Powered by Deep Web Technologies
Note: This page contains sample records for the topic "laboratory stockpile stewardship" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Stockpile Stewardship Quarterly  

National Nuclear Security Administration (NNSA)

2 * July 2012 2 * July 2012 Message from the Assistant Deputy Administrator for Stockpile Stewardship, Chris Deeney Defense Programs Stockpile Stewardship in Action Volume 2, Number 2 Inside this Issue 2 Exploring Shock-Induced Chemistry on Ultrafast Timescales 3 Toward Exascale Simulation of Re-Entry Flight Environment 4 Probing Inertial Confinement Fusion Plasmas 5 Shock Physics 6 Inertial Confinement Fusion 7 Modeling Polar Direct Drive Implosions on NIF 8 Developing Improved Physics Models for Predictive Simulations 9 Developing X-ray Sources for Extreme Radiation Environments on the Z Machine 11 Awards and Highlights O ur NNSA laboratories-Los Alamos National

2

Stockpile Stewardship Quarterly  

National Nuclear Security Administration (NNSA)

2, Number 3 * November 2012 2, Number 3 * November 2012 Message from the Assistant Deputy Administrator for Stockpile Stewardship, Chris Deeney Defense Programs Stockpile Stewardship in Action Volume 2, Number 3 Inside this Issue 2 Jupiter - An Intermediate-Scale Laser User Facility 4 Trident Intermediate-Scale Laser Facility 5 Mach-Zehnder Fiber-Optic Links for Inertial Confinement Fusion Diagnostics 7 High Energy Density Experiments at the OMEGA Laser Facility 9 Doubling the Electric Power Generated by an LTD Cavity 10 Reproducibility of Sandia National Laboratories' 80-terawatt Z Accelerator

3

Stockpile Stewardship Quarterly  

National Nuclear Security Administration (NNSA)

1, Number 3 * October 2011 1, Number 3 * October 2011 Message from the Assistant Deputy Administrator for Stockpile Stewardship, Chris Deeney Comments Questions or comments regarding the Stockpile Stewardship Quarterly should be directed to Terri.Batuyong@nnsa.doe.gov Technical Editor: Chris Werner, Publication Editor: Millicent Mischo Defense Programs Stockpile Stewardship in Action Volume 1, Number 3 Inside this Issue 2 Simulation: A Window into the Detonation of High Explosives 3 Modeling of High-Explosive Detonation Performance 5 The Detonation Sandwich 6 Joint DoD/DOE Munitions Technology Development Program-High Explosives 9 New Faces at the Office of Stockpile Stewardship

4

Stockpile Stewardship Quarterly Newsletter | National Nuclear...  

National Nuclear Security Administration (NNSA)

Home > About Us > Our Programs > Defense Programs > Office of Research, Development, Test Capabilities and Evaluation > Stockpile Stewardship Quarterly Newsletter Stockpile...

5

EIS-0236-SA6; Draft Supplemental Analysis: Pit Manufacturing Facilities at Los Alamos National Laboratory, Stockpile, Stewardship  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6/25/99 6/25/99 DRAFT SUPPLEMENT ANALYSIS: PIT MANUFACTURING FACILITIES AT LOS ALAMOS NATIONAL LABORATORY, STOCKPILE STEWARDSHIP AND MANAGEMENT PROGRAMMATIC ENVIRONMENTAL IMPACT STATEMENT June 1999 SUMMARY ............................................................................................................................... 3 INTRODUCTION ..................................................................................................................... 3 Purpose of this Document .................................................................................................................................. 3 Background - SSM PEIS ...................................................................................................................................

6

Stockpile Stewardship Quarterly Newsletter | National Nuclear...  

National Nuclear Security Administration (NNSA)

Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Stockpile Stewardship Quarterly Newsletter Home > About Us > Our...

7

Stockpile Stewardship at Los Alamos(U)  

SciTech Connect

Stockpile stewardship is the retention of nuclear weapons in the stockpile beyond their original design life. These older weapons have potential changes inconsistent with the original design intent and military specifications. The Stockpile Stewardship Program requires us to develop high-fidelity, physics-based capabilities to predict, assess, certify and design nuclear weapons without conducting a nuclear test. Each year, the Lab Directors are required to provide an assessment of the safety, security, and reliability our stockpile to the President of the United States. This includes assessing whether a need to return to testing exists. This is a talk to provide an overview of Stockpile Stewardship's scientific requirements and how stewardship has changed in the absence of nuclear testing. The talk is adapted from an HQ talk to the War college, and historical unclassified talks on weapon's physics.

Webster, Robert B. [Los Alamos National Laboratory

2012-06-29T23:59:59.000Z

8

Stockpile Stewardship Quarterly Volume 1, Number 4  

National Nuclear Security Administration (NNSA)

1, Number 4 * February 2012 1, Number 4 * February 2012 Message from the Assistant Deputy Administrator for Stockpile Stewardship, Chris Deeney Defense Programs Stockpile Stewardship in Action Volume 1, Number 4 Inside this Issue 2 Applying Advanced Simulation Models to Neutron Tube Ion Extraction 3 Advanced Optical Cavities for Subcritical and Hydrodynamic Experiments 5 Progress Toward Ignition on the National Ignition Facility 7 Commissioning URSA Minor: The First LTD-Based Accelerator for Radiography 8 Publication Highlights 9 2011 NNSA Stewardship Science Graduate Fellowship Class S tockpile Stewardship Science is not for wimps, and

9

Stockpile Stewardship Quarterly, Volume 2, Number 1  

National Nuclear Security Administration (NNSA)

1 * May 2012 1 * May 2012 Message from the Assistant Deputy Administrator for Stockpile Stewardship, Chris Deeney Defense Programs Stockpile Stewardship in Action Volume 2, Number 1 Inside this Issue 2 LANL and ANL Complete Groundbreaking Shock Experiments at the Advanced Photon Source 3 Characterization of Activity-Size-Distribution of Nuclear Fallout 5 Modeling Mix in High-Energy-Density Plasma 6 Quality Input for Microscopic Fission Theory 8 Fiber Reinforced Composites Under Pressure: A Case Study in Non-hydrostatic Behavior in the Diamond Anvil Cell 8 Emission of Shocked Inhomogeneous Materials 9 2012 NNSA Stewardship Science Academic

10

NNSA highlights Stockpile Stewardship Program, commemorates 20th...  

National Nuclear Security Administration (NNSA)

Stewardship Program, commemorates 20th Anniversary of Last Underground Nuclear Test | National Nuclear Security Administration Our Mission Managing the Stockpile...

11

NNSA highlights Stockpile Stewardship Program, commemorates 20th  

National Nuclear Security Administration (NNSA)

highlights Stockpile Stewardship Program, commemorates 20th highlights Stockpile Stewardship Program, commemorates 20th Anniversary of Last Underground Nuclear Test | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > NNSA highlights Stockpile Stewardship Program, commemorates 20th ... NNSA highlights Stockpile Stewardship Program, commemorates 20th

12

NNSA highlights Stockpile Stewardship Program, commemorates 20th  

NLE Websites -- All DOE Office Websites (Extended Search)

highlights Stockpile Stewardship Program, commemorates 20th highlights Stockpile Stewardship Program, commemorates 20th Anniversary of Last Underground Nuclear Test | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > NNSA highlights Stockpile Stewardship Program, commemorates 20th ... NNSA highlights Stockpile Stewardship Program, commemorates 20th

13

US, UK, France Discuss Stockpile Stewardship, Arms Control and...  

NLE Websites -- All DOE Office Websites (Extended Search)

US, UK, France Discuss Stockpile Stewardship, Arms Control and Nonproliferation and Visit the Nevada National Security Site | National Nuclear Security Administration Our Mission...

14

DOE/EIS-0236/SA-6 Final Supplement Analysis for Pit Manufacturing Facilities at Los Alamos National Laboratory, Stockpile Stewardship and Management Programmatic Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DATE: REPLY TO ATTN OF: DP-45 (G. Palmer, 6-1785) SUBJECT: DETERMINATION OF THE NEED FOR ADDITIONAL NATIONAL ENVIRONMENTAL POLICY ACT (NEPA) REVIEW TO: Dave Beck, DP-20 As requested in your action memorandum, same subject, I have reviewed the attached Final Supplement Analysis for Pit Manufacturing Facilities at Los Alamos National Laboratory, Stockpile Stewardship and Management Programmatic Environmental Impact Statement, dated August 1999. This analysis was prepared in accordance with 10 CFR 1021.314, contains the comments on the draft Supplement Analysis, dated June 1999, and responds to the comments in Appendix D. Based on my review of the six issues analyzed in the Supplement Analysis, I have determined that none of the information and analysis represent substantial changes to the actions

15

Final Site-wide Environmental Impact Statement for Continued Operation of Lawrence Livermore National Laboratory and Supplemental Stockpile Stewardship and Management Programmatic Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

I I Chapters 1 through 12 Prepared by: COVER SHEET RESPONSIBLE AGENCY: U.S. Department of Energy (DOE) National Nuclear Security Administration TITLE: Final Site-wide Environmental Impact Statement for Continued Operation of Lawrence Livermore National Laboratory and Supplemental Stockpile Stewardship and Management Programmatic Environmental Impact Statement (DOE/EIS-0348 and DOE/EIS-0236-S3) CONTACT: For further information on this EIS, For general information on the DOE Call: 1-877-388-4930, or contact National Environmental Policy Act (NEPA) process, write or call: Thomas Grim Carol Borgstrom, Director Livermore Site Office Document Manager Office of NEPA Policy and Compliance NNSA (EH-42) 7000 East Avenue U.S. Department of Energy

16

Final Site-wide Environmental Impact Statement for Continued Operation of Lawrence Livermore National Laboratory and Supplemental Stockpile Stewardship and Management Programmatic Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Summary Summary Prepared by: COVER SHEET RESPONSIBLE AGENCY: U.S. Department of Energy (DOE) National Nuclear Security Administration TITLE: Final Site-wide Environmental Impact Statement for Continued Operation of Lawrence Livermore National Laboratory and Supplemental Stockpile Stewardship and Management Programmatic Environmental Impact Statement (DOE/EIS-0348 and DOE/EIS-0236-S3) CONTACT: For further information on this EIS, For general information on the DOE Call: 1-877-388-4930, or contact National Environmental Policy Act (NEPA) process, write or call: Thomas Grim Carol Borgstrom, Director Livermore Site Office Document Manager Office of NEPA Policy and Compliance NNSA (EH-42) 7000 East Avenue U.S. Department of Energy MS L-293 1000 Independence Avenue, SW

17

Final Site-wide Environmental Impact Statement for Continued Operation of Lawrence Livermore National Laboratory and Supplemental Stockpile Stewardship and Management Programmatic Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

III III Appendix E through P Prepared by: COVER SHEET RESPONSIBLE AGENCY: U.S. Department of Energy (DOE) National Nuclear Security Administration TITLE: Final Site-wide Environmental Impact Statement for Continued Operation of Lawrence Livermore National Laboratory and Supplemental Stockpile Stewardship and Management Programmatic Environmental Impact Statement (DOE/EIS-0348 and DOE/EIS-0236-S3) CONTACT: For further information on this EIS, For general information on the DOE Call: 1-877-388-4930, or contact National Environmental Policy Act (NEPA) process, write or call: Thomas Grim Carol Borgstrom, Director Livermore Site Office Document Manager Office of NEPA Policy and Compliance NNSA (EH-42) 7000 East Avenue U.S. Department of Energy

18

Final Site-wide Environmental Impact Statement for Continued Operation of Lawrence Livermore National Laboratory and Supplemental Stockpile Stewardship and Management Programmatic Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

II II Appendix A through D Prepared by: COVER SHEET RESPONSIBLE AGENCY: U.S. Department of Energy (DOE) National Nuclear Security Administration TITLE: Final Site-wide Environmental Impact Statement for Continued Operation of Lawrence Livermore National Laboratory and Supplemental Stockpile Stewardship and Management Programmatic Environmental Impact Statement (DOE/EIS-0348 and DOE/EIS-0236-S3) CONTACT: For further information on this EIS, For general information on the DOE Call: 1-877-388-4930, or contact National Environmental Policy Act (NEPA) process, write or call: Thomas Grim Carol Borgstrom, Director Livermore Site Office Document Manager Office of NEPA Policy and Compliance NNSA (EH-42) 7000 East Avenue U.S. Department of Energy

19

NNSA releases summary of Stockpile Stewardship experiments |...  

National Nuclear Security Administration (NNSA)

computational models and NNSA's Advanced Simulation and Computing Program to assess the safety, security and effectiveness of the stockpile. Posted on August 19, 2013 at 12:33...

20

Stockpile Stewardship and the National Ignition Facility  

SciTech Connect

The National Ignition Facility (NIF), the world's most energetic laser system, is operational at Lawrence Livermore National Laboratory (LLNL). Since the completion of the construction project in March 2009, NIF has completed nearly 150 target experiments for the National Ignition Campaign (NIC), High Energy Density Stewardship Science (HEDSS) in the areas of radiation transport, material dynamics at high pressure in the solid state, as well as fundamental science and other national security missions. NIF capabilities and infrastructure are in place to support all of its missions with over 50 X-ray, optical and nuclear diagnostic systems and the ability to shoot cryogenic targets and DT layered capsules. NIF is now qualified for use of tritium and other special materials as well as to perform high yield experiments and classified experiments. DT implosions with record indirect-drive neutron yield of 4.5 x 10{sup 14} neutrons have been achieved. A series of 43 experiments were successfully executed over a 27-day period, demonstrating the ability to perform precise experiments in new regimes of interest to HEDSS. This talk will provide an update of the progress on the NIF capabilities, NIC accomplishments, as well as HEDSS and fundamental science experimental results and an update of the experimental plans for the coming year.

Moses, E

2012-01-04T23:59:59.000Z

Note: This page contains sample records for the topic "laboratory stockpile stewardship" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Proposed Laser-Based HED physics experiments for Stockpile Stewardship  

SciTech Connect

An analysis of the scientific areas in High Energy Density (HED) physics that underpin the enduring LANL mission in Stockpile Stewardship (SS) has identified important research needs that are not being met. That analysis has included the work done as part of defining the mission need for the High Intensity Laser Laboratory (HILL) LANL proposal to NNSA, LDRD DR proposal evaluations, and consideration of the Predictive Capability Framework and LANL NNSA milestones. From that evaluation, we have identified several specific and scientifically-exciting experimental concepts to address those needs. These experiments are particularly responsive to physics issues in Campaigns 1 and 10. These experiments are best done initially at the LANL Trident facility, often relying on the unique capabilities available there, although there are typically meritorious extensions envisioned at future facilities such as HILL, or the NIF once the ARC short-pulse laser is available at sufficient laser intensity. As the focus of the LANL HEDP effort broadens from ICF ignition of the point design at the conclusion of the National Ignition Campaign, into a more SS-centric effort, it is useful to consider these experiments, which address well-defined issues, with specific scientific hypothesis to test or models to validate or disprove, via unit-physics experiments. These experiments are in turn representative of a possible broad experimental portfolio to elucidate the physics of interest to these campaigns. These experiments, described below, include: (1) First direct measurement of the evolution of particulates in isochorically heated dense plasma; (2) Temperature relaxation measurements in a strongly-coupled plasma; (3) Viscosity measurements in a dense plasma; and (4) Ionic structure factors in a dense plasma. All these experiments address scientific topics of importance to our sponsors, involve excellent science at the boundaries of traditional fields, utilize unique capabilities at LANL, and contribute to the Campaign milestone in 2018. Given their interdisciplinary nature, it is not surprising that these research needs are not being addressed by the other excellent high-energy density physics (HEDP) facilities coming on line, facilities aimed squarely at more established fields and missions. Although energy rich, these facilities deliver radiation (e.g., particle beams for isochoric heating) over a timescale that is too slow in these unit physics experiments to eliminate hydrodynamic evolution of the target plasma during the time it is being created. A theme shared by all of these experiments is the need to quickly create a quasi-homogeneous 'initial state' whose properties and evolution we wish to study. Otherwise, we cannot create unit experiments to isolate the physics of interest and validate the models in our codes, something that cannot be done with the integrated experiments often done in HED. Moreover, these experiments in some cases involve combinations of solid and plasmas, or matter in the warm-dense matter state, where neither the theoretical approximations of solid state or of fully-ionized weakly-coupled plasmas can be used. In all cases, the capability of 'isochoric heating' ('flash' heating at constant density) is important. In some cases, the ability to selectively heat to different degrees different species within a target, whether mixed or adjacent to each other, is critical for the experiment. This capability requires the delivery of very high power densities, which require the conversion of the laser into very short and intense pulses of secondary radiation (electrons, ions, neutrons, x-rays). Otherwise, there is no possibility of a clean experiment to constrain the models, in the cases there are any, or inform the creation of one. Another typical requirement of these experiments is the ability to probe these exotic extreme conditions of matter with flexible and diverse sources of secondary radiation. Without a high-intensity high-power laser with some unique attributes available on Trident today (e.g., ultra-high laser-puls

Benage, John F. [Los Alamos National Laboratory; Albright, Brian J. [Los Alamos National Laboratory; Fernandez, Juan C. [Los Alamos National Laboratory

2012-09-04T23:59:59.000Z

22

Science and technology in the stockpile stewardship program, S & TR reprints  

SciTech Connect

This document reports on these topics: Computer Simulations in Support of National Security; Enhanced Surveillance of Aging Weapons; A New Precision Cutting Tool: The Femtosecond Laser; Superlasers as a Tool of Stockpile Stewardship; Nova Laser Experiments and Stockpile Stewardship; Transforming Explosive Art into Science; Better Flash Radiography Using the FXR; Preserving Nuclear Weapons Information; Site 300Ős New Contained Firing Facility; The Linear Electric Motor: Instability at 1,000 gŐs; A Powerful New Tool to Detect Clandestine Nuclear Tests; High Explosives in Stockpile Surveillance Indicate Constancy; Addressing a Cold War Legacy with a New Way to Produce TATB; JumpinŐ Jupiter! Metallic Hydrogen; Keeping the Nuclear Stockpile Safe, Secure, and Reliable; The Multibeam FabryĐPerot Velocimeter: Efficient Measurements of High Velocities; Theory and Modeling in Material Science; The Diamond Anvil Cell; Gamma-Ray Imaging Spectrometry; X-Ray Lasers and High-Density Plasma

Storm, E

1998-04-08T23:59:59.000Z

23

EIS-0236-S1: Stockpile Stewardship and Management | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

impacts of continuing to construct and of operating the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) in Livermore, California, with...

24

Development of Designer Diamond Anvils for High Pressure-High-Temperature Experiments in Support of the Stockpile Stewardship Program  

DOE Green Energy (OSTI)

The focus of this program at the University of Alabama at Birmingham (UAB) is to develop the next generation of designer diamond anvils that can perform simultaneous joule heating and temperature profile measurements in a diamond anvil cell. A series of tungsten-rhenium thermocouples will be fabricated onto to the anvil and encapsulated by a chemical vapor deposited diamond layer to allow for a complete temperature profile measurement across the anvil. The tip of the diamond anvil will be engineered to reduce the thermal conductivity so that the tungsten-heating coils can be deposited on top of this layer. Several different approaches will be investigated to engineer the tip of the diamond anvil for reduction in thermal conductivity (a) isotopic mixture of 12C and 13C in the diamond layer, (b) doping of diamond with impurities (nitrogen and/or boron), and (c) growing diamond in a higher concentration of methane in hydrogen plasma. Under this academic alliance with Lawrence Livermore National Laboratory (LLNL), PI and his graduate students will use the lithographic and diamond polishing facility at LLNL. This proposed next generation of designer diamond anvils will allow multi-tasking capability with the ability to measure electrical, magnetic, structural and thermal data on actinide materials with unparallel sensitivity in support of the stockpile stewardship program.

Yogesh K. Vohra

2005-05-12T23:59:59.000Z

25

Use of hazard assessments to achieve risk reduction in the USDOE Stockpile Stewardship (SS-21) Program  

Science Conference Proceedings (OSTI)

This paper summarizes the nuclear explosive hazard assessment activities performed to support US Department of Energy (DOE) Stockpile Stewardship Demonstration Project SS-21, better known as the ``Seamless Safety`` program. Past practice within the DOE Complex has dictated the use of a significant number of post-design/fabrication safety reviews to analyze the safety associated with operations on nuclear explosives and to answer safety questions. These practices have focused on reviewing-in or auditing-in safety vs incorporating safety in the design process. SS-21 was proposed by the DOE as an avenue to develop a program to ``integrate established, recognized, verifiable safety criteria into the process at the design stage rather than continuing the reliance on reviews, evaluations and audits.`` The entire Seamless Safety design and development process is verified by a concurrent hazard assessment (HA). The primary purpose of the SS-21 Demonstration Project HA was to demonstrate the feasibility of performing concurrent HAs as part of an engineering design and development effort and then to evaluate the use of the HA to provide an indication in the risk reduction or gain in safety achieved. To accomplish this objective, HAs were performed on both baseline (i.e., old) and new (i.e. SS-21) B61-0 Center Case Section disassembly processes. These HAs were used to support the identification and documentation of weapon- and process-specific hazards and safety-critical operating steps. Both HAs focused on identifying accidents that had the potential for worker injury, public health effects, facility damage, toxic gas release, and dispersal of radioactive materials. A comparison of the baseline and SS-21 process risks provided a semi-quantitative estimate of the risk reduction gained via the Seamless Safety process.

Fischer, S.R.; Konkel, H.; Bott, T.; Eisenhawer, S.W. [Los Alamos National Lab., NM (United States); DeYoung, L.; Hockert, J. [Odgen Environmental and Energy Services, Albuquerque, NM (United States)

1995-07-01T23:59:59.000Z

26

National Ignition Facility Final Supplemental Environmental Impact Statement to the Stockpile Stewardship and Management Programmatic Environmental Impact Statement  

DOE Green Energy (OSTI)

This Supplemental Environmental Impact Statement (SEIS) was prepared pursuant to a Joint Stipulation and Order approved and entered as an order of the court on October 27, 1997, in partial settlement of the lawsuit Civ. No. 97-936 (SS) (D.D.C.), ''Natural Resources Defense Council [NRDC] et al. v. Richardson et al.'' The Joint Stipulation and Order is reproduced at the end of this document as Attachment 1. In the Joint Stipulation and Order, the U.S. Department of Energy (DOE) agreed to prepare an SEIS to the Programmatic Environmental Impact Statement for Stockpile Stewardship and Management (SSM PEIS) (DOE/EIS-0236, DOE 1996a) to evaluate the reasonably foreseeable significant adverse environmental impacts of continuing to construct and of operating the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) in Livermore, California, with respect to any potential or confirmed contamination in the area by hazardous, toxic, and/or radioactive materials. On September 25, 1998, DOE announced in the ''Federal Register'' the agency's intent to prepare this SEIS for the NIF portion (Volume III, Appendix I) of the SSM PEIS. DOE's need for preparation of this SEIS, consistent with the previously established need for NIF (DOE 1996a, Appendix I), is to determine how the results of characterization studies completed pursuant to the Joint Stipulation and Order should affect the manner in which DOE proceeds with the construction and operation of NIF. On August 5, 1999, DOE issued an amended Notice of Intent to prepare this SEIS, which incorporated changes in schedule resulting from new relevant information. The SSM PEIS addressed alternative plans for DOE's defense program activities related to nuclear weapons stockpile issues at several DOE laboratories, including LLNL. The environmental consequences of construction and operation of NIF were addressed in detail in SSM PEIS Volume III, Appendix I, entitled ''National Ignition Facility Project Specific Analysis'' (NIF PSA). The Record of Decision (ROD) for the SSM PEIS was published in the ''Federal Register'' on December 26, 1996 (61 FR 68014). In the ROD, DOE announced its decision to construct and operate NIF at LLNL. The NIF is an experimental facility that would use laser light to initiate a fusion reaction in very small quantities of hydrogen by a process known as inertial confinement fusion. The start of physical construction of NIF was authorized on March 7, 1997, and groundbreaking for the NIF occurred on May 29, 1997. Construction of the NIF is ongoing; the conventional facilities are over 94% complete and are expected to be completed in late 2001.

N /A

2001-02-23T23:59:59.000Z

27

Stockpile | Y-12 National Security Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

mission. We execute stewardship through refurbishment, dismantlement and surveillance of weapons in the nuclear stockpile. Nuclear Deterrence Stockpile Dismantlement Refurbishment...

28

Nuclear stockpile stewardship and Bayesian image analysis (DARHT and the BIE)  

SciTech Connect

Since the end of nuclear testing, the reliability of our nation's nuclear weapon stockpile has been performed using sub-critical hydrodynamic testing. These tests involve some pretty 'extreme' radiography. We will be discussing the challenges and solutions to these problems provided by DARHT (the world's premiere hydrodynamic testing facility) and the BIE or Bayesian Inference Engine (a powerful radiography analysis software tool). We will discuss the application of Bayesian image analysis techniques to this important and difficult problem.

Carroll, James L [Los Alamos National Laboratory

2011-01-11T23:59:59.000Z

29

Los Alamos National Laboratory: Long-Term Environmental Stewardship and  

NLE Websites -- All DOE Office Websites (Extended Search)

Control the Present Control the Present PreviousNext How does LANL minimize the impacts from ongoing programmatic activities? Control the Present Integrating environmental stewardship to enable the national security mission Integrating environmental stewardship to enable the national security mission This Strategy cannot be effective without systematic integration with other related Laboratory functions, such as site planning, project management, and facilities management. The process of integration will take time, but several steps have been identified during the initial development of the Strategy and are now under way. Integrating actions are: Focus environmental sampling through the use of a Laboratory-wide environmental surveillance sampling strategy Centralize geographic information system (GIS) services to improve

30

Article on Trident Laser Facility for NA-11 Stockpile Stewardship Quarterly  

Science Conference Proceedings (OSTI)

The Trident Intermediate-Scale Laser Facility at Los Alamos National Laboratory is an extremely versatile Nd:glass laser system dedicated to high energy density laboratory physics and weapons physics research and fundamental laser-matter interactions. Trident is a three-beam, 200 J/beam at the second harmonic for glass (527 nm wavelength), facility with tremendous flexibility and high beam quality. Pulse durations varying over 6 orders of magnitude, from 0.5 picoseconds to 1.0 microsecs, can be directed to either of two different target chambers with changeable illumination geometries, including the ability to achieve near-diffraction limited focus. This provides a unique range of capability at one facility from sub-picosecond pulses (and high-intensity laser science) to nanosecond pulses (and LPI physics relevant to ICF) to microsecond pulses (and driving flyer plates for supported shock dynamic materials science.) When in short-pulse mode (less than picosecond pulse), a single beam can provide up to 200 TW of power with uniquely controllable and measured pre-pulse contrast of 10 orders of magnitude. A recent external capability review at Los Alamos concluded that 'Trident is generating excellent, cutting edge science and is a leading intermediate scale laser system worldwide.'

Barnes, Cris W. [Los Alamos National Laboratory

2012-08-13T23:59:59.000Z

31

Los Alamos National Laboratory: Long-Term Environmental Stewardship and  

NLE Websites -- All DOE Office Websites (Extended Search)

Advancing National Security Science while Protecting the Environment Advancing National Security Science while Protecting the Environment Los Alamos Field Office Vision Juan Griego, Acting Manager Juan Griego, Acting Manager The National Nuclear Security Administration is committed to stewardship of the Nation's and New Mexico's resources. I take that responsibility personally and I ensure that everything the Los Alamos Site Office does to support the Los Alamos National Laboratory's mission has environmental protection and stewardship fully considered. As a result, I challenged LANL to integrate environmental protection activities into a comprehensive, long-term execution strategy. The intent of this effort is to take control of LANL's future and set the standard for environmental stewardship for all of New Mexico. The mission performance of the Laboratory depends on many factors,

32

Stockpile Stewardship Quarterly  

National Nuclear Security Administration (NNSA)

performance through safety, and is also a major area that our labs contribute to broader national security goals. This is evident in the 26-year-old Joint Munitions Program...

