Powered by Deep Web Technologies
Note: This page contains sample records for the topic "laboratory technical area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

EA-0969: Low Energy Accelerator Laboratory Technical Area 53 Los Alamos  

Broader source: Energy.gov (indexed) [DOE]

9: Low Energy Accelerator Laboratory Technical Area 53 Los 9: Low Energy Accelerator Laboratory Technical Area 53 Los Alamos National Laboratory, Los Alamos, New Mexico EA-0969: Low Energy Accelerator Laboratory Technical Area 53 Los Alamos National Laboratory, Los Alamos, New Mexico SUMMARY This EA evaluates the environmental impacts of the U.S. Department of Energy's Los Alamos National Laboratory in Los Alamos, New Mexico to construct and operate a small research and development laboratory building at Technical Area 53. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD April 17, 1995 EA-0969: Finding of No Significant Impact Low Energy Accelerator Laboratory Technical Area 53 Los Alamos National Laboratory April 17, 1995 EA-0969: Final Environmental Assessment Low Energy Accelerator Laboratory Technical Area 53 Los Alamos National

2

Review of the Los Alamos National Laboratory Implementation Verification Review at Technical Area-55  

Broader source: Energy.gov (indexed) [DOE]

Los Alamos National Laboratory Implementation Verification Review at Technical Area-55 May 2011 July 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U. S. Department of Energy i Table of Contents 1.0 Purpose ................................................................................................................................................... 1 2.0 Background ............................................................................................................................................ 1 3.0 Introduction ............................................................................................................................................ 1

3

Review of the Los Alamos National Laboratory Implementation Verification Review at Technical Area-55  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Los Alamos National Laboratory Implementation Verification Review at Technical Area-55 May 2011 July 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U. S. Department of Energy i Table of Contents 1.0 Purpose ................................................................................................................................................... 1 2.0 Background ............................................................................................................................................ 1 3.0 Introduction ............................................................................................................................................ 1

4

Independent Oversight Review of the Technical Area 55 Safety Class Fire Suppression System at Los Alamos National Laboratory, December 2013  

Broader source: Energy.gov (indexed) [DOE]

Technical Area 55 Technical Area 55 Safety Class Fire Suppression System at Los Alamos National Laboratory December 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose .................................................................................................................................................... 1 2.0 Background ............................................................................................................................................. 1 3.0 Scope ....................................................................................................................................................... 2

5

Annual Report for Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility - Fiscal Year 2011  

SciTech Connect (OSTI)

As a condition to the Disposal Authorization Statement issued to Los Alamos National Laboratory (LANL or the Laboratory) on March 17, 2010, a comprehensive performance assessment and composite analysis maintenance program must be implemented for the Technical Area 54, Area G disposal facility. Annual determinations of the adequacy of the performance assessment and composite analysis are to be conducted under the maintenance program to ensure that the conclusions reached by those analyses continue to be valid. This report summarizes the results of the fiscal year 2011 annual review for Area G. Revision 4 of the Area G performance assessment and composite analysis was issued in 2008 and formally approved in 2009. These analyses are expected to provide reasonable estimates of the long-term performance of Area G and, hence, the disposal facility's ability to comply with Department of Energy (DOE) performance objectives. Annual disposal receipt reviews indicate that smaller volumes of waste will require disposal in the pits and shafts at Area G relative to what was projected for the performance assessment and composite analysis. The future inventories are projected to decrease modestly for the pits but increase substantially for the shafts due to an increase in the amount of tritium that is projected to require disposal. Overall, however, changes in the projected future inventories of waste are not expected to compromise the ability of Area G to satisfy DOE performance objectives. The Area G composite analysis addresses potential impacts from all waste disposed of at the facility, as well as other sources of radioactive material that may interact with releases from Area G. The level of knowledge about the other sources included in the composite analysis has not changed sufficiently to call into question the validity of that analysis. Ongoing environmental surveillance activities are conducted at, and in the vicinity of, Area G. However, the information generated by many of these activities cannot be used to evaluate the validity of the performance assessment and composite analysis models because the monitoring data collected are specific to operational releases or address receptors that are outside the domain of the performance assessment and composite analysis. In general, applicable monitoring data are supportive of some aspects of the performance assessment and composite analysis. Several research and development (R and D) efforts have been initiated under the performance assessment and composite analysis maintenance program. These investigations are designed to improve the current understanding of the disposal facility and site, thereby reducing the uncertainty associated with the projections of the long-term performance of Area G. The status and results of R and D activities that were undertaken in fiscal year 2011 are discussed in this report. Special analyses have been conducted to determine the feasibility of disposing of specific waste streams, to address proposed changes in disposal operations, and to consider the impacts of changes to the models used to conduct the performance assessment and composite analysis. These analyses are described and the results of the evaluations are summarized in this report. The Area G disposal facility consists of Material Disposal Area (MDA) G and the Zone 4 expansion area. To date, all disposal operations at Area G have been confined to MDA G. Material Disposal Area G is scheduled to undergo final closure in 2015; disposal of waste in the pits and shafts is scheduled to end in 2013. In anticipation of the closure of MDA G, plans are being made to ship the majority of the waste generated at LANL to off-site locations for disposal. It is not clear at this time if waste that will be disposed of at LANL will be placed in Zone 4 or if disposal operations will move to a new location at the Laboratory. Separately, efforts to optimize the final cover used in the closure of MDA G are underway; a final cover design different than that adopted for the performance assessment and composite analy

French, Sean B. [Los Alamos National Laboratory; Shuman, Rob [WPS: WASTE PROJECTS AND SERVICES

2012-05-22T23:59:59.000Z

6

Environmental Assessment for Proposed Corrective Measures at Material Disposal Area H within Technical Area 54 at Los Alamos National Laboratory, Los Alamos, New Mexico  

Broader source: Energy.gov (indexed) [DOE]

64 64 Environmental Assessment for Proposed Corrective Measures at Material Disposal Area H within Technical Area 54 at Los Alamos National Laboratory, Los Alamos, New Mexico June 14, 2004 Department of Energy National Nuclear Security Administration Los Alamos Site Office EA for the Proposed Corrective Measures at MDA H within TA-54 at LANL DOE LASO June 14, 2004 iii Contents Acronyms and Terms..................................................................................................................................v Executive Summary ..................................................................................................................................vii 1.0 Purpose and Need ..............................................................................................................................1

7

Plutonium Equivalent Inventory for Belowground Radioactive Waste at the Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility - Fiscal Year 2011  

SciTech Connect (OSTI)

The Los Alamos National Laboratory (LANL) generates radioactive waste as a result of various activities. Many aspects of the management of this waste are conducted at Technical Area 54 (TA-54); Area G plays a key role in these management activities as the Laboratory's only disposal facility for low-level radioactive waste (LLW). Furthermore, Area G serves as a staging area for transuranic (TRU) waste that will be shipped to the Waste Isolation Pilot Plant for disposal. A portion of this TRU waste is retrievably stored in pits, trenches, and shafts. The radioactive waste disposed of or stored at Area G poses potential short- and long-term risks to workers at the disposal facility and to members of the public. These risks are directly proportional to the radionuclide inventories in the waste. The Area G performance assessment and composite analysis (LANL, 2008a) project long-term risks to members of the public; short-term risks to workers and members of the public, such as those posed by accidents, are addressed by the Area G Documented Safety Analysis (LANL, 2011a). The Documented Safety Analysis uses an inventory expressed in terms of plutonium-equivalent curies, referred to as the PE-Ci inventory, to estimate these risks. The Technical Safety Requirements for Technical Area 54, Area G (LANL, 2011b) establishes a belowground radioactive material limit that ensures the cumulative projected inventory authorized for the Area G site is not exceeded. The total belowground radioactive waste inventory limit established for Area G is 110,000 PE-Ci. The PE-Ci inventory is updated annually; this report presents the inventory prepared for 2011. The approach used to estimate the inventory is described in Section 2. The results of the analysis are presented in Section 3.

French, Sean B. [Los Alamos National Laboratory; Shuman, Rob [WPS: WASTE PROJECTS AND SERVICES

2012-04-18T23:59:59.000Z

8

Subsurface Contaminants Focus Area (SCFA) Lead Laboratory Providing Technical Assistance to the DOE Weapons Complex in Subsurface Contamination  

SciTech Connect (OSTI)

The Subsurface Contaminants Focus Area (SCFA), a DOE-HQ EM-50 organization, is hosted and managed at the Savannah River Site in Aiken, South Carolina. SCFA is an integrated program chartered to find technology and scientific solutions to address DOE subsurface environmental restoration problems throughout the DOE Weapons Complex. Since its inception in 1989, the SCFA program has resulted in a total of 269 deployments of 83 innovative technologies. Until recently, the primary thrust of the program has been to develop, demonstrate, and deploy those remediation technology alternatives that are solutions to technology needs identified by the DOE Sites. Over the last several years, the DOE Sites began to express a need not only for innovative technologies, but also for technical assistance. In response to this need, DOE-HQ EM-50, in collaboration with and in support of a Strategic Lab Council recommendation directed each of its Focus Areas to implement a Lead Laboratory Concept to enhance their technical capabilities. Because each Focus Area is unique as defined by the contrast in either the type of contaminants involved or the environments in which they are found, the Focus Areas were given latitude in how they set up and implemented the Lead Lab Concept. The configuration of choice for the SCFA was a Lead-Partner Lab arrangement. Savannah River Technology Center (SRTC) teamed with the SCFA as the Focus Area's Lead Laboratory. SRTC then partnered with the DOE National Laboratories to create a virtual consulting function within DOE. The National Laboratories were established to help solve the Nation's most difficult problems, drawing from a resource pool of the most talented and gifted scientists and engineers. Following that logic, SRTC, through the Lead-Partner Lab arrangement, has that same resource base to draw from to provide assistance to any SCFA DOE customer throughout the Complex. This paper briefly describes how this particular arrangement is organized and provides case histories that illustrate its strengths in solving problems and offering solutions. The program is designed to minimize red tape, maximize value, and to rapidly and cost effectively disseminate solutions to common problems facing the DOE.

Wright, J. A. Jr.; Corey, J. C.

2002-02-27T23:59:59.000Z

9

FINAL ENVIRONMENTAL ASSESSMENT FOR REMOVAL ACTIONS AT THE TECHNICAL AREA III CLASSIFIED WASTE LANDFILL, SANDIA NATIONAL LABORATORIES, NEW MEXICO - DOE/EA-1729  

Broader source: Energy.gov (indexed) [DOE]

FINAL ENVIRONMENTAL ASSESSMENT FOR REMOVAL FINAL ENVIRONMENTAL ASSESSMENT FOR REMOVAL ACTIONS AT THE TECHNICAL AREA III CLASSIFIED WASTE LANDFILL, SANDIA NATIONAL LABORATORIES, NEW MEXICO DOE/EA-1729 August 2010 National Nuclear Security Administration Sandia Site Office P.O. Box 5400 Albuquerque, New Mexico 87185-5400 DOE/EA-1729: Environmental Assessment for Removal Actions at the Technical Area III August 2010 Classified Waste Landfill, Sandia National Laboratories, New Mexico i TABLE OF CONTENTS Section 1.0 PURPOSE AND NEED FOR AGENCY ACTION .................................................................... Page 1 1.1 Background .................................................................................................................................. 1

10

Final Environmental Assessment for Proposed Closure of the Airport Landfills Within Technical Area 73 at Los Alamos National Laboratory, Los Alamos, New Mexico  

Broader source: Energy.gov (indexed) [DOE]

15 15 Final Environmental Assessment for Proposed Closure of the Airport Landfills Within Technical Area 73 at Los Alamos National Laboratory, Los Alamos, New Mexico May 22, 2005 Department of Energy National Nuclear Security Administration Los Alamos Site Office Final EA for Proposed Closure of the Airport Landfills within TA-73 at LANL Page iii of viii Contents Acronyms and Terms .................................................................................................................. vi 1.0 Purpose and Need ................................................................................................. 1 1.1 Introduction.............................................................................................................

11

Research Call to DOE/Federal Laboratories: Technical Support...  

Broader source: Energy.gov (indexed) [DOE]

Research Call to DOEFederal Laboratories: Technical Support for Interconnection-Level Electric Infrastructure Planning RC-BM-2010; Due May 3, 2010. Research Call to DOEFederal...

12

Technical Safety Appraisal of the Lawrence Livermore National Laboratory  

SciTech Connect (OSTI)

This report documents the results of the Technical Safety Appraisal (TSA) of the Lawrence Livermore National Laboratory (LLNL) (including the Site 300 area), Livermore, California, conducted from February 26 to April 5, 1990. The purpose of the assessment was to provide the Secretary of Energy with the status of Environment, Safety and Health (ES H) Programs at LLNL. LLNL is operated by the University of California for the Department of Energy (DOE), and is a multi-program, mission-oriented institution engaged in fundamental and applied research programs that require a multidisciplinary approach. 1 fig.

Not Available

1990-12-01T23:59:59.000Z

13

Type A Accident Investigation Board report on the January 17, 1996, electrical accident with injury in Technical Area 21 Tritium Science and Fabrication Facility Los Alamos National Laboratory. Final report  

SciTech Connect (OSTI)

An electrical accident was investigated in which a crafts person received serious injuries as a result of coming into contact with a 13.2 kilovolt (kV) electrical cable in the basement of Building 209 in Technical Area 21 (TA-21-209) in the Tritium Science and Fabrication Facility (TSFF) at Los Alamos National Laboratory (LANL). In conducting its investigation, the Accident Investigation Board used various analytical techniques, including events and causal factor analysis, barrier analysis, change analysis, fault tree analysis, materials analysis, and root cause analysis. The board inspected the accident site, reviewed events surrounding the accident, conducted extensive interviews and document reviews, and performed causation analyses to determine the factors that contributed to the accident, including any management system deficiencies. Relevant management systems and factors that could have contributed to the accident were evaluated in accordance with the guiding principles of safety management identified by the Secretary of Energy in an October 1994 letter to the Defense Nuclear Facilities Safety Board and subsequently to Congress.

NONE

1996-04-01T23:59:59.000Z

14

Research Call to DOE/Federal Laboratories: Technical Support for  

Broader source: Energy.gov (indexed) [DOE]

Research Call to DOE/Federal Laboratories: Technical Support for Research Call to DOE/Federal Laboratories: Technical Support for Interconnection-Level Electric Infrastructure Planning RC-BM-2010; Due May 3, 2010. Research Call to DOE/Federal Laboratories: Technical Support for Interconnection-Level Electric Infrastructure Planning RC-BM-2010; Due May 3, 2010. The entities that DOE has selected under the American Recovery and Reinvestment Act to participate in the Interconnection Transmission Planning Activity will perform challenging and important analyses and collaboratively develop much-needed long-term-transmission plans. They do, however, need research support and technical assistance on a variety of key subjects. The fundamental purpose of this Research Call was to invite the National Laboratories to indicate their interest, understanding, and

15

EIS-0319: Relocation of Technical Area 18 Capabilities and Materials at the  

Broader source: Energy.gov (indexed) [DOE]

319: Relocation of Technical Area 18 Capabilities and 319: Relocation of Technical Area 18 Capabilities and Materials at the Los Alamos National Laboratory EIS-0319: Relocation of Technical Area 18 Capabilities and Materials at the Los Alamos National Laboratory SUMMARY The TA-18 Relocation EIS evaluates the potential direct, indirect, and cumulative environmental impacts associated with this proposed action at the following DOE sites: (1) a different site at LANL at Los Alamos, New Mexico; (2) the Sandia National Laboratories/New Mexico at Albuquerque, New Mexico; (3) the Nevada Test Site near Las Vegas, Nevada (the Preferred Alternative); and (4) the Argonne National Laboratory-West near Idaho Falls, Idaho. The EIS also analyzes the alternatives of upgrading the existing TA-18 facilities and the No Action Alternative of maintaining the

16

Sandia National Laboratories' Readiness in Technical Base and Facilities Program  

Broader source: Energy.gov (indexed) [DOE]

Sandia National Laboratories' Sandia National Laboratories' Readiness in Technical Base and Facilities Program OAS-L-13-13 September 2013 Department of Energy Washington, DC 20585 September 5, 2013 MEMORANDUM FOR THE MANAGER, SANDIA FIELD OFFICE FROM: David Sedillo, Director Western Audits Division Office of Inspector General SUBJECT: INFORMATION: Audit Report on "Sandia National Laboratories' Readiness in Technical Base and Facilities Program" BACKGROUND The Department of Energy's (Department) Sandia National Laboratories (Sandia) is a Government-owned, contractor operated Laboratory that is part of the National Nuclear Security Administration's (NNSA) nuclear weapons complex. One of Sandia's key missions is to ensure the safety, reliability and performance of the Nation's nuclear weapons stockpile. To accomplish

17

Dynamic Knowledge Provenance Enterprise Integration Laboratory Technical Report  

E-Print Network [OSTI]

1 Dynamic Knowledge Provenance Enterprise Integration Laboratory Technical Report 16 June 2003 Street, Toronto, ON M5S 3G8 Canada msf@eil.utoronto.ca jingwei@eil.utoronto.ca Abstract. Knowledge of information/knowledge on the web. Four levels of KP including Static KP, Dynamic KP, Uncertain KP

Fox, Mark S.

18

Idaho National Engineering Laboratory waste area groups 1--7 and 10 Technology Logic Diagram. Volume 1  

SciTech Connect (OSTI)

The Technology Logic Diagram was developed to provide technical alternatives for environmental restoration projects at the Idaho National Engineering Laboratory. The diagram (three volumes) documents suggested solutions to the characterization, retrieval, and treatment phases of cleanup activities at contaminated sites within 8 of the laboratory`s 10 waste area groups. Contaminated sites at the laboratory`s Naval Reactor Facility and Argonne National Laboratory-West are not included in this diagram.

O`Brien, M.C.; Meservey, R.H.; Little, M.; Ferguson, J.S.; Gilmore, M.C.

1993-09-01T23:59:59.000Z

19

Senior Technical Safety Manager Functional Area Qualification Standard  

Broader source: Energy.gov (indexed) [DOE]

MEASUREMENT MEASUREMENT SENSITIVE DOE-STD-1175-2013 October 2013 DOE STANDARD SENIOR TECHNICAL SAFETY MANAGER FUNCTIONAL AREA QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. DOE-STD-1175-2013 This document is available on the Department of Energy Technical Standards Program Website at http://energy.gov/hss/information-center/department-energy-technical-standards-program ii DOE-STD-11 75-2013 APPROVAL The Federal Technical Capability Panel consists of senior U.S. Department of Energy (DOE) managers responsible for overseeing the Federal Technical Capability Program. This Panel is responsible for reviewing and approving the Qualification Standard for Department-wide

20

Heat flow studies, Coso Geothermal Area, China Lake, California. Technical  

Open Energy Info (EERE)

studies, Coso Geothermal Area, China Lake, California. Technical studies, Coso Geothermal Area, China Lake, California. Technical report Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Heat flow studies, Coso Geothermal Area, China Lake, California. Technical report Details Activities (1) Areas (1) Regions (0) Abstract: Heat flow studies in the Coso Geothermal Area were conducted at China Lake, California. Temperature measurements were completed in nine of the heat flow boreholes. Temperatures were measured at five meter intervals from the ground surface to the deepest five meter interval. Subsequently, temperatures were remeasured two or three times in each borehole in order to demonstrate that equilibrium thermal conditions existed. The maximum difference in temperature, at any of the five meter intervals, was 0.03 deg

Note: This page contains sample records for the topic "laboratory technical area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

RCRA Facility investigation report for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 5, Technical Memorandums 06-09A, 06-10A, and 06-12A: Environmental Restoration Program  

SciTech Connect (OSTI)

This report provides a detailed summary of the activities carried out to sample groundwater at Waste Area Grouping (WAG) 6. The analytical results for samples collected during Phase 1, Activity 2 of the WAG 6 Resource Conservation and Recovery Act Facility Investigation (RFI) are also presented. In addition, analytical results for Phase 1, activity sampling events for which data were not previously reported are included in this TM. A summary of the groundwater sampling activities of WAG 6, to date, are given in the Introduction. The Methodology section describes the sampling procedures and analytical parameters. Six attachments are included. Attachments 1 and 2 provide analytical results for selected RFI groundwater samples and ORNL sampling event. Attachment 3 provides a summary of the contaminants detected in each well sampled for all sampling events conducted at WAG 6. Bechtel National Inc. (BNI)/IT Corporation Contract Laboratory (IT) RFI analytical methods and detection limits are given in Attachment 4. Attachment 5 provides the Oak Ridge National Laboratory (ORNL)/Analytical Chemistry Division (ACD) analytical methods and detection limits and Resource Conservation and Recovery Act (RCRA) quarterly compliance monitoring (1988--1989). Attachment 6 provides ORNL/ACD groundwater analytical methods and detection limits (for the 1990 RCRA semi-annual compliance monitoring).

Not Available

1991-09-01T23:59:59.000Z

22

Senior Technical Safety Manager Functional Area Qualification Standard  

Broader source: Energy.gov (indexed) [DOE]

75-2006 75-2006 i NOT MEASUREMENT SENSITIVE DOE-STD-1175-2006 October 2006 DOE STANDARD SENIOR TECHNICAL SAFETY MANAGER FUNCTIONAL AREA QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1175-2006 ii This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161,

23

TECHNICAL INTEGRATION ENVIRONMENTAL MANAGEMENT FOCUS AREAS  

SciTech Connect (OSTI)

This contract involved a team of companies led by WPI (formerly the Waste Policy Institute). In addition to WPI, the team included four subcontractors--TRW (formerly BDM Federal), SAIC, Energetics, and the University of North Dakota Energy and Environmental Research Center (EERC). The team of companies functioned as a ''seamless team'' assembled to support the Environmental Management Program Focus Areas. Staff resources were applied in the following offices: Richland, Washington, Idaho Falls, Idaho, Morgantown, West Virginia, Grand Forks, North Dakota, Aiken, South Carolina, Gaithersburg, Maryland, and Blacksburg, Virginia. These locations represented a mixture of site support offices at the field focus area locations and central staff to support across the focus areas. The management of this dispersed resource base relied on electronic communication links to allow the team to function as a ''virtual office'' to address tasks with the best qualified staff matched to the task assignments. A variety of tasks were assigned and successfully completed throughout the life of the contract that involved program planning and analysis, program execution, program information management and communication and data transmission.

Carey R. Butler

2001-10-01T23:59:59.000Z

24

Savannah River Ecology Laboratory Annual Technical Progress Report  

Office of Scientific and Technical Information (OSTI)

Savannah River Ecology Savannah River Ecology Laboratory Annual Technical Progress Report of Ecological Research Draft submitted July 31, 2001 Final submitted August 17,2001 Supported under Cooperative Agreement between The University of Georgia and the U.S. Department of Energy for The University of Georgia fiscal year ending June 30,2001 DE-F609-96SR18546 Paul M. Bertsch, Director Prepared by Laura Janecek and Brenda Rosier Savannah River Ecology Laboratory Drawer E Aiken, SC 29801 PH (803) 725-2472 FX 725-3309 E-mail: Rosier @srel.edu This report is provided for information only and is not to be considered formally contained herein without the express consent of the investigator. published literature. We request that no citations be made of information TABLE OF CONTENTS

25

Los Alamos National Laboratory Environmental Restoration Project quarterly technical report, April--June 1994  

SciTech Connect (OSTI)

This quarterly report describes the technical status of activities in the Los Alamos National Laboratory Environmental Restoration (ER) Project. Each activity is identified by an activity data sheet number, a brief title describing the activity or the technical area where the activity is located, and the name of the project leader. The Hazardous and Solid Waste Amendments (HSWA) portion of the facility operating permit requires the submission of a technical progress report on a quarterly basis. This report, submitted to fulfill the permit`s requirement, summarizes the work performed and the results of sampling and analysis in the ER Project. Suspect waste found include: Radionuclides, high explosives, metals, solvents and organics. The data provided in this report have not been validated. These data are considered ``reviewed data.``

Not Available

1994-08-18T23:59:59.000Z

26

Alternatives to incineration. Technical area status report  

SciTech Connect (OSTI)

Recently, the DOE`s Mixed Waste Integrated Program (MWIP) (superseded by the Mixed Waste Focus Area) initiated an evaluation of alternatives to incineration to identify technologies capable of treating DOE organically contaminated mixed wastes and which may be more easily permitted. These technologies have the potential of alleviating stakeholder concerns by decreasing off-gas volurties and the associated emissions of particulates, volatilized metals and radionuclides, PICs, NO{sub x}, SO{sub x}, and recombination products (dioxins and furans). Ideally, the alternate technology would be easily permitted, relatively omnivorous and effective in treating a variety of wastes with varying constituents, require minimal pretreatment or characterization, and be easy to implement. In addition, it would produce secondary waste stream volumes significantly smaller than the original waste stream, and would minimize the environmental health and safety effects on workers and the public. The purpose of this report is to provide an up-to-date (as of early 1995) compendium of iternative technologies for designers of mixed waste treatment facilities, and to identify Iternate technologies that may merit funding for further development. Various categories of non-thermal and thermal technologies have been evaluated and are summarized in Table ES-1. Brief descriptions of these technologies are provided in Section 1.7 of the Introduction. This report provides a detailed description of approximately 30 alternative technologies in these categories. Included in the report are descriptions of each technology; applicable input waste streams and the characteristics of the secondary, or output, waste streams; the current status of each technology relative to its availability for implementation; performance data; and costs. This information was gleaned from the open literature, governments reports, and discussions with principal investigators and developers.

Schwinkendorf, W.E. [BDM Federal, Inc., Albuquerque, NM (United States); McFee, J.; Devarakonda, M. [International Technology Corp., Albuquerque, NM (United States); Nenninger, L.L.; Fadullon, F.S. [Science Applications International Corp., Gaithersburg, MD (United States); Donaldson, T.L. [Oak Ridge National Lab., TN (United States); Dickerson, K. [Oak Ridge National Lab., TN (United States); [Rocky Flats Environmental Technology Site, Golden, CO (United States)

1995-04-01T23:59:59.000Z

27

DEPARTMENT OF BIOMEDICAL ENGINEERING 2008 2010 Technical Area 2  

E-Print Network [OSTI]

DEPARTMENT OF BIOMEDICAL ENGINEERING 2008 ­ 2010 Technical Area 2 Cell and Biomolecular Engineering List CGOV 310L American Government MBME 371 Biomedical Engineering Project BME 370 SBME Sr. Elective must be in Biomedical Engineering. Choose one: TBME 376 Cell Engineering BIO 311C TBME 354 Molecular

Ben-Yakar, Adela

28

Research Laboratories General Motors Corporation General Motors Technical Center  

Office of Legacy Management (LM)

MI. 1-q Research Laboratories General Motors Corporation General Motors Technical Center Warren, Michigan 48090 January 21, 1977 Occupational Health Standards Branch Office of Standards Development U. S. Nuclear Requlatory Commission Washington, D.C. 20555 Attention: Mr. Robert E. Alexander, Chief Dear Mr. Alexander: In 1974, General Motors Corporation acquired a manufacturing plant in Adrian, Michigan. On October 21, 1976, General Motors announced that work would begin immediately to prepare the plant for manufacturing operations (Appendix A). A news release, made by Mr. Irving Loop of ERDA and carried by radio station WABJ of Adrian, Michigan on May 11, 1976, stated that natural uranium was handled in the plant after World War II and that

29

DOE/EIS-0319D; Proposed Relocation or Technical Area 18 Capabilities and Materials (8/2001)  

Broader source: Energy.gov (indexed) [DOE]

319D 319D August 2001 Draft Environmental Impact Statement for the Proposed Relocation of Technical Area 18 Capabilities and Materials at the Los Alamos National Laboratory United States Department of Energy National Nuclear Security Administration Washington, DC 20585 iii COVER SHEET Responsible Agency: United States Department of Energy (DOE) Title: Draft Environmental Impact Statement for the Proposed Relocation of Technical Area 18 Capabilities and Materials at the Los Alamos National Laboratory (TA-18 Relocation EIS) Locations: New Mexico, Nevada, Idaho For additional information or for copies of this draft environmental impact statement (EIS), contact: James J. Rose, Document Manager Office of Environmental Support (DP-42) Defense Programs National Nuclear Security Administration

30

Inspection Report - Radiological Waste Operations in Area G at Los Alamos National Laboratory, INS-O-13-03  

Broader source: Energy.gov (indexed) [DOE]

Inspection Report Inspection Report Radiological Waste Operations in Area G at Los Alamos National Laboratory INS-O-13-03 March 2013 Department of Energy Washington, DC 20585 March 20, 2013 MEMORANDUM FOR THE MANAGER, LOS ALAMOS FIELD OFFICE, NATIONAL NUCLEAR SECURITY ADMINISTRATION FROM: Sandra D. Bruce Assistant Inspector General for Inspections Office of Inspector General SUBJECT: INFORMATION: Inspection Report on "Radiological Waste Operations in Area G at Los Alamos National Laboratory" INTRODUCTION Los Alamos National Laboratory (Los Alamos) has a national security mission that includes science, engineering and technology related to radioactive and hazardous materials such as plutonium, americium, asbestos and lead. Material Disposal Area G, located in Technical Area

31

WindPACT Turbine Design Scaling Studies Technical Area 1ŒComposite Blades for 80- to 120-Meter Rotor  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 * NREL/SR-500-29492 1 * NREL/SR-500-29492 Dayton A. Griffin Global Energy Concepts Kirkland, Washington WindPACT Turbine Design Scaling Studies Technical Area 1-Composite Blades for 80- to 120-Meter Rotor March 21, 2000 - March 15, 2001 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute * * * * Battelle * * * * Bechtel Contract No. DE-AC36-99-GO10337 April 2001 * NREL/SR-500-29492 WindPACT Turbine Design Scaling Studies Technical Area 1-Composite Blades for 80- to 120-Meter Rotor March 21, 2000 - March 15, 2001 Dayton A. Griffin Global Energy Concepts Kirkland, Washington NREL Technical Monitor: Alan Laxson Prepared under Subcontract No. YAM-0-30203-01 National Renewable Energy Laboratory

32

WindPACT Turbine Design Scaling Studies Technical Area 3ŒSelf-Erecting Tower and Nacelle Feasibility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 * NREL/SR-500-29493 1 * NREL/SR-500-29493 Global Energy Concepts, LLC Kirkland, Washington WindPACT Turbine Design Scaling Studies Technical Area 3-Self-Erecting Tower and Nacelle Feasibility March 2000-March 2001 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute * * * * Battelle * * * * Bechtel Contract No. DE-AC36-99-GO10337 May 2001 * NREL/SR-500-29493 WindPACT Turbine Design Scaling Studies Technical Area 3-Self-Erecting Tower and Nacelle Feasibility March 2000-March 2001 Global Energy Concepts, LLC Kirkland, Washington NREL Technical Monitor: Alan Laxson Prepared under Subcontract No. YAM-0-30203-01 National Renewable Energy Laboratory 1617 Cole Boulevard

33

Independent Oversight Review, Los Alamos National Laboratory December 2013  

Broader source: Energy.gov [DOE]

Review of the Technical Area 55 Safety Class Fire Suppression System at Los Alamos National Laboratory

34

Sandia National Laboratories: China-US Technical Training and...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technical Training and Exchange in the Field of Deep Borehole Disposal of High-Level Radioactive Waste China-US Technical Training and Exchange in the Field of Deep Borehole...

35

Technical Sessions J. C. Doran Pacific; Northwest Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

J. C. Doran J. C. Doran Pacific; Northwest Laboratory Richland, WA 99352 from one surface to another (with each slurface of order 10 km in length) but would show relatively minor variations over any particular surface. With such a site, we hoped to see a clear signature of the effElcts of surface inhomogeneities, test one or more par;~metric schemes relating turbulent fluxes to vertical gr;~dients of mean quantities, evaluate methods of measuring surface fluxes over inhomogeneous terrain, examine the variation of surface fluxes over a range of scales, and establish procedures for extrapolating flux values from smaller scales to larger ones. The site chosen for the experiment \\ras located near Boardman, in northeastern Oregon, and is shown schematically in Figure 1. A large, sagebrush steppe area

36

Sandia National Laboratories: Careers: Internships & Co-ops: Technical  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technical Institute Programs Technical Institute Programs Internships & Co-ops Technical Institute Programs Computer Science Research Institute Enabling Predictive Simulation Research Institute Energy Surety Incubator Interns for Security, Arms Control, and Force Protection Engineering National Security Engineering Institute Physical Sciences Institute Sandia Institute for Modeling and Simulation Science of Extreme Environments Research Institute TITANS: Center for Analysis Systems and Applications TITANS: Center for Cyber Defenders TITANS: Monitoring Systems and Technology Intern Center How to Apply Intern Benefits Intern FAQs Fellowships Postdoctoral Positions Campus Recruiting Careers Technical Institute Programs Scientist working with lab equipment Critical skills of critical importance

37

Savannah River Ecology Laboratory. Annual technical progress report of ecological research  

SciTech Connect (OSTI)

The Savannah River Ecology Laboratory (SREL) is a research unit of the University of Georgia (UGA). The overall mission of the Laboratory is to acquire and communicate knowledge of ecological processes and principles. SREL conducts basic and applied ecological research, as well as education and outreach programs, under a contract with the U.S. Department of Energy (DOE) at the Savannah River Site (SRS) near Aiken, South Carolina. Significant accomplishments were made during the past year in the areas of research, education and service. The Laboratory`s research mission was fulfilled with the publication of two books and 143 journal articles and book chapters by faculty, technical and students, and visiting scientists. An additional three books and about 80 journal articles currently are in press. Faculty, technician and students presented 193 lectures, scientific presentations, and posters to colleges and universities, including minority institutions. Dr. J Vaun McArthur organized and conducted the Third Annual SREL Symposium on the Environment: New Concepts in Strewn Ecology: An Integrative Approach. Dr. Michael Newman conducted a 5-day course titled Quantitative Methods in Ecotoxicology, and Dr. Brian Teppen of The Advanced Analytical Center for Environmental Sciences (AACES) taught a 3-day short course titled Introduction to Molecular Modeling of Environmental Systems. Dr. I. Lehr Brisbin co-hosted a meeting of the Crocodile Special Interest Group. Dr. Rebecca Sharitz attended four symposia in Japan during May and June 1996 and conducted meetings of the Executive Committee and Board of the International Association for Ecology (ENTECOL).

Smith, M.H.

1996-07-31T23:59:59.000Z

38

Laboratory to demolish excavation enclosures at Material Disposal Area B  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Excavation Enclosures At MDA B Excavation Enclosures At MDA B Laboratory to demolish excavation enclosures at Material Disposal Area B near DP Road Pre-demolition activities are beginning this week and the work should be completed by the end of March 2013. November 1, 2012 The Laboratory plans to demolish the enclosures used to safely excavate and clean up the Lab's oldest waste disposal site near DP Road in Los Alamos. The Laboratory plans to demolish the enclosures used to safely excavate and clean up the Lab's oldest waste disposal site near DP Road in Los Alamos. Contact Communications Office (505) 667-7000 "We look forward to the day we officially turn the property over for the benefit of our community." Work is beginning this week LOS ALAMOS, New Mexico, November 1, 2012-Los Alamos National Laboratory

39

Laboratory to demolish excavation enclosures at Material Disposal Area B  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Excavation enclosures at MDA B Excavation enclosures at MDA B Laboratory to demolish excavation enclosures at Material Disposal Area B near DP road Pre-demolition activities are beginning this week and the work should be completed by the end of March 2013. November 1, 2012 The Laboratory plans to demolish the enclosures used to safely excavate and clean up the Lab's oldest waste disposal site near DP Road in Los Alamos. The Laboratory plans to demolish the enclosures used to safely excavate and clean up the Lab's oldest waste disposal site near DP Road in Los Alamos. Contact Colleen Curran Communications Office (505) 664-0344 Email "We look forward to the day we officially turn the property over for the benefit of our community." Work is beginning this week LOS ALAMOS, New Mexico, November 1, 2012-Los Alamos National Laboratory

40

Laboratory to demolish excavation enclosures at Material Disposal Area B  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Excavation Enclosures At MDA B Excavation Enclosures At MDA B Laboratory to demolish excavation enclosures at Material Disposal Area B near DP Road Pre-demolition activities are beginning this week and the work should be completed by the end of March 2013. November 1, 2012 The Laboratory plans to demolish the enclosures used to safely excavate and clean up the Lab's oldest waste disposal site near DP Road in Los Alamos. The Laboratory plans to demolish the enclosures used to safely excavate and clean up the Lab's oldest waste disposal site near DP Road in Los Alamos. Contact Communications Office (505) 667-7000 "We look forward to the day we officially turn the property over for the benefit of our community." Work is beginning this week LOS ALAMOS, New Mexico, November 1, 2012-Los Alamos National Laboratory

Note: This page contains sample records for the topic "laboratory technical area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Preliminary characterization of the 100 area at Argonne National Laboratory  

SciTech Connect (OSTI)

This characterization report is based on the results of sampling and an initial environmental assessment of the 100 Area of Argonne National Laboratory. It addresses the current status, projected data requirements, and recommended actions for five study areas within the 100 Area: the Lime Sludge Pond, the Building 108 Liquid Retention Pond, the Coal Yard, the East Area Burn Pit, and the Eastern Perimeter Area. Two of these areas are solid waste management units under the Resource Conservation and Recovery Act (the Lime Sludge Pond and the Building 108 Liquid Retention Pond); however, the Illinois Environmental Protection Agency has determined that no further action is necessary for the Lime Sludge Pond. Operational records for some of the activities were not available, and one study area (the East Area Burn Pit) could not be precisely located. Recommendations for further investigation include sample collection to obtain the following information: (1) mineralogy of major minerals and clays within the soils and underlying aquifer, (2) pH of the soils, (3) total clay fraction of the soils, (4) cation exchange capacity of the soils and aquifer materials, and (5) exchangeable cations of the soils and aquifer material. Various other actions are recommended for the 100 Area, including an electromagnetic survey, sampling of several study areas to determine the extent of contamination and potential migration pathways, and sampling to determine the presence of any radionuclides. For some of the study areas, additional actions are contingent on the results of the initial recommendations.

Biang, C.; Biang, R.; Patel, P.

1994-06-01T23:59:59.000Z

42

WindPACT Turbine Design Scaling Studies: Technical Area 4ƒBalance-of-Station Cost  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 * NREL/SR-500-29950 1 * NREL/SR-500-29950 D.A. Shafer, K.R. Strawmyer, R.M. Conley, J.H. Guidinger, D.C. Wilkie, and T.F. Zellman With assistance from D.W. Bernadett Commonwealth Associates, Inc. Jackson, Michigan WindPACT Turbine Design Scaling Studies: Technical Area 4- Balance-of-Station Cost 21 March 2000-15 March 2001 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute * * * * Battelle * * * * Bechtel Contract No. DE-AC36-99-GO10337 July 2001 * NREL/SR-500-29950 WindPACT Turbine Desing Scaling Studies: Technical Area 4- Balance-of-Station Cost 21 March 2000-15 March 2001 D.A. Shafer, K.R. Strawmyer, R.M. Conley, J.H. Guidinger, D.C. Wilkie, and T.F. Zellman

43

Laboratory employees collect backpacks, school supplies for area school  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

School supplies for children School supplies for children Laboratory employees collect backpacks, school supplies for area school children Employees donated more than 1,000 backpacks and thousands of school supplies, including pencils, pens, and notebooks. August 20, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

44

Technical area status report for low-level mixed waste final waste forms. Volume 1  

SciTech Connect (OSTI)

The Final Waste Forms (FWF) Technical Area Status Report (TASR) Working Group, the Vitrification Working Group (WG), and the Performance Standards Working Group were established as subgroups to the FWF Technical Support Group (TSG). The FWF TASR WG is comprised of technical representatives from most of the major DOE sites, the Nuclear Regulatory Commission (NRC), the EPA Office of Solid Waste, and the EPA`s Risk Reduction Engineering Laboratory (RREL). The primary activity of the FWF TASR Working Group was to investigate and report on the current status of FWFs for LLNM in this TASR. The FWF TASR Working Group determined the current status of the development of various waste forms described above by reviewing selected articles and technical reports, summarizing data, and establishing an initial set of FWF characteristics to be used in evaluating candidate FWFS; these characteristics are summarized in Section 2. After an initial review of available information, the FWF TASR Working Group chose to study the following groups of final waste forms: hydraulic cement, sulfur polymer cement, glass, ceramic, and organic binders. The organic binders included polyethylene, bitumen, vinyl ester styrene, epoxy, and urea formaldehyde. Section 3 provides a description of each final waste form. Based on the literature review, the gaps and deficiencies in information were summarized, and conclusions and recommendations were established. The information and data presented in this TASR are intended to assist the FWF Production and Assessment TSG in evaluating the Technical Task Plans (TTPs) submitted to DOE EM-50, and thus provide DOE with the necessary information for their FWF decision-making process. This FWF TASR will also assist the DOE and the MWIP in establishing the most acceptable final waste forms for the various LLMW streams stored at DOE facilities.

Mayberry, J.L.; DeWitt, L.M. [Science Applications International Corp., Idaho Falls, ID (United States); Darnell, R. [EG and G Idaho, Inc., Idaho Falls, ID (United States)] [and others

1993-08-01T23:59:59.000Z

45

A Technical Report of ITTC's Networking and Distributed Systems Laboratory  

E-Print Network [OSTI]

Design Improvements Mihir Thaker Joseph Evans James Roberts Technical Report ITTC-FY2000-TR-15663 evaluates the performance of two widely used MAC protocols, namely Reservation-TDMA (R- TDMA) and Multi. It was observed that HTTP based applications are suited to an R-TDMA system while FTP based applications perform

Kansas, University of

46

Technical Assistance Guide: Working with DOE National Laboratories (Brochure), Federal Energy Management Program (FEMP)  

Broader source: Energy.gov (indexed) [DOE]

Energy Management Energy Management Program (FEMP) facilitates the Federal Government's implementa- tion of sound, cost-effective energy management and investment practices to enhance the nation's energy security and environmental stewardship. To advance that mission, FEMP fosters collaboration between Federal agencies and U.S. Department of Energy (DOE) national laboratories. 1 This guide outlines technical assistance capabilities and expertise at DOE national laboratories. Any laboratory assistance must be in accordance with Federal Acquisition Regulation (FAR) Subpart 35.017 requirements and the laboratory's designation as Federal Funded Research and Development Center (FFRDC) facilities. Contacts and core expertise for each DOE national laboratory are listed in

47

Technical Assistance Guide: Working with DOE National Laboratories (Brochure), Federal Energy Management Program (FEMP)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Federal Energy Management Federal Energy Management Program (FEMP) facilitates the Federal Government's implementa- tion of sound, cost-effective energy management and investment practices to enhance the nation's energy security and environmental stewardship. To advance that mission, FEMP fosters collaboration between Federal agencies and U.S. Department of Energy (DOE) national laboratories. 1 This guide outlines technical assistance capabilities and expertise at DOE national laboratories. Any laboratory assistance must be in accordance with Federal Acquisition Regulation (FAR) Subpart 35.017 requirements and the laboratory's designation as Federal Funded Research and Development Center (FFRDC) facilities. Contacts and core expertise for each DOE national laboratory are listed in

48

Savannah River Ecology Laboratory 2005 Annual Technical Progress Report  

SciTech Connect (OSTI)

2005 annual report of research conducted by the Savannah River Ecology Laboratory, a research unit of The University of Georgia operating on the Savannah River Site, Aiken, South Carolina

Paul M. Bertsch

2005-07-19T23:59:59.000Z

49

Savannah River Ecology Laboratory FY2006 Annual Technical Progress Report  

SciTech Connect (OSTI)

FY2006 annual report of research conducted by the Savannah River Ecology Laboratory, a research unit of the University of Georgia operating on the Savannah River Site in Aiken, County, SC.

Paul M. Bertsch

2006-10-23T23:59:59.000Z

50

Technical evaluation: 300 Area steam line valve accident  

SciTech Connect (OSTI)

On June 7, 1993, a journeyman power operator (JPO) was severely burned and later died as a result of the failure of a 6-in. valve that occurred when he attempted to open main steam supply (MSS) valve MSS-25 in the U-3 valve pit. The pit is located northwest of Building 331 in the 300 Area of the Hanford Site. Figure 1-1 shows a layout of the 300 Area steam piping system including the U-3 steam valve pit. Figure 1-2 shows a cutaway view of the approximately 10- by 13- by 16-ft-high valve pit with its various steam valves and connecting piping. Valve MSS-25, an 8-in. valve, is located at the bottom of the pit. The failed 6-in. valve was located at the top of the pit where it branched from the upper portion of the 8-in. line at the 8- by 8- by 6-in. tee and was then ``blanked off`` with a blind flange. The purpose of this technical evaluation was to determine the cause of the accident that led to the failure of the 6-in. valve. The probable cause for the 6-in. valve failure was determined by visual, nondestructive, and destructive examination of the failed valve and by metallurgical analysis of the fractured region of the valve. The cause of the accident was ultimately identified by correlating the observed failure mode to the most probable physical phenomenon. Thermal-hydraulic analyses, component stress analyses, and tests were performed to verify that the probable physical phenomenon could be reasonably expected to produce the failure in the valve that was observed.

Not Available

1993-08-01T23:59:59.000Z

51

Guidelines for ACUC Oversight of Satellite Facilities, Study Areas, Laboratories and other Animal Activity Areas  

E-Print Network [OSTI]

Guidelines for ACUC Oversight of Satellite Facilities, Study Areas, Laboratories and other Animal? · Are pharmaceuticals in-date? Are chemical-grade materials in use for compounds for which pharmaceutical preparations familiar with procedures for receipt and disposition of animals and transport containers? If applicable

Bandettini, Peter A.

