUTURE LOGISTICS LIVING LABORATORY

    E-Print Network [OSTI]

    Heiser, Gernot

    FUTURE LOGISTICS LIVING LABORATORY Delivering Innovation The Future Logistics Living Lab that will provide logistics solutions for the future. The Living Lab is a demonstration, exhibition and work space by a group of logistics companies, research organisations, universities, and IT providers that includes NICTA

  5. Thirteenth International Conference on Atomic Physics(IGAP-13)

    SciTech Connect (OSTI)

    Walther, H.; Haensch, T.W.; Neizert, B. (eds.) (Max PlanckInstitute for Quantum Optics, Garching (Germany) Ludwig MaximilianUniversity, Munich (Germany))

    1993-01-01

    This conference proceeding contains invited papers on recentprogress in many subfields of atomic physics. Major advances inspectroscopy, laser cooling and trapping, atom interferometry,cavity quantum electrodynamics are discussed in many of thepresented papers. Quantum chaos is explored as well as novelexperiments with atoms in intense laser fields are discussed. Atotal of forty two papers are given in this proceedings, out ofthese, eleven have been abstracted for database. (AIP)

  6. 2014 Christmas Cryptograms--page 1 THIRTEENTH ANNUAL CHRISTMAS CRYPTOGRAMS

    E-Print Network [OSTI]

    Wright, Charles R.B.

    , N R L B L A S U F O B I K A W , I ' O N F L E E R A W W R E O , U O E E L A S U F O L N U R E O . S R L E G U F O G N L A S , T F L E O V O I V E O B L A S , B I A S B I X S I I W Y F O O N . Y F N L , D O N N G , D O N N G , D O N N G Y F N L B U D R B . -- K Z N R L A L R A B F Y F O W N G Z 2 . A I

  7. Laboratory Safety Manual Table of Contents

    E-Print Network [OSTI]

    Natelson, Douglas

    Laboratory Safety Manual Table of Contents I. Emergency Procedures a. Laboratory Contact Information b. Location of Laboratory Emergency Equipment c. Laboratory Hazard and Evacuation Maps d. University Emergency Procedures II. University Policies and Procedures a. Rice University Laboratory Safety

  8. National Renewable Energy Laboratory Solar Radiation Research Laboratory

    E-Print Network [OSTI]

    National Renewable Energy Laboratory Solar Radiation Research Laboratory (SRRL) Instrument of Energy (DoE). Objectives · Provide Improved Methods for Radiometer Calibrations · Develop a Solar Energy Resources · Offer Unique Training Methods for Solar Monitoring Network Design, Operation

  9. Remote Sensing Laboratory - RSL

    SciTech Connect (OSTI)

    2014-11-06

    One of the primary resources supporting homeland security is the Remote Sensing Laboratory, or RSL. The Laboratory creates advanced technologies for emergency response operations, radiological incident response, and other remote sensing activities. RSL emergency response teams are on call 24-hours a day, and maintain the capability to deploy domestically and internationally in response to threats involving the loss, theft, or release of nuclear or radioactive material. Such incidents might include Nuclear Power Plant accidents, terrorist incidents involving nuclear or radiological materials, NASA launches, and transportation accidents involving nuclear materials. Working with the US Department of Homeland Security, RSL personnel equip, maintain, and conduct training on the mobile detection deployment unit, to provide nuclear radiological security at major national events such as the super bowl, the Indianapolis 500, New Year's Eve celebrations, presidential inaugurations, international meetings and conferences, just about any event where large numbers of people will gather.

  10. Remote Sensing Laboratory - RSL

    ScienceCinema (OSTI)

    None

    2015-01-09

    One of the primary resources supporting homeland security is the Remote Sensing Laboratory, or RSL. The Laboratory creates advanced technologies for emergency response operations, radiological incident response, and other remote sensing activities. RSL emergency response teams are on call 24-hours a day, and maintain the capability to deploy domestically and internationally in response to threats involving the loss, theft, or release of nuclear or radioactive material. Such incidents might include Nuclear Power Plant accidents, terrorist incidents involving nuclear or radiological materials, NASA launches, and transportation accidents involving nuclear materials. Working with the US Department of Homeland Security, RSL personnel equip, maintain, and conduct training on the mobile detection deployment unit, to provide nuclear radiological security at major national events such as the super bowl, the Indianapolis 500, New Year's Eve celebrations, presidential inaugurations, international meetings and conferences, just about any event where large numbers of people will gather.

  11. Princeton Plasma Physics Laboratory:

    SciTech Connect (OSTI)

    Phillips, C.A.

    1986-01-01

    This paper discusses progress on experiments at the Princeton Plasma Physics Laboratory. The projects and areas discussed are: Principal Parameters Achieved in Experimental Devices, Tokamak Fusion Test Reactor, Princeton Large Torus, Princeton Beta Experiment, S-1 Spheromak, Current-Drive Experiment, X-ray Laser Studies, Theoretical Division, Tokamak Modeling, Spacecraft Glow Experiment, Compact Ignition Tokamak, Engineering Department, Project Planning and Safety Office, Quality Assurance and Reliability, and Administrative Operations.

  12. Chemistry of Atmospheric Brown Carbon Alexander Laskin,*,

    E-Print Network [OSTI]

    Nizkorodov, Sergey

    Chemistry of Atmospheric Brown Carbon Alexander Laskin,*, Julia Laskin,*, and Sergey A. Nizkorodov fraction of atmospheric aerosol and has profound effects on air quality, atmospheric chemistry, and climate of radiation through Earth's atmosphere. The cloud albedo effect, Special Issue: 2015 Chemistry in Climate

  13. Laboratory microfusion capability study

    SciTech Connect (OSTI)

    Not Available

    1993-05-01

    The purpose of this study is to elucidate the issues involved in developing a Laboratory Microfusion Capability (LMC) which is the major objective of the Inertial Confinement Fusion (ICF) program within the purview of the Department of Energy's Defense Programs. The study was initiated to support a number of DOE management needs: to provide insight for the evolution of the ICF program; to afford guidance to the ICF laboratories in planning their research and development programs; to inform Congress and others of the details and implications of the LMC; to identify criteria for selection of a concept for the Laboratory Microfusion Facility and to develop a coordinated plan for the realization of an LMC. As originally proposed, the LMC study was divided into two phases. The first phase identifies the purpose and potential utility of the LMC, the regime of its performance parameters, driver independent design issues and requirements, its development goals and requirements, and associated technical, management, staffing, environmental, and other developmental and operational issues. The second phase addresses driver-dependent issues such as specific design, range of performance capabilities, and cost. The study includes four driver options; the neodymium-glass solid state laser, the krypton fluoride excimer gas laser, the light-ion accelerator, and the heavy-ion induction linear accelerator. The results of the Phase II study are described in the present report.

  14. Pulsed atmospheric fluidized bed combustion. Final report

    SciTech Connect (OSTI)

    NONE

    1998-03-01

    ThermoChem, under contract to the Department of Energy, conducted extensive research, development and demonstration work on a Pulsed Atmospheric Fluidized Bed Combustor (PAFBC) to confirm that advanced technology can meet these performance objectives. The ThermoChem/MTCI PAFBC system integrates a pulse combustor with an atmospheric bubbling-bed type fluidized bed combustor (BFBC) In this modular configuration, the pulse combustor burns the fuel fines (typically less than 30 sieve or 600 microns) and the fluidized bed combusts the coarse fuel particles. Since the ThermoChem/MTCI PAFBC employs both the pulse combustor and the AFBC technologies, it can handle the full-size range of coarse and fines. The oscillating flow field in the pulse combustor provides for high interphase and intraparticle mass transfer rates. Therefore, the fuel fines essentially burn under kinetic control. Due to the reasonably high temperature (>1093 C but less than the temperature for ash fusion to prevent slagging), combustion of fuel fines is substantially complete at the exit of the pulse combustor. The additional residence time of 1 to 2 seconds in the freeboard of the PAFBC unit then ensures high carbon conversion and, in turn, high combustion efficiency. A laboratory unit was successfully designed, constructed and tested for over 600 hours to confirm that the PAFBC technology could meet the performance objectives. Subsequently, a 50,000 lb/hr PAFBC demonstration steam boiler was designed, constructed and tested at Clemson University in Clemson, South Carolina. This Final Report presents the detailed results of this extensive and successful PAFBC research, development and demonstration project.

  15. Program Abstracts: Formation and Growth of Atmospheric Aerosols

    SciTech Connect (OSTI)

    Peter H. McMurry; Markku Kulmala

    2006-09-07

    DOE provided $11,000 to sponsor the Workshop on New Particle Formation in the Atmosphere, which was held at The Riverwood Inn and Conference Center near Minneapolis, MN from September 7 to 9, 2006. Recent work has shown that new particle formation is an important atmospheric process that must be better understood due to its impact on cloud cover and the Earth's radiation balance. The conference was an informal gathering of atmospheric and basic scientists with expertise pertinent to this topic. The workshop included discussions of: • atmospheric modeling; • computational chemistry pertinent to clustering; • ions and ion induced nucleation; • basic laboratory and theoretical studies of nucleation; • studies on neutral molecular clusters; • interactions of organic compounds and sulfuric acid; • composition of freshly nucleated particles. Fifty six scientists attended the conference. They included 27 senior scientists, 9 younger independent scientists (assistant professor or young associate professor level), 7 postdocs, 13 graduate students, 10 women, 35 North Americans (34 from the U.S.), 1 Asian, and 20 Europeans. This was an excellent informal workshop on an important topic. An effort was made to include individuals from communities that do not regularly interact. A number of participants have provided informal feedback indicating that the workshop led to research ideas and possible future collaborations.

  16. Smart Grid Integration Laboratory

    SciTech Connect (OSTI)

    Wade Troxell

    2011-09-30

    The initial federal funding for the Colorado State University Smart Grid Integration Laboratory is through a Congressionally Directed Project (CDP), DE-OE0000070 Smart Grid Integration Laboratory. The original program requested in three one-year increments for staff acquisition, curriculum development, and instrumentation â?? all which will benefit the Laboratory. This report focuses on the initial phase of staff acquisition which was directed and administered by DOE NETL/ West Virginia under Project Officer Tom George. Using this CDP funding, we have developed the leadership and intellectual capacity for the SGIC. This was accomplished by investing (hiring) a core team of Smart Grid Systems engineering faculty focused on education, research, and innovation of a secure and smart grid infrastructure. The Smart Grid Integration Laboratory will be housed with the separately funded Integrid Laboratory as part of CSUâ??s overall Smart Grid Integration Center (SGIC). The period of performance of this grant was 10/1/2009 to 9/30/2011 which included one no cost extension due to time delays in faculty hiring. The Smart Grid Integration Laboratoryâ??s focus is to build foundations to help graduate and undergraduates acquire systems engineering knowledge; conduct innovative research; and team externally with grid smart organizations. Using the results of the separately funded Smart Grid Workforce Education Workshop (May 2009) sponsored by the City of Fort Collins, Northern Colorado Clean Energy Cluster, Colorado State University Continuing Education, Spirae, and Siemens has been used to guide the hiring of faculty, program curriculum and education plan. This project develops faculty leaders with the intellectual capacity to inspire its students to become leaders that substantially contribute to the development and maintenance of Smart Grid infrastructure through topics such as: (1) Distributed energy systems modeling and control; (2) Energy and power conversion; (3) Simulation of electrical power distribution system that integrates significant quantities of renewable and distributed energy resources; (4) System dynamic modeling that considers end-user behavior, economics, security and regulatory frameworks; (5) Best practices for energy management IT control solutions for effective distributed energy integration (including security with the underlying physical power systems); (6) Experimental verification of effects of various arrangements of renewable generation, distributed generation and user load types along with conventional generation and transmission. Understanding the core technologies for enabling them to be used in an integrated fashion within a distribution network remains is a benefit to the future energy paradigm and future and present energy engineers.

  17. Interpretation of AIRS Data in Thin Cirrus Atmospheres Based on a Fast Radiative Transfer Model

    E-Print Network [OSTI]

    Liou, K. N.

    Interpretation of AIRS Data in Thin Cirrus Atmospheres Based on a Fast Radiative Transfer Model of California, Los Angeles, Los Angeles, California B. H. KAHN Jet Propulsion Laboratory, California Institute radiative transfer model has been developed for application to cloudy satellite data assimilation

  18. China's grazed temperate grasslands are a net source of atmospheric methane Zhi-Ping Wang a

    E-Print Network [OSTI]

    Yu, Qiang

    China's grazed temperate grasslands are a net source of atmospheric methane Zhi-Ping Wang a , Yang Song a , Jay Gulledge b,c , Qiang Yu a , Hong-Sheng Liu d , Xing-Guo Han a,* a State Key Laboratory

  19. Radiological and Environmental Research Division annual report, January-December 1980. Atmospheric physics

    SciTech Connect (OSTI)

    Not Available

    1981-08-01

    Contained are twenty-six abstracts of on-going research programs at Argonne National Laboratory concerning the modeling of environmental air pollutants concentration and transport for January-December 1980. Studies on pollutant transport modeling, fluid flow models, and atmospheric precipitations chemistry are included. (DLS)

  20. National Atmospheric Release Advisory Center (NARAC) Capabilities for Homeland Security

    SciTech Connect (OSTI)

    Sugiyama, G; Nasstrom, J; Baskett, R; Simpson, M

    2010-03-08

    The Department of Energy's National Atmospheric Release Advisory Center (NARAC) provides critical information during hazardous airborne releases as part of an integrated national preparedness and response strategy. Located at Lawrence Livermore National Laboratory, NARAC provides 24/7 tools and expert services to map the spread of hazardous material accidentally or intentionally released into the atmosphere. NARAC graphical products show affected areas and populations, potential casualties, and health effect or protective action guideline levels. LLNL experts produce quality-assured analyses based on field data to assist decision makers and responders. NARAC staff and collaborators conduct research and development into new science, tools, capabilities, and technologies in strategically important areas related to airborne transport and fate modeling and emergency response. This paper provides a brief overview of some of NARAC's activities, capabilities, and research and development.

  1. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-10-22

    To establish Department of Energy (DOE) requirements for laboratory directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation. Supersedes DOE O 413.2B.

  2. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-01-08

    To establish the Department's, including the NNSA's, requirements for laboratory-directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation. Cancels DOE O 413.2. Canceled by DOE O 413.2B.

  3. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-04-19

    The Order establishes DOE requirements and responsibilities for laboratory directed research and development while providing laboratory directors with broad flexibility for program implementation. Cancels DOE O 413.2A. Admin Chg 1, 1-31-11.

  4. Cumulant expansions for atmospheric flows

    E-Print Network [OSTI]

    Ait-Chaalal, Farid; Meyer, Bettina; Marston, J B

    2015-01-01

    The equations governing atmospheric flows are nonlinear, and consequently the hierarchy of cumulant equations is not closed. But because atmospheric flows are inhomogeneous and anisotropic, the nonlinearity may manifests itself only weakly through interactions of mean fields with disturbances such as thermals or eddies. In such situations, truncations of the hierarchy of cumulant equations hold promise as a closure strategy. We review how truncations at second order can be used to model and elucidate the dynamics of turbulent atmospheric flows. Two examples are considered. First, we study the growth of a dry convective boundary layer, which is heated from below, leading to turbulent upward energy transport and growth of the boundary layer. We demonstrate that a quasilinear truncation of the equations of motion, in which interactions of disturbances among each other are neglected but interactions with mean fields are taken into account, can successfully capture the growth of the convective boundary layer. Seco...