33

Idaho National Laboratory Site Long-Term Stewardship Implementation Plan  

SciTech Connect

The U.S. Department of Energy has established long-term stewardship programs to protect human health and the environment at sites where residual contamination remains after site cleanup. At the Idaho National Laboratory Site, Comprehensive Environmental Response, Compensation, and Liability Act (CERLA) long-term stewardship activities performed under the aegis of regulatory agreements, the Federal Facility Agreement and Consent Order for the Idaho National Laboratory, and state and federal requirements are administered primarily under the direction of the Idaho Cleanup Project. It represents a subset of all on-going environmental activity at the Idaho National Laboratory Site. This plan provides a listing of applicable CERCLA long-term stewardship requirements and their planned and completed implementation goals. It proffers the Long-Term Stewardship Environmental Data Warehouse for Sitewide management of environmental data. This plan will be updated as needed over time, based on input from the U.S. Department of Energy, its cognizant subcontractors, and other local and regional stakeholders.

B. E. Olaveson

2006-07-27T23:59:59.000Z

34

Environmental Stewardship, Brookhaven National Laboratory, BNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Brookhaven & the Environment Past operations at Brookhaven National Laboratory resulted in environmental contamination dating back to the early 1940s, when the site was Camp Upton,...

35

DOE/EIS-0236-S1F; National Ignition Facility Final Supplemental Environmental Impact Statement to the Stockpile Stewardship and Management Programmatic Environmental Impact Statement (January 2001)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

I: Main Text I: Main Text Prepared by U.S. Department of Energy Oakland Operations Office Oakland, California January 2001 [This page intentionally left blank] iii COVER SHEET RESPONSIBLE AGENCY: U.S. Department of Energy TITLE: National Ignition Facility Final Supplemental Environmental Impact Statement to the Stockpile Stewardship and Management Programmatic Environmental Impact Statement CONTACT: For additional information on For general information on the NEPA this statement, write or call: process at DOE, write or call: Mr. Richard Scott, Document Manager Ms. Carol M. Borgstrom, Director U.S. Department of Energy, L-467 Office of NEPA Policy and Compliance, EH-42 7000 East Avenue, P.O. Box 808 U.S. Department of Energy Livermore, CA 94550 1000 Independence Avenue, SW Telephone: (925) 423-3022

36

DOE/EIS-0236-S1F; National Ignition Facility Final Supplemental Environmental Impact Statement to the Stockpile Stewardship and Management Programmatic Environmental Impact Statement (January 2001)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SUMMARY SUMMARY 1 This Supplemental Environmental Impact Statement (SEIS) was prepared pursuant to a Joint Stipulation and Order approved and entered as an order of the court on October 27, 1997, in partial settlement of the lawsuit Civ. No. 97-936 (SS) (D.D.C.), Natural Resources Defense Council [NRDC] et al. v. Richardson et al. The Joint Stipulation and Order is reproduced at the end of this document as Attachment 1. In the Joint Stipulation and Order, the U.S. Department of Energy (DOE) agreed to prepare an SEIS to the Programmatic Environmental Impact Statement for Stockpile Stewardship and Management (SSM PEIS) (DOE/EIS-0236, DOE 1996a) to evaluate the reasonably foreseeable significant adverse environmental impacts of continuing to construct and of operating the National Ignition Facility (NIF) at Lawrence Livermore National

37

Idaho National Laboratory Comprehensive Land Use and Environmental Stewardship Report  

Science Conference Proceedings (OSTI)

Land and facility use planning and decisions at the Idaho National Laboratory (INL) Site are guided by a comprehensive site planning process in accordance with Department of Energy Policy 430.1, 'Land and Facility Use Policy,' that integrates mission, economic, ecologic, social, and cultural factors. The INL Ten-Year Site Plan, prepared in accordance with Department of Energy Order 430.1B, 'Real Property Asset Management,' outlines the vision and strategy to transform INL to deliver world-leading capabilities that will enable the Department of Energy to accomplish its mission. Land use planning is the overarching function within real property asset management that integrates the other functions of acquisition, recapitalization, maintenance, disposition, real property utilization, and long-term stewardship into a coordinated effort to ensure current and future mission needs are met. All land and facility use projects planned at the INL Site are considered through a formal planning process that supports the Ten-Year Site Plan. This Comprehensive Land Use and Environmental Stewardship Report describes that process. The land use planning process identifies the current condition of existing land and facility assets and the scope of constraints across INL and in the surrounding region. Current land use conditions are included in the Comprehensive Land Use and Environmental Stewardship Report and facility assets and scope of constraints are discussed in the Ten-Year Site Plan. This report also presents the past, present, and future uses of land at the INL Site that are considered during the planning process, as well as outlining the future of the INL Site for the 10, 30, and 100-year timeframes.

No name listed on publication

2011-08-01T23:59:59.000Z

38

Los Alamos National Laboratory: Long-Term Environmental Stewardship and  

NLE Websites -- All DOE Office Websites (Extended Search)

How did contaminants get there? How did contaminants get there? Historical operations used the best available waste handling methods for that time. Map of Los Alamos townsite bordered by Pueblo and Los Alamos Canyons Los Alamos townsite bordered by Pueblo and Los Alamos Canyons Historic liquid discharges and outfalls Ashley Pond TA-21 High Explosives Testing History of Regulatory Oversight at LANL Regulators decide how waste from LANL is handled and disposed. Fact Check » « Regulators make the majority of waste disposition determinations for the Laboratory. LANL is committed to compliance. Over 35 separate state and federal environmental regulations covering waste disposal, clean air, clean water, care of wildlife and plants, and handling of hazardous and radioactive substances ensure stewardship of these resources. When

39

Los Alamos National Laboratory: Long-Term Environmental Stewardship...  

NLE Websites -- All DOE Office Websites (Extended Search)

Create a Sustainable Future PreviousNext How does LANL accomplish future stewardship of the natural and historical resources? Create a Sustainable Future Graphic of natural...

40

Notice of Intent to Prepare a Supplement to the Stockpile Stewardship and Management Programmatic Environmental Impact Statement-Complex 2030 (DOE/EIS-0236-S4)(October 19, 2006)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

31 Federal Register 31 Federal Register / Vol. 71, No. 202 / Thursday, October 19, 2006 / Notices 1 A pit is the central core of a nuclear weapon typically containing plutonium-239 that undergoes fission when compressed by high explosives. DEPARTMENT OF ENERGY Notice of Intent To Prepare a Supplement to the Stockpile Stewardship and Management Programmatic Environmental Impact Statement-Complex 2030 AGENCY: National Nuclear Security Administration, Department of Energy. ACTION: Notice of intent. SUMMARY: The National Nuclear Security Administration (NNSA), an agency within the U.S. Department of Energy (DOE or Department), announces its intent to prepare a Supplement to the Stockpile Stewardship and Management Programmatic Environmental Impact Statement-Complex 2030 (Complex

Note: This page contains sample records for the topic "laboratory stockpile stewardship" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

NNSA's Summary of Experiments Conducted in Support of Stockpile  

NLE Websites -- All DOE Office Websites (Extended Search)

for the 1st quarter of FY2012 prepared by NNSA's for the 1st quarter of FY2012 prepared by NNSA's Office of Defense Programs provides descriptions of key NNSA facilities that conduct stockpile stewardship experiments. These include some of the most sophisticated scientific research facilities in the world including, the Dual Axis Radiographic Hydrodynamic Test (DARHT) facility at Los Alamos National Laboratory, National Ignition Facility (NIF) at Lawrence Livermore National Laboratory, and the Z machine at Sandia National Laboratories. The summary also provides the number of experiments performed at each facility during each quarter of the fiscal year. The U.S. Stockpile Stewardship Program is a robust program of scientific inquiry used to sustain and assess the nuclear weapons stockpile without the use of underground nuclear tests. The experiments carried out within

42

NNSA's Summary of Experiments Conducted in Support of Stockpile  

National Nuclear Security Administration (NNSA)

for the 1st quarter of FY2012 prepared by NNSA's for the 1st quarter of FY2012 prepared by NNSA's Office of Defense Programs provides descriptions of key NNSA facilities that conduct stockpile stewardship experiments. These include some of the most sophisticated scientific research facilities in the world including, the Dual Axis Radiographic Hydrodynamic Test (DARHT) facility at Los Alamos National Laboratory, National Ignition Facility (NIF) at Lawrence Livermore National Laboratory, and the Z machine at Sandia National Laboratories. The summary also provides the number of experiments performed at each facility during each quarter of the fiscal year. The U.S. Stockpile Stewardship Program is a robust program of scientific inquiry used to sustain and assess the nuclear weapons stockpile without the use of underground nuclear tests. The experiments carried out within

43

Thorium Nitrate Stockpile--From Here to Eternity  

Science Conference Proceedings (OSTI)

The Defense National Stockpile Center (DNSC), a field level activity of the Defense Logistics Agency (DLA) has stewardship of a stockpile of thorium nitrate that has been in storage for decades. The stockpile is made up of approximately 3.2 million kg (7 million lb) of thorium nitrate crystals (hydrate form) stored at two depot locations in the United States. DNSC sought technical assistance from Oak Ridge National Laboratory (ORNL) to define and quantify the management options for the thorium nitrate stockpile. This paper describes methodologies and results comprising the work in Phase 1 and Phase 2. The results allow the DNSC to structure and schedule needed tasks to ensure continued safe long-term storage and/or phased disposal of the stockpile.

Hermes, W. H.; Hylton, T. D.; Mattus, C.H.; Storch, S. N.; Singley, P.S.; Terry. J. W.; Pecullan, M.; Reilly, F. K.

2003-02-26T23:59:59.000Z

44

Los Alamos National Laboratory: Long-Term Environmental Stewardship and  

NLE Websites -- All DOE Office Websites (Extended Search)

How does LANL protect human health and the environment from impacts of legacy contamination? Click image to learn more How does LANL minimize the impacts from ongoing activities? Click image to learn more How does LANL accomplish future stewardship of the natural and historical resources? Click image to learn more What did LANL do with the American Recovery and Reinvestment Act funding? Click image to learn more How do LANL workers detect contaminants? Click image to learn more I can't see it. I can't smell it. Can I breathe it? Click image to learn more How does LANL control sediment? Click image to learn more What sampling does LANL perform? Click image to learn more What kind of policy does LANL follow for the environment? Click image to learn more

45

NNSA's Summary of Experiments Conducted in Support of Stockpile...  

National Nuclear Security Administration (NNSA)

prepared by NNSA's Office of Defense Programs provides descriptions of key NNSA facilities that conduct stockpile stewardship experiments. These include some of the most...

46

Stewarding a Reduced Stockpile  

Science Conference Proceedings (OSTI)

The future of the US nuclear arsenal continues to be guided by two distinct drivers: the preservation of world peace and the prevention of further proliferation through our extended deterrent umbrella. Timely implementation of US nuclear policy decisions depends, in part, on the current state of stockpile weapons, their delivery systems, and the supporting infrastructure within the Department of Defense (DoD) and the Department of Energy's National Nuclear Security Administration (NNSA). In turn, the present is a product of past choices and world events. Now more than ever, the nuclear weapons program must respond to the changing global security environment and to increasing budget pressures with innovation and sound investments. As the nation transitions to a reduced stockpile, the successes of the Stockpile Stewardship Program (SSP) present options to transition to a sustainable complex better suited to stockpile size, national strategic goals and budgetary realities. Under any stockpile size, we must maintain essential human capital, forefront capabilities, and have a right-sized effective production capacity. We present new concepts for maintaining high confidence at low stockpile numbers and to effectively eliminate the reserve weapons within an optimized complex. We, as a nation, have choices to make on how we will achieve a credible 21st century deterrent.

Goodwin, B T; Mara, G

2008-04-18T23:59:59.000Z

47

NNSA releases summary of Stockpile Stewardship experiments |...  

NLE Websites -- All DOE Office Websites (Extended Search)

Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA...

48

Stewardship Science Academic Alliances Annual  

National Nuclear Security Administration (NNSA)

Deeney Assistant Deputy Administrator for Stockpile Stewardship M i s s i o n F i r s t . . . T h r o u g h T e a m w o r k CONTENTS Table of Contents 2 SSAA Program...

49

Why the Nuclear Stockpile Needs Supercomputers | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Why the Nuclear Stockpile Needs Supercomputers Why the Nuclear Stockpile Needs Supercomputers Why the Nuclear Stockpile Needs Supercomputers April 28, 2011 - 5:20pm Addthis NNSA supercomputers are a key part of our ability to keep our nuclear stockpile safe, secure and effective. Joshua McConaha What does this mean for me? The NNSA's Stockpile Stewardship Program performs a critical role in implementing President Obama's nuclear security agenda Through a scientific mixture of hardware, software, codes and data and using some of the world's most advanced computer systems, the National Nuclear Security Administration's (NNSA) Stockpile Stewardship Program performs a critical role in implementing President Obama's nuclear security agenda. With the end of underground testing in 1992, supercomputers are a key part

50

Sandia National Laboratories: National Security Missions: Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

Missions Nuclear Weapons Stockpile Stewardship Ensuring the nation's nuclear weapons stockpile is safe, secure, and reliable. About Nuclear Weapons Since 1949, Sandia's scientists...

51

INL Comprehensive Land Use and Environmental Stewardship Report  

NLE Websites -- All DOE Office Websites (Extended Search)

INL Comprehensive Land Use and Environmental Stewardship Report The Idaho National Laboratory announced recently that the Comprehensive Land Use and Environmental Stewardship...

52

Energy and Environmental Stewardship  

Science Conference Proceedings (OSTI)

*. Bookmark and Share. Energy and Environmental Stewardship. The Division's environmental stewardship programs in ...

2013-07-29T23:59:59.000Z

53

Stewardship Science Academic Alliances Program | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Program | National Nuclear Security Program | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Stewardship Science Academic Alliances Program Home > Stewardship Science Academic Alliances Program Stewardship Science Academic Alliances Program Stewardship Science Academic Alliances (SSAA) Program Overview Established in 2002, the Stewardship Science Academic Alliances Program

54

Stewardship Science Academic Alliances | National Nuclear Security  

National Nuclear Security Administration (NNSA)

| National Nuclear Security | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Stewardship Science Academic Alliances Stewardship Science Academic Alliances Home > About Us > Our Programs > Defense Programs > Office of Research, Development, Test, and Evaluation > University Partnerships / Academic Alliances > Stewardship Science Academic Alliances

55

University to National Laboratory and Back--By Todd Sulchek  

E-Print Network (OSTI)

Security Stockpile stewardship, nonproliferation, counter terrorism Energy / Environment Climate modeling: Biosecurity, counterterrorism, national defense, energy/environmental security, intelligence, nonproliferation

Das, Suman

56

NNSA hosts annual Stewardship Science Academic Alliances Symposium |  

National Nuclear Security Administration (NNSA)

annual Stewardship Science Academic Alliances Symposium | annual Stewardship Science Academic Alliances Symposium | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > NNSA hosts annual Stewardship Science Academic Alliances Symposium NNSA hosts annual Stewardship Science Academic Alliances Symposium Posted By Office of Public Affairs

57

Final Site-wide Environmental Impact Statement for Continued Operation of Lawrence Livermore National Laboratory and Supplemental Stockpile Stewardship and Management Programmatic Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SW/SPEIS Chapter 4 - Description of the Existing Environment SW/SPEIS Chapter 4 - Description of the Existing Environment March 2005 4.9-9 TABLE 4.9.3-1.-Federal and California Species with Protected or Sensitive Status Known to Occur at the Livermore Site and Site 300 in 2001 and 2002 Site Status Common Name Livermore Site Site 300 Federal Status Code State Status Code Plants Big tarplant a - X - CNPS List 1 B Hogwallow starfish - X - CNPS List 4 Large-flowered fiddleneck - X FE (CH) CNPS List 1 B Round-leaved filaree - X - CNPS List 2 Stinkbells - X - CNPS List 4 Diamond-petaled poppy - X FSC CNPS List 1 B Gypsum rock jasmine - X - CNPS List 4 Gypsum loving larkspur - X - CNPS List 4 Invertebrates Valley elderberry longhorn beetle - X FT - California linderiella fairy shrimp - X FSC - Amphibians

58

NNSA highlights Stockpile Stewardship Program, commemorates 20th...  

NLE Websites -- All DOE Office Websites (Extended Search)

Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA...

59

US, UK, France Discuss Stockpile Stewardship, Arms Control and...  

National Nuclear Security Administration (NNSA)

in the 2010 Non-Proliferation Treaty Review Conference Action Plan. About the photo: Policy and technical representatives from the United States, United Kingdom, and France...

60

Lawrence Livermore National Laboratory | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory | July 2011 Aerial View Lawrence Livermore National Laboratory | July 2011 Aerial View Lawrence Livermore National Laboratory's (LLNL) primary mission is research and development in support of national security. As a nuclear weapons design laboratory, LLNL has responsibilities in nuclear stockpile stewardship. LLNL also applies its expertise to prevent the spread and use of weapons of mass destruction and strengthen homeland security. Other areas include advanced defense technologies, energy, environment, biosciences, and basic science. Enforcement July 22, 2013 Enforcement Letter, NEL-2013-03 Issued to Lawrence Livermore National Security, LLC related to Programmatic

Note: This page contains sample records for the topic "laboratory stockpile stewardship" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Risk in the Weapons Stockpile  

Science Conference Proceedings (OSTI)

When it comes to the nuclear weapons stockpile, risk must be as low as possible. Design and care to keep the stockpile healthy involves all aspects of risk management. Design diversity is a method that helps to mitigate risk.

Noone, Bailey C [Los Alamos National Laboratory

2012-08-14T23:59:59.000Z

62

Because Environmental Stewardship  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental Stewardship Environmental Stewardship is everyone's responsibility Success of SNL/CA's EMS depends on you! Sandia/CA's EMS will only be successful through full integration into all aspects of site operations. You can participate in SNL/CA's success by considering environ- mental impacts when planning and performing your work. Here are a few simple ways you can support SNL/CA's EMS success: Sandia National Laboratories C a l i f o r n i a E n v i r o n m e n t a l M a n a g e m e n t S y s t e m The Basics  Consider using less toxic chemicals for laboratory activities  Minimize waste by purchasing only the amount of chemicals needed  Incorporate sustainable design principles into new and remodeled facilities  Recycle all office paper products  Minimize the use of once through potable water for

63

Federal Stewardship | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Federal Stewardship Federal Stewardship Ames Site Office (AMSO) AMSO Home About Organization Chart .pdf file (113KB) Federal Stewardship Internal Site Office Operations Jobs Current Projects Contract Management Environment, Safety and Health (ES&H) Resources Contact Information Ames Site Office U.S. Department of Energy 9800 S. Cass Avenue Argonne, IL 60439 P: (630) 252-6167 F: (630) 252-2855 About Federal Stewardship Print Text Size: A A A RSS Feeds FeedbackShare Page The Federal Stewardship maintains and protects Federal assets at the Ames Laboratory or assigned to the Ames Site Office. Objectives Reviews and assesses Ames Laboratory and support activities and stewardship needs against the contract requirements and takes action, as necessary. Develops and maintains an effective working relationship and communication

64

Sandia National Laboratories | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Kevin Eklund Kevin Eklund Sandia National Laboratories Kevin Eklund Kevin Eklund Role: Sandia National Laboratories Profile: Two individuals and nine teams received the NNSA Defense Programs Awards of Excellence at ceremonies this year at Sandia National Laboratories in New Mexico and California. The NNSA Defense Programs Awards of Excellence were created in the early 1980s to give special recognition to those at the laboratories and plants directly associated with the stockpile modernization program. Today, the awards honor exceptional contributions to the stewardship and management of the stockpile. Kevin Eklund is recognized for outstanding technical leadership of Sandia's responsibilities in successfully achieving the B61 ALT 357 Life Extension Program (LEP). Kevin led the majority of the qualification testing for the

65

Los Alamos names new head of stockpile manufacturing and support  

NLE Websites -- All DOE Office Websites (Extended Search)

New head of stockpile manufacturing and support New head of stockpile manufacturing and support Los Alamos names new head of stockpile manufacturing and support Carl Beard is the new associate director for stockpile manufacturing and support. Beard has held this position in an acting capacity since June 2007. January 22, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

66

Managing the Stockpile | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Managing the Stockpile Home > Our Mission > Managing the Stockpile...

67

ORISE: Chemical Stockpile Emergency Preparedness Program (CSEPP...  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Stockpile Emergency Preparedness Program (CSEPP) Training The Oak Ridge Institute for Science and Education (ORISE) works closely with the Chemical Stockpile Emergency...

68

Open Space Stewardship Workshop for Secondary Teachers | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Open Space Stewardship Workshop for Secondary Teachers Open Space Stewardship Workshop for Secondary Teachers Open Space Stewardship Workshop for Secondary Teachers April 15, 2013 4:15PM EDT to June 14, 2013 5:15PM EDT Brookhaven National Laboratory This practical, hands-on workshop provides an opportunity to experience the equipment and field techniques that are useful in Open Space Stewardship Program. The four day workshop (July 15-19 2013) seeks to make Open Space Stewardship Program a part of your classroom and school, explore the interdisciplinary nature of Open Space Stewardship and how it can serve as a basis for multiple content areas, find open spaces near your school, and develop a plan for implementing OSSP in your classroom, learn about and practice field and hands-on techniques for studying the environment,

69

Electronics Stewardship and Data Center  

NLE Websites -- All DOE Office Websites (Extended Search)

of electronic stewardship: Procurement of environmentally preferable electronics Enable electronics power management capabilities Establish and implement policies to extend the...

70

EPA Notice of Availability of the Site-wide Continued Operation of Lawrence Livermore National Laboratory and Stockpile Stewardship and Management, Implementation (DOE/EIS-0348/DOE/EIS-0236-S3)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

08 08 Federal Register / Vol. 70, No. 82 / Friday, April 29, 2005 / Notices beneficial uses of dredged materials (i.e., wetlands restoration in Dorchester County, MD). EPA expressed environmental concerns over the remaining three alternatives (i.e., the proposed multiple new Confined Disposal Facilities in the Patapsco River, the Poplar Island Environmental Restoration Project expansion and the Large Island Restoration Middle Bay). EPA recommended that continued use of Open Water Placement in Virginia include the already designated NorfolkOcean Disposal Site given its available capacity. Rating EC1 EIS No. 20050053, ERP No. D-CGD- E03013-00, Compass Port and Deepwater Port License Application, To Construct a Liquefied Natural Gas (LNG) Receiving, Storage and

71

Electronics Stewardship | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electronics Electronics Stewardship Electronics Stewardship Mission The team promotes sustainable management of LM's electronic equipment by integrating the relevant requirements of Executive Order (EO) 13423, Strengthening Federal Environmental, Energy, and Transportation Management, and (EO) 13514, Federal Leadership in Environmental, Energy, and Economic Performance, and DOE Order 436.1, Departmental Sustainability, with LM activities, as approved by LM. The team advocates environmentally sound electronic stewardship practices. Scope The team uses a life-cycle approach to reduce the negative environmental impacts posed by electronic equipment. Established processes evaluate beneficial acquisition, use, and disposition of electronic equipment. Key Expectations Propose electronic stewardship goals/targets.

72

NREL: Sustainable NREL - Environmental Stewardship  

NLE Websites -- All DOE Office Websites (Extended Search)

excellent environmental stewardship of its campuses into a highly replicable sustainability strategy, minimizing the environmental impacts of the lab's activities. Through...

73

Stockpile tritium production from fusion  

SciTech Connect

A fusion breeder holds the promise of a new capability - ''dialable'' reserve capacity at little additional cost - that offers stockpile planners a new way to deal with today's uncertainties in forecasting long range needs. Though still in the research stage, fusion can be developed in time to meet future military requirements. Much of the necessary technology will be developed by the ongoing magnetic fusion energy program. However, a specific program to develop the nuclear technology required for materials production is needed if fusion is to become a viable option for a new production complex around the turn of the century.

Lokke, W.A.; Fowler, T.K.

1986-03-21T23:59:59.000Z

74

An Introduction to Risk with a Focus on Design Diversity in the Stockpile  

Science Conference Proceedings (OSTI)

The maintenance and security of nuclear weapons in the stockpile involves decisions based on risk analysis and quantitative measures of risk. Risk is a factor in all decisions, a particularly important factor in decisions of a large scale. One example of high-risk decisions we will discuss is the risk involved in design diversity within the stockpile of nuclear weapons arsenal. Risk is defined as 'possibility of loss or injury' and the 'degree of probability of such loss' (Kaplan and Garrick 12). To introduce the risk involved with maintaining the weapons stockpile we will draw a parallel to the design and maintenance of Southwest Airlines fleet of Boeing 737 planes. The clear benefits for cost savings in maintenance of having a uniform fleet are what historically drove Southwest to have only Boeing 737s in their fleet. Less money and resources are need for maintenance, training, and materials. Naturally, risk accompanies those benefits. A defect in a part of the plane indicates a potential defect in that same part in all the planes of the fleet. As a result, safety, business, and credibility are at risk. How much variety or diversity does the fleet need to mitigate that risk? With that question in mind, a balance is needed to accommodate the different risks and benefits of the situation. In a similar way, risk is analyzed for the design and maintenance of nuclear weapons in the stockpile. In conclusion, risk must be as low as possible when it comes to the nuclear weapons stockpile. Design and care to keep the stockpile healthy involves all aspects of risk management. Design diversity is a method that helps to mitigate risk, and to help balance options in stockpile stewardship.

Noone, Bailey C [Los Alamos National Laboratory

2012-08-13T23:59:59.000Z

75

ORISE: Chemical Stockpile Emergency Preparedness Program Exercise...  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Stockpile Emergency Preparedness Program Exercise Training and Analysis Tool Training Tool Improves Information Sharing Between CSEPP and its Response Partners In 2006,...

76

Long-Term Environmental Stewardship  

NLE Websites -- All DOE Office Websites (Extended Search)

Long-Term Environmental Stewardship Long-Term Environmental Stewardship The Long-Term Environmental Stewardship Program ensures protection of human health and the environment, following site remediations. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Continuing environmental commitment Long-term stewardship activities are designed to prevent exposures to residual contamination and waste including groundwater monitoring ongoing pump-and-treatment activities maintenance of barriers and other contaminant structures periodic inspections control of site access posted signs Long-term environmental stewardship (LTES) data access DOE requires that data used to make decisions concerning LTES conditions be readily accessible to the public. To accomplish this, sample analysis data

77

Long-Term Stewardship Study  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of Long Term Stewardship Office of Long Term Stewardship LONG-TERM STEWARDSHIP STUDY Volume I - Report Prepared to comply with the terms of a settlement agreement: Natural Resources Defense Council, et al. v. Richardson, et al., Civ. No. 97-936 (SS) (D.D.C. Dec. 12, 1998). Final Study October 2001 - i - Foreword The Department of Energy (DOE) has prepared this Long-term Stewardship Study ("Study" or "Final Study") to comply with the terms of a settlement agreement between DOE, the Natural Resources Defense Council, and 38 other plaintiffs [Natural Resources Defense Council, et al. v. Richardson, et al., Civ. No. 97-936 (SS) (D.D.C. Dec. 12, 1998)]. The Study describes and analyzes several issues and a variety of information associated with long-term stewardship. The Study

78

Long-Term Stewardship Baseline Report and Transition Guidance  

SciTech Connect

Long-term stewardship consists of those actions necessary to maintain and demonstrate continued protection of human health and the environment after facility cleanup is complete. As the Department of Energy’s (DOE) lead laboratory for environmental management programs, the Idaho National Engineering and Environmental Laboratory (INEEL) administers DOE’s long-term stewardship science and technology efforts. The INEEL provides DOE with technical, and scientific expertise needed to oversee its long-term environmental management obligations complexwide. Long-term stewardship is administered and overseen by the Environmental Management Office of Science and Technology. The INEEL Long-Term Stewardship Program is currently developing the management structures and plans to complete INEEL-specific, long-term stewardship obligations. This guidance document (1) assists in ensuring that the program leads transition planning for the INEEL with respect to facility and site areas and (2) describes the classes and types of criteria and data required to initiate transition for areas and sites where the facility mission has ended and cleanup is complete. Additionally, this document summarizes current information on INEEL facilities, structures, and release sites likely to enter long-term stewardship at the completion of DOE’s cleanup mission. This document is not intended to function as a discrete checklist or local procedure to determine readiness to transition. It is an overarching document meant as guidance in implementing specific transition procedures. Several documents formed the foundation upon which this guidance was developed. Principal among these documents was the Long-Term Stewardship Draft Technical Baseline; A Report to Congress on Long-Term Stewardship, Volumes I and II; Infrastructure Long-Range Plan; Comprehensive Facility Land Use Plan; INEEL End-State Plan; and INEEL Institutional Plan.