52

Measurement of emission fluxes from Technical Area 54, Area G and L. Final report  

SciTech Connect (OSTI)

The emission flux (mass/time-area) of tritiated water from TA-54 was measured to support the characterization of radioactive air emissions from waste sites for the Radioactive Air Emissions Management (RAEM) program and for the Area G Performance Assessment. Measurements were made at over 180 locations during the summers of 1993 and 1994, including randomly selected locations across Area G, three suspected areas of contamination at Area G, and the property surrounding TA-54. The emission fluxes of radon were measured at six locations and volatile organic compounds (VOCs) at 30 locations. Monitoring was performed at each location over a several-hour period using the U.S. EPA flux chamber approach. Separate samples for tritiated water, radon, and VOCs were collected and analyzed in off-site laboratories. The measured tritiated water emission fluxes varied over several orders of magnitude, from background levels of about 3 pCi/m{sup 2}-min to 9.69 x 10{sup 6} pCi/m{sup 2}-min near a disposal shaft. Low levels of tritiated water were found to have migrated into Pajarito Canyon, directly south of Area G. The tritium flux data were used to generate an estimated annual emission rate of 14 Curies/yr for all of Area G, with the majority of this activity being emitted from relatively small areas adjacent to several disposal shafts. The estimated total annual release is less than 1% of the total tritium release from all LANL in 1992 and results in a negligible off-site dose. Based on the limited data available, the average emission flux of radon from Area G is estimated to be 8.1 pCi/m{sup 2}-min. The measured emission fluxes of VOCs were < 100 {mu}g/m{sup 2}-min, which is small compared with fluxes typically measured at hazardous waste landfills. The air quality impacts of these releases were evaluated in a separate report.

Eklund, B. [Radian Corp., Austin, TX (United States)

1995-03-15T23:59:59.000Z

53

Environmental assessment for operations, upgrades, and modifications in SNL/NM Technical Area IV  

SciTech Connect (OSTI)

The proposed action for this EA for Sandia National Laboratories/New Mexico Technical Area IV, includes continuing existing operations, modification of an existing accelerator (Particle Beam Fusion Accelerator II) to support defnese-related Z-pinch experiments, and construction of two transformer oil storage tanks to support the expansion of the Advanced Pulsed Power Research Module, a single pulse accelerator. Based on the analyses in the EA, DOE believes that the proposed action is not a major federal action significantly affecting the quality of the human environment within the meaning of NEPA and CEQ NEPA implementing regulations in 40 CFR 1508.18 and 1508.27. Therefore, an environmental impact statement is not required, and a Finding of No Significant Impact is issued.

NONE

1996-04-01T23:59:59.000Z

54

Technical Direction and Laboratories FY 1999 Annual Report  

SciTech Connect (OSTI)

This annual report summarize achievements and list reports issued by members of TD&L, NHC group during Fiscal Year (FY) 1999, (October 1, 1998 through September 30, 1999). This report, issued by this organization, describes work in support of the Hanford Site and other U S . Department of Energy, Richland Operations Office (DOE-RL) programs. It includes information on the organization make-up, interfaces, and mission of the group. The TD&L is a group of highly qualified personnel with diverse disciplines (primarily chemistry specialties) that provide process, analytical, and in-situ chemistry services to engineering customers. This year of operation and interfaces with other contract organizations consumed considerable administrative efforts. Attention was directed to the technical challenges presented by the changing roles, responsibilities, and priorities of Hanford programs.

CRAWFORD, B.A.

2000-09-07T23:59:59.000Z

55

WindPACT Turbine Design Scaling Studies Technical Area 2: Turbine, Rotor, and Blade Logistics; March 27, 2000 to December 31, 2000  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 * NREL/SR-500-29439 1 * NREL/SR-500-29439 Kevin Smith Global Energy Concepts LLC Kirkland, Washington WindPACT Turbine Design Scaling Studies Technical Area 2: Turbine, Rotor, and Blade Logistics March 27, 2000 to December 31, 2000 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute * * * * Battelle * * * * Bechtel Contract No. DE-AC36-99-GO10337 June 2001 * NREL/SR-500-29439 WindPACT Turbine Design Scaling Studies Technical Area 2: Turbine, Rotor, and Blade Logistics March 27, 2000 to December 31, 2000 Kevin Smith Global Energy Concepts LLC Kirkland, Washington NREL Technical Monitor: Alan Laxson Prepared under Subcontract No. YAM-0-30203-01 National Renewable Energy Laboratory

56

PFFPRESEARCH AND TECHNICAL ASSISTANCE PROGRAM FOR FOREIGN ENTITIESFP AT OAK RIDGE NATIONAL LABORATORY (ORNL)  

E-Print Network [OSTI]

LABORATORY (ORNL) Legal Authority The Department of Energy (DOE) sponsors a research and technical assistance such as the Atomic Energy Act of 1954 (as amended), the Energy Reorganization Act of 1974 (Section 107a of Public Law.g., International Red Cross) 2. UUnited Nations OrganizationsU (e.g., International Atomic Energy Agency) 3

57

DEPARTMENT OF BIOMEDICAL ENGINEERING 2008 2010 Technical Area 3  

E-Print Network [OSTI]

for Scientific Computing BME 303 TE E 422C Data Structures EE 312 M 408D M 340L TBME Tech Elective* BME Technical of Software Design BME 303 ** Choose two from the following: M 340L EE 322C CS 313E Varies TBME 341) Signals & System Analysis in BME BME 113L BME 113L CS 323E M 340L PHY 303K & 103M CS 307 EE 322C CVis

Ben-Yakar, Adela

58

DEPARTMENT OF BIOMEDICAL ENGINEERING 2008 2010 Technical Area 3  

E-Print Network [OSTI]

for Scientific Computing BME 303 TEE 422C Data Structures EE 312 M 408D M 340L TTechnical Elective* Technical of Software Design BME 303 ** Choose two from the following: M 340L EE 322C CS 313E Varies TBME 341) Signals & System Analysis in BME BME 113L BME 113L CS 323E M 340L PHY 303K & 103M CS 307 EE 322C #12

Ben-Yakar, Adela

59

E-Print Network 3.0 - area 1994-1995 technical Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

affecting wind farm investments and market... procedures for wind turbines and wind farms 12;R&D Priority Areas - cont. Grid ... Source: Ris National Laboratory Collection:...

60

Buildings to Grid Integration Technical Meeting: National Renewable Energy Laboratory, Energy Systems Integration Facility, Golden, CO  

Broader source: Energy.gov (indexed) [DOE]

Buildings to Grid Integration Buildings to Grid Integration Technical Meeting: National Renewable Energy Laboratory, Energy Systems Integration Facility Golden, CO December 2012 1 WELCOME Welcome to the Buildings to Grid Integration Technical Meeting and to Golden, Colorado. On behalf of the U.S. Department of Energy Building Technologies Program, I would like to thank you for attending and for your active participation. I look forward to meeting you and hearing your perspective on enabling significant buildings to grid integration. Everyone is here because we are working to make efficient transactions between buildings and the grid a commercial reality, whether it is through

Note: This page contains sample records for the topic "laboratory technical area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

DOE-STD-1179-2004; Technical Training Functional Area Qualification Standard  

Broader source: Energy.gov (indexed) [DOE]

9-2004 9-2004 February 2004 DOE STANDARD TECHNICAL TRAINING FUNCTIONAL AREA QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1179-2004 i This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. DOE-STD-1179-2004 ii APPROVAL The Federal Technical Capability Panel consists of senior U.S. Department of Energy managers

62

Electronics and Electrical Engineering Laboratory technical publications announcements covering laboratory programs, January to March 1992, with 1992/1993 EEEL events calendar  

SciTech Connect (OSTI)

This is the thirty-second issue of a quarterly publication providing information on the technical work of the National Institute of Standards and Technology Electronics and Electrical Engineering Laboratory (EEEL). This issue of the EEEL Technical Publication Announcements covers the first quarter of calendar year 1992. This issue contains citations and abstracts for Laboratory publications published in the quarter. Major subject headings include the following: Fundamental Electrical Measurements; Semiconductor Microelectronics; Signal Acquisition, Processing, and Transmission; Electrical Systems; Electromagnetic Interference.

Gonzalez, J.A.

1992-10-01T23:59:59.000Z

63

Area schools get new computers through Los Alamos National Laboratory...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory...

64

DEPARTMENT OF BIOMEDICAL ENGINEERING 2012 2014 Technical Area/Track 3  

E-Print Network [OSTI]

the following: M 340L E E 422CFull Major Seq BME 341 Engineering Tools for Computational Genomics Laboratory II TTechnical Elective* Technical Elective Varies T M 340L Matrices and Matrix Calculations M 408C E Computing for Sci & Engr. M 408D Check the course sch for more pre-reqs M 340L #12;DEPARTMENT OF BIOMEDICAL

Ben-Yakar, Adela

65

DEPARTMENT OF BIOMEDICAL ENGINEERING 2010 2012 Technical Area/Track 3  

E-Print Network [OSTI]

the following: M 340L E E 422CFull Major Seq BME 341 Engineering Tools for Computational Genomics Laboratory II TTechnical Elective* Technical Elective Varies T M 340L Matrices and Matrix Calculations M 408C E the course sch for more pre-reqs M 340L #12;DEPARTMENT OF BIOMEDICAL ENGINEERING 2010 - 2012 General

Ben-Yakar, Adela

66

DOE-STD-1175-2003; Senior Technical Safety Manager Functional Area Qualification Standard  

Broader source: Energy.gov (indexed) [DOE]

MEASUREMENT DOE-STD-1175-2003 December 2003 DOE STANDARD SENIOR TECHNICAL SAFETY MANAGER FUNCTIONAL AREA QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1175-2003 ii This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161, (703) 605-6000.

67

DOE-STD-1178-2004; Technical Program Manager Functional Area Qualification Standard  

Broader source: Energy.gov (indexed) [DOE]

78-2004 78-2004 February 2004 DOE STANDARD TECHNICAL PROGRAM MANAGER FUNCTIONAL AREA QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE DOE-STD-1178-2004 i This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. DOE-STD-1178-2004

68

Independent Oversight Inspection of Environment, Safety, and Health Programs at the Argonne National Laboratory, Technical Appendices, Volume II, May 2005  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) Office of Independent Oversight and Performance Assurance (OA) inspected environment, safety, and health (ES&H) programs at the DOE Argonne National Laboratory (ANL) during April and May 2005. The inspection was performed by the OA Office of Environment, Safety and Health Evaluations. This volume of the report provides four technical appendices (C through F) containing detailed results of the OA review. Appendix C provides the results of the review of the application of the core functions of ISM for ANL work activities. Appendix D presents the results of the review of SC, ASO, and ANL feedback and continuous improvement processes and management systems. Appendix E presents the results of the review of essential safety system functionality, and Appendix F presents the results of the review of safety management of the selected focus areas.

69

Technical Safety Appraisal of the EBR-II, Argonne National Laboratory--West  

SciTech Connect (OSTI)

The purpose of the Technical Safety Appraisal Program is to strengthen DOE nuclear operations by encouraging contractors to improve compliance with DOE Orders, to incorporate industry lessons learned, and to promote excellence in safety. Thus, the appraisals address more issues than would be addressed in a strictly compliance-oriented appraisal. The EBR-II is a liquid-metal-cooled fast breeder reactor. It is cooled with molten sodium metal and its chain reactors is perpetuated with very energetic (fast) neutrons. A total of 50 concerns with respect to EBR-II operations were identified. None of these were judged to require prompt or expedited action. No concerns were identified with respect to 54 of the 95 Performance Objectives considered in the appraisal. Programs in the areas of these Performance Objectives were considered adequate. One Noteworthy Practice was identified in the technical area of Maintenance.

Schleiter, T.G.

1988-04-01T23:59:59.000Z

70

Research Areas - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

http://www.msd.anl.gov/research-areas Sun, 12 Jan 2014 01:06:27 +0000 Joomla! 1.6 - Open Source Content Management en-gb Dynamics of Active Self-Assemble Materials http://www.msd.anl.gov/research-areas/dynamics-of-active-self-assemble-materials http://www.msd.anl.gov/research-areas/dynamics-of-active-self-assemble-materials krajniak@anl.gov (Ken Krajniak) Fri, 13 May 2011 17:17:28 +0000 Elastic Relaxation and Correlation of Local Strain Gradients with Ferroelectric Domains in (001) BiFeO3 Nanostructures http://www.msd.anl.gov/research-areas/elastic-relaxation-and-correlation-of-local-strain-gradients-with-ferroelectric-domains-in-001-bifeo3-nanostructures http://www.msd.anl.gov/research-areas/elastic-relaxation-and-correlation-of-local-strain-gradients-with-ferroelectric-domains-in-001-bifeo3-nanostructures

71

Technical Memorandum To: File From: Jim Eidem Subject: Environmental Soil Data, Proposed Turbine Area, UMore Park  

Broader source: Energy.gov (indexed) [DOE]

Technical Memorandum Technical Memorandum To: File From: Jim Eidem Subject: Environmental Soil Data, Proposed Turbine Area, UMore Park Date: October 1, 2010 Project: 23191060.00 c: Brian Kombrink (Ryan Co.), Janet Dalgleish (UMN), Dan Mielke (UMN), Jeff Marr (UMN), John Wachtler (Barr) Attached is a table summarizing the analytical data from the proposed wind turbine area and a map showing the locations of the test trenches. On May 19, 2010, a total of seventeen soil samples were collected from the original proposed turbine location, turbine laydown area, met tower location, and the area in the immediate vicinity of the met tower. Fourteen of the samples were collected at the ground surface (to evaluate soil disturbed during initial site clearing) and three samples were collected at depth in

72

EIS-0402: Santa Susana Field Laboratory Area IV, California | Department of  

Broader source: Energy.gov (indexed) [DOE]

2: Santa Susana Field Laboratory Area IV, California 2: Santa Susana Field Laboratory Area IV, California EIS-0402: Santa Susana Field Laboratory Area IV, California Summary This EIS evaluates the environmental impacts of remediation of Area IV of the Santa Susana Field Laboratory (SSFL Area IV). SSFL Area IV, occupying approximately 290 acres of the total 2,852-acre SSFL site is located in the hills between Chatsworth and Simi Valley, CA, and was developed as a remote site to test rocket engines and conduct nuclear research. This EIS will evaluate alternatives for disposition of radiological facilities and support buildings, remediation of the affected environment, and disposal of all resulting waste at existing, approved sites. Public Comment Opportunities No public comment opportunities available at this time.

73

Oversight Reports - Los Alamos National Laboratory | Department...  

Broader source: Energy.gov (indexed) [DOE]

December 13, 2013 Independent Oversight Review, Los Alamos National Laboratory - December 2013 Review of the Technical Area 55 Safety Class Fire Suppression System at Los...

74

TECHNICAL EVALUATION OF SOIL REMEDIATION ALTERNATIVES AT THE BUILDING 812 OPERABLE UNIT, LAWRENCE LIVERMORE NATIONAL LABORATORY SITE 300  

SciTech Connect (OSTI)

The Department of Energy Livermore Site Office requested a technical review of remedial alternatives proposed for the Building 812 Operable Unit, Site 300 at the Lawrence Livermore National Laboratory. The team visited the site and reviewed the alternatives proposed for soil remediation in the draft RI/FS and made the following observations and recommendations. Based on the current information available for the site, the team did not identify a single technology that would be cost effective and/or ecologically sound to remediate DU contamination at Building 812 to current remedial goals. Soil washing is not a viable alternative and should not be considered at the site unless final remediation levels can be negotiated to significantly higher levels. This recommendation is based on the results of soil washing treatability studies at Fernald and Ashtabula that suggest that the technology would only be effective to address final remediation levels higher than 50 pCi/g. The technical review team identified four areas of technical uncertainty that should be resolved before the final selection of a preferred remedial strategy is made. Areas of significant technical uncertainty that should be addressed include: (1) Better delineation of the spatial distribution of surface contamination and the vertical distribution of subsurface contamination in the area of the firing table and associated alluvial deposits; (2) Chemical and physical characterization of residual depleted uranium (DU) at the site; (3) Determination of actual contaminant concentrations in air particulates to support risk modeling; and (4) More realistic estimation of cost for remedial alternatives, including soil washing, that were derived primarily from vendor estimates. Instead of conducting the planned soil washing treatability study, the team recommends that the site consider a new phased approach that combines additional characterization approaches and technologies to address the technical uncertainty in the remedial decision making. The site should redo the risk calculations as the future use scenario has changed for the site. As a result, the existing model is based on very conservative assumptions that result in calculation of unreasonably low cleanup goals. Specifically, the review team proposes that LLNL consider: (1) Revising the industrial worker scenario to a reasonable maximum exposure (RME) for a site worker that performs a weekly walk down of the area for two hours for 25 years (or an alternative RME if the exposure scenario changes); (2) Revising the ESSI of 2 mg U per kg soil for the deer mouse to account for less than 0.05 of the total ingested uranium being adsorbed by the gut; (3) Revising bioaccumulation factors (BAFs) for vegetation and invertebrates that are based on 100 mg of soluble uranium per kg of soil, as the uranium concentration in the slope soil does not average 100 mg/kg and it is not all in a soluble form; and (4) Measuring actual contaminant concentrations in air particulates at the site and using the actual values to support risk calculations. The team recommends that the site continue a phased approach during remediation. The activities should focus on elimination of the principal threats to groundwater by excavating (1) source material from the firing table and alluvial deposits, and (2) soil hotspots from the surrounding slopes with concentrations of U-235 and U-238 that pose unacceptable risk. This phased approach allows the remediation path to be driven by the results of each phase. This reduces the possibility of costly 'surprises', such as failure of soil treatment, and reduces the impact of remediation on endangered habitat. Treatment of the excavated material with physical separation equipment may result in a decreased volume of soil for disposal if the DU is concentrated in the fine-grained fraction, which can then be disposed of in an offsite facility at a considerable cost savings. Based on existing data and a decision to implement the recommended phased approach, the cost of characterization, excavation and physical

Eddy-Dilek, C.; Miles, D.; Abitz, R.

2009-08-14T23:59:59.000Z

75

Research Areas - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

http://www.msd.anl.gov http://www.msd.anl.gov 2014-01-12T01:06:27+00:00 Joomla! 1.6 - Open Source Content Management Dynamics of Active Self-Assemble Materials 2011-05-13T17:17:28+00:00 2011-05-13T17:17:28+00:00 http://www.msd.anl.gov/research-areas/dynamics-of-active-self-assemble-materials Ken Krajniak krajniak@anl.gov Self-assembly, a natural tendency of simple building blocks to organize into complex architectures is a unique opportunity for materials science. In-depth understanding of self-assembly paves the way for design of tailored smart materials for emerging energy technologies. However, self-assembled materials pose a formidable challenge: they are intrinsically complex, with an often hierarchical organization occurring on many nested length and time scales. This program

76

Research Areas - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nanostructured Thin Films Nanostructured Thin Films Theme: The Nanostructured Thin Films program is focused on the synthesis, characterization, and modeling of dimensionally constrained materials systems in which a nano-scale trait of the material (e.g. grain size, film thickness, interfacial boundary, etc.) fundamentally determines its structure-property relationships. The work performed in this program falls primarily into two areas: (1) studies of thin-film growth phenomena and film properties, with emphasis on diamond and multicomponent oxides; and (2) first principles quantum-mechanical calculations that model thin film growth processes and electronic structure. Frequently, the experimental and theoretical efforts are coordinated on common scientific issues in a particular material system. Current research is devoted to (a) growth

77

Research Areas - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemistry http://www.msd.anl.gov 2014-01-12T01:07:26+00:00 Joomla! Chemistry http://www.msd.anl.gov 2014-01-12T01:07:26+00:00 Joomla! 1.6 - Open Source Content Management Nanostructured Thin Films 2011-03-24T15:53:27+00:00 2011-03-24T15:53:27+00:00 http://www.msd.anl.gov/research-areas/nanostructured-thin-films Lacey Bersano lbersano@anl.gov Nanostructured Thin Films Staff Principal Investigator John A. Carlisle Larry A. Curtiss Dieter M. Gruen Postdoc Paola Bruno Chao Liu Nevin Naguib Bing Shi Michael Sternberg Jian

78

DOE FTCP Supplemental Competencies - Human Factors Engineering Functional Area Qualification Competency Examples for DOE Defense Nuclear Facilities Technical Personnel  

Broader source: Energy.gov (indexed) [DOE]

FTCP FTCP SUPPLEMENTAL COMPETENCIES HUMAN FACTORS ENGINEERING FUNCTIONAL AREA QUALIFICATION COMPETENCY EXAMPLES For DOE Defense Nuclear Facilities Technical Personnel APPROVAL The Federal Technical Capability Panel consists of senior U.S. Department of Energy (DOE) managers responsible for overseeing the Federal Technical Capability Program. This Panel is responsible for reviewing and approving qualification standards and competencies for Department-wide application. Approval of this set of competency statements by the Federal Technical Capability Panel is indicated by signature below. ?fuv-~ Karen L. Boardman, Chairperson ~·/Cf I Federal Technical Capability Panel * '2._ 3/19/12 I luman Factors Engineering compc1cncics U.S. DEPARTMENT OF ENERGY

79

Mixed Waste Focus Area integrated technical baseline report, Phase 1: Volume 1  

SciTech Connect (OSTI)

The Department of Energy (DOE) established the Mixed Waste Characterization, Treatment, and Disposal Focus Area (MWFA) to develop and facilitate implementation of technologies required to meet the Department`s commitments for treatment of mixed low-level and transuranic wastes. The mission of the MWFA is to provide acceptable treatment systems, developed in partnership with users and with participation of stakeholders, tribal governments, and regulators, that are capable of treating DOE`s mixed waste. These treatment systems include all necessary steps such as characterization, pretreatment, and disposal. To accomplish this mission, a technical baseline is being established that forms the basis for determining which technology development activities will be supported by the MWFA. The technical baseline is the prioritized list of deficiencies, and the resulting technology development activities needed to overcome these deficiencies. This document presents Phase I of the technical baseline development process, which resulted in the prioritized list of deficiencies that the MWFA will address. A summary of the data and the assumptions upon which this work was based is included, as well as information concerning the DOE Office of Environmental Management (EM) mixed waste technology development needs. The next phase in the technical baseline development process, Phase II, will result in the identification of technology development activities that will be conducted through the MWFA to resolve the identified deficiencies.

NONE

1996-01-16T23:59:59.000Z

80

Savannah River Ecology Laboratory. Annual technical progress report of ecological research, period ending July 31, 1994  

SciTech Connect (OSTI)

The Savannah River Ecology Laboratory (SREL) is a research unit of the University of Georgia (UGA) that is managed in conjunction with the University`s Institute of Ecology. The laboratory`s overall mission is to acquire and communicate knowledge of ecological processes and principles. SREL conducts basic and applied ecological research, as well as education and outreach programs, under an M&O contract with the US Department of Energy at the Savannah River Site. Significant accomplishments were made during the year ending July 31, 1994 in the areas of research, education and service. Reviewed in this document are research projects in the following areas: Environmental Operations Support (impacted wetlands, streams, trace organics, radioecology, database synthesis, wild life studies, zooplankton, safety and quality assurance); wood stork foraging and breeding ecology; defence waste processing facility; environmental risk assessment (endangered species, fish, ash basin studies); ecosystem alteration by chemical pollutants; wetlands systems; biodiversity on the SRS; Environmental toxicology; environmental outreach and education; Par Pond drawdown studies in wildlife and fish and metals; theoretical ecology; DOE-SR National Environmental Research Park; wildlife studies. Summaries of educational programs and publications are also give.

Not Available

1994-07-31T23:59:59.000Z

Note: This page contains sample records for the topic "laboratory technical area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Area schools get new computers through Los Alamos National Laboratory, IBM  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Area schools get new computers Area schools get new computers Area schools get new computers through Los Alamos National Laboratory, IBM partnership Northern New Mexico schools are recipients of fully loaded desktop and laptop computers. May 8, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Contact Steve Sandoval

82

FY 2000 Tanks Focus Area Corrosion Monitoring Technical Committee Meeting Summary Report  

SciTech Connect (OSTI)

The primary purpose of the annual meeting between the corrosion monitoring personnel at the various DOE sites is to facilitate communications and promote technology transfer between the two sites. The close communications and good spirit of teamwork being exhibited between the parties representing the Hanford and Savannah River Sites has helped the Savannah River Site effort avoid many of the problems encountered during the initial development effort at Hanford. Similar benefits can be expected over the next few years as the ORNL program is developed. Expected products of this meeting as defined in Milestone A.4-1 of TTP RL0-9-WT-41 are reports on the status of technical work at the sites, discussions of emerging technical issues, and results of laboratory experiments and field trials. The formal meeting, informal discussions throughout the week, and the presentation materials shown in the attachment to this document fulfill the expectations of this meeting. At the conclusion of the meeting it was agreed that close communications should continue between the concerned parties at ORNL, SRTC and Hanford. Tentative plans were made to hold a similar meeting in approximately one year.

NORMAN, E.C.

2000-07-19T23:59:59.000Z

83

Technical area status report for chemical/physical treatment. Volume 1  

SciTech Connect (OSTI)

The Office of Environmental Restoration and Waste Management (EM) was established by the Department of Energy (DOE) to direct and coordinate waste management and site remediation programs and activities throughout the DOE Complex. The Mixed Waste Integrated Program (MWIP) was created by the DOE Office of Technology Development (OTD) to develop, deploy, and complete appropriate technologies for the treatment of an DOE low-level mixed waste (LLMW). The MWIP mission includes development of strategies related to enhanced waste form production, improvements to and testing of the EM-30 baseline flowsheet for mixed waste treatment, programmatic oversight for ongoing technical projects, and specific technical tasks related to the site specific Federal Facilities Compliance Agreement (FFCA). The MWIP has established five Technical Support Groups (TSGs) based on primary functional areas of the Mixed Waste Treatment Plant) identified by EM-30. These TSGs are: (1) Front-End Waste Handling, (2) Chemical/Physical Treatment, (3) Waste Destruction and Stabilization, (4) Second-stage Destruction and Offgas Treatment, and (5) Final Waste Forms. The focus of this document is the Chemical/Physical Treatment System (CPTS). The CPTS performs the required pretreatment and/or separations on the waste streams passing through the system for discharge to the environment or efficient downstream processing. Downstream processing can include all system components except Front-End Waste Handling. The primary separations to be considered by the CPTS are: (1) removal of suspended and dissolved solids from aqueous and liquid organic streams, (2) separation of water from organic liquids, (3) treatment of wet and dry solids, including separation into constituents as required, for subsequent thermal treatment and final form processing, (4) mercury removal and control, and (5) decontamination of equipment and waste classified as debris.

Brown, C.H. Jr. [Oak Ridge National Lab., TN (United States); Schwinkendorf, W.E. [BDM Federal, Inc., Arlington, VA (United States)

1993-08-01T23:59:59.000Z

84

INDEPENDENT VERIFICATION SURVEY OF THE HIGH FLUX BEAM REACTOR DECOMMISSIONING PROJECT OUTSIDE AREAS BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK  

SciTech Connect (OSTI)

5098-SR-03-0 FINAL REPORT- INDEPENDENT VERIFICATION SURVEY OF THE HIGH FLUX BEAM REACTOR DECOMMISSIONING PROJECT OUTSIDE AREAS, BROOKHAVEN NATIONAL LABORATORY

P.C. Weaver

2010-12-15T23:59:59.000Z

85

Puget Sound Area Electric Reliability Plan : Scoping Summary Report - Part B Preliminary Technical Analysis Appendix A.  

SciTech Connect (OSTI)

This report describes in general terms the nature of the voltage instability problem facing the Puget Sound area. The following two chapters cover the technical aspects of the problem. It deals with load growth, the root cause of the problem. Also addressed is the capacity of the current power system and the criteria for future system planning. It also explains the technical results of transmission system modeling which confirm the system's vulnerability to voltage instability, the principal symptom of the problem. The results of the scoping process in each of the four measure categories are presented. Included are lists of all options identified, a discussion of the screening criteria, and descriptions of the measures that survived the screening process and are proposed for further evaluation in Phase 2. We discuss the evaluation methodology which will be used to refine the analyses. The next steps in the planning process are outlined. It also describes the short term operational agreements that will assure continued reliable service until a long term solution is in place. 8 figs., 22 tabs.

United States. Bonneville Power Administration.

1991-09-01T23:59:59.000Z

86

Staff Technical Position on geological repository operations area underground facility design: Thermal loads  

SciTech Connect (OSTI)

The purpose of this Staff Technical Position (STP) is to provide the US Department of Energy (DOE) with a methodology acceptable to the Nuclear Regulatory Commission staff for demonstrating compliance with 10 CFR 60.133(i). The NRC staff`s position is that DOE should develop and use a defensible methodology to demonstrate the acceptability of a geologic repository operations area (GROA) underground facility design. The staff anticipates that this methodology will include evaluation and development of appropriately coupled models, to account for the thermal, mechanical, hydrological, and chemical processes that are induced by repository-generated thermal loads. With respect to 10 CFR 60.133(i), the GROA underground facility design: (1) should satisfy design goals/criteria initially selected, by considering the performance objectives; and (2) must satisfy the performance objectives 10 CFR 60.111, 60.112, and 60.113. The methodology in this STP suggests an iterative approach suitable for the underground facility design.

Nataraja, M.S. [Nuclear Regulatory Commission, Washington, DC (United States). Div. of High-Level Waste Management; Brandshaug, T. [Itasca Consulting Group, Inc., Minneapolis, MN (United States)

1992-12-01T23:59:59.000Z

87

Staff Technical Position on geological repository operations area underground facility design: Thermal loads  

SciTech Connect (OSTI)

The purpose of this Staff Technical Position (STP) is to provide the US Department of Energy (DOE) with a methodology acceptable to the Nuclear Regulatory Commission staff for demonstrating compliance with 10 CFR 60.133(i). The NRC staff's position is that DOE should develop and use a defensible methodology to demonstrate the acceptability of a geologic repository operations area (GROA) underground facility design. The staff anticipates that this methodology will include evaluation and development of appropriately coupled models, to account for the thermal, mechanical, hydrological, and chemical processes that are induced by repository-generated thermal loads. With respect to 10 CFR 60.133(i), the GROA underground facility design: (1) should satisfy design goals/criteria initially selected, by considering the performance objectives; and (2) must satisfy the performance objectives 10 CFR 60.111, 60.112, and 60.113. The methodology in this STP suggests an iterative approach suitable for the underground facility design.

Nataraja, M.S. (Nuclear Regulatory Commission, Washington, DC (United States). Div. of High-Level Waste Management); Brandshaug, T. (Itasca Consulting Group, Inc., Minneapolis, MN (United States))

1992-12-01T23:59:59.000Z

88

Area Monitoring Dosimeter Program for the Pacific Northwest National Laboratory: Results for CY 2000  

SciTech Connect (OSTI)

Pacific Northwest National Laboratory (PNNL) established an area monitoring dosimeter program in accordance with Article 514 of the Department of Energy (DOE) Radiological Control Manual (RCM) in January 1993. This program is to minimize the number of areas requiring issuance of personnel dosimeters and to demonstrate that doses outside Radiological Buffer Areas are negligible. In accordance with 10 CFR Part 835.402 (a) (1)-(4) and Article 511.1 of the DOE Standard Radiological Control, personnel dosimetry shall be provided to 1) radiological workers who are likely to receive at least 100 mrem annually, and 2) declared pregnant workers, minors, and members of the public who are likely to receive at least 50 mrem annually. Program results for calendar years 1993-2000 confirm that personnel dosimetry is not needed for individuals located in areas monitored by the program.

Bivins, Steven R.; Stoetzel, Gregory A.

2001-07-05T23:59:59.000Z

89

EIS-0402: Remediation of Area IV of the Santa Susana Field Laboratory, California  

Broader source: Energy.gov [DOE]

DOE is preparing an EIS for cleanup of Area IV, including the Energy Technology Engineering Center (ETEC), as well as the Northern Buffer Zone of the Santa Susana Field Laboratory (SSFL) in eastern Ventura County, California, approximately 29 miles north of downtown Los Angeles. (DOEs operations bordered the Northern Buffer Zone. DOE is responsible for soil cleanup in Area IV and the Northern Buffer Zone.) In the EIS, DOE will evaluate reasonable alternatives for disposition of radiological facilities and support buildings, remediation of contaminated soil and groundwater, and disposal of all resulting waste at permitted facilities.

90

Derived concentration guideline levels for Argonne National Laboratory's building 310 area.  

SciTech Connect (OSTI)

The derived concentration guideline level (DCGL) is the allowable residual radionuclide concentration that can remain in soil after remediation of the site without radiological restrictions on the use of the site. It is sometimes called the single radionuclide soil guideline or the soil cleanup criteria. This report documents the methodology, scenarios, and parameters used in the analysis to support establishing radionuclide DCGLs for Argonne National Laboratory's Building 310 area.

Kamboj, S., Dr.; Yu, C ., Dr. (Environmental Science Division)

2011-08-12T23:59:59.000Z

91

Road Transportable Analytical Laboratory (RTAL) system. Quarterly technical report, December 1992--February 1993  

SciTech Connect (OSTI)

The goal of this contractual effort is the development and demonstration of a Road Transportable Analytical Laboratory (RTAL) system to meet the unique needs of the Department of Energy (DOE) for rapid, accurate analysis of a wide variety of hazardous and radioactive contaminants in soil, groundwater, and surface waters. This laboratory system will be designed to provide the field and laboratory analytical equipment necessary to detect and quantify radionuclides, organics, heavy metals and other inorganics, and explosive materials. The planned laboratory system will consist of a set of individual laboratory modules deployable independently or as an interconnected group to meet each DOE site`s specific needs.

Not Available

1993-03-22T23:59:59.000Z

92

Independent Oversight Inspection of Environment, Safety, and Health Management at the Lawrence Livermore National Laboratory, Technical Appendices, Volume II, December 2004  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) Office of Independent Oversight and Performance Assurance (OA), within the Office of Security and Safety Performance Assurance (SSA), conducted an inspection of environment, safety, and health (ES&H) at the DOE Lawrence Livermore National Laboratory (LLNL) during October and November 2004. The inspection was performed by the OA Office of Environment, Safety and Health Evaluations. Volume II of this report provides four technical appendices (C through F) containing detailed results of the OA review. Appendix C provides the results of the review of the application of the core functions of ISM for LLNL work activities. Appendix D presents the results of the review of NNSA, LSO, and contractor feedback and continuous improvement processes. Appendix E presents the results of the review of Plutonium Building essential safety system functionality, and Appendix F presents the results of the review of management of the selected focus areas.

93

Technical Assistance | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Technical Assistance Technical Assistance Technical Assistance The DOE Office of Indian Energy and the Office of Energy Efficiency and Renewable Energy Tribal Energy Program provide federally recognized Indian Tribes, bands, nations, tribal energy resource development organizations, and other organized groups and communities-including Alaska Native villages or regional and village corporations-with technical assistance designed to advance renewable energy and energy efficiency projects. Technical assistance is typically limited to 40 hours and may include, but is not limited to, the following priority areas: Strategic energy planning Grantee support Transmission/interconnection Project development Finance Lease agreements DOE's National Renewable Energy Laboratory and Sandia National

94

Honda Transmission Technical Center  

High Performance Buildings Database

Russells Point, OH The Honda Transmission Technical Center is located on the Honda of America Manufacturing Plant facility site in Russells Point, Ohio. This facility is used for product engineering and market quality testing and analysis of automatic transmissions. The building contains a large workshop area for ten cars, a future dynamometer, two laboratories, an open office area, three conference rooms, a break room, restrooms, and related support areas.

95

Puget Sound Area Electric Reliability Plan. Appendix C : Economic and Technical Evaluation.  

SciTech Connect (OSTI)

In this Appendix, the study framework and evaluation for economic and technical factors are explained. This material documents the analysis performed for Section 4.8 of the EIS. Coupled with the environmental analysis, the evaluation factors described below will be used to judge the relative merits of our four alternatives: alternative strategies: 1 - transmission line, 2 - voltage support, 3 - demand reduction, 4 - combustion turbines. The evaluation factors include measures of economic impacts, risk, and social responsibility. For simplicity, this study assumes that the Puget Sound area is served by a single utility. Therefore, no distinction is made between private and public utilities or load served by BPA and load served by utility-owned generation. In addition, where appropriate, costs incurred by consumers are included as well as utility costs. This study has two relevant time periods. First is the decision period, which extends from 1994 through 2003. It is during these ten years that utilities must take actions to meet peak loads in each year. The analysis continues beyond 2003 through 2010 in order to adequately capture the costs and benefits of actions taken through 2003. This longer study is period is needed because not all costs and benefits occur equally in all years. 18 tabs.

United States. Bonneville Power Administration.

1991-09-01T23:59:59.000Z

96

Technical Basis for Radiological Workplace Air Monitoring and Sampling for the River Corridor Project 300 area  

SciTech Connect (OSTI)

This report documents the technical basis by which the workplace air monitoring and sampling program is operated in the 324 and 327 Buildings.

MANTOOTH, D.S.

2000-01-17T23:59:59.000Z

97

Quaternary volcanism, tectonics, and sedimentation in the Idaho National Engineering Laboratory area  

SciTech Connect (OSTI)

In this article, we discuss the regional context and describe localities for a two-day field excursion in the vicinity of the Idaho National Engineering Laboratory (INEL). We address several geologic themes: (1) Late Cenozoic, bimodal volcanism of the Eastern Snake River Plain (ESRP), (2) the regional tectonics and structural geology of the Basin and Range province to the northwest of the ESRP, (3) fluvial, lacustrine, and aeolian sedimentation in the INEL area, and (4) the influence of Quaternary volcanism and tectonics on sedimentation near the INEL.

Hackett, W.R.; Smith, R.P.

1992-09-01T23:59:59.000Z

98

Quaternary volcanism, tectonics, and sedimentation in the Idaho National Engineering Laboratory area  

SciTech Connect (OSTI)

In this article, we discuss the regional context and describe localities for a two-day field excursion in the vicinity of the Idaho National Engineering Laboratory (INEL). We address several geologic themes: (1) Late Cenozoic, bimodal volcanism of the Eastern Snake River Plain (ESRP), (2) the regional tectonics and structural geology of the Basin and Range province to the northwest of the ESRP, (3) fluvial, lacustrine, and aeolian sedimentation in the INEL area, and (4) the influence of Quaternary volcanism and tectonics on sedimentation near the INEL.

Hackett, W.R.; Smith, R.P.

1992-01-01T23:59:59.000Z

99

DE-EE0000319 Final Technical Report [National Open-ocean Energy Laboratory  

SciTech Connect (OSTI)

Under the authorization provided by Section 634 of the Energy Independence and Security Act of 2007 (P.L. 110-140), in 2009 FAU was awarded U.S. Congressionally Directed Program (CDP) funding through the U.S. Department of Energy (DOE) to investigate and develop technologies to harness the energy of the Florida Current as a source of clean, renewable, base-load power for Florida and the U.S. A second CDP award in 2010 provided additional funding in order to enhance and extend FAUs activities. These two CDPs in 2009 and 2010 were combined into a single DOE grant, DE-EE0000319, and are the subject of this report. Subsequently, in July 2010 funding was made available under a separate contract, DE-EE0004200. Under that funding, DOEs Wind and Water Power Program designated FAUs state of Florida marine renewable energy (MRE) center as the Southeast National Marine Renewable Energy Center (SNMREC). This report discusses SNMREC activities funded by the DE-EE0000319 grant, but will make reference, as appropriate, to activities that require further investigation under the follow-on grant. The concept of extracting energy from the motions of the oceans has a long history. However, implementation on large scales of the technologies to effect renewable energy recovery from waves, tides, and open-ocean currents is relatively recent. DOEs establishment of SNMREC recognizes a significant potential for ocean current energy recovery associated with the (relatively) high-speed Florida Current, the reach of the Gulf Stream System flowing through the Straits of Florida, between the Florida Peninsula and the Bahamas Archipelago. The proximity of the very large electrical load center of southeast Floridas metropolitan area to the resource itself makes this potential all the more attractive. As attractive as this potential energy source is, it is not without its challenges. Although the technology is conceptually simple, its design and implementation in a commercially-viable fashion presents a variety of challenges. Beyond the technology itself (and, especially, the effects on the technology of the harsh oceanic environment), it is important to consider the possible environmental impacts of commercial-scale implementation of oceanic energy extraction. Further, because such implementation represents a completely new undertaking, the human resources required do not exist, so education and training programs are critical to eventual success. This project, establishing a national open-ocean energy laboratory, was designed to address each of these three challenges in a flexible framework allowing for adaptive management as the project proceeded. In particular: ? the technology challenge, including resource assessment, evolved during the project to recognize and address the need for a national testing facility in the ocean for small-scale prototype MRE systems developed by industry; ? the environmental challenge became formalized and expanded during the permitting process for such a testing facility; and ? the human resources/societal challenges, both in terms of the need for education and training and in terms of public acceptance of MRE, stimulated a robust outreach program far beyond that originally envisioned at SNMREC. While all of these activities at SNMREC are ongoing, a number of significant milestones (in addition to the contributions listed in the appendices) were achieved under the auspices of this award. These include: ? Planning and site selection for the first-phase test facility, offshore of Dania Beach, FL, including some equipment for the facility, submission of an Interim Policy Lease Application to the U.S. Department of Interiors Bureau of Ocean Energy Management (BOEM), and completion of an Environmental Assessment by BOEM and a positive Consistency Determination by the State of Florida; ? Measurements using acoustic profilers of the current structure and variability in the vicinity of the site under a variety of weather conditions, seasons and time durations; ? Design and implementation of instrument

Skemp, Susan

2013-12-29T23:59:59.000Z

100

Chemical surety material decontamination and decommissioning of Los Alamos National Laboratory Chemical Surety Material Laboratory area TA-3, building SM-29, room 4009  

SciTech Connect (OSTI)

From 1982 through 1987, Los Alamos National Laboratory (LANL) performed surety laboratory operations for the U.S. Army Medical Research and Development Command (MRDC). Room 4009 in building SM-29, TA-3, was used as the laboratory for work with the following chemical surety material (CSM) agents: sarin (GB), soman (GD), lewisite (L), and distilled mustard (HD) radio-labelled with H{sup 3} or C{sup 14}. The work was confined to three CSM-certified fume hoods, located in room 4009 (see diagram in Appendix C). The laboratory ceased all active operations during the late 1986 and early 1987 period. From 1987 until 1993 the laboratory was secured and the ventilation system continued to operate. During late 1992, the decision was made to utilize this laboratory space for other operations, thus a decision was made to dismantle and reconfigure this room. LANL sub-contracted Battelle Memorial Institute (BMI) to draw upon the CSM experience of the technical staff from the Hazardous Materials Research Facility (HMRF) to assist in developing a decontamination and decommissioning plan. BMI was subcontracted to devise a CSM safety training course, and a sampling and air monitoring plan for CSM material to ensure personnel safety during all disassembly operations. LANL subcontracted Johnson Controls personnel to perform all disassembly operations. Beginning in early 1993 BMI personnel from the HMRF visited the laboratory to develop both the safety plan and the sample and air monitoring plan. Execution of that plan began in September 1993 and was completed in January 1994.

Moore, T.E.; Smith, J.M.

1994-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "laboratory technical area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Source document for waste area groupings at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

This document serves as a source document for Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and other types of documents developed for and pertaining to Environmental Restoration (ER) Program activities at Oak Ridge National Laboratory (ORNL). It contains descriptions of the (1) regulatory requirements for the ORR ER Program, (2) Oak Ridge Reservation (ORR) ER Program, (3) ORNL site history and characterization, and (4) history and characterization of Waste Area Groupings (WAGS) 1-20. This document was created to save time, effort, and money for persons and organizations drafting documents for the ER Program and to improve consistency in the documents prepared for the program. By eliminating the repetitious use of selected information about the program, this document will help reduce the time and costs associated with producing program documents. By serving as a benchmark for selected information about the ER Program, this reference will help ensure that information presented in future documents is accurate and complete.

Osborne, P.L.; Kuhaida, A.J., Jr.

1996-09-01T23:59:59.000Z

102

Effective Community-Wide Policy Technical Assistance: The DOE/NREL Approach (Brochure), NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Effective Effective Community-Wide Policy Technical Assistance: The DOE/NREL Approach NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name,

103

Effective Community-Wide Policy Technical Assistance: The DOE/NREL Approach (Brochure), NREL (National Renewable Energy Laboratory)  

Broader source: Energy.gov (indexed) [DOE]

Effective Effective Community-Wide Policy Technical Assistance: The DOE/NREL Approach NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name,

104

Analysis and Methane Gas Separations Studies for City of Marsing, Idaho An Idaho National Laboratory Technical Assistance Program Study  

SciTech Connect (OSTI)

Introduction and Background Large amounts of methane in well water is a wide spread problem in North America. Methane gas from decaying biomass and oil and gas deposits escape into water wells typically through cracks or faults in otherwise non-porous rock strata producing saturated water systems. This methane saturated water can pose several problems in the delivery of drinking water. The problems range from pumps vapor locking (cavitating), to pump houses exploding. The City of Marsing requested Idaho National Laboratory (INL) to assist with some water analyses as well as to provide some engineering approaches to methane capture through the INL Technical Assistance Program (TAP). There are several engineering approaches to the removal of methane and natural gas from water sources that include gas stripping followed by compression and/or dehydration; membrane gas separators coupled with dehydration processes, membrane water contactors with dehydration processes.

Christopher Orme

2012-08-01T23:59:59.000Z

105

Savannah River Ecology Laboratory annual technical progress report of ecological research for the year ending July 31, 1995  

SciTech Connect (OSTI)

The Savannah River Ecology Laboratory (SREL) is a research unit of the University of Georgia (UGA). The overall mission of the Laboratory is to acquire and communicate knowledge of ecological processes and principles. SREL conducts basic and applied ecological research, as well as education and outreach programs, under a contract with the US Department of Energy (DOE) at the Savannah River Site near Aiken, South Carolina. Significant accomplishments were made during the past year in the areas of research, education and service. Major additions to SREL Facilities were completed that will enhance the Laboratory`s work in the future. Following several years of planning, opening ceremonies were held for the 5000 ft{sup 2} multi-purpose conference center that was funded by the University of Georgia Research Foundation (UGARF). The center is located on 68 acres of land that was provided by the US Department of Energy. This joint effort between DOE and UGARF supports DOE`s new initiative to develop partnerships with the private sector and universities. The facility is being used for scientific meetings and environmental education programs for students, teachers and the general public. A 6000 ft{sup 2} office and library addition to S@s main building officially opened this year, and construction plans are underway on a new animal care facility, laboratory addition, and receiving building.