  5. Interstellar water chemistry: from laboratory to observations

    E-Print Network [OSTI]

    van Dishoeck, Ewine F; Neufeld, David A

    2013-01-01

    Water is observed throughout the universe, from diffuse interstellar clouds to protoplanetary disks around young stars, and from comets in our own solar system and exoplanetary atmospheres to galaxies at high redshifts. This review summarizes the spectroscopy and excitation of water in interstellar space as well as the basic chemical processes that form and destroy water under interstellar conditions. Three major routes to water formation are identified: low temperature ion-molecule chemistry, high-temperature neutral-neutral chemistry and gas-ice chemistry. The rate coefficients of several important processes entering the networks are discussed in detail; several of them have been determined only in the last decade through laboratory experiments and theoretical calculations. Astronomical examples of each of the different chemical routes are presented using data from powerful new telescopes, in particular the Herschel Space Observatory. Basic chemical physics studies remain critically important to analyze ast...

  6. LABORATORY III ENERGY AND CAPACITORS

    E-Print Network [OSTI]

    Minnesota, University of

    LABORATORY III ENERGY AND CAPACITORS Lab III -1 All biological systems rely on the ability to store and transfer energy. In this laboratory you will investigate the storage and transfer of energy in capacitors successfully completing this laboratory, you should be able to: · Apply the concept of conservation of energy

  7. Laboratory Biosafety Manual 1. Introduction

    E-Print Network [OSTI]

    Natelson, Douglas

    Laboratory Biosafety Manual 1. Introduction This Manual is intended to be a resource in the laboratory environment to work safely and reduce or eliminate the potential for exposure to biological and Biomedical Laboratories (U.S. Health and Human Services Publication No. CDC99-8395, Public Health Service

  8. Atlantic Oceanographic and Meteorological Laboratory

    E-Print Network [OSTI]

    Atlantic Oceanographic and Meteorological Laboratory Science Research Review March 18-20, 2008. Quality: Assess the quality of the laboratory's research and development. Assess whether appropriate." · How does the quality of the laboratory's research and development rank among Research and Development

  9. LABORATORY I FORCES AND EQUILIBRIUM

    E-Print Network [OSTI]

    Minnesota, University of

    LABORATORY I FORCES AND EQUILIBRIUM Lab I -1 In biological systems, most objects of interest system. OBJECTIVES: After successfully completing this laboratory, you should be able to: · Determine and 6), and chapter 15 (section 4). It is likely that you will be doing some of these laboratory

  10. Laboratories to Explore, Explain VLBACHANDRA

    E-Print Network [OSTI]

    Colloquium at Princeton Plasma Physics Laboratory March 8, 2000 http://fire.pppl.gov A Next Step Option Institute of Technology Oak Ridge National Laboratory Princeton Plasma Physics Laboratory Sandia National: SOFT/Fr Sep 98 IAEA/Ja Oct 98 APS-DPP Nov 98 FPA Jan 99 APEX/UCLA Feb 99 APS Cent Mar 99 IGNITOR May 99

  11. Laboratories to Explore, Explain VLBACHANDRA

    E-Print Network [OSTI]

    Physics Workshop Princeton Plasma Physics Laboratory May 1, 2000 http://fire.pppl.gov A Next Step Option Institute of Technology Oak Ridge National Laboratory Princeton Plasma Physics Laboratory Sandia National: SOFT/Fr Sep 98 IAEA/Ja Oct 98 APS-DPP Nov 98 FPA Jan 99 APEX/UCLA Feb 99 APS Cent Mar 99 IGNITOR May 99

  12. Observations of atmospheric tides on Mars at the season and latitude of the Phoenix atmospheric entry

    E-Print Network [OSTI]

    Withers, Paul

    Observations of atmospheric tides on Mars at the season and latitude of the Phoenix atmospheric atmospheric entry of NASA's Phoenix Mars probe using Phoenix Atmospheric Structure Experiment (ASE) data atmospheric entry, Geophys. Res. Lett., 37, L24204, doi:10.1029/2010GL045382. 1. Introduction [2] Phoenix

  13. Purdue Hydrogen Systems Laboratory

    SciTech Connect (OSTI)

    Jay P Gore; Robert Kramer; Timothee L Pourpoint; P. V. Ramachandran; Arvind Varma; Yuan Zheng

    2011-12-28

    The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up. Efforts continued to explore existing catalytic methods involving nano catalysts for capture of CO2 from the fermentation process.

  14. Princeton Plasma Physics Laboratory

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    This report discusses the following topics: principal parameters achieved in experimental devices fiscal year 1990; tokamak fusion test reactor; compact ignition tokamak; Princeton beta experiment- modification; current drive experiment-upgrade; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma processing: deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for fiscal year 1990; graduate education; plasma physics; graduate education: plasma science and technology; science education program; and Princeton Plasma Physics Laboratory reports fiscal year 1990.

  15. Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D SFederal8823 Revision 02AugustLaboratory Standard

  16. Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagnetic Argonne National Laboratory | 9700 South A

  17. Muncrief | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on77 PAGEMissionStressMoveMuncrief Ames Laboratory Profile Diane

  18. Sandia National Laboratories:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygenLaboratoryInnovation Portal SNL Site Map Printable

  19. Sandia National Laboratories: Agreements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygenLaboratoryInnovation Portal SNLLeadershipAgreements

  20. Sandia National Laboratories: Careers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygenLaboratoryInnovation Portal SNLLeadershipAgreementsCareers

  1. Sandia National Laboratories: Locations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygenLaboratoryInnovationEmployee &

  2. Sandia National Laboratories: News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygenLaboratoryInnovationEmployeeNews Detecting biothreat agents

  3. Sandia National Laboratories: Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygenLaboratoryInnovationEmployeeNewsPublications

  4. Sandia National Laboratories Problem

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis ofSample SULI Program StudentSandia National Laboratories

  5. Sandia National Laboratories Problem

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis ofSample SULI Program StudentSandia National LaboratoriesSandia

  6. aboesenb | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largestnamedGroup! !aboesenb Ames Laboratory

  7. andersoi | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifiesValidation of MFRSR Dataandersoi Ames Laboratory

  8. bastaw | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifiesValidation ofUV-RSSSummary5bastaw Ames Laboratory

  9. cbertoni | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifiesValidationENCOAL®April 8,9cbertoni Ames Laboratory

  10. dscomito | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos AlamosSimulationdetonation detectionDouglasdscomito Ames Laboratory

  11. haaland | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26th Annual ConferenceFall 2001,haaland Ames Laboratory Profile

  12. jiahao | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26th AnnualHistoryM aterials S cience a ndjiahao Ames Laboratory

  13. jwang | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26th AnnualHistoryM aterials S cience ajwang Ames Laboratory

  14. nalms | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26th AnnualHistoryMIII: TheJointCoupling, ,nalms Ames Laboratory

  15. nbarbee | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26th AnnualHistoryMIII:National Laboratory Research

  16. ndesilva | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26th AnnualHistoryMIII:National Laboratory

  17. rberrett | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26thI D- 6 0 4 2 r m m m m port mrberrett Ames Laboratory

  18. rfry | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26thI D- 6 0 4 2 r m m m m portrespondingrfry Ames Laboratory

  19. rofox | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26thI D- 6 0 4 2 r m m m mrofox Ames Laboratory Profile Rodney

  20. szhou | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26thI D- 6 0 4 2 r m m mDiurnalCarbonU C Lszhou Ames Laboratory

  1. witt | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26thI D- 6 0 4 2 r mReducingwhistleblower |witt Ames Laboratory

  2. xinyufu | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26thI D- 6 0 4 2 r mReducingwhistleblowerxinyufu Ames Laboratory

  3. Idaho National Laboratory April

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenry Bellamy, Ph.D.FoodHydropower,PrincipalIdaho National Laboratory

  4. Laboratory Policy Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse Bergkamp Graduate studentScience (SC)Planning Process Laboratory

  5. Diversity | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratory |Sector Full reportTown Hall Program BookDiversity

  6. Downloads | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratory |Sector FullDOE Office10 Jan 2005 toDownloads Topic

  7. Downloads | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratory |Sector FullDOE Office10 Jan 2005 toDownloads

  8. Downloads | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratory |Sector FullDOE Office10 Jan 2005 toDownloads Press

  9. Downloads | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratory |Sector FullDOE Office10 Jan 2005 toDownloads

  10. Downloads | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratory |Sector FullDOE Office10 Jan 2005

  11. Downloads | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratory |Sector FullDOE Office10 Jan 2005Downloads Topic -

  12. Downloads | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratory |Sector FullDOE Office10 Jan 2005Downloads Topic

  13. Downloads | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratory |Sector FullDOE Office10 Jan 2005Downloads

  14. Environmental Measurements Laboratory 1994 annual report

    SciTech Connect (OSTI)

    Chieco, N.A.; Krey, P.W.; Beck, H.L.

    1995-08-01

    This report summarizes the activities of the Environmental Measurements Laboratory (EML) for the calendar year 1994 and it serves as an annual report to the Director of the Office of Energy Research (ER), the Associate Director and staff of the Office of Health and Environmental Research (OHER), the manager and staff of the Chicago Field Office, and the authors colleagues. Emphasized are the progress and accomplishments of the year, rather than future plans or expectations. The technical summaries are grouped according to the following seven general program areas: environmental radiation and radioactivity; radiation transport and dosimetry; environmental radon, thoron, and related aerosols; atmospheric and surface pollutant studies related to global climate change; atmospheric chemistry; metrology, consultation, and emergency response; environmental management. EML`s mission is to address important scientific questions concerning human health and environmental impacts. Through its multidisciplinary staff, EML conducts experimental and theoretical research on radioactive and other energy-related pollutants, and provides DOE and other federal agencies with the in-house capability to respond effectively and efficiently with regard to quality assurance activities, environmental issues and related national security issues.

  15. Environmental Measurements Laboratory, annual report 1995

    SciTech Connect (OSTI)

    Krey, P.W.; Heit, M.

    1996-07-01

    This report summarizes the activities of the Environmental Measurements Laboratory (EML) for the calendar year 1995 and serves as an annual report to the Director of the Office of Energy Research (ER), the Associate Director and staff of the Office of Health and Environmental Research (OHER), the Manager and staff of the Chicago Operations Office, and our colleagues. Emphasized are the progress and accomplishments of the year, rather than future plans or expectations. The technical summaries are grouped according to the following seven research program areas: (1) Environmental Radiation and Radioactivity; (2) Radiation Transport and Dosimetry; (3) Environmental Radon, Thoron, and Related Aerosols; (4) Atmospheric and Surface Pollutant Studies Related to Global Climate Change; (5) Atmospheric Chemistry; and (6) Metrology, Consultation, and Emergency Response Environmental Management The mission of EML is to address important scientific questions concerning human health and environmental impacts. Through its multidisciplinary staff, EML conducts experimental and theoretical research on radioactive and other energy-related pollutants and provides DOE and other federal agencies with the in-house capability to respond effectively and efficiently with regard to quality assurance activities, environmental issues, and related national security issues.

  16. Pulsed atmospheric fluidized bed combustion

    SciTech Connect (OSTI)

    Not Available

    1992-08-01

    The general specifications for a Pulsed Atmospheric Fluidized Bed Combustor Design Report (PAFBC) plant are presented. The design tasks for the PAFBC are described in the following areas: Coal/Limestone preparation and feed system; pulse combustor; fluidized bed; boiler parts; and ash handling system.

  17. Critical phenomena in atmospheric precipitation

    E-Print Network [OSTI]

    Loss, Daniel

    LETTERS Critical phenomena in atmospheric precipitation OLE PETERS1,2,3 * AND J. DAVID NEELIN3 1 convection and precipitation (the order parameter)--with correlated regions on scales of tens to hundreds the climatological mean by an order of magnitude or more. Moist convection and the accompanying precipitation have

  18. PIA - Environmental Molecular Sciences Laboratory (EMSL) User...

    Energy Savers [EERE]

    Molecular Sciences Laboratory (EMSL) User System (ESU) PIA - Environmental Molecular Sciences Laboratory (EMSL) User System (ESU) PIA - Environmental Molecular Sciences Laboratory...

  19. Independent Oversight Review, Argonne National Laboratory - November...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Argonne National Laboratory - November 2011 Independent Oversight Review, Argonne National Laboratory - November 2011 November 2011 Review of the Argonne National Laboratory...

  20. GRADUATE AERONAUTICAL LABORATORIES CALIFORNIA INSTITUTE OF TECHNOLOGY

    E-Print Network [OSTI]

    Barr, Al

    Firestone Flight Sciences Laboratory Guggenheim Aeronautical Laboratory Karman Laboratory of Fluid Mechanics and Jet Propulsion Pasadena #12;Experiments and modeling of impinging laminar jets at moderate separation

  1. Paul Withers Lunar and Planetary Laboratory

    E-Print Network [OSTI]

    Withers, Paul

    /GFDL, the research areas of both the Weather and Atmospheric Dynamics and the Atmospheric Physics and Chemistry: Visiting Scientist Selection Committee Program in Atmospheric and Oceanic Sciences Princeton University;Atmospheric Tides My research aims are focused towards improving our understanding of atmospheric tides

  2. Overview of the United States Department of Energy's ARM (Atmospheric Radiation Measurement) Program

    SciTech Connect (OSTI)

    Stokes, G.M. ); Tichler, J.L. )

    1990-06-01

    The Department of Energy (DOE) is initiating a major atmospheric research effort, the Atmospheric Radiation Measurement Program (ARM). The program is a key component of DOE's research strategy to address global climate change and is a direct continuation of DOE's decade-long effort to improve the ability of General Circulation Models (GCMs) to provide reliable simulations of regional, and long-term climate change in response to increasing greenhouse gases. The effort is multi-disciplinary and multi-agency, involving universities, private research organizations and more than a dozen government laboratories. The objective of the ARM Research is to provide an experimental testbed for the study of important atmospheric effects, particularly cloud and radiative processes, and to test parameterizations of these processes for use in atmospheric models. This effort will support the continued and rapid improvement of GCM predictive capability. 2 refs.

  3. The impact of atmospheric aerosols on trace metal chemistry in open ocean surface seawater 3. Lead

    SciTech Connect (OSTI)

    Maring, H.B.; Duce, R.A. )

    1990-04-15

    Atmospheric aerosols collected at Enewetak Atoll in the tropical North Pacific were exposed to seawater in laboratory experiments to assess the impact of atmospheric aerosols on lead chemistry in surface seawater. The net atmospheric flux of soluble lead to the ocean is between 16 and 32 pmol cm{sup {minus}2}/yr at Enewetak. The stable lead isotopic composition of soluble aerosol lead indicates that it is of anthropogenic origin. Anthropogenic aerosol lead from Central and North America appears to be less soluble and/or to dissolve less rapidly than that from Asia. Dissolved organic matter and possibly lower pH appear to increase the nonaluminosilicate aerosol lead solubility and/or dissolution rate. The isotopic composition of lead in air, seawater and dry deposition suggests that after deposition in the ocean, nonaluminosilicate particulate lead can be reinjected into the atmosphere during sea salt aerosol production.