Kristofferson, Keith

2001-11-01T23:59:59.000Z

79

Land Stewardship | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Land Stewardship Land Stewardship Land Stewardship Mission The team advocates improved ecosystem health on LM properties in accordance with DOE Order 430.1B, Real Property Asset Management; federal regulations, such as the Endangered Species Act, the Noxious Weed Act, and the Wetlands and Floodplains Act; and in consideration of LM agreements with regulatory agencies and tribes. The team advocates identifying and proposing land management improvements on LM sites that are beneficial to ecosystems and improve remedy sustainability. Improvements are implemented with consideration of adjacent land uses, owners, and political entities. Success is defined when measurable parameters are achieved. Scope The team identifies and evaluates proposals to enhance ecosystem health at

80

DOE - Office of Legacy Management -- Falls City Uranium Ore Stockpile...  

NLE Websites -- All DOE Office Websites (Extended Search)

Uranium Ore Stockpile - TX 04A FUSRAP Considered Sites Site: Falls City Uranium Ore Stockpile (TX.04A ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations:...

Note: This page contains sample records for the topic "laboratory stockpile stewardship" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Research programs at the Department of Energy National Laboratories. Volume 2: Laboratory matrix  

Science Conference Proceedings (OSTI)

For nearly fifty years, the US national laboratories, under the direction of the Department of Energy, have maintained a tradition of outstanding scientific research and innovative technological development. With the end of the Cold War, their roles have undergone profound changes. Although many of their original priorities remain--stewardship of the nation`s nuclear stockpile, for example--pressing budget constraints and new federal mandates have altered their focus. Promotion of energy efficiency, environmental restoration, human health, and technology partnerships with the goal of enhancing US economic and technological competitiveness are key new priorities. The multiprogram national laboratories offer unparalleled expertise in meeting the challenge of changing priorities. This volume aims to demonstrate each laboratory`s uniqueness in applying this expertise. It describes the laboratories` activities in eleven broad areas of research that most or all share in common. Each section of this volume is devoted to a single laboratory. Those included are: Argonne National Laboratory; Brookhaven National Laboratory; Idaho National Engineering Laboratory; Lawrence Berkeley Laboratory; Lawrence Livermore National Laboratory; Los Alamos National Laboratory; National Renewable Energy Laboratory; Oak Ridge National Laboratory; Pacific Northwest Laboratory; and Sandia National Laboratories. The information in this volume was provided by the multiprogram national laboratories and compiled at Lawrence Berkeley Laboratory.

NONE

1994-12-01T23:59:59.000Z

82

Stewardship on the Oak Ridge Reservation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Stewardship Stewardship on the on the Oak Ridge Reservation Oak Ridge Reservation * * End Use Working Group End Use Working Group formed in 1997 formed in 1997 - - a broad a broad based community based community constituency determined in constituency determined in its 1998 Final Report that its 1998 Final Report that some contamination would some contamination would remain in place at certain remain in place at certain locations with adequate locations with adequate groundwater protection and groundwater protection and long long - - term stewardship term stewardship ORSSAB Established in 1995 ORSSAB Established in 1995 The Stakeholder The Stakeholder ' ' s Report on Stewardship (1998) s Report on Stewardship (1998)

83

Draft Supplemental Programmatic Environmental Impact Statement on Stockpile Stewardship and Management for a Modern Pit Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Summary Summary i TABLE OF CONTENTS Cover Sheet Table of Contents............................................................................................................................. i List of Figures ................................................................................................................................ iii List of Tables ................................................................................................................................ iii Acronyms and Abbreviations ........................................................................................................ iv Conversion Chart ........................................................................................................................... vi

84

Draft Supplemental Programmatic Environmental Impact Statement on Stockpile Stewardship and Management for a Modern Pit Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Modern Pit Facility Draft Environmental Impact Statement Modern Pit Facility Draft Environmental Impact Statement xii ACRONYMS AND ABBREVIATIONS AC/MC Analytical Chemistry and Materials Characterization ACHP Advisory Council on Historic Preservation ALARA as low as reasonably achievable ALOHA Aerial Location of Hazardous Atmospheres AQCR Air Quality Control Region ARF airborne release fraction Bison-m Biota Information System of New Mexico BLM Bureau of Land Management BLS Bureau of Labor Statistics BNM Bandelier National Monument CAA Clean Air Act CAIRS Computerized Accident/Incident Reporting System CD-0 critical decision on mission need CEQ Council on Environmental Quality CFR Code of Federal Regulations CGTO Consolidated Group of Tribes and Organizations

85

Draft Supplemental Programmatic Environmental Impact Statement on Stockpile Stewardship and Management for a Modern Pit Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Table of Contents Table of Contents i VOLUME I: TABLE OF CONTENTS Cover Sheet Table of Contents............................................................................................................................. i List of Figures ............................................................................................................................... xv List of Tables .............................................................................................................................. xvii Acronyms and Abbreviations ..................................................................................................... xxx Chemicals and Units of Measure .............................................................................................. xxxv

86

Stewardship Science Graduate Fellowship Program | National Nuclear...  

National Nuclear Security Administration (NNSA)

Fellowship Program Stewardship Science Graduate Fellowship Program The Computational Science Graduate Fellowship (CSGF) The Department of Energy Computational Science Graduate...

87

Cognitive Informatics, Pacific Northwest National Laboratory...  

NLE Websites -- All DOE Office Websites (Extended Search)

Cognitive Informatics, Pacific Northwest National Laboratory | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the...

88

Manager, Sandia National Laboratories | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

Sandia National Laboratories | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response...

89

The Technology Information Environment with Industry (TIE-In): A mechanism for accessing laboratory solutions  

SciTech Connect

The Technology Information Environment with Industry (TIE-In) is a system that helps users obtain laboratory-developed technical solutions without requiring that they duplicate the technical resources (in people, hardware and software) at the national laboratories. TIE-In is based on providing users with controlled access to distributed laboratory resources that are packaged in intelligent user interfaces. These interfaces help users obtain technical solutions without requiring that the user have specialized technical and computer expertise. As a designated DOE Technology Deployment Center/User Facility, industry users can access a broad range of laboratory-developed technologies on a cost-recovery basis. TIE-In will also be used to share laboratory resources with partners in US industry that help the DOE meet future manufacturing needs for the stewardship of our nation`s nuclear weapons stockpile.

Ang, J.A.; Machin, G.D.; Marek, E.L.

1994-12-31T23:59:59.000Z

90

Follow-up Audit on Stockpile Surveillance Testing, IG-0744 | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Follow-up Audit on Stockpile Surveillance Testing, IG-0744 Follow-up Audit on Stockpile Surveillance Testing, IG-0744 Follow-up Audit on Stockpile Surveillance Testing, IG-0744 Significant backlogs existed in each of the three types of tests Surveillance Testing conducted in the Surveillance Testing Program---laboratory tests, flight tests, and component tests---as of September 30? 2005. Laboratory tests are conducted on weapons' non-nuclear systems to detect defects due to handling, aging, manufacturing, or design. Flight tests involve dropping or launching a weapon, with its nuclear components removed, to assess performance and reliability. Component tests involve the destructive analysis of the five primary weapon components: pits, secondaries, detonators, cable assemblies, and the gas transfer valves systems

91

Follow-up Audit on Stockpile Surveillance Testing, IG-0744 | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Follow-up Audit on Stockpile Surveillance Testing, IG-0744 Follow-up Audit on Stockpile Surveillance Testing, IG-0744 Follow-up Audit on Stockpile Surveillance Testing, IG-0744 Significant backlogs existed in each of the three types of tests Surveillance Testing conducted in the Surveillance Testing Program---laboratory tests, flight tests, and component tests---as of September 30? 2005. Laboratory tests are conducted on weapons' non-nuclear systems to detect defects due to handling, aging, manufacturing, or design. Flight tests involve dropping or launching a weapon, with its nuclear components removed, to assess performance and reliability. Component tests involve the destructive analysis of the five primary weapon components: pits, secondaries, detonators, cable assemblies, and the gas transfer valves systems

92

Environmental Stewardship at Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

of the Lab's commitment to environmentally responsible operations, it established the BNL Environmental Management System (EMS). The Lab's EMS ensures that environmental issues are...

93

Lawrence Livermore National Laboratory 2007 Annual Report  

SciTech Connect

Lawrence Livermore National Laboratory's many outstanding accomplishments in 2007 are a tribute to a dedicated staff, which is shaping the Laboratory's future as we go through a period of transition and transformation. The achievements highlighted in this annual report illustrate our focus on the important problems that affect our nation's security and global stability, our application of breakthrough science and technology to tackle those problems, and our commitment to safe, secure, and efficient operations. In May 2007, the Department of Energy (DOE) awarded Lawrence Livermore National Security, LLC (LLNS), a new public-private partnership, the contract to manage and operate the Laboratory starting in October. Since its inception in 1952, the Laboratory had been managed by the University of California (UC) for the DOE's National Nuclear Security Administration (NNSA) and predecessor organizations. UC is one of the parent organizations that make up LLNS, and UC's presence in the new management entity will help us carry forward our strong tradition of multidisciplinary science and technology. 'Team science' applied to big problems was pioneered by the Laboratory's co-founder and namesake, Ernest O. Lawrence, and has been our hallmark ever since. Transition began fully a year before DOE's announcement. More than 1,600 activities had to be carried out to transition the Laboratory from management by a not-for-profit to a private entity. People, property, and procedures as well as contracts, formal agreements, and liabilities had to be transferred to LLNS. The pre-transition and transition teams did a superb job, and I thank them for their hard work. Transformation is an ongoing process at Livermore. We continually reinvent ourselves as we seek breakthroughs that impact emerging national needs. An example is our development in the late 1990s of a portable instrument that could rapidly detect DNA signatures, research that started with a view toward the potential threat of terrorist use of biological weapons. As featured in our annual report, activities in this area have grown to many important projects contributing to homeland security and disease prevention and control. At times transformation happens in large steps. Such was the case when nuclear testing stopped in the early 1990s. As one of the nation's nuclear weapon design laboratories, Livermore embarked on the Stockpile Stewardship Program. The objectives are to ensure the safety, security, and reliability of the nation's nuclear weapons stockpile and to develop a science-based, thorough understanding of the performance of nuclear weapons. The ultimate goal is to sustain confidence in an aging stockpile without nuclear testing. Now is another time of major change for the Laboratory as the nation is resizing its nuclear deterrent and NNSA begins taking steps to transform the nuclear weapons complex to meet 21st-century national security needs. As you will notice in the opening commentary to each section of this report, the Laboratory's senior management team is a mixture of new and familiar faces. LLNS drew the best talent from its parent organizations--Bechtel National, UC, Babcock & Wilcox, the Washington Group Division of URS, and Battelle--to lead the Laboratory. We are honored to take on the responsibility and see a future with great opportunities for Livermore to apply its exceptional science and technology to important national problems. We will work with NNSA to build on the successful Stockpile Stewardship Program and transform the nation's nuclear weapons complex to become smaller, safer, more secure, and more cost effective. Our annual report highlights progress in many relevant areas. Laboratory scientists are using astonishing computational capabilities--including BlueGene/L, the world's fastest supercomputer with a revolutionary architecture and over 200,000 processors--to gain key insights about performance of aging nuclear weapons. What we learn will help us sustain the stockpile without nuclear testing. Preparations are underway to start experiments at

Chrzanowski, P; Walter, K

2008-04-25T23:59:59.000Z

94

ENERGY STAR® Congregations Energy Stewardship Action List |...  

NLE Websites -- All DOE Office Websites (Extended Search)

Congregations Energy Stewardship Action List Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new...

95

Building an Electronics Stewardship Team & Receiving Management...  

NLE Websites -- All DOE Office Websites (Extended Search)

Stewardship Team * Sept '06, Kicked off the Process - Visit from Jeff Eagan & Jane Powers - Assembled 7 audiences consisting of upper management from each group and employees...

96

Stewardship Science Academic Programs Annual | National Nuclear...  

National Nuclear Security Administration (NNSA)

Alliances Annual 2011 Stewardship Science Academic Alliances Annual Banner photo: The Texas Petawatt laser bay at the University of Texas, Center for High Intensity Laser Science...

97

Nanoscale Synthesis and Characterization Laboratory Annual Report 2005  

SciTech Connect

The Nanoscale Synthesis and Characterization Laboratory's (NSCL) primary mission is to create and advance interdisciplinary research and development opportunities in nanoscience and technology. The initial emphasis of the NSCL has been on development of scientific solutions in support of target fabrication for the NIF laser and other stockpile stewardship experimental platforms. Particular emphasis has been placed on the design and development of innovative new materials and structures for use in these targets. Projects range from the development of new high strength nanocrystalline alloys to graded density materials to high Z nanoporous structures. The NSCL also has a mission to recruit and train personnel for Lab programs such as the National Ignition Facility (NIF), Defense and Nuclear Technologies (DNT), and Nonproliferation, Arms control and International security (NAI). The NSCL continues to attract talented scientists to the Laboratory.

Hamza, A V; Lesuer, D R

2006-01-03T23:59:59.000Z

98

The Computation Directorate at Lawrence Livermore National Laboratory  

Science Conference Proceedings (OSTI)

The Computation Directorate at Lawrence Livermore National Laboratory has four major areas of work: (1) Programmatic Support -- Programs are areas which receive funding to develop solutions to problems or advance basic science in their areas (Stockpile Stewardship, Homeland Security, the Human Genome project). Computer scientists are 'matrixed' to these programs to provide computer science support. (2) Livermore Computer Center (LCC) -- Development, support and advanced planning for the large, massively parallel computers, networks and storage facilities used throughout the laboratory. (3) Research -- Computer scientists research advanced solutions for programmatic work and for external contracts and research new HPC hardware solutions. (4) Infrastructure -- Support for thousands of desktop computers and numerous LANs, labwide unclassified networks, computer security, computer-use policy.

Cook, L

2006-09-07T23:59:59.000Z

99

NNSA interns visit Sandia National Laboratories | National Nuclear...  

National Nuclear Security Administration (NNSA)

interns visit Sandia National Laboratories | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

100

about Savannah River National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Tritium Effects on Materials In an effort to ensure the safety of the nation's nuclear weapons stockpile, the Savannah River National Laboratory (SRNL) maintains an active role in...

Note: This page contains sample records for the topic "laboratory stockpile stewardship" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Welcome to Los Alamos National Laboratory: A premier national security science laboratory  

Science Conference Proceedings (OSTI)

Dr Wallace presents visitors with an overview of LANL's national security science mission: stockpile stewardship, protecting against the nuclear threat, and energy security & emerging threats, which are underpinned by excellence in science/technology/engineering capabilities. He shows visitors a general Lab overview of budget, staff, and facilities before providing a more in-depth look at recent Global Security accomplishments and current programs.

Wallace, Terry [Los Alamos National Laboratory

2012-06-25T23:59:59.000Z

102

LEP: Extending stockpile life | Y-12 National Security Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

LEP: Extending stockpile ... LEP: Extending stockpile ... LEP: Extending stockpile life Posted: February 7, 2013 - 6:10pm | Y-12 Report | Volume 9, Issue 2 | 2013 The Life Extension Program allows safe, effective weapons to remain in the stockpile well beyond their original service life. Nuclear weapons are intricate and, in a sense, handmade devices that cannot be stored indefinitely - and be expected to function - without ongoing care and maintenance. Weapon components periodically require evaluation and replacement. Fifteen years ago the Life Extension Program, or LEP, funded by Defense Programs, was established to care for and prolong the safety and effectiveness of the nuclear stockpile. Today Y-12 and other sites across the Nuclear Security Enterprise collaborate in that effort.

103

Responsible stewardship of nuclear materials  

SciTech Connect

The ability to tap the massive energy potential of nuclear fission was first developed as a weapon to end a terrible world war. Nuclear fission is also a virtually inexhaustible energy resource, and is the only energy supply in certain areas in Russia, Kazakhstan and elsewhere. The potential link between civilian and military applications has been and continues to be a source of concern. With the end of the Cold War, this issue has taken a dramatic turn. The U.S. and Russia have agreed to reduce their nuclear weapons stockpiles by as much as two-thirds. This will make some 100 tonnes of separated plutonium and 500 tonnes of highly enriched uranium available, in a form that is obviously directly usable for weapons. The total world inventory of plutonium is now around 1000 tonnes and is increasing at 60-70 tonnes per year. There is even more highly enriched uranium. Fortunately the correct answer to what to do with excess weapons material is also the most attractive. It should be used and reused as fuel for fast reactors. Material in use (particularly nuclear material) is very easy to monitor and control, and is quite unattractive for diversion. Active management of fissile materials not only makes a major contribution to economic stability and well-being, but also simplifies accountability, inspection and other safeguards processes; provides a revenue stream to pay for the necessary safeguards; and, most importantly, limits the prospective world inventory of plutonium to only that which is used and useful.

Hannum, W.H.

1994-10-01T23:59:59.000Z

104

Promoting Data Stewardship Through Best Practices  

Science Conference Proceedings (OSTI)

The ecological and environmental sciences are comprised of many different disciplines, each with their own methods, theories, and culture. A characteristic that most of these different disciplines share, however, is a lack of culture for good stewardship of data. Characteristics of good data stewardship include understanding the importance of data management, using best practices for managing data, and recognizing the value of data sharing and data reuse for the future of ecology and the environmental sciences. The Data Observation Network for Earth (DataONE) is actively developing a community database of best practices that can be easily accessed and adopted by scientists to promote good data stewardship practices and lead to high quality data products. Here we introduce DataONE s approach to developing the best practices database and provide a data management primer that contains examples relevant to all elements of the data life cycle.

Strasser, C.A. [University of California, Santa Barbara; Cook, Robert B [ORNL; Michener, William [University of New Mexico, Albuquerque; Budden, Amber [DataONE; Koskela, Rebecca [DataONE

2011-01-01T23:59:59.000Z

105

Executive Order 13547-Stewardship of the Ocean, Our Coasts, and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

47-Stewardship of the Ocean, Our Coasts, and the Great Lakes Executive Order 13547-Stewardship of the Ocean, Our Coasts, and the Great Lakes This order establishes a national...

106

Speculation without Oil Stockpiling as a Signature: A Dynamic Perspective  

E-Print Network (OSTI)

According to the standard analysis of commodity prices, stockpiling is a necessary signature of speculation. This paper develops an approach suggesting that speculation may temporarily push crude oil prices above the level ...

Babusiaux, Denis

107

Coal stockpiles at electric power plants were above average ...  

U.S. Energy Information Administration (EIA)

Increased competition between fuels as well as a warm winter 2011-12 led to lower consumption of coal and, thus, higher coal stockpiles at electric power plants in ...

108

Brookhaven National Laboratory, Office  

NLE Websites -- All DOE Office Websites (Extended Search)

of 2006 the Office of Educational Programs (OEP) at the U.S. Department of Energy's Brookhaven National Laboratory launched the Open Space Stewardship Program as part of its Green...

109

ORISE: Chemical Stockpile Emergency Preparedness Program Exercise Training  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Stockpile Emergency Preparedness Program Exercise Training and Chemical Stockpile Emergency Preparedness Program Exercise Training and Analysis Tool Training Tool Improves Information Sharing Between CSEPP and its Response Partners In 2006, the Oak Ridge Institute for Science and Education (ORISE) customized the structure of the U.S. Department of Energy's (DOE) Office of Emergency Response Asset Readiness Management System (ARMS) databases to create a framework for Chemical Stockpile Emergency Preparedness Program (CSEPP) sites to track compliance with the National Incident Management System (NIMS) and resolution of corrective actions. ORISE enhanced the functionality and navigation to provide CSEPP with an Exercise and Training Analysis Tool (CETAT). The CETAT database enables CSEPP sites to identify and track functional issues and assess NIMS

110

Multi-generational stewardship of plutonium  

SciTech Connect

The post-cold war era has greatly enhanced the interest in the long-term stewardship of plutonium. The management of excess plutonium from proposed nuclear weapons dismantlement has been the subject of numerous intellectual discussions during the past several years. In this context, issues relevant to long-term management of all plutonium as a valuable energy resource are also being examined. While there are differing views about the future role of plutonium in the economy, there is a recognition of the environmental and health related problems and proliferation potentials of weapons-grade plutonium. The long-term management of plutonium as an energy resource will require a new strategy to maintain stewardship for many generations to come.

Pillay, K.K.S. [Los Alamos National Lab., NM (United States). Nuclear Materials Technology Div.

1997-10-01T23:59:59.000Z

111

Sandia National Laboratories: Sandia Receives Award for Electronics  

NLE Websites -- All DOE Office Websites (Extended Search)

News News Environmental Management System Pollution Prevention Sustainable Acquisition Electronics Stewardship Recycling Reuse Outreach Awards News About News Sandia Receives Award for Electronics Stewardship September 19, 2011 electronics stewardship award ALBUQUERQUE, N.M. - Sandia National Laboratories has received an award for reducing the environmental impacts of the computers, printers and other office electronics it uses through its fiscal year 2010 electronics stewardship activities. The U.S. Environmental Protection Agency (EPA) and the Office of the Federal Environmental Executive, which jointly manage the Federal Electronics Challenge (FEC), gave Sandia a silver award for its progress in life cycle electronics stewardship (purchasing, operations and end-of-life

112

Long-Term Stewardship Study | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Long-Term Stewardship Study Long-Term Stewardship Study Long-Term Stewardship Study The Department of Energy (DOE) has prepared this Long-term Stewardship Study ("Study" or "Final Study") to comply with the terms of a settlement agreement between DOE, the Natural Resources Defense Council, and 38 other plaintiffs [Natural Resources Defense Council, et al. v. Richardson, et al., Civ. No. 97-936 (SS) (D.D.C. Dec. 12, 1998)]. The Study describes and analyzes several issues and a variety of information associated with long-term stewardship. Long-Term Stewardship Study More Documents & Publications EIS-0226: Notice of Intent to Prepare an Environmental Impact Statement EIS-0226: Notice of Intent to Prepare an Environmental Impact Statement Long-Term Surveillance and Maintenance Program 2003 Report

113

Long-Term Stewardship Study | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Long-Term Stewardship Study Long-Term Stewardship Study Long-Term Stewardship Study The Department of Energy (DOE) has prepared this Long-term Stewardship Study ("Study" or "Final Study") to comply with the terms of a settlement agreement between DOE, the Natural Resources Defense Council, and 38 other plaintiffs [Natural Resources Defense Council, et al. v. Richardson, et al., Civ. No. 97-936 (SS) (D.D.C. Dec. 12, 1998)]. The Study describes and analyzes several issues and a variety of information associated with long-term stewardship. Long-Term Stewardship Study More Documents & Publications Long-Term Surveillance and Maintenance Program 2003 Report Site Transition Process upon Completion of the Cleanup Mission: Fact Sheet (September 2013) Chairs Meeting - April 2010

114

California | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April 29, 2005 April 29, 2005 EIS-0348: Final Site-wide Environmental Impact Statement Continued Operation of Lawrence Livermore National Laboratory and Supplement Stockpile Stewardship and Management April 29, 2005 EIS-0348: Final Site-wide Environmental Impact Statement Continued Operation of Lawrence Livermore National Laboratory and Supplement Stockpile Stewardship and Management Tables and Figures April 29, 2005 EIS-0348: Final Site-wide Environmental Impact Statement Continued Operation of Lawrence Livermore National Laboratory and Supplement Stockpile Stewardship and Management Volume III, Appendices E to P April 29, 2005 EIS-0348: Final Site-wide Environmental Impact Statement Continued Operation of Lawrence Livermore National Laboratory and Supplement Stockpile Stewardship and Management

115

Reports | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

and stockpile stewardship. Some of these reports are listed below: Advancing the Science of High Energy Density Laboratory Plasmas, U.S. Department of Energy, Office of...

116

EIS-0348: EPA Notice of Availability of the Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Statement Site-wide Continued Operation of Lawrence Livermore National Laboratory (LLNL) and Stockpile Stewardship and Management, Implementation Alameda and San Joaquin...

117

3.5 D temperature model of a coal stockpile  

Science Conference Proceedings (OSTI)

Overproduced coal mines that are not sold should remain in coal stock sites. If these coal stockpiles remain at the stock yards over a certain period of time, a spontaneous combustion can be started. Coal stocks under combustion threat can cost too much economically to coal companies. Therefore, it is important to take some precautions for saving the stockpiles from the spontaneous combustion. In this research, a coal stock which was 5 m wide, 10 m long, and 3 m in height, with a weight of 120 tons, was monitored to observe internal temperature changes with respect to time under normal atmospheric conditions. Internal temperature measurements were obtained at 20 points distributed all over the two layers in the stockpile. Temperatures measured by a specially designed mechanism were then stored into a computer every 3 h for a period of 3 months. Afterward, this dataset was used to delineate 3.5 D temporal temperature distribution models for these two levels, and they were used to analyze and interpret what was seen in these models to derive some conclusions. It was openly seen, followed, and analyzed that internal temperature changes in the stockpile went up to 31{sup o}C by 3.5 D models created for this research.

Ozdeniz, A.H.; Corumluoglu, O.; Kalayci, I.; Sensogut, C. [Selcuk University, Konya (Turkey). Dept. of Mining Engineering

2008-07-01T23:59:59.000Z

118

Microsoft PowerPoint - Roberts, IV and Stewardship (SSAB April...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Stewardship April 29, 2010 Sarah Roberts, CHP Acting Program Director, ORISE IEAV Benefits of IV "IV is an important quality assurance step that ensures cleanup goals have...

119

Stewardship of the Hanford Site Now and Into the Future  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Into the Future Bob Suyama Vice-Chair Hanford Advisory Board Stewardship Roundtable Environmental Management Site-Specific Advisory Board Chairs Meeting April 29, 2010...

120

Planning guidance for the Chemical Stockpile Emergency Preparedness Program  

Science Conference Proceedings (OSTI)

This planning guide was developed under the direction of the U.S. Army and the Federal Emergency Management Agency (FEMA) which jointly coordinate and direct the development of the Chemical Stockpile Emergency Preparedness Program (CSEPP). It was produced to assist state, local, and Army installation planners in formulating and coordinating plans for chemical events that may occur at the chemical agent stockpile storage locations in the continental United States. This document provides broad planning guidance for use by both on-post and off-post agencies and organizations in the development of a coordinated plan for responding to chemical events. It contains checklists to assist in assuring that all important aspects are included in the plans and procedures developed at each Chemical Stockpile Disposal Program (CSDP) location. The checklists are supplemented by planning guidelines in the appendices which provide more detailed guidance regarding some issues. The planning guidance contained in this document will help ensure that adequate coordination between on-post and off-post planners occurs during the planning process. This planning guide broadly describes an adequate emergency planning base that assures that critical planning decisions will be made consistently at every chemical agent stockpile location. This planning guide includes material drawn from other documents developed by the FEMA, the Army, and other federal agencies with emergency preparedness program responsibilities. Some of this material has been developed specifically to meet the unique requirements of the CSEPP. In addition to this guidance, other location-specific documents, technical studies, and support studies should be used as needed to assist in the planning at each of the chemical agent stockpile locations to address the specific hazards and conditions at each location.