Smith, M.H.

1995-07-01T23:59:59.000Z

106

NKS Conference on Radioactive Contamination in Urban Areas Ris National Laboratory, DK-4000 Roskilde, Denmark, 7 -9 May, 2003  

E-Print Network [OSTI]

NKS Conference on Radioactive Contamination in Urban Areas Risø National Laboratory, DK-4000 vegetation to reduce 1 #12;NKS Conference on Radioactive Contamination in Urban Areas Risø National Roskilde, Denmark, 7 - 9 May, 2003 Radiation protection and decision-making on cleanup of contaminated

107

INL Technical Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technical Publications This site contains Idaho National Laboratory scientific and technical information products that have been issued for unlimited distribution. Those products...

108

SRC-I demonstration plant analytical laboratory methods manual. Final technical report  

SciTech Connect (OSTI)

This manual is a compilation of analytical procedures required for operation of a Solvent-Refined Coal (SRC-I) demonstration or commercial plant. Each method reproduced in full includes a detailed procedure, a list of equipment and reagents, safety precautions, and, where possible, a precision statement. Procedures for the laboratory's environmental and industrial hygiene modules are not included. Required American Society for Testing and Materials (ASTM) methods are cited, and ICRC's suggested modifications to these methods for handling coal-derived products are provided.

Klusaritz, M.L.; Tewari, K.C.; Tiedge, W.F.; Skinner, R.W.; Znaimer, S.

1983-03-01T23:59:59.000Z

109

Screening of contaminants in Waste Area Grouping 2 at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

Waste Area Grouping 2 (WAG 2) of the Oak Ridge National Laboratory (ORNL) is located in the White Oak Creek Watershed and is composed of White Oak Creek Embayment, White Oak Lake and associated floodplain, and portions of White Oak Creek (WOC) and Melton Branch downstream of ORNL facilities. Contaminants leaving other ORNL WAGs in the WOC watershed pass through WAG 2 before entering the Clinch River. Health and ecological risk screening analyses were conducted on contaminants in WAG 2 to determine which contaminants were of concern and would require immediate consideration for remedial action and which contaminants could be assigned a low priority or further study. For screening purposes, WAG 2 was divided into four geographic reaches: Reach 1, a portion of WOC; Reach 2, Melton Branch; Reach 3, White Oak Lake and the floodplain area to the weirs on WOC and Melton Branch; and Reach 4, the White Oak Creek Embayment, for which an independent screening analysis has been completed. Screening analyses were conducted using data bases compiled from existing data on carcinogenic and noncarcinogenic contaminants, which included organics, inorganics, and radionuclides. Contaminants for which at least one ample had a concentration above the level of detection were placed in a detectable contaminants data base. Those contaminants for which all samples were below the level of detection were placed in a nondetectable contaminants data base.

Blaylock, B.G.; Frank, M.L.; Hoffman, F.O.; Hook, L.A.; Suter, G.W.; Watts, J.A.

1992-07-01T23:59:59.000Z

110

Radionuclides in shallow groundwater at Solid Waste Storage Area 5 North, Oak Ridge National Laboratory  

SciTech Connect (OSTI)

This report presents a compilation of groundwater monitoring data from Solid Waste Storage Area (SWSA) 5 North at Oak Ridge National Laboratory (ORNL) between November 1989 and September 1993. Monitoring data were collected as part of the Active Sites Environmental Monitoring Program that was implemented in 1989 in response to DOE Order 5820.2A. SWSA 5 North was established for the retrievable storage of transuranic (TRU) wastes in 1970. Four types of storage have been used within SWSA 5 North: bunkers, vaults, wells, and trenches. The fenced portion of SWSA 5 North covers about 3.7 ha (9 acres) in the White Oak Creek watershed south of ORNL. The area is bounded by White Oak Creek and two ephemeral tributaries of White Oak Creek. Since 1989, groundwater has been monitored in wells around SWSA 5 North. During that time, elevated gross alpha contamination (reaching as high as 210 Bq/L) has consistently been detected in well 516. This well is adjacent to burial trenches in the southwest corner of the area. Water level measurements in wells 516 and 518 suggest that water periodically inundates the bottom of some of those trenches. Virtually all of the gross alpha contamination is generated by Curium 244 and Americium 241. A special geochemical investigation of well 516 suggests that nearly all of the Curium 44 and Americium 241 is dissolved or associated with dissolved organic matter. These are being transported at the rate of about 2 m/year from the burial trenches, through well 516, to White Oak Creek, where Curium 244 has been detected in a few bank seeps. Concentrations at these seeps are near detection levels (<1 Bq/L).

Ashwood, T.L.; Marsh, J.D. Jr.

1994-04-01T23:59:59.000Z

111

Record of Technical Change for Corrective Action Plan for Corrective Action Unit 140: Waste Dumps, burn Pits, and Storage Area, Nevada Test Site, Nevada  

SciTech Connect (OSTI)

Record of Technical Change for Corrective Action Plan for Corrective Action Unit 140: Waste Dumps, Burn Pits, and Storage Area, Nevada Test Site, Nevada (DOE/NV--963-Rev 2, dated November 2004).

U.S. Department of Energy, National Nuclear Security Administration, Nevada Site Office; Bechtel Nevada

2005-01-05T23:59:59.000Z

112

Independent Oversight Follow-up Review, Savannah River National Laboratory  

Broader source: Energy.gov (indexed) [DOE]

Savannah River National Savannah River National Laboratory - January 2012 Independent Oversight Follow-up Review, Savannah River National Laboratory - January 2012 January 2012 Follow-up Review of Implementation Verification Reviews at the Savannah River National Laboratory Savannah River Site The Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security (HSS), conducted an independent review of the identification and implementation of safety basis hazard controls associated with "flashing spray release" and supporting information documented in the Savannah River National Laboratory (SRNL) WSRC-SA-2, SRNL Technical Area Documented Safety Analysis, Revision 10; WSRC-TS-97-00014, SRNL Technical Area Technical Safety Requirements,

113

Laboratory Results Area Lab ID Th-230 Ra-226 Pb-210 Po-210 U-238 ANSI Sum1  

E-Print Network [OSTI]

Laboratory Results Area Lab ID Th-230 Ra-226 Pb-210 Po-210 U-238 ANSI Sum1 Gamma Reading Area H Area I Confirmation 0405025-2 1.66 5.13 2.88 3.48 0.95 4.55 9741 Clear 11th Street 0405215-3 1.28 4.59 3.55 3.55 1.68 4.37 ++ Area K 0404284-2 14.8 43.4 17.4 13.8 10.6 80.8 15146 Estimated - lab

114

Technical area status report for chemical/physical treatment. Volume 2, Appendices  

SciTech Connect (OSTI)

These Appendices describe various technologies that may be applicable to the Mixed Waste Treatment Plant (MWTP) Chemical/Physical Treatment System (CPTS). These technologies were identified by the CPTS Technical Support Group (TSG) as potentially applicable to a variety of separation, volume reduction, and decontamination requirements. The purpose was to identify all available and developing technologies, and their characteristics, for subsequent evaluation for specific requirements identified for the CPTS. However, the technologies described herein are not necessarily all inclusive, nor are they necessarily all applicable.

Brown, C.H. Jr. [Oak Ridge National Lab., TN (United States); Schwinkendorf, W.E. [BDM Federal, Inc., Arlington, VA (United States)

1993-08-01T23:59:59.000Z

115

DEPARTMENT OF BIOMEDICAL ENGINEERING 2012 2014 Technical Area/Track 3  

E-Print Network [OSTI]

Varies T M 340L Matrices and Matrix Calculations M 408C E E 360C BME 113L BME 113L M 427K Lab Fall Only 345 Graphics and Visualization TBME 342 Computational Biomechanics * Choose one from the following: M 340L E E 422CM 340L BME 341 Engineering Tools for Computational Genomics Laboratory TBME 346 BIO 311C

Texas at Austin, University of

116

RCRA Facility Investigation report for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

This report presents compiled information concerning a facility investigation of waste area group 6(WAG-6), of the solid waste management units (SWMU's) at Oak Ridge National Laboratory (ORNL). The WAG is a shallow ground disposal area for low-level radioactive wastes and chemical wastes. The report contains information on hydrogeological data, contaminant characterization, radionuclide concentrations, risk assessment and baseline human health evaluation including a toxicity assessment, and a baseline environmental evaluation.

Not Available

1991-09-01T23:59:59.000Z

117

Technical program plan for the transitioning, decommissioning, and final disposition focus area  

SciTech Connect (OSTI)

Hundreds of aging nuclear materials processing facilities within the Department of Energy`s (DOE) Weapons Complex are now being shut down and deactivated. These facilities, situated throughout the United States, will require a monumental effort to clean up safely and with minimal environmental insult. Current cleanup technologies tend to be labor intensive and expensive, they produce an unacceptably large volume of waste, and they expose workers to radioactive and other hazardous substances. This document describes an emerging program designed to develop and demonstrate new technical approaches to the decontamination and decommissioning (D&D) program for DOE`s nuclear materials processing facilities. Sponsored by the DOE Office of Technology Development within the Office of Environmental Restoration and Waste Management (EM), the program seeks to integrate the strengths of DOE`s technical, managerial, and systems engineering capabilities with those of industry, universities, and other government agencies. Once developed, these technologies will help to provide US industry with a competitive edge in the worldwide market that exists for improved environmental restoration and D&D services.

Not Available

1994-01-01T23:59:59.000Z

118

Laboratory Evaluation of Base Materials for Neutralization of the Contaminated Aquifer at the F-Area Seepage Basins  

SciTech Connect (OSTI)

Laboratory studies were performed to support field-testing of base injection into the F-Area Seepage Basins groundwater. The general purpose of these experiments is to provide information to guide the test of base injection and to identify potential adverse effects.

Serkiz, S.M.

2001-09-11T23:59:59.000Z

119

Insular Area energy vulnerability, Puerto Rico, US Virgin Islands. Technical Appendix 1  

SciTech Connect (OSTI)

This report was prepared in response to Section 1406 of the Energy Policy Act of 1992 (P.L. 192-486). The Act directed the Department of Energy (DOE) to ``conduct a study of the implications of the unique vulnerabilities of the insular areas to an oil supply disruption,`` and to ``outline how the insular areas shall gain access to vital oil supplies during times of national emergency.`` The Act defines the insular areas to be the US Virgin Islands and Puerto Rico in the Caribbean, and Guam, American Samoa, the Commonwealth of the Northern Mariana Islands (CNMI), and Palau in the Pacific. This report is the analysis of Puerto Rico and the US Virgin Islands. In the study, ``unique vulnerabilities`` were defined as susceptibility to: (1) more frequent or more likely interruptions of oil supplies compared to the mainland, and/or (2) disproportionately larger or more likely economic losses in the event of an oil supply disruption. In order to asses unique vulnerabilities, the study examined in the insular areas` experience during past global disruptions of oil supplies and during local emergencies caused by natural disasters. The effects of several possible future global disruptions and local emergencies were also analyzed. Analyses were based on historical data, simulations using energy and economic models, and interviews with officials in the insular governments and the energy industry.

Stern, M.; Willard, E.E.; Efferding, S. [Ensys Energy & Systems, Inc., Flemington, NJ (United States)

1994-05-01T23:59:59.000Z

120

Technical Report Computer Laboratory  

E-Print Network [OSTI]

-access Internet services such as web, email, and DNS. To counteract such abuses, a number of so called proof-of- service attacks. The effects of these abuses are felt by most if not all users of the Internet and Internet-based services such as email, DNS, and the web. 3 #12;The underlying cause of much of this abuse

Haddadi, Hamed

Note: This page contains sample records for the topic "laboratory technical area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Technical Report Computer Laboratory  

E-Print Network [OSTI]

://www.cl.cam.ac.uk/TechReports/ ISSN 1476-2986 #12;Abstract Safety- and mission-critical systems must be both correct and reliable to the software world is not financially feasible. In aerospace applications it is also essential to establish to very low or very high temperatures, high radiation, large G-forces, hard vacuum and severe vibration

Haddadi, Hamed

122

Technical Report Computer Laboratory  

E-Print Network [OSTI]

(modulation of secret data onto radiated signals) and TEAPOT (intentional malicious emissions). In this thesis I perform a fusion of TEAPOT and HIJACK/NONSTOP techniques on secure integrated circuits

Haddadi, Hamed

123

Technical Report Computer Laboratory  

E-Print Network [OSTI]

, Steven Murdoch, Jonathan Anderson, Philip Paeps, Hassan Saidi, and the rest of the CTSRD team. � My wife

Haddadi, Hamed

124

Technical Report Computer Laboratory  

E-Print Network [OSTI]

scripts written in response to prompts eliciting free text answers. We review and critically evaluate and Burstein, 2006), PearsonKT's KAT Engine / Intelligent Essay Assessor (IEA) (Landauer et al, 2003, extant general purpose systems, such as e-Rater and IEA have been de- ployed in self-assessment or second

Haddadi, Hamed

125

Technical Report Computer Laboratory  

E-Print Network [OSTI]

word input and the increase in parse ambiguity over multiple- tag per word input. The second line demonstrate substantial increases in parser accuracy and throughput for weighted GR output. Finally, we. Most importantly, he always reminded me to enjoy my time at Cambridge and have a nice glass of wine

Haddadi, Hamed

126

Remedial investigation report on Waste Area Grouping 5 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 2 -- Appendix A: Characterization methods and data summary  

SciTech Connect (OSTI)

This document provides the Environmental Restoration Program with information about the results of investigations performed at Waste Area Grouping (WAG) 5. It includes information on risk assessments that have evaluated long-term impacts to human health and the environment. Information provided in this document forms the basis for decisions regarding the need for subsequent remediation work at WAG 5. This appendix presents background regulatory and technical information regarding the solid waste management units (SWMUs) at WAG 5 to address requirements established by the Federal Facility Agreement (FFA) for the Oak Ridge Reservation (ORR). The US Department of Energy (DOE) agreed to conduct remedial investigations (RIs) under the FFA at various sites at Oak Ridge National Laboratory (ORNL), including SWMUs and other areas of concern on WAG 5. The appendix gives an overview of the regulatory background to provide the context in which the WAG 5 RI was planned and implemented and documents how historical sources of data, many of which are SWMU-specific, were evaluated and used.

NONE

1995-09-01T23:59:59.000Z

127

Habitat Evaluation Procedures (HEP) Report; Tacoma/Trimble Area Management Plan, Technical Report 2001-2003.  

SciTech Connect (OSTI)

In 2000 and 2001, the Kalispel Natural Resource Department (KNRD) continued to mitigate the wildlife habitat losses as part of the Albeni Falls Wildlife Mitigation Project. Utilizing Bonneville Power Administration (BPA) funds, the Kalispel Tribe of Indians (Tribe) purchased three projects totaling nearly 1,200 acres. The Tacoma/Trimble Wildlife Management Area is a conglomeration of properties now estimated at 1,700 acres. It is the Tribe's intent to manage these properties in cooperation and collaboration with the Pend Oreille County Public Utility District (PUD) No. 1 and the U.S. Fish and Wildlife Service (USFWS) to benefit wildlife habitats and associated species, populations, and guilds.

Entz, Ray; Lockwood, Jr., Neil; Holmes, Darren

2003-10-01T23:59:59.000Z

128

www.ll.mit.edu MIT Lincoln Laboratory  

E-Print Network [OSTI]

of technical innovation in critical national security technology areas such as satellite communications, airwww.ll.mit.edu MIT Lincoln Laboratory Technology in Support of National Security LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY Technology in Support of National Security #12;Lincoln Laboratory, located

Reuter, Martin

129

Laboratory Evaluation of In Situ Chemical Oxidation for Groundwater Remediation, Test Area North, Operable Unit 1-07B, Idaho National Engineering and Environmental Laboratory, Volume Three - Appendix F  

SciTech Connect (OSTI)

This appendix supports the results and discussion of the laboratory work performed to evaluate the feasibility of in situ chemical oxidation for Idaho National Environmental and Engineering Laboratory's (INEEL) Test Area North (TAN) which is contained in ORNL/TM-13711/V1. This volume contains Appendix F. Appendix F is essentially a photocopy of the ORNL researchers' laboratory notebooks from the Environmental Sciences Division (ESD) and the Radioactive Materials Analytical Laboratory (RMAL).

Cline, S.R.; Denton, D.L.; Giaquinto, J.M.; McCracken, M.K.; Starr, R.C.

1999-04-01T23:59:59.000Z

130

Habitat Evaluation Procedures (HEP) Report : Ladd Marsh Wildlife Area, 2004-2006 Technical Report.  

SciTech Connect (OSTI)

The Regional HEP Team (RHT) and Oregon Department of Fish and Wildlife (ODFW) staff conducted a follow-up habitat evaluation procedures (HEP) analysis on the Ladd Marsh Wildlife Management Area (LMWA) in May 2005. The 2005 HEP assessment resulted in a total of 647.44 HUs, or 0.76 HUs/acre. This is an increase of 420.34 HUs (0.49 HUs/acre) over 2001 HEP survey results. The most significant increase in HUs occurred on the Wallender and Simonis parcels which increased by 214.30 HUs and 177.49 HUs respectively. Transects were established at or near 2001 HEP analysis transect locations whenever possible. ODFW staff biologists assisted the RHT re-establish transect locations and/or suggested areas for new surveys. Since 2001, significant changes in cover type acreage and/or structural conditions have occurred due to conversion of agriculture cover types to emergent wetland and grassland cover types. Agricultural lands were seeded to reestablish grasslands and wetlands were restored through active management and manipulation of extant water sources including natural stream hydrology/flood regimes and available irrigation. Grasslands increased on the Wallender parcel by 21% (65 acres), 23% (71 acres) at the Simonis site, and 39% (62 acres) at Conley Lake. The emergent wetland cover type also changed significantly increasing 60% (184 acres) at Wallender and 59% (184 acres) on the Simonis tract. Today, agriculture lands (crop and grazed pasture) have been nearly eliminated from Bonneville Power Administration (BPA) mitigation project lands located on the LMWA.

Ashley, Paul; Wagoner, Sara

2006-05-01T23:59:59.000Z

131

Area Monitoring Dosimeter Program for the Pacific Northwest National Laboratory: Results for CY 1999  

SciTech Connect (OSTI)

In January 1993, PNNL established an area monitoring dosimeter program in accordance with Article 514 of the DOE Radiological Control Manual. This program was to minimize the number of areas requiring issuance of personnel dosimeters and to demonstrate that doses outside Radiological Buffer Areas are negligible. In accordance with 10 CFR Part 835.402 (a)(1)-(4) and Article 511.1 of the DOE Standard Radiological Control, personnel dosimetry shall be provided to 1) radiological workers who are likely to receive at least 100 mrem annually and 2) declared pregnant workers, minors, and members of the public who are likely to receive at least 50 mrem annually. Program results for calendar years 1993-1998 confirmed that personnel dosimetry was not needed for individuals located in areas monitored by the program. A total of 123 area thermoluminescent dosimeters (TLDs) were placed in PNNL facilities during calendar year 1999. The TLDs were exchanged and analyzed quarterly. All routine area monitoring TLD results were less than 50 mrem annually after correcting for worker occupancy. The results support the conclusion that personnel dosimeters are not necessary for staff, declared pregnant workers, minors, or members of the public in these monitored areas.

Bivins, Steven R.; Stoetzel, Gregory A.

2000-09-19T23:59:59.000Z

132

Red River Wildlife Management Area HEP Report, Habitat Evaluation Procedures, Technical Report 2004.  

SciTech Connect (OSTI)

A habitat evaluation procedures (HEP) analysis conducted on the 314-acre Red River Wildlife Management Area (RRWMA) managed by the Idaho Department of Fish and Game resulted in 401.38 habitat units (HUs). Habitat variables from six habitat suitability index (HSI) models, comprised of mink (Mustela vison), mallard (Anas platyrhynchos), common snipe (Capella gallinago), black-capped chickadee (Parus altricapillus), yellow warbler (Dendroica petechia), and white-tailed deer (Odocoileus virginianus), were measured by Regional HEP Team (RHT) members in August 2004. Cover types included wet meadow, riverine, riparian shrub, conifer forest, conifer forest wetland, and urban. HSI model outputs indicate that the shrub component is lacking in riparian shrub and conifer forest cover types and that snag density should be increased in conifer stands. The quality of wet meadow habitat, comprised primarily of introduced grass species and sedges, could be improved through development of ephemeral open water ponds and increasing the amount of persistent wetland herbaceous vegetation e.g. cattails (Typha spp.) and bulrushes (Scirpus spp.).

Ashley, Paul

2004-11-01T23:59:59.000Z

133

Site characterization plan for groundwater in Waste Area Grouping 1 at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

The Waste Area Grouping (WAG) 1 Groundwater Operable Unit (OU) at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, is undergoing a site characterization to identify environmental contamination that may be present. This document, Site Characterization Report for Groundwater in Waste Area Grouping I at Oak Ridge National Laboratory, Oak Ridge, Tennessee, identifies areas of concern with respect to WAG 1 groundwater and presents the rationale, justification, and objectives for conducting this continuing site characterization. This report summarizes the operations that have taken place at each of the areas of concern in WAG 1, summarizes previous characterization studies that have been performed, presents interpretations of previously collected data and information, identifies contaminants of concern, and presents an action plan for further site investigations and early actions that will lead to identification of contaminant sources, their major groundwater pathways, and reduced off-site migration of contaminated groundwater to surface water. Site characterization Activities performed to date at WAG I have indicated that groundwater contamination, principally radiological contamination, is widespread. An extensive network of underground pipelines and utilities have contributed to the dispersal of contaminants to an unknown extent. The general absence of radiological contamination in surface water at the perimeter of WAG 1 is attributed to the presence of pipelines and underground waste storage tank sumps and dry wells distributed throughout WAG 1 which remove more than about 40 million gal of contaminated groundwater per year.

Lee, R.R.; Curtis, A.H.; Houlberg, L.M.; Purucker, S.T.; Singer, M.L.; Tardiff, M.F.; Wolf, D.A.

1994-07-01T23:59:59.000Z

134

Princeton Plasma Physics Laboratory Procedure Title: Access to NSTX Experimental Areas  

E-Print Network [OSTI]

NSTX D-Site Caretaking Vacuum Computer Tritium Quality Assurance/Quality Control AC Power Maintenance of this procedure is to delineate the rules and requirements for access to the NSTX experimental areas

Princeton Plasma Physics Laboratory

135

2013 Annual Wastewater Reuse Report for the Idaho National Laboratory Sites Central Facilities Area Sewage Treatment Plant  

SciTech Connect (OSTI)

This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at the Idaho National Laboratory Sites Central Facilities Area Sewage Treatment Plant from November 1, 2012, through October 31, 2013. The report contains, as applicable, the following information: Site description Facility and system description Permit required monitoring data and loading rates Status of compliance conditions and activities Discussion of the facilitys environmental impacts. During the 2013 permit year, no wastewater was land-applied to the irrigation area of the Central Facilities Area Sewage Treatment Plant and therefore, no effluent flow volumes or samples were collected from wastewater sampling point WW-014102. However, soil samples were collected in October from soil monitoring unit SU-014101.

Mike Lewis

2014-02-01T23:59:59.000Z

136

Confirmative laboratory tests and one example of forensic application of the probabilistic approach to the area of convergence in BPA  

E-Print Network [OSTI]

One of the most important results in Bloodstain Pattern Analysis (BPA) is the determination of the area of convergence of blood-drop trajectories. This area is directly related to the point of origin of the projections and is often indicative of the point where the main action of a crime has occurred. One of us has recently proposed a method to statistically characterize this area by mean of a probabilistic approach based on the uncertainties of the angles of impact of the stains in the pattern. In our work we present some laboratory tests that confirm the validity of the method, returning good agreement between the empirical and the theoretical data. By comparing the results of different operators, we also show the robustness of the method, in that the results are independent of the analytical approach of the single experimenter. Finally, we describe an example of application to a real forensic case.

Camana, Francesco; Gravina, Nicola; Quintarelli, Marco

2013-01-01T23:59:59.000Z

137

Summary of environmental characterization activities at the Oak Ridge National Laboratory Solid Waste Storage Area Six, FY 1986 through 1987  

SciTech Connect (OSTI)

The Oak Ridge National Laboratory (ORNL) Remedial Action Program (RAP), has supported characterization activities in Solid Waste Storage Area (SWSA 6) to acquire information necessary for identification and planning of remedial actions that may be warranted, and to facilitate eventual closure of the site. In FY 1986 investigations began in the areas of site hydrology, geochemistry, soils, geology, and geohydrologic model application. This report summarizes work carried out in each of these areas during FY`s 1986 and 1987 and serves as a status report pulling together the large volume of data that has resulted. Characterization efforts are by no means completed; however, a sufficient data base has been generated to begin data interpretation and analysis of site contaminants.

Davis, E.C.; Solomon, D.K.; Dreier, R.B.; Lee, S.Y.; Kelmers, A.D.; Lietzke, D.A. [Oak Ridge National Lab., TN (United States); Craig, P.M. [Environmental Consulting Engineers, Inc., Knoxville, TN (United States)

1987-09-30T23:59:59.000Z

138

Summary of environmental characterization activities at the Oak Ridge National Laboratory Solid Waste Storage Area Six, FY 1986 through 1987  

SciTech Connect (OSTI)

The Oak Ridge National Laboratory (ORNL) Remedial Action Program (RAP), has supported characterization activities in Solid Waste Storage Area (SWSA 6) to acquire information necessary for identification and planning of remedial actions that may be warranted, and to facilitate eventual closure of the site. In FY 1986 investigations began in the areas of site hydrology, geochemistry, soils, geology, and geohydrologic model application. This report summarizes work carried out in each of these areas during FY's 1986 and 1987 and serves as a status report pulling together the large volume of data that has resulted. Characterization efforts are by no means completed; however, a sufficient data base has been generated to begin data interpretation and analysis of site contaminants.

Davis, E.C.; Solomon, D.K.; Dreier, R.B.; Lee, S.Y.; Kelmers, A.D.; Lietzke, D.A. (Oak Ridge National Lab., TN (United States)); Craig, P.M. (Environmental Consulting Engineers, Inc., Knoxville, TN (United States))

1987-09-30T23:59:59.000Z

139

In situ vitrification demonstration at Pit 1, Oak Ridge National Laboratory. Volume 2: Site characterization report of the Pit 1 area  

SciTech Connect (OSTI)

A treatability study was initiated in October 1993, initially encompassing the application of in situ vitrification (ISV) to at least two segments of Oak Ridge National Laboratory (ORNL) seepage Pit 1 by the end of fiscal year (FY) 1995. This treatability study was to have supported a possible Interim Record of Decision (IROD) or removal action for closure of one or more of the seepage pits and trenches as early as FY 1997. The Remedial Investigation/Feasibility Study for Waste Area Grouping (WAG) 7, which contains these seven seepage pits and trenches, will probably not begin until after the year 2000. This treatability study will establish the field-scale technical performance of ISV for (1) attaining the required depth, nominally 15 ft, to incorporate source contamination within and beneath the pits; (2) demonstrating field capability to overlap melt settings that are necessary to achieve fused, melted segments of the source contamination; (3) demonstrating off-gas handling technology for accommodating and minimizing the volatilization of {sup 137}Cs; (4) demonstrating adequate site characterization techniques to predict ISV melting kinetics, processing temperatures, and product durability; and (5) promoting public acceptance of ISV technology by demonstrating its safety, implementability, site impacts, and air emissions and by coordinating the treatability study within the regulatory closure process. This report summarizes the site characterization information gathered through the end of September 1996 which supports the planning and assessment of ISV for Pit 1 (objective 4 above).

Spalding, B.P.; Bogle, M.A.; Cline, S.R.; Naney, M.T.; Gu, B.

1997-12-01T23:59:59.000Z

140

Technical Evaluation Summary of the In Situ Vitrification Melt Expulsion at the Oak Ridge National Laboratory on April 21, 1996, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

This Technical Evaluation Summary of the In Situ Vitrification Melt Expulsion at the Oak Ridge National Laboratory on April 21, 1996, was prepared at the request of the Department of Energy as a supporting reference document for the Final Unusual Occurrence Report to fully explore the probable causes that lead to the subject incident. This document provides the Environmental Restoration Program with the technical information on the performance of the in situ vitrification treatability study operations at ORNL pit 1 up to and including the time of the melt expulsion incident. This document also attempts to diagnose the causes of the melt expulsion event the consequent damages to equipment the radiological impacts of the event, and the equipment design modifications and procedural changes necessary for future safe ISV operations.

NONE

1996-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "laboratory technical area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Assessment of the Emergency Management Program Training and Drills Functional Area at the Los Alamos National Laboratory, August 2011  

Broader source: Energy.gov (indexed) [DOE]

LANL-2011-08-04 LANL-2011-08-04 Site: Los Alamos National Laboratory Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report of the Assessment of the Emergency Management Program Training and Drills Functional Area Dates of Activity : 08/01/2011 - 08/04/2011 Report Preparer: David Odland/Randy Griffin Activity Description/Purpose: Since the 2007 Office of Health, Safety and Security (HSS) inspection of the Los Alamos National Laboratory (LANL) emergency management program, HSS personnel have conducted periodic visits to follow-up on the corrective actions taken to address the findings in the review. This 2011 assessment was conducted to continue the corrective action follow-up activities and to support the Los Alamos Site Office (LASO) Emergency Management Program Manager in accomplishing

142

Technical Basis for Safe Operations with Pu-239 in NMS and S Facilities (F and H Areas)  

SciTech Connect (OSTI)

Plutonium-239 is now being processed in HB-Line and H-Canyon as well as FB-Line and F-Canyon. As part of the effort to upgrade the Authorization Basis for H Area facilities relative to nuclear criticality, a literature review of Pu polymer characteristics was conducted to establish a more quantitative vs. qualitative technical basis for safe operations. The results are also applicable to processing in F Area facilities.The chemistry of Pu polymer formation, precipitation, and depolymerization is complex. Establishing limits on acid concentrations of solutions or changing the valence to Pu(III) or Pu(VI) can prevent plutonium polymer formation in tanks in the B lines and canyons. For Pu(IV) solutions of 7 g/L or less, 0.22 M HNO3 prevents polymer formation at ambient temperature. This concentration should remain the minimum acid limit for the canyons and B lines when processing Pu-239 solutions. If the minimum acid concentration is compromised, the solution may need to be sampled and tested for the presence of polymer. If polymer is not detected, processing may proceed. If polymer is detected, adding HNO3 to a final concentration above 4 M is the safest method for handling the solution. The solution could also be heated to speed up the depolymerization process. Heating with > 4 M HNO3 will depolymerize the solution for further processing.Adsorption of Pu(IV) polymer onto the steel walls of canyon and B line tanks is likely to be 11 mg/cm2, a literature value for unpolished steel. This value will be confirmed by experimental work. Tank-to-tank transfers via steam jets are not expected to produce Pu(IV) polymer unless a larger than normal dilution occurs (e.g., >3 percent) at acidities below 0.4 M.

Bronikowski, M.G.

1999-03-18T23:59:59.000Z

143

Characterization plan for the Oak Ridge National Laboratory Area-Wide Groundwater Program, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

This characterization plan has been developed as part of the U.S. Department of Energy`s (DOE`s) investigation of the Groundwater Operable Unit (GWOU) at Oak Ridge National Laboratory (ORNL) located near Oak Ridge, Tennessee. The first iteration of the characterization plan is intended to serve as a strategy document to guide subsequent GWOU remedial investigations. The plan provides a rationale and organization for groundwater data acquisition, monitoring, and remedial actions to be performed during implementation of environmental restoration activities associated with the ORNL GWOU. It is important to note that the characterization plan for the ORNL GWOU is not a prototypical work plan. As such, remedial investigations will be conducted using annual work plans to manage the work activities, and task reports will be used to document the results of the investigations. Sampling and analysis results will be compiled and reported annually with a review of data relative to risk (screening level risk assessment review) for groundwater. This characterization plan outlines the overall strategy for the remedial investigations and defines tasks that are to be conducted during the initial phase of investigation. This plan is presented with the understanding that more specific addenda to the plan will follow.

Not Available

1994-08-01T23:59:59.000Z

144

Public Participation Plan for Waste Area Group 7 Operable Unit 7-13/14 at the Idaho National Laboratory Site  

SciTech Connect (OSTI)

This Public Participation Plan outlines activities being planned to: (1) brief the public on results of the remedial investigation and feasibility study, (2) discuss the proposed plan for remediation of Operable Unit 7-13/14 with the public, and (3) encourage public participation in the decision-making process. Operable Unit 7-13/14 is the Comprehensive Remedial Investigation/Feasibility Study for Waste Area Group 7. Analysis focuses on the Subsurface Disposal Area (SDA) within the Radioactive Waste Management Complex at the Idaho National Laboratory (Site). This plan, a supplement to the Idaho National Laboratory Community Relations Plan (DOE-ID 2004), will be updated as necessary. The U.S. Department of Energy (DOE), Idaho Department of Environmental Quality (DEQ), and U.S. Environmental Protection Agency (EPA) will participate in the public involvement activities outlined in this plan. Collectively, DOE, DEQ, and EPA are referred to as the Agencies. Because history has shown that implementing the minimum required public involvement activities is not sufficient for high-visibility cleanup projects, this plan outlines additional opportunities the Agencies are providing to ensure that the publics information needs are met and that the Agencies can use the publics input for decisions regarding remediation activities.

B. G. Meagher

2007-07-17T23:59:59.000Z

145

Providing Internet access to Los Alamos National Laboratory technical reports: A case history in providing public access to previously restricted documents  

SciTech Connect (OSTI)

The Los Alamos National Laboratory (LANL) Research Library recently fulfilled a strategic goal of providing worldwide desktop access via the Internet to full-image files of the complete unclassified holdings of Los Alamos technical reports in its Report Collection. This effort began in late 1994 with the scanning of paper and microfiche format reports. Concurrently, the Research Library helped to initiate shifting the model for publishing new technical reports from paper to electronic; the files could then be directly mounted on the Research Library`s Web server. Providing desktop access to these reports was instrumental in expediting the development of internal policies that would better define what documents, previously restricted to the general public, could be publicly released. Undoubtedly, the most significant category of such reports were previously classified reports that had been declassified, but had not gone through a further review for public release. Collaboration with LANL`s Classification Group led to approval for public release of 97% of these reports. The LANL Research Library`s Web site now offers unique and unprecedented access to the world of a huge body of technical reports never available before anywhere in any form. This paper discusses the issues and steps involved in this achievement.

Collins, K.A.

1996-12-31T23:59:59.000Z

146

M-Area and Metallurgical Laboratory Hazardous Waste Management Facilities groundwater monitoring and corrective-action report (U). Third and fourth quarters 1996, Vol. I  

SciTech Connect (OSTI)

This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah River Site (SRS) during 1996.

NONE

1997-03-01T23:59:59.000Z

147

Independent Oversight Targeted Review, Sandia National Laboratories -  

Broader source: Energy.gov (indexed) [DOE]

Targeted Review, Sandia National Laboratories Targeted Review, Sandia National Laboratories - November 2013 Independent Oversight Targeted Review, Sandia National Laboratories - November 2013 December 2013 Targeted Review of Activity-Level Implementation of Radiological Controls at Sandia National Laboratories This report documents the results of an independent oversight targeted review of radiological protection program activity-level implementation for Sandia National Laboratories (SNL), Technical Area V facilities. SNL is managed by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, under contract to the Department of Energy (DOE) and is overseen by the National Nuclear Security Administration and its Sandia Field Office. This targeted review was performed at SNL September 23-27,

148

Elevation of surficial sediment/basalt contact in the Subsurface Disposal Area, Idaho National Engineering Laboratory  

SciTech Connect (OSTI)

The elevation of the surficial sediment/basalt contact at the Subsurface Disposal Area (SDA), within the Radioactive Waste Management Complex (RWMC) is presented to provide a data base for future remedial actions at this site. About 1,300 elevation data from published and unpublished reports, maps, and surveyors notes were compiled to generate maps and cross-sections of the surficial sediment/basalt contact. In general, an east to west trending depression exists in the south central portion of the SDA with basalt closer to land surface on the northern and southern boundaries of the SDA. The lowest elevation of the surficial sediment/basalt contact is 4,979 ft and the greatest is land surface at 5,012 ft. The median elevation of the sediment/basalt interface is 4,994 ft. The median depth to basalt in the SDA is 16 ft if land surface elevation is assumed to be 5,010 ft. The depth from land surface to the sediment/basalt interface ranges from 24 ft in the southeast corner of the SDA to less than 3 ft at the north-central boundary of the SDA.

Hubbell, J.M.

1993-05-13T23:59:59.000Z

149

Des Moines Area Community College | .EDUconnections  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ames Laboratory Ames Laboratory is one of DOE's 10 Office of Science world-class research laboratories, located on the Iowa State University campus just 35 miles from the Des Moines Area Community College. Ames Lab is operated by Iowa State University. Ames Laboratory Ames Laboratory is one of DOE's 10 Office of Science world-class research laboratories, located on the Iowa State University campus just 35 miles from the Des Moines Area Community College. Ames Lab is operated by Iowa State University. Scientific Programs Science Undergraduate Laboratory Internships at Ames Lab Pre-Service Teacher Program DOE Ames Lab Faculty and Student Program (FaST) DOE Ames Lab Community College Institute Program Des Moines Area Community College Des Moines Area Community College Des Moines, Iowa DOE Applauds DMACC's Science and Technical Programs Agri/Natural Resources Biology Biomass Operations Biotechnology Environmental Science Information Technology Manufacturing Technology Microcomputers Civil Engineering Pre-Medical Telecommunications

150

U.S. DOE Technical Assistance Project | Open Energy Information  

Open Energy Info (EERE)

U.S. DOE Technical Assistance Project U.S. DOE Technical Assistance Project Jump to: navigation, search Logo: Technical Assistance Project Name Technical Assistance Project Agency/Company /Organization U.S. Department of Energy Sector Energy Focus Area Energy Efficiency Website http://apps1.eere.energy.gov/w References Program Homepage[1] Abstract The Technical Assistance Project, or TAP, is a program which provides "state and local officials with quick, short-term access to experts at U.S. Department of Energy (DOE) National Laboratories for assistance with their renewable energy and energy efficiency policies and programs. The Technical Assistance Project, or TAP, is a program which provides "state and local officials with quick, short-term access to experts at U.S. Department of Energy (DOE) National Laboratories for assistance with their

151

Cultural Resource Assessment of the Test Area North Demolition Landfill at the Idaho National Engineering and Environmental Laboratory  

SciTech Connect (OSTI)

The proposed new demolition landfill at Test Area North on the Idaho National Engineering and Environmental Laboratory (INEEL) will support ongoing demolition and decontamination within the facilities on the north end of the INEEL. In June of 2003, the INEEL Cultural Resource Management Office conducted archival searches, field surveys, and coordination with the Shoshone-Bannock Tribes to identify all cultural resources that might be adversely affected by the project and to provide recommendations to protect those listed or eligible for listing on the National Register of Historic Places. These investigations showed that landfill construction and operation would affect two significant cultural resources. This report outlines protective measures to ensure that these effects are not adverse.

Brenda R. Pace

2003-07-01T23:59:59.000Z

152

Economic and Technical Feasibility Study of Utility-Scale Wind Generation for the New York Buffalo River and South Buffalo Brownfield Opportunity Areas  

SciTech Connect (OSTI)

Through the RE-Powering America's Land initiative, the economic and technical feasibility of utilizing contaminated lands in the Buffalo, New York, area for utility-scale wind development is explored. The study found that there is available land, electrical infrastructure, wind resource, and local interest to support a commercial wind project; however, economies of scale and local electrical markets may need further investigation before significant investment is made into developing a wind project at the Buffalo Reuse Authority site.

Roberts, J. O.; Mosey, G.

2014-04-01T23:59:59.000Z

153

Bioenergy and emerging biomass conversion technologies Hanne stergrd, Ris National Laboratory, Technical University of Denmark DTU, Denmark  

E-Print Network [OSTI]

Bioenergy and emerging biomass conversion technologies Hanne ?stergård, Risø National Laboratory in Denmark 8th May 2007 Background Bioenergy is an important topic to include in a foresight analysis of the world agricultural markets and Europe. In the recent Agricultural Outlook report from OECD-FAO1

154

Screening of contaminants in Waste Area Grouping 2 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program  

SciTech Connect (OSTI)

Waste Area Grouping 2 (WAG 2) of the Oak Ridge National Laboratory (ORNL) is located in the White Oak Creek Watershed and is composed of White Oak Creek Embayment, White Oak Lake and associated floodplain, and portions of White Oak Creek (WOC) and Melton Branch downstream of ORNL facilities. Contaminants leaving other ORNL WAGs in the WOC watershed pass through WAG 2 before entering the Clinch River. Health and ecological risk screening analyses were conducted on contaminants in WAG 2 to determine which contaminants were of concern and would require immediate consideration for remedial action and which contaminants could be assigned a low priority or further study. For screening purposes, WAG 2 was divided into four geographic reaches: Reach 1, a portion of WOC; Reach 2, Melton Branch; Reach 3, White Oak Lake and the floodplain area to the weirs on WOC and Melton Branch; and Reach 4, the White Oak Creek Embayment, for which an independent screening analysis has been completed. Screening analyses were conducted using data bases compiled from existing data on carcinogenic and noncarcinogenic contaminants, which included organics, inorganics, and radionuclides. Contaminants for which at least one ample had a concentration above the level of detection were placed in a detectable contaminants data base. Those contaminants for which all samples were below the level of detection were placed in a nondetectable contaminants data base.

Blaylock, B.G.; Frank, M.L.; Hoffman, F.O.; Hook, L.A.; Suter, G.W.; Watts, J.A.

1992-07-01T23:59:59.000Z

155

NREL Technical Reports Guide the Way to 50% Energy Savings in Hospitals, Office Buildings (Fact Sheet), NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

existing technologies, designers and operators of large existing technologies, designers and operators of large buildings could slash national energy use across a broad range of climates. Researchers at the National Renewable Energy Laboratory (NREL) have developed two technical reports that provide recommendations to help designers and opera- tors of large office buildings and hospitals achieve at least a 50% energy savings using existing technology. Strategies for 50% Energy Savings in Large Office Buildings found that a 50% energy savings can be realized in both low- and high-rise office buildings in a broad range of U.S. climates. Large Hospital 50% Energy Savings details how energy savings from 50.6% to 61.3% can be attained in large hospitals across all eight U.S. climate zones. To reach these energy efficiency

156

Savannah River Ecology Laboratory, annual technical progress report of ecological research for the year ending June 30, 1997  

SciTech Connect (OSTI)

This report provides an overview of the research programs and program components carried out by the Savannah River Ecology Laboratory. Research focused on the following: advanced analytical and spectroscopic techniques for developing novel waste isolation and stabilization technologies as well as cost-effective remediation strategies; ecologically sound management of damaged and remediation of ecological systems; ecotoxicology, remediation, and risk assessment; radioecology, including dose assessments for plants and animals exposed to environmental radiation; and other research support programs.

Wein, G.; Rosier, B.

1997-12-31T23:59:59.000Z

157

Savannah River Ecology Laboratory, annual technical progress report of ecological research for the year ending June 30, 1998  

SciTech Connect (OSTI)

This report provides an overview of the research programs and program components carried out by the Savannah River Ecology Laboratory. Research focused on the following: advanced analytical and spectroscopic techniques for developing novel waste isolation and stabilization technologies as well as cost-effective remediation strategies; ecologically sound management of damaged and remediation of ecological systems; ecotoxicology, remediation, and risk assessment; radioecology, including dose assessments for plants and animals exposed to environmental radiation; and other research support programs.

Wein, G.; Rosier, B.

1998-12-31T23:59:59.000Z

158

U.S. DOE Technical Assistance Project | Open Energy Information  

Open Energy Info (EERE)

Technical Assistance Project Technical Assistance Project (Redirected from Technical Assistance Project) Jump to: navigation, search Logo: Technical Assistance Project Name Technical Assistance Project Agency/Company /Organization U.S. Department of Energy Sector Energy Focus Area Energy Efficiency Website http://apps1.eere.energy.gov/w References Program Homepage[1] Abstract The Technical Assistance Project, or TAP, is a program which provides "state and local officials with quick, short-term access to experts at U.S. Department of Energy (DOE) National Laboratories for assistance with their renewable energy and energy efficiency policies and programs. The Technical Assistance Project, or TAP, is a program which provides "state and local officials with quick, short-term access to experts at U.S.

159

AREA  

Broader source: Energy.gov (indexed) [DOE]

AREA AREA FAQ # Question Response 316 vs DCAA FAQ 1 An inquiry from CH about an SBIR recipient asking if a DCAA audit is sufficient to comply with the regulation or if they need to add this to their audit they have performed yearly by a public accounting firm. 316 audits are essentially A-133 audits for for-profit entities. They DO NOT replace DCAA or other audits requested by DOE to look at indirect rates or incurred costs or closeouts. DCAA would never agree to perform A-133 or our 316 audits. They don't do A-133 audits for DOD awardees. The purpose of the audits are different, look at different things and in the few instances of overlap, from different perspectives. 316

160

Idaho National Engineering Laboratory Waste Area Groups 1-7 and 10 Technology Logic Diagram. Volume 2  

SciTech Connect (OSTI)

The Idaho National Engineering Laboratory (INEL) Technology Logic Diagram (TLD) was developed to provide a decision support tool that relates Environmental Restoration (ER) and Waste Management (WM) problems at the INEL to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to an environmental restoration need. It is essential that follow-on engineering and system studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologies identified in this TLD and finding an optimum mix of technologies that will provide a socially acceptable balance between cost and risk to meet the site windows of opportunity. The TLD consists of three separate volumes: Volume I includes the purpose and scope of the TLD, a brief history of the INEL Waste Area Groups, and environmental problems they represent. A description of the TLD, definitions of terms, a description of the technology evaluation process, and a summary of each subelement, is presented. Volume II (this volume) describes the overall layout and development of the TLD in logic diagram format. This section addresses the environmental restoration of contaminated INEL sites. Specific INEL problem areas/contaminants are identified along with technology solutions, the status of the technologies, precise science and technology needs, and implementation requirements. Volume III provides the Technology Evaluation Data Sheets (TEDS) for Environmental Restoration and Waste Management (EM) activities that are referenced by a TEDS codenumber in Volume II. Each of these sheets represents a single logic trace across the TLD. These sheets contain more detail than provided for technologies in Volume II.