  4. Atmospheric,OceanicandSpaceSciences Atmospheric, Oceanic & Space Sciences

    E-Print Network [OSTI]

    Eustice, Ryan

    Research Areas High Energy Density Physics/Laboratory Astrophysics Magnetospheric & Ionosphere/Thermosphere Physics Planetary Magnetospheres Solar & Heliospheric Physics Space Weather Aeronomy For Faculty involved,Recipient, Department of Energy Early Career Award Margaret Kivelson, Member, National Academy of Sciences; Member

  5. National Laboratory]; Kim, Young Jin [Los Alamos National Laboratory...

    Office of Scientific and Technical Information (OSTI)

    EDM Abstract Not Provided Los Alamos National Laboratory (LANL) DOELANL United States 2014-11-05 English Conference Conference: Challenges of the worldwide experimental search...

  6. Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Dogliani, Harold O [Los Alamos National Laboratory

    2011-01-19

    The purpose of the briefing is to describe general laboratory technical capabilities to be used for various groups such as military cadets or university faculty/students and post docs to recruit into a variety of Los Alamos programs. Discussed are: (1) development and application of high leverage science to enable effeictive, predictable and reliability outcomes; (2) deter, detect, characterize, reverse and prevent the proliferation of weapons of mass destruction and their use by adversaries and terrorists; (3) modeling and simulation to define complex processes, predict outcomes, and develop effective prevention, response, and remediation strategies; (4) energetic materials and hydrodynamic testing to develop materials for precise delivery of focused energy; (5) materials cience focused on fundamental understanding of materials behaviors, their quantum-molecular properties, and their dynamic responses, and (6) bio-science to rapidly detect and characterize pathogens, to develop vaccines and prophylactic remedies, and to develop attribution forensics.

  7. ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY

    E-Print Network [OSTI]

    LBNL 58752 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Laboratory Evaluation of California. Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer. 3 #12;Abstract A testing program was undertaken at Lawrence Berkeley National Laboratory and an electric utility

  8. Space Science: Atmospheres Evolution of planets

    E-Print Network [OSTI]

    Johnson, Robert E.

    ;Atmospheres / Evolution Heat Sources Compressional Energy Trapped Radioactive Material Tidal InteractionsSpace Science: Atmospheres Part- 7a Evolution of planets Out-Gassing/ Volcanoes Evolution Initial Species Solar abundance Solar wind composition? Carbonaceous chondrites? Variables Early sun

  9. ATMOSPHERIC SCIENCE LETTERS Atmos. Sci. Let. (2012)

    E-Print Network [OSTI]

    Gerber, Edwin

    2012-01-01

    ATMOSPHERIC SCIENCE LETTERS Atmos. Sci. Let. (2012) Published online in Wiley Online Library using National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP) concentrations and sea- surface temperatures (SSTs). These integrations enable the relative role of ozone

  10. Equilibration of an atmosphere by geostrophic turbulence

    E-Print Network [OSTI]

    Jansen, Malte F. (Malte Friedrich)

    2013-01-01

    A major question for climate studies is to quantify the role of turbulent eddy fluxes in maintaining the observed atmospheric mean state. It has been argued that eddy fluxes keep the mid-latitude atmosphere in a state that ...

  11. Land and Atmospheric Science GRAD STUDENT HANDBOOK

    E-Print Network [OSTI]

    Minnesota, University of

    Land and Atmospheric Science GRAD STUDENT HANDBOOK 20142015 WELCOME Welcome to the Graduate Program in Land and Atmospheric Science at the University of Minnesota. It is a sciencebased interdisciplinary program focused on the fundamentals of Earth system processes related

  12. Atmospheric Chemistry and Air Pollution

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gaffney, Jeffrey S.; Marley, Nancy A.

    2003-01-01

    Atmospheric chemistry is an important discipline for understanding air pollution and its impacts. This mini-review gives a brief history of air pollution and presents an overview of some of the basic photochemistry involved in the production of ozone and other oxidants in the atmosphere. Urban air quality issues are reviewed with a specific focus on ozone and other oxidants, primary and secondary aerosols, alternative fuels, and the potential for chlorine releases to amplify oxidant chemistry in industrial areas. Regional air pollution issues such as acid rain, long-range transport of aerosols and visibility loss, and the connections of aerosols to ozonemore »and peroxyacetyl nitrate chemistry are examined. Finally, the potential impacts of air pollutants on the global-scale radiative balances of gases and aerosols are discussed briefly.« less

  13. National Renewable Energy Laboratory's Energy Systems Integration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Renewable Energy Laboratory's Energy Systems Integration Facility Overview National Renewable Energy Laboratory's Energy Systems Integration Facility Overview This...

  14. Occupational Medicine - Assistant PIA, Idaho National Laboratory...

    Energy Savers [EERE]

    Occupational Medicine - Assistant PIA, Idaho National Laboratory Occupational Medicine - Assistant PIA, Idaho National Laboratory Occupational Medicine - Assistant PIA, Idaho...

  15. Radar range measurements in the atmosphere.

    SciTech Connect (OSTI)

    Doerry, Armin Walter

    2013-02-01

    The earth's atmosphere affects the velocity of propagation of microwave signals. This imparts a range error to radar range measurements that assume the typical simplistic model for propagation velocity. This range error is a function of atmospheric constituents, such as water vapor, as well as the geometry of the radar data collection, notably altitude and range. Models are presented for calculating atmospheric effects on radar range measurements, and compared against more elaborate atmospheric models.

  16. Earth and Atmospheric Sciences | More Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Earth and Atmospheric Sciences Nuclear Forensics Climate & Environment Sensors and Measurements Chemical & Engineering Materials Computational Earth Science Systems Modeling...

  17. European underground laboratories: An overview

    E-Print Network [OSTI]

    Lino Miramonti

    2005-03-31

    Underground laboratories are complementary to those where the research in fundamental physics is made using accelerators. This report focus on the logistic and on the background features of the most relevant laboratories in Europe, stressing also on the low background facilities available. In particular the report is focus on the laboratories involved in the new Europeean project ILIAS with the aim to support the European large infrastructures operating in the astroparticle physics area.

  18. Atmospheric-pressure plasma jet

    DOE Patents [OSTI]

    Selwyn, Gary S. (Los Alamos, NM)

    1999-01-01

    Atmospheric-pressure plasma jet. A .gamma.-mode, resonant-cavity plasma discharge that can be operated at atmospheric pressure and near room temperature using 13.56 MHz rf power is described. Unlike plasma torches, the discharge produces a gas-phase effluent no hotter than 250.degree. C. at an applied power of about 300 W, and shows distinct non-thermal characteristics. In the simplest design, two concentric cylindrical electrodes are employed to generate a plasma in the annular region therebetween. A "jet" of long-lived metastable and reactive species that are capable of rapidly cleaning or etching metals and other materials is generated which extends up to 8 in. beyond the open end of the electrodes. Films and coatings may also be removed by these species. Arcing is prevented in the apparatus by using gas mixtures containing He, which limits ionization, by using high flow velocities, and by properly shaping the rf-powered electrode. Because of the atmospheric pressure operation, no ions survive for a sufficiently long distance beyond the active plasma discharge to bombard a workpiece, unlike low-pressure plasma sources and conventional plasma processing methods.

  19. LANL: Ion Beam Materials Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and materials synthesis through ion implantation technology, and radiation damage stud- ies in gases, liquids, and solids. The laboratory's core is a 3.2 MV tandem ion...

  20. Ray Bair | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    science, computational and laboratory research Large scale applications of high performance computing and communications News DOE creates new Center for Computational Materials...

  1. Training Program | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    To check out our resources on task-based systems, visit the Ames Laboratory Processes Training page. Training Schedule Training Catalog...

  2. US EPA Regional Laboratory Network

    E-Print Network [OSTI]

    LABORATORY NETWORK List of Acronyms AMD ............Acid Mine Drainage BNA..............Base/Neutrals and Acids Extractable Organics BMP.............Best Management Practice BOD .............Biological Oxygen

  3. A Recognized Leader in Marine & Atmospheric

    E-Print Network [OSTI]

    Miami, University of

    D/Masters Applied Marine Physics Marine & Atmospheric Chemistry Marine Affairs & Policy (Masters Only) MarineA Recognized Leader in Marine & Atmospheric Studies Our graduate program has over 250 students University of MiaMi rosenstiel school of Marine & atMospheric science #12;Miami Ranks #5: fDi Magazine's Top

  4. Atmospheric Lifetime of Fossil Fuel Carbon Dioxide

    E-Print Network [OSTI]

    Atmospheric Lifetime of Fossil Fuel Carbon Dioxide David Archer,1 Michael Eby,2 Victor Brovkin,3 released from combustion of fossil fuels equilibrates among the various carbon reservoirs of the atmosphere literature on the atmospheric lifetime of fossil fuel CO2 and its impact on climate, and we present initial

  5. Proof of the Atmospheric Greenhouse Effect

    E-Print Network [OSTI]

    Smith, Arthur P

    2008-01-01

    A recently advanced argument against the atmospheric greenhouse effect is refuted. A planet without an infrared absorbing atmosphere is mathematically constrained to have an average temperature less than or equal to the effective radiating temperature. Observed parameters for Earth prove that without infrared absorption by the atmosphere, the average temperature of Earth's surface would be at least 33 K lower than what is observed.

  6. Study of atmospheric pollution scavenging. Twenty-fourth progress report

    SciTech Connect (OSTI)

    Williams, A.L.

    1990-08-01

    Atmospheric scavenging research conducted by the Illinois State Water Survey under contract with the Department of Energy has been a significant factor in the historical development of the field of precipitation scavenging. Emphasis of the work during the 1980`s became focused on the problem of acid rain problem with the Survey being chosen as the Central Analytical Laboratory for sample analysis of the National Atmospheric Deposition Program National Trends Network (NADP/NTN). The DOE research was responsible for laying the groundwork from the standpoint of sampling and chemical analysis that has now become routine features of NADP/NTN. A significant aspect of the research has been the participation by the Water Survey in the MAP3S precipitation sampling network which is totally supported by DOE, is the longest continuous precipitation sampling network in existence, and maintains an event sampling protocol. The following review consists of a short description of each of the papers appearing in the Study of Atmospheric Scavenging progress reports starting with the Eighteenth Progress Report in 1980 to the Twenty- Third Progress Report in 1989. In addition a listing of the significant publications and interviews associated with the program are given in the bibliography.

  7. Atmospheric composition change - global and regional air quality

    E-Print Network [OSTI]

    2009-01-01

    in urban air. Atmospheric Chemistry and Physics 5, 2881–deep convective system. Atmospheric Chemistry and Physics 4,processes in atmospheric chemistry. Chemical Society Review

  8. Coupling of nitrous oxide and methane by global atmospheric chemistry

    E-Print Network [OSTI]

    Prather, MJ; Hsu, J

    2010-01-01

    supported by NSF’s Atmospheric Chemistry program (grant ATM-Methane by Global Atmospheric Chemistry Michael J. Prathergas, through atmospheric chemistry that en- hances the

  9. Formation mechanisms and quantification of organic nitrates in atmospheric aerosol

    E-Print Network [OSTI]

    Rollins, Andrew Waite

    2010-01-01

    and J. Viidanoja, Atmospheric chemistry of c 3 -c 6organic nitrates, Atmospheric Chemistry and Physics, 9 (4),organic aerosol yields, Atmospheric Chemistry and Physics

  10. 1997 Atmospheric Chemistry Colloquium for Emerging Senior Scientists

    SciTech Connect (OSTI)

    Paul H. Wine

    1998-11-23

    DOE's Atmospheric Chemistry Program is providing partial funding for the Atmospheric Chemistry Colloquium for Emerging Senior Scientists (ACCESS) and FY 1997 Gordon Research Conference in Atmospheric Chemistry

  11. Brian R. Strazisar $ National Energy Technology Laboratory, U.S. Department of

    E-Print Network [OSTI]

    Zhu, Chen

    global climate change and its link to growing atmospheric concentrations of carbon dioxide (CO2). An ever Division at the National Energy Tech- nology Laboratory. He has worked on several aspects of carbon sequestration science. His projects have focused on CO2 capture from power plants, sequestration in deep saline

  12. Beam Control and a New Laboratory Testbed for Adaptive Optics in a Maritime Environment

    E-Print Network [OSTI]

    in astronomical adaptive optics systems [5], [6]. Maritime beam control for shipboard applications and high energy1 Beam Control and a New Laboratory Testbed for Adaptive Optics in a Maritime Environment Capt methods for compensation of atmospheric turbulence in adaptive optics for use in a maritime environment

  13. Brookhaven National Laboratory/ PHOTON SCIENCES Subject: Frequently Asked Questions about Environmental Management Systems

    E-Print Network [OSTI]

    Homes, Christopher C.

    , radioactive, mixed, medical or industrial wastes · emissions into the atmosphere · liquid discharges · storage is to ensure that the Directorate does not impact the environment. Question 2 - What is BNL's Environmental with Laboratory operations that have the potential to create significant impact to the environment in or outside

  14. 28 LINCOLN LABORATORY JOURNAL n VOLUME 18, NUMBER 2, 2010 All-Weather

    E-Print Network [OSTI]

    Reuter, Martin

    the relatively high cloud-penetrating capability at microwave wave- lengths and the relatively sharp weighting resolution throughout the atmosphere [6]. Global simulation studies over ocean and land in clear and cloudy cloud penetration and high vertical resolution. » #12;VOLUME 18, NUMBER 2, 2010 n LINCOLN LABORATORY

  15. WOOD ANATOMY INSTRUCTIONS FOR LABORATORY

    E-Print Network [OSTI]

    Cufar, Katarina

    WOOD ANATOMY INSTRUCTIONS FOR LABORATORY WORK KATARINA CUFAR, MARTIN ZUPANCIC University of Ljubljana Biotechnical Faculty Department of Wood Science and Technology #12;Publisher Department of Wood The publishing of "Wood Anatomy - Instructions for Laboratory Work", a textbook by Katarina Cufar and Martin

  16. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-04-19

    The order establishes DOE requirements for laboratory directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation. Cancels DOE O 413.3A. Admin Chg 1, dated 1-31-11, cancels DOE O 413.2B. Certified 7-14-2011.

  17. Hybrid & Hydrogen Vehicle Research Laboratory

    E-Print Network [OSTI]

    Lee, Dongwon

    Hybrid & Hydrogen Vehicle Research Laboratory www.vss.psu.edu/hhvrl Joel R. Anstrom, Director 201 The Pennsylvania Transportation Institute Hybrid and Hydrogen Vehicle Research Laboratory will contribute to the advancement of hybrid and hydrogen vehicle technology to promote the emerging hydrogen economy by providing

  18. Pulsed atmospheric fluidized bed combustion

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The Design and Engineering of most components in the Pulsed Atmospheric Fluidized Bed System was completed prior to September 1992. The components remaining to be designed at that time were: Aerovalves for the Pulse Combustor; Gas and coal injectors for the Pulse Combustor; Lines for PC tailpipes; Air plenum and inlet silencer; Refractory lined hot gas duct connecting outlet hot cyclone to boiler; Structure and platforms, and ladders around PAFBC vessel access and major equipment. Design work is currently in progress on all of the above components. Items 1, 2, 3 and 4 are 50% completed, and items 5 6 are 75% complete.