Shumpert, B.L.; Watson, A.P.; Sorensen, J.H. [and others] and others

1995-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "laboratory stockpile stewardship" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Bettis and Knolls Atomic Power Laboratories | National Nuclear...  

National Nuclear Security Administration (NNSA)

Bettis and Knolls Atomic Power Laboratories | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

122

Director at Sandia National Laboratories | National Nuclear Security...  

NLE Websites -- All DOE Office Websites (Extended Search)

at Sandia National Laboratories | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response...

123

Los Alamos Selected as Atomic Weapons Laboratory | National Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

Los Alamos Selected as Atomic Weapons Laboratory | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

124

Los Alamos Selected as Atomic Weapons Laboratory | National Nuclear...  

National Nuclear Security Administration (NNSA)

Selected as Atomic Weapons Laboratory | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency...

125

PNNL offers 'virtual tour' of Shallow Underground Laboratory...  

NLE Websites -- All DOE Office Websites (Extended Search)

PNNL offers 'virtual tour' of Shallow Underground Laboratory | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the...

126

The Final B61 Refurbished Warhead Returns to the U.S. Stockpile...  

National Nuclear Security Administration (NNSA)

to ... The Final B61 Refurbished Warhead Returns to the U.S. Stockpile January 09, 2009 Washington, DC The Final B61 Refurbished Warhead Returns to the U.S. Stockpile The final...

127

NEAR REAL TIME CHARACTERIZATION OF BNL STOCKPILED SOILS, ANOTHER ASTD SUCCESS STORY.  

Science Conference Proceedings (OSTI)

As of October 2001, approximately 7,000 yd{sup 3} of stockpiled soil, contaminated to varying degrees with radioactive materials and heavy metals, remained at Brookhaven National Laboratory (BNL) after the remediation of the BNL Chemical/Animal/Glass Pits disposal area. During the 1997 removal action, the more hazardous/radioactive materials were segregated, along with, chemical liquids and solids, animal carcasses, intact gas cylinders, and a large quantity of metal and glass debris. Nearly all of these materials have been disposed of. In order to ensure that all debris was removed and to characterize the large quantity of heterogeneous soil, BNL initiated an extended sorting, segregation, and characterization project, co-funded by the BNL Environmental Management Directorate and the DOE EM Office of Science and Technology Accelerated Site Technology Deployment (ASTD) program. Project objectives were to remove any non-conforming items, and to assure that mercury and radioactive contaminant levels were within acceptable limits for disposal as low-level radioactive waste. Sorting and segregation were conducted simultaneously. Large stockpiles, ranging from 150 to 1,200 yd{sup 3}, were subdivided into manageable 20 yd{sup 3} ''subpiles'' after powered vibratory screening. The 1/2 inch screen removed gravel and almost all non-conforming items, which were separated for further characterization. Soil that passed through the screen was also visually inspected before being moved to a subpile. Eight samples plus QA duplicates were collected from each subpile for chemical analysis, and a 1-Liter jar of material for gamma spectroscopy. A field lab equipped for chemical analysis and gamma spectroscopy was set up in a trailer close by the stockpile site. Chemical analysis included X-ray fluorescence (XRF) to screen for high (>260 ppm) total mercury concentrations, and modified Toxicity Characteristic Leaching Procedure (TCLP) tests to verify that the soils were not RCRA hazardous. The modified (1/10th scale) TCLP tests minimized secondary (leachate) waste and maximized tumbler capacity and sample throughput. TCLP leachate analysis was accomplished using a Milestone Direct Mercury Analyzer (DMA-80). Gamma spectroscopy provided verification of previously measured Am-241, Cs-137, and Co-60 contamination levels. After analyses were completed and reviewed, the stockpiles were reconstructed for later disposal as discrete entities within a disposal site profile. The ASTD field laboratory completed more than 2,500 analyses of total Hg (XRF) and TCLP/DMA analyses over an 18-week period. Reliable statistical verification was accomplished for more than 98% of the stockpile sub-piles; for most sub-piles, TCLP analyses were completed within two days. This enhanced level of confidence in soil characterization was accomplished at a cost far below equivalent baseline techniques. One of the most significant aspects of the project success was schedule acceleration. The original schedule projected activities extending from early April until September 30. Due to efficiency and reliability of the vibratory screening operation and cooperative, dry summer weather, stockpile reconstruction was completed in the third week of August. Reduction of the planned sample collection rate, from three samples per 5 yd{sup 3} to two, resulted in further schedule acceleration. The resulting sample frequency, however, was still 22 times greater than the baseline frequency (one per 55 yd{sup 3}).

BOWERMAN,B.S.; ADAMS,J.W.; KALB,P.D.; LOCKWOOD,A.

2003-02-23T23:59:59.000Z

128

ORISE: Chemical Stockpile Emergency Preparedness Program Training Advisor  

NLE Websites -- All DOE Office Websites (Extended Search)

CSEPP Training HSEEP Training Spokesperson Training Incident Command System Training Emergency Management Emergency Response Crisis and Risk Communication Forensic Science How ORISE is Making a Difference Overview Exercises and Planning Training and Technology Support Resources How to Work With Us Contact Us Oak Ridge Institute for Science Education Training Chemical Stockpile Emergency Preparedness Program Training: Advisor 6.0 The Oak Ridge Institute for Science and Education (ORISE) designed a unique computer-based, reference product-Advisor 6.0-to assist those who work in Chemical Stockpile Emergency Preparedness Program's (CSEPP) Emergency Public Information office. Advisor 6.0 includes: Personal digital assistant (PDA) applications that can be used to enhance emergency response communications/coordination.

129

Long-Term Stewardship Resource Center | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Long-Term Stewardship Long-Term Stewardship Resource Center Long-Term Stewardship Resource Center WELCOME TO THE DEPARTMENT OF ENERGY'S LONG-TERM STEWARDSHIP RESOURCE CENTER The purpose of this web site is to provide the public and the Department of Energy's (DOE) community with a variety of information resources for long-term stewardship (LTS) responsibilities. LTS includes the physical controls, institutions, information and other mechanisms needed to ensure protection of people and the environment at sites or portions of sites where DOE has completed or plans to complete "cleanup" (e.g., landfill closures, remedial actions, corrective actions, removal actions and facility stabilization) and where legacy contamination will remain hazardous. The DOE's Legacy Management (LM) procedures for DOE sites

130

Environmental Management Long-Term Stewardship Transition Guidance  

Science Conference Proceedings (OSTI)

Long-term stewardship consists of those actions necessary to maintain and demonstrate continued protection of human health and the environment after the completion of facility cleanup. Long-term stewardship is administered and overseen by the U.S. Department of Energy Environmental Management Office of Science and Technology. This report describes the background of long-term stewardship and gives general guidance about considerations when ownership and/or responsibility of a site should be transferred to a long-term stewardship program. This guidance document will assist the U.S. Department of Energy in: (a) ensuring that the long-term stewardship program leads transition planning with respect to facility and site areas, and (b) describing the classes and types of criteria and data required to initiate transition for areas and sites where the facility mission has ended and cleanup is complete.

Kristofferson, Keith

2001-11-01T23:59:59.000Z

131

RECIPIENT:NREL PROJECT TITLE: ESIF Excavation Soil Stockpile; NREL Tracking No. 11-013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PROJECT PROJECT TITLE: ESIF Excavation Soil Stockpile; NREL Tracking No. 11-013 Page 1 of2 **...*... @-~ .. @ '"',. .. ~ STATE: CO Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number CID Number NREL-11-013 GOO Based on my review ufthe information concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 451.1A), I have made the following determination: CX, EA, EIS APPENDIX AND NUMBER: Description: DOE/EA· Final Supplement-II to Final Site-Wide Environmental Assessment of the National Renewable Energy Laboratory's 1440·5·11 (NREL) South Table Mountain Complex (November 2009) DOE/EA· Final Site-Site Wide Environmental Assessment of the National Renewable Energy Laboratory's (NREL) South

132

Secretary of Energy Advisory Board SLAC National Accelerator Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SLAC National Accelerator Laboratory SLAC National Accelerator Laboratory Menlo Park, CA April 11, 2011 Agenda Open Plenary Meeting Session 8:00 AM - 8:15 AM Welcome and Overview Dr. William Perry 8:15 AM - 8:45 AM Key Issues for DOE Secretary Steven Chu 9:00 AM - 9:45 AM SLAC Overview Persis Drell 9:45 AM - 10:15 AM Breakthrough in Protein Structure Determination Enabled by LCLS Henry Chapman 10:15 AM - 11:00 AM Lab Overview - Progress and Path Forward George Miller 11:00 AM - 11:45 AM Stockpile Stewardship Overview Bruce Goodwin 11:45 AM - 12:30 PM Energy of the Future - National Ignition Facility (NIF) and Laser Inertial Fusion Energy (LIFE) Ed Moses 12:30 PM - 1:45 PM Lunch Break 2:00 PM - 2:30 PM Subcommittee Reports 2:30 PM - 3:30 PM Discussion of DOD-DOE MOU

133

Sandia National Laboratories: Careers: Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Physics Physics Water droplets photo Physicists from all research backgrounds are helping Sandia solve the world's toughest challenges. There is no "typical" career for a physicist at Sandia. Instead, Sandia offers physicists a multitude of opportunities to participate in multidisciplinary teams on projects ranging from groundbreaking fundamental research to influential national security applications. Whatever the project, physicists are making important contributions to Sandia's missions in stockpile stewardship, homeland and port security, and energy security. For example, some physicists are investigating basic research topics from atomic/molecular dynamics to antineutrinos. Others are applying physics principles to fieldable commercial devices, such as airport sensors and

134

Los Alamos National Laboratory: Long-Term Environmental Stewardship and  

NLE Websites -- All DOE Office Websites (Extended Search)

Protections: Sediment Control = Contaminant Retention Protections: Sediment Control = Contaminant Retention LANL maintains hundreds of wells, stream sampling stations and stormwater control structures to protect waters. Map of Los Alamos townsite bordered by Pueblo and Los Alamos Canyons Los Alamos townsite bordered by Pueblo and Los Alamos Canyons Los Alamos Canyon weir Pueblo Canyon grade control structure Trap and remove sediment Willows Wildfires Stormwater structures Los Alamos Canyon dam and reservoir Stormwater controls after wildfire Hydroseeding LANL constrains the flow of contaminated sediments into the Rio Grande. Fact Check » « Every watershed at LANL has been evaluated and stormwater controls have been installed to keep contaminated sediment on LANL property. Every waste management area on mesa tops has been evaluated and 80% of planned controls

135

Los Alamos National Laboratory: Long-Term Environmental Stewardship and  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean the Past Clean the Past PreviousNext How does LANL protect human health and the environment from the impacts of contamination released over the last 60 years? Clean the Past LANL removes and stabilizes contaminants as one of three defenses in depth to protect human health and the environment. Map of Los Alamos townsite bordered by Pueblo and Los Alamos Canyons Los Alamos townsite bordered by Pueblo and Los Alamos Canyons Historic liquid discharges and outfalls Ashley Pond TA-21 High Explosives Testing History of Regulatory Oversight at LANL Protections = Defenses in Depth Remove the Source Cleanup 101 TA-21 MDA B Hillside 140 Buckman Direct Diversion Project Jemez Mountains Watersheds Groundwater Rio Grande Thousands of yards of contaminants were removed in 2011 and 2012.

136

Los Alamos National Laboratory: Long-Term Environmental Stewardship...  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental Grand Challenges Our goals to live a sustainable future Environmental Grand Challenges...

137

Los Alamos National Laboratory: Long-Term Environmental Stewardship...  

NLE Websites -- All DOE Office Websites (Extended Search)

Commitment to Public Involvement PreviousNext Commitment to Public Involvement Community Relations Plan Student tour of environmental sites Student tour of environmental sites...

138

Los Alamos National Laboratory: Long-Term Environmental Stewardship...  

NLE Websites -- All DOE Office Websites (Extended Search)

Living a Sustainable Future PreviousNext Living a Sustainable Future The road to the DOE ESTAR awards begins with LANL's annual P2 Award nominations. The winners of LANL's Best in...

139

Los Alamos National Laboratory: Long-Term Environmental Stewardship...  

NLE Websites -- All DOE Office Websites (Extended Search)

Protections: Cleanup PreviousNext Protections: Cleanup Every year LANL removes and stabilizes contaminants to protect human health and the environment. Map of Los Alamos townsite...

140

Los Alamos National Laboratory: Long-Term Environmental Stewardship...  

NLE Websites -- All DOE Office Websites (Extended Search)

Welcome to LANL TSTA Demolition American Recovery and Reinvestment Act: The Beginning American Recovery and Reinvestment Act: The Jobs American Recovery and Reinvestment Act: The...

Note: This page contains sample records for the topic "laboratory stockpile stewardship" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Los Alamos National Laboratory: Long-Term Environmental Stewardship...  

NLE Websites -- All DOE Office Websites (Extended Search)

with our workforce, sponsors, and public. We reduce our environmental risk through legacy cleanup, pollution prevention, and long-term sustainability programs." View document >...

142

Los Alamos National Laboratory: Long-Term Environmental Stewardship...  

NLE Websites -- All DOE Office Websites (Extended Search)

What waters does LANL protect? Map of Los Alamos townsite bordered by Pueblo and Los Alamos Canyons Los Alamos townsite bordered by Pueblo and Los Alamos Canyons Buckman Direct...

143

Los Alamos National Laboratory: Long-Term Environmental Stewardship...  

NLE Websites -- All DOE Office Websites (Extended Search)

Is there something in the air? I can't see it. I can't smell it. Is it okay to breathe it? LANL implements a conscientious program of monitoring to ensure air quality LANL...

144

Los Alamos National Laboratory: Long-Term Environmental Stewardship...  

NLE Websites -- All DOE Office Websites (Extended Search)

PreviousNext Contacts Questions? envoutreach@lanl.gov Public Information LANL environmental website Public meetings and tours Mailing and emailing lists Public notification in...

145

Los Alamos National Laboratory: Long-Term Environmental Stewardship...  

NLE Websites -- All DOE Office Websites (Extended Search)

Why is a long-term strategy important? PreviousNext Why is a long-term strategy important? Because we protect the environment. That is our practice today, and it is our commitment...

146

Los Alamos National Laboratory: Long-Term Environmental Stewardship...  

NLE Websites -- All DOE Office Websites (Extended Search)

Protections: Sampling Protection 3: Sampling for known and unexpected contaminants The Environmental Sampling Board, a key piece of the Strategy, ensures that LANL collects...

147

Local Government Implementation of Long-Term Stewardship at Two DOE Facilities  

Science Conference Proceedings (OSTI)

The Department of Energy (DOE) is responsible for cleaning up the radioactive and chemical contamination that resulted from the production of nuclear weapons. At more than one hundred sites throughout the country DOE will leave some contamination in place after the cleanup is complete. In order to protect human health and the environment from the remaining contamination DOE, U.S. Environmental Protection Agency (EPA), state environmental regulatory agencies, local governments, citizens and other entities will need to undertake long-term stewardship of such sites. Long-term stewardship includes a wide range of actions needed to protect human health in the environment for as long as the risk from the contamination remains above acceptable levels, such as barriers, caps, and other engineering controls and land use controls, signs, notices, records, and other institutional controls. In this report the Environmental Law Institute (ELI) and the Energy Communities Alliance (ECA) examine how local governments, state environmental agencies, and real property professionals implement long-term stewardship at two DOE facilities, Losa Alamos National Laboratory and Oak Ridge Reservation.

John Pendergrass; Roman Czebiniak; Kelly Mott; Seth Kirshenberg; Audrey Eidelman; Zachary Lamb; Erica Pencak; Wendy Sandoz

2003-08-13T23:59:59.000Z

148

Letter: Congratulating Oak Ridge SSAB and its Stewardship Committee for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Letter: Congratulating Oak Ridge SSAB and its Stewardship Committee Letter: Congratulating Oak Ridge SSAB and its Stewardship Committee for Receiving the EPA's 2006 Citizen's Excellence in Community Involvement Award Letter: Congratulating Oak Ridge SSAB and its Stewardship Committee for Receiving the EPA's 2006 Citizen's Excellence in Community Involvement Award From: Assistant Secretary for Environmental Management, James A. Rispoli To: Mr. Kerry Trammell, Chair Site Specific Advisory Board This letter congratulaties Oak Ridge Site Specific Advisory Board and its Stewardship Committee on being awarded the Environmental Protection Agency's 2006 Citizen's Excellence in Community Involvement Award. Rispoli Letter - June 21, 2006 More Documents & Publications EM SSAB Conference Calls - October 20, 2005 EM SSAB Conference Calls - June 8, 2005

149

Long-Term Stewardship Resource Center FAQS | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Long-Term Stewardship Resource Center FAQS Long-Term Stewardship Resource Center FAQS Long-Term Stewardship Resource Center FAQS IS DOE RESPONSIBLE FOR LONG-TERM STEWARDSHIP IF DOE TRANSFERS PROPERTY TO A PUBLIC ENTITY? By Order from the Secretary of Energy, The DOE, including the National Nuclear Security Administration must comply with Order 454.1: Use of Institutional Controls, www.directives.doe.gov/directives/0454.1-APolicy/view. The Order requires DOE to maintain institutional controls as long as necessary to perform their intended protective purposes and to seek sufficient funds. DOE must also determine whether responsibility for required institutional controls on transferred property can be maintained by subsequent owners consistent with applicable law. If this implementation responsibility cannot be

150

Long-Term Stewardship Related Information | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Communication & Engagement » Long-Term Stewardship » Communication & Engagement » Long-Term Stewardship » Long-Term Stewardship Related Information Long-Term Stewardship Related Information DOE Orders & Policies DOE O 200.l - Information Management Program, 09/30/1996 DOE O 430.1B - Real Property Asset Management, 09/24/2003 DOE O 413.3B, Program and Project Management for the Acquisition of Capital Assets, 11/29/2010 DOE O 458.1 Chg 2, Radiation Protection of the Public and the Environment, 06/06/2011 DOE O 430.1B Chg 2, Real Property and Asset Management, 09/24/2003 DOE P 454.1 - Use of Institutional Controls, 04/09/2003 and Guidance DOE Home Page for Guidance and Resources for LTS-related Requirements DOE Documents - Transition from Cleanup to LTS Site Transition Process upon Completion of the Cleanup Mission: Fact

151

Defense Nuclear Material Stewardship Integrated Inventory Information Management System (IIIMS).  

Science Conference Proceedings (OSTI)

Sandia National Laboratories was tasked with developing the Defense Nuclear Material Stewardship Integrated Inventory Information Management System (IIIMS) with the sponsorship of NA-125.3 and the concurrence of DOE/NNSA field and area offices. The purpose of IIIMS was to modernize nuclear materials management information systems at the enterprise level. Projects over the course of several years attempted to spearhead this modernization. The scope of IIIMS was broken into broad enterprise-oriented materials management and materials forecasting. The IIIMS prototype was developed to allow multiple participating user groups to explore nuclear material requirements and needs in detail. The purpose of material forecasting was to determine nuclear material availability over a 10 to 15 year period in light of the dynamic nature of nuclear materials management. Formal DOE Directives (requirements) were needed to direct IIIMS efforts but were never issued and the project has been halted. When restarted, duplicating or re-engineering the activities from 1999 to 2003 is unnecessary, and in fact future initiatives can build on previous work. IIIMS requirements should be structured to provide high confidence that discrepancies are detected, and classified information is not divulged. Enterprise-wide materials management systems maintained by the military can be used as overall models to base IIIMS implementation concepts upon.

Aas, Christopher A.; Lenhart, James E.; Bray, Olin H.; Witcher, Christina Jenkin

2004-11-01T23:59:59.000Z

152

Tri-Laboratory Linux Capacity Cluster 2007 SOW  

SciTech Connect

The Advanced Simulation and Computing (ASC) Program (formerly know as Accelerated Strategic Computing Initiative, ASCI) has led the world in capability computing for the last ten years. Capability computing is defined as a world-class platform (in the Top10 of the Top500.org list) with scientific simulations running at scale on the platform. Example systems are ASCI Red, Blue-Pacific, Blue-Mountain, White, Q, RedStorm, and Purple. ASC applications have scaled to multiple thousands of CPUs and accomplished a long list of mission milestones on these ASC capability platforms. However, the computing demands of the ASC and Stockpile Stewardship programs also include a vast number of smaller scale runs for day-to-day simulations. Indeed, every 'hero' capability run requires many hundreds to thousands of much smaller runs in preparation and post processing activities. In addition, there are many aspects of the Stockpile Stewardship Program (SSP) that can be directly accomplished with these so-called 'capacity' calculations. The need for capacity is now so great within the program that it is increasingly difficult to allocate the computer resources required by the larger capability runs. To rectify the current 'capacity' computing resource shortfall, the ASC program has allocated a large portion of the overall ASC platforms budget to 'capacity' systems. In addition, within the next five to ten years the Life Extension Programs (LEPs) for major nuclear weapons systems must be accomplished. These LEPs and other SSP programmatic elements will further drive the need for capacity calculations and hence 'capacity' systems as well as future ASC capability calculations on 'capability' systems. To respond to this new workload analysis, the ASC program will be making a large sustained strategic investment in these capacity systems over the next ten years, starting with the United States Government Fiscal Year 2007 (GFY07). However, given the growing need for 'capability' systems as well, the budget demands are extreme and new, more cost effective ways of fielding these systems must be developed. This Tri-Laboratory Linux Capacity Cluster (TLCC) procurement represents the ASC first investment vehicle in these capacity systems. It also represents a new strategy for quickly building, fielding and integrating many Linux clusters of various sizes into classified and unclassified production service through a concept of Scalable Units (SU). The programmatic objective is to dramatically reduce the overall Total Cost of Ownership (TCO) of these 'capacity' systems relative to the best practices in Linux Cluster deployments today. This objective only makes sense in the context of these systems quickly becoming very robust and useful production clusters under the crushing load that will be inflicted on them by the ASC and SSP scientific simulation capacity workload.

Seager, M

2007-03-22T23:59:59.000Z

153

Risk communications and the Chemical Stockpile Emergency-Planning Program  

Science Conference Proceedings (OSTI)

The CSEPP (Chemical Stockpile Emergency Preparedness Program) was created to improve emergency planning and response capabilities at the eight sites around the country that store chemical weapons. These weapons are scheduled to be destroyed in the near future. In preparation of the Draft Programmatic Environmental Impact Statement (DPEIS) for the Chemical Stockpile Disposal Program (CSDP), it was proposed that the Army mitigate accidents through an enhanced community emergency preparedness program at the eight storage sites. In 1986, the Army initiated the development of an Emergency Response Concept Plan (ERCP) for the CSDP, one of 12 technical support studies conducted during preparation of the Final Programmatic Environmental Impact Statement (FPEIS). The purpose of this document is to provide a fairly comprehensive source book on risk, risk management, risk communication research and recommended risk communication practices. It does not merely summarize each publication in the risk communication literature, but attempts to synthesize them along the lines of a set of organizing principles. Furthermore, it is not intended to duplicate other guidance manuals (such as Covello et al.`s manual on risk comparison). The source book was developed for the CSEPP in support of the training module on risk communications. Although the examples provided are specific to CSEPP, its use goes beyond that of CSEPP as the findings apply to a broad spectrum of risk communication topics. While the emphasis is on communication in emergency preparedness and response specific to the CSEPP, the materials cover other non-emergency communication settings. 329 refs.

Vogt, B.M.; Sorensen, J.H.

1994-09-01T23:59:59.000Z

154

Laboratory Directed Research and Development FY2011 Annual Report  

Science Conference Proceedings (OSTI)

A premier applied-science laboratory, Lawrence Livermore National Laboratory (LLNL) has earned the reputation as a leader in providing science and technology solutions to the most pressing national and global security problems. The LDRD Program, established by Congress at all DOE national laboratories in 1991, is LLNL's most important single resource for fostering excellent science and technology for today's needs and tomorrow's challenges. The LDRD internally directed research and development funding at LLNL enables high-risk, potentially high-payoff projects at the forefront of science and technology. The LDRD Program at Livermore serves to: (1) Support the Laboratory's missions, strategic plan, and foundational science; (2) Maintain the Laboratory's science and technology vitality; (3) Promote recruiting and retention; (4) Pursue collaborations; (5) Generate intellectual property; and (6) Strengthen the U.S. economy. Myriad LDRD projects over the years have made important contributions to every facet of the Laboratory's mission and strategic plan, including its commitment to nuclear, global, and energy and environmental security, as well as cutting-edge science and technology and engineering in high-energy-density matter, high-performance computing and simulation, materials and chemistry at the extremes, information systems, measurements and experimental science, and energy manipulation. A summary of each project was submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to DOE/NNSA and LLNL mission areas, the technical progress achieved in FY11, and a list of publications that resulted from the research. The projects are: (1) Nuclear Threat Reduction; (2) Biosecurity; (3) High-Performance Computing and Simulation; (4) Intelligence; (5) Cybersecurity; (6) Energy Security; (7) Carbon Capture; (8) Material Properties, Theory, and Design; (9) Radiochemistry; (10) High-Energy-Density Science; (11) Laser Inertial-Fusion Energy; (12) Advanced Laser Optical Systems and Applications; (12) Space Security; (13) Stockpile Stewardship Science; (14) National Security; (15) Alternative Energy; and (16) Climatic Change.

Craig, W; Sketchley, J; Kotta, P

2012-03-22T23:59:59.000Z

155

U.S. coal stockpile levels at electric power plants approach five ...  

U.S. Energy Information Administration (EIA)

Total coal stockpile levels at U.S. electric power plants were 139 million tons in August 2011—the lowest total level for August since 2006.

156

Stockpile Transition Enabling Program (STEP): Process and project requirements  

Science Conference Proceedings (OSTI)

The Stockpile Transition Enabling Program (STEP) is aimed at identifying weapon components suitable for use in more than one weapon and for qualifying components so identified for multiple use. Work includes identifying the means to maintain the manufacturing capability for these items. This document provides the participants in STEP a common, consistent understanding of the process and requirements. The STEP objectives are presented and the activities are outlined. The STEP project selections are based on the customer needs, product applicability, and maturity of the technology used. A formal project selection process is described and the selection criteria are defined. The concept of {open_quotes}production readiness{close_quotes} is introduced, along with a summary of the project requirements and deliverables to demonstrate production readiness.

Ma, Kwok Kee

1993-06-01T23:59:59.000Z

157

Los Alamos National Laboratory DOE NNSA Programmatic Areas  

E-Print Network (OSTI)

Los Alamos National Laboratory DOE NNSA Programmatic Areas Assistant Secretary Assistant Secretary Laboratory DOE NNSA Programmatic Areas Assistant Secretary Assistant Secretary ECOR Description B NUCLEAR SECURITY ADMIN STOCKPILE SERVICES DOE/NNSA NUCLEAR COUNTERTERRISOM DESIGN SUPPORT (N NATIONAL

158

NNSA's Summary of Experiments Conducted in Support of Stockpile...  

NLE Websites -- All DOE Office Websites (Extended Search)

Test (DARHT) facility at Los Alamos National Laboratory, National Ignition Facility (NIF) at Lawrence Livermore National Laboratory, and the Z machine at Sandia National...