O`Brien, M.C.; Meservey, R.H.; Little, M.; Ferguson, J.S.; Gilmore, M.C.

1993-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "laboratory technical area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Technical Report: Design and operation of a new transportable laboratory for emissions testing of heavy duty trucks and buses  

Science Journals Connector (OSTI)

A significant number of city buses, city tractors and utility trucks are already operating on alternative fuels such as methanol, ethanol and natural gas. In response to the need for reliable emissions data from these vehicles, a transportable laboratory has been constructed and has operated on six different dates over the past nine months. This laboratory consists of a semi-trailer incorporating a chassis rolls dynamometer and a second trailer containing the necessary emissions and controls equipment. The semi-trailer can be lowered to the ground using specially designed hydraulic jacks and the vehicle to be tested is driven up ramps onto the rolls. Power is taken from the vehicle to flywheels and air-cooled eddy-current absorbers which simulate inertia and road load. The vehicle is driven through a speed-time cycle by a driver receiving a prompt on a screen, and vehicle speed is monitored by shaft encoders at three locations. The load applied to the vehicle is found using a road load equation: part of this energy is dissipated in rotating component parasitic losses determined during a calibration procedure and the remainder is dissipated by the computer-controlled power absorbers. Tailpipe emissions are ducted to a dilution tunnel, powered by a blower with critical flow venturies, while probes in the tunnel draw continuous samples to an analyser bench. Total hydrocarbons, oxides of nitrogen, carbon monoxide and carbon dioxide are all monitored, while a composite particulate matter sample is obtained on a filter. A bank of such data for methanol, diesel, jet fuel and natural gas powered buses operating primarily on the Central Business District Cycle is presently being gathered and analysed.

Nigel N. Clark; Mridul Gautam; Reda M. Bata; Wen-Guang Wang; John L. Loth; G. Michael Palmer; Donald W. Lyons

1995-01-01T23:59:59.000Z

162

LLNL 1981: technical horizons  

SciTech Connect (OSTI)

Research programs at LLNL for 1981 are described in broad terms. In his annual State of the Laboratory address, Director Roger Batzel projected a $481 million operating budget for fiscal year 1982, up nearly 13% from last year. In projects for the Department of Energy and the Department of Defense, the Laboratory applies its technical facilities and capabilities to nuclear weapons design and development and other areas of defense research that include inertial confinement fusion, nonnuclear ordnances, and particle-beam technology. LLNL is also applying its unique experience and capabilities to a variety of projects that will help the nation meet its energy needs in an environmentally acceptable manner. A sampling of recent achievements by LLNL support organizations indicates their diversity. (GHT)

Not Available

1981-07-01T23:59:59.000Z

163

Sandia National Laboratories: Photovoltaics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

device technology, and advanced PV systems analysis. Learn More Grid Integration The Grid Integration Program at Sandia National Laboratories addresses technical barriers to...

164

Reset reprinting of a widely circulated Sandia Laboratory Technical Memorandum. Cited in Philip J. Davis and Reuben Hersh, The Mathematical Experience, Boston: Birkhauser, 1981. Reset 1995 with minor corrections by Jon Doyle (doyle@csc.ncsu.edu).  

E-Print Network [OSTI]

Reset reprinting of a widely circulated Sandia Laboratory Technical Memorandum. Cited in Philip J of the pain was mine, and some I inflicted on E. J. Gilbert. It is clear to me that I could not have made for the Holy Grail of truth should not blind us to the relevance of ontological questions. Truth is multi

Reeves, Douglas S.

165

Independent Oversight Review, Los Alamos National Laboratory - July 2012 |  

Broader source: Energy.gov (indexed) [DOE]

Los Alamos National Laboratory - July Los Alamos National Laboratory - July 2012 Independent Oversight Review, Los Alamos National Laboratory - July 2012 July 2012 Review of the Los Alamos National Laboratory Implementation Verification Review at Technical Area-55 This report documents the independent review of the implementation verification review (IVR) process at the Los Alamos National Laboratory (LANL) plutonium facility at Technical Area-55 (TA-55) conducted by the Office of Enforcement and Oversight (Independent Oversight), which is within the Office of Health, Safety and Security (HSS). The review was performed by the HSS Office of Safety and Emergency Management Evaluations from May 1 - 17, 2012. Independent Oversight Review, Los Alamos National Laboratory - July 2012 More Documents & Publications

166

Interim Control Strategy for the Test Area North/Technical Support Facility Sewage Treatment Facility Disposal Pond - Two-year Update  

SciTech Connect (OSTI)

The Idaho Cleanup Project has prepared this interim control strategy for the U.S. Department of Energy Idaho Operations Office pursuant to DOE Order 5400.5, Chapter 11.3e (1) to support continued discharges to the Test Area North/Technical Support Facility Sewage Treatment Facility Disposal Pond. In compliance with DOE Order 5400.5, a 2-year review of the Interim Control Strategy document has been completed. This submittal documents the required review of the April 2005 Interim Control Strategy. The Idaho Cleanup Project's recommendation is unchanged from the original recommendation. The Interim Control Strategy evaluates three alternatives: (1) re-route the discharge outlet to an uncontaminated area of the TSF-07; (2) construct a new discharge pond; or (3) no action based on justification for continued use. Evaluation of Alternatives 1 and 2 are based on the estimated cost and implementation timeframe weighed against either alternative's minimal increase in protection of workers, the public, and the environment. Evaluation of Alternative 3, continued use of the TSF-07 Disposal Pond under current effluent controls, is based on an analysis of four points: - Record of Decision controls will protect workers and the public - Risk of increased contamination is low - Discharge water will be eliminated in the foreseeable future - Risk of contamination spread is acceptable. The Idaho Cleanup Project recommends Alternative 3, no action other than continued implementation of existing controls and continued deactivation, decontamination, and dismantlement efforts at the Test Area North/Technical Support Facility.

L. V. Street

2007-04-01T23:59:59.000Z

167

Small scale laboratory studies of flow and transport phenomena in pores and fractures: Phase 2. Technical completion report  

SciTech Connect (OSTI)

Pore level laboratory experiments using microscopy permit the in situ visualization of flow and transport phenomena, that can be recorded on film or videotape. One of the principal tools for visualization is the etched glass micromodel, which is composed of a transparent two dimensional network of three dimensional pores. The spatial scale of interest in these models extends from the individual pore, up to a network of pores, perhaps with small scale heterogeneities. Micromodels are best used to help validate concepts and assumptions, and to elucidate new, previously unrecognized phenomena for further study. They are not quantitative tools, but should be used in combination with quantitative tools such as column studies or mathematical models. There are three applications: multi-phase flow, colloid transport, and bacterial transport and colonization. Specifically the authors have examined behavior of relevance to liquid-liquid mass transfer (solubilization of capillary trapped organic liquids); liquid-gas mass transfer (in situ volatilization); mathematical models of multi-phase pressure-saturation relationships; colloid movement, attachment and detachment in the presence of fluid-fluid interfaces, clay interference with multi-phase flow; and heterogeneity effects on multi-phase flow and colloid movement.

Wilson, J.L.

1997-01-01T23:59:59.000Z

168

RCRA Facility Investigation report for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 2, Sections 4 through 9: Environmental Restoration Program  

SciTech Connect (OSTI)

This report presents compiled information concerning a facility investigation of waste area group 6(WAG-6), of the solid waste management units (SWMU`s) at Oak Ridge National Laboratory (ORNL). The WAG is a shallow ground disposal area for low-level radioactive wastes and chemical wastes. The report contains information on hydrogeological data, contaminant characterization, radionuclide concentrations, risk assessment and baseline human health evaluation including a toxicity assessment, and a baseline environmental evaluation.

Not Available

1991-09-01T23:59:59.000Z

169

Infrared Thermography Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Infrared Thermography Laboratory Infrared Thermography Laboratory The Infrared Thermography Laboratory (IRLab) conducts detailed laboratory experiments on the thermal performance of windows and other insulated systems. During a typical experiment, a specimen is placed between two environmental chambers that simulate a long, cold night during winter. Besides generating informative thermal images, the experiments collect several types of quantitative data with high spatial resolution that are useful for understanding subtle details in the thermal performance and for validating computer simulations of heat and fluid flows. Thermography experiments in the IRLab use an infrared imager to produce qualitative thermal images, or thermograms, that help provide a visual interpretation of how heat is flowing through the specimen. The infrared thermograms are also taken and postprocessed to extract numerical data to perform quantitative thermography that produces a database of the distribution of surface temperatures on the warm side of various specimen. A traversing system is also used to measure the distribution of air temperatures and velocities near the specimen. Research results are presented at various technical conferences -- see our schedule of upcoming conferences. Technical papers on infrared thermography are available for downloading. The IRLab contains a machine tool shop area that supports fabrication efforts in the Building Technologies Department. Other types of research, such as Non-Destructive Evaluation, are also conducted in the IRLab.

170

1,153-ton Waste Vault Removed from 300 Area- Vault held waste tanks with contamination from Hanfords former laboratory facilities  

Broader source: Energy.gov [DOE]

Today, the Department of Energys (DOEs) Richland Operations Office announced the removal of a massive concrete vault that once held two 15,000-gallon stainless steel tanks used to collect highly contaminated waste from Hanfords 300 Area laboratories as part of the River Corridor Closure project.

171

U.S. Nuclear Waste Technical Review Board  

E-Print Network [OSTI]

Board Review of OCRWM's Technical and Scientific Investigations. . . . . . . .9 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33 Idaho National Laboratory

172

Wastewater management utilizing land application for the Boston Harbor-Eastern Massachusetts Metropolitan Area. Technical data. Volume 5  

SciTech Connect (OSTI)

The U.S. Army Corps of Engineers, NED, in cooperation with several agencies under the administration of the Technical Subcommittee on Boston Harbor, is directing a segment of the Wastewater Management Study for Eastern Massachusetts which proposed the utilization of land application methods to further treat and make use of conventionally treated wastewaters. The entire wastewater management study for Eastern Massachusetts consisted of five alternatives. Four of the conceptual alternatives are being prepared under the direction of the Metropolitan District Commission (MDC). The land application alternative is labeled Concept 5 and provides land application treatment for effluents from five of the regional waste treatment plant locations described in Concept 4. The report presented herein constitutes the land-oriented treatment system known as Concept 5.

NONE

1995-06-01T23:59:59.000Z

173

Independent Oversight Review, Los Alamos National Laboratory - December  

Broader source: Energy.gov (indexed) [DOE]

Independent Oversight Review, Los Alamos National Laboratory - Independent Oversight Review, Los Alamos National Laboratory - December 2013 Independent Oversight Review, Los Alamos National Laboratory - December 2013 December 2013 Review of the Technical Area 55 Safety Class Fire Suppression System at Los Alamos National Laboratory This report documents the results of an independent oversight review of the Los Alamos National Laboratory (LANL) Technical Area 55 Plutonium Facility safety class fire suppression system (FSS), concurrent with a scheduled Los Alamos Field Office vital safety system assessment. The review was performed April 29 through May 20, 2013, by the U.S. Department of Energy's (DOE) Office of Safety and Emergency Management Evaluations, which is within the DOE Office of Health, Safety and Security. The

174

Senior Technical Safety Manager  

Broader source: Energy.gov (indexed) [DOE]

Technical Program Technical Program Manager Qualification Standard DOE-STD-1178-2004 May 2013 Reference Guide The Functional Area Qualification Standard References Guides are developed to assist operators, maintenance personnel, and the technical staff in the acquisition of technical competence and qualification within the Technical Qualification Program. Please direct your questions or comments related to this document to the Office of Leadership and Career Manager, Technical Qualification Program (TQP), Albuquerque Complex. This page is intentionally blank. Table of Contents i FIGURES ....................................................................................................................................... ii TABLES ......................................................................................................................................... ii

175

DOE and NREL Technical Assistance  

Office of Energy Efficiency and Renewable Energy (EERE)

This poster highlights the technical assistance provided by the U.S. Department of Energys National Renewable Energy Laboratory to Greensburg, Kansas.

176

Technical Reports | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Oak Ridge National Laboratory (ORNL) technical report collections at the Research Library include ORNL authored reports as well as those from many other institutions. Most...

177

Waste management plan for the remedial investigation/feasibility study of Waste Area Grouping 5 at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

This plan defines the criteria and methods to be used for managing waste generated during activities associated with Waste Area Grouping (WAG) 5 at Oak Ridge National Laboratory (ORNL). WAG 5 is located in Melton Valley, south of the main ORNL plant area. It contains 17 solid waste management units (SWMUs) to be evaluated during the remedial investigation. The SWMUs include three burial areas, two hydrofracture facilities, two settling ponds, eight tanks, and two low-level liquid waste leak sites. These locations are all considered to be within the WAG 5 area of contamination (AOC). The plan contains provisions for safely and effectively managing soils, rock cuttings, development and sampling water, decontamination fluids, and disposable personal protective equipment (PPE) consistent with the Environmental Protection Agency (EPA) guidance of May 1991 (EPA 1991). Consistent with EPA guidance, this plan is designed to protect the environment and the health and safety of workers and the public.

Not Available

1992-12-01T23:59:59.000Z

178

Waste management plan for the remedial investigation/feasibility study of Waste Area Grouping 5 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoratin Program  

SciTech Connect (OSTI)

This plan defines the criteria and methods to be used for managing waste generated during activities associated with Waste Area Grouping (WAG) 5 at Oak Ridge National Laboratory (ORNL). WAG 5 is located in Melton Valley, south of the main ORNL plant area. It contains 17 solid waste management units (SWMUs) to be evaluated during the remedial investigation. The SWMUs include three burial areas, two hydrofracture facilities, two settling ponds, eight tanks, and two low-level liquid waste leak sites. These locations are all considered to be within the WAG 5 area of contamination (AOC). The plan contains provisions for safely and effectively managing soils, rock cuttings, development and sampling water, decontamination fluids, and disposable personal protective equipment (PPE) consistent with the Environmental Protection Agency (EPA) guidance of May 1991 (EPA 1991). Consistent with EPA guidance, this plan is designed to protect the environment and the health and safety of workers and the public.

Not Available

1992-12-01T23:59:59.000Z

179

White Oak Creek watershed: Melton Valley area Remedial Investigation report, at the Oak Ridge National Laboratory, Oak Ridge, Tennessee: Volume 2, Appendixes A and B  

SciTech Connect (OSTI)

This document contains Appendixes A ``Source Inventory Information for the Subbasins Evaluated for the White Oak Creek Watershed`` and B ``Human Health Risk Assessment for White Oak Creek / Melton Valley Area`` for the remedial investigation report for the White Oak Creek Watershed and Melton Valley Area. Appendix A identifies the waste types and contaminants for each subbasin in addition to the disposal methods. Appendix B identifies potential human health risks and hazards that may result from contaminants present in the different media within Oak Ridge National Laboratory sites.

NONE

1996-11-01T23:59:59.000Z

180

M-Area and Metallurgical Laboratory Hazardous Waste Management Facilities Groundwate Monitoring and Corrective-Action Report, First and Second Quarters 1998, Volumes I, II, & III  

SciTech Connect (OSTI)

This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah river Site (SRS) during first and second quarters 1998. This program is required by South Carolina Hazardous Waste Permit SC1-890-008-989 and Section 264.100(g) of the South Carolina Hazardous Waste Management Regulations. Report requirements are described in the 1995 RCRA Renewal Permit, effective October 5, 1995, Section IIIB.H.11.b for the M-Area HWMF and Section IIIG.H.11.b for the Met Lab HWMF.

Chase, J.

1998-10-30T23:59:59.000Z

Note: This page contains sample records for the topic "laboratory technical area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Technical College Buildings  

Science Journals Connector (OSTI)

... should have such a paucity of literature dealing with material needs in the matter of buildings and equipment necessary for its field of activity. Books dealing with laboratories can be ... is therefore to be specially welcomed, particularly at the present time when the demands for buildings for technical education are so marked (London: Association of Technical Institutions and the Association ...

1935-08-10T23:59:59.000Z

182

Dose Modeling Evaluations and Technical Support Document For the Authorized Limits Request for the DOE-Owned Property Outside the Limited Area, Paducah Gaseous Diffusion Plant Paducah, Kentucky  

SciTech Connect (OSTI)

Environmental assessments and remediation activities are being conducted by the U.S. Department of Energy (DOE) at the Paducah Gaseous Diffusion Plant (PGDP), Paducah, Kentucky. The Oak Ridge Institute for Science and Education (ORISE), a DOE prime contractor, was contracted by the DOE Portsmouth/Paducah Project Office (DOE-PPPO) to conduct radiation dose modeling analyses and derive single radionuclide soil guidelines (soil guidelines) in support of the derivation of Authorized Limits (ALs) for 'DOE-Owned Property Outside the Limited Area' ('Property') at the PGDP. The ORISE evaluation specifically included the area identified by DOE restricted area postings (public use access restrictions) and areas licensed by DOE to the West Kentucky Wildlife Management Area (WKWMA). The licensed areas are available without restriction to the general public for a variety of (primarily) recreational uses. Relevant receptors impacting current and reasonably anticipated future use activities were evaluated. In support of soil guideline derivation, a Conceptual Site Model (CSM) was developed. The CSM listed radiation and contamination sources, release mechanisms, transport media, representative exposure pathways from residual radioactivity, and a total of three receptors (under present and future use scenarios). Plausible receptors included a Resident Farmer, Recreational User, and Wildlife Worker. single radionuclide soil guidelines (outputs specified by the software modeling code) were generated for three receptors and thirteen targeted radionuclides. These soil guidelines were based on satisfying the project dose constraints. For comparison, soil guidelines applicable to the basic radiation public dose limit of 100 mrem/yr were generated. Single radionuclide soil guidelines from the most limiting (restrictive) receptor based on a target dose constraint of 25 mrem/yr were then rounded and identified as the derived soil guidelines. An additional evaluation using the derived soil guidelines as inputs into the code was also performed to determine the maximum (peak) dose for all receptors. This report contains the technical basis in support of the DOE?s derivation of ALs for the 'Property.' A complete description of the methodology, including an assessment of the input parameters, model inputs, and results is provided in this report. This report also provides initial recommendations on applying the derived soil guidelines.

Boerner, A. J. [Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN (United States). Independent Environmental Assessment and Verification Program; Maldonado, D. G. [Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN (United States). Independent Environmental Assessment and Verification Program; Hansen, Tom [Ameriphysics, LLC (United States)

2012-09-01T23:59:59.000Z

183

HISTORICAL AMERICAN ENGINEERING RECORD - IDAHO NATIONAL ENGINEERING AND ENVIRONMENTAL LABORATORY, TEST AREA NORTH, HAER NO. ID-33-E  

SciTech Connect (OSTI)

Test Area North (TAN) was a site of the Aircraft Nuclear Propulsion (ANP) Project of the U.S. Air Force and the Atomic Energy Commission. Its Cold War mission was to develop a turbojet bomber propelled by nuclear power. The project was part of an arms race. Test activities took place in five areas at TAN. The Assembly & Maintenance area was a shop and hot cell complex. Nuclear tests ran at the Initial Engine Test area. Low-power test reactors operated at a third cluster. The fourth area was for Administration. A Flight Engine Test facility (hangar) was built to house the anticipated nuclear-powered aircraft. Experiments between 1955-1961 proved that a nuclear reactor could power a jet engine, but President John F. Kennedy canceled the project in March 1961. ANP facilities were adapted for new reactor projects, the most important of which were Loss of Fluid Tests (LOFT), part of an international safety program for commercial power reactors. Other projects included NASA's Systems for Nuclear Auxiliary Power and storage of Three Mile Island meltdown debris. National missions for TAN in reactor research and safety research have expired; demolition of historic TAN buildings is underway.

Susan Stacy; Hollie K. Gilbert

2005-02-01T23:59:59.000Z

184

SCFA lead lab technical assistance at Oak Ridge Y-12 nationalsecurity complex: Evaluation of treatment and characterizationalternatives of mixed waste soil and debris at disposal area remedialaction DARA solids storage facility (SSF)  

SciTech Connect (OSTI)

On July 17-18, 2002, a technical assistance team from the U.S. Department of Energy (DOE) Subsurface Contaminants Focus Area (SCFA) met with the Bechtel Jacobs Company Disposal Area Remedial Action (DARA) environmental project leader to review treatment and characterization options for the baseline for the DARA Solids Storage Facility (SSF). The technical assistance request sought suggestions from SCFA's team of technical experts with experience and expertise in soil treatment and characterization to identify and evaluate (1) alternative treatment technologies for DARA soils and debris, and (2) options for analysis of organic constituents in soil with matrix interference. Based on the recommendations, the site may also require assistance in identifying and evaluating appropriate commercial vendors.

Hazen, Terry

2002-08-26T23:59:59.000Z

185

Technical Standards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Review for Technical Standards of Interest Legend: Red Technical Standards Program Activities and Responsibilities Blue Directives Program Activities and Responsibilities...

186

Selecting a Host DOE Laboratory | U.S. DOE Office of Science (SC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

How to Apply How to Apply » Selecting a Host DOE Laboratory Community College Internships (CCI) CCI Home Eligibility Benefits Participant Obligations How to Apply Selecting a Host DOE Laboratory Recommender Information Application Selection Process and Notification Key Dates Frequently Asked Questions Contact WDTS Home How to Apply Selecting a Host DOE Laboratory Print Text Size: A A A RSS Feeds FeedbackShare Page Selecting a Host DOE Laboratory and Research Project: Applicants must identify their first and second choice laboratories indicating where they would like to do their technical training internship. Applicants must also select a technical topic area(s) of interest matching one of those listed for a particular laboratory's ongoing research programs. This choice is made at the sole discretion of the applicant.

187

White Oak Creek Watershed: Melton Valley Area Remedial Investigation Report, Oak Ridge National Laboratory, Oak Ridge, Tennessee: Volume 3 Appendix C  

SciTech Connect (OSTI)

This report provides details on the baseline ecological risk assessment conducted in support of the Remedial Investigation (RI) Report for the Melton Valley areas of the White Oak Creek watershed (WOCW). The RI presents an analysis meant to enable the US Department of Energy (DOE) to pursue a series of remedial actions resulting in site cleanup and stabilization. The ecological risk assessment builds off of the WOCW screening ecological risk assessment. All information available for contaminated sites under the jurisdiction of the US Department of Energy`s Comprehensive Environmental Response, Compensation, and Liability Act Federal Facilities Agreement within the White Oak Creek (WOC) RI area has been used to identify areas of potential concern with respect to the presence of contamination posing a potential risk to ecological receptors within the Melton Valley area of the White Oak Creek watershed. The risk assessment report evaluates the potential risks to receptors within each subbasin of the watershed as well as at a watershed-wide scale. The WOC system has been exposed to contaminant releases from Oak Ridge National Laboratory and associated operations since 1943 and continues to receive contaminants from adjacent waste area groupings.

NONE

1996-11-01T23:59:59.000Z

188

Surveillance and maintenance plan for Waste Area Groupings at Oak Ridge National Laboratory, Oak Ridge, Tennessee, for FY 1993--2002. Environmental Restoration Program  

SciTech Connect (OSTI)

The Oak Ridge National Laboratory (ORNL) Waste Area Grouping (WAG) Surveillance and Maintenance (S&M) program was designed for the management of sites contaminated with radioactive materials and/or hazardous chemicals from the end of their operating life until final facility disposition or site stabilization in accordance with environmental regulations and good management practices. Program objectives include (1) S&M of sites/facilities awaiting final disposition; (2) planning for safe and orderly final closure at each site/facility; and (3) implementing a program to accomplish final disposition in a safe, cost-effective, and timely manner.

Ford, M.K.; Holder, L. Jr.; Jones, R.G.

1992-12-01T23:59:59.000Z

189

Surveillance and maintenance plan for Waste Area Groupings at Oak Ridge National Laboratory, Oak Ridge, Tennessee, for FY 1993--2002  

SciTech Connect (OSTI)

The Oak Ridge National Laboratory (ORNL) Waste Area Grouping (WAG) Surveillance and Maintenance (S M) program was designed for the management of sites contaminated with radioactive materials and/or hazardous chemicals from the end of their operating life until final facility disposition or site stabilization in accordance with environmental regulations and good management practices. Program objectives include (1) S M of sites/facilities awaiting final disposition; (2) planning for safe and orderly final closure at each site/facility; and (3) implementing a program to accomplish final disposition in a safe, cost-effective, and timely manner.

Ford, M.K.; Holder, L. Jr.; Jones, R.G.

1992-12-01T23:59:59.000Z

190

The national voluntary laboratory accreditation program  

Science Journals Connector (OSTI)

Formally established in 1976 by the U.S. Department of Commerce the National Voluntary Laboratory Accreditation Program (NVLAP) is designed to examine the professional and technical competence of private and public testing laboratories at their request. The Department will grant or deny accreditation to testing laboratories based on its assessment of their competence. Actions undertaken in NVLAP are based on established standards and test methods in specific product area. NVLAP benefits consumers and manufacturers by assuring more consistent product testing. It benefits government agencies and industry associations by providing procedures for accrediting laboratories which could be used as part of their product certification programs. Additionally NVLAP benefits laboratories by providing a focus for increased professionalism and by minimizing the number of bodies whose approvals the laboratory may find it necessary to obtain. The first accreditations were granted on 12 October 1979 to 30 laboratories that test thermal insulation materials. The Department currently has programs for three product areas: thermal insulations materials freshly mixed field concrete and carpet. Laboratories applying under these three programs are currently being assessed. New programs for accrediting laboratories that test other products are being considered.

Howard I. Forman

1980-01-01T23:59:59.000Z

191

Sampling and analysis plan for the site characterization of the waste area Grouping 1 groundwater operable unit at Oak Ridge National Laboratory  

SciTech Connect (OSTI)

Waste Area Grouping (WAG) 1 at Oak Ridge National Laboratory (ORNL) includes all of the former ORNL radioisotope research, production, and maintenance facilities; former waste management areas; and some former administrative buildings. Site operations have contaminated groundwater, principally with radiological contamination. An extensive network of underground pipelines and utilities have contributed to the dispersal of contaminants to a known extent. In addition, karst geology, numerous spills, and pipeline leaks, together with the long and varied history of activities at specific facilities at ORNL, complicate contaminant migration-pathway analysis and source identification. To evaluate the extent of contamination, site characterization activity will include semiannual and annual groundwater sampling, as well as monthly water level measurements (both manual and continuous) at WAG 1. This sampling and analysis plan provides the methods and procedures to conduct site characterization for the Phase 1 Remedial Investigation of the WAG 1 Groundwater Operable Unit.

NONE

1994-11-01T23:59:59.000Z

192

Identification of Process Hazards and Accident Scenarios for Site 300 B-Division Firing Areas, Lawrence Livermore National Laboratory  

SciTech Connect (OSTI)

This report describes a hazard and accident analysis conducted for Site 300 operations to support update of the ''Site 300 B-Division Firing Areas Safety Analysis Report'' (SAR) [LLNL 1997]. A significant change since the previous SAR is the construction and the new Contained Firing Facility (CFF). Therefore, this hazard and accident analysis focused on the hazards associated with bunker operations to ensure that the hazards at CFF are properly characterized in the updated SAR. Hazard tables were created to cover both the CFF and the existing bunkers with ''open air'' firing tables.

Lambert, H; Johnson, G

2001-05-04T23:59:59.000Z

193

Field Sampling and Analysis Plan for the Remedial Investigation of Waste Area Grouping 2 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Responses to comments  

SciTech Connect (OSTI)

This report provides responses to US Environmental Protection Agency Region IV EPA-M and Tennessee Department of Environment and Conservation Oversite Division (TDEC-O) comments on report ORNL/ER-58, Field Sampling and Analysis Plan for the Remedial Investigation of Waste Area Grouping 2 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Waste Area Grouping (WAG) 2 consists of the White Oak Creek (WOC) drainage system downgradient of the major ORNL WAGs in the WOC watershed. A strategy for the remedial investigation (RI) of WAG2 was developed in report ES/ER-14&Dl, Remedial Investigation Plan for Waste Area Grouping 2 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. This strategy takes full advantage of WAG2`s role as an integrator of contaminant releases from the ORNL WAGs in the WOC watershed, and takes full advantage of WAG2`s role as a conduit for contaminants from the ORNL site to the Clinch River. The strategy calls for a multimedia environmental monitoring and characterization program to be conducted in WAG2 while upgradient contaminant sources are being remediated. This monitoring and characterization program will (1) identify and quantify contaminant fluxes, (2) identify pathways of greatest concern for human health and environmental risk, (3) improve conceptual models of contaminant movement, (4) support the evaluation of remedial alternatives, (5) support efforts to prioritize sites for remediation, (6) document the reduction in contaminant fluxes following remediation, and (7) support the eventual remediation of WAG2. Following this strategy, WAG2 has been termed an ``integrator WAG,`` and efforts in WAG2 over the short term are directed toward supporting efforts to remediate the contaminant ``source WAGS`` at ORNL.

Not Available

1992-10-01T23:59:59.000Z

194

Corrective Action Investigation Plan for Corrective Action Unit 165: Areas 25 and 26 Dry Well and Washdown Areas, Nevada Test Site, Nevada (including Record of Technical Change Nos. 1, 2, and 3) (January 2002, Rev. 0)  

SciTech Connect (OSTI)

This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 165 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 165 consists of eight Corrective Action Sites (CASs): CAS 25-20-01, Lab Drain Dry Well; CAS 25-51-02, Dry Well; CAS 25-59-01, Septic System; CAS 26-59-01, Septic System; CAS 25-07-06, Train Decontamination Area; CAS 25-07-07, Vehicle Washdown; CAS 26-07-01, Vehicle Washdown Station; and CAS 25-47-01, Reservoir and French Drain. All eight CASs are located in the Nevada Test Site, Nevada. Six of these CASs are located in Area 25 facilities and two CASs are located in Area 26 facilities. The eight CASs at CAU 165 consist of dry wells, septic systems, decontamination pads, and a reservoir. The six CASs in Area 25 are associated with the Nuclear Rocket Development Station that operated from 1958 to 1973. The two CASs in Area 26 are associated with facilities constructed for Project Pluto, a series of nuclear reactor tests conducted between 1961 to 1964 to develop a nuclear-powered ramjet engine. Based on site history, the scope of this plan will be a two-phased approach to investigate the possible presence of hazardous and/or radioactive constituents at concentrations that could potentially pose a threat to human health and the environment. The Phase I analytical program for most CASs will include volatile organic compounds, semivolatile organic compounds, Resource Conservation and Recovery Act metals, total petroleum hydrocarbons, polychlorinated biphenyls, and radionuclides. If laboratory data obtained from the Phase I investigation indicates the presence of contaminants of concern, the process will continue with a Phase II investigation to define the extent of contamination. Based on the results of Phase I sampling, the analytical program for Phase II investigation may be reduced. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document.

U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office (NNSA/NV)

2002-01-09T23:59:59.000Z

195

Groundwater quality monitoring well installation for Waste Area Grouping at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program  

SciTech Connect (OSTI)

This report documents the drilling and installation of 18 groundwater quality monitoring (GQM) wells on the perimeter of Waste Area Grouping (WAG) 11. WAG 11 (White Wing Scrap Yard) is located on the west end of East Fork Ridge between White Wing Road and the Oak Ridge Turnpike. The scrap yard is approximately 25 acres in size. The wells at WAG 11 were drilled and developed between January 1990 and October 1990. These wells were installed to characterize and assess the WAG in accordance with applicable Department of Energy, state, and Environmental Protection Agency regulatory requirements. The wells at WAG 11 were drilled with auger or air rotary rigs. Depending on the hydrogeologic conditions present at each proposed well location, one of four basic installation methods was utilized. Detailed procedures for well construction were specified by the Engineering Division to ensure that the wells would provide water samples representative of the aquifer. To ensure conformance with the specifications, Energy Systems Construction Engineering and ERCE provided continuous oversight of field activities. The purpose of the well installation program was to install GQM wells for groundwater characterization at WAG 11. Data packages produced during installation activities by the ERCE hydrogeologists are an important product of the program. These packages document the well drilling, installation, and development activities and provide valuable data for well sampling and WAG characterization. The forms contained in the packages include predrilling and postdrilling checklists, drilling and construction logs, development and hydraulic conductivity records, and quality control-related documents.

Mortimore, J.A.; Lee, T.A.

1994-09-01T23:59:59.000Z

196

S e c t i o n Tw o Areas of Study and  

E-Print Network [OSTI]

as of engineering. Physics of fluids refers to research in areas closer to applied physics than to direct technical The Guggenheim Aeronautical Laboratory, the Kármán Labora- tory of Fluid Mechanics and Jet Propulsion as aerospace. Areas of Research Aerospace has evolved at Caltech from a field of basic research and engineering

Greer, Julia R.

197

Effective Community-Wide Policy Technical Assistance: The NREL/DOE Approach  

Open Energy Info (EERE)

Effective Community-Wide Policy Technical Assistance: The NREL/DOE Approach Effective Community-Wide Policy Technical Assistance: The NREL/DOE Approach Jump to: navigation, search Tool Summary Name: Effective Community-Wide Policy Technical Assistance: The NREL/DOE Approach Agency/Company /Organization: National Renewable Energy Laboratory, United States Department of Energy Sector: Energy Focus Area: Renewable Energy Topics: Implementation, Policies/deployment programs Resource Type: Publications, Guide/manual, Lessons learned/best practices Website: www.nrel.gov/applying_technologies/state_local_activities/pdfs/48689.p Effective Community-Wide Policy Technical Assistance: The NREL/DOE Approach Screenshot References: Effective Community-Wide Policy Technical Assistance: The NREL/DOE Approach[1] Logo: Effective Community-Wide Policy Technical Assistance: The NREL/DOE Approach

198

Development of a regional groundwater flow model for the area of the Idaho National Engineering Laboratory, Eastern Snake River Plain Aquifer  

SciTech Connect (OSTI)

This report documents a study conducted to develop a regional groundwater flow model for the Eastern Snake River Plain Aquifer in the area of the Idaho National Engineering Laboratory. The model was developed to support Waste Area Group 10, Operable Unit 10-04 groundwater flow and transport studies. The products of this study are this report and a set of computational tools designed to numerically model the regional groundwater flow in the Eastern Snake River Plain aquifer. The objective of developing the current model was to create a tool for defining the regional groundwater flow at the INEL. The model was developed to (a) support future transport modeling for WAG 10-04 by providing the regional groundwater flow information needed for the WAG 10-04 risk assessment, (b) define the regional groundwater flow setting for modeling groundwater contaminant transport at the scale of the individual WAGs, (c) provide a tool for improving the understanding of the groundwater flow system below the INEL, and (d) consolidate the existing regional groundwater modeling information into one usable model. The current model is appropriate for defining the regional flow setting for flow submodels as well as hypothesis testing to better understand the regional groundwater flow in the area of the INEL. The scale of the submodels must be chosen based on accuracy required for the study.

McCarthy, J.M.; Arnett, R.C.; Neupauer, R.M. [and others

1995-03-01T23:59:59.000Z

199

Waste Management Plan for the Remedial Investigation of Waste Area Grouping 10, Operable Unit 3, at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program  

SciTech Connect (OSTI)

This Waste Management Plan (WMP) supplements the Remedial Investigation/Feasibility Study (RI/FS) Project WMP and defines the criteria and methods to be used for managing and characterizing waste generated during activities associated with the RI of 23 wells near the Old Hydrofracture Facility (OHF). These wells are within the Waste Area Grouping (WAG) 5 area of contamination (AOC) at Oak Ridge National Laboratory (ORNL). Field activities for the limited RI of Operable Unit (OU) 3 of WAG 10 will involve sampling and measurement of various environmental media (e.g., liquids and gases). Many of these activities will occur in areas known to be contaminated with radioactive materials or hazardous chemical substances, and it is anticipated that contaminated solid and liquid wastes and noncontaminated wastes will be generated as a result of these activities. On a project-wide basis, handling of these waste materials will be accomplished in accordance with the RI/FS Project WMP and the procedures referenced throughout the plan.

Not Available

1993-10-01T23:59:59.000Z

200

A technical and economic evaluation of novel pH-responsive core-shell nanoparticles : delivering innovation from laboratory to market  

E-Print Network [OSTI]

Many potentially powerful therapeutic strategies for the treatment of disease require the delivery of drugs into the cytosolic or nuclear compartments of cells. Members of the Irvine laboratory have developed a novel ...

Cho, Eun Chol, M. Eng. Massachusetts Institute of Technology

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "laboratory technical area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Groundwater Quality Sampling and Analysis Plan for Environmental Monitoring Waste Area Grouping 6 at Oak Ridge National Laboratory. Environmental Restoration Program  

SciTech Connect (OSTI)

This Sampling and Analysis Plan addresses groundwater quality sampling and analysis activities that will be conducted in support of the Environmental Monitoring Plan for Waste Area Grouping (WAG) 6. WAG 6 is a shallow-burial land disposal facility for low-level radioactive waste at the Oak Ridge National Laboratory, a research facility owned by the US Department of Energy and managed by Martin Marietta Energy Systems, Inc. (Energy Systems). Groundwater sampling will be conducted by Energy Systems at 45 wells within WAG 6. The samples will be analyzed for various organic, inorganic, and radiological parameters. The information derived from the groundwater quality monitoring, sampling, and analysis will aid in evaluating relative risk associated with contaminants migrating off-WAG, and also will fulfill Resource Conservation and Recovery Act (RCRA) interim permit monitoring requirements. The sampling steps described in this plan are consistent with the steps that have previously been followed by Energy Systems when conducting RCRA sampling.

NONE

1995-09-01T23:59:59.000Z

202

Health and Safety Work Plan for Sampling Colloids in Waste Area Grouping 5 at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

This Work Plan/Site Safety and Health Plan (SSHP) and the attached work plan are for the performance of the colloid project at WAG 5. The work will be conducted by the Oak Ridge National Laboratory (ORNL) Environmental Sciences Division (ESD) and associated ORNL environmental, safety, and health support groups. The purpose of this document is to establish health and safety guidelines to be followed by all personnel involved in conducting work for this project. The levels of protection and the procedures specified in this plan are based on the best information available from historical data and preliminary evaluations of the area. Therefore, these recommendations represent the minimum health and safety requirements to be observed by all personnel engaged in this project.

Marsh, J.D.; McCarthy, J.F.

1994-01-01T23:59:59.000Z

203

Environmental, safety, and health plan for the remedial investigation of Waste Area Grouping 10, Operable Unit 3, at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program  

SciTech Connect (OSTI)

This document outlines the environmental, safety, and health (ES&H) approach to be followed for the remedial investigation of Waste Area Grouping (WAG) 10 at Oak at Ridge National Laboratory. This ES&H Plan addresses hazards associated with upcoming Operable Unit 3 field work activities and provides the program elements required to maintain minimal personnel exposures and to reduce the potential for environmental impacts during field operations. The hazards evaluation for WAG 10 is presented in Sect. 3. This section includes the potential radiological, chemical, and physical hazards that may be encountered. Previous sampling results suggest that the primary contaminants of concern will be radiological (cobalt-60, europium-154, americium-241, strontium-90, plutonium-238, plutonium-239, cesium-134, cesium-137, and curium-244). External and internal exposures to radioactive materials will be minimized through engineering controls (e.g., ventilation, containment, isolation) and administrative controls (e.g., procedures, training, postings, protective clothing).

Not Available

1993-10-01T23:59:59.000Z

204

Safety and Technical Services  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Safety and Technical Services Safety and Technical Services Minimize The Safety and Technical Services (STS) organization is a component of the Office of Science's (SC's) Oak Ridge Integrated Support Center. The mission of STS is to provide excellent environmental, safety, health, quality, and engineering support to SC laboratories and other U.S. Department of Energy program offices. STS maintains a full range of technically qualified Subject Matter Experts, all of whom are associated with the Technical Qualifications Program. Examples of the services that we provide include: Integrated Safety Management Quality Assurance Planning and Metrics Document Review Tracking and trending analysis and reporting Assessments, Reviews, Surveillances and Inspections Safety Basis Support SharePoint/Dashboard Development for Safety Programs

205

Remedial investigation report on waste area grouping 5 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 4, Appendix C, Risk assessment  

SciTech Connect (OSTI)

Waste Area Grouping (WAG) 5 is part of Oak Ridge National Laboratory (ORNL) and is located on the United States Department of Energy`s Oak Ridge Reservation (DOE-ORR). The site lies southeast of Haw Ridge in Melton Valley and comprises approximately 32 ha (80 ac) [12 ha (30 ac) of forested area and the balance in grassed fields]. Waste Area Grouping 5 consists of several contaminant source areas for the disposal of low-level radioactive, transuranic (TRU), and fissile wastes (1959 to 1973) as well as inorganic and organic chemical wastes. Wastes were buried in trenches and auger holes. Radionuclides from buried wastes are being transported by shallow groundwater to Melton Branch and White Oak Creek. Different chemicals of potential concern (COPCs) were identified (e.g., cesium-137, strontium-90, radium-226, thorium-228, etc.); other constituents and chemicals, such as vinyl chloride, bis(2-ethylhexyl)phthalate, trichloroethene, were also identified as COPCs. Based on the results of this assessment contaminants of concern (COCs) were subsequently identified. The objectives of the WAG 5 Baseline Human Health Risk Assessment (BHHRA) are to document the potential health hazards (i.e., risks) that may result from contaminants on or released from the site and provide information necessary for reaching informed remedial decisions. As part of the DOE-Oak Ridge Operations (ORO), ORNL and its associated waste/contamination sites fall under the auspices of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), also known as Superfund under the Superfund Amendments and Reauthorization Act (SARA). The results of the BHHRA will (1) document and evaluate risks to human health, (2) help determine the need for remedial action, (3) determine chemical concentrations protective of current and future human receptors, and (4) help select and compare various remedial alternatives.

NONE

1995-09-01T23:59:59.000Z

206

Technical Articles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technical Articles science-innovationassetsimagesicon-science.jpg Technical Articles National security depends on science and technology. The United States relies on Los...

207

Quantitative laser-induced breakdown spectroscopy data using peak area step-wise regression analysis: an alternative method for interpretation of Mars science laboratory results  

SciTech Connect (OSTI)

The ChemCam instrument on the Mars Science Laboratory (MSL) will include a laser-induced breakdown spectrometer (LIBS) to quantify major and minor elemental compositions. The traditional analytical chemistry approach to calibration curves for these data regresses a single diagnostic peak area against concentration for each element. This approach contrasts with a new multivariate method in which elemental concentrations are predicted by step-wise multiple regression analysis based on areas of a specific set of diagnostic peaks for each element. The method is tested on LIBS data from igneous and metamorphosed rocks. Between 4 and 13 partial regression coefficients are needed to describe each elemental abundance accurately (i.e., with a regression line of R{sup 2} > 0.9995 for the relationship between predicted and measured elemental concentration) for all major and minor elements studied. Validation plots suggest that the method is limited at present by the small data set, and will work best for prediction of concentration when a wide variety of compositions and rock types has been analyzed.

Clegg, Samuel M [Los Alamos National Laboratory; Barefield, James E [Los Alamos National Laboratory; Wiens, Roger C [Los Alamos National Laboratory; Dyar, Melinda D [MT HOLYOKE COLLEGE; Schafer, Martha W [LSU; Tucker, Jonathan M [MT HOLYOKE COLLEGE

2008-01-01T23:59:59.000Z

208

Health and safety plan for the Remedial Investigation and Site Investigation of Waste Area Grouping 2 at the Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program  

SciTech Connect (OSTI)

This health and safety plan (HASP) was developed by the members of the Measurement Applications and Development Group of the Health Science Research Division at the Oak Ridge National Laboratory (ORNL). This plan was prepared to ensure that health and safety related items for the Waste Area Grouping (WAG) 2 Remedial Investigation (RI)/Feasibility Study and Site Investigation projects conform with the requirements of 29 CFR 1910.120 (April 18, 1992). The RI Plan calls for the characterization, monitoring, risk assessment, and identification of remedial needs and alternatives that have been structured and staged with short-term and long-term objectives. In early FY 1992, the WAG 2 RI was integrated with the ORNL Environmental Restoration (ER) Site Investigations program in order to achieve the complimentary objectives of the projects more effectively by providing an integrated basis of support. The combined effort was named the WAG 2 Remedial Investigation and Site Investigations Program (WAG 2 RI&SI). The Site Investigation activities are a series of monitoring efforts and directed investigations that support other ER activities by providing information about (1) watershed hydrogeology; (2) contaminants, pathways, and fluxes for groundwater at ORNL; (3) shallow subsurface areas that can act as secondary sources of contaminants; and (4) biological populations and contaminants in biota, in addition to other support and coordination activities.

Cofer, G.H.; Holt, V.L.; Roupe, G.W.

1993-11-01T23:59:59.000Z

209

Final Environmental Impact Statement for the Proposed Relocation of Technical Area 18 Capabilities and Materials at the Los Alamos National Laboratory  

Broader source: Energy.gov (indexed) [DOE]

T T A - 1 8 Table of Contents SUMMAR Y SUMMAR Y SUMMAR Y SUMMAR Y SUMMAR Y SUMMAR Y SUMMAR Y SUMMAR Y SUMMAR Y SUMMAR Y SUMMAR Y SUMMAR Y SUMMAR Y SUMMAR Y SUMMAR Y SUMMAR Y SUMMAR Y SUMMAR Y SUMMAR Y SUMMAR Y SUMMAR Y SUMMAR Y SUMMAR Y SUMMAR Y SUMMAR Y SUMMAR Y SUMMARY SUMMARY SUMMARY SUMMARY SUMMARY SUMMARY SUMMARY SUMMARY SUMMARY SUMMARY vii TABLE OF CONTENTS SUMMARY Page Cover Sheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii Acronyms, Abbreviations, and Conversion Charts . . . . . .