  19. Unintended consequences of atmospheric injection of sulphate aerosols.

    SciTech Connect (OSTI)

    Brady, Patrick Vane; Kobos, Peter Holmes; Goldstein, Barry

    2010-10-01

    Most climate scientists believe that climate geoengineering is best considered as a potential complement to the mitigation of CO{sub 2} emissions, rather than as an alternative to it. Strong mitigation could achieve the equivalent of up to -4Wm{sup -2} radiative forcing on the century timescale, relative to a worst case scenario for rising CO{sub 2}. However, to tackle the remaining 3Wm{sup -2}, which are likely even in a best case scenario of strongly mitigated CO{sub 2} releases, a number of geoengineering options show promise. Injecting stratospheric aerosols is one of the least expensive and, potentially, most effective approaches and for that reason an examination of the possible unintended consequences of the implementation of atmospheric injections of sulphate aerosols was made. Chief among these are: reductions in rainfall, slowing of atmospheric ozone rebound, and differential changes in weather patterns. At the same time, there will be an increase in plant productivity. Lastly, because atmospheric sulphate injection would not mitigate ocean acidification, another side effect of fossil fuel burning, it would provide only a partial solution. Future research should aim at ameliorating the possible negative unintended consequences of atmospheric injections of sulphate injection. This might include modeling the optimum rate and particle type and size of aerosol injection, as well as the latitudinal, longitudinal and altitude of injection sites, to balance radiative forcing to decrease negative regional impacts. Similarly, future research might include modeling the optimum rate of decrease and location of injection sites to be closed to reduce or slow rapid warming upon aerosol injection cessation. A fruitful area for future research might be system modeling to enhance the possible positive increases in agricultural productivity. All such modeling must be supported by data collection and laboratory and field testing to enable iterative modeling to increase the accuracy and precision of the models, while reducing epistemic uncertainties.

  20. Natalie Marie Mahowald Department of Earth and Atmospheric Sciences

    E-Print Network [OSTI]

    Mahowald, Natalie

    in the Community Atmosphere Model: development of framework and impact on radiative forcing, Atmospheric Chemistry, Atmospheric Chemistry and 1 1 Natalie Marie Mahowald Department of Earth and Atmospheric Sciences Professor Director

  1. Regional Ecosystem-Atmosphere CO2 Exchange Via Atmospheric Budgets

    SciTech Connect (OSTI)

    Davis, K.J.; Richardson, S.J.; Miles, N.L.

    2007-03-07

    Inversions of atmospheric CO2 mixing ratio measurements to determine CO2 sources and sinks are typically limited to coarse spatial and temporal resolution. This limits our ability to evaluate efforts to upscale chamber- and stand-level CO2 flux measurements to regional scales, where coherent climate and ecosystem mechanisms govern the carbon cycle. As a step towards the goal of implementing atmospheric budget or inversion methodology on a regional scale, a network of five relatively inexpensive CO2 mixing ratio measurement systems was deployed on towers in northern Wisconsin. Four systems were distributed on a circle of roughly 150-km radius, surrounding one centrally located system at the WLEF tower near Park Falls, WI. All measurements were taken at a height of 76 m AGL. The systems used single-cell infrared CO2 analyzers (Licor, model LI-820) rather than the siginificantly more costly two-cell models, and were calibrated every two hours using four samples known to within ± 0.2 ppm CO2. Tests prior to deployment in which the systems sampled the same air indicate the precision of the systems to be better than ± 0.3 ppm and the accuracy, based on the difference between the daily mean of one system and a co-located NOAA-ESRL system, is consistently better than ± 0.3 ppm. We demonstrate the utility of the network in two ways. We interpret regional CO2 differences using a Lagrangian parcel approach. The difference in the CO2 mixing ratios across the network is at least 2?3 ppm, which is large compared to the accuracy and precision of the systems. Fluxes estimated assuming Lagrangian parcel transport are of the same sign and magnitude as eddy-covariance flux measurements at the centrally-located WLEF tower. These results indicate that the network will be useful in a full inversion model. Second, we present a case study involving a frontal passage through the region. The progression of a front across the network is evident; changes as large as four ppm in one minute are captured. Influence functions, derived using a Lagrangian Particle Dispersion model driven by the CSU Regional Atmospheric Modeling System and nudged to NCEP reanalysis meteorological fields, are used to determine source regions for the towers. The influence functions are combined with satellite vegetation observations to interpret the observed trends in CO2 concentration. Full inversions will combine these elements in a more formal analytic framework.

  2. Laboratory Directed Research and Development Program FY 2009 for Lawrence Berkeley National Laboratory

    E-Print Network [OSTI]

    Hansen, Todd C.

    2010-01-01

    Brookhaven national Laboratory, Upton, NY, USA. AFRD-Berkeley National Laboratory,” LBNL Report LBNL 2670-E,performed in the laboratory and in-situ at-wavelength,”

  3. Laboratory directed research development annual report. Fiscal year 1996

    SciTech Connect (OSTI)

    1997-05-01

    This document comprises Pacific Northwest National Laboratory`s report for Fiscal Year 1996 on research and development programs. The document contains 161 project summaries in 16 areas of research and development. The 16 areas of research and development reported on are: atmospheric sciences, biotechnology, chemical instrumentation and analysis, computer and information science, ecological science, electronics and sensors, health protection and dosimetry, hydrological and geologic sciences, marine sciences, materials science and engineering, molecular science, process science and engineering, risk and safety analysis, socio-technical systems analysis, statistics and applied mathematics, and thermal and energy systems. In addition, this report provides an overview of the research and development program, program management, program funding, and Fiscal Year 1997 projects.

  4. NIST Laboratory Programs and the National Voluntary Laboratory

    E-Print Network [OSTI]

    a "weighing design." Georgia Harris from this division provided the technical criteria for mass and volume from accredited laboratories to make decisions that affect safety, security, health and the environment

  5. Optical Characterization Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Optical Characterization Laboratory at the Energy Systems Integration Facility. The Optical Characterization Laboratory at NREL's Energy Systems Integration Facility (ESIF) conducts optical characterization of large solar concentration devices. Concentration solar power (CSP) mirror panels and concentrating solar systems are tested with an emphasis is on measurement of parabolic trough mirror panels. The Optical Characterization Laboratory provides state-of-the-art characterization and testing capabilities for assessing the optical surface quality and optical performance for various CSP technologies including parabolic troughs, linear Fresnel, dishes, and heliostats.

  6. ATMOSPHERIC CHEMISTRY IN GIANT PLANETS, BROWN DWARFS, AND LOW-MASS DWARF STARS. II. SULFUR AND PHOSPHORUS

    E-Print Network [OSTI]

    ATMOSPHERIC CHEMISTRY IN GIANT PLANETS, BROWN DWARFS, AND LOW-MASS DWARF STARS. II. SULFUR AND PHOSPHORUS Channon Visscher, Katharina Lodders, and Bruce Fegley, Jr. Planetary Chemistry Laboratory to model sulfur and phosphorus chemistry in giant planets, brown dwarfs, and extrasolar giant planets (EGPs

  7. National Laboratory Impacts and Developments

    Broader source: Energy.gov [DOE]

    The Technology-to-Market program supports U.S. Department of Energy (DOE) initiatives that make access to laboratory-developed technologies and capabilities easier and increase partnerships with the clean energy private sector.

  8. PHYSICS 122 LABORATORY (Winter, 2015)

    E-Print Network [OSTI]

    Yoo, S. J. Ben

    - 1 - PHYSICS 122 LABORATORY (Winter, 2015) COURSE GOALS 1. Learn how Tyson 514 Physics tyson@physics.ucdavis.edu 752-3830 Xiangdong Zhu 235 Physics zhu@physics.ucdavis.edu 752-4689 TEACHING ASSISTANTS: Andrew Bradshaw 518

  9. Laboratory compaction of cohesionless sands 

    E-Print Network [OSTI]

    Delphia, John Girard

    1998-01-01

    A total of 62 cohesiveness sands were tested to rographics. investigate the importance of the water content, grain size distribution, grading of the soil, particle shape, grain crushing during testing and laboratory compaction test method...

  10. Laboratory and New Mexico Consortium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    USDA awards 1 million eor e. coli research by Los Alamos National Laboratory and New Mexico Consortium February 29, 2012 LOS ALAMOS, New Mexico, February 29, 2012-Researchers from...

  11. Welcome to the Ames Laboratory

    SciTech Connect (OSTI)

    King, Alex

    2012-01-01

    Alex King, director of The Ames Laboratory, discusses the state of the Lab for 2011, the goals of the Lab and the importance of the research taking place here.

  12. Welcome to the Ames Laboratory

    ScienceCinema (OSTI)

    King, Alex

    2013-03-01

    Alex King, director of The Ames Laboratory, discusses the state of the Lab for 2011, the goals of the Lab and the importance of the research taking place here.

  13. Laboratory Experiments and their Applicability 

    E-Print Network [OSTI]

    Steinhaus, Thomas; Jahn, Wolfram

    2007-11-14

    In conjunction with the Dalmarnock Fire Tests a series of laboratory tests have been conducted at the BRE Centre for Fire Safety Engineering at the University of Edinburgh (UoE) in support of the large scale tests. These ...

  14. Laboratory directed research and development

    SciTech Connect (OSTI)

    Not Available

    1991-11-15

    The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory's R D capabilities, and further the development of its strategic initiatives. Among the aims of the projects supported by the Program are establishment of engineering proof-of-principle''; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these project are closely associated with major strategic thrusts of the Laboratory as described in Argonne's Five Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne. Areas of emphasis are (1) advanced accelerator and detector technology, (2) x-ray techniques in biological and physical sciences, (3) advanced reactor technology, (4) materials science, computational science, biological sciences and environmental sciences. Individual reports summarizing the purpose, approach, and results of projects are presented.

  15. High Energy Density Laboratory Plasmas

    E-Print Network [OSTI]

    High Energy Density Laboratory Plasmas General Plasma Science Developing founda/ons and advancing fundamental understanding #12;The High Energy Density developing innovative techniques to study the properties of instabilities in magnetized-high-energy-density

  16. Pulsed atmospheric fluidized bed combustion

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    The design of the Pulsed Atmospheric Fluidized Bed Combustor (PAFBC) as described in the Quarterly Report for the period April--June, 1992 was reviewed and minor modifications were included. The most important change made was in the coal/limestone preparation and feed system. Instead of procuring pre-sized coal for testing of the PAFBC, it was decided that the installation of a milling system would permit greater flexibility in the testing with respect to size distributions and combustion characteristics in the pulse combustor and the fluid bed. Particle size separation for pulse combustor and fluid bed will be performed by an air classifier. The modified process flow diagram for the coal/limestone handling system is presented in Figure 1. The modified process flow diagrams of the fluidized bed/steam cycle and ash handling systems are presented in Figures 2 and 3, respectively.

  17. Clinical Laboratory Scientist, Genetics Hamilton Regional Laboratory Medicine Program and McMaster University

    E-Print Network [OSTI]

    Thompson, Michael

    Clinical Laboratory Scientist, Genetics Hamilton Regional Laboratory Medicine Program and McMaster University Hamilton, Ontario, Canada Applications are invited from laboratory scientists interested in providing professional expertise for a large academic laboratory program serving the Central South region

  18. LABORATORY ASTROPHYSICS WHITE PAPER (BASED ON THE 2010 NASA LABORATORY ASTROPHYSICS WORKSHOP

    E-Print Network [OSTI]

    Savin, Daniel Wolf

    1 LABORATORY ASTROPHYSICS WHITE PAPER (BASED ON THE 2010 NASA LABORATORY ASTROPHYSICS WORKSHOP Federman, University of Toledo Paul Goldsmith, NASA Jet Propulsion Laboratory Caroline Kilbourne, NASA Ridge National Laboratory, LOC Chair Susanna Widicus Weaver, Emory University Additional contributions

  19. Mesoscale coupled ocean-atmosphere interaction

    E-Print Network [OSTI]

    Seo, Hyodae

    2007-01-01

    mesoscale oceanic features are current coarse resolutionmesoscale r current variability associated with oceanic ringthe TIW- currents. These mesoscale oceanic and atmospheric

  20. Mesoscale Coupled Ocean-Atmosphere Interaction

    E-Print Network [OSTI]

    Seo, Hyodae

    2007-01-01

    mesoscale oceanic features are current coarse resolutionmesoscale r current variability associated with oceanic ringthe TIW- currents. These mesoscale oceanic and atmospheric

  1. Physics Potential of Future Atmospheric Neutrino Searches

    E-Print Network [OSTI]

    Thomas Schwetz

    2008-12-12

    The potential of future high statistics atmospheric neutrino experiments is considered, having in mind currently discussed huge detectors of various technologies (water Cerekov, magnetized iron, liquid Argon). I focus on the possibility to use atmospheric data to determine the octant of $\\theta_{23}$ and the neutrino mass hierarchy. The sensitivity to the $\\theta_{23}$-octant of atmospheric neutrinos is competitive (or even superior) to long-baseline experiments. I discuss the ideal properties of a fictitious atmospheric neutrino detector to determine the neutrino mass hierarchy.

  2. 4, 497545, 2011 atmosphere-wildland

    E-Print Network [OSTI]

    Mandel, Jan

    by the coupling of a mesoscale weather 498 #12;GMDD 4, 497­545, 2011 Coupled atmosphere-wildland model WRF-Fire 3

  3. Impacts of Atmospheric Anthropogenic Nitrogen on the

    E-Print Network [OSTI]

    Ward, Bess

    discharges from wastewater treatment, atmospheric deposition, and so forth, resulting in increasing), including oxidized and reduced inorganic and organic forms. The availability of Nr limits primary pro

  4. Composition and Reactions of Atmospheric Aerosol Particles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on high-resolution scanning transmission x-ray images obtained at the ALS have revealed chemical reactions on and in atmospheric aerosol particles that caused particle growth...

  5. Atmospheric chemistry of an Antarctic volcanic plume

    E-Print Network [OSTI]

    2010-01-01

    ET AL. : EREBUS PLUME CHEMISTRY Horrocks, L. A. , C.et al. (2010), Atmospheric chemistry results from the ANTCI2007), Reactive halogen chemistry in volca- nic plumes, J.

  6. Energy Storage Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Energy Storage Laboratory at the Energy Systems Integration Facility. At NREL's Energy Storage Laboratory in the Energy Systems Integration Facility (ESIF), research focuses on the integration of energy storage systems (both stationary and vehicle-mounted) and interconnection with the utility grid. Focusing on battery technologies, but also hosting ultra-capacitors and other electrical energy storage technologies, the laboratory will provide all resources necessary to develop, test, and prove energy storage system performance and compatibility with distributed energy systems. The laboratory will also provide robust vehicle testing capability, including a drive-in environmental chamber, which can accommodate commercial-sized hybrid, electric, biodiesel, ethanol, compressed natural gas, and hydrogen fueled vehicles. The Energy Storage Laboratory is designed to ensure personnel and equipment safety when testing hazardous battery systems or other energy storage technologies. Closely coupled with the research electrical distribution bus at ESIF, the Energy Storage Laboratory will offer megawatt-scale power testing capability as well as advanced hardware-in-the-loop and model-in-the-loop simulation capabilities. Some application scenarios are: The following types of tests - Performance, Efficiency, Safety, Model validation, and Long duration reliability. (2) Performed on the following equipment types - (a) Vehicle batteries (both charging and discharging V2G); (b) Stationary batteries; (c) power conversion equipment for energy storage; (d) ultra- and super-capacitor systems; and (e) DC systems, such as commercial microgrids.