159

External Faith-Based Environmental Stewardship Organizations | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

External Faith-Based Environmental Stewardship Organizations External Faith-Based Environmental Stewardship Organizations Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources

160

The RADPACK: A New Concept for Stockpiling Medical Countermeasures for a Radiation Disaster at the Local Level  

E-Print Network (OSTI)

s Strategic National Stockpile (SNS) was initially designedradionuclides. The current U.S. SNS has a goal to arrive at

Koenig, Kristi L.; Bey, Tareg; Bradley, Darlene; Kahn, Christopher A.; Schultz, Carl

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "laboratory stockpile stewardship" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Impact of a reduced nuclear weapons stockpile on strategic stability  

Science Conference Proceedings (OSTI)

This presentation is to discuss the impact of a reduced nuclear weapons stockpile on the strategic stability. Methodologies used to study strategic stability issues include what are basically strategic-force exchange models. These models are used to simulate a massive nuclear exchange in which one side attacks and the other side retaliates. These models have been of interest to the Strategic Defense Initiative (SDI) program. Researchers have been looking at issues concerning the stability of the transition period, during which some defenses have been deployed and during which deterrence and war-fighting capability reply partly on defense and partly on offense. Also, more recently, with interest in the Strategic Arms Reduction Treaty (START) and force reductions beyond START, the same calculation engines have been used to examine the impact of reduced forces on strategic stability. For both the SDI and the START reduction cases, exchange models are able to address only a rather narrow class of strategic stability issues. Other broader stability questions that are unrelated to nuclear weapons or that relate to nuclear weapons but are not addressed by the calculational tools which are not included in this discussion. 6 refs., 1 fig., 1 tab. (BN)

Chrzanowski, P.

1991-03-20T23:59:59.000Z

162

Statistical modeling of spontaneous combustion in industrial-scale coal stockpiles  

SciTech Connect

Companies consuming large amounts of coal should work with coal stocks in order to not face problems due to production delays. The industrial-scale stockpiles formed for the aforementioned reasons cause environmental problems and economic losses for the companies. This study was performed in a coal stock area of a large company in Konya, which uses large amounts of coal in its manufacturing units. The coal stockpile with 5 m width, 10 m length, 3 m height, and having 120 tons of weight was formed in the coal stock area of the company. The inner temperature data of the stockpile was recorded by 17 temperature sensors placed inside the stockpile at certain points. Additionally, the data relating to the air temperature, air humidity, atmospheric pressure, wind velocity, and wind direction that are the parameters affecting the coal stockpile were also recorded. A statistical model applicable for a spontaneous combustion event was developed during this study after applying multi-regression analyses to the data recorded in the stockpile during the spontaneous combustion event. The correlation coefficients obtained by the developed statistical model were measured approximately at a 0.95 level. Thus, the prediction of temperature variations influential in the spontaneous combustion event of the industrial-scale coal stockpiles will be possible.

Ozdeniz, H [Selcuk University, Konya (Turkey). Dept. of Mining Engineering

2009-07-01T23:59:59.000Z

163

Notice of Intent to prepare Supplemental Environmental Impact Statement for the Programmatic Environmental Impact Statement for Stockpile Stewardship and Management (08/05/99)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

81 81 Federal Register / Vol. 64, No. 150 / Thursday, August 5, 1999 / Notices Programs Service, 400 Maryland Avenue, SW., Suite 600 Portals Building Washington, DC 20202-5331. Telephone: (202) 401-9774. The e-mail address for Ms. Ver Bryck Block is karla verbryckblock@ed.gov. Individuals who use a telecommunications device for the deaf (TDD) may call the Federal Information Relay Service (FIRS) at 1-800-877- 8339. Individuals with disabilities may obtain this document in an alternate format (e.g., Braille, large print, audiotape, or computer diskette) on request to the appropriate contact persons listed in the preceding paragraphs. Individuals with disabilities may obtain a copy of the application package in an alternate format, also, by contacting that person. However, the

164

Climate Stewardship Act of 2004 (released in AEO2005)  

Reports and Publications (EIA)

The Climate Stewardship Act of 2004 [64] would establish a system of tradable allowances to reduce greenhouse gas emissions. The bill includes requirements for mandatory emissions reporting by covered entities and for voluntary reporting of emissions reduction activities by noncovered entities; a national greenhouse gas database and registry of reductions; and a research program on climate change and related activities.

Information Center

2005-02-01T23:59:59.000Z

165

United States Department of Energy Nuclear Materials Stewardship  

Science Conference Proceedings (OSTI)

The Department of Energy launched the Nuclear Materials Stewardship Initiative in January 2000 to accelerate the work of achieving integration and cutting long-term costs associated with the management of the Department's nuclear materials, with the principal focus on excess materials. Management of nuclear materials is a fundamental and enduring responsibility that is essential to meeting the Department's national security, nonproliferation, energy, science, and environmental missions into the distant future. The effective management of nuclear materials is important for a set of reasons: (1) some materials are vital to our national defense; (2) the materials pose physical and security risks; (3) managing them is costly; and (4) costs are likely to extend well into the future. The Department currently manages nuclear materials under eight programs, with offices in 36 different locations. Through the Nuclear Materials Stewardship Initiative, progress was during calendar year 20 00 in achieving better coordination and integration of nuclear materials management responsibilities and in evaluating opportunities to further coordinate and integrate cross-program responsibilities for the treatment, storage, and disposition of excess nuclear materials. During CY 2001 the Departmental approach to nuclear materials stewardship changed consistent with the business processes followed by the new administration. This paper reports on the progress of the Nuclear Materials Stewardship Initiative in evaluating and implementing these opportunities, and the remaining challenges in integrating the long-term management of nuclear materials.

Newton, J. W.

2002-02-27T23:59:59.000Z

166

The Final B61 Refurbished Warhead Returns to the U.S. Stockpile | National  

National Nuclear Security Administration (NNSA)

Final B61 Refurbished Warhead Returns to the U.S. Stockpile | National Final B61 Refurbished Warhead Returns to the U.S. Stockpile | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > The Final B61 Refurbished Warhead Returns to ... The Final B61 Refurbished Warhead Returns to the U.S. Stockpile January 09, 2009

167

Quality Control of Meteorological Data for the Chemical Stockpile Emergency Preparedness Program  

Science Conference Proceedings (OSTI)

The Chemical Stockpile Emergency Preparedness Program Meteorological Support Project ensures the accuracy and reliability of data acquired by meteorological monitoring stations located at seven U.S. Army chemical weapons depots where storage and ...

James C. Liljegren; Stephen Tschopp; Kevin Rogers; Fred Wasmer; Lucia Liljegren; Michael Myirski

2009-08-01T23:59:59.000Z

168

SLAC National Accelerator Laboratory - Our Vision and Mission  

NLE Websites -- All DOE Office Websites (Extended Search)

Our Vision and Mission All employee gathering at SLAC SLAC is one of 10 national laboratories under the stewardship of the U.S. Department of Energy Office of Science. To learn...

169

License Stewardship Approach to Commercial Nuclear Power Plant Decommissioning  

SciTech Connect

The paper explores both the conceptual approach to decommissioning commercial nuclear facilities using a license stewardship approach as well as the first commercial application of this approach. The license stewardship approach involves a decommissioning company taking control of a site and the 10 CFR 50 License in order to complete the work utilizing the established trust fund. In conclusion: The license stewardship approach is a novel way to approach the decommissioning of a retired nuclear power plant that offers several key advantages to all parties. For the owner and regulators, it provides assurance that the station will be decommissioned in a safe, timely manner. Ratepayers are assured that the work will be completed for the price they already have paid, with the decommissioning contractor assuming the financial risk of decommissioning. The contractor gains control of the assets and liabilities, the license, and the decommissioning fund. This enables the decommissioning contractor to control their work and eliminates redundant layers of management, while bringing more focus on achieving the desired end state - a restored site. (authors)

Daly, P.T.; Hlopak, W.J. [Commercial Services Group, EnergySolutions 1009 Commerce Park, Oak Ridge, TN (United States)

2008-07-01T23:59:59.000Z

170

Statement on B61 Life Extension Program and Future Stockpile Strategy  

National Nuclear Security Administration (NNSA)

B61 Life Extension Program and Future Stockpile Strategy B61 Life Extension Program and Future Stockpile Strategy before the House Armed Services Subcommittee on Strategic Forces | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Congressional Testimony > Statement on B61 Life Extension Program and ... Congressional Testimony

171

Statement on B61 Life Extension Program and Future Stockpile Strategy  

NLE Websites -- All DOE Office Websites (Extended Search)

B61 Life Extension Program and Future Stockpile Strategy B61 Life Extension Program and Future Stockpile Strategy before the House Armed Services Subcommittee on Strategic Forces | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Congressional Testimony > Statement on B61 Life Extension Program and ... Congressional Testimony

172

Sensors for environmental monitoring and long-term environmental stewardship.  

SciTech Connect

This report surveys the needs associated with environmental monitoring and long-term environmental stewardship. Emerging sensor technologies are reviewed to identify compatible technologies for various environmental monitoring applications. The contaminants that are considered in this report are grouped into the following categories: (1) metals, (2) radioisotopes, (3) volatile organic compounds, and (4) biological contaminants. Regulatory drivers are evaluated for different applications (e.g., drinking water, storm water, pretreatment, and air emissions), and sensor requirements are derived from these regulatory metrics. Sensor capabilities are then summarized according to contaminant type, and the applicability of the different sensors to various environmental monitoring applications is discussed.

Miller, David Russell; Robinson, Alex Lockwood; Ho, Clifford Kuofei; Davis, Mary Jo (Science Applications International Corporation, Albuquerque, NM)

2004-09-01T23:59:59.000Z

173

Review: Michigan’s State Forests: A Century of Stewardship by William B. Botti and Michael D. Moore  

E-Print Network (OSTI)

Review: Michigan’s State Forests: A Century of StewardshipB. and Moore, Michael D. Michigan’s State Forests: A Centuryof Stewardship. Michigan State University Press, East

Hamilton-Smith, Elery

2008-01-01T23:59:59.000Z

174

U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Removes Nine Metric Tons of Plutonium From Nuclear Weapons Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile September 17, 2007 - 2:41pm Addthis Declaration Reinforces U.S. Commitment to Nonproliferation VIENNA, AUSTRIA - Secretary of Energy Samuel W. Bodman today announced that the Department of Energy's National Nuclear Security Administration (NNSA) will remove nine metric tons of plutonium from further use as fissile material in U.S. nuclear weapons, signifying the Bush Administration's ongoing commitment to nonproliferation. Nine metric tons of plutonium is enough material to make over 1,000 nuclear weapons. The Secretary made today's announcement while speaking before the International Atomic Energy Agency's annual general conference.

175

U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile September 17, 2007 - 2:41pm Addthis Declaration Reinforces U.S. Commitment to Nonproliferation VIENNA, AUSTRIA - Secretary of Energy Samuel W. Bodman today announced that the Department of Energy's National Nuclear Security Administration (NNSA) will remove nine metric tons of plutonium from further use as fissile material in U.S. nuclear weapons, signifying the Bush Administration's ongoing commitment to nonproliferation. Nine metric tons of plutonium is enough material to make over 1,000 nuclear weapons. The Secretary made today's announcement while speaking before the International Atomic Energy Agency's annual general conference.

176

Evaluation of radium and toxic element leaching characteristics of Florida phosphogypsum stockpiles. Report of investigations/1983  

SciTech Connect

The Bureau of Mines conducted studies to determine if phosphogypsum, a waste material from the processing of phosphate rock, contains hazardous toxic materials as defined by the Environmental Protection Agency (EPA) and whether leaching of these toxic materials and radium may occur. Samples of the phosphogypsum stockpiled material were evaluated using the EPA extraction procedure, atomic absorption, neutron activation, X-ray diffraction, and chemical and physical means. Radiological tests performed used both the germanium-lithium and emanation methods.

May, A.; Sweeney, J.W.

1983-06-01T23:59:59.000Z

177

Reports | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Stockpile Stewardship and Management Plan, Annex A (April 7, 2010) 2011 Stewardship Science Academic Alliances Annual 2012 Stewardship Science Academic Alliances Annual...

178

Sandia National Laboratories: About Sandia: Environmental Responsibility  

NLE Websites -- All DOE Office Websites (Extended Search)

Responsibility Responsibility Environmental Management System Pollution Prevention About Environmental Responsibility Environmental responsibility workers at Sandia Long-term management aimed at preserving and enhancing the quality of the environment has evolved at Sandia National Laboratories for more than 50 years. Recycling, establishing community environmental partnerships, incorporating sustainable design in new and renovated facilities, and environmental restoration are all integral parts of Sandia's environmental stewardship. Sandia also partners with the Department of Energy to improve public participation in environmental issues, such as the implementation of the National Environmental Policy Act (NEPA) and Long-term Stewardship for environmental restoration. Participation in community organizations and

179

EIS-0226: Decommissioning and/or Long-Term Stewardship at the West Valley  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

26: Decommissioning and/or Long-Term Stewardship at the West 26: Decommissioning and/or Long-Term Stewardship at the West Valley Demonstration Project and Western New York Nuclear Service Center EIS-0226: Decommissioning and/or Long-Term Stewardship at the West Valley Demonstration Project and Western New York Nuclear Service Center SUMMARY This EIS evaluates the potential environmental impacts of the range of reasonable alternatives to decommission and/or maintain long-term stewardship at WNYNSC. The alternatives analyzed in the EIS include the Sitewide Removal Alternative, the Sitewide Close-In-Place Alternative, the Phased Decisionmaking Alternative (Preferred Alternative), and the No Action Alternative. The analysis and information contained in the EIS are intended to assist DOE and NYSERDA with the consideration of environmental

180

Site Transition Summary: Cleanup Completion to Long-Term Stewardship at  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Summary: Cleanup Completion to Long-Term Summary: Cleanup Completion to Long-Term Stewardship at Department of Energy On-going Mission Sites Site Transition Summary: Cleanup Completion to Long-Term Stewardship at Department of Energy On-going Mission Sites Long-term stewardship (LTS) includes the physical controls, institutions, information, and other mechanisms needed to ensure protection of people and the environment at sites where the U.S. Department of Energy (DOE) has completed or plans to complete cleanup (e.g., landfill closures, remedial actions, removal actions, and facility stabilization). This concept includes land-use controls, information management, monitoring and maintenance. Site Transition Summary: Cleanup Completion to Long-Term Stewardship at Department of Energy On-going Mission Sites

Note: This page contains sample records for the topic "laboratory stockpile stewardship" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Strategic Plan for Sustainable Energy Management and Environmental Stewardship for Los Angeles Unified School District  

SciTech Connect

This Strategic Plan for Sustainable Energy Management and Environmental Stewardship states goals, measures progress toward goals and how actions are monitored to achieve continuous improvement for the Los Angeles Unified School District.

Walker, A.; Beattie, D.; Thomas, K.; Davis, K.; Sim, M.; Jhaveri, A.

2007-11-01T23:59:59.000Z

182

INL-Site Idaho Completion Project Long Term Stewardship Strategic Plan  

SciTech Connect

This Strategic Plan provides a brief historical overview of ICP long-term stewardship at the INL Site and the major goals and strategies that will drive the continued implementation of long-term stewardship in the future. The specific activities and processes that will be required to implement these goals should be outlined within an implementation plan and within implementing procedures and work plans.

Olaveson, B.

2007-09-17T23:59:59.000Z

183

Collaboration in long-term stewardship at DOE Hanford Site  

SciTech Connect

The U.S. Department of Energy's (DOE) Hanford Site comprises approximately 1,517 km{sup 2} (586 mi{sup 2}) of land in southeastern Washington. The site was established in 1943 as part of the Manhattan Project to produce plutonium for the nation's nuclear weapons program. As the Cold War era came to an end, the mission of the site transitioned from weapons production to environmental cleanup. As the River Corridor area of the site cleanup is completed, the mission for that portion of the site will transition from active cleanup to continued protection of environment through the Long-Term Stewardship (LTS) Program. The key to successful transition from cleanup to LTS is the unique collaboration among three (3) different DOE Programs and three (3) different prime contractors with each contractor having different contracts. The LTS Program at the site is a successful model of collaboration resulting in efficient resolution of issues and accelerated progress that supports DOE's Richland Office 2015 Vision for the Hanford Site. The 2015 Vision for the Hanford Site involves shrinking the active cleanup footprint of the surface area of the site to approximately 20 mi{sup 2} on the Central Plateau. Hanford's LTS Program is defined in DOE's planning document, Hanford Long-Term Stewardship Program Plan, DOE/RL-2010-35 Rev 1. The Plan defines the relationship and respective responsibilities between the federal cleanup projects and the LTS Program along with their respective contractors. The LTS Program involves these different parties (cleanup program and contractors) who must work together to achieve the objective for transition of land parcels. Through the collaborative efforts with the prime contractors on site over the past two years, 253.8 km{sup 2} (98 mi{sup 2}) of property has been successfully transitioned from the cleanup program to the LTS Program upon completion of active surface cleanup. Upcoming efforts in the near term will include transitioning another large parcel that includes one of the six (6) cocooned reactors on site. These accomplishments relied upon the transparency between DOE cleanup programs and their contractors working together to successfully transition the land while addressing the challenges that arise. All parties, the three different DOE Programs and their respective prime contractors are dedicated to working together and continuing the progress of transitioning land to LTS, in alignment with the Program Plan and compliant with contractual requirements. This paper highlights the accomplishments and collaborative efforts to address the challenges faced as work progresses from the cleanup to transitioning of land parcels to LTS Program.

Moren, R. J.; Zeisloft, J. H.; Feist, E. T.; Brown, D.; Grindstaff, K. D.

2013-01-10T23:59:59.000Z

184

LONG-TERM STEWARDSHIP AT DOE HANFORD SITE - 12575  

SciTech Connect

The U.S. Department of Energy's (DOE) Hanford Site is located in southeast Washington and consists of 1,518 square kilometers (586 square miles) of land. Established in 1943 as part of the Manhattan Project, Hanford workers produced plutonium for our nation's nuclear defense program until the mid 1980's. Since then, the site has been in cleanup mode that is being accomplished in phases. As we achieve remedial objectives and complete active cleanup, DOE will manage Hanford land under the Long-Term Stewardship (LTS) Program until completion of cleanup and the site becomes ready for transfer to the post cleanup landlord - currently planned for DOE's Office of Legacy Management (LM). We define Hanford's LTS Program in the ''Hanford Long-Term Stewardship Program Plan,'' (DOE/RL-201 0-35)[1], which describes the scope including the relationship between the cleanup projects and the LTS Program. DOE designed the LTS Program to manage and provide surveillance and maintenance (S&M) of institutional controls and associated monitoring of closed waste sites to ensure the protection of human health and the environment. DOE's Richland Operations Office (DOE-RL) and Hanford cleanup and operations contractors collaboratively developed this program over several years. The program's scope also includes 15 key activities that are identified in the DOE Program Plan (DOE/RL-2010-35). The LTS Program will transition 14 land segments through 2016. The combined land mass is approximately 570 square kilometers (220 square miles), with over 1,300 active and inactive waste sites and 3,363 wells. Land segments vary from buffer zone property with no known contamination to cocooned reactor buildings, demolished support facilities, and remediated cribs and trenches. DOE-RL will transition land management responsibilities from cleanup contractors to the Mission Support Contract (MSC), who will then administer the LTS Program for DOE-RL. This process requires an environment of cooperation between the contractors and DOE-RL. Information Management (IM) is a key part of the LTS program. The IM Program identifies, locates, stores, protects and makes accessible Hanford LTS records and data to support the transfer of property ultimately to LM. As such, DOE-RL manages the Hanford LTS Program in a manner consistent with LM's goals, policies, and procedures.

MOREN RJ; GRINDSTAFF KD

2012-01-11T23:59:59.000Z

185

Lawrence Livermore National Laboratory Livermore, California  

E-Print Network (OSTI)

the Secretaries of Energy and Defense, a personal assessment of the health of the nuclear weapons stockpile with the Directors of Los Alamos and Sandia National Laboratories, is to annually provide the U.S. President, through, and facility resources, including a workforce of approximately 7300 employees and an annual operating budget

Wechsler, Risa H.

186

Pacific Northwest National Laboratory | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pacific Northwest National Laboratory Pacific Northwest National Laboratory Pacific Northwest National Laboratory Pacific Northwest National Laboratory | June 2010 Aerial View Pacific Northwest National Laboratory | June 2010 Aerial View Pacific Northwest National Laboratory (PNNL) conducts research for national security missions, nuclear materials stewardship, non-proliferation missions, the nuclear fuel life cycle, energy production. PNNL is engaged in expanding the beneficial use of nuclear materials such as nuclear process engineering, radiomaterials characterization, separation and processing. PNNL also supports the Hanford Site cleanup and river corridor protection missions. Enforcement January 8, 2008 Preliminary Notice of Violation,Battelle Memorial Institute - EA-2007-07 Preliminary Notice of Violation issued to Battelle Memorial Institute

187

Los Alamos National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

employees receive Pollution Prevention employees receive Pollution Prevention Awards April 23, 2013 Protecting environment, saving taxpayer dollars LOS ALAMOS, N.M., April 23, 2013-Nearly 400 Los Alamos National Laboratory employees on 47 teams received Pollution Prevention awards for protecting the environment and saving taxpayers more than $8 million. The employees were recognized at the Laboratory's annual Pollution Prevention Awards ceremony on Monday (April 22), Earth Day. "The Pollution Prevention Awards are the result of people taking the initiative to improve their own operations," said Pat Gallagher of the Laboratory's Environmental - 2 - Stewardship group. "These are clever, innovative, homegrown and home-owned ideas that save the Laboratory and taxpayers millions of dollars each year while reducing

188

THE BNL ASTD FIELD LAB - NEAR - REAL - TIME CHARACTERIZATION OF BNL STOCKPILED SOILS TO ACCELERATE COMPLETION OF THE EM CHEMICAL HOLES PROJECT.  

SciTech Connect

As of October 2001, approximately 7,000 yd{sup 3} of stockpiled soil remained at Brookhaven National Laboratory (BNL) after the remediation of the BNL Chemical/Animal/Glass Pits disposal area. The soils were originally contaminated with radioactive materials and heavy metals, depending on what materials had been interred in the pits, and how the pits were excavated. During the 1997 removal action, the more hazardous/radioactive materials were segregated, along with, chemical liquids and solids, animal carcasses, intact gas cylinders, and a large quantity of metal and glass debris. Nearly all of these materials have been disposed of. In order to ensure that all debris was removed and to characterize the large quantity of heterogeneous soil, BNL initiated an extended sorting, segregation, and characterization project directed at the remaining soil stockpiles. The project was co-funded by the Department of Energy Environmental Management Office (DOE EM) through the BNL Environmental Restoration program and through the DOE EM Office of Science and Technology Accelerated Site Technology Deployment (ASTD) program. The focus was to remove any non-conforming items, and to assure that mercury and radioactive contaminant levels were within acceptable limits for disposal as low-level radioactive waste. Soils with mercury concentrations above allowable levels would be separated for disposal as mixed waste. Sorting and segregation were conducted simultaneously. Large stockpiles (ranging from 150 to 1,200 yd{sup 3}) were subdivided into manageable 20 yd{sup 3} units after powered vibratory screening. The 1/2-inch screen removed almost all non-conforming items (plus some gravel). Non-conforming items were separated for further characterization. Soil that passed through the screen was also visually inspected before being moved to a 20 yd{sup 3} ''subpile.'' Eight samples from each subpile were collected after establishing a grid of four quadrants: north, east, south and west, and two layers: top and bottom. Field personnel collected eight 100-gram samples, plus quality assurance (QA) duplicates for chemical analysis, and a 1-liter jar of material for gamma spectroscopy. After analyses were completed and reviewed, the stockpiles were reconstructed for later disposal as discrete entities within a disposal site profile. A field lab was set up in a trailer close to the stockpile site, equipped with instrumentation to test for mercury, RCRA metals, and gamma spectroscopy, and a tumbler for carrying out a modified Toxicity Characteristic Leaching Procedure (TCLP) protocol. Chemical analysis included X-ray fluorescence (XRF) to screen for high (>260 ppm) total mercury concentrations, and modified TCLP tests to verify that the soils were not RCRA hazardous. The modified TCLP tests were 1/10th scale, to minimize secondary (leachate) waste and maximize tumbler capacity and sampler throughput. TCLP leachate analysis was accomplished using a Milestone Direct Mercury Analyzer (DMA80). Gamma spectroscopy provided added assurance of previously measured Am-241, Cs-137, and Co-60 contamination levels.

BOWERMAN,B.S.; ADAMS,J.W.; HEISER,J.; KALB,P.D.; LOCKWOOD,A.

2003-04-01T23:59:59.000Z

189

What's New for the Department of Energy's (DOE) Long-Term Stewardship (LTS)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

What's New for the Department of Energy's (DOE) Long-Term What's New for the Department of Energy's (DOE) Long-Term Stewardship (LTS) What's New for the Department of Energy's (DOE) Long-Term Stewardship (LTS) On 11 February 2011, the Department replaced its DOE Order 5400.5 Radiation Protection of the Public and the Environment, Chg 2, dated 1-7-93 except for Chapter III (-Derived Concentration Guides for Air and Water‖) and Figure IV-1 (-Surface Contamination Guidelines‖) with a new DOE Order 458.1 Radiation Protection and the Environment. In DOE Order 458.1, DOE establishes more requirements to protect the public and the environment against undue risk from radiation (including long-term stewardship requirements) associated with radiological activities conducted under the control of the Department of Energy (DOE) pursuant to the Atomic

190

Accelerator R&D Stewardship | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Accelerator Accelerator R&D Stewardship High Energy Physics (HEP) HEP Home About Research Snowmass / P5 Planning Process Intensity Frontier Cosmic Frontier Theoretical Physics Advanced Technology R&D Accelerator R&D Stewardship Mission Background HEP Accelerator R&D Expertise Connecting Accelerator R&D to User Needs Workshop Reports Research Highlights .pdf file (13.1MB) Questions for the Universe Accomplishments Facilities Science Highlights Benefits of HEP Funding Opportunities Advisory Committees News & Resources Contact Information High Energy Physics U.S. Department of Energy SC-25/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3624 F: (301) 903-2597 E: sc.hep@science.doe.gov More Information » Research Accelerator R&D Stewardship

191

What's New for the Department of Energy's (DOE) Long-Term Stewardship (LTS)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

What's New for the Department of Energy's (DOE) Long-Term Stewardship (LTS) What's New for the Department of Energy's (DOE) Long-Term Stewardship (LTS) https://www.directives.doe.gov/directives/0458.1-BOrder/view On 11 February 2011, the Department replaced its DOE Order 5400.5 Radiation Protection of the Public and the Environment, Chg 2, dated 1-7-93 except for Chapter III (-Derived Concentration Guides for Air and Water‖) and Figure IV-1 (-Surface Contamination Guidelines‖) with a new DOE Order 458.1 Radiation Protection and the Environment. In DOE Order 458.1, DOE establishes more requirements to protect the public and the environment against undue risk from radiation (including long-term stewardship requirements) associated with radiological activities conducted under the control of the Department of Energy (DOE) pursuant to

192

Analysis of Senate Amendment 2028, the Climate Stewardship Act of 2003  

Gasoline and Diesel Fuel Update (EIA)

of Senate Amendment 2028, the Climate Stewardship Act of 2003 of Senate Amendment 2028, the Climate Stewardship Act of 2003 Energy Information Administration May 2004 Introduction In June 2003, the Energy Information Administration (EIA) released an analysis 1 of the Climate Stewardship Act of 2003 (S.139) as introduced by Senators McCain and Lieberman in January 2003. S.139 would establish a cap on emissions of greenhouse gases 2 from covered sources that would be implemented in two phases beginning in 2010 and 2016 respectively. More recently, in October 2003, Senators McCain and Lieberman proposed an amended version of the bill, SA.2028, that included the first phase of emissions reductions beginning in 2010 but removed references to a second phase of reductions beginning in 2016. On May 11, 2004, Senator Landrieu asked EIA to evaluate SA.2028. This paper responds to that

193

Materials and Sensor R&D to Transform the Nuclear Stockpile: Livermore?s Transformational Materials Initiative  

DOE Green Energy (OSTI)

As the nation's nuclear weapons age and the demands placed on them change, significant challenges face the nuclear stockpile. Risks include material supply issues, ever-increasing lifecycle costs, and loss of technical expertise across the weapons complex. For example, non-nuclear materials are becoming increasingly difficult to replace because manufacturing methods and formulations have evolved in such a way as to render formerly available materials unprofitable, unsafe, or otherwise obsolete. Subtle formulation changes in available materials that occur without the knowledge of the weapons community for proprietary reasons have frequently affected the long-term performance of materials in the nuclear weapon environment. Significant improvements in performance, lifetime, or production cost can be realized with modern synthesis, modeling, and manufacturing methods. For example, there are currently supply and aging issues associated with the insensitive high explosive formulations LX-17 and PBX 9502 that are based on triaminotrinitrobenzene (TATB) and Kel-F, neither of which are commercially available today. Assuring the reliability of the stockpile through surveillance and regularly scheduled Life Extension Programs is an increasingly expensive endeavor. Transforming our current stockpile surveillance--a system based on destructive testing of increasingly valuable assets--to a system based on embedded sensors has a number of potential advantages that include long-term cost savings, reduced risk associated with asset transportation, state-of-health assessments in the field, and active management of the stockpile.