210

Final Environmental Impact Statement for the Proposed Relocation of Technical Area 18 Capabilities and Materials at the Los Alamos National Laboratory, Volume 1  

Broader source: Energy.gov (indexed) [DOE]

vii vii TABLE OF CONTENTS VOLUME 1 Page Cover Sheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix Acronyms, Abbreviations, and Conversion Charts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxv 1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 1.1.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 1.1.2

211

Final Environmental Impact Statement for the Proposed Relocation of Technical Area 18 Capabilities and Materials at the Los Alamos National Laboratory, Volume 2  

Broader source: Energy.gov (indexed) [DOE]

v v TABLE OF CONTENTS VOLUME 2 Page Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi Acronyms, Abbreviations, and Conversion Charts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv APPENDIX A CRITICAL ASSEMBLY DESCRIPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1 A.1 Critical Assembly Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1 A.1.1 Flattop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-3 A.1.2 Godiva . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-5 A.1.3 Comet . . .

212

Type A Accident Investigation Board Report on the July 11, 1996, Electrical Shock at Technical Area 53, Building MPF-14, Los Alamos National Laboratory  

Broader source: Energy.gov [DOE]

This report is an independent product of an electrical shock accident investigation board appointed by Bruce G. Twining, Manager, Albuquerque Operations Office, Department of Energy.

213

Type B Accident Investigation Board Report on the November 17, 1997, Chiller Line Rupture at Technical Area 35, Building 27, Los Alamos National Laboratory  

Broader source: Energy.gov [DOE]

This report is a product of an accident investigation board appointed by Bruce G. Twining, Manager, Albuquerque Operations Office, Department of Energy.

214

Research Areas | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

High Energy Density Laboratory Plasmas Research Areas Research Areas High Energy Density Laboratory Plasmas (HEDLP) Research Areas During open solicitations proposals are sought...

215

Laboratory Equipment & Supplies | Sample Preparation Laboratories  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Equipment & Supplies Equipment & Supplies John Bargar, SSRL Scientist Equipment is available to serve disciplines from biology to material science. All laboratories contain the following standard laboratory equipment: pH meters with standard buffers, analytical balances, microcentrifuges, vortex mixers, ultrasonic cleaning baths, magnetic stirrers, hot plates, and glassware. Most laboratories offer ice machines and cold rooms. Specialty storage areas for samples include a -80 freezer, argon and nitrogen glove boxes, radiation contamination areas, inert atmosphere chambers, and cold rooms. For specific information please see: Equipment Inventory Checkout Equipment & Supplies To view equipment inventory by laboratory, refer to the following pages: Biology Chemistry & Material Science Laboratory 1 Inventory

216

SciTech Connect: Laboratory instrument design progress report...  

Office of Scientific and Technical Information (OSTI)

Technical Report: Laboratory instrument design progress report, January 1--April 30, 1949 Citation Details In-Document Search Title: Laboratory instrument design progress report,...

217

FAQS Qualification Card - General Technical Base | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

General Technical Base General Technical Base FAQS Qualification Card - General Technical Base A key element for the Department's Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA). For each functional area, the FAQS identify the minimum technical competencies and supporting knowledge and skills for a typical qualified individual working in the area. FAQC-GeneralTechnicalBase-2007.docx Description General Technical Base Qualification Card - 2007 FAQC-GeneralTechnicalBase-2001.docx Description

218

FAQS Job Task Analyses - Safeguards and Security General Technical...  

Broader source: Energy.gov (indexed) [DOE]

Security General Technical Base FAQS Job Task Analyses - Safeguards and Security General Technical Base FAQS Job Task Analyses are performed on the Function Area Qualification...

219

A Transient Numerical Simulation of Perched Ground-Water Flow at the Test Reactor Area, Idaho National Engineering and Environmental Laboratory, Idaho, 1952-94  

SciTech Connect (OSTI)

Studies of flow through the unsaturated zone and perched ground-water zones above the Snake River Plain aquifer are part of the overall assessment of ground-water flow and determination of the fate and transport of contaminants in the subsurface at the Idaho National Engineering and Environmental Laboratory (INEEL). These studies include definition of the hydrologic controls on the formation of perched ground-water zones and description of the transport and fate of wastewater constituents as they moved through the unsaturated zone. The definition of hydrologic controls requires stratigraphic correlation of basalt flows and sedimentary interbeds within the saturated zone, analysis of hydraulic properties of unsaturated-zone rocks, numerical modeling of the formation of perched ground-water zones, and batch and column experiments to determine rock-water geochemical processes. This report describes the development of a transient numerical simulation that was used to evaluate a conceptual model of flow through perched ground-water zones beneath wastewater infiltration ponds at the Test Reactor Area (TRA).

B. R. Orr (USGS)

1999-11-01T23:59:59.000Z

220

Status report on the geology of the Lawrence Livermore National Laboratory site and adjacent areas. Volume I. Text and appendices A-E  

SciTech Connect (OSTI)

In April, 1979, geoscience personnel at Lawrence Livermore National Laboratory (LLNL) initiated comprehensive geologic, seismologic, and hydrologic investigations of the LLNL site and nearby areas. These investigations have two objectives: 1. to obtain data for use in preparing a Final Environmental Impact Report for LLNL, pursuant to the National Environmental Policy Act; 2. to obtain data for use in improving the determination of a design basis earthquake for structural analysis of LLNL facilities. The first phases of these investigations have been completed. Work completed to date includes a comprehensive literature review, analyses of three sets of aerial photographs, reconnaissance geophysical surveys, examination of existing LLNL site borehole data, and the logging of seven exploratory trenches, segments of two sewer trenches, a deep building foundation excavation, a road cut, and an enlarged creek bank exposure. One absolute age date has been obtained by the /sup 14/C method and several dates of pedogenic carbonate formation have been obtained by the /sup 230/Th//sup 234/U method. A seismic monitoring network has been established, and planning for a site hydrologic monitoring program and strong motion instrument network has been completed. The seismologic and hydrologic investigations are beyond the scope of this report and will be discussed separately in future documents.

Carpenter, D.W.; Puchlik, K.P.; Ramirez, A.L.; Wagoner, J.L.; Knauss, K.G.; Kasameyer, P.W.

1980-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "laboratory technical area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Quality Assurance Project Plan for the treatability study of in situ vitrification of Seepage Pit 1 in Waste Area Grouping 7 at Oak Ridge National Laboratory  

SciTech Connect (OSTI)

This Quality Assurance Project Plan (QAPjP) establishes the quality assurance procedures and requirements to be implemented for the control of quality-related activities for Phase 3 of the Treatability Study (TS) of In Situ Vitrification (ISV) of Seepage Pit 1, ORNL Waste Area Grouping 7. This QAPjP supplements the Quality Assurance Plan for Oak Ridge National Laboratory Environmental Restoration Program by providing information specific to the ISV-TS. Phase 3 of the TS involves the actual ISV melt operations and posttest monitoring of Pit 1 and vicinity. Previously, Phase 1 activities were completed, which involved determining the boundaries of Pit 1, using driven rods and pipes and mapping the distribution of radioactivity using logging tools within the pipes. Phase 2 involved sampling the contents, both liquid and solids, in and around seepage Pit 1 to determine their chemical and radionuclide composition and the spatial distribution of these attributes. A separate QAPjP was developed for each phase of the project. A readiness review of the Phase 3 activities presented QAPjP will be conducted prior to initiating field activities, and an Operational Acceptance, Test (OAT) will also be conducted with no contamination involved. After, the OAT is complete, the ISV process will be restarted, and the melt will be allowed to increase with depth and incorporate the radionuclide contamination at the bottom of Pit 1. Upon completion of melt 1, the equipment will be shut down and mobilized to an adjacent location at which melt 2 will commence.

NONE

1995-07-01T23:59:59.000Z

222

Corrective Action Plan for CAU No. 95: Area 15 EPA Farm Laboratory Building, Decontamination and Demolition Closure Activities - Nevada Test Site. Rev. 0  

SciTech Connect (OSTI)

This Corrective Action Plan (CAP) provides the selected corrective action alternative and proposes the closure implementation methodology for the Environmental Protection Agency (EPA) Farm Laboratory Building 15-06 located in Area 15 of the Nevada Test Site (NTS), Nye County, Nevada. The facility is part of the Environmental Restoration Project managed by the U.S. Department of Energy/Nevada Operations Office (DOE/NV) under the Decontamination and Decommissioning (D&D) Subproject which serves to manage and dispose of surplus facilities at the NTS in a manner that will protect personnel, the public, and the environment. It is identified as Corrective Action Unit (CAU) 95 in Appendix III of the Federal Facilities Agreement and Consent Order (FFACO). In July 1997, the DOE/NV verbally requested approval from the Nevada Division of Environmental Protection (NDEP) for the closure schedule to be accelerated. Currently, field activities are anticipated to be completed by September 30, 1997. In order to meet this new schedule NDEP has agreed to review this document as expeditiously as possible. Comments will be addressed in the Closure Report after field activities have been completed, unless significant issues require resolution during closure activities.

Olson, A.L.; Nacht, S.J.

1997-11-01T23:59:59.000Z

223

Thermal energy storage technical progress report, April 1990--March 1991  

SciTech Connect (OSTI)

The Department of Energy (DOE) is supporting development of thermal energy storage (TES) as a means of efficiently coupling energy supplies to variable heating or cooling demands. Uses of TES include electrical demand-side management in buildings and industry, extending the utilization of renewable energy resources such as solar, and recovery of waste heat from periodic industrial processes. Technical progress to develop TES for specific diurnal and industrial applications under Oak Ridge National Laboratory`s TES program from April 1990 to March 1992 is reported and covers research in the areas of low temperature sorption, direct contact ice making, latent heat storage plasterboard and latent/sensible heat regenerator technology development.

Tomlinson, J.J.

1992-03-01T23:59:59.000Z

224

Department of Energy Laboratory Accreditation Program Administration  

Broader source: Energy.gov (indexed) [DOE]

NOT MEASUREMENT NOT MEASUREMENT SENSITIVE DOE-STD-1111-2013 July 2013 DOE STANDARD DEPARTMENT OF ENERGY LABORATORY ACCREDITATION PROGRAM ADMINISTRATION U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1111-2013 This document is available on the Department of Energy Office of Health, Safety and Security Approved DOE Technical Standards Web Site at www.hss.energy.gov/nuclearsafety/ns/techstds/ ii DOE-STD-1111-2013 FOREWORD The Department of Energy (DOE) implemented the DOE Laboratory Accreditation Program (DOELAP) for external dosimetry in 1987 and for radiobioassay in 1998. DOELAP strives to maintain and improve the competency of dose measurement laboratories through performance

225

Laboratory awards final Recovery Act demolition contracts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Recovery Act demolition contracts Recovery Act demolition contracts Laboratory awards final Recovery Act demolition contracts The two winning bidders will each demolish a portion of the remaining unused buildings at the Lab's historic Technical Area 21. April 20, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

226

Technical Guidance  

Broader source: Energy.gov [DOE]

The Office of Technical Guidance, within the Office of Health, Safety and Security develops and issues Government-wide and Department-wide technical guidance to ensure that classified nuclear...

227

Determination of Extractives in Biomass: Laboratory Analytical...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Extractives in Biomass Laboratory Analytical Procedure (LAP) Issue Date: 7172005 A. Sluiter, R. Ruiz, C. Scarlata, J. Sluiter, and D. Templeton Technical Report NRELTP-510-42619...

228

Technical Assistance | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Assistance Assistance Technical Assistance Best practice-based technical assistance is provided through a combination of OE staff, and nationally-recognized experts at the Lawrence Berkeley National Laboratory, the Regulatory Assistance Project, the National Council on Electricity Policy, the National Council of State Legislatures, and the National Governors Association, and others. With these entities, the expert technical assistance is provided on an as-requested basis to State public utility commissions, State legislatures, regional State associations, regional transmission organizations/independent system operators, Federal officials, Governors' offices, State energy offices, and sometimes individual electric utilities. Technical Assistance on EPA Rules Implementation to States and the Utility

229

Independent Oversight Review, Los Alamos National Laboratory - December  

Broader source: Energy.gov (indexed) [DOE]

Review, Los Alamos National Laboratory - Review, Los Alamos National Laboratory - December 2011 Independent Oversight Review, Los Alamos National Laboratory - December 2011 December 2011 Review of the Independent Integrated Safety Management/Integrated Work Management Assessment of Research and Development and Programmatic Work at the Los Alamos National Laboratory The purpose of this Independent Oversight review by the Office of Health, Safety and Security's (HSS) Office of Safety and Emergency Management Evaluations (Independent Oversight) was (through shadowing1) to determine the depth, breath, and rigor of the Los Alamos National Laboratory (LANL) independent integrated safety management/integrated work management (ISM/IWM) assessment activities at the LANL Plutonium Facility at Technical Area (TA)-55 conducted July 18 through August 19, 2011, and to maintain

230

Preliminary Notice of Violation, Los Alamos National Laboratory, LLC -  

Broader source: Energy.gov (indexed) [DOE]

Laboratory, Laboratory, LLC - NEA-2011-01 Preliminary Notice of Violation, Los Alamos National Laboratory, LLC - NEA-2011-01 April 15, 2011 Preliminary Notice of Violation issued to Los Alamos National Security, LLC related to Unanticipated Extremity Exposures at the Los Alamos National Laboratory This letter refers to a U.S. Department of Energy (DOE) investigation into the facts and circumstances surrounding the unanticipated extremity exposures that occurred at Technical Area (TA)-48 and TA-53 on July 24, 2009, at the Los Alamos National Laboratory. The final special dose assessments documenting the details of these exposures were completed on January 26, 2010. The Office of Health, Safety, and Security's Office of Enforcement transmitted the results of the investigation to Los Alamos

231

National Renewable Energy Laboratory (NREL) Reports Increase in Durability and Reliability for Current Generation Fuel Cell Buses (Fact Sheet), Hydrogen and Fuel Cell Technical Highlights (HFCTH)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

869 * November 2010 869 * November 2010 National Renewable Energy Laboratory (NREL) Reports Increase in Durability and Reliability for Current Generation Fuel Cell Buses NREL Team: Hydrogen Technology Validation, Leslie Eudy Accomplishment: NREL recently reported an increase in durability and reliability for fuel cell systems demonstrated in transit service (first reported in July 2010). Context: The transit industry provides an excellent test-bed for developing and optimizing advanced transportation technologies, such as fuel cells. In coordination with the Federal Transit Administration, the Department of Energy (DOE) funds the evaluation of fuel cell buses (FCBs) in real-world service. Under this funding, NREL has collected and analyzed data on nine early generation FCBs operated by four transit agencies in the United States.

232

Fuel Cell Backup Power Geographical Visualization Map (Fact Sheet), Hydrogen and Fuel Cell Technical Highlights (HFCTH), NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6740 * December 2012 6740 * December 2012 Fuel Cell Backup Power Geographical Visualization Map Team: Genevieve Saur, Jennifer Kurtz, Sam Sprik, Todd Ramsden Accomplishment: The National Renewable Energy Laboratory (NREL) developed a time-lapse geographical visualization map of early market use of fuel cells for telecommunications backup power. This map synthesizes data being analyzed by NREL's Technology Validation team for the U.S. Department of Energy (DOE) Fuel Cell Technologies Program with DOE's publically available annual summaries of electric disturbance events. 1 Context: Correlating fuel cell operation with grid outages enhances knowledge of backup system requirements and backup power operation strategies that may advance how systems are designed and how best to utilize their capabilities. NREL's

233

OSTI, US Dept of Energy, Office of Scientific and Technical Informatio...  

Office of Scientific and Technical Information (OSTI)

by DOE's Pacific Northwest National Laboratory (PNNL). The DOE STIP program is an OSTI-led collaboration of scientific and technical (STI) managers and technical information...

234

Argonne National Laboratory - Reports  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reports Reports Argonne National Laboratory Activity Reports 2012 Operational Awareness Oversight of the Argonne National Laboratory Alpha-Gamma Hot Cell Facility, July 2012 Review Reports 2011 Review of the Argonne National Laboratory Alpha-Gamma Hot Cell Facility Readiness Assessment (Implementation Verification Review Sections), November 2011 Nuclear Safety Enforcement Regulatory Assistance Review of UChicago Argonne, LLC at the Argonne National Laboratory, October 3, 2011 Activity Reports 2011 Orientation Visit to the Argonne National Laboratory, August 2011 Review Reports 2005 Independent Oversight Inspection of Environment, Safety and Health Programs at Argonne National Laboratory, Summary Report, Vol. 1, May, 2005 Independent Oversight Inspection of Environment, Safety, and Health Programs at the Argonne National Laboratory, Technical Appendices, Volume II, May 2005

235

National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Homesteading on the Pajarito Plateau Homesteading on the Pajarito Plateau topic of inaugural lecture at Los Alamos National Laboratory January 4, 2013 Lecture series begins yearlong commemoration of 70th anniversary LOS ALAMOS, NEW MEXICO, Jan. 3, 2013-In commemoration of its 70th anniversary, Los Alamos National Laboratory kicks off a yearlong lecture series on Wednesday, Jan. 9, at 5:30 p.m. with a presentation about homesteading on the Pajarito Plateau at the Bradbury Science Museum, 1350 Central Avenue, Los Alamos. - 2 - The inaugural lecture is based on a book by local writers Dorothy Hoard, Judy Machen and Ellen McGehee about the area's settlement between 1887 and 1942. On hikes across the Pajarito Plateau, Hoard envisioned the Los Alamos area before modern roads and bridges made transportation much easier. The trails she walked

236

TECHNICAL BASIS DOCUMENT OF MARSSIM FIELD CALIBRATION FOR QUANTIFICATION OF CS-137 VOLUMETRICALLY CONTAMINTED SOILS IN THE BC CONTROLLED AREA USING A 4 BY 4 BY 16 INCH SODIUM IODIDE DETECTOR  

SciTech Connect (OSTI)

The purpose of this paper is to provide the Technical Basis and Documentation for Field Calibrations of radiation measurement equipment for use in the MARSSIM Seeping Surveys of the BC Controlled Area (BCCA). The Be Controlled Area is bounded on tt1e north by (but does not include) the BCCribs & Trenches and is bounded on the south by Army Loop Road. Parts of the BC Controlled Area are posted as a Contamination Area and the remainder is posted as a Soil Contamination Area. The area is approximately 13 square miles and divided into three zones (Zone A , Zone B. and Zone C). A map from reference 1 which shows the 3 zones is attached. The MARSSIM Scoping Surveys are intended 10 better identify the boundaries of the three zones based on the volumetric (pCi/g) contamination levels in the soil. The MARSSIM Field Calibration. reference 2. of radiation survey instrumentation will determine the Minimum Detectable Concentration (MDC) and an algorithm for converting counts to pCi/g. The instrumentation and corresponding results are not intended for occupational radiation protection decisions or for the release of property per DOE Order 5400.5.

PAPPIN JL

2007-10-26T23:59:59.000Z

237

1Q/2Q00 M-Area and Metallurgical Laboratory Hazardous Waste Management Facilities Groundwater Monitoring and Corrective-Action Report - First and Second Quarters 2000 - Volumes I, II, and II  

SciTech Connect (OSTI)

This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah River site (SRS) during first and second quarters of 2000.

Chase, J.

2000-10-24T23:59:59.000Z

238

Preliminary engineering report waste area grouping 5, Old Hydrofracture Facility Tanks content removal project, Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

The Superfund Amendments and Reauthorization Act of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) requires a Federal Facilities Agreement (FFA) for federal facilities placed on the National Priorities List. The Oak Ridge Reservation was placed on that list on December 21, 1989, and the agreement was signed in November 1991 by the U.S. Department of Energy (DOE) Oak Ridge Operations Office, the U.S. Environmental Protection Agency (EPA) Region IV, and the Tennessee Department of Environment and Conservation (TDEC). The effective date of the FFA is January 1, 1992. One objective of the FFA is to ensure that liquid low-level waste (LLLW) tanks that are removed from service are evaluated and remediated through the CERCLA process. Five inactive LLLW tanks, designated T-1, T-2, T-3, T-4, and T-9, located at the Old Hydrofracture (OHF) Facility in the Melton Valley area of Oak Ridge National Laboratory (ORNL) have been evaluated and are now entering the remediation phase. As a precursor to final remediation, this project will remove the current liquid and sludge contents of each of the five tanks (System Requirements Document, Appendix A). It was concluded in the Engineering Evaluation/Cost Analysis [EE/CA] for the Old Hydrofracture Facility Tanks (DOE 1996) that sluicing and pumping the contaminated liquid and sludge from the five OHF tanks was the preferred removal action. Evaluation indicated that this alternative meets the removal action objective and can be effective, implementable, and cost-effective. Sluicing and removing the tank contents was selected because this action uses (1) applicable experience, (2) the latest information about technologies and techniques for removing the wastes from the tanks, and (3) activities that are currently acceptable for storage of transuranic (TRU) mixed waste.

NONE

1996-06-01T23:59:59.000Z

239

Preliminary development of a comprehensive calibrated subsurface pathway simulator for the subsurface disposal area at the Idaho National Engineering and Environmental Laboratory  

SciTech Connect (OSTI)

The first detailed comprehensive simulation study to evaluate fate and transport of low-level, mixed, and transuranic wastes buried in the Subsurface Disposal Area (SDA) at the Idaho National Engineering and Environmental Laboratory (INEEL) has recently been conducted. The study took advantage of pertinent information relating to describing aqueous- and vapor-phase movement of contaminants in the primarily fractured basalt subsurface. The study included spatially and temporally variable infiltration, barometric pressure changes, positive down-hole air pressure during well drilling, vapor-vacuum extraction, and regional hydraulic gradients. Use of the TETRAD simulation code allowed all the pertinent information to be included into a single comprehensive model of the SDA subsurface. An overview of the model implementation and comparisons of calibrated model results to the observed vadose zone water distribution, volatile organic vapor concentrations, and aqueous concentrations of volatile organics and nitrate are presented. Additionally, comparisons between simulated and observed concentrations for other contaminants which were not used for model calibration are made. As part of this modeling exercise, inadequacies in the available data relating to characterization of non-sorbing aqueous-phase transport have been identified. Even with the identified data inadequacies, the comparisons between simulated and observed contaminants along with the calibration results give confidence that the model is a conservative representation of flow and transport in the subsurface at the SDA. The results from this modeling study are being used to guide additional data collection activities at the SDA for purposes of increasing confidence in the appropriateness of model predictions.

Magnuson, S.; Sondrup, J.; Becker, B.

1998-03-01T23:59:59.000Z

240

Identification of remediation needs and technology development focus areas for the Environmental Restoration (ER) Project at Sandia National Laboratories/New Mexico (SNL/NM)  

SciTech Connect (OSTI)

The Environmental Restoration (ER) Project has been tasked with the characterization, assessment, remediation and long-term monitoring of contaminated waste sites at Sandia National Laboratories/New Mexico (SNL/NM). Many of these sites will require remediation which will involve the use of baseline technologies, innovative technologies that are currently under development, and new methods which will be developed in the near future. The Technology Applications Program (TAP) supports the ER Project and is responsible for development of new technologies for use at the contaminated waste sites, including technologies that will be used for remediation and restoration of these sites. The purpose of this report is to define the remediation needs of the ER Project and to identify those remediation needs for which the baseline technologies and the current development efforts are inadequate. The area between the remediation needs and the existing baseline/innovative technology base represents a technology gap which must be filled in order to remediate contaminated waste sites at SNL/NM economically and efficiently. In the first part of this report, the remediation needs of the ER Project are defined by both the ER Project task leaders and by TAP personnel. The next section outlines the baseline technologies, including EPA defined Best Demonstrated Available Technologies (BDATs), that are applicable at SNL/NM ER sites. This is followed by recommendations of innovative technologies that are currently being developed that may also be applicable at SNL/NM ER sites. Finally, the gap between the existing baseline/innovative technology base and the remediation needs is identified. This technology gap will help define the future direction of technology development for the ER Project.

Tucker, M.D. [Sandia National Labs., Albuquerque, NM (United States). Site Restoration Technology Program Office; Valdez, J.M.; Khan, M.A. [IT Corp., Albuquerque, NM (United States)

1995-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "laboratory technical area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Minority Serving Institution Technical Consortium Model | Department of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Minority Serving Institution Technical Consortium Model Minority Serving Institution Technical Consortium Model Minority Serving Institution Technical Consortium Model In October 2012, the National Nuclear Security Administration (NNSA) awarded $4 million in grants to 22 Historically Black Colleges and Universities (HBCUs) in key STEM areas. This funding launched NNSA's new Minority Serving Institution Partnership Program, a consortium program organized to build a sustainable STEM pipeline between six Energy Department plants and laboratories and the HBCUs. The Program is designed to enrich the STEM capabilities of HBCUs in a sustainable manner that aligns with the broad interests of Energy Department sites and emphasizes the STEM career pipeline. The program brings together 8 teams from HBCUs that share similar interests

242

Summary: Workshop RecommendationsArgonne National Laboratory Specialists Workshop on Basic Research Needs for Nuclear Waste Management  

Science Journals Connector (OSTI)

Technical Paper / Argonne National Laboratory Specialists Workshop on Basic Research Needs for Nuclear Waste Management

A. M. Friedman; D. J. Lam; M. G. Seitz

243

Approved DOE Technical Standards  

Broader source: Energy.gov (indexed) [DOE]

approved-doe-technical-standards Forrestal Building approved-doe-technical-standards Forrestal Building 1000 Independence Avenue, SW Washington, DC 205851.800.dial.DOE en DOE-STD-1150-2013 http://energy.gov/hss/downloads/doe-std-1150-2013 DOE-STD-1150-2013

244

Scale Up of Extended Thin Film Electrocatalyst Structures (ETFECS) (Fact Sheet), Hydrogen and Fuel Cell Technical Highlights (HFCTH), NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3796 * January 2012 3796 * January 2012 Scale Up of Extended Thin Film Electrocatalyst Structures (ETFECS) Project: Fuel Cell R&D NREL Team: Hydrogen Technologies & Systems Center and Chemical and Materials Science Center Accomplishment: NREL has synthesized >1 gram of platinum (Pt) ETFECS (nanotubes) for use as novel fuel cell catalysts. These materials represent the cumulative yield of four individual batch syntheses (each >250 milligrams yield). The average relevant physical and electrochemical properties of the four batches (when tested with graphitized carbon nanofibers to aid dispersion) are: * Electrochemically available surface area (ECA) of 47.0 m 2 /g Pt * Specific activity (i s 0.9V(IR free) ) of 820 μA/cm 2 Pt * Mass activity (i

245

Hydrologic resources management program and underground test area operable unit fy 1997  

SciTech Connect (OSTI)

This report present the results of FY 1997 technical studies conducted by the Lawrence Livermore National Laboratory (LLNL) as part of the Hydrology and Radionuclide Migration Program (HRMP) and Underground Test Area Operable Unit (UGTA). The HRMP is sponsored by the US Department of Energy to assess the environmental (radiochemical and hydrologic) consequences of underground nuclear weapons testing at the Nevada Test Site.

Smith, D. F., LLNL

1998-05-01T23:59:59.000Z

246

Analysis of Offshore Wind Energy Leasing Areas for the Rhode Island/Massachusetts Wind Energy Area  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Analysis of Offshore Wind Analysis of Offshore Wind Energy Leasing Areas for the Rhode Island/Massachusetts Wind Energy Area W. Musial, D. Elliott, J. Fields, Z. Parker, and G. Scott Produced under direction of the Bureau of Ocean Energy Management (BOEM) by the National Renewable Energy Laboratory (NREL) under Interagency Agreement M13PG00002 and Task No WFS3.1000. Technical Report NREL/TP-5000-58091 April 2013 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Contract No. DE-AC36-08GO28308 National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 303-275-3000 * www.nrel.gov Analysis of Offshore Wind

247

FAQS Qualification Card - Senior Technical Safety Manager | Department of  

Broader source: Energy.gov (indexed) [DOE]

Qualification Card - Senior Technical Safety Manager Qualification Card - Senior Technical Safety Manager FAQS Qualification Card - Senior Technical Safety Manager A key element for the Department's Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA). For each functional area, the FAQS identify the minimum technical competencies and supporting knowledge and skills for a typical qualified individual working in the area. FAQC-SeniorTechnicalSafetyManager.docx Description Senior Technical Safety Manager Qualification Card

248

Project Impact Assessments: Building America FY14 Field Test Technical Support- 2014 BTO Peer Review  

Broader source: Energy.gov [DOE]

Presenter: Lieko Earle, National Renewable Energy Laboratory The goal of this project is for the National Renewable Energy Laboratory to provide extensive, hands-on technical support to Building America teams in the areas of experiment design, provision of research-grade measurement hardware, energy modeling, and analysis. Building Americas field testsregularly conducted by both Building America teams and national laboratoriesdemonstrate the programs best house system innovations. The tests enable cost-effective evaluation of real-world performance and help ensure that all Building America field tests result in high-impact findings that push builders and homeowners to higher levels of savings.

249

Technical information  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Home> Commercial Buildings Home> Technical Information > Estimation of Standard Errors Estimation of Standard Errors Sampling error is the difference between the survey estimate...

250

Technical Report  

E-Print Network [OSTI]

Dec 12, 2013 ... Technical Report Series: DCC-2013-13. Departamento de Cincia de Computadores. Faculdade de Cincias da Universidade do Porto.

Filipe Brandao

2013-12-12T23:59:59.000Z

251

Laboratory Equipment Donation Program - Guidelines  

Office of Scientific and Technical Information (OSTI)

The United States Department of Energy, in accordance with its The United States Department of Energy, in accordance with its responsibility to encourage research and development in the energy area, awards grants of used energy-related laboratory equipment. Universities, colleges and other non-profit educational institutions of higher learning in the United States are eligible to apply for equipment to use in energy-oriented educational programs in the life, physical, and environmental sciences, and in engineering. The equipment listed in this database is available for grant; however, specific items may be recalled for DOE use and become unavailable through the program. Frequently Asked Questions Who is eligible to apply for equipment? Any non-profit, educational institution of higher learning, such as a middle school, high school, university, college, junior college, technical

252

Corrective Action Investigation Plan for Corrective Action Unit 490: Station 44 Burn Area, Tonopah Test Range, Nevada (with Record of Technical Change No.1)  

SciTech Connect (OSTI)

This Corrective Action Investigation Plan (CAIP) contains the U.S. Department of Energy, Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 490 under the Federal Facility Agreement and Consent Order. Corrective Active Unit 490 consists of four Corrective Action Sites (CASs): 03-56-001-03BA, Fire Training Area (FTA); RG-56-001-RGBA, Station 44 Burn Area; 03-58-001-03FN, Sandia Service Yard; and 09-54-001-09L2, Gun Propellant Burn Area. These CASs are located at the Tonopah Test Range near Areas 3 and 9. Historically, the FTA was used for training exercises where tires and wood were ignited with diesel fuel. Records indicate that water and carbon dioxide were the only extinguishing agents used during these training exercises. The Station 44 Burn Area was used for fire training exercises and consisted of two wooden structures. The two burn areas (ignition of tires, wood, and wooden structures with diesel fuel and water) were limited to the building footprints (10 ft by 10 ft each). The Sandia Service Yard was used for storage (i.e., wood, tires, metal, electronic and office equipment, construction debris, and drums of oil/grease) from approximately 1979 to 1993. The Gun Propellant Burn Area was used from the 1960s to 1980s to burn excess artillery gun propellant, solid-fuel rocket motors, black powder, and deteriorated explosives; additionally, the area was used for the disposal of experimental explosive items. Based on site history, the focus of the field investigation activities will be to: (1) determine the presence of contaminants of potential concern (COPCs) at each CAS, (2) determine if any COPCs exceed field-screening levels and/or preliminary action levels, and (3) determine the nature and extent of contamination with enough certainty to support selection of corrective action alternatives for each CAS. The scope of this CAIP is to resolve the question of whether or not potentially hazardous wastes were generated at three of the four CASs within CAU 490, and whether or not potentially hazardous and radioactive wastes were generated at the fourth CAS in CAU 490 (CAS 09-54-001-09L2). Suspected CAS-specific COPCs include volatile organic compounds, semivolatile organic compounds, total petroleum hydrocarbons, polychlorinated biphenyls, pesticides, explosives, and uranium and plutonium isotopes. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document.

U.S. Department of Energy, Nevada Operations Office

2000-06-09T23:59:59.000Z

253

Technical Digest of International Electron Devices Meeting 2001 pp. 363-366 Generation of Large-area Tunable Uniform Electric Fields in Microfluidic Arrays for  

E-Print Network [OSTI]

-area Tunable Uniform Electric Fields in Microfluidic Arrays for Rapid DNA Separation L. Richard Huang*, Jonas O molecules in microfluidic systems. In this paper we present a novel method for generating tunable uniform electric fields over large microfluidic arrays in two dimensions, and its application to a microfabricated

254

Archaeological investigations at a toolstone source area and temporary camp: Sample Unit 19-25, Nevada Test Site, Nye County, Nevada. Technical report No. 77  

SciTech Connect (OSTI)

Archaeological investigations were initiated at Sample Unit 19--25 to retrieve information concerning settlement and subsistence data on the aboriginal hunter and gatherers in the area. Studies included collection and mapping of 35.4 acres at site 26NY1408 and excavation and mapping of 0.02 acres at site 26NY7847. Cultural resources include two rock and brush structures and associated caches and a large lithic toolstone source area and lithic artifact scatter. Temporally diagnostic artifacts indicate periodic use throughout the last 12,000 years; however dates associated with projectile points indicate most use was in the Middle and Late Archaic. Radiocarbon dates from the rock and brush structures at site 26NY7847 indicate a construction date of A.D. 1640 and repair between A.D. 1800 and 1950 for feature 1 and between A.D. 1330 and 1390 and repair at A.D. 1410 for feature 2. The dates associated with feature 2 place its construction significantly earlier than similar structures found elsewhere on Pahute Mesa. Activity areas appear to reflect temporary use of the area for procurement of available lithic and faunal resources and the manufacture of tools.

Jones, R.C.; DuBarton, A.; Edwards, S.; Pippin, L.C.; Beck, C.M.

1993-12-31T23:59:59.000Z

255

FAQS Reference Guide Technical Program Manager  

Broader source: Energy.gov [DOE]

This reference guide addresses the competency statements in the February 2004 edition of DOE-STD-1178-2004, Technical Program Manager Functional Area Qualification Standard.

256

FAQS Reference Guide General Technical Base  

Broader source: Energy.gov [DOE]

This reference guide addresses the competency statements in the December 2007 edition of DOE-STD-1146-2007, General Technical Base Functional Area Qualification Standard.

257

CTBT technical issues handbook  

SciTech Connect (OSTI)

The purpose of this handbook is to give the nonspecialist in nuclear explosion physics and nuclear test monitoring an introduction to the topic as it pertains to a Comprehensive Test Ban Treaty (CTBT). The authors have tried to make the handbook visually oriented, with figures paired to short discussions. As such, the handbook may be read straight through or in sections. The handbook covers four main areas and ends with a glossary, which includes both scientific terms and acronyms likely to be encountered during CTBT negotiations. The following topics are covered: (1) Physics of nuclear explosion experiments. This is a description of basic nuclear physics and elementary nuclear weapon design. Also discussed are testing practices. (2) Other nuclear experiments. This section discusses experiments that produce small amounts of nuclear energy but differ from explosion experiments discussed in the first chapter. This includes the type of activities, such as laser fusion, that would continue after a CTBT is in force. (3) Monitoring tests in various environments. This section describes the different physical environments in which a test could be conducted (underground, in the atmosphere, in space, underwater, and in the laboratory); the sources of non-nuclear events (such as earthquakes and mining operations); and the opportunities for evasion. (4) On-site inspections. A CTBT is likely to include these inspections as an element of the verification provisions, in order to resolve the nature of ambiguous events. This chapter describes some technical considerations and technologies that are likely to be useful. (5) Selecting verification measures. This chapter discusses the uncertain nature of the evidence from monitoring systems and how compliance judgments could be made, taking the uncertainties into account. It also discusses how to allocate monitoring resources, given the likelihood of testing by various countries in various environments.

Zucca, J.J. [ed.

1994-05-01T23:59:59.000Z

258

Technical Reference and Technical Database for Hydrogen Compatibility of  

Open Energy Info (EERE)

8 8 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142279738 Varnish cache server Technical Reference and Technical Database for Hydrogen Compatibility of Materials Dataset Summary Description Technical Reference for Hydrogen Compatibility of MaterialsGuidance on materials selection for hydrogen service is needed to support the deployment of hydrogen as a fuel as well as the development of codes and standards for stationary hydrogen use, hydrogen vehicles, refueling stations, and hydrogen transportation. Materials property measurement is needed on deformation, fracture and fatigue of metals in environments relevant to this hydrogen economy infrastructure. The identification of hydrogen-affected material properties such as strength, fracture resistance and fatigue resistance are high priorities to ensure the safe design of load-bearing structures.To support the needs of the hydrogen community, Sandia National Laboratories is conducting an extensive review of reports and journal publications to gather existing materials data for inclusion in the Technical Reference for Hydrogen Compatibility of Materials. Additionally, Sandia is working internationally with collaborators to acquire newly generated data for inclusion in the Technical Reference. SAND2012-7321 is an archival report issued by Sandia National Laboratories representing the reference information compiled as of September 2012. Updates and additions of individual sections of this report are available at http://www.sandia.gov/matlsTechRef.Technical Database for Hydrogen Compatibility of MaterialsThe Technical Database for Hydrogen Compatibility of Materials is intended to be a complement to the Technical Reference for Hydrogen Compatibility of Materials. Although still in the development stage, the Technical Database will provide a repository of technical data measured in hydrogen and is meant to be an engineering tool to aid the selection of materials for use in hydrogen.

259

Environmental Assessment Low Energy Accelerator Laboratory  

Broader source: Energy.gov (indexed) [DOE]

Low Energy Accelerator Laboratory Technical Area 53 Los Alamos National Laboratory T h i s report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof. nor any of their employees. makes any warranty, express or implied, or assumes any legal liability or responsi- bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Refer- ence herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom- mendation, or favoring by the United States Government or any agency thereof. The views

260

Low-level radioactive waste disposal operations at Los Alamos National Laboratory  

SciTech Connect (OSTI)

Los Alamos National Laboratory (LANL) generates Low-Level Radioactive Waste (LLW) from various activities: research and development, sampling and storage of TRU wastes, decommissioning and decontamination of facilities, and from LANL`s major role in stockpile stewardship. The Laboratory has its own active LLW disposal facility located at Technical Area 54, Area G. This paper will identify the current operations of the facility and the issues pertaining to operating a disposal facility in today`s compliance and cost-effective environment.

Stanford, A.R.

1997-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "laboratory technical area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

TECHNICAL EVALUATION OF THE INTERACTION OF GROUNDWATER WITH THE COLUMBIA RIVER AT THE DEPARTMENT OF ENERGY HANFORD SITE 100-D AREA  

SciTech Connect (OSTI)

Groundwater beneath much of Hanford's 100 Areas is contaminated with hexavalent chromium (Cr{sup +6}) as a consequence of treating reactor cooling water to prevent corrosion. Several treatment systems are in place to remove Cr{sup +6} from the groundwater; however, these systems currently do not reduce Cr{sup +6} to concentrations below aquatic standards. Of concern is the transport of Cr{sup +6} to areas within the channel of the river, as sensitive species inhabit the river and its associated transition zone. The aquatic standard for Cr{sup +6} is currently 11 ug/l under the Record of Decision (ROD) for Interim Action and Department of Energy (DOE) currently plans to pursue remediation of the groundwater to achieve the 11 ug/l standard. Because the compliance wells used to monitor the current remediation systems are located some distance from the river, they may not provide an accurate indication of Cr{sup +6} concentrations in the water that reaches the riverbed. In addition, because salmon spawning areas are considered a high priority for protection from Hanford contaminants, it would be advantageous to understand (1) to what extent Cr{sup +6} discharged to the near-shore or river ecosystems is diluted or attenuated and (2) mechanisms that could mitigate the exposure of the river ecosystems to the discharging Cr{sup +6}. The current concentration target for Cr{sup +6} at near-river groundwater monitoring locations is 20 {micro}g/L; it is assumed that this groundwater mixes with river water that contains virtually no chromium to meet Washington Department of Ecology's (Ecology) water quality standard of 10 {micro}g/L in the river environment. This dynamic mixing process is believed to be driven by daily and seasonal changes in river stage and groundwater remediation system operations, and has been validated using analytical data from numerous groundwater samples obtained adjacent to and within the banks of the river. Although the mean mixing factor of river water and site groundwater in this zone has been estimated to be equal parts of groundwater and river water, a wide range of mixing ratios likely occurs at various times of the day and year. The degree of mixing and dilution appears to be greatly influenced by the river stage and other groundwater/surface water interaction. The extent of mixing, thus, has implications for the design and operation of the groundwater remediation systems. Improved understanding of this 'dilution' mechanism is needed to design an optimum 'systems approach' to accelerate remediation of the near-shore contaminant plumes. More information on the pathway from near-river mapped plumes to riverbed receptor locations is also needed to develop a defensible proposed plan for a future ROD for final remedial action of contaminated groundwater. In April 2008, an expert panel of scientists was convened to review existing information and provide observations and suggestions to improve the current understanding of groundwater surface water interactions in the 100 Areas (primarily focusing on 100-D Area), and to identify what additional analyses or approaches may provide critical information needed to design and implement remediation systems that will minimize impacts to river aquatic systems. Specific objectives provided to the panel included: (1) comment on approaches and methods to improve the current understanding of groundwater-surface water interactions, specifically how contaminated groundwater enters the riverbed and how this relates to remediation of chromate in the groundwater in the 100 Areas; (2) evaluate past and current data collection methods, data analysis techniques, assumptions, and groundwater transport and mixing mechanisms; (3) evaluate the current monitoring network (monitoring wells, aquifer tubes, and shoreline/river monitoring); (4) evaluate the role played by modeling; and (5) suggest additional research to fill data gaps and perform modeling.

PETERSEN SW

2008-11-05T23:59:59.000Z

262

Fuel cells for transportation program: FY1997 national laboratory annual report  

SciTech Connect (OSTI)

The Department of Energy (DOE) Fuel Cells for Transportation Program is structured to effectively implement the research and development (R and D) required for highly efficient, low or zero emission fuel cell power systems to be a viable replacement for the internal combustion engine in automobiles. The Program is part of the Partnership for a New Generation of Vehicles (PNGV), a government-industry initiative aimed at development of an 80 mile-per-gallon vehicle. This Annual Report summarizes the technical accomplishments of the laboratories during 1997. Participants include: Argonne National Laboratory (ANL), Brookhaven National Laboratory (BNL), Lawrence Berkeley National Laboratory (LBNL), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL), Pacific Northwest National Laboratory (PNNL), and the National Renewable Energy Laboratory (NREL). During 1997, the laboratory R and D included one project on solid oxide fuel cells; this project has since been terminated to focus Department resources on PEM fuel cells. The technical component of this report is divided into five key areas: fuel cell stack research and development; fuel processing; fuel cell modeling, testing, and evaluation; direct methanol PEM fuel cells; and solid oxide fuel cells.

NONE

1997-12-31T23:59:59.000Z

263

Leveraged small business projects will receive free technical...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Leveraged small business projects will receive free technical assistance Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest...

264

Sandia National Laboratories: Careers: Internships: Technical Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Interns for Security, Arms Control, and Force Protection Engineering Interns for Security, Arms Control, and Force Protection Engineering Photo of Sandia intern working at their computer station Sandia interns work to lower the risk posed by catastrophic and potentially destabilizing events. When offered Summer only Who can apply Undergraduate and graduate students majoring in computer science, electrical engineering, computer engineering, mechanical engineering, or a related field of study Location Sandia/New Mexico About iSAFE The Interns for Security, Arms Control, and Force Protection Engineering (iSAFE) program gives students the opportunity to develop next-generation systems for compelling national security missions. Interns work on complex and challenging problems to lower the risk posed by high-consequence events, such as nuclear and biological proliferation, terrorist threats,

265

Sandia National Laboratories: Partnerships for Global Technical...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

East Scientific Institute for Security (MESIS)-an independent NGO based in Amman, Jordan. MESIS is modeled on the CMC's approach and is committed to the same principle, that...

266

CCI Technical Projects | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

presented several works in ASMS conference, and worked on various ionization methods and biomass feedstock. This study is now further expanded to understand the pyrolysis kinetics...

267

Sandia National Laboratories: Careers: Internships: Technical...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

TITANS: Center for Analysis Systems and Applications Photo of CASA interns CASA mentors preview a sophisticated data analysis software tool. When offered Year-round and summer Who...

268

Sandia National Laboratories: Careers: Internships: Technical...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

TITANS: Center for Cyber Defenders Photo of CCD interns CCD interns use a custom power meter to measure the amount of energy consumed by their computers and monitors. When offered...