  7. National Renewable Energy Laboratory Analysis Capabilities

    E-Print Network [OSTI]

    National Renewable Energy Laboratory Analysis Capabilities Overview The National Renewable Energy Laboratory (NREL) is the nation's primary laboratory for renewable energy and energy efficiency research and development (R&D). NREL

  8. Laborlandschaft : redesigning the industrial laboratory module

    E-Print Network [OSTI]

    Farley, Alexander H. (Alexander Hamilton)

    2014-01-01

    This thesis proposes to redesign the industrial pharmaceutical laboratory typology by rethinking the composition of the laboratory module; the smallest functional sub-unit of the laboratory type. The design for this thesis ...

  9. MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY

    E-Print Network [OSTI]

    Poggio, Tomaso

    MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY and CENTER FOR BIOLOGICAL and Applications Gideon P. Stein Amnon Shashua Artificial Intelligence Laboratory Institute of Computer Science MIT of Technology, 1995 This report describes research done at the Artificial Intelligence Laboratory

  10. MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY

    E-Print Network [OSTI]

    Poggio, Tomaso

    MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY and CENTER FOR BIOLOGICAL and Computa­ tional Learning, and the Artificial Intelligence Laboratory of the Massachusetts Institute for the laboratory's artificial intelligence research is provided in part by the Advanced Research Projects Agency

  11. THE BUREAU OF COMMERCIAL FISHERIES BIOLOGICAL LABORATORY

    E-Print Network [OSTI]

    THE BUREAU OF COMMERCIAL FISHERIES BIOLOGICAL LABORATORY OXFORD, MARYLAND: PROGRAMS OF COMMERCIAL FISHERIES BIOLOGICAL LABORATORY OXFORD, MARYLAND: PROGRAMS AND PERSPECTIVES Circular 200 Washington, D.C. October 1964 #12;Cover Photo: The Bureau of Commercial Fisheries Biological Laboratory

  12. AERONAUTICS The Guggenheim Aeronautical Laboratory, the Karman

    E-Print Network [OSTI]

    AERONAUTICS The Guggenheim Aeronautical Laboratory, the Karman Laboratory of Fluid Mechanics in fluid dynamics and mechanics of solids and materials. Research at GALCIT has traditionally pio- neered and Jet Propulsion, and the Firestone Flight Sciences Laboratory form the Graduate Aeronautical

  13. AERONAUTICS The Guggenheim Aeronautical Laboratory, the Krmn

    E-Print Network [OSTI]

    AERONAUTICS The Guggenheim Aeronautical Laboratory, the Kármán Laboratory of Fluid Mechanics in fluid dynamics and mechanics of solids and materials. Educational and research thrusts include and Jet Propulsion, and the Firestone Flight Sciences Laboratory form the Graduate Aeronautical

  14. AERONAUTICS The Guggenheim Aeronautical Laboratory, the Krmn

    E-Print Network [OSTI]

    AERONAUTICS The Guggenheim Aeronautical Laboratory, the Kármán Laboratory of Fluid Mechanics and Jet Propulsion, and the Firestone Flight Sciences Laboratory form the Graduate Aeronautical the broad field known as aeronautics and space engineering. Areas of Research Aeronautics has evolved

  15. Response of global soil consumption of atmospheric methane to changes in atmospheric climate and nitrogen deposition

    E-Print Network [OSTI]

    Zhuang, Qianlai

    Soil consumption of atmospheric methane plays an important secondary role in regulating the atmospheric CH4 budget, next to the dominant loss mechanism involving reaction with the hydroxyl radical (OH). Here we used a ...

  16. www.yorku.ca/research Ergonomics Laboratory

    E-Print Network [OSTI]

    www.yorku.ca/research Ergonomics Laboratory -- Biomechanics At York School of Kinesiology Salas The Ergonomics Laboratory creates healthier workplaces by reducing individuals' risk of developing

  17. Enterprise Assessments Targeted Review, Idaho National Laboratory...

    Broader source: Energy.gov (indexed) [DOE]

    Laboratory Fire Protection Program as Implemented at the Irradiated Materials Characterization Laboratory The Office of Nuclear Safety and Environmental Assessments, within the...

  18. Independent Oversight Review, Los Alamos National Laboratory...

    Office of Environmental Management (EM)

    Laboratory - December 2013 December 2013 Review of the Technical Area 55 Safety Class Fire Suppression System at Los Alamos National Laboratory This report documents the...

  19. Enforcement Letter, Lawrence Livermore National Laboratory -...

    Energy Savers [EERE]

    National Laboratory - November 5, 1999 Enforcement Letter, EG&G Mound Applied Technologies - August 22, 1996 Enforcement Letter, Brookhaven National Laboratory - December 18, 1996...

  20. Brookhaven National Laboratory Federal Facility Agreement, February...

    Office of Environmental Management (EM)

    Brookhaven National Laboratory Agreement Name Brookhaven National Laboratory Federal Facility Agreement Under CERCLA Section 120, February 28, 1992 State New York Agreement Type...

  1. National Laboratory Research and Development Funding Opportunities

    Broader source: Energy.gov [DOE]

    Through the National Laboratory Research and Development program, DOE supports research and development and core capabilities at its national laboratories to accelerate progress toward achieving...

  2. Sandia National Laboratories: Research: Facilities: Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Detection Materials Characterization Laboratory This facility provides assistance to users from federal laboratories, U.S. industry and academia in the following areas:...

  3. National Renewable Energy Laboratory Report Identifies Research...

    Energy Savers [EERE]

    National Renewable Energy Laboratory Report Identifies Research Needed to Address Power Market Design Challenges National Renewable Energy Laboratory Report Identifies Research...

  4. Laboratories Jared L. Cohon, co-chair

    Energy Savers [EERE]

    Integrated Nanotechnologies (CINT), (400 users with Sandia National Laboratories) Lujan Neutron Scattering Center (LANSCE), (150 users) National High Magnetic Field Laboratory...

  5. MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY

    E-Print Network [OSTI]

    Poggio, Tomaso

    MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY and CENTER FOR BIOLOGICAL and Cognitive Sciences and the Artificial Intelligence Laboratory at the Massachusetts Institute of Technology

  6. MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY

    E-Print Network [OSTI]

    Poggio, Tomaso

    MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY and CENTER FOR BIOLOGICAL and the Artificial Intelligence Laboratory of the Massachusetts Institute of Technology. This research was sponsored

  7. MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY

    E-Print Network [OSTI]

    Poggio, Tomaso

    MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY and CENTER FOR BIOLOGICAL for Biological and Computational Learning and the Artificial Intelligence Laboratory of the Massachusetts

  8. Independent Oversight Review, Los Alamos National Laboratory...

    Energy Savers [EERE]

    Los Alamos National Laboratory - January 2013 Independent Oversight Review, Los Alamos National Laboratory Chemistry and Metallurgy Research Facility - January 2012 Waste...

  9. Enterprise Assessments, Oak Ridge National Laboratory Irradiated...

    Broader source: Energy.gov (indexed) [DOE]

    of the Safety-Significant Ventilation Systems at the Irradiated Fuels Examination Laboratory Operated by UT-Battelle for the Oak Ridge National Laboratory Office of Science The...

  10. ORISE: Beryllium laboratory achieves accreditation from College...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beryllium laboratory achieves accreditation from College of American Pathologists ORISE beryllium laboratory in Oak Ridge accredited for the third time since 2009 FOR IMMEDIATE...

  11. Independent Oversight Inspection, Oak Ridge National Laboratory...

    Energy Savers [EERE]

    Inspection, Oak Ridge National Laboratory - October 2008 Independent Oversight Inspection, Oak Ridge National Laboratory - October 2008 October 2008 Inspection of Nuclear Safety at...

  12. Laboratory Performance Testing of Residential Window Mounted...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory Performance Testing of Residential Window Mounted Air Conditioners Laboratory Performance Testing of Residential Window Mounted Air Conditioners This presentation was...

  13. Enterprise Assessments Targeted Review, Argonne National Laboratory...

    Energy Savers [EERE]

    Targeted Review, Argonne National Laboratory - November 2014 Enterprise Assessments Targeted Review, Argonne National Laboratory - November 2014 November 2014 Review of the...

  14. Independent Oversight Review, Lawrence Livermore National Laboratory...

    Office of Environmental Management (EM)

    Lawrence Livermore National Laboratory - July 2013 Independent Oversight Review, Lawrence Livermore National Laboratory - July 2013 July 2013 Review of Preparedness for Severe...

  15. Independent Oversight Review, Los Alamos National Laboratory...

    Energy Savers [EERE]

    Los Alamos National Laboratory - April 2012 Independent Oversight Review, Los Alamos National Laboratory - April 2012 April 2012 Review of the Consequence Assessment Program at the...

  16. Independent Oversight Review, Oak Ridge National Laboratory ...

    Energy Savers [EERE]

    Review, Oak Ridge National Laboratory - January 2013 Independent Oversight Review, Oak Ridge National Laboratory - January 2013 January 2013 Review of the Oak Ridge National...

  17. Reclassification of the Tritium Research Laboratory

    SciTech Connect (OSTI)

    Johnson, A.J.

    1997-01-01

    This document is a collection of the required actions that were taken to reclassify Building 968, the Tritium Research Laboratory, at Sandia National Laboratories/California.

  18. Independent Oversight Review, Los Alamos National Laboratory...

    Energy Savers [EERE]

    Review, Los Alamos National Laboratory - September 2011 Independent Oversight Review, Los Alamos National Laboratory Chemistry and Metallurgy Research Facility - January 2012...

  19. Independent Activity Report, Lawrence Livermore National Laboratory...

    Office of Environmental Management (EM)

    Laboratory - March 2011 March 2011 Lawrence Livermore National Laboratory Chronic Beryllium Disease Prevention Program Effectiveness Review HIAR-LLNL-2011-03-25 This...

  20. Regional forecasting with global atmospheric models; Third year report

    SciTech Connect (OSTI)

    Crowley, T.J.; North, G.R.; Smith, N.R.

    1994-05-01

    This report was prepared by the Applied Research Corporation (ARC), College Station, Texas, under subcontract to Pacific Northwest Laboratory (PNL) as part of a global climate studies task. The task supports site characterization work required for the selection of a potential high-level nuclear waste repository and is part of the Performance Assessment Scientific Support (PASS) Program at PNL. The work is under the overall direction of the Office of Civilian Radioactive Waste Management (OCRWM), US Department of Energy Headquarters, Washington, DC. The scope of the report is to present the results of the third year`s work on the atmospheric modeling part of the global climate studies task. The development testing of computer models and initial results are discussed. The appendices contain several studies that provide supporting information and guidance to the modeling work and further details on computer model development. Complete documentation of the models, including user information, will be prepared under separate reports and manuals.

  1. Laboratory Directed Research and Development 1998 Annual Report

    SciTech Connect (OSTI)

    Pam Hughes; Sheila Bennett eds.

    1999-07-14

    The Laboratory's Directed Research and Development (LDRD) program encourages the advancement of science and the development of major new technical capabilities from which future research and development will grow. Through LDRD funding, Pacific Northwest continually replenishes its inventory of ideas that have the potential to address major national needs. The LDRD program has enabled the Laboratory to bring to bear its scientific and technical capabilities on all of DOE's missions, particularly in the arena of environmental problems. Many of the concepts related to environmental cleanup originally developed with LDRD funds are now receiving programmatic support from DOE, LDRD-funded work in atmospheric sciences is now being applied to DOE's Atmospheric Radiation Measurement Program. We also have used concepts initially explored through LDRD to develop several winning proposals in the Environmental Management Science Program. The success of our LDRD program is founded on good management practices that ensure funding is allocated and projects are conducted in compliance with DOE requirements. We thoroughly evaluate the LDRD proposals based on their scientific and technical merit, as well as their relevance to DOE's programmatic needs. After a proposal is funded, we assess progress annually using external peer reviews. This year, as in years past, the LDRD program has once again proven to be the major enabling vehicle for our staff to formulate new ideas, advance scientific capability, and develop potential applications for DOE's most significant challenges.

  2. Welcome to ! The Laboratory for !

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    Center for Lunar Dust and Atmospheric Studies (CCLDAS)! 6 #12;" CISM: The Center for Integrated to models, as well as technology exchange opportunities and fellowships. · Allows CISM scientists their needs to the CISM scientists. Partners include Lockheed Martin, Ball Aerospace, Boeing, Metatech

  3. ATMOSPHERIC SCIENCE LETTERS Atmos. Sci. Let. (2013)

    E-Print Network [OSTI]

    Lee, Sukyoung

    2013-01-01

    ATMOSPHERIC SCIENCE LETTERS Atmos. Sci. Let. (2013) Published online in Wiley Online Library Sciences, Seoul National University, Seoul, South Korea *Correspondence to: C. Yoo, Center for Atmosphere). A number of studies have shown that the MJO plays an important role in modulating the extratropical cir

  4. Stellar Atmospheres, Ht 2007 Problem Set 1

    E-Print Network [OSTI]

    Korn, Andreas

    Stellar Atmospheres, Ht 2007 Problem Set 1 Due date: Monday, 24 September 2007 at 10.15 1. LTE of how temperature is defined. (b) Where in the solar atmosphere would you expect the strongest for the photosphere? (c) How does the relation between matter and radiation differ between LTE and NLTE? What must

  5. Results from the Phoenix Atmospheric Structure Experiment

    E-Print Network [OSTI]

    Withers, Paul

    Results from the Phoenix Atmospheric Structure Experiment Paul Withers1 and David Catling2 (1 and atmospheric structure reconstruction for Phoenix · Highlight selected aspects of Phoenix reconstruction reconstruction for Phoenix · Highlight selected aspects of Phoenix reconstruction that offer lessons for future

  6. Geochemistry of Surface-Atmosphere Interactions on

    E-Print Network [OSTI]

    Withers, Paul

    , T, and atmospheric composition ¥ ...Kinetics ¥ What are the major minerals? ¥ What is the oxidation of terrestrial alkaline igneous rocks #12;Oxidation State of the Surface ¥ 2CO + O2 = 2CO2 controls O2 ¥ Lack. ¥ S in lower atmosphere is kinetically controlled ¥ CaCO3 + SO2 = CaSO4 + CO removes SO2 , deposits CaSO4 ¥ Fe

  7. Design of a differential radiometer for atmospheric radiative flux measurements

    SciTech Connect (OSTI)

    LaDelfe, P.C.; Weber, P.G.; Rodriguez, C.W.