Maxwell, R; Fried, L; Campbell, G; Saab, A; Kotovsky, J; Carter, C; Chang, J

2009-10-11T23:59:59.000Z

194

Hands-on environmental stewardship deepens Erica Garcia, civil...  

NLE Websites -- All DOE Office Websites (Extended Search)

which is regulated by the Environmental Protection Agency (EPA). Erica measures the chlorine and pH level in water around the Laboratory. "LANL is a great opportunity. You can...

195

ROW 2.0 - Right-of-Way Environmental Stewardship Bibliographic Database, Version 2.0  

Science Conference Proceedings (OSTI)

The Right-of-Way Environmental Stewardship Bibliographic Database Version 2.0 (ROW 2.0) allows users to search in multiple ways for citations and retrieve summaries of published documents that focus on environmental concerns related to utility corridor design, siting, construction, or management.

2007-03-08T23:59:59.000Z

196

Previous Sandia National Laboratories | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Previous Sandia National Laboratories | National Nuclear Security Previous Sandia National Laboratories | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Previous Sandia National Laboratories Home > About Us > Our Operations > Acquisition and Project Management > M & O Support Department > Sandia National Laboratories > Previous Sandia

197

Planning for the Transition to Long-Term Stewardship at Three U.S. Department of Energy-Chicago Operations Office Facilities  

SciTech Connect

This paper describes a pilot study that resulted in the generation of draft planning documents for the upcoming transition from remediation construction to long-term stewardship at three national laboratories managed by the U.S. Department of Energy (DOE)-Chicago Operations Office (CH). The remediation construction work at these facilities is being completed under the DOE's Office of Environmental Management (EM) Program. Once the remediation is complete, the responsibility for long-term stewardship (LTS) of the closed waste sites is expected to be transferred to the DOE organization responsible for managing each of the three facilities (i.e., the site landlord). To prepare for this transfer, an extensive planning effort is required. This pilot study utilized the DOE guidance in effect at the time to (1) develop a series of documents identifying applicable requirements that the LTS Programs will need to satisfy, issues that need to be resolved before the transfer can proceed, and criteria to be used to determine when active remediation is complete and a given site is ready for transfer to the LTS Program; (2) examine alternate structures for possible LTS Programs; and (3) develop draft LTS Implementation Plans. This advanced planning effort yielded a number of observations and lessons learned that are applicable to any facility approaching the end of its remediation construction phase.

Moos, L. P.; Ditmars, J. D.; Heston, S. L.; Granzen, G. A.; Holzemer, M. J.; Bennett, D. B.

2003-02-26T23:59:59.000Z

198

Notice of Availability of the Draft Supplement Programmatic Environmental Impact Statement on Stockpile Stewardship and Management for a Modern Pit Facility (DOE/EIS-0236-S2)(6/6/03)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

487 487 Federal Register / Vol. 68, No. 107 / Wednesday, June 4, 2003 / Notices We look forward to an informative discussion of the options and a determination of which would best provide all participants in the market clear, transparent, dependable, and accurate price signals with which to make informed decisions. The Capitol Connection offers coverage of all open and special Commission meetings held at the Commission's headquarters live over the Internet, as well as via telephone and satellite. For a fee, you can receive these meetings in your office, at home, or anywhere in the world. To find out more about Capitol Connection's live Internet, phone bridge, or satellite coverage, contact David Reininger or Julia Morelli at (703) 993-3100, or visit http://www.capitolconnection.org.

199

Radiological Laboratory, Utility, Office Building LEED Strategy & Achievement  

SciTech Connect

Missions that the Radiological Laboratory, utility, Office Building (RLUOB) supports are: (1) Nuclear Materials Handling, Processing, and Fabrication; (2) Stockpile Management; (3) Materials and Manufacturing Technologies; (4) Nonproliferation Programs; (5) Waste Management Activities - Environmental Programs; and (6) Materials Disposition. The key capabilities are actinide analytical chemistry and material characterization.

Seguin, Nicole R. [Los Alamos National Laboratory

2012-07-18T23:59:59.000Z

200

Internship at Los Alamos National Laboratory  

SciTech Connect

Los Alamos National Laboratory (LANL) is located in Los Alamos, New Mexico. It provides support for our country's nuclear weapon stockpile as well as many other scientific research projects. I am an Undergraduate Student Intern in the Systems Design and Analysis group within the Nuclear Nonproliferation division of the Global Security directorate at LANL. I have been tasked with data analysis and modeling of particles in a fluidized bed system for the capture of carbon dioxide from power plant flue gas.

Dunham, Ryan Q. [Los Alamos National Laboratory

2012-07-11T23:59:59.000Z

Note: This page contains sample records for the topic "laboratory stockpile stewardship" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Los Alamos National Laboratory selects three small businesses for  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental Stewardship » Environmental Stewardship » Environmental Cleanup » Feature Stories » LANL selects three small businesses for environmental work Los Alamos National Laboratory selects three small businesses for environmental work The companies chosen are Terranear PMC, Navarro Research and Engineering, Inc., and Adelante Consulting, Inc. May 14, 2013 Aerial view of Los Alamos National Laboratory. Aerial view of Los Alamos National Laboratory. Contact Fred deSousa Communications Office (505) 665-3430 Email Their excellent safety records and technical expertise make these companies valuable partners in providing a high level of environmental service to northern New Mexico. Value of up to $150 million over five years LOS ALAMOS, N.M., May 14, 2013-Los Alamos National Laboratory has awarded

202

PNNL: About PNNL - Laboratory Leadership  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory Leadership Laboratory Leadership PNNL science and technology inspires and enables the world to live prosperously, safely, and securely. Our leaders turn this vision into action, guiding all of PNNL's efforts. They ensure that our multidisciplinary research teams perform safely, securely and sustainably while advancing science and technology to solve the nation's most pressing problems in energy, the environment and national security. Leaders Mike Kluse Photo Mike Kluse PNNL Laboratory Director Mike Kluse establishes the vision and strategic direction of the Laboratory which combines excellence in science and technology, management and operations, and community stewardship. Steve Ashby Photo Steve Ashby Deputy Director of Science & Technology Steve Ashby leads PNNL's strategic planning agenda and stewards efforts to

203

Capability of the MIMAS process to convert the stockpiles of separated plutonium into MOX fuel for use in LWRs  

Science Conference Proceedings (OSTI)

Long-term storage of plutonium separated from fission products is not a good solution according to the current non-proliferation criteria as well as from an economic point of view. This material has thus to be converted to the equivalent of the “spent fuel standard.” Only one technique has so far reached the industrial maturity necessary to convert the important existing plutonium stockpiles: it is the use of plutonium to manufacture and irradiate mixed-oxide (MOX) fuel.

Paul Deramaix; Yvon Vanderborck; Werner Couwenbergh

2000-01-01T23:59:59.000Z

204

A Critique of the August 9th Weldon Spring Site Stewardship Plan:  

Office of Legacy Management (LM)

Critique of the August 9th Weldon Spring Site Stewardship Plan: Critique of the August 9th Weldon Spring Site Stewardship Plan: "Long Term Surveillance and Maintenance Program Long-Term Stewardship Plan for the Weldon Spring, Missouri, Site" August 9, 2002 (GJO-2002-342-TAC; GJO-LWEL 1.1-1) Author: Daniel W. McKeel, Jr., M.D. 5587-C Waterman Blvd. St. Louis, MO 63112 Phone: (314) 367-8888 Fax: (314) 362-4096 Analysis 8/20-22/2002 This critique was written from a copy downloaded from the web. The URL was supplied in an announcement of document availability letter DWM received August 10, 2002. A written copy was requested by letter 8/16/02. Not received as of 8/20/02. This comments narrative was based on the web version. On 8/06/02, 8/16/02 and 8/23/02 Dan McKeel requested in writing and via e-mail to be

205

Technical Assistance Guide: Working with DOE National Laboratories (Brochure)  

Science Conference Proceedings (OSTI)

A fact sheet that provides an overview of FEMP's technical assistance through the Department of Energy's National Laboratories. The Federal Energy Management Program (FEMP) facilitates the Federal Government's implementation of sound, cost-effective energy management and investment practices to enhance the nation's energy security and environmental stewardship. To advance that mission, FEMP fosters collaboration between Federal agencies and U.S. Department of Energy (DOE) national laboratories. This guide outlines technical assistance capabilities and expertise at DOE national laboratories. Any laboratory assistance must be in accordance with Federal Acquisition Regulation (FAR) Subpart 35.017 requirements and the laboratory's designation as Federal Funded Research and Development Center (FFRDC) facilities.

Not Available

2012-07-01T23:59:59.000Z

206

Los Alamos National Laboratory | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Los Alamos National Laboratory Los Alamos National Laboratory Los Alamos National Laboratory Los Alamos National Laboratory | September 2006 Aerial View Los Alamos National Laboratory | September 2006 Aerial View Los Alamos National Laboratory's (LANL) primary mission is to provide scientific and engineering support to national security programs. LANL performs R&D, design, maintenance, and testing in support of the nuclear weapons stockpile. LANL also performs theoretical and applied R&D in such areas as materials science, physics, environmental science, energy, and health. Enforcement February 12, 2013 Enforcement Letter, NEL-2013-02 Issued to Los Alamos National Security, LLC related to a Radiological Contamination Event at the Los Alamos Neutron Science Center at Los Alamos National Laboratory

207

Pacific Northwest National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

missions, nuclear materials stewardship, non-proliferation missions, the nuclear fuel life cycle, energy production. PNNL is engaged in expanding the beneficial use of...

208

Enforcement Letter - Los Alamos National Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7, 1997 7, 1997 Dr. Sigfried S. Hecker [ ] Los Alamos National Laboratory P.O. Box 1663 Los Alamos, NM 87545 Subject: Noncompliance Report NTS-ALO-LA-LANL-LANL-1996-0004 Dear Dr. Hecker: This letter refers to the Department of Energy's (DOE's) evaluation of potential noncompliances with the requirements of 10 CFR 830.120 (Quality Assurance Rule). The noncompliances involved the failure of Los Alamos National Laboratory (LANL) to adequately implement the requirements contained in the governing quality assurance standard for stockpile evaluations in the areas of work controls and procedural compliance. As a result of these failures, an explosion and fire occurred at the [ ] on November 14, 1996.

209

Artificial neural network modeling of the spontaneous combustion occurring in the industrial-scale coal stockpiles with 10-18 mm coal grain sizes  

SciTech Connect

Companies consuming large amounts of coal should work with coal stocks in order to not face problems due to production delays. The industrial-scale stockpiles formed for the aforementioned reasons cause environmental problems and economic losses for the companies. This study was performed in a coal stock area of a large company in Konya, which uses large amounts of coal in its manufacturing units. The coal stockpile with 5 m width, 10 m length, 3 m height, and having 120 tons of weight was formed in the coal stock area of the company. The inner temperature data of the stockpile was recorded by 17 temperature sensors placed inside the stockpile at certain points. In order to achieve this goal, the electrical signal conversion of temperatures sensed by 17 temperature sensors placed in certain points inside the coal stockpile, the transfer of these electrical signals into computer media by using analog-digital conversion unit after applying necessary filtration and upgrading processes, and the record of these information into a database in particular time intervals are provided. Additionally, the data relating to the air temperature, air humidity, atmospheric pressure, wind velocity, and wind direction that are the parameters affecting the coal stockpile were also recorded. Afterwards, these measurement values were used for training and testing of an artificial neural network model. Comparison of the experimental and artificial neural network results, accuracy rates of training and testing were found to be 99.5% and 99.17%, respectively. It is shown that possible coal stockpile behavior with this artificial neural network model is powerfully estimated.

Ozdeniz, A.H.; Yilmaz, N. [Selcuk University, Konya (Turkey). Dept. of Mining Engineering

2009-07-01T23:59:59.000Z

210

Analysis of S.139k, the Climate Stewardship Act of 2003  

Gasoline and Diesel Fuel Update (EIA)

3-02 3-02 Analysis of S.139, the Climate Stewardship Act of 2003 June 2003 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the Department of Energy or of any other organization. Service Reports are prepared by the Energy Information Administration upon special request and are based on assumptions specified by the requester. ii Contacts

211

Energy Market and Economic Impacts of S.280, the Climate Stewardship and Innovation Act of 2007  

Gasoline and Diesel Fuel Update (EIA)

4 4 Energy Market and Economic Impacts of S. 280, the Climate Stewardship and Innovation Act of 2007 July 2007 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Service Reports are prepared by the Energy Information Administration upon special request and are based on assumptions specified by

212

BIOGEOCHEMICAL CYCLING AND ENVIRONMENTAL STABILITY OF PLUTONIUM RELEVANT TO LONG-TERM STEWARDSHIP OF DOE SITES.  

Science Conference Proceedings (OSTI)

Pu is generally considered to be relatively immobile in the terrestrial environment, with the exception of transport via airborne and erosion mechanisms. More recently the transport of colloidal forms of Pu is being studied as a mobilization pathway from subsurface contaminated soils and sediments. The overall objective of this research is to understand the biogeochemical cycling of Pu in environments of interest to long-term DOE stewardship issues. Microbial processes are central to the immobilization of Pu species, through the metabolism of organically complexed Pu species and Pu associated with extracellular carrier phases and the creation of environments favorable for retardation of Pu transport.

FRANCIS, A.J.; GILLOW, J.P.; DODGE, C.J.

2006-11-16T23:59:59.000Z

213

BIOGEOCHEMICAL CYCLING AND ENVIRONMENTAL STABILITY OF PLUTONIUM RELEVANT TO LONG-TERM STEWARDSHIP OF DOE SITES  

Science Conference Proceedings (OSTI)

Pu is generally considered to be relatively immobile in the terrestrial environment, with the exception of transport via airborne and erosion mechanisms. More recently the transport of colloidal forms of Pu is being studied as a mobilization pathway from subsurface contaminated soils and sediments. The overall objective of this research is to understand the biogeochemical cycling of Pu in environments of interest to long-term DOE stewardship issues. Microbial processes are central to the immobilization of Pu species, through the metabolism of organically complexed Pu species and Pu associated with extracellular carrier phases and the creation of environments favorable for retardation of Pu transport.

Francis, A.J.; Gillow, J.B.; Dodge, C.J.

2006-06-01T23:59:59.000Z

214

Response I-1: The "holes" in the Long-Term Stewardship (LTS) Plan referred t  

Office of Legacy Management (LM)

Response I-1: The "holes" in the Long-Term Stewardship (LTS) Plan referred to Response I-1: The "holes" in the Long-Term Stewardship (LTS) Plan referred to details of stewardship activities that have not been resolved, such as institutional controls for the Ground Water Operable Unit at the site and the restrictive easements and other legal instruments associated with institutional controls. Radioactive materials and other wastes (e.g. asbestos) have been remediated and encapsulated in the disposal cell in accordance with approved Records of Decision that were based on approved health and environmental risk assessments. Because there are no longer any activities at the site that could pose a risk to the students and faculty at the school, the intent and purpose of the professional consultant services for the school are fulfilled and are no longer

215

National Nuclear Security Administration Service Center Environmental Programs Long-Term Environmental Stewardship Baseline Handbook  

SciTech Connect

As environmental restoration (ER) projects move toward completion, the planning, integration, and documentation of long-term environmental stewardship (LTES) activities is increasingly important for ensuring smooth transition to LTES. The Long-Term Environmental Stewardship Baseline Handbook (Handbook) prepared by the National Nuclear Security Administration (NNSA) Service Center Environmental Programs Department (EPD) outlines approaches for integrating site-specific LTES planning and implementation into site ER baseline documentation. Since LTES will vary greatly from site to site, the Handbook also provides for flexibility in addressing LTES in ER Project life-cycle baselines, while clearly identifying Environmental Management (EM) requirements. It provides suggestions for enacting LTES principles and objectives through operational activities described in site-specific LTES plans and life cycle ER Project baseline scope, cost, and schedule documentation and tools for more thorough planning, better quantification, broader understanding of risk and risk management factors, and more comprehensive documentation. LTES planning applied to baselines in a phased approach will facilitate seamlessly integrating LTES into site operational activities, thereby minimizing the use of resources.

Griswold, D. D.; Rohde, K.

2003-02-26T23:59:59.000Z

216

Weldon Spring, Missouri, Long-Term Stewardship Plan Public Workshop Notes, August 28, 2002  

Office of Legacy Management (LM)

W W W e e l l d d o o n n S S p p r r i i n n g g L L o o n n g g - - T T e e r r m m S S t t e e w w a a r r d d s s h h i i p p P P l l a a n n P P u u b b l l i i c c W W o o r r k k s s h h o o p p N N o o t t e e s s A A u u g g u u s s t t 2 2 8 8 , , 2 2 0 0 0 0 2 2 Opening Pam Thompson, U.S. Department of Energy (DOE) Weldon Spring Site Remedial Action Project Manager made opening comments, welcomed everyone, and introduced members of the DOE, Weldon Spring Citizens Commission, and others that were present. Introduction Dave Geiser, Director of Office of Long-Term Stewardship, DOE Headquarters 1. What are we trying to accomplish tonight? a. Input on the Long-Term Stewardship Plan. What citizens want to see that is not there. What needs to be changed so it reflects the public's concerns. We need clear, constructive comments. b. Approach and schedule. DOE is abandoning the current schedule and would like input

217

FY 2011 DOE Accomplishments and Award Nominations  

NLE Websites -- All DOE Office Websites (Extended Search)

Directed Stockpile Work organization, Applied Technology, Property Management, Sustainability and Stewardship, and Waste Management. TEM work processes have been well...

218

Material Management/Strategic Reserve | Y-12 National Security...  

NLE Websites -- All DOE Office Websites (Extended Search)

and special nuclear materials and provides programmatic planning, analysis and forecasting for national security material requirements supporting Stockpile Stewardship and...

219

Microsoft PowerPoint - Roberts, IV and Stewardship (SSAB April 2010).ppt [Compatibility Mode]  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Independent Independent Verification and Independent Verification and Stewardship April 29, 2010 Sarah Roberts, CHP Acting Program Director, ORISE IEAV Benefits of IV "IV is an important quality assurance step that ensures cleanup goals have been achieved" (DOE Lessons Learned from Independent have been achieved (DOE Lessons Learned from Independent Verification Activities, July 2008) * Offers a cost-effective way to provide assurance that the site was successfully remediated to the risk-based release criteria was successfully remediated to the risk based release criteria * Enhances public credibility and builds stakeholder trust in environmental cleanup * Provides consistency among multiple D&D projects at a particular site * Ensures D&D plans and reports are technically sound

220

Web Feature Nuclear Stewardship: Lessons from a Not-So-Remote Island  

Office of Legacy Management (LM)

Geotimes - March 2002 - Amchitka Island Yage 1 ot 6 Geotimes - March 2002 - Amchitka Island Yage 1 ot 6 Web Feature Nuclear Stewardship: Lessons from a Not-So-Remote Island John Eichelberger, Jeff Freymueller. Graham Hill and Matt Patrick The authors' work at Amchitka is part of a program of independent risk assessment of U.S. Department of Energy (DOE) sites funded by DOE and managed by the Consortium for Risk Assessment for Stakeholder Participation (CRESPII). The views expressed here are our own, with the intent to stimulate constructive discussion, and may differ from those of CRESPII management or of DOE. In 1971, the United States set off its largest underground nuclear test. The 5-megaton Cannikin explosion was deemed too large for the Nevada Test Site, and at the time the underground nuclear test

Note: This page contains sample records for the topic "laboratory stockpile stewardship" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

DOE's Nuclear Weapons Complex: Challenges to Safety, Security, and Taxpayer Stewardship  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oversight and Investigations Oversight and Investigations Committee on Energy and Commerce U.S. House of Representatives "DOE's Nuclear Weapons Complex: Challenges to Safety, Security, and Taxpayer Stewardship" FOR RELEASE ON DELIVERY 10:00 AM September 12, 2012 1 Mr. Chairman and Members of the Subcommittee, I am pleased to be here at your request to testify on matters relating to the Department of Energy's oversight of the nuclear weapons complex. 1 The National Nuclear Security Administration (NNSA) was established under the National Defense Authorization Act of 2000 as a separately organized agency within the Department of Energy. This action was intended to allow NNSA to concentrate on its defense-related mission, free from other Departmental operations. Its creation was, in large measure, a reaction to highly

222

Biogeochemical Cycling and Environmental Stability of Pu Relevant to Long-Term Stewardship of DOE Sites  

Science Conference Proceedings (OSTI)

The overall objective of this proposed research is to understand the biogeochemical cycling of Pu in environments of interest to long-term DOE stewardship issues. Central to Pu cycling (transport initiation to immobilization) is the role of microorganisms. The hypothesis underlying this proposal is that microbial activity is the causative agent in initiating the mobilization of Pu in near-surface environments: through the transformation of Pu associated with solid phases, production of extracellular polymeric substances (EPS) carrier phases, and the creation of microenvironments. Also, microbial processes are central to the immobilization of Pu species, through the metabolism of organically complexed Pu species and Pu associated with extracellular carrier phases and the creation of environments favorable for Pu transport retardation.

Honeyman, Bruce D.

2006-06-01T23:59:59.000Z

223

Biogeochemical Cycling and Environmental Stability of Pu Relevant to Long-Term Stewardship of DOE Sites  

Science Conference Proceedings (OSTI)

The overall objective of this proposed research is to understand the biogeochemical cycling of Pu in environments of interest to long-term DOE stewardship issues. Central to Pu cycling (transport initiation to immobilization) is the role of microorganisms. The hypothesis underlying this proposal is that microbial activity is the causative agent in initiating the mobilization of Pu in near-surface environments: through the transformation of Pu associated with solid phases, production of extracellular polymeric substances (EPS) carrier phases, and the creation of microenvironments. Also, microbial processes are central to the immobilization of Pu species, through the metabolism of organically complexed Pu species and Pu associated with extracellular carrier phases and the creation of environments favorable for Pu transport retardation.

Francis, Arokiasamy J.; Santschi, Peter H.; Honeyman, Bruce D.

2005-06-01T23:59:59.000Z

224

Biogeochemical Cycling and Environmental Stability of Pu Relevant to Long-Term Stewardship of DOE Sites  

Science Conference Proceedings (OSTI)

The overall objective of this research is to understand the biogeochemical cycling of Pu in environments of interest to long-term DOE stewardship issues. Central to Pu cycling (transport initiation and immobilization) is the role of microorganisms. The hypothesis underlying this work is that microbial activity is the causative agent in initiating the mobilization of Pu in near-surface environments: through the transformation of Pu associated with solid phases, production of extracellular polymeric substances (EPS) carrier phases and the creation of microenvironments. Also, microbial processes are central to the immobilization of Pu species, through the metabolism of organically complexed Pu species and Pu associated with extracellular carrier phases and the creation of environments favorable for Pu transport retardation.

Honeyman, Bruce D.; Francis, A.J.; Gillow, Jeffrey B.; Dodge, Cleveland J.; Santschi, Peter H.; Chin-Chang Hung; Diaz, Angelique; Tinnacher, Ruth; Roberts, Kimberly; Schwehr, Kathy

2006-04-05T23:59:59.000Z

225

Laboratory Directed Research & Development | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Laboratory Directed Research & Development | National Nuclear Security Laboratory Directed Research & Development | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Laboratory Directed Research & Development Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing and

226

Cognitive Informatics, Pacific Northwest National Laboratory | National  

National Nuclear Security Administration (NNSA)

Cognitive Informatics, Pacific Northwest National Laboratory | National Cognitive Informatics, Pacific Northwest National Laboratory | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Who We Are > In The Spotlight > Frank Greitzer Cognitive Informatics, Pacific Northwest National Laboratory Frank Greitzer Frank Greitzer Role: Cognitive Informatics, Pacific Northwest National Laboratory

227

Chemist, Sandia National Laboratories | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Chemist, Sandia National Laboratories | National Nuclear Security Chemist, Sandia National Laboratories | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Who We Are > In The Spotlight > Jerilyn Timlin Chemist, Sandia National Laboratories Jerilyn Timlin Jerilyn Timlin Role: Chemist, Sandia National Laboratories Award: National Institutes of Health (NIH) New Innovator Award

228

Technical Assistance Guide: Working with DOE National Laboratories (Brochure), Federal Energy Management Program (FEMP)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Management Energy Management Program (FEMP) facilitates the Federal Government's implementa- tion of sound, cost-effective energy management and investment practices to enhance the nation's energy security and environmental stewardship. To advance that mission, FEMP fosters collaboration between Federal agencies and U.S. Department of Energy (DOE) national laboratories. 1 This guide outlines technical assistance capabilities and expertise at DOE national laboratories. Any laboratory assistance must be in accordance with Federal Acquisition Regulation (FAR) Subpart 35.017 requirements and the laboratory's designation as Federal Funded Research and Development Center (FFRDC) facilities. Contacts and core expertise for each DOE national laboratory are listed in

229

Technical Assistance Guide: Working with DOE National Laboratories (Brochure), Federal Energy Management Program (FEMP)  

NLE Websites -- All DOE Office Websites (Extended Search)

Federal Energy Management Federal Energy Management Program (FEMP) facilitates the Federal Government's implementa- tion of sound, cost-effective energy management and investment practices to enhance the nation's energy security and environmental stewardship. To advance that mission, FEMP fosters collaboration between Federal agencies and U.S. Department of Energy (DOE) national laboratories. 1 This guide outlines technical assistance capabilities and expertise at DOE national laboratories. Any laboratory assistance must be in accordance with Federal Acquisition Regulation (FAR) Subpart 35.017 requirements and the laboratory's designation as Federal Funded Research and Development Center (FFRDC) facilities. Contacts and core expertise for each DOE national laboratory are listed in

230

STATEMENT OF WORK  

National Nuclear Security Administration (NNSA)

PART III - SECTION J APPENDIX B STATEMENT OF WORK Table of Contents 1.0 General.................................................................................................................... 273 2.0 Laboratory Mission and Scope of Work. ................................................................ 274 3.0 Science & Technology. ........................................................................................... 275 3.1 Defense Programs. .................................................................................................. 276 3.1.1 Stewardship of United States Nuclear Weapons. ................................................ 276 3.1.1.1 Stockpile Certification. .......................................................................................