269

Laboratory Partnering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Laboratory Partnering Laboratory Partnering Laboratory Partnering The Department of Energy operates multiple laboratories and facilities that conduct Technology Transfer through partnerships with industry, universities and non-profit organizations. Technology transfer involves deployment of newly generated technology intended for commercial deployment, and making unique resources in the form of collaborations with laboratory staff and unique equipment available for use by third parties. Technology transfer is done through a variety of legal instruments from technical assistance agreements to solve a specific problem, user agreements, licensing of patents and software, exchange of personnel, work for others agreements and cooperative research and development agreements. The most appropriate mechanism will depend on the objective of each

270

Synthetic fuels from US oil shales: a technical and economic verification of the HYTORT Process. Quarterly report, January 1-March 31, 1980  

SciTech Connect (OSTI)

Objective is to demonstrate the technical and economic feasibility of the HYTORT process for both Eocene and Devonian shales. The program is divided into five major task areas: laboratory program, bench-scale program, process development unit tests, process environmental assessment, and process design and economics. (DLC)

None

1980-06-01T23:59:59.000Z

271

Derived Concentration Technical Standard  

Broader source: Energy.gov (indexed) [DOE]

196-2011 196-2011 April 2011 DOE STANDARD DERIVED CONCENTRATION TECHNICAL STANDARD U.S. Department of Energy AREA ENVR Washington, D.C. 20585 Not Measurement Sensitive This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.doe.gov/nuclearsafety/ns/techstds/standard/standard.html DOE-STD-1196-2011 ACKNOWLEDGEMENTS This Derived Concentration Technical Standard was a collaborative effort sponsored by the DOE Office of Environmental Policy and Assistance, with support from Department subject matter experts (SMEs) in the field of radiation protection. This standard, which complements DOE Order (O) 458.1, Radiation Protection of the Public and the Environment, was developed taking

272

Emission Testing of Washington Metropolitan Area Transit Authority (WMATA) Natural Gas and Diesel Transit Buses  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Emission Testing of Washington Emission Testing of Washington Metropolitan Area Transit Authority (WMATA) Natural Gas and Diesel Transit Buses M. Melendez, J. Taylor, and J. Zuboy National Renewable Energy Laboratory W.S. Wayne West Virginia University D. Smith U.S. Department of Energy Technical Report NREL/TP-540-36355 December 2005 Emission Testing of Washington Metropolitan Area Transit Authority (WMATA) Natural Gas and Diesel Transit Buses M. Melendez, J. Taylor, and J. Zuboy National Renewable Energy Laboratory W.S. Wayne West Virginia University D. Smith U.S. Department of Energy Prepared under Task No. FC05-9000 Technical Report NREL/TP-540-36355 December 2005 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov

273

Assessment of Offshore Wind Energy Leasing Areas for the BOEM Massachusetts Wind Energy Area  

SciTech Connect (OSTI)

The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL), under an interagency agreement with the Bureau of Ocean Energy Management (BOEM), is providing technical assistance to identify and delineate leasing areas for offshore wind energy development within the Atlantic Coast Wind Energy Areas (WEAs) established by BOEM. This report focuses on NREL's development of three delineated leasing area options for the Massachusetts (MA) WEA and the technical evaluation of these leasing areas. The overarching objective of this study is to develop a logical process by which the MA WEA can be subdivided into non-overlapping leasing areas for BOEM's use in developing an auction process in a renewable energy lease sale. NREL worked with BOEM to identify an appropriate number of leasing areas and proposed three delineation alternatives within the MA WEA based on the boundaries announced in May 2012. A primary output of the interagency agreement is this report, which documents the methodology, including key variables and assumptions, by which the leasing areas were identified and delineated.

Musial, W.; Parker, Z.; Fields, M.; Scott, G.; Elliott, D.; Draxl, C.

2013-12-01T23:59:59.000Z

274

SCFA lead lab technical assistance at Oak Ridge Y-12 national security complex: Evaluation of treatment and characterization alternatives of mixed waste soil and debris at disposal area remedial action DARA solids storage facility (SSF)  

E-Print Network [OSTI]

Technical Assistance #136 Oak Ridge Y-12 National SecurityTechnical Assistance #136 Oak Ridge Y-12 National Securitylittle threat (meaning that Oak Ridge does not need to rush

Hazen, Terry

2002-01-01T23:59:59.000Z

275

Analysis Activities at Lawrence Livermore National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Laboratory / Energy Security and Technology Program Jeffrey Stewart Group Leader: Applied Statistics and Economics DOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program Systems Analysis Workshop July 28-29, 2004 Washington, D.C. 2 Charter * LLNL's mission is to provide research in the areas of national and homeland security and other important areas to DOE such as Energy,Climate and Water * To conduct systems and economic modeling and analysis to determine the technical and economic characteristics of individual technologies within systems to achieve policy objectives * DOE NETL, NE,Policy,HEU; Japanese Govt, CEC, Internal 3 History * LLNL has had a systems analysis group for over 25 years supporting national security, defense, energy and environment programs

276

Thermal energy storage technical progress report, April 1990--March 1991  

SciTech Connect (OSTI)

The Department of Energy (DOE) is supporting development of thermal energy storage (TES) as a means of efficiently coupling energy supplies to variable heating or cooling demands. Uses of TES include electrical demand-side management in buildings and industry, extending the utilization of renewable energy resources such as solar, and recovery of waste heat from periodic industrial processes. Technical progress to develop TES for specific diurnal and industrial applications under Oak Ridge National Laboratory's TES program from April 1990 to March 1992 is reported and covers research in the areas of low temperature sorption, direct contact ice making, latent heat storage plasterboard and latent/sensible heat regenerator technology development.

Tomlinson, J.J.

1992-03-01T23:59:59.000Z

277

Technical Highlights - FEERC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technical Highlights for November 2013 Technical Highlights for November 2013 The Oak Ridge National Laboratory (ORNL) cited in Article Published in Inside Science ORNL's recent achievement in ionic liquid (IL) additives for engine lubrication is featured in an article "Molten Salts Could Improve Fuel Economy," published in Inside Science, http://www.insidescience.org/content/molten-salts-could-improve-fuel-economy/1492. The article is syndicated to subscribers at FOXnews.com, NBCnews.com, LiveScience, and others. Dual-Fuel Combustion with Additives Capability A new capability was added to the multi-cylinder advanced combustion research engine at ORNL allowing dual fuel combustion with gasoline and gasoline doped with additives to increase the reactivity. The new configuration allows precise control over fuel temperature to allow for

278

WHOLE FROG TECHNICAL REPORT  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

WHOLE FROG TECHNICAL REPORT WHOLE FROG TECHNICAL REPORT WING NIP, CRAIG LOGAN Imaging and Distributed Computing Group Information and Computing Sciences Division Lawrence Berkeley Laboratory Berkeley, CA 94720 Publication number: LBL-35331 Credits CONTENT INTRODUCTION MRI DATA PHOTOGRAPH DATA (CRYOTOME) SEGMENTATION VISUALIZATION IN 3D PROBLEMS ENCOUNTERED Photographing Lighting Misalignment Digitizing Lighting Segmentation Inconsistent Data Higher Resolution Desire IMPROVEMENT INTRODUCTION The goal of the Whole Frog Project is to be able to represent the anatomy of a frog in a computer in 3D space in such a way that a high school student will find it useful in learning physiology, hopefully developing a sense of interest in using computers at the same time. MRI DATA The original plan is to make use of Magnetic Resonance Imaging (MRI) to

279

Science | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Argonne Research Library supports the scientific and technical research The Argonne Research Library supports the scientific and technical research of the employees of Argonne National Laboratory. While the library is not open to the public, we do make our catalog available for searching. The Institute for Molecular Engineering explores innovative technologies that address fundamental societal problems through advances in nanoscale manipulation and design at a molecular scale. Women in Science and Technology (WIST) aims to promote the success of women in scientific and technical positions at Argonne. Science The best and brightest minds come to Argonne to make scientific discoveries and technological innovations that improve the quality of life throughout the nation and the world. The best and brightest minds come to Argonne.

280

Tiger Team assessment of the Idaho National Engineering Laboratory  

SciTech Connect (OSTI)

The purpose of the Safety and Health (S H) Subteam assessment was to determine the effectiveness of representative safety and health programs at the Idaho National Engineering Laboratory (INEL) site. Four Technical Safety Appraisal (TSA) Teams were assembled for this purpose by the US Department of Energy (DOE), Deputy Assistant Secretary for Safety and Quality Assurance, Office of Safety Appraisals (OSA). Team No. 1 reviewed EG G Idaho, Inc. (EG G Idaho) and the Department of Energy Field Office, Idaho (ID) Fire Department. Team No. 2 reviewed Argonne National Laboratory-West (ANL-W). Team No. 3 reviewed selected contractors at the INEL; specifically, Morrison Knudsen-Ferguson of Idaho Company (MK-FIC), Protection Technology of Idaho, Inc. (PTI), Radiological and Environmental Sciences Laboratory (RESL), and Rockwell-INEL. Team No. 4 provided an Occupational Safety and Health Act (OSHA)-type compliance sitewide assessment of INEL. The S H Subteam assessment was performed concurrently with assessments conducted by Environmental and Management Subteams. Performance was appraised in the following technical areas: Organization and Administration, Quality Verification, Operations, Maintenance, Training and Certification, Auxiliary Systems, Emergency Preparedness, Technical Support, Packaging and Transportation, Nuclear Criticality Safety, Security/Safety Interface, Experimental Activities, Site/Facility Safety Review, Radiological Protection, Personnel Protection, Worker Safety and Health (OSHA) Compliance, Fire Protection, Aviation Safety, Medical Services, and Firearms Safety.

Not Available

1991-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "laboratory technical area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Superfluid helium as a technical coolant  

E-Print Network [OSTI]

The characteristics of superfluid helium as a technical coolant, which derive from its specific transport properties, are presented with particular reference to the working area in the phase diagram (saturated or pressurised helium II). We then review the principles and scaling laws of heat transport by equivalent conduction and by forced convection in pressurised helium II, thus revealing intrinsic limitations as well as technological shortcomings of these cooling methods. Once properly implemented, two-phase flow of saturated helium II presents overwhelming advantages over the previous solutions, which dictated its choice for cooling below 1.9 K the long strings of superconducting magnets in the Large Hadron Collider (LHC), a 26.7 km circumference particle collider now under construction at CERN, the European Laboratory for Particle Physics near Geneva (Switzerland). We report on recent results from the ongoing research and development programme conducted on thermohydraulics of two-phase saturated helium II...

Lebrun, P

1997-01-01T23:59:59.000Z

282

TECHNICAL EVALUATION REPORT EMERGENCY DIESEL GENERATOR TECHNICAL SPECIFICATIONS STUDY RESULTS  

SciTech Connect (OSTI)

The purpose of this report is to review technical specifications for emergency diesel generators in the context of new information developed in the Nuclear Plant Aging Research Program and the application of current NRC regulatory concepts and knowledge. Aging and reliability relationships related to the standard technical specifications are reviewed and supported by data and published information to ensure that conservative and beneficial specifications are identified. Where technical specifications could adversely influence aging and reliability, the technical issues and reasonable alternatives are identified for consideration. This report documents and spans the technical progress from the published and approved regulatory documents to the current knowledge basis. This ensures that the technical bases for the technical specifications discussed are documented and relatively complete subject information is contained in one document. The Pacific Northwest Laboratory (PNL) has participated in the Nuclear Plant Aging Research (NPAR) Program directed by the Nuclear Regulatory Commission's (NRC) Office of Nuclear Regulatory Research, Division of Engineering. The NPAR study of emergency diesel generator aging was performed in two phases. In Phase I, plant operating experience, ~ata, expert opinion and statistical methods were used to produce a new data base related to aging, reliability, and operational readiness of nuclear service diesel generators. Phase II was chiefly concerned with aging mitigation measures.

Hoopingarner, K. R.

1991-03-01T23:59:59.000Z

283

Technical planning activity: Final report  

SciTech Connect (OSTI)

In April 1985, the US Department of Energy's (DOE's) Office of Fusion Energy commissioned the Technical Planning Activity (TPA). The purpose of this activity was to develop a technical planning methodology and prepare technical plans in support of the strategic and policy framework of the Magnetic Fusion Program Plan issued by DOE in February 1985. Although this report represents the views of only the US magnetic fusion community, it is international in scope in the sense that the technical plans contained herein describe the full scope of the tasks that are prerequisites for the commercialization of fusion energy. The TPA has developed a well-structured methodology that includes detailed definitions of technical issues, definitions of program areas and elements, statements of research and development objectives, identification of key decision points and milestones, and descriptions of facility requirements.

Not Available

1987-01-01T23:59:59.000Z

284

area | OpenEI  

Open Energy Info (EERE)

area area Dataset Summary Description These estimates are derived from a composite of high resolution wind resource datasets modeled for specific countries with low resolution data originating from the National Centers for Environmental Prediction (United States) and the National Center for Atmospheric Research (United States) as processed for use in the IMAGE model. The high resolution datasets were produced by the National Renewable Energy Laboratory (United States), Risø DTU National Laboratory (Denmark), the National Institute for Space Research (Brazil), and the Canadian Wind Energy Association. The data repr Source National Renewable Energy Laboratory Date Released Unknown Date Updated Unknown Keywords area capacity clean energy international National Renewable Energy Laboratory

285

Technical Database | OpenEI  

Open Energy Info (EERE)

56 56 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142281756 Varnish cache server Technical Database Dataset Summary Description Technical Reference for Hydrogen Compatibility of Materials Source Sandia National Laboratories Date Released June 03rd, 2010 (4 years ago) Date Updated September 27th, 2012 (2 years ago) Keywords Compatibility of Materials hydrogen NREL Sandia Technical Database Technical Reference Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon 1100_cia85_ten_fra_fat.xlsx (xlsx, 60.9 KiB) application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon 1100_san10_fra_fat.xlsx (xlsx, 58.5 KiB) application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon 1100_san10b_fra_fat.xlsx (xlsx, 59.4 KiB)

286

Los Alamos National Laboratory to host Robot Rodeo  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

LANL to host Robot Rodeo LANL to host Robot Rodeo Los Alamos National Laboratory to host Robot Rodeo Hazardous devices teams from around the Southwest will wrangle their bomb squad robots at the sixth annual Robot Rodeo. June 18, 2012 Sixth annual Robot Rodeo at LANL Sixth annual Robot Rodeo at LANL Contact Steve Sandoval Communications Office (505) 665-9206 Email Events test skills of hazardous devices teams from around the Southwest LOS ALAMOS, New Mexico, June 18, 2012-Hazardous devices teams from around the Southwest will wrangle their bomb squad robots at the sixth annual Robot Rodeo beginning Tuesday, June 19 at Los Alamos National Laboratory (LANL). The rodeo gets under way at 8 a.m. in Technical Area 49, a remote section of Laboratory property near the entrance to Bandelier National Monument.

287

Department of Energy Laboratory Accreditation for External Dosimetry  

Broader source: Energy.gov (indexed) [DOE]

DOE-STD-1095-2011 January 2011 DOE STANDARD DEPARTMENT OF ENERGY LABORATORY ACCREDITATION FOR EXTERNAL DOSIMETRY U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. ii DOE-STD-1095-2011 This document is available on the Department of Energy Office of Health, Safety and Security Approved DOE Technical Standards Web Site at www.hss.energy.gov/nuclearsafety/ns/techstds/ DOE-STD-1095-2011 iii FOREWORD The Department of Energy (DOE) implemented the DOE Laboratory Accreditation Program (DOELAP) for external dosimetry in 1987. The radiobioassay portion of DOELAP is described in standard DOE-STD-1112-98, Department of Energy Laboratory Accreditation Program for

288

Current Jobs | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Job Openings Argonne National Laboratory is currently hiring Co-op students in the following areas: Facilities Management and Services Division: The Facilities Management and...

289

American Samoa Initial Technical Assessment Report  

SciTech Connect (OSTI)

This document is an initial energy assessment for American Samoa, the first of many steps in developing a comprehensive energy strategy. On March 1, 2010, Assistant Secretary of the Interior Tony Babauta invited governors and their staff from the Interior Insular Areas to meet with senior principals at the National Renewable Energy Laboratory (NREL). Meeting discussions focused on ways to improve energy efficiency and increase the deployment of renewable energy technologies in the U.S. Pacific Territories. In attendance were Governors Felix Camacho (Guam), Benigno Fitial (Commonwealth of the Northern Mariana Islands), and Togiola Tulafono, (American Samoa). This meeting brought together major stakeholders to learn and understand the importance of developing a comprehensive strategic plan for implementing energy efficiency measures and renewable energy technologies. For several decades, dependence on fossil fuels and the burden of high oil prices have been a major concern but never more at the forefront as today. With unstable oil prices, the volatility of fuel supply and the economic instability in American Samoa, energy issues are a high priority. In short, energy security is critical to American Samoa's future economic development and sustainability. Under an interagency agreement, funded by the Department of Interior's Office of Insular Affairs, NREL was tasked to deliver technical assistance to the islands of American Samoa. Technical assistance included conducting an initial technical assessment to define energy consumption and production data, establish an energy consumption baseline, and assist with the development of a strategic plan. The assessment and strategic plan will be used to assist with the transition to a cleaner energy economy. NREL provided an interdisciplinary team to cover each relevant technical area for the initial energy assessments. Experts in the following disciplines traveled to American Samoa for on-island site assessments: (1) Energy Efficiency and Building Technologies; (2) Integrated Wind-Diesel Generation; (3) Transmission and Distribution; (4) Solar Technologies; and (5) Biomass and Waste-to-Energy. In addition to these core disciplines, team capabilities also included expertise in program analysis, project financing, energy policy and energy planning. The intent of the technical assessment was to provide American Samoa with a baseline energy assessment. From the baseline, various scenarios and approaches for deploying cost effective energy efficiency and renewable energy technologies could be created to meet American Samoa's objectives. The information provided in this energy assessment will be used as input in the development of a draft strategic plan and the development of scenarios and strategies for deploying cost-effective energy efficiency and renewable products.

Busche, S.; Conrad, M.; Funk, K.; Kandt, A.; McNutt, P.

2011-09-01T23:59:59.000Z

290

Test Methods Standing Technical Committee Presentation  

Broader source: Energy.gov (indexed) [DOE]

Test Methods Standing Technical Committee Test Methods Standing Technical Committee buildingamerica.gov Residential Building Technology Program Building America Test Methods STC BA Stakeholder Meeting Leap Day, 2012 Austin, TX 2 | Building America Test Methods Standing Technical Committee buildingamerica.gov Test Methods STC: Roles Update Field Test: Advanced Test / Audit Methods Key Role: Identify Needs for Field Test Methods & Sensors Targets: Field Performance Measurements: Accurate, Low-Cost & Simple Methods Safety & Durability Checks QA/QC Tools Laboratory Test: Support & Coordination Key Role: Identify Performance Data Gaps for Modeling/Simulation (with Analysis STC) Targets: Ensure Laboratory Data & Models Exist for Comparison to Field Test Avoid Duplication of Efforts

291

Determination of Ash in Biomass: Laboratory Analytical Procedure...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ash in Biomass Laboratory Analytical Procedure (LAP) Issue Date: 7172005 A. Sluiter, B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, and D. Templeton Technical Report NREL...

292

Determination of Total Carbohydrates in Algal Biomass: Laboratory...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbohydrates in Algal Biomass Laboratory Analytical Procedure (LAP) Issue Date: December 2, 2013 S. Van Wychen and L. M. L. Laurens Technical Report NRELTP-5100-60957 December...

293

Summer Infiltration/Ventilation Test Results from the FRTF Laboratory  

Broader source: Energy.gov (indexed) [DOE]

Summer InfiltrationVentilation Test Results from the FRTF Laboratory Building America Technical Review Meeting April 29-30, 2013 A Research Institute of the University of Central...

294

Laboratory directed research development annual report. Fiscal year 1996  

SciTech Connect (OSTI)

This document comprises Pacific Northwest National Laboratory`s report for Fiscal Year 1996 on research and development programs. The document contains 161 project summaries in 16 areas of research and development. The 16 areas of research and development reported on are: atmospheric sciences, biotechnology, chemical instrumentation and analysis, computer and information science, ecological science, electronics and sensors, health protection and dosimetry, hydrological and geologic sciences, marine sciences, materials science and engineering, molecular science, process science and engineering, risk and safety analysis, socio-technical systems analysis, statistics and applied mathematics, and thermal and energy systems. In addition, this report provides an overview of the research and development program, program management, program funding, and Fiscal Year 1997 projects.

NONE

1997-05-01T23:59:59.000Z

295

Final Scientific - Technical Report, Geothermal Resource Exploration  

Open Energy Info (EERE)

Scientific - Technical Report, Geothermal Resource Exploration Scientific - Technical Report, Geothermal Resource Exploration Program, Truckhaven Area, Imperial County, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Final Scientific - Technical Report, Geothermal Resource Exploration Program, Truckhaven Area, Imperial County, California Details Activities (5) Areas (1) Regions (0) Abstract: With financial support from the U.S. Department of Energy (DOE), Layman Energy Associates, Inc. (LEA) has completed a program of geothermal exploration at the Truckhaven area in Imperial County, California. The exploratory work conducted by LEA included the following activities: compilation of public domain resource data (wells, seismic data, geologic maps); detailed field geologic mapping at the project site; acquisition and

296

Technical cooperation on nuclear security between the United States and China : review of the past and opportunities for the future.  

SciTech Connect (OSTI)

The United States and China are committed to cooperation to address the challenges of the next century. Technical cooperation, building on a long tradition of technical exchange between the two countries, can play an important role. This paper focuses on technical cooperation between the United States and China in the areas of nonproliferation, arms control and other nuclear security topics. It reviews cooperation during the 1990s on nonproliferation and arms control under the U.S.-China Arms Control Exchange, discusses examples of ongoing activities under the Peaceful Uses of Technology Agreement to enhance security of nuclear and radiological material, and suggests opportunities for expanding technical cooperation between the defense nuclear laboratories of both countries to address a broader range of nuclear security topics.

Pregenzer, Arian Leigh

2011-12-01T23:59:59.000Z

297

Independent Oversight Review, Lawrence Livermore National Laboratory -  

Broader source: Energy.gov (indexed) [DOE]

Lawrence Livermore National Lawrence Livermore National Laboratory - September 2011 Independent Oversight Review, Lawrence Livermore National Laboratory - September 2011 September 2011 Review of Integrated Safety Management System Effectiveness at Lawrence Livermore National Laboratory The purpose of this review was to assess the effectiveness of the integrated safety management system (ISMS) established and implemented by Lawrence Livermore National Laboratory (LLNL). Independent Oversight Review, Lawrence Livermore National Laboratory - September 2011 More Documents & Publications Independent Oversight Inspection of Environment, Safety, and Health Management at the Lawrence Livermore National Laboratory, Technical Appendices, Volume II, December 2004 Independent Oversight Inspection, Lawrence Livermore National Laboratory,

298

FAQS Qualification Card - Technical Program Manager | Department of  

Broader source: Energy.gov (indexed) [DOE]

Program Manager Program Manager FAQS Qualification Card - Technical Program Manager A key element for the Department's Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA). For each functional area, the FAQS identify the minimum technical competencies and supporting knowledge and skills for a typical qualified individual working in the area. FAQC-TechnicalProgramManager.docx Description Technical Program Manager Qualification Card More Documents & Publications FAQS Gap Analysis Qualification Card - Occupational Safety

299

FAQS Qualification Card - Technical Training | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Training Training FAQS Qualification Card - Technical Training A key element for the Department's Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA). For each functional area, the FAQS identify the minimum technical competencies and supporting knowledge and skills for a typical qualified individual working in the area. FAQC-TechnicalTraining.docx Description Technical Training Qualification Card More Documents & Publications FAQS Gap Analysis Qualification Card - Occupational Safety

300

FAQS Qualification Card - Safeguards and Security General Technical Base  

Broader source: Energy.gov (indexed) [DOE]

Safeguards and Security General Safeguards and Security General Technical Base FAQS Qualification Card - Safeguards and Security General Technical Base A key element for the Department's Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA). For each functional area, the FAQS identify the minimum technical competencies and supporting knowledge and skills for a typical qualified individual working in the area. FAQC-SafeguardsandSecurityGTB.docx Description Safeguards and Security General Technical Base Qualification Card

Note: This page contains sample records for the topic "laboratory technical area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Nutrients, pesticides, surfactants, and trace metals in ground water from the Howe and Mud Lake areas upgradient from the Idaho National Engineering Laboratory, Idaho  

SciTech Connect (OSTI)

Reconnaissance-level sampling for selected nutrients, pesticides, and surfactants in ground water upgradient from the Idaho National Engineering Laboratory was conducted during June 1989. Water samples collected from eight irrigation wells, five domestic or livestock wells, and two irrigation canals were analyzed for nutrients, herbicides, insecticides and polychlorinated compounds, and surfactants. In addition to the above constituents, water samples from one irrigation well, one domestic well, and one irrigation canal were analyzed for arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver. Concentrations of nitrite plus nitrate as nitrogen ranged from less than the reporting to 6.10 mg/L (milligrams per liter), and orthophosphate concentrations as phosphorus ranged from less than the reporting level to 0.070 mg/L (micrograms per liter). Concentrations of 2,4-D in two water samples were 0.1 {mu}g/L and 0.10 {mu}g/L. Water samples analyzed for 15 other herbicides, 10 carbamate insecticides, 11 organophosphorus insecticides, and 15 organochlorine insecticides, gross polychlorinated biphenyls, and gross polychlorinated naphthalenes all had concentration below their reporting levels. Concentrations of surfactants ranged from 0.02 to 0.35 mg/L. Arsenic, barium, chromium, selenium, and silver concentrations exceeded reporting levels in most of the samples. 19 refs., 1 fig., 19 tabs.

Edwards, D.D.; Bartholomay, R.C.; Bennett, C.M.

1990-10-01T23:59:59.000Z

302

Sandia National Laboratories  

E-Print Network [OSTI]

Sandia National Laboratories 7011 East Ave. Livermore, CA 94550 Las Positas College 3000 Campus competitions scheduled for the California Bay Area. The Science Bowl is a Jeopardy-like highly competitive Area competitions: Date (all on Saturdays): Location: Host: Regional HIGH SCHOOL Science Bowls January

303

Corrective Action Investigation Plan for Corrective Action Unit 263: Area 25 Building 4839 Leachfields, Nevada Test Site, Revision 0, DOE/NV--535 UPDATED WITH RECORD OF TECHNICAL CHANGE No.1  

SciTech Connect (OSTI)

The Corrective Action Investigation Plan for Corrective Action Unit 263, the Area 25 Building 4839 Leachfield, has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the US Department of Energy, Nevada Operations Office; the Nevada Division of Environmental Protection; and the US Department of Defense. Corrective Action Unit 263 is comprised of the Corrective Action Site 25-05-04 sanitary leachfield and associated collection system. This Corrective Action Investigation Plan is used in combination with the Work Plan for Leachfield Corrective Action Units: Nevada Test Site and Tonopah Test Range, Nevada (DOE/NV, 1998d). The Leachfield Work Plan was developed to streamline investigations at Leachfield Corrective Action Units by incorporating management, technical, quality assurance, health and safety, public involvement, field sampling, and waste management information common to a set of Corrective Action Units with similar site histories and characteristics into a single document that can be referenced. This Corrective Action Investigation Plan provides investigative details specific to Corrective Action Unit 263. Corrective Action Unit 263 is located southwest of Building 4839, in the Central Propellant Storage Area. Operations in Building 4839 from 1968 to 1996 resulted in effluent releases to the leachfield and associated collection system. In general, effluent released to the leachfield consisted of sanitary wastewater from a toilet, urinal, lavatory, and drinking fountain located within Building 4839. The subsurface soils in the vicinity of the collection system and leachfield may have been impacted by effluent containing contaminants of potential concern generated by support activities associated with the Building 4839 operations.

US DOE Nevada Operations Office

1999-04-12T23:59:59.000Z

304

White Oak Creek Watershed: Melton Valley Area Remedial Investigation Report, Oak Ridge National Laboratory, Oak Ridge, Tennessee: Volume 1 Main Text  

SciTech Connect (OSTI)

The purpose of this Remedial Investigation (RI) report is to present an analysis of the Melton Valley portion of the White Oak Creek (WOC) watershed, which will enable the US Department of Energy (DOE) to pursue a series of cost-effective remedial actions resulting in site cleanup and stabilization. In this RI existing levels of contamination and radiological exposure are compared to levels acceptable for future industrial and potential recreational use levels at the site. This comparison provides a perspective for the magnitude of remedial actions required to achieve a site condition compatible with relaxed access restrictions over existing conditions. Ecological risk will be assessed to evaluate measures required for ecological receptor protection. For each subbasin, this report will provide site-specific analyses of the physical setting including identification of contaminant source areas, description of contaminant transport pathways, identification of release mechanisms, analysis of contaminant source interactions with groundwater, identification of secondary contaminated media associated with the source and seepage pathways, assessment of potential human health and ecological risks from exposure to contaminants, ranking of each source area within the subwatershed, and outline the conditions that remedial technologies must address to stop present and future contaminant releases, prevent the spread of contamination and achieve the goal of limiting environmental contamination to be consistent with a potential recreational use of the site.

NONE

1996-11-01T23:59:59.000Z

305

Stabilization of in-tank residual wastes and external-tank soil contamination for the tank focus area, Hanford Tank Initiative: Applications to the AX tank farm  

SciTech Connect (OSTI)

This report investigates five technical areas for stabilization of decommissioned waste tanks and contaminated soils at the Hanford Site AX Farm. The investigations are part of a preliminary evacuation of end-state options for closure of the AX Tanks. The five technical areas investigated are: (1) emplacement of cementations grouts and/or other materials; (2) injection of chemicals into contaminated soils surrounding tanks (soil mixing); (3) emplacement of grout barriers under and around the tanks; (4) the explicit recognition that natural attenuation processes do occur; and (5) combined geochemical and hydrological modeling. Research topics are identified in support of key areas of technical uncertainty, in each of the five areas. Detailed cost-benefit analyses of the technologies are not provided. This investigation was conducted by Sandia National Laboratories, Albuquerque, New Mexico, during FY 1997 by tank Focus Area (EM-50) funding.

Becker, D.L.

1997-11-03T23:59:59.000Z

306

History of the Laboratory Protection Division Oak Ridge National Laboratory  

E-Print Network [OSTI]

i i #12;#12;History of the Laboratory Protection Division Oak Ridge National Laboratory 1942, Emergency Preparedness Date Published: March 1992 Prepared by the Oak Ridge National Laboratory Oak Ridge stations should be tucked comfortably away in isolated places. As such, the Oak Ridge area seemed perfect

307

Geologic processes in the RWMC area, Idaho National Engineering Laboratory: Implications for long term stability and soil erosion at the radioactive waste management complex  

SciTech Connect (OSTI)

The Radioactive Waste Management Complex (RWMC) is the disposal and storage facility for low-level radioactive waste at the Idaho National Engineering Laboratory (INEL). Transuranic waste and mixed wastes were also disposed at the RWMC until 1970. It is located in the southwestern part of the INEL about 80 km west of Idaho Falls, Idaho. The INEL occupies a portion of the Eastern Snake River Plain (ESRP), a low-relief, basalt, and sediment-floored basin within the northern Rocky Mountains and northeastern Basin and Range Province. It is a cool and semiarid, sagebrush steppe desert characterized by irregular, rolling terrain. The RWMC began disposal of INEL-generated wastes in 1952, and since 1954, wastes have been accepted from other Federal facilities. Much of the waste is buried in shallow trenches, pits, and soil vaults. Until about 1970, trenches and pits were excavated to the basalt surface, leaving no sediments between the waste and the top of the basalt. Since 1970, a layer of sediment (about 1 m) has been left between the waste and the basalt. The United States Department of Energy (DOE) has developed regulations specific to radioactive-waste disposal, including environmental standards and performance objectives. The regulation applicable to all DOE facilities is DOE Order 5820.2A (Radioactive Waste Management). An important consideration for the performance assessment of the RWMC is the long-term geomorphic stability of the site. Several investigators have identified geologic processes and events that could disrupt a radioactive waste disposal facility. Examples of these {open_quotes}geomorphic hazards{close_quotes} include changes in stream discharge, sediment load, and base level, which may result from climate change, tectonic processes, or magmatic processes. In the performance assessment, these hazards are incorporated into scenarios that may affect the future performance of the RWMC.

Hackett, W.R.; Tullis, J.A.; Smith, R.P. [and others

1995-09-01T23:59:59.000Z

308

Assessment of the Technical Potential for Micro-Cogeneration in Small  

Open Energy Info (EERE)

for Micro-Cogeneration in Small for Micro-Cogeneration in Small Commercial Buildings across the United States Jump to: navigation, search Name Assessment of the Technical Potential for Micro-Cogeneration in Small Commercial Buildings across the United States Agency/Company /Organization National Renewable Energy Laboratory Partner B. Griffith Focus Area Buildings, Commercial, Energy Efficiency - Central Plant, Energy Efficiency Phase Evaluate Options Resource Type Case studies/examples Availability Publicly available--Free Publication Date 1/5/2008 Website http://www.nrel.gov/docs/fy08o Locality Not Applicable References Assessment of the Technical Potential for Micro-Cogeneration in Small Commercial Buildings across the United States[1] Overview This paper presents an assessment of the technical potential for

309

Thermal energy storage technical progress report, April 1992--March 1993  

SciTech Connect (OSTI)

The Department of Energy (DOE) is supporting development of thermal energy storage (TES) as a means of efficiently coupling energy supplies to variable heating or cooling demands. Uses of TES include electrical demand-side management in buildings and industry, extending the utilization of renewable energy resources such as solar, and recovery of waste heat from periodic industrial processes. Technical progress to develop TES for specific diurnal and industrial applications under the Oak Ridge National Laboratory`s TES program from April 1992 to March 1993 is reported and covers research in the areas of low temperature sorption, thermal energy storage water heater, latent heat storage wallboard and latent/sensible heat regenerator technology development.

Olszewski, M.

1993-05-01T23:59:59.000Z

310

Alamos National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

record neutron beam at Los record neutron beam at Los Alamos National Laboratory July 10, 2012 New method has potential to advance materials measurement LOS ALAMOS, New Mexico, July 10, 2012-Using a one-of-a-kind laser system at Los Alamos National Laboratory, scientists have created the largest neutron beam ever made by a short-pulse laser, breaking a world record. Neutron beams are usually made with particle accelerators or nuclear reactors and are commonly used in a wide variety of scientific research, particularly in advanced materials science. Using the TRIDENT laser, a unique and powerful 200 trillion-watt short-pulse laser, scientists from Los Alamos, the Technical University of Darmstadt, Germany, and Sandia National Laboratories focus high-intensity light on an ultra-thin plastic sheet

311

Groundwater quality monitoring well installation for Lower Waste Area Grouping 2 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program  

SciTech Connect (OSTI)

This report documents the drilling and installation of 11 groundwater quality monitoring (GQM) wells on the perimeter of Lower Waste Area Grouping (WAG) 2. Lower WAG 2 consists of White Oak Lake and the embayment below White Oak Dam above the Clinch River. The wells in Lower WAG 2 were drilled and developed between December 1989 and September 1990. These wells were installed to characterize and assess the WAG in accordance with applicable Department of Energy, state, and Environmental Protection Agency regulatory requirements. The wells at Lower WAG 2 were drilled with auger or air rotary rigs. Depending on the hydrogeologic conditions present at each proposed well location, one of three basic installation methods was utilized. Detailed procedures for well construction were specified by the Engineering Division to ensure that the wells would provide water samples representative of the aquifer. To ensure conformance with the specifications, Energy Systems Construction Engineering and ERCE provided continuous oversight of field activities. The purpose of the well installation program was to install GQM wells for groundwater characterization at Lower WAG 2. Data packages produced during installation activities by the ERCE hydrogeologists are an important product of the program. These packages document the well drilling, installation, and development activities and provide valuable data for well sampling and WAG characterization. The forms contained in the packages include predrilling and postdrilling checklists, drilling and construction logs, development and hydraulic conductivity records, and quality control-related documents.

Mortimore, J.A.; Lee, T.A.

1994-09-01T23:59:59.000Z

312

Federal Technical Capabilities Program (FTCP) 2003 Annual Plan  

Broader source: Energy.gov (indexed) [DOE]

Federal Technical Capability Program FY 2003 Annual Plan Washington, D.C. 20585 September 2002 FTCP FY 2003 Annual Action Plan INTRODUCTION The U.S. Department of Energy's Federal Technical Capability Program (FTCP) provides management direction to assist the Federal workforce in maintaining necessary technical competencies to safely operate its defense nuclear facilities. The Federal Technical Capability Panel (Panel) consists of senior technical safety managers representing nuclear facilities, and reports to the Deputy Secretary for workforce safety technical capabilities' matters. The Panel will continue to pursue progress in the following areas: 1. Continued development of senior management commitment and support for the technical intern

313

Tools/Technical Assistance | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Tools/Technical Assistance Tools/Technical Assistance Tools/Technical Assistance November 1, 2013 - 11:40am Addthis The CHP Technical Assistance Partnerships (CHP TAPs) offer unbiased, non-commercial feasibility screenings to help determine if CHP, waste heat to power, or district energy is a good fit for your site, financially and technically. To learn more about how the CHP TAPs can offer technical assistance in your area, visit the CHP TAPs page. Thumbnail Image of DOE Regional Clean Energy Application Centers (CEACs) Handout This handout provides information about technical assistance available from the DOE CHP TAPs Addthis Related Articles Combined Heat and Power Projects Southwest Region Combined Heat and Power Projects Mid-Atlantic Region Combined Heat and Power Projects News January 15, 2014

314

Laboratory program helps small businesses  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Laboratory program helps small businesses Laboratory program helps small businesses Laboratory program helps small businesses The NMSBA allows for-profit small businesses to request technical assistance that capitalizes on the unique expertise and capabilities of Los Alamos and Sandia national laboratories. June 23, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

315

External (SON) - Primary Standards Laboratory (PSL) Website  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Enter keyword below to search the PSL site: Search! The Primary Standards Laboratory (PSL) develops and maintains primary standards traceable to national standards and calibrates and certifies customer reference standards. The PSL provides technical guidance, support, and consultation; develops precision measurement techniques; provides oversight, including technical surveys and measurement audits; and anticipates future measurement needs of the nuclear weapons complex and other Department of Energy programs. The PSL also helps industry, universities, and government agencies establish or verify new capabilities and products and improve measurement technology. NVLAP Accreditation NVLAP Accreditation The Primary Standards Laboratory is accredited over a broad range of parameters by the National Institute of Standards and Technology (NIST) National Voluntary Laboratory Accreditation Program (NVLAP) as a calibration laboratory (Lab Code 105002). This accreditation validates the high level of technical competence achieved by the laboratory and its staff.

316

(1) Technical Chemists' Handbook (2) Exercises in Elementary Quantitative Chemical Analysis for Students of Agriculture (3) Laboratory Manual of Qualitative Analysis (4) Synthetic Inorganic Chemistry (5) The Fundamental Conceptions of Chemistry (6) Kurzes Repetitorium der Chemie  

Science Journals Connector (OSTI)

... (1) DR. Lunge's Technical Chemists' Handbook is a new and revised edition of the extremely useful little volume, well known ... of The Alkali Makers' Focket-book, and later as The Alkali Makers' Handbook. In many respects the new volume, in the preparation of which the author ...

J. B. C.

1908-12-24T23:59:59.000Z

317

Evaluation of Quality-Assurance/Quality-Control Data Collected by the U.S. Geological Survey from Wells and Springs between the Southern Boundary of the Idaho National Engineering and Environmental Laboratory and the Hagerman Area, Idaho, 1989 through 1995  

SciTech Connect (OSTI)

The U.S. Geological (USGS) and the Idaho Department of Water Resources, in cooperation with the U.S. Department of Energy, collected and analyzed water samples to monitor the water quality of the Snake River Plain aquifer from the southern boundary of the Idaho National Engineering and Environmental Laboratory to the Hagerman area, Idaho. Concurrently, replicate samples and blank samples were collected and analyzed as part of the quality-assurance/quality-control program. Samples were analyzed from inorganic constituents, gross radioactivity and radionuclides, organic constituents, and stable isotopes. To evaluate the precision of field and laboratory methods, analytical results of the water-quality and replicate samples were compared statistically for equivalence on the basis of the precision associated with each result. Statistical comparisons of the data indicated that 95 percent of the results of the replicate pairs were equivalent. Blank-sample analytical results indicated th at the inorganic blank water and volatile organic compound blank water from the USGS National Water Quality Laboratory and the distilled water from the Idaho Department of Water Resources were suitable for blanks; blank water from other sources was not. Equipment-blank analytical results were evaluated to determine if a bias had been introduced and possible sources of bias. Most equipment blanks were analyzed for trace elements and volatile organic compounds; chloroform was found in one equipment blank. Two of the equipment blanks were prepared after collection and analyses of the water-quality samples to determine whether contamination had been introduced during the sampling process. Results of one blank indicated that a hose used to divert water away from pumps and electrical equipment had contaminated the samples with some volatile organic compounds. Results of the other equipment blank, from the apparatus used to filter dissolved organic carbon samples, indicated that the filtering apparatus did not affect water-quality samples.

Williams, L.M.; Bartholomay, R.C.; Campbell, L.J.

1998-10-01T23:59:59.000Z

318

Special Analysis for the Disposal of the Idaho National Laboratory Unirradiated Light Water Breeder Reactor Rods and Pellets Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada  

SciTech Connect (OSTI)

The purpose of this special analysis (SA) is to determine if the Idaho National Laboratory (INL) Unirradiated Light Water Breeder Reactor (LWBR) Rods and Pellets waste stream (INEL103597TR2, Revision 2) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS). The INL Unirradiated LWBR Rods and Pellets waste stream consists of 24 containers with unirradiated fabricated rods and pellets composed of uranium oxide (UO2) and thorium oxide (ThO2) fuel in zirconium cladding. The INL Unirradiated LWBR Rods and Pellets waste stream requires an SA because the 229Th, 230Th, 232U, 233U, and 234U activity concentrations exceed the Nevada National Security Site (NNSS) Waste Acceptance Criteria (WAC) Action Levels.

Shott, Gregory [NSTec

2014-08-31T23:59:59.000Z

319

Technical Reference | OpenEI  

Open Energy Info (EERE)

Reference Reference Dataset Summary Description Technical Reference for Hydrogen Compatibility of Materials Source Sandia National Laboratories Date Released June 03rd, 2010 (4 years ago) Date Updated September 27th, 2012 (2 years ago) Keywords Compatibility of Materials hydrogen NREL Sandia Technical Database Technical Reference Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon 1100_cia85_ten_fra_fat.xlsx (xlsx, 60.9 KiB) application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon 1100_san10_fra_fat.xlsx (xlsx, 58.5 KiB) application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon 1100_san10b_fra_fat.xlsx (xlsx, 59.4 KiB) application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon 1100_san11_fra_fat.xlsx (xlsx, 48.4 KiB)

320

Vehicle Research Laboratory - FEERC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vehicle Research Laboratory Vehicle Research Laboratory Expertise The overall FEERC team has been developed to encompass the many disciplines necessary for world-class fuels, engines, and emissions-related research, with experimental, analytical, and modeling capabilities. Staff members specialize in areas including combustion and thermodynamics, emissions measurements, analytical chemistry, catalysis, sensors and diagnostics, dynamometer cell operations, engine controls and control theory. FEERC engineers have many years of experience in vehicle research, chassis laboratory development and operation, and have developed specialized systems and methods for vehicle R&D. Selected Vehicle Research Topics In-use investigation of Lean NOx Traps (LNTs). Vehicle fuel economy features such as lean operation GDI engines,

Note: This page contains sample records for the topic "laboratory technical area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Tanks focus area site needs assessment FY 1997  

SciTech Connect (OSTI)

The Tanks Focus Area`s (TFA`s) mission is to manage an integrated technology development program that results in the application of technology to safely and efficiently accomplish tank waste remediation across the U.S. Department of Energy (DOE) complex. The TFA uses a systematic process for developing its annual program that draws from the tanks technology development needs expressed by four DOE tank waste sites - Hanford Site, Idaho National Engineering and Environmental Laboratory (INEEL), Oak Ridge Reservation (ORR), and Savannah River Site (SRS). The process is iterative and involves six steps: (1) Site needs identification and documentation, (2) Site communication of priority needs, (3) Technical response development, (4) Review technical responses, (5) Develop program planning documents, and (6) Review planning documents. This document describes the outcomes of the first two steps: site needs identification and documentation, and site communication of priority needs. It also describes the initial phases of the third and fourth steps: technical response development and review technical responses. Each site`s Site Technology Coordination Group (STCG) was responsible for developing and delivering priority tank waste needs. This was accomplished using a standardized needs template developed by the National STCG. The standard template helped improve the needs submission process this year. The TFA received the site needs during December 1996 and January 1997.

NONE

1997-04-01T23:59:59.000Z

322

Active DOE Technical Standards Projects  

Broader source: Energy.gov (indexed) [DOE]

Active) Active) Project Number Title Document ID SLM / ORG Author / Phone / Email Status / Status Date P1073- 2003REV Configuration Management DOE-STD-1073-2003REV James O'Brien (HS-33) Mary Frances Haughey (301) 903-2867 mary.haughey@hq.doe.gov Initiated - In Development 01/24/2013 P1095- 2011REV Department of Energy Laboratory Accreditation Program External Dosimatry Technical Standard

323

DOE - Office of Legacy Management -- TA-1 Manhattan Laboratory - NM 11  

Office of Legacy Management (LM)

TA-1 Manhattan Laboratory - NM 11 TA-1 Manhattan Laboratory - NM 11 FUSRAP Considered Sites Site: TA-1 MANHATTAN LABORATORY (NM.11 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: Main Technical Area LASL LANL NM.11-1 NM.11-2 NM.11-3 Location: Los Alamos , New Mexico NM.11-3 Evaluation Year: 1985 NM.11-1 Site Operations: Nuclear weapons research and development. NM.11-1 NM.11-3 Site Disposition: Site Disposition NM.11-1 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium , Plutonium, Fission Products NM.11-1 NM.11-3 Radiological Survey(s): Yes NM.11-2 NM.11-3 Site Status: Eliminated from consideration under FUSRAP NM.11-1 Also see Documents Related to TA-1 MANHATTAN LABORATORY NM.11-1 - DOE Memorandum/Checklist; Jones to File; Subject:

324

Technical Sessions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

.T. J. Kulp .T. J. Kulp J. Shinn Environmental Sciences Division Lawrence Livermore National Laboratory Livermore, CA 94550 and continuum absorption in the 8- to 14-~m window. To this end, the initial year has been spent assembling the necessary equipment to make these measurements (and to support other Atmospheric Radiation Measurement [ARM] laboratory spectroscopic needs, as they arise). This effort consisted primarily of designing and constructing a multipass absorption cell and the chamber to house the cell, assembling the spectroscopic instrumentation neces- sary to make the measurements, and adapting these instruments to operate in conjunction with the multipass cell. The spectroscopic instruments to be used consist of adiode laser spectrometer, operated in the sweep integra-

325

FAQS Reference Guide Senior Technical Safety Manager  

Broader source: Energy.gov [DOE]

This reference guide has been developed to address the competency statements in the March 2013 edition of DOE-Standard (STD)-1175-2013, Senior Technical Safety Manager Functional Area Qualification Standard.