    1994-11-01

    The Hemispherical Optimized NEt Radiometer (HONER) is an instrument under development at the Los Alamos National Laboratory for deployment on an unmanned aerospace vehicle as part of the Atmospheric Radiation Measurements (ARM/UAV) program. HONER is a differential radiometer which will measure the difference between the total upwelling and downwelling fluxes and is intended to provide a means of measuring the atmospheric radiative flux divergence. Unlike existing instruments which measure the upwelling and downwelling fluxes separately, HONER will achieve an optical difference by chopping the two fluxes alternately onto a common pyroelectric detector. HONER will provide data resolved into two spectral bands; one covering the solar dominated region from less than 0.4 micrometer to approximately 4.5 micrometers and the other covering the region from approximately 4.5 micrometers to greater than 50 micrometers, dominated by thermal radiation. The means of separating the spectral regions guarantees seamless summation to calculate the total flux. The fields-of-view are near-hemispherical, upward and downward. The instrument can be converted, in flight, from the differential mode to absolute mode, measuring the upwelling and downwelling fluxes separately and simultaneously. The instrument also features continuous calibration from on-board sources. We will describe the design and operation of the sensor head and the on-board reference sources as well as the means of deployment.

  8. Atmospheric sampling glow discharge ionization source

    DOE Patents [OSTI]

    McLuckey, S.A.; Glish, G.L.

    1989-07-18

    An atmospheric sampling glow discharge ionization source that can be used in combination with an analytical instrument which operates at high vacuum, such as a mass spectrometer. The atmospheric sampling glow discharge ionization source comprises a chamber with at least one pair of electrodes disposed therein, an inlet for a gaseous sample to be analyzed and an outlet communicating with an analyzer which operates at subatmospheric pressure. The ionization chamber is maintained at a pressure below atmospheric pressure, and a voltage difference is applied across the electrodes to induce a glow discharge between the electrodes, so that molecules passing through the inlet are ionized by the glow discharge and directed into the analyzer. The ionization source accepts the sample under atmospheric pressure conditions and processes it directly into the high vacuum instrument, bridging the pressure gap and drawing off unwanted atmospheric gases. The invention also includes a method for analyzing a gaseous sample using the glow discharge ionization source described above. 3 figs.

  9. Argonne National Laboratory 1985 publications

    SciTech Connect (OSTI)

    Kopta, J.A.; Hale, M.R.

    1987-08-01

    This report is a bibliography of scientific and technical 1985 publications of Argonne National Laboratory. Some are ANL contributions to outside organizations' reports published in 1985. This compilation, prepared by the Technical Information Services Technical Publications Section (TPB), lists all nonrestricted 1985 publications submitted to TPS by Laboratory's Divisions. The report is divided into seven parts: Journal Articles - Listed by first author, ANL Reports - Listed by report number, ANL and non-ANL Unnumbered Reports - Listed by report number, Non-ANL Numbered Reports - Listed by report number, Books and Book Chapters - Listed by first author, Conference Papers - Listed by first author, Complete Author Index.

  10. Studying atmosphere-dominated hot Jupiter Kepler phase curves: Evidence that inhomogeneous atmospheric reflection is common

    E-Print Network [OSTI]

    Shporer, Avi

    2015-01-01

    We identify 3 Kepler transiting planet systems, Kepler-7, Kepler-12, and Kepler-41, whose orbital phase-folded light curves are dominated by planetary atmospheric processes including thermal emission and reflected light, while the impact of non-atmospheric (i.e. gravitational) processes, including beaming (Doppler boosting) and tidal ellipsoidal distortion, is negligible. Therefore, those systems allow a direct view of their atmospheres without being hampered by the approximations used in the inclusion of both atmospheric and non-atmospheric processes when modeling the phase curve shape. Here we analyze Kepler-12b and Kepler-41b atmosphere based on their Kepler phase curve, while the analysis of Kepler-7b was presented elsewhere. The model we used efficiently computes reflection and thermal emission contributions to the phase curve, including inhomogeneous atmospheric reflection due to longitudinally varying cloud coverage. We confirm Kepler-12b and Kepler-41b show a westward phase shift between the brightest...

  11. Flow Cytometry Laboratory 7703 Floyd Curl Drive

    E-Print Network [OSTI]

    Nicholson, Bruce J.

    Flow Cytometry Laboratory 7703 Floyd Curl Drive San Antonio, Tx. 78229 Customer Satisfaction Survey Dear UTHSCSA Flow Cytometry Laboratory User: As a College of American Pathologist (CAP) accredited Laboratory, the UTHSCSA Flow Cytometry Laboratory is sending this survey to our client as an aid in our

  12. Biomass Surface Characterization Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01

    This fact sheet provides information about Biomass Surface Characterization Laboratory capabilities and applications at NREL.

  13. BUREAU OF COMMERCIAL FISHERIES TECHNOLOGICAL LABORATORY,

    E-Print Network [OSTI]

    ~~ BUREAU OF COMMERCIAL FISHERIES TECHNOLOGICAL LABORATORY, SEATTLE, WASHINGTON, FOR FISCAL YEAR Laboratory, Seattle, Washington, for Fiscal Year Ending June 30, 1967 MAYNARD A. STEINBERG, Laboratory Director JOHN A. DASSOW, As sistant Laboratory Director Circular 326 Washington, D.C. Decem.ber 1969 #12

  14. 205:20130828.1126 Dust Accelerator Laboratory

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    205:20130828.1126 Dust Accelerator Laboratory Through the Dust Accelerator Laboratory, LASP, and laboratory experiments. Our goal is to address basic physical and applied exploration questions, including Laboratory is home to world-class facilities, including the largest dust accelerator in the world

  15. The Woods Hole Laboratory, 1885-1985

    E-Print Network [OSTI]

    The Woods Hole Laboratory, 1885-1985: A Century of Service Woods Hole Laboratory Northeast, Lectures, and Rededication of the Woods Hole Laboratory Contents Foreword and Acknowledgments Committees and Contributions of the Woods Hole Fisheries Laboratory Centennial Lecture II: The MBL and the Fisheries-A Century

  16. Appendix C.1 THE LEAD LABORATORY

    E-Print Network [OSTI]

    Appendix C.1 THE LEAD LABORATORY By PATRICK J. PARSONS, Ph.D.1 J. JULIAN CHISOLM, JR., M.D.2 Role of the Laboratory Laboratories measure lead concentrations in either clinical samples between the clinical and environmental lead laboratories and the issues that they face. Often

  17. Curriculum Laboratory Careers Teaching Materials

    E-Print Network [OSTI]

    Burg, Theresa

    1 Curriculum Laboratory Careers Teaching Materials For further assistance using any of the resources in the Lab, please ask at the Curriculum Lab Information Services Desk. Visit our site through U RELEVANT CURRICULUM PUBLICATIONS 3) FIND RESOURCES RECOMMENDED BY ALBERTA EDUCATION 4) FIND RELATED

  18. CHEMICAL LABORATORY SAFETY AND METHODOLOGY

    E-Print Network [OSTI]

    Northern British Columbia, University of

    CHEMICAL LABORATORY SAFETY AND METHODOLOGY MANUAL August 2013 #12;ii Emergency Numbers UNBC Prince-Emergency Numbers UNBC Prince George Campus Chemstores 6472 Chemical Safety 6472 Radiation Safety 6472 Biological the safe use, storage, handling, waste and emergency management of chemicals on the University of Northern

  19. Central Clinical Facilities Clinical Laboratory ----------------------------------------------------------------------------------------

    E-Print Network [OSTI]

    Miyashita, Yasushi

    conditions ·Investigation of brain function using magnetoencephalography Laboratory automation system -------------------------------------------------------------------------------------------- http://www.h.u-tokyo.ac.jp/patient/depts/syujutsu.html Operating rooms were centralized as a surgical of operations has been remarkably increasing. Another new central building including new operating rooms

  20. Laboratory Waste Disposal HAZARDOUS GLASS

    E-Print Network [OSTI]

    Sheridan, Jennifer

    Laboratory Waste Disposal HAZARDOUS GLASS Items that could cut or puncture skin or trash- can without any treatment. Hazardous Glass and Plastic: Items that can puncture, cut or scratch if disposed a significant hazard. Bags of misc. plasticware that has been autoclaved to remove bio contamination. Syringe

  1. LABORATORY IV CONSERVATION OF ENERGY

    E-Print Network [OSTI]

    Minnesota, University of

    Lab IV - 1 LABORATORY IV CONSERVATION OF ENERGY In this lab you will begin to use the principle of conservation of energy to determine the motion resulting from interactions that are difficult to analyze using force concepts alone. You will explore how conservation of energy is applied to real interactions. Keep

  2. The National Voluntary Laboratory Accreditation

    E-Print Network [OSTI]

    of products · An operator of a certification program 2An Introduction to NVLAP (rev. 2010-10-29) #12;NVLAP CFR Part 285) · Linked to NIST measurement research · Operates in accordance with ISO/IEC standards · ISO/IEC 17011 (for Accrediting Bodies) · ISO/IEC 17025 (for Laboratories) · Accreditation available

  3. LABORATORY VI ELECTRICITY FROM MAGNETISM

    E-Print Network [OSTI]

    Minnesota, University of

    LABORATORY VI ELECTRICITY FROM MAGNETISM Lab VI - 1 In the previous problems you explored by electric currents. This lab will carry that investigation one step further, determining how changing magnetic fields can give rise to electric currents. This is the effect that allows the generation

  4. LABORATORY VI ELECTRICITY FROM MAGNETISM

    E-Print Network [OSTI]

    Minnesota, University of

    LABORATORY VI ELECTRICITY FROM MAGNETISM Lab VI - 1 In the previous problems you explored the magnetic field and its effect on moving charges. You also saw how electric currents could create magnetic can give rise to electric currents. This is the effect that allows the generation of electricity

  5. Laboratories to Explore, Explain VLBACHANDRA

    E-Print Network [OSTI]

    &D activities on BPX, TPX and ITER. Advanced Energy Systems Argonne National Laboratory Bechtel Technology University of Illinois University of Wisconsin #12;NSO/FIRE Community Involvement (FY-99) A Proactive NSO/FIRE Outreach Program has been undertaken to solicit comments and suggestions from the community on the next

  6. Laboratory Directed Research and Development Program FY 2007

    SciTech Connect (OSTI)

    Hansen, Todd C; editor, Todd C Hansen,

    2008-03-12

    Report on Ernest Orlando Lawrence Berkeley National Laboratory Laboratory Directed Research and Development Program FY 2007

  7. Composition and Reactions of Atmospheric Aerosol Particles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    particles remain in the atmosphere can have a huge impact on the global climate. Measurements based on high-resolution scanning transmission x-ray images obtained at the ALS...

  8. Transport impacts on atmosphere and climate: Aviation

    E-Print Network [OSTI]

    2010-01-01

    Environment 44 (2010) 4678–4734 Brunner, D. , Staehelin,Environment 44 (2010) 4678–4734 Vedantham, A. , Wuebbles,Environment 44 (2010) 4678–4734 global atmosphere’. In:

  9. Optical Intensity Interferometry through Atmospheric Turbulence

    E-Print Network [OSTI]

    Peng Kian Tan; Aik Hui Chan; Christian Kurtsiefer

    2015-12-29

    Conventional ground-based astronomical observations suffer from image distortion due to atmospheric turbulence. This can be minimized by choosing suitable geographic locations or adaptive optical techniques, and avoided altogether by using orbital platforms outside the atmosphere. One of the promises of optical intensity interferometry is its independence from atmospherically induced phase fluctuations. By performing narrowband spectral filtering on sunlight and conducting temporal intensity interferometry using actively quenched avalanche photon detectors (APDs), the Solar $g^{(2)}(\\tau)$ signature was directly measured. We observe an averaged photon bunching signal of $g^{(2)}(\\tau) = 1.693 \\pm 0.003$ from the Sun, consistently throughout the day despite fluctuating weather conditions, cloud cover and elevation angle. This demonstrates the robustness of the intensity interferometry technique against atmospheric turbulence and opto-mechanical instabilities, and the feasibility to implement measurement schemes with both large baselines and long integration times.

  10. HYPERsensarium : an archive of atmospheric conditions

    E-Print Network [OSTI]

    Shaw, Kelly E. (Kelly Evelyn)

    2013-01-01

    HYPERsensarium proposes a tangible interface of atmospheres for public experience through an archive of historical and projected weathers. While architecture's purpose has long been to act as the technical boundary between ...

  11. Uraninite and Fullerene in Atmospheric Particulates

    E-Print Network [OSTI]

    Utsunomiya, Satoshi

    incineration, uranium mining, and atmospheric testing of nuclearweapons-burning power plants typically contain very small amounts of uranium ( concentrations, the form of the uranium has been unknown. Using a variety of advanced electron microscopy

  12. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResource andfirstDeviceLabLabor

  13. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResource andfirstDeviceLabLaborperformance computer system

  14. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResource andfirstDeviceLabLaborperformance computer

  15. Fehner and Gosling, Atmospheric Nuclear Weapons Testing, 1951...

    Energy Savers [EERE]

    Atmospheric Nuclear Weapons Testing, 1951-1963. Battlefield of the Cold War: The Nevada Test Site, Volume I Fehner and Gosling, Atmospheric Nuclear Weapons Testing, 1951-1963....

  16. The faculty and students in the Atmospheric Sciences Department use physics, chemistry, and mathematics to better understand the atmosphere

    E-Print Network [OSTI]

    Doty, Sharon Lafferty

    The faculty and students in the Atmospheric Sciences Department use physics, chemistry chemistry Atmospheric fluid dynamics Biosphere interactions Climate variability Clouds & storms Radiative, and mathematics to better understand the atmosphere and improve the prediction of its future state, both over

  17. Atmospheric State, Cloud Microphysics and Radiative Flux

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mace, Gerald

    2008-01-15

    Atmospheric thermodynamics, cloud properties, radiative fluxes and radiative heating rates for the ARM Southern Great Plains (SGP) site. The data represent a characterization of the physical state of the atmospheric column compiled on a five-minute temporal and 90m vertical grid. Sources for this information include raw measurements, cloud property and radiative retrievals, retrievals and derived variables from other third-party sources, and radiative calculations using the derived quantities.

  18. Air Activation Following an Atmospheric Explosion

    SciTech Connect (OSTI)

    Lowrey, Justin D.; McIntyre, Justin I.; Prichard, Andrew W.; Gesh, Christopher J.

    2013-03-13

    In addition to thermal radiation and fission products, nuclear explosions result in a very high flux of unfissioned neutrons. Within an atmospheric nuclear explosion, these neutrons can activate the various elemental components of natural air, potentially adding to the radioactive signature of the event as a whole. The goal of this work is to make an order-of-magnitude estimate of the total amount of air activation products that can result from an atmospheric nuclear explosion.

  19. Atmospheric State, Cloud Microphysics and Radiative Flux

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mace, Gerald

    Atmospheric thermodynamics, cloud properties, radiative fluxes and radiative heating rates for the ARM Southern Great Plains (SGP) site. The data represent a characterization of the physical state of the atmospheric column compiled on a five-minute temporal and 90m vertical grid. Sources for this information include raw measurements, cloud property and radiative retrievals, retrievals and derived variables from other third-party sources, and radiative calculations using the derived quantities.

  20. Basalt-Atmosphere Interactions on Venus -

    E-Print Network [OSTI]

    Treiman, Allan H.