231

Program Objectives | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Program Objectives Program Objectives Home > Stewardship Science Academic Alliances Program > Program Objectives Program Objectives Stewardship Science Academic Alliances (SSAA) Program Objectives Support the U.S. scientific community by funding research projects at universities that conduct fundamental science and technology research that is of relevance to Stockpile Stewardship, namely; materials under extreme conditions (condensed matter physics and materials science, hydrodynamics, and fluid dynamics); low energy nuclear science, high energy density physics, and radiochemistry. Provide opportunities for intellectual challenge and collaboration by promoting scientific interactions between the academic community and scientists at the DOE/NNSA's laboratories. Develop and maintain a long-term recruiting pipeline to the DOE/NNSA

232

Site Transition Summary: Cleanup Completion to Long-Term Stewardship at Department of Energy On-going Mission Sites  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

UNITED STATES DEPARTMENT OF UNITED STATES DEPARTMENT OF ENERGY Site Transition Summary: Cleanup Completion to Long-Term Stewardship at Department of Energy On- going Mission Sites February 2012 Introduction Long-term stewardship (LTS) includes the physical controls, institutions, information, and other mechanisms needed to ensure protection of people and the environment at sites where the U.S. Department of Energy (DOE) has completed or plans to complete cleanup (e.g., landfill closures, remedial actions, removal actions, and facility stabilization). This concept includes land-use controls, information management, monitoring and maintenance. DOE has ongoing mission areas related to advancing energy and nuclear security, promoting scientific discovery and innovation, and ensuring environmental responsibility

233

about Savannah River National Laboratory  

Savannah River Nuclear Solutions ... Office of Environmental Management Applied research ... in the areas of national security, clean energy and environmental stewardship

234

LANL | Physics | Hydrodynamic Material Instabilities at extremes  

NLE Websites -- All DOE Office Websites (Extended Search)

Understanding hydrodynamic material instabilities at extremes Understanding hydrodynamic material instabilities at extremes The National Nuclear Security Administration science-based stockpile stewardship program funds research that will improve critical physics-based dynamic materials models. Los Alamos National Laboratory and Lawrence Livermore National Laboratory, as nuclear weapon design laboratories, are mandated to predict the reliability and durability of the nuclear weapons stockpile. This is done using state-of-the-art supercomputers and computer codes. It is also important to have state-of-the-art physics models in these codes. Los Alamos has theory experts in dynamic materials, thus creating powerful working groups when combined with experimental experts in Physics Division and elsewhere. Key to the science-based stockpile stewardship program is making

235

Optimizing Industry Water Use: Evaluation of the Use of Water Stewardship Tools by Great Lakes Basin Industries  

Science Conference Proceedings (OSTI)

This document reports on a research study funded by Electric Power Research Institute (EPRI), the Great Lakes Protection Fund (GLPF), the National Council for Air and Stream Improvement (NCASI), and the Council of Great Lakes Industries (CGLI). The objective of the research was to understand and compare, with the assistance of case study applications, water resource stewardship assessment tools that have been proposed by different organizations. The report concludes that tools used to assess global water...

2012-06-13T23:59:59.000Z

236

Prediction of temperature and thermal inertia effect in the maturation stage and stockpiling of a large composting mass  

SciTech Connect

A macroscopic non-steady state energy balance was developed and solved for a composting pile of source-selected organic fraction of municipal solid waste during the maturation stage (13,500 kg of compost). Simulated temperature profiles correlated well with temperature experimental data (ranging from 50 to 70 deg. C) obtained during the maturation process for more than 50 days at full scale. Thermal inertia effect usually found in composting plants and associated to the stockpiling of large composting masses could be predicted by means of this simplified energy balance, which takes into account terms of convective, conductive and radiation heat dissipation. Heat losses in a large composting mass are not significant due to the similar temperatures found at the surroundings and at the surface of the pile (ranging from 15 to 40 deg. C). In contrast, thermophilic temperature in the core of the pile was maintained during the whole maturation process. Heat generation was estimated with the static respiration index, a parameter that is typically used to monitor the biological activity and stability of composting processes. In this study, the static respiration index is presented as a parameter to estimate the metabolic heat that can be generated according to the biodegradable organic matter content of a compost sample, which can be useful in predicting the temperature of the composting process.

Barrena, R. [Escola Universitaria Politecnica del Medi Ambient, Universitat Autonoma de Barcelona, Rbla Pompeu Fabra 1, 08100-Mollet del Valles, Barcelona (Spain); Canovas, C. [Escola Universitaria Politecnica del Medi Ambient, Universitat Autonoma de Barcelona, Rbla Pompeu Fabra 1, 08100-Mollet del Valles, Barcelona (Spain); Sanchez, A. [Escola Universitaria Politecnica del Medi Ambient, Universitat Autonoma de Barcelona, Rbla Pompeu Fabra 1, 08100-Mollet del Valles, Barcelona (Spain)]. E-mail: asanchez@eupma.uab.es

2006-07-01T23:59:59.000Z

237

National Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratories Los Alamos National Laboratory (the Laboratory) is one of 17 National Laboratories in the United States and is one of the two located in New Mexico. The Laboratory has...

238

Sandia National Laboratories: Advanced Simulation Computing: Research &  

NLE Websites -- All DOE Office Websites (Extended Search)

Research & Collaboration Research & Collaboration Partnerships among the national laboratories, industry, and academia leverage a broad spectrum of talent and multiply the effectiveness of our research efforts. These collaborations help solve the challenges of developing computing platforms and simulation tools across a number of disciplines. Computer Science Research Institute The Computer Science Research Institute brings university faculty and students to Sandia for focused collaborative research on DOE computer and computational science problems. Organized under the DOE Stockpile Computing Program, participants conduct leading-edge research, interact with scientists and engineers at the Laboratories, and help transfer the results of their research to programs at the Labs.

239

Sandia National Laboratories and Kansas City Plant Competitive Alternatives  

National Nuclear Security Administration (NNSA)

and Kansas City Plant Competitive Alternatives and Kansas City Plant Competitive Alternatives | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Sandia National Laboratories and Kansas City Plant Competitive Alternatives Home > About Us > Our Operations > Acquisition and Project Management > Major Contract Solicitation > Sandia National Laboratories and Kansas City

240

High Energy Density Laboratory Plasmas | National Nuclear Security  

National Nuclear Security Administration (NNSA)

| National Nuclear Security | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog HEDLP High Energy Density Laboratory Plasmas Home > About Us > Our Programs > Defense Programs > Office of Research, Development, Test, and Evaluation > University Partnerships / Academic Alliances > High Energy Density Laboratory Plasmas

Note: This page contains sample records for the topic "laboratory stockpile stewardship" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Utilitas and venustas: balancing utility and authenticity in the stewardship of our built heritage  

E-Print Network (OSTI)

This thesis examines the past, present, and potential future of the practice of Heritage Conservation. Beginning with ancient Roman Architect, Vitruvius, this study establishes a vocabulary for the ideals of preservation practice. Utilitas and venustas, as two of the defining features of good architecture, are also key features to consider in the stewardship of a historic building in active use. The data set used in this evaluation comes from a symposium given in November 2004 by the Association for Preservation Technology International (APT), the United States General Services Administration (GSA), and the United States National Park Service (NPS). Historical background is presented to give a context for the symposium, which includes foundations, policy, and practice in the United States. The Venice Charter, National Historic Preservation Act, NPS, and GSA have been chosen for the Literature Review to provide this background. With utilitas and venustas as additional criteria for evaluation, the symposium case studies were mined for examples of practice that could be used to make suggestions for the future. Based on these examples and the possibilities for improving practice, this study concludes that the United States should draft a new document outlining an updated philosophy and policy for preservation. Future research would serve to develop refinements of existing frameworks and to create a new standard for "best practice".

Reich, Alene Wilmoth

2005-12-01T23:59:59.000Z

242

Laboratory Planning Process | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Laboratory Planning Laboratory Planning Process Laboratory Policy and Evaluation (LPE) LPE Home Staff M&O Contracts SC Laboratory Appraisal Process Laboratory Planning Process Work for Others in the Office of Science Laboratory Directed Research and Development (LDRD) Technology Transfer DOE National Laboratories Contact Information Laboratory Policy and Evaluation U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5447 F: (202) 586-3119 Laboratory Planning Process Print Text Size: A A A RSS Feeds FeedbackShare Page The Department of Energy (DOE) Office of Science (SC) is responsible for the effective stewardship of ten national laboratories. SC's challenge is to ensure that these institutions are oriented to focus, individually

243

Researcher, Los Alamos National Laboratory - Applied Physics...  

NLE Websites -- All DOE Office Websites (Extended Search)

Applied Physics Division | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response...

244

Laboratory Policy and Evaluation (LPE) Homepage | U.S. DOE Office of  

NLE Websites -- All DOE Office Websites (Extended Search)

LPE Home LPE Home Laboratory Policy and Evaluation (LPE) LPE Home Staff M&O Contracts SC Laboratory Appraisal Process Laboratory Planning Process Work for Others in the Office of Science Laboratory Directed Research and Development (LDRD) Technology Transfer DOE National Laboratories Contact Information Laboratory Policy and Evaluation U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5447 F: (202) 586-3119 The Department of Energy National Laboratories The Department of Energy is responsible for the effective stewardship of 17 world-class national laboratories, 10 of which are under the purview of the Office of Science.Read More Photo of DOE National Laboratories LDRD: DOE's Engine of Discovery .pdf file (2.8MB)

245

Sandia National Laboratories: Pollution Prevention  

NLE Websites -- All DOE Office Websites (Extended Search)

Pollution Prevention Pollution Prevention Environmental Management System Pollution Prevention Sustainable Acquisition Electronics Stewardship Recycling Reuse Outreach Awards News About Pollution Prevention 13,051 lbs of Carpet Sent for Reuse Forklift carrying carpet on pallet Sandia Awarded for Electronics Stewardship Electronics Stewardship Award Zero Waste Lunch Goes Beyond Recycling Zero Waste Station No More Green Waste in the Landfill Dup truck dumping green waste Recycling Lead Acid Batteries Responsibly Lead Acid Batteries 39,000 Pounds of Ceiling Tiles Recycled Ceiling tile shipment for recycling Sustainable Acquisition Icon Sustainable Acquisition Greening the supply chain Electronics Stewardship Icon Electronics Stewardship Managing the full life-cycle Outreach Icon Outreach Teaming with our community Recycling Icon

246

2005 JASON Summer Study Verification and Validation Charge Program Summary  

National Nuclear Security Administration (NNSA)

05 JASON Summer Study 05 JASON Summer Study Verification and Validation Charge Program Summary The Advanced Simulation and Computing (ASC) Program has been driven since its inception by the need to ensure the safety, reliability and performance of the nuclear weapons stockpile without nuclear testing through the development of simulation and modeling capability and the deployment of that capability on state-of-the-art high performance computing platforms. As the devices in the stockpile age and as necessary changes are made with technologies or materials that are new to the stockpile, simulation can give laboratory experts, policy makers and DoD customers increased confidence that the nuclear weapons in the stockpile will perform as expected. The stockpile stewardship program's increasing

247

Sandia National Laboratories' Readiness in Technical Base and Facilities Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sandia National Laboratories' Sandia National Laboratories' Readiness in Technical Base and Facilities Program OAS-L-13-13 September 2013 Department of Energy Washington, DC 20585 September 5, 2013 MEMORANDUM FOR THE MANAGER, SANDIA FIELD OFFICE FROM: David Sedillo, Director Western Audits Division Office of Inspector General SUBJECT: INFORMATION: Audit Report on "Sandia National Laboratories' Readiness in Technical Base and Facilities Program" BACKGROUND The Department of Energy's (Department) Sandia National Laboratories (Sandia) is a Government-owned, contractor operated Laboratory that is part of the National Nuclear Security Administration's (NNSA) nuclear weapons complex. One of Sandia's key missions is to ensure the safety, reliability and performance of the Nation's nuclear weapons stockpile. To accomplish

248

Los Alamos National Laboratory | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

National Laboratory | National Nuclear Security Administration National Laboratory | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our Locations > Los Alamos National Laboratory Los Alamos National Laboratory http://www.lanl.gov/ Field Office: Los Alamos Field Office (NA-00-LA) manages the resources of the NNSA Los Alamos National Weapons Design Laboratory. NA-00-LA aims to

249

Los Alamos names four to Laboratory Fellows list | National Nuclear  

National Nuclear Security Administration (NNSA)

names four to Laboratory Fellows list | National Nuclear names four to Laboratory Fellows list | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Los Alamos names four to Laboratory Fellows list Los Alamos names four to Laboratory Fellows list Posted By Office of Public Affairs Four scientists have been inducted into the Los Alamos National Laboratory

250

Once the World's Fastest Supercomputer; Central to  

NLE Websites -- All DOE Office Websites (Extended Search)

End of the road for Roadrunner End of the road for Roadrunner March 29, 2013 Once the World's Fastest Supercomputer; Central to the Success of Stockpile Stewardship LOS ALAMOS, N. M., March 29, 2013-Roadrunner, the first supercomputer to break the once-elusive petaflop barrier-one million billion calculations per second-will be decommissioned on Sunday, March 31. During its five operational years, Roadrunner, part of the National Nuclear Security Administration's Advanced Simulation and Computing (ASC) program to provide key computer simulations for the Stockpile Stewardship Program, was a workhorse system providing computing power for stewardship of the U.S. nuclear deterrent, and in its early shakedown phase, a wide variety of unclassified science. The IBM system achieved petaflop speed in 2008, shortly after installation at Los Alamos National Laboratory.

251

Leader, Los Alamos National Laboratory Stimulus Project | National Nuclear  

NLE Websites -- All DOE Office Websites (Extended Search)

Leader, Los Alamos National Laboratory Stimulus Project | National Nuclear Leader, Los Alamos National Laboratory Stimulus Project | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Who We Are > In The Spotlight > Carolyn Zerkle Leader, Los Alamos National Laboratory Stimulus Project Carolyn Zerkle Carolyn Zerkle Role: Leader, Los Alamos National Laboratory Stimulus Project

252

Director at Sandia National Laboratories | National Nuclear Security  

National Nuclear Security Administration (NNSA)

at Sandia National Laboratories | National Nuclear Security at Sandia National Laboratories | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Who We Are > In The Spotlight > Sidney Gutierrez Director at Sandia National Laboratories Sidney Gutierrez Sidney Gutierrez Role: Director at Sandia National Laboratories Award: 2010 Notable New Mexican

253

Leader, Los Alamos National Laboratory Stimulus Project | National Nuclear  

National Nuclear Security Administration (NNSA)

Leader, Los Alamos National Laboratory Stimulus Project | National Nuclear Leader, Los Alamos National Laboratory Stimulus Project | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Who We Are > In The Spotlight > Carolyn Zerkle Leader, Los Alamos National Laboratory Stimulus Project Carolyn Zerkle Carolyn Zerkle Role: Leader, Los Alamos National Laboratory Stimulus Project

254

Remarks at the Capability Replacement Laboratory (CRL) Completion Ceremony  

NLE Websites -- All DOE Office Websites (Extended Search)

at the Capability Replacement Laboratory (CRL) Completion Ceremony at the Capability Replacement Laboratory (CRL) Completion Ceremony by Deputy Administrator Anne M. Harrington | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Speeches > Remarks at the Capability Replacement Laboratory (CRL) ... Speech Remarks at the Capability Replacement Laboratory (CRL) Completion Ceremony

255

Global Nuclear Futures Program Manager, Sandia National Laboratories |  

NLE Websites -- All DOE Office Websites (Extended Search)

Global Nuclear Futures Program Manager, Sandia National Laboratories | Global Nuclear Futures Program Manager, Sandia National Laboratories | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Who We Are > In The Spotlight > Tom Sanders Global Nuclear Futures Program Manager, Sandia National Laboratories Tom Sanders Tom Sanders Role: Global Nuclear Futures Program Manager, Sandia National Laboratories

256

Idaho National Laboratory Environmental Monitoring Plan  

SciTech Connect

This plan describes environmental monitoring as required by U.S. Department of Energy (DOE) Order 450.1, “Environmental Protection Program,” and additional environmental monitoring currently performed by other organizations in and around the Idaho National Laboratory (INL). The objective of DOE Order 450.1 is to implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations. This plan describes the organizations responsible for conducting environmental monitoring across the INL, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. This plan presents a summary of the overall environmental monitoring performed in and around the INL without duplicating detailed information in the various monitoring procedures and program plans currently used to conduct monitoring.

Joanne L. Knight

2008-04-01T23:59:59.000Z

257

Idaho National Laboratory Site Environmental Monitoring Plan  

SciTech Connect

This plan describes environmental monitoring as required by U.S. Department of Energy (DOE) Order 450.1, “Environmental Protection Program,” and additional environmental monitoring currently performed by other organizations in and around the Idaho National Laboratory (INL). The objective of DOE Order 450.1 is to implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations. This plan describes the organizations responsible for conducting environmental monitoring across the INL, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. This plan presents a summary of the overall environmental monitoring performed in and around the INL without duplicating detailed information in the various monitoring procedures and program plans currently used to conduct monitoring.

Joanne L. Knight

2012-08-01T23:59:59.000Z

258

Idaho National Laboratory Site Environmental Monitoring Plan  

Science Conference Proceedings (OSTI)

This plan describes environmental monitoring as required by U.S. Department of Energy (DOE) Order 450.1, “Environmental Protection Program,” and additional environmental monitoring currently performed by other organizations in and around the Idaho National Laboratory (INL). The objective of DOE Order 450.1 is to implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations. This plan describes the organizations responsible for conducting environmental monitoring across the INL, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. This plan presents a summary of the overall environmental monitoring performed in and around the INL without duplicating detailed information in the various monitoring procedures and program plans currently used to conduct monitoring.

Joanne L. Knight

2010-10-01T23:59:59.000Z

259

Laboratory Reagents  

SciTech Connect

Replaced by WMH-310, Section 4.17. This document outlined the basic methodology for preparing laboratory reagents used in the 222-S Standards Laboratory. Included were general guidelines for drying, weighing, transferring, dissolving, and diluting techniques common when preparing laboratory reagents and standards. Appendix A contained some of the reagents prepared by the laboratory.

CARLSON, D.D.

1999-10-08T23:59:59.000Z

260

Sandia National Laboratories: Pollution Prevention: Electronics...  

NLE Websites -- All DOE Office Websites (Extended Search)

Stewardship As a member of the Federal Electronics Challenge (FEC), Sandia is committed to purchasing computer systems designed with the environment in mind. "Green" electronics...

Note: This page contains sample records for the topic "laboratory stockpile stewardship" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Enforcement Letter, Los Alamos National Laboratory - July 7, 1997 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 7, 1997 July 7, 1997 Enforcement Letter, Los Alamos National Laboratory - July 7, 1997 July 7, 1997 Issued to the University of California related to Potential Quality Assurance Rule Violations associated with an Explosion and Fire at the Los Alamos National Laboratory This letter refers to the Department of Energy's (DOE's) evaluation of potential noncompliances with the requirements of 10 CFR 830.120 (Quality Assurance Rule). The noncompliances involved the failure of Los Alamos National Laboratory (LANL) to adequately implement the requirements contained in the governing quality assurance standard for stockpile evaluations in the areas of work controls and procedural compliance. As a result of these failures, an explosion and fire occurred at the [ ] on November 14, 1996.

262

High Energy Density Laboratory Plasmas Program | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Program | National Nuclear Security Program | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog High Energy Density Laboratory Plasmas Program Home > High Energy Density Laboratory Plasmas Program High Energy Density Laboratory Plasmas Program Steady advances in increasing the energy, power, and brightness of lasers and particle beams and advances in pulsed power systems have made possible

263

Enforcement Letter, Los Alamos National Laboratory - July 7, 1997 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 7, 1997 July 7, 1997 Enforcement Letter, Los Alamos National Laboratory - July 7, 1997 July 7, 1997 Issued to the University of California related to Potential Quality Assurance Rule Violations associated with an Explosion and Fire at the Los Alamos National Laboratory This letter refers to the Department of Energy's (DOE's) evaluation of potential noncompliances with the requirements of 10 CFR 830.120 (Quality Assurance Rule). The noncompliances involved the failure of Los Alamos National Laboratory (LANL) to adequately implement the requirements contained in the governing quality assurance standard for stockpile evaluations in the areas of work controls and procedural compliance. As a result of these failures, an explosion and fire occurred at the [ ] on November 14, 1996.

264

ISO 14001 IMPLEMENTATION AT A NATIONAL LABORATORY.  

SciTech Connect

After a tumultuous year discovering serious lapses in environment, safety and health management at Brookhaven National Laboratory, the Department of Energy established a new management contract. It called for implementation of an IS0 14001 Environmental Management System and registration of key facilities. Brookhaven Science Associates, the managing contractor for the Laboratory, designed and developed a three-year project to change culture and achieve the goals of the contract. The focus of its efforts were to use IS0 14001 to integrate environmental stewardship into all facets of the Laboratory's mission, and manage its programs in a manner that protected the ecosystem and public health. A large multidisciplinary National Laboratory with over 3,000 employees and 4,000 visiting scientists annually posed significant challenges for IS0 14001 implementation. Activities with environmental impacts varied from regulated industrial waste generation, to soil activation from particle accelerator operations, to radioactive groundwater contamination from research reactors. A project management approach was taken to ensure project completion on schedule and within budget. The major work units for the Environmental Management System Project were as follows: Institutional EMS Program Requirements, Communications, Training, Laboratory-wide Implementation, and Program Assessments. To minimize costs and incorporate lessons learned before full-scale deployment throughout the Laboratory, a pilot process was employed at three facilities. Brookhaven National Laboratory has completed its second year of the project in the summer of 2000, successfully registering nine facilities and self-declaring conformance in all remaining facilities. Project controls, including tracking and reporting progress against a model, have been critical to the successful implementation. Costs summaries are lower than initial estimates, but as expected legal requirements, training, and assessments are key cost centers. Successes to date include the pilot process, heightened employee awareness, registration of the first DOE National Laboratory facility, line ownership of the program, and senior management commitment.

BRIGGS,S.L.K.

2001-06-01T23:59:59.000Z

265

environmental StewardShip Long-term management aimed at preserving and enhanc-  

E-Print Network (OSTI)

with little or no daylight. A solar collector on the roof will direct light through fiber optics to reach by including features such as an under-floor air distribution system with indi- vidual control and daylighting and renovated fa- cilities, and environmental restoration. The Laboratories' Environmental Management System

Fuerschbach, Phillip

266

Physicist, Lawrence Livermore National Laboratory | National...  

National Nuclear Security Administration (NNSA)

He is honored for his scientific leadership to advance understanding in a long-standing nuclear weapons physics anomaly and his contribution to nuclear weapons stockpile...

267

Sandia National Laboratories: National Security Missions: Internationa...  

NLE Websites -- All DOE Office Websites (Extended Search)

national security through global technical engagement. Enhance security of vulnerable nuclear weapons stockpiles and weapons-usable nuclear material in countries of concern and...

268

Sandia National Laboratories: National Security Missions: Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

Weapons Science & Technology National labs provide the science and technology to maintain and certify the nuclear stockpile in the absence of full-scale weapons testing. The...

269

Researcher, Los Alamos National Laboratory - Applied Physics...  

National Nuclear Security Administration (NNSA)

his scientific field through analysis of nuclear deterrence. He has advised both Los Alamos and Lawrence Livermore national labs on the complexities of the aging nuclear stockpile...

270

High Energy Density Laboratory Plasmas Program | National Nuclear...  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

271

University Research Program in Robotics - "Technologies for Micro-Electrical-Mechanical Systems in directed Stockpile Work (DSW) Radiation and Campaigns", Final Technical Annual Report, Project Period 9/1/06 - 8/31/07  

Science Conference Proceedings (OSTI)

The University Research Program in Robotics (URPR) is an integrated group of universities performing fundamental research that addresses broad-based robotics and automation needs of the NNSA Directed Stockpile Work (DSW) and Campaigns. The URPR mission is to provide improved capabilities in robotics science and engineering to meet the future needs of all weapon systems and other associated NNSA/DOE activities.

James S. Tulenko; Carl D. Crane

2007-12-13T23:59:59.000Z

272

NATURAL RESOURCE MANAGEMENT PLAN FOR BROOKHAVEN NATIONAL LABORATORY.  

SciTech Connect

Brookhaven National Laboratory (BNL) is located near the geographic center of Long Island, New York. The Laboratory is situated on 5,265 acres of land composed of Pine Barrens habitat with a central area developed for Laboratory work. In the mid-1990s BNL began developing a wildlife management program. This program was guided by the Wildlife Management Plan (WMP), which was reviewed and approved by various state and federal agencies in September 1999. The WMP primarily addressed concerns with the protection of New York State threatened, endangered, or species of concern, as well as deer populations, invasive species management, and the revegetation of the area surrounding the Relativistic Heavy Ion Collider (RHIC). The WMP provided a strong and sound basis for wildlife management and established a basis for forward motion and the development of this document, the Natural Resource Management Plan (NRMP), which will guide the natural resource management program for BNL. The body of this plan establishes the management goals and actions necessary for managing the natural resources at BNL. The appendices provide specific management requirements for threatened and endangered amphibians and fish (Appendices A and B respectively), lists of actions in tabular format (Appendix C), and regulatory drivers for the Natural Resource Program (Appendix D). The purpose of the Natural Resource Management Plan is to provide management guidance, promote stewardship of the natural resources found at BNL, and to integrate their protection with pursuit of the Laboratory's mission. The philosophy or guiding principles of the NRMP are stewardship, adaptive ecosystem management, compliance, integration with other plans and requirements, and incorporation of community involvement, where applicable.

GREEN,T.ET AL.

2003-12-31T23:59:59.000Z

273

Revised Draft Environmental Impact Statement for Decommissioning and/or Long-Term Stewardship at the West Valley Demonstration Project and Western New York Nuclear Service Center  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Impact Statement for Environmental Impact Statement for Decommissioning and/or Long-Term Stewardship at the West Valley Demonstration Project and Western New York Nuclear Service Center A Summary and Guide for Stakeholders DOE/EIS-0226-D (Revised) November 2008 The West Valley Site Availability of the Revised Draft EIS for Decommissioning and/or Long-Term Stewardship at the West Valley Demonstration Project and Western New York Nuclear Service Center For further information on this Draft EIS, or to request a copy please contact: Cathern Bohan, EIS Document Manager West Valley Demonstration Project U.S. Department of Energy Ashford Office Complex 9030 Route 219 West Valley, NY 14171 Telephone: 716-942-4159 Fax: 716-942-4703 E-mail: catherine.m.bohan@wv.doe.gov Printed with soy ink on recycled paper

274

Final EIS for Decommissioning and/or Long-Term Stewardship at the WVDP and Western New York Nuclear Service Center  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE/EIS-0226 DOE/EIS-0226 January 2010 Final Environmental Impact Statement for Decommissioning and/or Long-Term Stewardship at the West Valley Demonstration Project and Western New York Nuclear Service Center A Summary and Guide for Stakeholders The West Valley Site Availability of the Final EIS for Decommissioning and/or Long-Term Stewardship at the West Valley Demonstration Project and Western New York Nuclear Service Center For further information on this Final EIS, or to request a copy of the EIS or references, please contact: Catherine Bohan, EIS Document Manager West Valley Demonstration Project U.S. Department of Energy Ashford Office Complex 9030 Route 219 West Valley, NY 14171 Telephone: 716-942-4159 Fax: 716-942-4703 E-mail: catherine.m.bohan@wv.doe.gov

275

The Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

existing programs in climate change science and infrastructure. The Laboratory has a 15- year history in climate change science. The Climate, Ocean and Sea Ice Modeling (COSIM)...