326

National Laboratories Supporting Building America | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Laboratories Laboratories Supporting Building America National Laboratories Supporting Building America The U.S. Department of Energy's (DOE) national laboratories work very closely with the Building America research teams to achieve program goals. The laboratories offer extensive scientific and technical R&D expertise for building technologies and improved building practices. Following is a brief description of the laboratories involved with Building America. Logo for the Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory's Environmental Energy Technologies Division (EETD) performs analysis, research, and development leading to improved energy technologies and reduction of adverse energy-related environmental impacts. EETD conducts research in advanced energy

327

FTCP Issues Paper - Technical Qualification Program Requalification  

Broader source: Energy.gov (indexed) [DOE]

Technical Qualification Program Requalification Technical Qualification Program Requalification DOCUMENT NUMBER: FTCP-08-002 PROBLEM (Issue or Position): At the request of the Federal Technical Capability Panel (FTCP) Chairperson, a team was assembled to develop a set of objective criteria to be used to assess whether positions assigned a Technical Qualification Program (TQP) Functional Area Qualification Standard (FAQS) should be required to periodically requalify. This paper examines two objectives regarding requalification for Federal employees under the FTCP as follows: (1) Defining what criteria can be used to assess whether positions assigned a TQP FAQS should be required to periodically requalify; and (2) Recommended implementation mechanisms for the frequency/periodicity for

328

Final Scientific/Technical Report  

SciTech Connect (OSTI)

The overall goal of this project was to establish an education and training program in biobased products at Iowa State University (ISU). In particular, a graduate program in Biorenewable Resources and Technology (BRT) was to be established as a way of offering students advanced study in the use of plant- and crop-based resources in the production of biobased products. The program was to include three fundamental elements: an academic program, a research program, and industrial interactions. The academic program set out to introduce a new graduate major in Biorenewable Resources and Technology. Unlike other schools, which only offer certificates or areas of emphasis in biobased products, Iowa State University offers both M.S. and Ph.D degrees through its graduate program. Core required courses in Biorenewable Resources and Technology include a foundation course entitled Fundamentals of Biorenewable Resources (BRT 501); a seminar course entitled Biobased Products Seminar (BRT 506); a laboratory course, and a special topics laboratory course. The foundation course is a three-credit course introducing students to basic concepts in biorenewable resources and technology. The seminar course provides students with an opportunity to hear from nationally and internationally recognized leaders in the field. The laboratory requirement is a 1-credit laboratory course or a special topics laboratory/research experience (BRT 591L). As part of student recruitment, quarter-time assistantships from DOE funds were offered to supplement assistantships provided by faculty to students. Research was built around platform teams in an effort to encourage interdisciplinary research and collaborative student learning in biorenewable resources. A platform is defined as the convergence of enabling technologies into a highly integrated system for transforming a specific feedstock into desired products. The platform teams parallel the way industry conducts research and product development. Platform teams organize faculty and students for cross-disciplinary, systems-oriented research and collaborative learning. To date, nine platforms have been developed, although these will most likely be reorganized into a smaller number of broader topics. In the spring of 2004, BRT faculty initiated a regional partnership and collaborative learning program with colleagues at the University of Minnesota, Kansas State University, and South Dakota State University to develop distance education courses in biorenewable resources and technology. As a fledgling graduate program, the BRT graduate program didnt have the breadth of resources to offer a large number of courses in biorenewables. Other schools faced a similar problem. The academic consortium as first conceived would allow students from the member schools to enroll in biorenewables courses from any of the participating schools, which would assure the necessary enrollment numbers to offer specialized course work. Since its inception, the collaborative curriculum partnership has expanded to include Louisiana State University and the University of Wisconsin. A second international curriculum development campaign was also initiated in the spring of 2004. In particular, several BRT faculty teamed with colleagues at the University of Arkansas, University of Washington, University of Gent (Belgium), National Polytechnic Institute of Toulouse (France), and Technical University of Graz (Austria) to develop an EU-US exchange program in higher education and vocational education/training (entitled Renewable Resources and Clean Technology).

Brown, R. C.; McCarley, T. M.

2006-05-04T23:59:59.000Z

329

FINAL/ SCIENTIFIC TECHNICAL REPORT  

SciTech Connect (OSTI)

The overall objective of the Chattanooga fuel cell demonstrations project was to develop and demonstrate a prototype 5-kW grid-parallel, solid oxide fuel cell (SOFC) system that co-produces hydrogen, based on Ion Americas technology. The commercial viability of the 5kW SOFC system was tested by transporting, installing and commissioning the SOFC system at the Alternative Energy Laboratory at the University of Tennessee Chattanooga. The system also demonstrated the efficiency and the reliability of the system running on natural gas. This project successfully contributed to the achievement of DOE technology validation milestones from the Technology Validation section of the Hydrogen, Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan. Results of the project can be found in the final technical report.

McDonald, Henry; Singh, Suminderpal

2006-08-28T23:59:59.000Z

330

Laboratory Fellows  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

were confirmed by the Laboratory Director. Brenda Dingus has pioneered work in gamma-ray bursts and is a major contributor to the relatively young scientific field of...

331

Laboratory Operations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

hydrological controls on carbon cycling in flood plain ecosystems into Earth System Models. - 5814 A neutron detector like this one at Los Alamos National Laboratory is...

332

SULI Areas of Research | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(Eric Cochran) Nanostructed materials for advanced catalyst design (Igor Slowing) 3D Printing of nanostructured catalytic materials (Igor Slowing) Nanoparticle superlattices by...

333

Space Conditioning Standing Technical Committee Strategic Plan  

Broader source: Energy.gov (indexed) [DOE]

Space Conditioning Standing Technical Space Conditioning Standing Technical Committee Strategic Plan, v2011a Revised: January 2012 Committee Chair: 2011 Eric Martin Janet McIlvaine BA-PIRC Standing Technical Committee Strategic Plan Overview Standing Technical Committees (STCs) focus on resolving key technical action items required to meet Building America performance goals. STC chairs lead each committees' activities in addressing specific research challenges, gaps in understanding, and new research opportunities. Committees include experts from the Building America research teams, DOE, national laboratories, and outside organizations that possess specialized knowledge or heightened interest in the topics being addressed. Committee chairs can create sub-committees on an as-needed basis to address targeted research needs.

334

Los Alamos National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

May 14, 2013 May 14, 2013 Value of up to $150 million over five years LOS ALAMOS, N.M., May 14, 2013-Los Alamos National Laboratory has awarded a master task order agreement in which three small businesses will compete for environmental work worth up to $150 million over five years. The businesses each have offices in northern New Mexico. The agreement is for technical services for the Laboratory's Environmental Programs directorate and includes work such as environmental engineering design, regulatory support, risk assessment and reporting. - 2 - The companies chosen are Terranear PMC, Navarro Research and Engineering, Inc., and Adelante Consulting, Inc. The agreement is for three years with two additional one- year options. Task orders under this agreement will be competitively bid among the

335

Tanks Focus Area site needs assessment FY 2000  

SciTech Connect (OSTI)

This report documents the process used by the Tanks Focus Area (TFA) to analyze and develop responses to technology needs submitted by five major U.S. Department of Energy (DOE) sites with radioactive tank waste problems, and the initial results of the analysis. The sites are the Hanford Site, Idaho National Engineering and Environmental Laboratory (INEEL), Oak Ridge Reservation (ORR), Savannah River Site (SRS), and West Valley Demonstration Project (WVDP). During the past year, the TFA established a link with DOE's Fernald site to exchange, on a continuing basis, mutually beneficial technical information and assistance.

RW Allen

2000-04-11T23:59:59.000Z

336

LANL: Materials Science Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Science Laboratory (MSL) is Materials Science Laboratory (MSL) is an interdisciplinary facility dedicated to research on current materials and those of future interest. It is a 56,000 square-foot modern facility that can be easily reconfigured to accom- modate new processes and operations. It compris- es 27 laboratories, 15 support rooms, and 60 offices. The MSL supports many distinct materi- als research topics, grouped into four focus areas: mechanical behavior, materials processing, syn- thesis, and characterization. Research within the MSL supports programs of national interest in defense, energy, and the basic sciences. The MSL is a non-classified area in the Materials Science Complex in close proximity to classified and other non-classified materials research facilities. The Materials Science

337

Recovery Act Technical Assistance Projects | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Technical Technical Assistance Projects Recovery Act Technical Assistance Projects October 7, 2013 - 3:41pm Addthis The Federal Energy Management Program (FEMP) issued a Call for Technical Services in May 2010 to help Federal agencies identify and prioritize energy efficiency, water efficiency, and renewable energy projects. Read information about the Call for Technical Services (including technical service opportunities, application process, selection criteria, reporting requirements, and contacts). In fiscal year (FY) 2009, FEMP used more than $13 million of American Recovery and Reinvestment Act funding to finance one-year technical assistance efforts stemming from the Call for Technical Services. Funds were provided to U.S. Department of Energy (DOE) national laboratory and

338

OSTI, US Dept of Energy, Office of Scientific and Technical Informatio...  

Office of Scientific and Technical Information (OSTI)

Technology Office NREL National Renewable Energy Laboratory NSF National Science Foundation NSI National Security Information NTIS National Technical Information Service OECD...

339

Technical Sessions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Numerical Simulations of an Idealized ConvE~ctive Numerical Simulations of an Idealized ConvE~ctive System: Comparisons Between Parameteriized and Explicitly Resolved Clouds C.-Y. J. Kao J. E. Bossert Earth and Environmental Sciences Division Los Alamos National Laboratory Los Alamos, NM 87545 Introduction in reproducing the growth and life cyclE~ of a cloud system can then be evaluated. The numeric,al model we have recently acquired from Colorado State University, Regional Atmospheric Modeling System (CSU-RAMS) (Cotton et al. 1988), is used in this research. Since a modified Kuo scheme (Tremback 1990) is built in the RAMS, a by- product of this research is a comparison between two established cumulus parameterizations through the methodology described above. The RAMS MesoscalE~ Model The RAMS mesoscale model is a highl1' flexible modeling

340

Analytical laboratory quality audits  

SciTech Connect (OSTI)

Analytical Laboratory Quality Audits are designed to improve laboratory performance. The success of the audit, as for many activities, is based on adequate preparation, precise performance, well documented and insightful reporting, and productive follow-up. Adequate preparation starts with definition of the purpose, scope, and authority for the audit and the primary standards against which the laboratory quality program will be tested. The scope and technical processes involved lead to determining the needed audit team resources. Contact is made with the auditee and a formal audit plan is developed, approved and sent to the auditee laboratory management. Review of the auditee's quality manual, key procedures and historical information during preparation leads to better checklist development and more efficient and effective use of the limited time for data gathering during the audit itself. The audit begins with the opening meeting that sets the stage for the interactions between the audit team and the laboratory staff. Arrangements are worked out for the necessary interviews and examination of processes and records. The information developed during the audit is recorded on the checklists. Laboratory management is kept informed of issues during the audit so there are no surprises at the closing meeting. The audit report documents whether the management control systems are effective. In addition to findings of nonconformance, positive reinforcement of exemplary practices provides balance and fairness. Audit closure begins with receipt and evaluation of proposed corrective actions from the nonconformances identified in the audit report. After corrective actions are accepted, their implementation is verified. Upon closure of the corrective actions, the audit is officially closed.

Kelley, William D.

2001-06-11T23:59:59.000Z

Note: This page contains sample records for the topic "laboratory technical area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Technical Report  

SciTech Connect (OSTI)

Bioimmobilization of redox-sensitive metals and radionuclides is being investigated as a way to remediate contaminated groundwater and sediments. In this approach, growth-limiting substrates are added to stimulate the activity of targeted groups of indigenous microorganisms and create conditions favorable for the microbially-mediated precipitation (bioimmobilization) of targeted contaminants. This project investigated a fundamentally new approach for modeling this process that couples thermodynamic descriptions for microbial growth with associated geochemical reactions. In this approach, a synthetic microbial community is defined as a collection of defined microbial groups; each with a growth equation derived from bioenergetic principles. The growth equations and standard-state free energy yields are appended to a thermodynamic database for geochemical reactions and the combined equations are solved simultaneously to predict the effect of added substrates on microbial biomass, community composition, and system geochemistry. This approach, with a single set of thermodynamic parameters (one for each growth equation), was used to predict the results of laboratory and field bioimmobilization experiments at two geochemically diverse research sites. Predicted effects of ethanol or acetate addition on uranium and technetium solubility, major ion geochemistry, mineralogy, microbial biomass and community composition were in general agreement with experimental observations although the available experimental data precluded rigorous model testing. Model simulations provide insight into the long-standing difficulty in transferring experimental results from the laboratory to the field and from one field site to the next, especially if the form, concentration, or delivery of growth substrate is varied from one experiment to the next. Although originally developed for use in better understanding bioimmobilization of uranium and technetium via reductive precipitation, the modeling approach is potentially useful for exploring the coupling of microbial growth and geochemical reactions in a variety of basic and applied biotechnology research settings.

Jonathan D. Istok

2008-06-01T23:59:59.000Z

342

Technical Consultant Contract  

Broader source: Energy.gov [DOE]

Technical Consultant Contract, from the Tool Kit Framework: Small Town University Energy Program (STEP).

343

DOE Approved Technical Standards  

Broader source: Energy.gov [DOE]

The DOE Technical Standards Program promotes the use of voluntary consensus standards at DOE, manages and facilitates DOE's efforts to develop and maintain necessary technical standards, and communicates information on technical standards activities to people who develop or use technical standards in DOE.

344

Technical Consultant Report Template  

Broader source: Energy.gov [DOE]

Technical Consultant Report Template, from the Tool Kit Framework: Small Town University Energy Program (STEP).

345

Technical Workshop: Resilience Metrics for Energy Transmission and Distribution Infrastructure  

Broader source: Energy.gov [DOE]

During this workshop, EPSA invited technical experts from industry, national laboratories, and NGOs to discuss the need for resilience metrics and how they vary by natural gas, liquid fuels and electric grid infrastructures.

346

Laboratory Directors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

S. Hecker (1985-1997) Donald M. Kerr (1979-1985) Harold M. Agnew (1970-1979) Norris Bradbury (1945-1970) J. Robert Oppenheimer (1943-1945) Laboratory Directors Harold M. Agnew...

347

MICROSYSTEMS LABORATORIES  

E-Print Network [OSTI]

15 nm MICROSYSTEMS TECHNOLOGY LABORATORIES ANNUAL RESEARCH REPORT 2014 MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MA AUGUST 2014 #12;MTL Annual Research Report 2014 Director Jesús A. del Alamo Project........................................................................ 47 Energy: Photovoltaics, Energy Harvesting, Batteries, Fuel Cells

Culpepper, Martin L.

348

Record of Decision for the Final Environmental Impact Statement for the Relocation of Technical Area 18 Capabilities and Materials at the Los Alamos National Laboratory (DOE/EIS-0319) (12/31/02)  

Broader source: Energy.gov (indexed) [DOE]

6 6 Federal Register / Vol. 67, No. 251 / Tuesday, December 31, 2002 / Notices provide an MMAP authorization for all fishers who participate in an integrated Category I or II fishery, provided that the fisher holds a valid Federal fishing permit or license for the affected regulated fishery. A fisher who participates in state and/ or Federal fisheries not yet integrated with the MMAP registration system must continue to send in the registration form to NMFS. Dated: December 16, 2002. Rebecca Lent, Deputy Assistant Administrator for Regulatory Programs, National Marine Fisheries Service. [FR Doc. 02-33037 Filed 12-30-02; 8:45 am] BILLING CODE 3510-22-S COMMODITY FUTURES TRADING COMMISSION Sunshine Act Meetings TIME AND DATE: 11 a.m., Friday, January 10, 2003. PLACE: 1155 21st St., NW., Washington,

349

Type A Accident Investigation Board Report on the January 17, 1996, Electrical Accident With Injury in Building 209, Technical Area 21, Tritium Science and Fabrication Facility, Los Alamos National Laboratory  

Broader source: Energy.gov [DOE]

This report is an independent product of the Type A Accident Investigation Board appointed by Tara OToole, M.D., M.P.H., Assistant Secretary for Environment, Safety and Health (EH-1).

350

Historical Photographs: Lawrence Berkeley Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lawrence Berkeley Laboratory Lawrence Berkeley Laboratory [Small Image] 1. A whole body counter (circa 1964) at the Berkeley Donner Laboratory. Such counters were used in human radiation tracer studies and for measuring AEC worker radiation exposure. (294Kbytes) [Small Image] 2. Early treatment for Parkinson's disease at the Berkeley Donner Laboratory (134Kbytes) [Small Image] 3. Donner Laboratory carbon-14 metabolic study apparatus (146Kbytes) [Small Image] 4. Respiration analysis using injected radioactive tracers at Donner Laboratory (circa 1968). (217Kbytes) [Small Image] 5. A patient under a positron camera. The camera was a diagnostic tool developed at Donner Laboratory, Berkeley, to photograph radioactive tracer concentrations. Unlike a whole body scanner, this device photographs a single, specific area of the body. (146Kbytes)

351

DOE-TSPP-11, Technical Standards Program Topical Committees - July 1, 2009  

Broader source: Energy.gov (indexed) [DOE]

July July 1, 2009 DOE-TSPP-11, Technical Standards Program Topical Committees - July 1, 2009 Technical Standards Program Procedures (TSPP) - August 26, 2009 This procedure describes how topical committees are organized and recognized under the Technical Standards Program. This procedure applies to all DOE Headquarters and field organizations, management and operating contractors, and laboratories (hereafter referred to collectively as "DOE Components") working to the latest revision of DOE Order 252.1, "Technical Standards Program." DOE-TSPP-11, Technical Standards Program Topical Committees - July 1, 2009 More Documents & Publications DOE-TSPP-11, Technical Standards Program Topical Committees - August 1, 2000 TECHNICAL STANDARDS PROGRAM TOPICAL COMMITTEES

352

DOE-TSPP-11, Technical Standards Program Topical Committees - August 1,  

Broader source: Energy.gov (indexed) [DOE]

August 1, 2000 DOE-TSPP-11, Technical Standards Program Topical Committees - August 1, 2000 Technical Standards Program Procedures (TSPP) This procedure describes how topical committees are organized and recognized under the Technical Standards Program. This procedure applies to all DOE Headquarters and field organizations, management and operating contractors, and laboratories (hereafter referred to collectively as "DOE Components") working to the latest revision of DOE Order 252.1, "Technical Standards Program." DOE-TSPP-11, Technical Standards Program Topical Committees - August 1, 2000 More Documents & Publications TECHNICAL STANDARDS PROGRAM TOPICAL COMMITTEES DOE-TSPP-11, Technical Standards Program Topical Committees - July 1, 2009

353

Sandia National Laboratories: Offshore Wind RD&D: Sediment Transport  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wind RD&D: Sediment Transport Offshore Wind RD&D: Sediment Transport This project focuses on three technical areas Flow chart of sediment stability risk assessment methodology....

354

DOE-STD-1112-98; Laboratory Accreditation Program  

Office of Environmental Management (EM)

assessment; and d) continuing applied research in areas of radiobioassay where there is a technology shortfall. DOE also expects the program to enhance cooperation and technical...

355

Technical Safety Requirements  

Broader source: Energy.gov (indexed) [DOE]

Safety Requirements Safety Requirements FUNCTIONAL AREA GOAL: Contractor has developed, maintained, and received DOE Field Office Approval for the necessary operating conditions of a facility. The facility has also maintained an inventory of safety class and safety significant systems and components. REQUIREMENTS:  10 CFR 830.205, Nuclear Safety Rule.  DOE-STD-3009-2002, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses.  DOE-STD-1186-2004, Specific Administrative Controls. Guidance:  DOE G 423.1-1, Implementation Guide for Use in Developing Technical Safety Requirements.  NSTP 2003-1, Use of Administrative Controls for Specific Safety Functions. Performance Objective 1: Contractor Program Documentation

356

Technical Reference OVERVIEW  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Parking and the ENERGY STAR Score in the United States and Canada Page 1 Parking and the ENERGY STAR Score in the United States and Canada Page 1 Parking and the ENERGY STAR Score in the United States and Canada Technical Reference OVERVIEW The ENERGY STAR score provides a fair assessment of the energy performance of a property relative to its peers, taking into account the climate, weather, and business activities at the property. Parking areas are not eligible to earn the ENERGY STAR score. However, because parking is a common amenity at other commercial building types (i.e., office and hotels), the ENERGY STAR score does make adjustments to accommodate for the presence of parking.

357

I' I OAK RIDGE NATIONAL LABORATORY OPERATED B Y UNION CARBIDE CORPORATION  

Office of Legacy Management (LM)

/ / I' I OAK RIDGE NATIONAL LABORATORY OPERATED B Y UNION CARBIDE CORPORATION NUCLEAR DIVISION POST OFFICE BOK X OAK RIDGE, TENNESSEE 37830 August 21, 1979 Department of Energy, Oak Ridge Operations Attention: E. L. Keller, Director for Technical Services Division Post Office Box E Oak Ridge, Tennessee 37830 Gentlemen: Formerly Utilized Site-Remedial Action Program - Post Decontamination Radiological Survey of a portion of the Former Kellex Laboratory Site, Jersey City, New Jersey Decontamination of three (3) small land areas on the Levco portion of the former Kellex Laboratory site was completed by the Tobar Construction Company during the week ending August 11, 1979. Health physics and environmental monitoring services during clean-up operations were provided

358

Materials Capability Review Los Alamos National Laboratory April 29-May 2, 2012  

SciTech Connect (OSTI)

Los Alamos National Laboratory (LANL) uses Capability Reviews to assess the quality and institutional integration of science, technology and engineering (STE) and to advise Laboratory Management on the current and future health of LANL STE. The capabilities are deliberately chosen to be crosscutting over the Laboratory and therefore will include experimental, theoretical and simulation disciplines from multiple line organizations. Capability Reviews are designed to provide a more holistic view of the STE quality, integration to achieve mission requirements, and mission relevance. The scope of these capabilities necessitate that there will be significant overlap in technical areas covered by capability reviews (e.g., materials research and weapons science and engineering). In addition, LANL staff may be reviewed in different capability reviews because of their varied assignments and expertise. The principal product of the Capability Review is the report that includes the review committee's assessments, recommendations, and recommendations for STE.

Taylor, Antoinette J [Los Alamos National Laboratory

2012-04-20T23:59:59.000Z

359

Independent Oversight Review, Los Alamos National Laboratory...  

Office of Environmental Management (EM)

National Security and its subcontractors at Los Alamos National Laboratory, Los Alamos Neutron Science Center, and Environmental and Waste Management Operations Area G facilities....

360

FAR Card: Technical specifiers  

Broader source: Energy.gov (indexed) [DOE]

specifiers specifiers Technical specifiers You've been told: You've been told: "I can't get you that product." "I can't get you that product." Technical specifiers You've been told: "I can't get you that product." Technical specifiers You've been told: "I can't get you that product." Technical specifiers You've been told: "I can't get you that product." Technical specifiers You've been told: "I can't get you that product." Technical specifiers You've been told: "I can't get you that product." Technical specifiers You've been told: "I can't get you that product." Technical specifiers Technical specifiers You've been told: You've been told: "I can't get you that product." "I can't get you that product."

Note: This page contains sample records for the topic "laboratory technical area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Tanks focus area. Annual report  

SciTech Connect (OSTI)

The U.S. Department of Energy Office of Environmental Management is tasked with a major remediation project to treat and dispose of radioactive waste in hundreds of underground storage tanks. These tanks contain about 90,000,000 gallons of high-level and transuranic wastes. We have 68 known or assumed leaking tanks, that have allowed waste to migrate into the soil surrounding the tank. In some cases, the tank contents have reacted to form flammable gases, introducing additional safety risks. These tanks must be maintained in the safest possible condition until their eventual remediation to reduce the risk of waste migration and exposure to workers, the public, and the environment. Science and technology development for safer, more efficient, and cost-effective waste treatment methods will speed up progress toward the final remediation of these tanks. The DOE Office of Environmental Management established the Tanks Focus Area to serve as the DOE-EM`s technology development program for radioactive waste tank remediation in partnership with the Offices of Waste Management and Environmental Restoration. The Tanks Focus Area is responsible for leading, coordinating, and facilitating science and technology development to support remediation at DOE`s four major tank sites: the Hanford Site in Washington State, Idaho National Engineering and Environmental Laboratory in Idaho, Oak Ridge Reservation in Tennessee, and the Savannah River Site in South Carolina. The technical scope covers the major functions that comprise a complete tank remediation system: waste retrieval, waste pretreatment, waste immobilization, tank closure, and characterization of both the waste and tank. Safety is integrated across all the functions and is a key component of the Tanks Focus Area program.

Frey, J.

1997-12-31T23:59:59.000Z

362

Federal Laboratory Consortium | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Federal Laboratory Consortium The Federal Laboratory Consortium for Technology Transfer (FLC) is the nationwide network of federal laboratories that provides the forum to develop...

363

Renewable Energy Technical Potential | OpenEI  

Open Energy Info (EERE)

Technical Potential Technical Potential Dataset Summary Description No description given. Source National Renewable Energy Laboratory Date Released July 03rd, 2012 (2 years ago) Date Updated July 03rd, 2012 (2 years ago) Keywords biopower csp geothermal hydropower hydrothermal Renewable Energy Technical Potential rooftop United States utility-scale wind Data text/csv icon United States Renewable Energy Technical Potential (csv, 7.7 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating

364

CONTROL TESTING OF THE UK NATIONAL NUCLEAR LABORATORY'S RADBALL TECHNOLOGY AT SAVANNAH RIVER NATIONAL LABORATORY  

SciTech Connect (OSTI)

The UK National Nuclear Laboratory (NNL) has developed a remote, non-electrical, radiation-mapping device known as RadBall (patent pending), which offers a means to locate and quantify radiation hazards and sources within contaminated areas of the nuclear industry. To date, the RadBall has been deployed in a number of technology trials in nuclear waste reprocessing plants at Sellafield in the UK. The trials have demonstrated the successful ability of the RadBall technology to be deployed and retrieved from active areas. The positive results from these initial deployment trials and the anticipated future potential of RadBall have led to the NNL partnering with the Savannah River National Laboratory (SRNL) to further underpin and strengthen the technical performance of the technology. RadBall consists of a colander-like outer shell that houses a radiation-sensitive polymer sphere. It has no power requirements and can be positioned in tight or hard-to reach places. The outer shell works to collimate radiation sources and those areas of the polymer sphere that are exposed react, becoming increasingly less transparent, in proportion to the absorbed dose. The polymer sphere is imaged in an optical-CT scanner which produces a high resolution 3D map of optical attenuation coefficients. Subsequent analysis of the optical attenuation maps provides information on the spatial distribution and strength of the sources in a given area forming a 3D characterization of the area of interest. This study completed at SRNL addresses key aspects of the testing of the RadBall technology. The first set of tests was performed at Savannah River Nuclear Solutions Health Physics Instrument Calibration Laboratory (HPICL) using various gamma-ray sources and an x-ray machine with known radiological characteristics. The objective of these preliminary tests was to identify the optimal dose and collimator thickness. The second set of tests involved a highly contaminated hot cell. The objective of this part of the testing was to characterize a hot cell with unknown radiation sources. The RadBall calibration experiments and hot cell deployment completed at SRNL were successful in that for each trial, the technology was able to locate the radiation sources. The NNL believe that the ability of RadBall to be remotely deployed with no electrical supplies into difficult to access areas of plant and locate and quantify radiation hazards is a unique radiation mapping service. The NNL consider there to be significant business potential associated with this innovative technology.

Farfan, E.

2009-11-23T23:59:59.000Z

365

Los Alamos National Laboratory | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Los Alamos National Laboratory Los Alamos National Laboratory Los Alamos National Laboratory Los Alamos National Laboratory At Los Alamos National Laboratory, $94 million in Recovery Act funding is being used to clean up the Lab’s oldest waste disposal site, Material Disposal Area B (MDA-B), which was used from 1944 to 1948 At Los Alamos National Laboratory, $94 million in Recovery Act funding is being used to clean up the Lab's oldest waste disposal site, Material Disposal Area B (MDA-B), which was used from 1944 to 1948 Employees load transuranic waste into a shipping container at Vallecitos Nuclear Center Employees load transuranic waste into a shipping container at Vallecitos Nuclear Center Los Alamos National Laboratory At Los Alamos National Laboratory, $94 million in Recovery Act funding is being used to clean up the Lab's oldest waste disposal site, Material Disposal Area B (MDA-B), which was used from 1944 to 1948

366

LOS ALAMOS, New Mexico, November 1, 2012-Los Alamos National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to demolish excavation to demolish excavation enclosures at Material Disposal Area B near DP Road November 1, 2012 Work is beginning this week LOS ALAMOS, New Mexico, November 1, 2012-Los Alamos National Laboratory is about to begin demolishing the metal enclosures used to cover the excavation and cleanup of a decades-old waste disposal site at the historic Technical Area 21. Pre-demolition activities are beginning this week and the work should be completed by the end of March 2013. The project brings the Laboratory closer to transferring the six- acre tract of land to Los Alamos County. The metal structures, which resemble airplane hangars, were installed in 2010 to protect workers and the public from exposure to hazardous and radiological - 2 - contamination while excavating and packaging contaminated debris and soil from

367

Defense Program Equivalencies for Technical Qualification Standard  

Broader source: Energy.gov (indexed) [DOE]

Defense Program Equivalencies for Technical Qualification Standard Defense Program Equivalencies for Technical Qualification Standard Competencies12/12/1995 Defense Program Equivalencies for Technical Qualification Standard Competencies12/12/1995 Defense Programs has undertaken an effort to compare the competencies in the General Technical Base Qualification Standard and the Functional Area Qualification Standards with various positions in the Naval Nuclear Propulsion Program and the commercial nuclear industry. The purpose of this effort is to determine if equivalencies can be granted for competencies based on previous training and experience in these areas. The equivalency crosswalk was developed by subject matter experts who held positions in the Navy and/or the commercial nuclear power program. To date, equivalencies have been

368

US/Russian laboratory-to-laboratory MPC&A Program at the VNIITF Institute, Chelyabinsk-70 May 1996  

SciTech Connect (OSTI)

The AR Russian Institute of Technical Physics (VNIITF), also called Chelyabinsk-70, is one of two Russian federal nuclear centers established to design, test and support nuclear weapons throughout their life cycle. The site contains research facilities which use nuclear materials, two experimental plants which manufacture prototype samples for nuclear weapons, and a site for various ground tests. Chelyabinsk-70 also has cooperative relationships with the major nuclear materials production facilities in the Urals region of Russia. Chelyabinsk-70 has been participating in the US/Russian Laboratory-to-laboratory cooperative program for approximately one year. Six US Department of Energy Laboratories are carrying out a program of cooperation with VNIITF to improve the capabilities and facilities for nuclear materials protection, control, and accounting (MPC&A) at VNIITF. A Safeguards Effectiveness Evaluation Workshop was conducted at VNIITF in July, 1995. Enhanced safeguards systems are being implemented, initially at a reactor test area that contains three pulse reactors. Significant improvements to physical security and access control systems are under way. C-70 is developing an extensive computerized system that integrates the physical security alarm station with elements of the nuclear material control system. The existing systems will be augmented with Russian and US technologies. This paper will describe the on-going activities and describe the cooperative effort between the Lawrence Livermore, Los Alamos, Sandia, Oak Ridge, Pacific Northwest, and Brookhaven US Department of Energy National Laboratories and VNIITF.

Tsygankov, G.; Churikov, Y.; Teryokhin, V. [and others

1996-05-01T23:59:59.000Z

369

PVWatts Version 1 Technical Reference  

SciTech Connect (OSTI)

The NREL PVWatts(TM) calculator is a web application developed by the National Renewable Energy Laboratory (NREL) that estimates the electricity production of a grid-connected photovoltaic system based on a few simple inputs. PVWatts combines a number of sub-models to predict overall system performance, and makes several hidden assumptions about performance parameters. This technical reference details the individual sub-models, documents assumptions and hidden parameters, and explains the sequence of calculations that yield the final system performance estimation.

Dobos, A. P.

2013-10-01T23:59:59.000Z

370

Lawrence Livermore National Laboratory | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory | July 2011 Aerial View Lawrence Livermore National Laboratory | July 2011 Aerial View Lawrence Livermore National Laboratory's (LLNL) primary mission is research and development in support of national security. As a nuclear weapons design laboratory, LLNL has responsibilities in nuclear stockpile stewardship. LLNL also applies its expertise to prevent the spread and use of weapons of mass destruction and strengthen homeland security. Other areas include advanced defense technologies, energy, environment, biosciences, and basic science. Enforcement July 22, 2013 Enforcement Letter, NEL-2013-03 Issued to Lawrence Livermore National Security, LLC related to Programmatic

371

External (SON) - Primary Standards Laboratory (PSL) Website  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Home Home Fact Sheets Links Contacts Primary Standards Laboratory Enter keyword below to search the PSL site: Search! The Primary Standards Laboratory (PSL) develops and maintains primary standards traceable to national standards and calibrates and certifies customer reference standards. The PSL provides technical guidance, support, and consultation; develops precision measurement techniques; provides oversight, including technical surveys and measurement audits; and anticipates future measurement needs of the nuclear weapons complex and other Department of Energy programs. The PSL also helps industry, universities, and government agencies establish or verify new capabilities and products and improve measurement technology. NVLAP Accreditation NVLAP Accreditation

372

Technical Information Officers | Scientific and Technical Information  

Office of Scientific and Technical Information (OSTI)

Technical Information Officers Technical Information Officers Print page Print page Email page Email page Technical Information Officers (TIO) serve as the principal DOE or NNSA office point of contact and assistant to, and liaison with, the DOE Office of Scientific and Technical Information (OSTI) that serves as the Department's office charged with the Scientific and Technical Information Program (STIP). The TIOs are to be familiar with the STI Programs within their Office they represent (given they have contracting financial assistance and/or acquisition activities) and for their major site/facility management contractor(s) STI Program to discern compliance with the DOE O 241.1B. They must maintain an up-to-date knowledge-base of the STI Program activities and provide timely feedback on issues as they emerge. While

373

Laboratory Access | Sample Preparation Laboratories  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Access Access Planning Ahead Planning Ahead Please complete the Beam Time Request (BTR) and Support Request forms thourgh the User Portal. Thorough chemical and sample information must be included in your BTR. Support Request forms include a list of collaborators that require laboratory access and your group's laboratory equipment requests. Researcher safety is taken seriously at SLAC. Please remember that radioactive materials, nanomaterials, and biohazardous materials have additional safety requirements. Refer to the SSRL or LCLS Safety Offices for further guidance. Upon Arrival Upon Arrival Once you arrive you must complete training and access forms before accessing the Sample Preparation Laboratories (SPL). All Sample Prep Lab doors are locked with access key codes. Once your SPL

374

Landfill stabilization focus area: Technology summary  

SciTech Connect (OSTI)

Landfills within the DOE Complex as of 1990 are estimated to contain 3 million cubic meters of buried waste. The DOE facilities where the waste is predominantly located are at Hanford, the Savannah River Site (SRS), the Idaho National Engineering Laboratory (INEL), the Los Alamos National Laboratory (LANL), the Oak Ridge Reservation (ORR), the Nevada Test Site (NTS), and the Rocky Flats Plant (RFP). Landfills include buried waste, whether on pads or in trenches, sumps, ponds, pits, cribs, heaps and piles, auger holes, caissons, and sanitary landfills. Approximately half of all DOE buried waste was disposed of before 1970. Disposal regulations at that time permitted the commingling of various types of waste (i.e., transuranic, low-level radioactive, hazardous). As a result, much of the buried waste throughout the DOE Complex is presently believed to be contaminated with both hazardous and radioactive materials. DOE buried waste typically includes transuranic-contaminated radioactive waste (TRU), low-level radioactive waste (LLW), hazardous waste per 40 CFR 26 1, greater-than-class-C waste per CFR 61 55 (GTCC), mixed TRU waste, and mixed LLW. The mission of the Landfill Stabilization Focus Area is to develop, demonstrate, and deliver safer,more cost-effective and efficient technologies which satisfy DOE site needs for the remediation and management of landfills. The LSFA is structured into five technology areas to meet the landfill remediation and management needs across the DOE complex. These technology areas are: assessment, retrieval, treatment, containment, and stabilization. Technical tasks in each of these areas are reviewed.

NONE

1995-06-01T23:59:59.000Z

375

Sandia National Laboratories: Federal Laboratory Consortium Regional...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

& CapabilitiesCapabilitiesFederal Laboratory Consortium Regional Technology-Transfer Awards Salute Innovation, Commercialization at Sandia Federal Laboratory...

376

Federal Technical Capability Manual  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Provides requirements and responsibilities to ensure recruitment and hiring of technically capable personnel to retain critical technical capabilities within the Department at all times. Cancels DOE M 426.1-1. Canceled by DOE O 426.1.

2004-05-18T23:59:59.000Z

377

FAQS Job Task Analyses - Safeguards and Security General Technical Base |  

Broader source: Energy.gov (indexed) [DOE]

Safeguards and Security General Technical Safeguards and Security General Technical Base FAQS Job Task Analyses - Safeguards and Security General Technical Base FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies. FAQS JTA - Safeguards and Security General Technical Base More Documents & Publications FAQS Qualification Card - Safeguards and Security General Technical Base FAQS Qualification Card - Safeguards and Security FAQS Job Task Analyses - Safeguards and Security

378

STIP Community | Scientific and Technical Information Program  

Office of Scientific and Technical Information (OSTI)

People People STIP Community Print page Print page Email page Email page STI Managers Technical Information Officers Headquarters OSTI Contacts Software Contacts STI Managers Ames Laboratory Stacy Joiner Program Coordinator, Sponsored Research/Tech Transfer (515) 294-5932 (515) 294-5594 (fax) sjoiner@iastate.edu Argonne National Laboratory Yvette N. Woell Manager, Argonne Research Library (630) 252-4275 (630) 252-9800 (fax) ywoell@anl.gov Bettis Atomic Power Laboratory (412) 476-6000 Brookhaven National Laboratory Mary Petersen Manager, Information Sciences Division (631) 344-3489 (631) 344-5951 (fax) mpetersen@bnl.gov East Tennessee Technology Park/Bechtel Jacobs Co. LLC Bob James (865) 576-9646 (865) 574-8490 (fax) jamesre2@bechteljacobs.org Fermi National Accelerator Laboratory Heath B. O'Connell

379

NETL Scientist Earns Prestigious Technical Achievement Award | Department  

Broader source: Energy.gov (indexed) [DOE]

NETL Scientist Earns Prestigious Technical Achievement Award NETL Scientist Earns Prestigious Technical Achievement Award NETL Scientist Earns Prestigious Technical Achievement Award May 31, 2013 - 9:27am Addthis National EnergyTechnology Laboratory’s Malgorzata Ziomek-Moroz (right) receives a 2013 Technical Achievement Award from NACE International, the Corrosion Society, for her accomplishments in the field of corrosion science. National EnergyTechnology Laboratory's Malgorzata Ziomek-Moroz (right) receives a 2013 Technical Achievement Award from NACE International, the Corrosion Society, for her accomplishments in the field of corrosion science. It's a beautiful morning, and you've decided to save the environment and burn a few calories biking to work. You wheel your old bicycle out of the garage, but you don't make it past the driveway before you hear a

380

NETL Scientist Earns Prestigious Technical Achievement Award | Department  

Broader source: Energy.gov (indexed) [DOE]

NETL Scientist Earns Prestigious Technical Achievement Award NETL Scientist Earns Prestigious Technical Achievement Award NETL Scientist Earns Prestigious Technical Achievement Award May 31, 2013 - 9:27am Addthis National EnergyTechnology Laboratory’s Malgorzata Ziomek-Moroz (right) receives a 2013 Technical Achievement Award from NACE International, the Corrosion Society, for her accomplishments in the field of corrosion science. National EnergyTechnology Laboratory's Malgorzata Ziomek-Moroz (right) receives a 2013 Technical Achievement Award from NACE International, the Corrosion Society, for her accomplishments in the field of corrosion science. It's a beautiful morning, and you've decided to save the environment and burn a few calories biking to work. You wheel your old bicycle out of the garage, but you don't make it past the driveway before you hear a

Note: This page contains sample records for the topic "laboratory technical area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Technical Standards Program  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Technical Standards Program (TSP) promotes the use of voluntary consensus standards by the Department of Energy (DOE), provides DOE with the means to develop needed technical standards, and manages overall technical standards information, activities, issues, and interactions. Cancels DOE O 1300.2A. Canceled by DOE O 252.1A

1999-11-19T23:59:59.000Z

382

Federal Technical Capability  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This directive defines requirements and responsibilities for meeting the Department of Energy (DOE) commitment to recruiting, deploying, developing, and retaining a technically competent workforce that will accomplish DOE missions in a safe and efficient manner through the Federal Technical Capability Program (FTCP). Cancels DOE M 426.1-1A, Federal Technical Capability Manual.

2009-11-19T23:59:59.000Z

383

Technical Standards Program  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order promotes DOE's use of Voluntary Consensus Standards (VCS) as the primary method for application of technical standards and establishes and manages the DOE Technical Standards Program (TSP) including technical standards development, information, activities, issues, and interactions. Admin Chg 1 dated 3-12-13.

2011-02-23T23:59:59.000Z

384

DOE-TSPP-2-2013, Initiating DOE Technical Standards | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

2-2013, Initiating DOE Technical Standards 2-2013, Initiating DOE Technical Standards DOE-TSPP-2-2013, Initiating DOE Technical Standards Technical Standards Program Procedures (TSPP) - September 16, 2013 This procedure provides guidance on how to establish and justify the need for a Department of Energy (DOE) Technical Standard and register a DOE Technical Standard Project. This procedure applies to all DOE Headquarters and field organizations, management and operating contractors, and laboratories (hereafter referred to collectively as Technical Standards Program (TSP) participants) working to DOE Order (O) 252.1A, Technical Standards Program. DOE-TSPP-2-2013, Initiating DOE Technical Standards More Documents & Publications DOE-TSPP-8-2013, Converting DOE Technical Standards to Voluntary Consensus

385

DOE-TSPP-6-2013, Approving and Issuing DOE Technical Standards | Department  

Broader source: Energy.gov (indexed) [DOE]

6-2013, Approving and Issuing DOE Technical Standards 6-2013, Approving and Issuing DOE Technical Standards DOE-TSPP-6-2013, Approving and Issuing DOE Technical Standards Technical Standards Program Procedures (TSPP) - September 16, 2013 This procedure provides guidance for approving and issuing the Department of Energy (DOE) Technical Standards. This procedure applies to all DOE Headquarters and field organizations, management and operating contractors, and laboratories (hereafter referred to collectively as Technical Standards Program (TSP) participants) working to the latest revision of DOE Order (O) 252.1A, Technical Standards Program. DOE-TSPP-6-2013, Approving and Issuing DOE Technical Standards More Documents & Publications DOE-TSPP-7-2013, Maintaining DOE Technical Standards DOE-TSPP-6, Coordination of DOE Technical Standards - July 1, 2009

386

Determination of Total Solids and Ash in Algal Biomass: Laboratory...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solids and Ash in Algal Biomass Laboratory Analytical Procedure (LAP) Issue Date: December 2, 2013 S. Van Wychen and L. M. L. Laurens Technical Report NRELTP-5100-60956 December...

387

Tube Investments Group Research Laboratory, Hinxton Hall (195488)  

Science Journals Connector (OSTI)

...Laboratory was made. Bill Graham as Technical Director and Bill Matthews as Commercial...research departments, Materials and Processes and...for compressor or turbine casings, could be...a lot of expensive material. Rolling the ring...

2010-01-01T23:59:59.000Z

388

FAQS Qualification Card - Safeguards and Security General Technical Base  

Broader source: Energy.gov (indexed) [DOE]

FAQS Qualification Card - Safeguards and Security General FAQS Qualification Card - Safeguards and Security General Technical Base FAQS Qualification Card - Safeguards and Security General Technical Base A key element for the Department's Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA). For each functional area, the FAQS identify the minimum technical competencies and supporting knowledge and skills for a typical qualified individual working in the area. FAQC-SafeguardsandSecurityGTB.docx Description Safeguards and Security General Technical Base Qualification Card

389

Measurements at Los Alamos National Laboratory Plutonium Facility in Support of Global Security Mission Space  

SciTech Connect (OSTI)

The Los Alamos National Laboratory Plutonium Facility at Technical Area (TA) 55 is one of a few nuclear facilities in the United States where Research & Development measurements can be performed on Safeguards Category-I (CAT-I) quantities of nuclear material. This capability allows us to incorporate measurements of CAT-IV through CAT-I materials as a component of detector characterization campaigns and training courses conducted at Los Alamos. A wider range of measurements can be supported. We will present an overview of recent measurements conducted in support of nuclear emergency response, nuclear counterterrorism, and international and domestic safeguards. This work was supported by the NNSA Office of Counterterrorism.