    Atmosphere? · CaAl2Si2O8 + SO3 CaSO4 + Al2SiO5 + SiO2 ­ Anhydrite + andalusite + quartz !!! · Does this reaction proceed? ­ Venus atmosphere est'd 0.2 - 0.3 ppt SO3. #12;Reaction Position · From this, very possible that SO3 is buffered! · But ... SO3 value is not known very well - who knows what is really going

  1. Lookup tables to compute high energy cosmic ray induced atmospheric ionization and changes in atmospheric chemistry

    E-Print Network [OSTI]

    Dimitra Atri; Adrian L. Melott; Brian C. Thomas

    2010-05-03

    A variety of events such as gamma-ray bursts and supernovae may expose the Earth to an increased flux of high-energy cosmic rays, with potentially important effects on the biosphere. Existing atmospheric chemistry software does not have the capability of incorporating the effects of substantial cosmic ray flux above 10 GeV . An atmospheric code, the NASA-Goddard Space Flight Center two-dimensional (latitude, altitude) time-dependent atmospheric model (NGSFC), is used to study atmospheric chemistry changes. Using CORSIKA, we have created tables that can be used to compute high energy cosmic ray (10 GeV - 1 PeV) induced atmospheric ionization and also, with the use of the NGSFC code, can be used to simulate the resulting atmospheric chemistry changes. We discuss the tables, their uses, weaknesses, and strengths.

  2. Atmospheric Neutrinos in the MINOS Far Detector

    SciTech Connect (OSTI)

    Howcroft, Caius L.F.

    2004-12-01

    The phenomenon of flavour oscillations of neutrinos created in the atmosphere was first reported by the Super-Kamiokande collaboration in 1998 and since then has been confirmed by Soudan 2 and MACRO. The MINOS Far Detector is the first magnetized neutrino detector able to study atmospheric neutrino oscillations. Although it was designed to detect neutrinos from the NuMI beam, it provides a unique opportunity to measure the oscillation parameters for neutrinos and anti-neutrinos independently. The MINOS Far Detector was completed in August 2003 and since then has collected 2.52 kton-years of atmospheric data. Atmospheric neutrino interactions contained within the volume of the detector are separated from the dominant background from cosmic ray muons. Thirty seven events are selected with an estimated background contamination of less than 10%. Using the detector's magnetic field, 17 neutrino events and 6 anti-neutrino events are identified, 14 events have ambiguous charge. The neutrino oscillation parameters for {nu}{sub {mu}} and {bar {nu}}{sub {mu}} are studied using a maximum likelihood analysis. The measurement does not place constraining limits on the neutrino oscillation parameters due to the limited statistics of the data set analysed. However, this thesis represents the first observation of charge separated atmospheric neutrino interactions. It also details the techniques developed to perform atmospheric neutrino analyses in the MINOS Far Detector.

  3. NISACNISAC''s core partners are Sandia National Laboratories and Los Alamoss core partners are Sandia National Laboratories and Los Alamos National Laboratory.National Laboratory. Sandia is aSandia is a multiprogrammultiprogram laboratory operated by Sand

    E-Print Network [OSTI]

    are Sandia National Laboratories and Los Alamos National Laboratory.National Laboratory. Sandia is a, for the United States Department of Energy under contract DEDE--AC04AC04--94AL85000.94AL85000. Los Alamos National Laboratory is operated by the University ofLos Alamos National Laboratory is operated

  4. Savannah River Laboratory monthly report

    SciTech Connect (OSTI)

    Not Available

    1985-12-01

    Efforts in the area of nuclear reactors and scientific computations are reported, including: robotics; reactor irradiation of nonend-bonded target slugs; computer link with Los Alamos National Laboratory; L-reactor thermal mitigation; aging of carbon in SRP reactor airborne activity confinement systems; and reactor risk assessment for earthquakes. Activities in chemical processes and environmental technology are reported, including: solids formation in a plutonium product stream; revised safety analysis reporting for F and H-Canyon operations; organic carbon analysis of DWPF samples; applications of Fourier transform infrared spectrometry; water chemistry analyzer for SRP reactors; and study of a biological community in Par Pond. Defense waste and laboratory operations activities include: Pu-238 waste incinerator startup; experimental canister frit blaster; saltstone disposal area design; powder metallurgy core diameter measurement; and a new maintenance shop facility. Nuclear materials planning encompasses decontamination and decommissioning of SRP facilities and a comprehensive compilation of environmental and nuclear safety issues. (LEW)

  5. Argonne National Laboratory 1986 publications

    SciTech Connect (OSTI)

    Kopta, J.A.; Springer, C.J.

    1987-12-01

    This report is a bibliography of scientific and technical 1986 publications of Argonne National Laboratory. Some are ANL contributions to outside organizations' reports published in 1986. This compilation, prepared by the Technical Information Services Technical Publications Section (TPS), lists all nonrestricted 1986 publications submitted to TPS by the Laboratory's Divisions. Author indexes list ANL authors only. If a first author is not an ANL employee, an asterisk in the bibliographic citation indicates the first ANL author. The report is divided into seven parts: Journal Articles -- Listed by first author; ANL Reports -- Listed by report number; ANL and non-ANL Unnumbered Reports -- Listed by report number; Non-ANL Numbered Reports -- Listed by report number; Books and Book Chapters -- Listed by first author; Conference Papers -- Listed by first author; and Complete Author Index.

  6. Purdue Solar Energy Utilization Laboratory

    SciTech Connect (OSTI)

    Agrawal, Rakesh

    2014-01-21

    The objective of this project is to establish and set-up a laboratory that will facilitate research and development of new low-cost and high-efficiency solar energy utilization technologies at Purdue University. The outcome will help spur the creation of solar energy start-up companies and eventually a solar energy industry in Indiana that can help fulfill the growing national demand for solar energy.

  7. Oak Ridge National Laboratory Review

    SciTech Connect (OSTI)

    Krause, C.; Pearce, J.; Zucker, A.

    1992-01-01

    This report presents brief descriptions of the following programs at Oak Ridge National Laboratory: The effects of pollution and climate change on forests; automation to improve the safety and efficiency of rearming battle tanks; new technologies for DNA sequencing; ORNL probes the human genome; ORNL as a supercomputer research center; paving the way to superconcrete made with polystyrene; a new look at supercritical water used in waste treatment; and small mammals as environmental monitors.

  8. Laboratory Tests of Chameleon Models

    E-Print Network [OSTI]

    Philippe Brax; Carsten van de Bruck; Anne-Christine Davis; Douglas Shaw

    2009-11-05

    We present a cursory overview of chameleon models of dark energy and their laboratory tests with an emphasis on optical and Casimir experiments. Optical experiments measuring the ellipticity of an initially polarised laser beam are sensitive to the coupling of chameleons to photons. The next generation of Casimir experiments may be able to unravel the nature of the scalar force mediated by the chameleon between parallel plates.

  9. Smart Power Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Smart Power Laboratory at the Energy Systems Integration Facility. Research at NREL's Smart Power Laboratory in the Energy Systems Integration Facility (ESIF) focuses on the development and integration of smart technologies including the integration of distributed and renewable energy resources through power electronics and smart energy management for building applications. The 5,300 sq. ft. laboratory is designed to be highly flexible and configurable, essential for a large variety of smart power applications that range from developing advanced inverters and power converters to testing residential and commercial scale meters and control technologies. Some application scenarios are: (1) Development of power converters for integration of distributed and renewable energy resources; (2) Development of advanced controls for smart power electronics; (3) Testing prototype and commercially available power converters for electrical interconnection and performance, advanced functionality, long duration reliability and safety; and (4) Hardware-in-loop development and testing of power electronics systems in smart distribution grid models.

  10. Research programs at the Department of Energy National Laboratories. Volume 2: Laboratory matrix

    SciTech Connect (OSTI)

    NONE

    1994-12-01

    For nearly fifty years, the US national laboratories, under the direction of the Department of Energy, have maintained a tradition of outstanding scientific research and innovative technological development. With the end of the Cold War, their roles have undergone profound changes. Although many of their original priorities remain--stewardship of the nation`s nuclear stockpile, for example--pressing budget constraints and new federal mandates have altered their focus. Promotion of energy efficiency, environmental restoration, human health, and technology partnerships with the goal of enhancing US economic and technological competitiveness are key new priorities. The multiprogram national laboratories offer unparalleled expertise in meeting the challenge of changing priorities. This volume aims to demonstrate each laboratory`s uniqueness in applying this expertise. It describes the laboratories` activities in eleven broad areas of research that most or all share in common. Each section of this volume is devoted to a single laboratory. Those included are: Argonne National Laboratory; Brookhaven National Laboratory; Idaho National Engineering Laboratory; Lawrence Berkeley Laboratory; Lawrence Livermore National Laboratory; Los Alamos National Laboratory; National Renewable Energy Laboratory; Oak Ridge National Laboratory; Pacific Northwest Laboratory; and Sandia National Laboratories. The information in this volume was provided by the multiprogram national laboratories and compiled at Lawrence Berkeley Laboratory.

  11. Statistical Sciences Group, Los Alamos National Laboratory,

    E-Print Network [OSTI]

    Wolfe, Patrick J.

    Luke Bornn CCS-6, Statistical Sciences Group, Los Alamos National Laboratory, MS F600, Los Alamos Institute, Los Alamos National Laboratory, MS T006, Los Alamos, NM 87545 Structural Health Monitoring

  12. MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY

    E-Print Network [OSTI]

    Poggio, Tomaso

    MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY and CENTER FOR BIOLOGICAL Sciences Massachusetts Institute of Technology Cambridge, MA 02139 y Artificial Intelligence Laboratory Institute of Technology, 1995. This report describes research done partly at the Artificial Intelligence

  13. Dietary Supplement Laboratory Quality Assurance Program

    E-Print Network [OSTI]

    Dietary Supplement Laboratory Quality Assurance Program: Exercise K Final Report Melissa M://dx.doi.org/10.6028/NISTIR.8032 NISTIR 8032 #12;NISTIR 8032 Dietary Supplement Laboratory Quality Assurance

  14. Laboratories for the 21st Century

    Broader source: Energy.gov [DOE]

    Laboratories for the 21st Century (Labs21) is a voluntary partnership program dedicated to improving the environmental performance of U.S. laboratories. The program is a joint initiative between...

  15. MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY

    E-Print Network [OSTI]

    Poggio, Tomaso

    MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY and CENTER FOR BIOLOGICAL parameters could possibly have application to other problems in vision. We investigate one such application and Cognitive Sciences and at the Artificial Intelligence Laboratory at the Massachusetts Institute

  16. MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY

    E-Print Network [OSTI]

    Poggio, Tomaso

    MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY and CENTER FOR BIOLOGICAL vision tasks, including the computation of image correspondence, object verification, image synthesis at the Artificial Intelligence Laboratory and within the Center for Biological and Computational Learning

  17. MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY

    E-Print Network [OSTI]

    Poggio, Tomaso

    MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY and CENTER FOR BIOLOGICAL parameters could possibly have application to other problems in vision. We investigate one such application of Brain and Cognitive Sciences and at the Artificial Intelligence Laboratory at the Massachusetts

  18. Preliminary Notice of Violation, Argonne National Laboratory...

    Energy Savers [EERE]

    Preliminary Notice of Violation, Argonne National Laboratory-West - EA-2001-01 Preliminary Notice of Violation, Argonne National Laboratory-West - EA-2001-01 February 28, 2001...

  19. Renewable & Appropriate Energy Laboratory (RAEL) PRESS RELEASE

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Renewable & Appropriate Energy Laboratory (RAEL) PRESS RELEASE UC BERKELEY GROUP PROPOSES ELECTRIC today, the University of California, Berkeley's Renewable & Appropriate Energy Laboratory (RAEL Consulting Program. RAEL is a unique research, development, project implementation, and community outreach

  20. Ames Laboratory Purchase Card Policy & Procedure | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TAPropaneand LosAmes Laboratory Purchase Card

  1. Ames Laboratory Site Sustainability Plan | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TAPropaneand LosAmes Laboratory Purchase CardSite

  2. Sandia National Laboratories: Research: Laboratory Directed Research &

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDidDevelopment Top LDRD Publications Research Laboratory Directed

  3. Laboratory Directed Research and Development Plan | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse Bergkamp Graduate studentScience (SC) Directed Research andLaboratory

  4. Laboratory Directed Research and Development Mission | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and masthead Berkeley Lab mastheadLaboratory

  5. Biomass Catalyst Characterization Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01

    This fact sheet provides information about Biomass Catalyst Characterization Laboratory (BCCL) capabilities and applications at NREL's National Bioenergy Center.

  6. Sandia National Laboratories: Products and Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Products and Services What Sandia National Laboratories Buys National Security & Pulsed Power Supports... Defense Systems & Assessments Electronic Systems Integrated Military...

  7. Algal Biofuels Research Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01

    This fact sheet provides information about Algal Biofuels Research Laboratory capabilities and applications at NREL's National Bioenergy Center.

  8. Sandia National Laboratories: Research: Facilities: Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Science and Engineering Center Pulsed Power and Systems Validation Facility Radiation Detection Materials Characterization Laboratory Shock Thermodynamic Applied...

  9. Biomass Compositional Analysis Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01

    This fact sheet provides information about Biomass Compositional Analysis Laboratory (BCAL) capabilities and applications at NREL's National Bioenergy Center.

  10. Bench-Scale Fermentation Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01

    This fact sheet provides information about Bench-Scale Fermentation Laboratory capabilities and applications at NREL's National Bioenergy Center.

  11. National Laboratory]; Chertkov, Michael [Los Alamos National...

    Office of Scientific and Technical Information (OSTI)

    Chertkov, Michael Los Alamos National Laboratory Construction and Facility Engineering; Energy Conservation, Consumption, & Utilization(32); Energy Planning, Policy, &...

  12. Fuel Synthesis Catalysis Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-07-01

    This fact sheet provides information about Fuel Synthesis Catalysis Laboratory capabilities and applications at NREL's National Bioenergy Center.

  13. Measured Peak Equipment Loads in Laboratories

    SciTech Connect (OSTI)

    Mathew, Paul A.

    2007-09-12

    This technical bulletin documents measured peak equipment load data from 39 laboratory spaces in nine buildings across five institutions. The purpose of these measurements was to obtain data on the actual peak loads in laboratories, which can be used to rightsize the design of HVAC systems in new laboratories. While any given laboratory may have unique loads and other design considerations, these results may be used as a 'sanity check' for design assumptions.

  14. DATA RECOVERY EFFORTS AT IDAHO NATIONAL LABORATORY, OAK RIDGE NATIONAL LABORATORY, AND SAVANNAH RIVER NATIONAL LABORATORY

    SciTech Connect (OSTI)

    Richard Metcalf; Saleem Salaymeh; Michael Ehinger

    2010-07-01

    Abstract was already submitted. Could not find the previous number. Would be fine with attaching/update of old number. Abstract Below: Modern nuclear facilities will have significant process monitoring capability for their operators. These systems will also be used for domestic safeguards applications, which has led to research over new diversion-detection algorithms. Curiously missing from these efforts are verification and validation data sets. A tri-laboratory project to locate the existing data sets and recover their data has yielded three major potential sources of data. The first is recovery of the process monitoring data of the Idaho Chemical Processing Plant, which now has a distributable package for algorithm developers. The second data set is extensive sampling and process data from Savannah River National Laboratory’s F- and H-canyon sites. Finally, high fidelity data from the start-up tests at the Barnwell Reprocessing Facility is in recovery. This paper details the data sets and compares their relative attributes.