Stange, Sy [Los Alamos National Laboratory; Mayo, Douglas R. [Los Alamos National Laboratory; Herrera, Gary D. [Los Alamos National Laboratory; McLaughlin, Anastasia D. [Los Alamos National Laboratory; Montoya, Charles M. [Los Alamos National Laboratory; Quihuis, Becky A. [Los Alamos National Laboratory; Trujillo, Julio B. [Los Alamos National Laboratory; Van Pelt, Craig E. [Los Alamos National Laboratory; Wenz, Tracy R. [Los Alamos National Laboratory

2012-07-13T23:59:59.000Z

390

Technical Information Officers | Scientific and Technical Information  

Office of Scientific and Technical Information (OSTI)

Technical Information Officers Technical Information Officers Print page Print page Email page Email page Technical Information Officers: Serve as the DOE element representatives to STIP and ensure that STI objectives and requirements are incorporated into strategic planning, management information plans, life-cycle procedures from project initiation to close-out, and contract language as appropriate. Coordinate with contractor STI managers and have adequate familiarity with STI activities to discern contractor compliance with the CRD portion of this directive. Coordinate the implementation of appropriate review and release procedures by DOE elements, DOE contractors, and financial assistance recipients as appropriate. Serve as Releasing Officials or coordinate designation and official

391

Advanced reservoir characterization and evaluation of CO{sub 2} gravity drainage in the naturally fractured Spraberry Trend Area. First annual technical progress report, September 1, 1995--August 31, 1996  

SciTech Connect (OSTI)

The overall goal of this project is to assess the economic feasibility of CO{sub 2} flooding the naturally fractured Spraberry Trend Area in West Texas. This objective is being accomplished by conducting research in four areas: (1) extensive characterization of the reservoirs, (2) experimental studies of crude oil/brine/rock (COBR) interaction in the reservoirs, (3) analytical and numerical simulation of Spraberry reservoirs, and, (4) experimental investigations on CO{sub 2} gravity drainage in Spraberry whole cores. This report provides results of the first year of the five-year project for each of the four areas.

Schechter, D.S.

1996-12-17T23:59:59.000Z

392

SULI at Ames Laboratory  

SciTech Connect (OSTI)

A video snapshot of the Science Undergraduate Laboratory Internship (SULI) program at Ames Laboratory.

None

2011-01-01T23:59:59.000Z

393

Chemical technology division: Annual technical report 1987  

SciTech Connect (OSTI)

Highlights of the Chemical Technology (CMT) Division's activities during 1987 are presented. In this period, CMT conducted research and development in the following areas: (1) high-performance batteries--mainly lithium-alloy/metal sulfide and sodium/sulfur; (2) aqueous batteries (lead-acid, nickel/iron, etc.); (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants and the technology for fluidized-bed combustion; (5) methods for the electromagnetic continuous casting of steel sheet and for the purification of ferrous scrap; (6) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (7) nuclear technology related to a process for separating and recovering transuranic elements from nuclear waste, the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor, and waste management; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for liquids and vapors at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; the thermochemistry of various minerals; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL. 54 figs., 9 tabs.

Not Available

1988-05-01T23:59:59.000Z

394

Chemical Technology Division annual technical report, 1986  

SciTech Connect (OSTI)

Highlights of the Chemical Technology (CMT) Division's activities during 1986 are presented. In this period, CMT conducted research and development in areas that include the following: (1) high-performance batteries - mainly lithium-alloy/metal sulfide and sodium/sulfur; (2) aqueous batteries (lead-acid, nickel/iron, etc.); (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants, the technology for fluidized-bed combustion, and a novel concept for CO/sub 2/ recovery from fossil fuel combustion; (5) methods for recovery of energy from municipal waste; (6) methods for the electromagnetic continuous casting of steel sheet; (7) techniques for treatment of hazardous waste such as reactive metals and trichloroethylenes; (8) nuclear technology related to waste management, a process for separating and recovering transuranic elements from nuclear waste, and the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor; and (9) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of catalytic hydrogenation and catalytic oxidation; materials chemistry for associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, surface science, and catalysis; the thermochemistry of zeolites and related silicates; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL. 127 refs., 71 figs., 8 tabs.

Not Available

1987-06-01T23:59:59.000Z

395

Clean Energy Innovation: Sources of Technical and Commercial Breakthroughs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Innovation: Innovation: Sources of Technical and Commercial Breakthroughs Thomas D. Perry IV and Mackay Miller National Renewable Energy Laboratory Lee Fleming Harvard Business School Kenneth Younge University of Colorado James Newcomb National Renewable Energy Laboratory Current Affiliation: Rocky Mountain Institute Technical Report NREL/TP-6A20-50624 March 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Clean Energy Innovation: Sources of Technical and Commercial Breakthroughs

396

DOE-STD-1111-98; The Department of Energy Laboratory Accreditation Program Administration  

Broader source: Energy.gov (indexed) [DOE]

1-98 1-98 December 1998 DOE STANDARD THE DEPARTMENT OF ENERGY LABORATORY ACCREDITATION PROGRAM ADMINISTRATION U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. DOE-STD-1111-98 iii FOREWORD 1. This Department of Energy (DOE) standard is approved for use by all DOE components and their contractors. 2. Beneficial comments (recommendations, additions, deletions) and any pertinent data that may improve

397

DOE and NREL Technical Assistance  

Broader source: Energy.gov (indexed) [DOE]

NREL provided technical assistance to NREL provided technical assistance to Greensburg, Kansas, in the following areas. MASTER PLAN FOR REBUILDING GREEN * Completed detailed studies on renewable energy sources, cost-effective energy options, and potential integrated energy solutions * Worked with federal, state, and local agencies; city leaders and residents; energy consultants; and others to further the town's vision of becoming an affordable sustainable community. HIGH-PERFORMANCE BUILDINGS * Set aggressive energy efficiency goals for all new homes to use 30%-40% less energy than before the tornado, new city buildings to achieve LEED ® Platinum, and other commercial and public buildings to be designed to LEED Platinum or Gold. COMMUNITY WIND ENERGY * Conducted detailed computer modeling and

398

Technical Update Meeting - Summer 2012 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Technical Update Meeting - Summer 2012 Technical Update Meeting - Summer 2012 Technical Update Meeting - Summer 2012 The U.S. Department of Energy (DOE) Building America program held the third annual Technical Update meeting on July 24-26, 2012, in Denver, Colorado. This meeting showcased world-class building science expertise for high performance homes in a dynamic new format. Researchers from Building America teams and national laboratories came together to discuss key issues currently limiting implementation of high performance homes. The meeting also included working sessions from each Standing Technical Committee (STC) that outlined work that will best assist in overcoming technical challenges and delivering Building America research results to the market. Learn more about the STCs and the research planning process.

399

Technical Qualification Program Self-Assessment Report - Pacific Northwest  

Broader source: Energy.gov (indexed) [DOE]

Technical Qualification Program Self-Assessment Report - Pacific Technical Qualification Program Self-Assessment Report - Pacific Northwest Site Office Technical Qualification Program Self-Assessment Report - Pacific Northwest Site Office This self-assessment evaluated how well the Technical Qualification and Federal Capability Programs were implemented at the Pacific Northwest Site Office. The assessment was conducted in accordance with the SCMS: Quality Assurance and Oversight: Subject Area: Assessments, Procedure 2, Performing Assessments and SCMS: Quality Assurance and Oversight: Subject Area: Issues Management, Procedure 1, Managing Issues Identified in Oversight Activities. PNSO TQP Self-Assessment More Documents & Publications Technical Qualification Program Self-Assessment Report - Livermore Field Office Technical Qualification Program and FTCP Assessment CRADs

400

Laboratory directed research and development  

SciTech Connect (OSTI)

The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory's R D capabilities, and further the development of its strategic initiatives. Among the aims of the projects supported by the Program are establishment of engineering proof-of-principle''; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these project are closely associated with major strategic thrusts of the Laboratory as described in Argonne's Five Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne. Areas of emphasis are (1) advanced accelerator and detector technology, (2) x-ray techniques in biological and physical sciences, (3) advanced reactor technology, (4) materials science, computational science, biological sciences and environmental sciences. Individual reports summarizing the purpose, approach, and results of projects are presented.

Not Available

1991-11-15T23:59:59.000Z

Note: This page contains sample records for the topic "laboratory technical area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Independent Activity Report, Lawrence Livermore National Laboratory -  

Broader source: Energy.gov (indexed) [DOE]

Activity Report, Lawrence Livermore National Laboratory Activity Report, Lawrence Livermore National Laboratory - October 2012 Independent Activity Report, Lawrence Livermore National Laboratory - October 2012 October 2012 Lawrence Livermore National Laboratory Site Lead Planning Activities [HIAR LLNL-2012-10-23] The purpose of this Office of Health, Safety and Security (HSS) Independent Oversight activity was to maintain site operational awareness of key nuclear safety performance areas, monitor ongoing site oversight and planning activities for Lawrence Livermore National Laboratory (LLNL) nuclear facilities, and identify and initiate coordination of future HSS oversight activities at the site, including planned HSS targeted reviews planned for Fiscal Year (FY) 2013. Independent Activity Report, Lawrence Livermore National Laboratory -

402

Environmental audit of the Savannah River Ecology Laboratory (SREL)  

SciTech Connect (OSTI)

This report documents the results of the environmental audit conducted at the Savannah River Ecology Laboratory (SREL) at the Savannah River Site (SRS), principally in Aiken and Barnwell Counties, South Carolina. The audit was conducted by the US Department of Energy`s (DOE`s), Office of Environmental Audit (EH-24), beginning September 13, 1993, and ending September 23, 1993. The scope of the audit at SREL was comprehensive, addressing environmental activities in the technical areas of air; surface water/drinking water; groundwater/soil, sediment, and biota; waste management; toxic and chemical materials; inactive Waste sites; radiation; quality assurance; and environmental management. Specifically assessed was the compliance of SREL operations and activities with Federal, state, and local regulations; DOE Orders; and best management practices.

Not Available

1993-09-01T23:59:59.000Z

403

SUBJECT: Guidance on Retention of Facility Representative Technical  

Broader source: Energy.gov (indexed) [DOE]

SUBJECT: Guidance on Retention of Facility Representative Technical SUBJECT: Guidance on Retention of Facility Representative Technical Competence during Reductions in Force, 4/21/1998 SUBJECT: Guidance on Retention of Facility Representative Technical Competence during Reductions in Force, 4/21/1998 The Department's Revised Implementation Plan (IP) for Defense Nuclear Facilities Safety Board Recommendation 93-3 renews the Department's commitment to maintaining the technical capability necessary to safely manage and operate defense nuclear facilities. Retaining highly qualified employees in critical technical skills areas is vital to the maintenance of these technical capabilities. The Department has therefore committed in the revised R? to the development of a model that offices can use to proactively manage and preserve critical technical capabilities. During the

404

Tanks Focus Area site needs assessment FY 1998  

SciTech Connect (OSTI)

This report documents the process used by the Tanks Focus Area (TFA) to analyze and develop responses to technology needs submitted by four major US Department of Energy (DOE) sites with radioactive tank waste problems, and the initial results of the analysis. The sites are the Hanford Site, Idaho National Engineering and Environmental Laboratory (INEEL), Oak Ridge Reservation (ORR), and Savannah River Site (SRS). This document describes the TFA`s process of collecting site needs, analyzing them, and creating technical responses to the sites. It also summarizes the information contained within the TFA needs database, portraying information provided by four major DOE sites with tank waste problems. The overall TFA program objective is to deliver a tank technology program that reduces the current cost, and the operational and safety risks of tank remediation. The TFA`s continues to enjoy close, cooperative relationships with each site. During the past year, the TFA has fostered exchanges of technical information between sites. These exchanges have proven to be healthy for all concerned. The TFA recognizes that site technology needs often change, and the TFA must be prepared not only to amend its program in response, but to help the sites arrive at the best technical approach to solve revised site needs.

NONE

1998-03-01T23:59:59.000Z

405

U.S./Russian Laboratory-to-Laboratory MPC&A Program at the VNIITF Institute, Chelyabinsk-70  

SciTech Connect (OSTI)

The All Russian Institute of Technical Physics (VNIITF) is one of the major sites in the nuclear weapons complex in Russia. The site contains a number of research facilities which use nuclear material as well as facilities active in disassembly and disposition of nuclear weapons. Chelyabinsk-70 (C-70) also has ties to the major nuclear materials production facilities in the Urals region of Russia. Under the U.S./Russian Laboratory -to- Laboratory cooperative program, enhanced safeguards systems are being implemented, initially at a reactor test area that contains two pulse reactors and a nuclear material storage facility. C-70 is developing an extensive computerized system that integrates the physical security alarm station with elements of the nuclear material control system. Under the Lab-to-Lab program, the existing systems will bi augmented with Russian and US technologies. The integrated MPC&A system for the test facilities will be demonstrated to US and Russian audiences when completed and follow-on work at additional C-70 facilities will be identified. This paper will describe the on-going activities and describe the cooperative effort between the Lawrence Livermore, Los Alamos, Sandia, Oak Ridge, Pacific Northwest, and Brookhaven US Department of Energy National Laboratories in support of VNIITF.

Teryohin, V.; Tzygankov, G. [VNIITF, Chelyabinsk (Russian Federation); Blasy, J. [Lawrence Livermore National Lab., CA (United States)] [and others

1995-07-01T23:59:59.000Z

406

Lawrence Berkeley Laboratory Affirmative Action Program. Revised  

SciTech Connect (OSTI)

The Lawrence Berkeley Laboratory`s Affirmative Action Program (AAP) serves as a working document that describes current policies, practices, and results in the area of affirmative action. It represents the Laboratory`s framework for an affirmative approach to increasing the representation of people of color and women in segments of our work force where they have been underrepresented and taking action to increase the employment of persons with disabilities and special disabled and Vietnam era veterans. The AAP describes the hierarchy of responsibility for Laboratory affirmative action, the mechanisms that exist for full Laboratory participation in the AAP, the policies and procedures governing recruitment at all levels, the Laboratory`s plan for monitoring, reporting, and evaluating affirmative action progress, and a description of special affirmative action programs and plans the Laboratory has used and will use in its efforts to increase the representation and retention of groups historically underrepresented in our work force.

NONE

1995-06-01T23:59:59.000Z

407

General Technical Base Qualification Standard (DOE Defense Nuclear Facilities Technical Personnel)  

Broader source: Energy.gov (indexed) [DOE]

DOE-STD-1146-2007 December 2007 DOE STANDARD GENERAL TECHNICAL BASE QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1146-2007 ii This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ DOE-STD-1146-2007 iv INTENTIONALLY BLANK DOE-STD-1146-2007 v TABLE OF CONTENTS ACKNOWLEDGMENT................................................................................................................ vii PURPOSE ....................................................................................................................................9

408

DOE-TSPP-9, Maintenance of DOE Technical Standards - July 1, 2009 |  

Broader source: Energy.gov (indexed) [DOE]

DOE-TSPP-9, Maintenance of DOE Technical Standards - July 1, 2009 DOE-TSPP-9, Maintenance of DOE Technical Standards - July 1, 2009 DOE-TSPP-9, Maintenance of DOE Technical Standards - July 1, 2009 Technical Standards Program Procedures (TSPP) - August 26, 2009 This procedure provides guidance for the routine maintenance of DOE Technical Standards. This procedure applies to all DOE Headquarters and field organizations, management and operating contractors, and laboratories (hereafter referred to collectively as "DOE Components") working to the latest revision of DOE Order 252.1, "Technical Standards Program." DOE-TSPP-9, Maintenance of DOE Technical Standards - July 1, 2009 More Documents & Publications DOE-TSPP-9, Maintenance of DOE Technical Standards - August 1, 2000 MAINTENANCE OF DOE TECHNICAL STANDARDS

409

DOE-TSPP-5-2013, Coordination of Technical Standards | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

-2013, Coordination of Technical Standards -2013, Coordination of Technical Standards DOE-TSPP-5-2013, Coordination of Technical Standards Technical Standards Program Procedures (TSPP) - September 16, 2013 This procedure provides guidance on the formal coordination of the Department of Energy (DOE) Technical Standards in the DOE Technical Standards Program (TSP). The purpose of coordination of draft DOE Technical Standards is to solicit and receive comments from interested persons and organizations in order to improve and correct DOE Technical Standards. DOE Technical Standards are coordinated through the electronic TSP RevCom process. This procedure applies to all DOE Headquarters and field organizations, management and operating contractors, integrating contractors, and laboratories (hereafter referred to collectively as TSP participants)

410

DOE-TSPP-9, Maintenance of DOE Technical Standards - August 1, 2000 |  

Broader source: Energy.gov (indexed) [DOE]

DOE-TSPP-9, Maintenance of DOE Technical Standards - August 1, 2000 DOE-TSPP-9, Maintenance of DOE Technical Standards - August 1, 2000 DOE-TSPP-9, Maintenance of DOE Technical Standards - August 1, 2000 Technical Standards Program Procedures (TSPP) This procedure provides guidance for the routine maintenance of DOE Technical Standards. This procedure applies to all DOE Headquarters and field organizations, management and operating contractors, and laboratories (hereafter referred to collectively as "DOE Components") working to the latest revision of DOE Order 252.1, "Technical Standards Program." DOE-TSPP-9, Maintenance of DOE Technical Standards - August 1, 2000 More Documents & Publications DOE-TSPP-9, Maintenance of DOE Technical Standards - July 1, 2009 MAINTENANCE OF DOE TECHNICAL STANDARDS

411

DOE-TSPP-6, Coordination of DOE Technical Standards - July 1, 2009 |  

Broader source: Energy.gov (indexed) [DOE]

DOE-TSPP-6, Coordination of DOE Technical Standards - July 1, 2009 DOE-TSPP-6, Coordination of DOE Technical Standards - July 1, 2009 DOE-TSPP-6, Coordination of DOE Technical Standards - July 1, 2009 Technical Standards Program Procedures (TSPP) - August 26, 2009 This procedure provides guidance on the formal coordination of DOE Technical Standards in the DOE Technical Standards Program (TSP). The purpose of coordination of draft technical standards is to solicit and receive comments from interested persons and organizations in order to improve and correct technical standards. DOE Technical Standards are coordinated through the electronic RevCom for TSP process. This procedure applies to all DOE Headquarters and field organizations, management and operating contractors, integrating contractors, and laboratories (hereafter referred to collectively as "DOE

412

DOE-TSPP-8, Approving and Issuing DOE Technical Standards - August 1, 2000  

Broader source: Energy.gov (indexed) [DOE]

TSPP-8, Approving and Issuing DOE Technical Standards - August TSPP-8, Approving and Issuing DOE Technical Standards - August 1, 2000 DOE-TSPP-8, Approving and Issuing DOE Technical Standards - August 1, 2000 Technical Standards Program Procedures (TSPP) This procedure provides guidance for approving and issuing DOE Technical Standards. This procedure applies to all DOE Headquarters and field organizations, management and operating contractors, and laboratories (hereafter referred to collectively as "DOE Components") working to the latest revision of DOE Order 252.1, "Technical Standards Program." DOE-TSPP-8, Approving and Issuing DOE Technical Standards - August 1, 2000 More Documents & Publications APPROVING AND ISSUING DOE TECHNICAL STANDARDS DOE-TSPP-8, Approving and Issuing DOE Technical Standards - July 1, 2009

413

DOE-TSPP-9-2013, DOE Technical Standards Program Topical Committees |  

Broader source: Energy.gov (indexed) [DOE]

9-2013, DOE Technical Standards Program Topical Committees 9-2013, DOE Technical Standards Program Topical Committees DOE-TSPP-9-2013, DOE Technical Standards Program Topical Committees Technical Standards Program Procedures (TSPP) - September 16, 2013 This procedure describes how topical committees are organized and recognized under the Technical Standards Program. This procedure applies to all Department of Energy (DOE) Headquarters and field organizations, management and operating contractors, and laboratories (hereafter referred to collectively as TSP participants) working to the latest revision of DOE Order (O) 252.1A, Technical Standards Program. DOE-TSPP-9-2013, DOE Technical Standards Program Topical Committees More Documents & Publications TECHNICAL STANDARDS PROGRAM TOPICAL COMMITTEES DOE-TSPP-8-2013, Converting DOE Technical Standards to Voluntary Consensus

414

Technical Review Panel Report  

Broader source: Energy.gov (indexed) [DOE]

TRP Report v7, 12 Aug 2012 TRP Report Final December 2012 TRP Report v7, 12 Aug 2012 TRP Report Final December 2012 Advanced Reactor Concepts Technical Review Panel Report Evaluation and Identification of future R&D on eight Advanced Reactor Concepts, conducted April - September 2012 December 2012 Public release version 2 Public release version 3 Table of Contents Summary ................................................................................................................................... 4 1. Overview of the Technical Review Panel Process ............................................................... 5 2. Technical Review Panel Criteria ......................................................................................... 6 3. Concept Summaries ........................................................................................................... 8

415

Engineering Research and Development and Technology thrust area report FY92  

SciTech Connect (OSTI)

The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff and the technology needed to support current and future LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) to identify key technologies and (2) to conduct high-quality work to enhance our capabilities in these key technologies. To help focus our efforts, we identify technology thrust areas and select technical leaders for each area. The thrust areas are integrated engineering activities and, rather than being based on individual disciplines, they are staffed by personnel from Electronics Engineering, Mechanical Engineering, and other LLNL organizations, as appropriate. The thrust area leaders are expected to establish strong links to LLNL program leaders and to industry; to use outside and inside experts to review the quality and direction of the work; to use university contacts to supplement and complement their efforts; and to be certain that we are not duplicating the work of others. This annual report, organized by thrust area, describes activities conducted within the Program for the fiscal year 1992. Its intent is to provide timely summaries of objectives, theories, methods, and results. The nine thrust areas for this fiscal year are: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Emerging Technologies; Fabrication Technology; Materials Science and Engineering; Microwave and Pulsed Power; Nondestructive Evaluation; and Remote Sensing and Imaging, and Signal Engineering.

Langland, R.T.; Minichino, C. [eds.

1993-03-01T23:59:59.000Z

416

DOE Technical Standards Program: Topical Committees  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Topical Committee Topical Committee Office of Nuclear Safety Internet Linkage for TSP Topical Committees In the interest of optimum technology transfer, the DOE Technical Standards Program (TSP) has set up a network of topical committees. These committees provide a forum for communication across the DOE complex on technical standards related activities. If you would like information about a specific topical committee, or wish to join one of the groups, we've provided a roster of TSP Topical Committees and corresponding Topical Committee Chairpersons. Expectations of DOE Topical Committees The March 9, 1998 memorandum (provided here in web page format) from Rick Serbu, Technical Standards Program (TSP) Manager, EH-31, to J. Robert Wayland, Metrology Topical Committee Secretary, Sandia National Laboratories, discusses general TSP expectations of DOE topical standards committees. This memorandum should be reviewed by all DOE/contractor personnel involved in topical committee activities.

417

Sandia National Laboratories: Advanced Materials Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Materials Laboratory Sandia Researchers Win CSP:ELEMENTS Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy...

418

Web Survey Technical Report  

E-Print Network [OSTI]

Glisson,W.B. Welland,R.C. DCS Technical Report Series pp 27 Dept of Computing Science, University of Glasgow

Glisson, W.B.; Welland, R.C.

419

By Lab, Major Site, or Technology Center | Scientific and Technical  

Office of Scientific and Technical Information (OSTI)

By Lab, Major Site, or Technology Center By Lab, Major Site, or Technology Center Print page Print page Email page Email page OSTI databases allow you to find research results and science information from the Manhattan Project to the present. Follow the 'Find STI..." links below to see technical reports from or related to DOE national laboratories, major sites, and technology centers. DOE National Laboratories Major Sites and Technology Centers DOE National Laboratories Argonne National Laboratory (ANL) Find STI from or about ANL Visit ANL Brookhaven National Laboratory (BNL) Find STI from or about BNL Visit BNL Fermi National Accelerator Laboratory (FERMI) Find STI from or about FERMI Visit FERMI Idaho National Laboratory (INL) Find STI from or about to INL Visit INL Lawrence Berkeley National Laboratory (LBNL) Find STI from or about LBNL Visit LBNL

420

Appendix A U.S. Nuclear Waste Technical Review  

E-Print Network [OSTI]

Appendices Appendices 37 #12;#12;Appendix A Appendix A U.S. Nuclear Waste Technical Review Board as chair, on the U.S. Nuclear Regulatory Commission's Advisory Commit tee on Nuclear Waste. His areas to the Nuclear Waste Technical Review Board on June 26, 2002, by President George W. Bush. Dr. Abkowitz

Note: This page contains sample records for the topic "laboratory technical area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Nuclear Waste Technical Review Board Members Appendix A 53  

E-Print Network [OSTI]

51 Appendix A Nuclear Waste Technical Review Board Members #12;#12;Appendix A 53 B. John Garrick, Ph.D., P.E. Chairman Dr. B. John Garrick was appointed to the U.S. Nuclear Waste Technical Review, on the U.S. Nuclear Regula- tory Commission's Advisory Committee on Nuclear Waste. His areas of expertise

422

Quality Assurance Functional Area Qualification Standard  

Broader source: Energy.gov (indexed) [DOE]

NOT MEASUREMENT NOT MEASUREMENT SENSITIVE DOE-STD-1150-2013 December 2013 DOE STANDARD QUALITY ASSURANCE FUNCTIONAL AREA QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. DOE-STD-1150-2013 This document is available on the Department of Energy Technical Standards Program

423

Environmental Science and Research Foundation, Inc. annual technical report: Calendar year 1997  

SciTech Connect (OSTI)

This Annual Technical Report describes work conducted for the Department of Energy, Idaho Operations Office (DOE-ID), by the Environmental Science and Research Foundation (Foundation). The Foundation`s mission to DOE-ID provides support in several key areas. The Foundation conducts an environmental monitoring and surveillance program over an area covering much of the upper Snake River Plain, and provides environmental education and support services related to Idaho National Engineering and Environmental Laboratory (INEEL) natural resource issues. Also, the Foundation, with its University Affiliates, conducts ecological and radioecological research on the Idaho National Environmental Research Park. This research benefits major DOE-ID programs including Waste Management, Environmental Restoration, Spent Nuclear Fuels, and Land Management Issues. Summaries are included of the individual research projects.

Reynolds, R.D.; Warren, R.W. [eds.

1998-05-01T23:59:59.000Z

424

Los Alamos National Laboratory communicators capture numerous awards from  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Society for Technical Communication Awards Society for Technical Communication Awards Los Alamos National Laboratory communicators capture numerous awards from Society for Technical Communication Three Los Alamos entries garnered Distinguished Technical Communication awards, the competition's highest award category. April 15, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

425

OAK RIDGE ORNL/TM-2008/ NATIONAL LABORATORY  

E-Print Network [OSTI]

OAK RIDGE ORNL/TM-2008/ NATIONAL LABORATORY MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY. Leggett K. F. Eckerman Oak Ridge National Laboratory Oak Ridge, Tennessee 37831 #12;DOCUMENT AVAILABILITY: Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831 Telephone: 865

Pennycook, Steve

426

OAK RIDGE ORNL/TM-2006/583 NATIONAL LABORATORY  

E-Print Network [OSTI]

OAK RIDGE ORNL/TM-2006/583 NATIONAL LABORATORY MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY Agency Washington, DC 20460 b Oak Ridge National Laboratory Oak Ridge, Tennessee 37831 #12;DOCUMENT: Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831 Telephone: 865

427

OAK RIDGE ORNL/TM-2008/131 NATIONAL LABORATORY  

E-Print Network [OSTI]

OAK RIDGE ORNL/TM-2008/131 NATIONAL LABORATORY MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY by R. W. Leggetta K. F. Eckermana R. A. Meckb a Oak Ridge National Laboratory Oak Ridge, Tennessee: Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831 Telephone: 865

Pennycook, Steve

428

Technical Report Documentation Page 1. Report No.  

E-Print Network [OSTI]

and metropolitan areas. Economists have also predicted that oil prices will rise in real terms during the same: National Technical Information Service 5285 Port Royal Road Springfield, Virginia 22161 19. Security Classif. (of this report) Unclassified 20. Security Classif. (of this page) Unclassified 21. No. of Pages

429

Water Resources Research Center Annual Technical Report  

E-Print Network [OSTI]

Water Resources Research Center Annual Technical Report FY 1999 Introduction WATER PROBLEMS AND ISSUES OF MISSOURI The water problems and issues in the State of Missouri can be separated into three general areas: 1) water quality, 2) water quantity, and 3) water policy. Each of Missouri's specific

430

Corrective action investigation plan for Corrective Action Unit 143: Area 25 contaminated waste dumps, Nevada Test Site, Nevada, Revision 1 (with Record of Technical Change No. 1 and 2)  

SciTech Connect (OSTI)

This plan contains the US Department of Energy, Nevada Operations Office's approach to collect the data necessary to evaluate correction action alternatives appropriate for the closure of Corrective Action Unit (CAU) 143 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 143 consists of two waste dumps used for the disposal of solid radioactive wastes. Contaminated Waste Dump No.1 (CAS 25-23-09) was used for wastes generated at the Reactor Maintenance Assembly and Disassembly (R-MAD) Facility and Contaminated Waste Dump No.2 (CAS 25-23-03) was used for wastes generated at the Engine Maintenance Assembly and Disassembly (E-MAD) Facility. Both the R-MAD and E-MAD facilities are located in Area 25 of the Nevada Test Site. Based on site history, radionuclides are the primary constituent of concern and are located in these disposal areas; vertical and lateral migration of the radionuclides is unlikely; and if migration has occurred it will be limited to the soil beneath the Contaminated Waste Disposal Dumps. The proposed investigation will involve a combination of Cone Penetrometer Testing within and near the solid waste disposal dumps, field analysis for radionuclides and volatile organic compounds, as well as sample collection from the waste dumps and surrounding areas for off-site chemical, radiological, and geotechnical analyses. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document.

USDOE Nevada Operations Office (DOE/NV)

1999-06-28T23:59:59.000Z

431

21st Century Truck Partnership Roadmap Roadmap and Technical White Papers - 21CTP-0003, December 2006  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ACKNOWLEDGEMENTS ACKNOWLEDGEMENTS The 21 st Century Truck Partnership would like to acknowledge the time and resource investment that all our partners have made in developing this roadmap and technical white paper document, and in remaining committed to the goals and objectives outlined herein. We would also like to extend our appreciation to the industry and government teams that produced the individual technical white papers, and the leaders of those teams who are listed below. Engines: Ron Graves (Oak Ridge National Laboratory) with Dennis Siebers (Sandia National Laboratories) Hybrids: Terry Penney (National Renewable Energy Laboratory) Parasitic Losses: Jud Virden (Pacific Northwest National Laboratory) Idle Reduction: Glenn Keller (Argonne National Laboratory)

432

Federal Energy Management Program: Technical and Project Assistance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technical and Project Assistance Technical and Project Assistance The Federal Energy Management Program's (FEMP) offers technical and project assistance to help Federal agencies successfully implement energy- and water-efficiency projects. Call for Projects: Look up current FEMP project opportunities. Working with DOE National Laboratories: Learn about working with the U.S. Department of Energy's (DOE) national laboratories through FEMP technical services and work-for-others agreements. Sell Energy-Efficient Products: Read about resources available to vendors interested in doing business with the Federal Government. GSA Schedules: Look up more commercial products and services at volume discount pricing arranged by the U.S. General Services Administration (GSA). For more information about FEMP, see:

433

Technical benefits and cultural barriers of networked Autonomous Undersea Vehicles  

E-Print Network [OSTI]

The research presented in this thesis examines the technical benefits to using a collaborative network of Autonomous Undersea Vehicles (AUVs) in place of individual vehicles. Benefits could be achieved in the areas of ...

Wineman, Patrick L

2013-01-01T23:59:59.000Z

434

Federal Technical Capability Manual  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Federal Technical Capability Manual provides the process for the recruitment, deployment, development, and retention of Federal personnel with the demonstrated technical capability to safely accomplish the Departments missions and responsibilities at defense nuclear facilities. Canceled by DOE M 426.1-1A. Does not cancel other directives.

2000-06-05T23:59:59.000Z

435

About Technical Assistance  

Broader source: Energy.gov [DOE]

As technologies proceed along the development pipeline, most face major hurdles as they attempt to enter commercial markets. Our Technical Assistance program helps lower a range of institutional barriers to prepare innovative, energy-efficient technologies and energy management systems for full commercial deployment. These projects and activities address barriers that are not technical, Technology Readiness Level 9.

436

Depleted Uranium Technical Brief  

E-Print Network [OSTI]

and radiological health concerns involved with depleted uranium in the environment. This technical brief was developed to address the common misconception that depleted uranium represents only a radiological healthDepleted Uranium Technical Brief United States Environmental Protection Agency Office of Air

437

Federal Technical Capability  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To define requirements and responsibilities for meeting the Department of Energy (DOE) commitment to recruiting, deploying, developing, and retaining a technically competent workforce that will accomplish DOE missions in a safe and efficient manner through the Federal Technical Capability Program (FTCP). Chg. 1 dated 9-20-11 Cancels DOE O 426.1. Cancels DOE P 426.1.

2009-11-19T23:59:59.000Z

438

Environmental assessment for the Radioactive and Mixed Waste Management Facility: Sandia National Laboratories/New Mexico  

SciTech Connect (OSTI)

The Department of Energy (DOE) has prepared an environmental assessment (EA) (DOE/EA-0466) under the National Environmental Policy Act (NEPA) of 1969 for the proposed completion of construction and subsequent operation of a central Radioactive and Mixed Waste Management Facility (RMWMF), in the southeastern portion of Technical Area III at Sandia National Laboratory, Albuquerque (SNLA). The RMWMF is designed to receive, store, characterize, conduct limited bench-scale treatment of, repackage, and certify low-level waste (LLW) and mixed waste (MW) (as necessary) for shipment to an offsite disposal or treatment facility. The RMWMF was partially constructed in 1989. Due to changing regulatory requirements, planned facility upgrades would be undertaken as part of the proposed action. These upgrades would include paving of road surfaces and work areas, installation of pumping equipment and lines for surface impoundment, and design and construction of air locks and truck decontamination and water treatment systems. The proposed action also includes an adjacent corrosive and reactive metals storage area, and associated roads and paving. LLW and MW generated at SNLA would be transported from the technical areas to the RMWMF in containers approved by the Department of Transportation. The RMWMF would not handle nonradioactive hazardous waste. Based on the analysis in the EA, the proposed completion of construction and operation of the RMWMF does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of NEPA. Therefore, preparation of an environmental impact statement for the proposed action is not required.

Not Available

1993-06-01T23:59:59.000Z

439

Lawrence Livermore National Laboratory  

Broader source: Energy.gov [DOE]

Lawrence Livermore National Laboratorys (LLNL) primary mission is research and development in support of national security.

440

Sandia National Laboratories: photovoltaic  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PV Facilities On November 10, 2010, in Photovoltaic System Evaluation Laboratory Distributed Energy Technologies Laboratory Microsystems and Engineering Sciences Applications...

Note: This page contains sample records for the topic "laboratory technical area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Facilities | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engineering Research Facility Distributed Energy Research Center Engine Research Facility Heat Transfer Laboratory Tribology Laboratory Transportation Beamline at the Advanced...

442

Defense Program Equivalencies for Technical Qualification Standard Competencies12/12/1995  

Broader source: Energy.gov [DOE]

Defense Programs has undertaken an effort to compare the competencies in the GeneralTechnical Base Qualification Standard and the Functional Area Qualification Standards withvarious positions in...

443

Technical Basis for Implementation of the PCM-1B for Personnel Release at Tank Farms  

SciTech Connect (OSTI)

This document provides the technical basis for use of the PCM-18 as the sole method of personnel release from Contamination Areas at River Protection Project facilities.

BROWN, R.L.

2000-01-27T23:59:59.000Z

444

Phase I Final Technical Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Final Report to Final Report to Phase I Final Technical Report 10121.4302.01.Final1 Ultra-High Conductivity Umbilicals: Polymer Nanotube Umbilicals (PNUs) 10121-4302-01 June 24, 2013 Christopher A. Dyke Principal Investigator NanoRidge Materials, Inc. 15850 Vickery Drive Houston, Texas 77032 LEGAL NOTICE THIS REPORT WAS PREPARED BY NANORIDGE MATERIALS, INC. AS AN ACCOUNT OF WORK SPONSORED BY THE RESEARCH PARTNERSHIP TO SECURE ENERGY FOR AMERICA, RPSEA. NEITHER RPSEA MEMBERS OF RPSEA, THE NATIONAL ENERGY TECHNOLOGY LABORATORY, THE U.S. DEPARTMENT OF ENERGY, NOR ANY PERSON ACTING ON BEHALF OF ANY OF THE ENTITIES: a. MAKES ANY WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED WITH RESPECT TO ACCURACY, COMPLETENESS, OR USEFULNESS OF THE INFORMATION

445

Technical Assistance in Greensburg, Kansas | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Technical Assistance in Greensburg, Kansas Technical Assistance in Greensburg, Kansas Technical Assistance in Greensburg, Kansas The U.S. Department of Energy (DOE) and its National Renewable Energy Laboratory (NREL) began providing energy efficiency and renewable energy technical assistance to Greensburg, Kansas, in June 2007, just one month after a devastating EF-5 tornado. Because of the near-complete devastation of Greensburg, comprehensive planning was essential to rebuilding. DOE/NREL technical assistance in Greensburg focused on: High-Performance Buildings Community Wind Energy Distributed Renewable Energy Alternative Transportation Education and Outreach Master Plan for Rebuilding Green For 3 years, DOE/NREL experts worked with city leaders, business owners, residents, and other state, federal, and local agencies to identify ways to

446

Building Technologies Office: Technical Update Meeting - Summer 2012  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technical Update Meeting - Summer 2012 Technical Update Meeting - Summer 2012 The U.S. Department of Energy (DOE) Building America program held the third annual Technical Update meeting on July 24-26, 2012, in Denver, Colorado. This meeting showcased world-class building science expertise for high performance homes in a dynamic new format. Researchers from Building America teams and national laboratories came together to discuss key issues currently limiting implementation of high performance homes. The meeting also included working sessions from each Standing Technical Committee (STC) that outlined work that will best assist in overcoming technical challenges and delivering Building America research results to the market. Learn more about the STCs and the research planning process.

447

Technical Qualification Program Self-Assessment Report - Livermore Field  

Broader source: Energy.gov (indexed) [DOE]

Livermore Livermore Field Office Technical Qualification Program Self-Assessment Report - Livermore Field Office The purpose of the Livermore Field Office (LFO) Teclmical Qualification Program (TQP) is to ensure that federal teclmical personnel with safety oversight responsibilities at defense nuclear facilities at Lawrence Livermore National Laboratory possess competence commensurate with responsibilities. LFO is committed to ensuring it has the necessary teclmical capabilities to provide the kind of management, direction, and guidance essential to safe operation ofDOE's defense nuclear facilities. LFO TQP Self-Assessment, May 2013 More Documents & Publications Technical Qualification Program Self-Assessment Report - Nevada Site Office Technical Qualification Program Self-Assessment Report - Sandia Site Office

448

LANL: Ion Beam Materials Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ion Beam Materials Laboratory (IBML) is a Los Ion Beam Materials Laboratory (IBML) is a Los Alamos National Laboratory resource devoted to materi- als research through the use of ion beams. Current major research areas include surface characterization through ion beam analysis techniques, surface modification and materials synthesis through ion implantation technology, and radiation damage stud- ies in gases, liquids, and solids. The laboratory's core is a 3.2 MV tandem ion accelerator and a 200 kV ion implanter together with several beam lines. Attached to each beam line is a series of experimental stations that support various research programs. The operation of IBML and its interactions with users are organized around core facilities and experimental stations. The IBML provides and operates the core facilities as well as supports

449

Technical Reports | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Combined Heat & Power Deployment Technical Reports Technical Reports A wide range of resources addressing the many benefits of combined heat and power (CHP) is available,...

450

Corrective Action Investigation Plan for Corrective Action Unit 214: Bunkers and Storage Areas Nevada Test Site, Nevada: Revision 0, Including Record of Technical Change No. 1 and No. 2  

SciTech Connect (OSTI)

This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 214 under the Federal Facility Agreement and Consent Order. Located in Areas 5, 11, and 25 of the Nevada Test Site, CAU 214 consists of nine Corrective Action Sites (CASs): 05-99-01, Fallout Shelters; 11-22-03, Drum; 25-99-12, Fly Ash Storage; 25-23-01, Contaminated Materials; 25-23-19, Radioactive Material Storage; 25-99-18, Storage Area; 25-34-03, Motor Dr/Gr Assembly (Bunker); 25-34-04, Motor Dr/Gr Assembly (Bunker); and 25-34-05, Motor Dr/Gr Assembly (Bunker). These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). The suspected contaminants and critical analyte s for CAU 214 include oil (total petroleum hydrocarbons-diesel-range organics [TPH-DRO], polychlorinated biphenyls [PCBs]), pesticides (chlordane, heptachlor, 4,4-DDT), barium, cadmium, chronium, lubricants (TPH-DRO, TPH-gasoline-range organics [GRO]), and fly ash (arsenic). The land-use zones where CAU 214 CASs are located dictate that future land uses will be limited to nonresidential (i.e., industrial) activities. The results of this field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the corrective action decision document.

U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

2003-05-16T23:59:59.000Z

451

Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC  

E-Print Network [OSTI]

Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne or demolished. #12;Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago as subject matter experts in various areas through their experiences over the last 25 years in the course

Kemner, Ken

452

Defense Program Equivalencies for Technical Qualification Standard Competencies  

Broader source: Energy.gov (indexed) [DOE]

2, 1995 2, 1995 MEMORANDUM FOR Distribution FROM: Thomas W. Evans Technical Personnel Program Coordinator SUBJECT: Defense Program Equivalencies for Technical Qualification Standard Competencies Defense Programs has undertaken an effort to compare the competencies in the General Technical Base Qualification Standard and the Functional Area Qualification Standards with various positions in the Naval Nuclear Propulsion Program and the commercial nuclear industry. The purpose of this effort is to determine if equivalencies can be granted for competencies based on previous training and experience in these areas. The equivalency crosswalk was developed by subject matter experts who held positions in the Navy and/or the commercial nuclear power program. To date, equivalencies have been

453

NREL-United States/Brazil Bioenergy Technical Workshop | Open Energy  

Open Energy Info (EERE)

NREL-United States/Brazil Bioenergy Technical Workshop NREL-United States/Brazil Bioenergy Technical Workshop Jump to: navigation, search Tool Summary LAUNCH TOOL Name: NREL-United States/Brazil Bioenergy Technical Workshop Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Renewable Energy, Biomass, - Biofuels Resource Type: Workshop, Training materials User Interface: Website Website: www.nrel.gov/international/ Country: Brazil South America Coordinates: -14.235004°, -51.92528° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-14.235004,"lon":-51.92528,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

454

Africa - Technical Potential of Solar Energy to Address Energy Poverty and  

Open Energy Info (EERE)

Africa - Technical Potential of Solar Energy to Address Energy Poverty and Africa - Technical Potential of Solar Energy to Address Energy Poverty and Avoid GHG Emissions Jump to: navigation, search Tool Summary Name: Technical Potential of Solar Energy to Address Energy Poverty and Avoid GHG Emissions in Africa Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Solar Topics: Resource assessment Website: www.nrel.gov/docs/fy10osti/44259.pdf Coordinates: -8.783195°, 34.508523° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-8.783195,"lon":34.508523,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

455

TESTING OF THE RADBALL TECHNOLOGY AT SAVANNAH RIVER NATIONAL LABORATORY  

SciTech Connect (OSTI)

The United Kingdom's National Nuclear Laboratory (NNL) has developed a remote, nonelectrical, radiation-mapping device known as RadBall (patent pending), which offers a means to locate and quantify radiation hazards and sources within contaminated areas of the nuclear industry. Positive results from initial deployment trials in nuclear waste reprocessing plants at Sellafield in the United Kingdom and the anticipated future potential use of RadBall throughout the U.S. Department of Energy Complex have led to the NNL partnering with the Savannah River National Laboratory (SRNL) to further test, underpin, and strengthen the technical performance of the technology. The study completed at SRNL addresses key aspects of the testing of the RadBall technology. The first set of tests was performed at Savannah River Nuclear Solutions Health Physics Instrument Calibration Laboratory (HPICL) using various gamma-ray sources and an x-ray machine with known radiological characteristics. The objective of these preliminary tests was to identify the optimal dose and collimator thickness. The second set of tests involved a highly contaminated hot cell. The objective of this testing was to characterize a hot cell with unknown radiation sources. The RadBall calibration experiments and hot cell deployment were successful in that for each trial radiation tracks were visible. The deployment of RadBall can be accomplished in different ways depending on the size and characteristics of the contaminated area (e.g., a hot cell that already has a crane/manipulator available or highly contaminated room that requires the use of a remote control device with sensor and video equipment to position RadBall). This report also presents SRNL-designed RadBall accessories for future RadBall deployment (a harness, PODS, and robot).

Farfan, E.; Foley, T.

2010-02-10T23:59:59.000Z

456

E-Print Network 3.0 - advanced research laboratory Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

COLLEGE OF ENGINEERING Research Areas Summary: in Buildings Solar Ponds Thermal Energy Storage Evaluations Centers and Laboratories Advanced Engine... Laboratory Laser...

457

Perspectives from the Board's Technical Staff  

Broader source: Energy.gov (indexed) [DOE]

from the Board's from the Board's Technical Staff AP Poloski, S Sircar, MW Dunlevy, F Bamdad, SA Stokes June 5, 2012 This presentation contains information collected by the Board's technical staff and no official support or endorsement of these remarks by the Defense Nuclear Facilities Safety Board is intended or should be inferred. Outline * Purpose: Review the values used by DOE contractors for dispersion analysis against DOE directives * Summary of Staff Complex-wide Review * Areas of Discussion - methods for determining atmospheric stability class; - use of extremely stable (G) atmospheric stability class; - selection of atmospheric dispersion coefficients; - correction for wind speed height; - selection of surface roughness; - adjusting dispersion coefficients due to surface roughness;

458

Savannah River Ecology Laboratory Annual Technical Progress Report  

Office of Scientific and Technical Information (OSTI)

AND RISK ASSESSMENT (ETRRA) . 21 Cycling of Mercury in SRS Waters and Accumulation by Fish; Effects of Heavy Metals on Biota .