  15. The coupling of winds, aerosols and chemistry in Titan's atmosphere

    E-Print Network [OSTI]

    Hourdin, Chez Frédéric

    REVIEW The coupling of winds, aerosols and chemistry in Titan's atmosphere BY SEBASTIEN LEBONNOIS 1'Ae´ronomie, IPSL, CNRS, BP3, 91371 Verrie`res le Buisson, France The atmosphere of Titan is a complex system, where the observed atmospheric structure of Titan's lower atmosphere (mainly in the stratosphere and troposphere

  16. Phase of atmospheric secondary organic material affects its reactivity

    E-Print Network [OSTI]

    of the reactivity of atmospheric SOM particles. atmospheric chemistry chemical aging organic aerosol collectionPhase of atmospheric secondary organic material affects its reactivity Mikinori Kuwata and Scot T of atmospheric organic particles among solid, semisolid, and liquid phases is of keen current scientific interest

  17. ATM401, ATM601, CHEM601 Introduction to Atmospheric Sciences

    E-Print Network [OSTI]

    Moelders, Nicole

    as atmospheric chemistry. You should be able to read and analyze weather maps or climate diagrams, interpret as atmospheric chemistry. Fundamental goals are that you develop skills to think as an atmospheric scientistATM401, ATM601, CHEM601 Introduction to Atmospheric Sciences Fall 2013 Class time: TR 11:30am

  18. Simulation and Theory of Ions at Atmospherically Relevant

    E-Print Network [OSTI]

    Levin, Yan

    Simulation and Theory of Ions at Atmospherically Relevant Aqueous Liquid-Air Interfaces Douglas J in the atmosphere influences air quality and climate. Molecular dy- namics simulations are becoming increasingly in the atmosphere. Here we review simulation studies of atmospherically relevant aqueous liquid-air interfaces

  19. Naval Research Laboratory Stennis Space Center

    E-Print Network [OSTI]

    Naval Research Laboratory Stennis Space Center Mississippi 39529 www7320.nrlssc.navy.mil/ Ocean Ocean prediction technology The Naval Research Laboratory (NRL) is the US Navy corporate laboratory, dedicated to addressing Navy unique problems and enabling the Navy to operate efficiently and safely. Unique

  20. Basic Chemical Safety and Laboratory Survival Skills

    E-Print Network [OSTI]

    Sherrill, David

    1 Basic Chemical Safety and Laboratory Survival Skills For anyone working in Georgia Tech Laboratories Deborah Wolfe-Lopez Laboratory and Chemical Safety Manager Georgia Tech EHS 404-382-2964 2010 #12 Hazardous Chemical Protection and Right to Know Law (RTK) RTK is the Georgia State Equivalent of the Federal

  1. Laboratories NISAC's core partners are Sandia National Laboratories and Los Alamos National Laboratory. Sandia is a multiprogram laboratory operated by Sandia

    E-Print Network [OSTI]

    Sandia National Laboratories NISAC's core partners are Sandia National Laboratories and Los Alamos Company, for the United States Department of Energy under contract DE-AC04-94AL85000. Los Alamos National was founded by Congress in the late 90's as a joint effort between Sandia and Los Alamos National Laboratories

  2. MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY

    E-Print Network [OSTI]

    Poggio, Tomaso

    MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY A.I. Memo No. 1537 of Technology, 1995 This report describes research done at the Artificial Intelligence Laboratory and within Science Foundation under contract ASC­9217041. Support for the A.I. Laboratory's artificial intelligence

  3. MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY

    E-Print Network [OSTI]

    Poggio, Tomaso

    MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY A.I. Memo No. 1536 Institute of Technology, 1995 This report describes research done at the Artificial Intelligence Laboratory the National Science Foundation under contract ASC­9217041. Support for the A.I. Laboratory's artificial

  4. Dietary Supplement Laboratory Quality Assurance Program

    E-Print Network [OSTI]

    Dietary Supplement Laboratory Quality Assurance Program: Exercise J Final Report Melissa M.6028/NIST.IR.7997 NISTIR 7997 #12;Dietary Supplement Laboratory Quality Assurance Program: Exercise F Final Report Melissa M. Phillips Catherine A. Rimmer NISTIR 7997 Dietary Supplement Laboratory Quality

  5. Dietary Supplement Laboratory Quality Assurance Program

    E-Print Network [OSTI]

    Dietary Supplement Laboratory Quality Assurance Program: Exercise H Final Report Melissa M://dx.doi.org/10.6028/NIST.IR.7903 NISTIR 7903 #12;ii Dietary Supplement Laboratory Quality Assurance Program Supplement Laboratory Quality Assurance Program: Exercise H Final Report Melissa M. Phillips Catherine A

  6. Sandia National Laboratories will be on campus!

    E-Print Network [OSTI]

    Sandia National Laboratories will be on campus! Student Internship & Fellowship Programs at Sandia Learn more: www.sandia.gov Sandia National Laboratories is a multi-program laboratory managed.S. Department of Energy's National Nuclear Security Administration under contract DE=AC04-94AL85000. SAND 2013

  7. Harold G. Kirk Brookhaven National Laboratory

    E-Print Network [OSTI]

    McDonald, Kirk

    Harold G. Kirk Brookhaven National Laboratory The MERIT High-Power Target Experiment Muon Collider Design Workshop BNL December 3-7, 2007 #12;Harold G. Kirk MC Workshop Dec. 3-7 The Collaborating Laboratory Princeton Europe CERN Rutherford Appleton Laboratory #12;Harold G. Kirk MC Workshop Dec. 3

  8. Heavy Ion Fusion Science Virtual National Laboratory

    E-Print Network [OSTI]

    Slide 1 Heavy Ion Fusion Science Virtual National Laboratory B. Grant Logan Director, U.S. Heavy Ion Fusion Science Virtual National Laboratory, (HIFS-VNL) - collaboration of LBNL, LLNL, and PPPL by the Lawrence Berkeley and Lawrence Livermore National Laboratories under Contract Numbers DE-AC02-05CH1123

  9. LABORATORY IV: ELECTRIC FIELD AND POTENTIAL

    E-Print Network [OSTI]

    Minnesota, University of

    LABORATORY IV: ELECTRIC FIELD AND POTENTIAL Lab IV - 1 Many forces in nature cannot be modeled of new devices. The problems in this laboratory are primarily designed to give you practice visualizing. In this laboratory, you will first explore electric fields by building different configurations of charged objects

  10. 432112_M.indd LINCOLN LABORATORY

    E-Print Network [OSTI]

    Chandy, John A.

    10/07 432112_M.indd LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY 244 Wood Street Laboratory's fundamental mission is to apply science and advanced technology to critical problems of national security. To assure excellence in the fulfillment of this mission, the Laboratory is committed to fostering

  11. Laboratory Policy Methods of Analysis & Quality Assurance

    E-Print Network [OSTI]

    Lawrence, Rick L.

    Laboratory Policy Methods of Analysis & Quality Assurance The Cereal Quality Lab (CQL) uses quality data. The laboratory participates in collaborative studies organized by AACC, Wheat Quality by the laboratory is treated confidentially and will not be revealed to third parties without prior consent

  12. NATIONAL LABORATORY Approved for public release;

    E-Print Network [OSTI]

    Lu, Zhiming

    Los Alamos NATIONAL LABORATORY LA-UR- Approved for public release; distribution is unlimited. Title: Author(s): Submitted to: Form 836 (10/96) Los Alamos National Laboratory, an affirmative action of this contribution, or to allow others to do so, for U.S. Government purposes.Los Alamos National Laboratory requests

  13. LABORATORY IV ELECTRIC FIELDS AND FORCES

    E-Print Network [OSTI]

    Minnesota, University of

    Lab IV - 1 LABORATORY IV ELECTRIC FIELDS AND FORCES Action-at-a-distance forces (gravitational and inspires the invention of new devices. The problems in this laboratory are primarily designed to give you through an electric field. OBJECTIVES: After successfully completing this laboratory, you should be able

  14. LABORATORY I ELECTRIC FIELDS AND FORCES

    E-Print Network [OSTI]

    Minnesota, University of

    LABORATORY I ELECTRIC FIELDS AND FORCES Lab I - 1 The most fundamental forces are characterized the invention of new applications. The problems in this laboratory are primarily designed to give you practice visualizing fields and using the field concept in solving problems. In this laboratory, you will first explore

  15. LABORATORY II ELECTRIC FIELDS AND ELECTRIC POTENTIALS

    E-Print Network [OSTI]

    Minnesota, University of

    Lab II - 1 LABORATORY II ELECTRIC FIELDS AND ELECTRIC POTENTIALS In this lab you will continue the concepts of field and potential are abstract and difficult to visualize, this laboratory uses a computer and electric potential at any point in space. OBJECTIVES After successfully completing this laboratory, you

  16. Bylaws of the Florida Medical Entomology Laboratory

    E-Print Network [OSTI]

    Hill, Jeffrey E.

    1 Bylaws of the Florida Medical Entomology Laboratory University of Florida As Approved: March 16 Laboratory (FMEL) are to attain excellence in teaching, research, extension, and service, and to attain These Bylaws establish the general principles by which the Florida Medical Entomology Laboratory shall

  17. LABORATORY VI MAGNETIC FIELDS AND FORCES

    E-Print Network [OSTI]

    Minnesota, University of

    Lab VI - 1 LABORATORY VI MAGNETIC FIELDS AND FORCES Magnetism plays a large role in our world for the differences as you go through the problems in this lab. In this set of laboratory problems, you will map: After successfully completing this laboratory, you should be able to: · Explain the differences

  18. UC Laboratory Safety Systemwide Webinar Series

    E-Print Network [OSTI]

    California at San Diego, University of

    UC Laboratory Safety Systemwide Webinar Series Webinars are being developed and will be scheduled Force Report on Improving the Culture of Laboratory Safety in Academic Institutions Speaker: Dr. Robert with existing Cal/OSHA Requirements Speaker: Ken Smith, Systemwide Laboratory Safety Manager PPE Requirements

  19. Electric Machinery COURSE GUIDE AND LABORATORY INFORMATION

    E-Print Network [OSTI]

    Gilbert, Matthew

    with instruments of the highest quality. Conceptual design of the Grainger Electrical Machinery Laboratory was doneECE 431 Electric Machinery COURSE GUIDE AND LABORATORY INFORMATION P. W. Sauer, P. T. Krein, P. L Machinery Laboratory is dedicated ìn memory of University of Illinois alumnus W. W. Grainger, B.S. 1919

  20. Sandia National Laboratories: News: Publications: Lab News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    accurate descriptions of the flow," he says. That includes the difficult phenomena of laminar, or streamline, flow transitioning to turbulent flow; ionization of the atmosphere...

  1. Sandia National Laboratories: News: Publications: Lab News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is twisted. The measurements will provide further insight into hydrocarbon combustion and atmospheric chemistry. A paper describing the research findings titled "Direct...

  2. Sandia National Laboratories: News: Publications: Lab News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    radioisotopes of lead and bismuth produced from the radioactive decay of atmospheric radon. In addition, radioactive beryllium-7 produced from cosmic ray spallation of naturally...

  3. Sandia National Laboratories: News: Publications: Lab News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    including the effects of flight through the outer reaches of the atmosphere, and micro-electrical-mechanical systems (MEMs) that have features at the micron and submicron...

  4. Sandia National Laboratories: Research: Facilities: Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that can measure static contact angle and also measure dynamic contact angles as a function of the contact-line velocity in controlled atmospheres at temperatures up to...

  5. Preface to the special issue of PSS on ``Surfaces and atmospheres of the outer planets, their satellites and ring systems: Part V''

    E-Print Network [OSTI]

    Atreya, Sushil

    and models on the atmospheres and surfaces of the giant planets and their satellites. Particular attention, several of papers in this issue discuss results from laboratory experiments and models. Zuchowski et al. present a new parametrization scheme of Jovian moist convection based on a heat engine arguments

  6. Pergamon AtmosphericEnvironmentVol. 30, No. 12, pp. 2233-2256, 1996 Copyright 1996 El~vier ,ScienceLtd

    E-Print Network [OSTI]

    Denver, University of

    .S.A.; and ~Mobile Source Emissions Research Branch, Atmospheric Research and Exposure Assessment Laboratory, U2 ratios and other emissions characteristics. The Tuscarora Mountain Tunnel is flat, making (evaporative running losses, etc.). Measured CO/CO2 ratios agreed well with concurrent roadside infrared remote

  7. Accuracy of the Water Vapour Content Measurements in the Atmosphere Using Optical Methods

    E-Print Network [OSTI]

    Galkin, V D; Alekseeva, G A; Novikov, V V; Pakhomov, V P

    2010-01-01

    This paper describes the accuracy and the errors of water vapour content measurements in the atmosphere using optical methods, especially starphotometer. After the general explanations of the used expressions for the star-magnitude observations of the water vapour absorption in section 3 the absorption model for the water vapour band will be discussed. Sections 4 and 5 give an overview on the technique to determine the model parameters both from spectroscopic laboratory and radiosonde observation data. Finally, the sections 6 and 7 are dealing with the details of the errors; that means errors of observable magnitude, of instrumental extraterrestrial magnitude, of atmospheric extinction determination and of water vapour content determination by radiosonde humidity measurements. The main conclusion is: Because of the high precision of the results the optical methods for water vapour observation are suited to validate and calibrate alternative methods (GPS, LIDAR, MICROWAVE) which are making constant progress wo...

  8. Amgad Elgowainy | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TAPropaneand LosAmes Laboratory

  9. Argonne Fellowships | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagnetic SpinsSolicitationsLaboratory TheArgonne

  10. Triangle Universities Nuclear Laboratory : 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDidDevelopmentat LENA| Reaction Rates| UNC Astrophysics| Laboratory for

  11. Triangle Universities Nuclear Laboratory : 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDidDevelopmentat LENA| Reaction Rates| UNC Astrophysics| Laboratory

  12. Sandia National Laboratories: About Sandia

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygenLaboratoryInnovation Portal SNL Site Map Printable100About

  13. Sandia National Laboratories: Contact Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygenLaboratoryInnovation PortalHiringCareers

  14. Sandia National Laboratories: News: Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygenLaboratoryInnovationEmployeeNews Detecting

  15. Sandia National Laboratories: News: Videos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygenLaboratoryInnovationEmployeeNewsPublications Annual ReportNews

  16. Sandia National Laboratories: Research: Bioscience

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygenLaboratoryInnovationEmployeeNewsPublicationsBioscience

  17. 222-S Laboratory - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.TheoryTuesday, August 10, 20102016 News Below are news stories related22-S Laboratory

  18. Ames Laboratory | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen5AllEnergyAmeriPowerLaboratory Jump to: navigation,

  19. about Savannah River National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largestnamedGroup! !aboesenb Ames LaboratoryGas

  20. about Savannah River National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largestnamedGroup! !aboesenb Ames LaboratoryGasEDM