276

EIS-0236: Notice of Intent to Prepare a Supplement to the Programmatic...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Impact Statement Stockpile Stewardship and Management-Complex 2030 The SEIS will analyze the environmental impacts from the continued transformation of...

277

University Partnerships / Academic Alliances | National Nuclear...  

National Nuclear Security Administration (NNSA)

scientific aspects of stockpile stewardship. These partnerships also create a pipeline of graduates trained in the areas for which there is a recruiting need within the...

278

Science and technology review, September 1997  

SciTech Connect

This month`s issue contains articles entitled Nova Laser Experiments and Stockpile Stewardship; Sharing the Challenges of Non- proliferation; and Taming Explosives for Training.

Upadhye, R.

1997-09-01T23:59:59.000Z

279

LLNL Conducts First Plutonium Shot Using the JASPER Gas Gun ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Shock physics experiments complement the ongoing subcritical experiment program at NTS as part of the NNSA's stockpile stewardship program to maintain the safety and...

280

Argonne Leadership Computing Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

publishing. nazarewicz, W., Schunck, n., Wild, S.,* "Quality Input for Microscopic Fission Theory," Stockpile Stewardship Quarterly, May 2012, vol. 2, no. 1, pp. 6-7. ALCF | 2012...

Note: This page contains sample records for the topic "laboratory stockpile stewardship" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

factsheet.all.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

ity that supports the calculation, modeling, simulation, and visualization of complex nuclear weapons data in support of the Stockpile Stewardship Program. National Security...

282

Savannah River Site  

NLE Websites -- All DOE Office Websites (Extended Search)

River Site Savannah River Site Savannah River Site (SRS) has mission responsibilities in nuclear weapons stockpile stewardship by ensuring the safe and reliable management of...

283

Special Report: IG-0808 | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Challenges at the Department of Energy, Contract Administration, Cyber Security, Energy Supply, Environmental Cleanup, Safeguards and Security, and Stockpile Stewardship....

284

ORISE: Helping to Provide Rare Access to World-Class Computing...  

NLE Websites -- All DOE Office Websites (Extended Search)

play an integral role in everything from stockpile stewardship and defense intelligence, to climate prediction and manufacturing. It is important to continue to advance...

285

SC Brochure_Final_10dec12.indd  

National Nuclear Security Administration (NNSA)

OFFICE OF DEFENSE SCIENCE Assistant Deputy Administrator for Stockpile Stewardship R&D 100 Award Multiplexed Velocimetry Technology The Science Campaign is part of an...

286

ASC_brochure_front_2_10-23  

National Nuclear Security Administration (NNSA)

360-teraFLOPS ASC BlueGeneL system 2005 Delivered a metallurgical structural model for aging to support pit lifetime estimations Documented Stockpile Stewardship Program...

287

SciTech Connect: "smart grid"  

Office of Scientific and Technical Information (OSTI)

The Cielo Petascale Capability Supercomputer: Providing Large-Scale Computing for Stockpile Stewardship Citation Details In-Document Search Title: The Cielo Petascale Capability...

288

SSQ V2 N4_Final_28feb13.indd  

National Nuclear Security Administration (NNSA)

Stockpile Stewardship in Action Volume 2, Number 4 Inside this Issue 2 Accounting for Energy Changes in Hydro- dynamic Mixing: The Role of Enthalpy Diffusion 3 Fracture Model...

289

Sulimar Queen environmental restoration project closure package Sandia environmental stewardship exemplar.  

SciTech Connect

In March 2008, Sandia National Laboratories (Sandia), in partnership with the Bureau of Land Management, Roswell Field Office, completed its responsibilities to plug and abandon wells and restore the surface conditions for the Sulimar Queens Unit, a 2,500 acre oil field, in Chaves County, Southeast New Mexico. Sandia assumed this liability in an agreement to obtain property to create a field laboratory to perform extensive testing and experimentation on enhanced oil recovery techniques for shallow oil fields. In addition to plugging and abandoning 28 wells, the project included the removal of surface structures and surface reclamation of disturbed lands associated with all plugged and abandoned wells, access roads, and other auxiliary facilities within unit boundaries. A contracting strategy was implemented to mitigate risk and reduce cost. As the unit is an important wildlife habitat for prairie chickens, sand dune lizards, and mule deer, the criteria for the restoration and construction process were designed to protect and enhance the wildlife habitat. Lessons learned from this project include: (1) extreme caution should be exercised when entering agreements that include future liabilities, (2) partnering with the regulator has huge benefits, and (3) working with industry experts, who were familiar with the work, and subcontractors, who provided the network to complete the project cost effectively.

Tillman, Jack B.

2008-09-01T23:59:59.000Z

290

Researcher, Los Alamos National Laboratory - Space Science and Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

Science and Applications Science and Applications Group | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Who We Are > In The Spotlight > Joaquin Birn Researcher, Los Alamos National Laboratory - Space Science and Applications Group Joaquin Birn Joaquin Birn Role: Researcher, Los Alamos National Laboratory - Space Science and

291

Researcher, Los Alamos National Laboratory - Space and Remote Sensing Group  

National Nuclear Security Administration (NNSA)

and Remote Sensing Group and Remote Sensing Group | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Who We Are > In The Spotlight > Patrick Colestock Researcher, Los Alamos National Laboratory - Space and Remote Sensing Group Patrick Colestock Patrick Colestock Role: Researcher, Los Alamos National Laboratory - Space and Remote Sensing

292

Researcher, Los Alamos National Laboratory - Space and Remote Sensing Group  

NLE Websites -- All DOE Office Websites (Extended Search)

and Remote Sensing Group and Remote Sensing Group | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Who We Are > In The Spotlight > Patrick Colestock Researcher, Los Alamos National Laboratory - Space and Remote Sensing Group Patrick Colestock Patrick Colestock Role: Researcher, Los Alamos National Laboratory - Space and Remote Sensing

293

EIS-0348: EPA Notice of Availability of the Draft Environmental Impact  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8: EPA Notice of Availability of the Draft Environmental 8: EPA Notice of Availability of the Draft Environmental Impact Statement EIS-0348: EPA Notice of Availability of the Draft Environmental Impact Statement Site-wide Continued Operation of Lawrence Livermore National Laboratory (LLNL) and Stockpile Stewardship and Management, Implementation Alameda and San Joaquin Counties, CA U.S. Environmental Protection Agency Environmental Impact Statements Notices of Availability: Site-wide Continued Operation of Lawrence Livermore National Laboratory (LLNL) and Stockpile Stewardship and Management,Implementation, Alameda and San Joaquin Counties, CA, EIS-0348, EIS-0236S3 (February 2004) More Documents & Publications EIS-0284: EPA Notice of Availability of the Draft Environmental Impact Statement EIS-0397: EPA Notice of Availability of the Draft Environmental Impact

294

EIS-0348: Final Site-wide Environmental Impact Statement | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

: Final Site-wide Environmental Impact Statement : Final Site-wide Environmental Impact Statement EIS-0348: Final Site-wide Environmental Impact Statement Continued Operation of Lawrence Livermore National Laboratory and Supplement Stockpile Stewardship and Management The continued operation of Lawrence Livermore National Laboratory (LLNL) is critical to National Nuclear Security Administration's Stockpile Stewardship Program and to preventing the spread and use of nuclear weapons worldwide. LLNL maintains core competencies in activities associated with research, development, design, and surveillance of nuclear weapons, as well as the assessment and certification of their safety and reliability. In response to the end of the Cold War and changes in the world's political regimes, the emphasis on the U.S. nuclear weapons program has shifted from

295

Idaho National Laboratory Cultural Resource Management Plan  

SciTech Connect

As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Office will meet these responsibilities at the Idaho National Laboratory. This Laboratory, which is located in southeastern Idaho, is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable; bear valuable physical and intangible legacies; and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through annual reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of appendices provides important details that support the main text.

Lowrey, Diana Lee

2011-02-01T23:59:59.000Z

296

Idaho National Laboratory Cultural Resource Management Plan  

Science Conference Proceedings (OSTI)

As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Office will meet these responsibilities at Idaho National Laboratory in southeastern Idaho. The Idaho National Laboratory is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable, bear valuable physical and intangible legacies, and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through regular reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of appendices provides important details that support the main text.

Julie Braun Williams

2013-02-01T23:59:59.000Z

297

Idaho National Laboratory Cultural Resource Management Plan  

SciTech Connect

As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Office will meet these responsibilities at the Idaho National Laboratory. This Laboratory, which is located in southeastern Idaho, is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable; bear valuable physical and intangible legacies; and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through annual reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of appendices provides important details that support the main text.

Lowrey, Diana Lee

2009-02-01T23:59:59.000Z

298

Lawrence Livermore National Laboratory Surface Water Protection: A Watershed Approach  

Science Conference Proceedings (OSTI)

This surface water protection plan (plan) provides an overview of the management efforts implemented at Lawrence Livermore National Laboratory (LLNL) that support a watershed approach to protect surface water. This plan fulfills a requirement in the Department of Energy (DOE) Order 450.1A to demonstrate a watershed approach for surface water protection that protects the environment and public health. This plan describes the use of a watershed approach within which the Laboratory's current surface water management and protections efforts have been structured and coordinated. With more than 800 million acres of land in the U.S. under federal management and stewardship, a unified approach across agencies provides enhanced resource protection and cost-effectiveness. The DOE adopted, along with other federal agencies, the Unified Federal Policy for a Watershed Approach to Federal Land and Resource Management (UFP) with a goal to protect water quality and aquatic ecosystems on federal lands. This policy intends to prevent and/or reduce water pollution from federal activities while fostering a cost-effective watershed approach to federal land and resource management. The UFP also intends to enhance the implementation of existing laws (e.g., the Clean Water Act [CWA] and National Environmental Policy Act [NEPA]) and regulations. In addition, this provides an opportunity for the federal government to serve as a model for water quality stewardship using a watershed approach for federal land and resource activities that potentially impact surface water and its uses. As a federal land manager, the Laboratory is responsible for a small but important part of those 800 million acres of land. Diverse land uses are required to support the Laboratory's mission and provide an appropriate work environment for its staff. The Laboratory comprises two sites: its main site in Livermore, California, and the Experimental Test Site (Site 300), near Tracy, California. The main site is largely developed yet its surface water system encompasses two arroyos, an engineered detention basin (Lake Haussmann), storm channels, and wetlands. Conversely, the more rural Site 300 includes approximately 7,000 acres of largely undeveloped land with many natural tributaries, riparian habitats, and wetland areas. These wetlands include vernal pools, perennial seeps, and emergent wetlands. The watersheds within which the Laboratory's sites lie provide local and community ecological functions and services which require protection. These functions and services include water supply, flood attenuation, groundwater recharge, water quality improvement, wildlife and aquatic habitats, erosion control, and (downstream) recreational opportunities. The Laboratory employs a watershed approach to protect these surface water systems. The intent of this approach, presented in this document, is to provide an integrated effort to eliminate or minimize any adverse environmental impacts of the Laboratory's operations and enhance the attributes of these surface water systems, as possible and when reasonable, to protect their value to the community and watershed. The Laboratory's watershed approach to surface water protection will use the U.S. Environmental Protection Agency's Watershed Framework and guiding principles of geographic focus, scientifically based management and partnerships1 as a foundation. While the Laboratory's unique site characteristics result in objectives and priorities that may differ from other industrial sites, these underlying guiding principles provide a structure for surface water protection to ensure the Laboratory's role in environmental stewardship and as a community partner in watershed protection. The approach includes pollution prevention, continual environmental improvement, and supporting, as possible, community objectives (e.g., protection of the San Francisco Bay watershed).

Coty, J

2009-03-16T23:59:59.000Z

299

SCC: The Strategic Computing Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

SCC: The Strategic Computing Complex SCC: The Strategic Computing Complex SCC: The Strategic Computing Complex The Strategic Computing Complex (SCC) is a secured supercomputing facility that supports the calculation, modeling, simulation, and visualization of complex nuclear weapons data in support of the Stockpile Stewardship Program. The 300,000-square-foot, vault-type building features an unobstructed 43,500-square-foot computer room, which is an open room about three-fourths the size of a football field. The Strategic Computing Complex (SCC) at the Los Alamos National Laboratory (LANL) is a secured supercomputing facility that supports the calculation, modeling, simulation, and visualization of complex nuclear weapons data in support of the Stockpile Stewardship Program. National Security

300

EIS-0348: EPA Notice of Availability of the Final Environmental Impact  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

: EPA Notice of Availability of the Final Environmental : EPA Notice of Availability of the Final Environmental Impact Statement EIS-0348: EPA Notice of Availability of the Final Environmental Impact Statement Continued Operation of Lawrence Livermore National Laboratory and Supplement Stockpile Stewardship and Management The continued operation of LLNL is critical to NNSA's Stockpile Stewardship Program and to preventing the spread and use of nuclear weapons worldwide. LLNL maintains core competencies in activities associated with research, development, design, and surveillance of nuclear weapons, as well as the assessment and certification of their safety and reliability. In response to the end of the Cold War and changes in the world's political regimes, the emphasis on the U.S. nuclear weapons program has shifted from

Note: This page contains sample records for the topic "laboratory stockpile stewardship" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

EIS-0348: EPA Notice of Availability of the Final Environmental Impact  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

348: EPA Notice of Availability of the Final Environmental 348: EPA Notice of Availability of the Final Environmental Impact Statement EIS-0348: EPA Notice of Availability of the Final Environmental Impact Statement Continued Operation of Lawrence Livermore National Laboratory and Supplement Stockpile Stewardship and Management The continued operation of LLNL is critical to NNSA's Stockpile Stewardship Program and to preventing the spread and use of nuclear weapons worldwide. LLNL maintains core competencies in activities associated with research, development, design, and surveillance of nuclear weapons, as well as the assessment and certification of their safety and reliability. In response to the end of the Cold War and changes in the world's political regimes, the emphasis on the U.S. nuclear weapons program has shifted from

302

Science, technology and engineering at LANL  

SciTech Connect

The Laboratory provides science solution to the mission areas of nuclear deterrence, global security, and energy security. The capabilities support the Laboratory's vision as the premier national security science laboratory. The strength of LANL's science is at the core of the Laboratory. The Laboratory addresses important science questions for stockpile stewardship, emerging threats, and energy. The underpinning science vitality to support mission areas is supported through the Post Doc program, the fundamental science program in LDRD, collaborations fostered through the Institutes, and the LANL user facilities. LANL fosters the strategy of Science that Matters through investments, people, and facilities.

Mercer-smith, Janet A [Los Alamos National Laboratory; Wallace, Terry C [Los Alamos National Laboratory

2011-01-06T23:59:59.000Z

303

Laboratory Access | Sample Preparation Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

Access Access Planning Ahead Planning Ahead Please complete the Beam Time Request (BTR) and Support Request forms thourgh the User Portal. Thorough chemical and sample information must be included in your BTR. Support Request forms include a list of collaborators that require laboratory access and your group's laboratory equipment requests. Researcher safety is taken seriously at SLAC. Please remember that radioactive materials, nanomaterials, and biohazardous materials have additional safety requirements. Refer to the SSRL or LCLS Safety Offices for further guidance. Upon Arrival Upon Arrival Once you arrive you must complete training and access forms before accessing the Sample Preparation Laboratories (SPL). All Sample Prep Lab doors are locked with access key codes. Once your SPL

304

National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Homesteading on the Pajarito Plateau Homesteading on the Pajarito Plateau topic of inaugural lecture at Los Alamos National Laboratory January 4, 2013 Lecture series begins yearlong commemoration of 70th anniversary LOS ALAMOS, NEW MEXICO, Jan. 3, 2013-In commemoration of its 70th anniversary, Los Alamos National Laboratory kicks off a yearlong lecture series on Wednesday, Jan. 9, at 5:30 p.m. with a presentation about homesteading on the Pajarito Plateau at the Bradbury Science Museum, 1350 Central Avenue, Los Alamos. - 2 - The inaugural lecture is based on a book by local writers Dorothy Hoard, Judy Machen and Ellen McGehee about the area's settlement between 1887 and 1942. On hikes across the Pajarito Plateau, Hoard envisioned the Los Alamos area before modern roads and bridges made transportation much easier. The trails she walked

305

Department of Energy National Laboratories  

Idaho National Laboratory SLAC National Accelerator Laboratory Department of Energy National Laboratories. Laboratory or Facility Website ...

306

Fire as a long-term stewardship issue for soils contaminated with radionuclides in the western U.S  

SciTech Connect

On both U.S. Department of Energy (DOE) and U.S. Department of Defense sites in the southwestern United States (U.S.), significant areas of surface soils are contaminated with radionuclides from atmospheric nuclear testing, and with depleted uranium, primarily from military training. At DOE sites in Nevada, the proposed regulatory closure strategy for most sites is to leave contaminants in place with administrative controls and periodic monitoring. Closure-in-place is considered an acceptable strategy because the contaminated sites exist on access-restricted facilities, decreasing the potential risk to public receptor, the high cost and feasibility of excavating contaminated soils over large areas, and the environmental impacts of excavating desert soils that recover very slowly from disturbance. The largest of the contaminated sites on the Tonopah Test Range in Nevada covers over 1,200 hectares. However, a factor that has not been fully investigated in the long-term stewardship of these sites is the potential effects of fires. Because of the long half-lives of some of the contaminants (e.g., 24,100 years for {sup 239}Pu) and changes in land-cover and climatic factors that are increasing the frequency of fires throughout the western U.S., it should be assumed that all of these sites will eventually burn, possibly multiple times, during the time frame when they still pose a risk. Two primary factors are contributing to increased fire frequency. The first is the spread of invasive grasses, particularly cheat grass (Bromus tectorum and Bromus rubens), which have out-competed native annuals and invaded inter-spaces between shrubs, allowing fires to burn easier. The second is a sharp increase in fire frequency and size throughout the western U.S. beginning in the mid-1980's. This second factor appears to correlate with an increase in average spring and summer temperatures, which may be contributing to earlier loss of soil moisture and longer periods of dry plant biomass (particularly from annual plants). The potential risk to site workers from convective heat dispersion of radionuclide contaminants is an immediate concern during a fire. Long-term, post-fire concerns include potential changes in windblown suspension properties of contaminated soil particles after fires because of loss of vegetation cover and changes in soil properties, and soil erosion from surface water runoff and fluvial processes. (authors)

Shafer, David S.; DuBois, David; Etyemezian, Vic; Kavouras, Ilias; Miller, Julianne J.; Nikolich, George; Stone, Mark [Desert Research Institute, 755 East Flamingo Road, Las Vegas, Nevada, 89119 (United States)

2007-07-01T23:59:59.000Z

307

Idaho National Engineering and Environmental Laboratory institutional plan -- FY 2000--2004  

SciTech Connect

In this first institutional plan prepared by Bechtel BWXT Idaho, LLC, for the Idaho National Engineering and Environmental Laboratory, the INEEL will focus its efforts on three strategic thrusts: (1) Environmental Management stewardship for DOE-EM, (2) Nuclear reactor technology for DOE-Nuclear Energy (NE), and (3) Energy R and D, demonstration, and deployment (initial focus on biofuels and chemicals from biomass). The first strategic thrust focuses on meeting DOE-EMs environmental cleanup and long-term stewardship needs in a manner that is safe, cost-effective, science-based, and approved by key stakeholders. The science base at the INEEL will be further used to address a grand challenge for the INEEL and the DOE complex--the development of a fundamental scientific understanding of the migration of subsurface contaminants. The second strategic thrust is directed at DOE-NEs needs for safe, economical, waste-minimized, and proliferation-resistant nuclear technologies. As NE lead laboratories, the INEEL and ANL will pursue specific priorities. The third strategic thrust focuses on DOE's needs for clean, efficient, and renewable energy technology. As an initial effort, the INEEL will enhance its capability in biofuels, bioprocessing, and biochemicals. The content of this institutional plan is designed to meet basic DOE requirements for content and structure and reflect the key INEEL strategic thrusts. Updates to this institutional plan will offer additional content and resource refinements.

Enge, R.S.

1999-12-01T23:59:59.000Z

308

Idaho National Engineering and Environmental Laboratory institutional plan -- FY 2000--2004  

SciTech Connect

In this first institutional plan prepared by Bechtel BWXT Idaho, LLC, for the Idaho National Engineering and Environmental Laboratory, the INEEL will focus its efforts on three strategic thrusts: (1) Environmental Management stewardship for DOE-EM, (2) Nuclear reactor technology for DOE-Nuclear Energy (NE), and (3) Energy R and D, demonstration, and deployment (initial focus on biofuels and chemicals from biomass). The first strategic thrust focuses on meeting DOE-EMs environmental cleanup and long-term stewardship needs in a manner that is safe, cost-effective, science-based, and approved by key stakeholders. The science base at the INEEL will be further used to address a grand challenge for the INEEL and the DOE complex--the development of a fundamental scientific understanding of the migration of subsurface contaminants. The second strategic thrust is directed at DOE-NEs needs for safe, economical, waste-minimized, and proliferation-resistant nuclear technologies. As NE lead laboratories, the INEEL and ANL will pursue specific priorities. The third strategic thrust focuses on DOE's needs for clean, efficient, and renewable energy technology. As an initial effort, the INEEL will enhance its capability in biofuels, bioprocessing, and biochemicals. The content of this institutional plan is designed to meet basic DOE requirements for content and structure and reflect the key INEEL strategic thrusts. Updates to this institutional plan will offer additional content and resource refinements.

Enge, R.S.

1999-12-01T23:59:59.000Z

309

Sandia National Laboratories: Sandia National Laboratories: Missions:  

NLE Websites -- All DOE Office Websites (Extended Search)

results. Our areas of accomplishment for results. Our areas of accomplishment for 2010 include: Nuclear Weapons Engineering People photo 90-day Feasibility Study: Sandia researchers conducted a 90-day feasibility study for the Office of the Secretary of Defense in a common arming, fuzing, and firing (AF&F) system for the W78/Mk12A and W88/Mk5 warheads, with excursions of the AF&F for high-surety warheads and the W87/Mk21 systems. The study found that significant levels of AF&F commonality are possible with existing system architectures that support use in the Mk5, Mk12A, and Mk21 re-entry systems and enable modernization goals for the future stockpile. People photo Arming & Fuzing Subsystem Inspection: On July 23, 2010, the 500th Arming & Fuzing Subsystem (AFS) was accepted by the National Nuclear

310

Idaho National Laboratory Site Pollution Prevention Plan  

SciTech Connect

It is the policy of the Department of Energy (DOE) that pollution prevention and sustainable environmental stewardship will be integrated into DOE operations as a good business practice to reduce environmental hazards, protect environmental resources, avoid pollution control costs, and improve operational efficiency and mission sustainability. In furtherance of this policy, DOE established five strategic, performance-based Pollution Prevention (P2) and Sustainable Environmental Stewardship goals and included them as an attachment to DOE O 450.1, Environmental Protection Program. These goals and accompanying strategies are to be implemented by DOE sites through the integration of Pollution Prevention into each site's Environmental Management System (EMS). This document presents a P2 and Sustainability Program and corresponding plan pursuant to DOE Order 450.1 and DOE O 435.1, Radioactive Waste Management. This plan is also required by the state of Idaho, pursuant to the Resource Conservation and Recovery Act (RCRA) partial permit. The objective of this document is to describe the Idaho National Laboratory (INL) Site P2 and Sustainability Program. The purpose of the program is to decrease the environmental footprint of the INL Site while providing enhanced support of its mission. The success of the program is dependent on financial and management support. The signatures on the previous page indicate INL, ICP, and AMWTP Contractor management support and dedication to the program. P2 requirements have been integrated into working procedures to ensure an effective EMS as part of an Integrated Safety Management System (ISMS). This plan focuses on programmatic functions which include environmentally preferable procurement, sustainable design, P2 and Sustainability awareness, waste generation and reduction, source reduction and recycling, energy management, and pollution prevention opportunity assessments. The INL Site P2 and Sustainability Program is administratively managed by the INL Site P2 Coordinator. Development and maintenance of this overall INL Site plan is ultimately the responsibility of DOE-ID. This plan is applicable to all INL Site contractors except those at the Naval Reactors Facility.

E. D. Sellers

2007-03-01T23:59:59.000Z

311

Idaho National Laboratory Site Pollution Prevention Plan  

SciTech Connect

It is the policy of the Department of Energy (DOE) that pollution prevention and sustainable environmental stewardship will be integrated into DOE operations as a good business practice to reduce environmental hazards, protect environmental resources, avoid pollution control costs, and improve operational efficiency and mission sustainability. In furtherance of this policy, DOE established five strategic, performance-based Pollution Prevention (P2) and Sustainable Environmental Stewardship goals and included them as an attachment to DOE O 450.1, Environmental Protection Program. These goals and accompanying strategies are to be implemented by DOE sites through the integration of Pollution Prevention into each site's Environmental Management System (EMS). This document presents a P2 and Sustainability Program and corresponding plan pursuant to DOE Order 450.1 and DOE O 435.1, Radioactive Waste Management. This plan is also required by the state of Idaho, pursuant to the Resource Conservation and Recovery Act (RCRA) partial permit. The objective of this document is to describe the Idaho National Laboratory (INL) Site P2 and Sustainability Program. The purpose of the program is to decrease the environmental footprint of the INL Site while providing enhanced support of its mission. The success of the program is dependent on financial and management support. The signatures on the previous page indicate INL, ICP, and AMWTP Contractor management support and dedication to the program. P2 requirements have been integrated into working procedures to ensure an effective EMS as part of an Integrated Safety Management System (ISMS). This plan focuses on programmatic functions which include environmentally preferable procurement, sustainable design, P2 and Sustainability awareness, waste generation and reduction, source reduction and recycling, energy management, and pollution prevention opportunity assessments. The INL Site P2 and Sustainability Program is administratively managed by the INL Site P2 Coordinator. Development and maintenance of this overall INL Site plan is ultimately the responsibility of DOE-ID. This plan is applicable to all INL Site contractors except those at the Naval Reactors Facility.

E. D. Sellers

2007-03-01T23:59:59.000Z

312

Because Environmental Stewardship  

NLE Websites -- All DOE Office Websites (Extended Search)

exceptional environmental per- formance and management. Minimize consumption (energy, water, non- renewable resources). Minimize the production of waste...

313

STEWARDSHIP MAINTAINING NATURAL RICHES  

E-Print Network (OSTI)

SHOWCASING INNOVATION WATER CONSERVING PRESCIOUS RESOURCES ENERGY MOVING TO A BRIGHTER FUTURE WASTE REDUCING ENERGY MOVING TO A BRIGHTER FUTURE WASTE REDUCING AND RECYCLING #12;Sustainable Stanford Program SHOWCASING INNOVATION WATER CONSERVING PRESCIOUS RESOURCES ENERGY MOVING TO A BRIGHTER FUTURE WASTE REDUCING

Ford, James

314

Environmental Stewardship Indicators  

Science Conference Proceedings (OSTI)

... by an organization or process including: cleaners, lubricants, oils, coolants, etc. ... by non-renewable sources (ie coal, crude oil, petroleum products ...

315

Environmental Stewardship Indicators  

Science Conference Proceedings (OSTI)

... land/water; EPI EU-Marine environment and coastal zones; EPI EU ... Pollution (effects on ecosystems); EPI-Ecosystem Vitality: Climate Change; DJSI ...

316

Environmental Stewardship Indicators  

Science Conference Proceedings (OSTI)

... and/or product that is intended for disposal, CSD-Consumption and production ... Waste energy emission, Any form of energy (heat, vibration, etc.) that ...

317

Sustainable Environmental Stewardship  

NLE Websites -- All DOE Office Websites (Extended Search)

The Office of Health, Safety and Security HSS Logo Department of Energy Seal Left Tab SEARCH Right Tab TOOLS Right Tab Left Tab HOME Right Tab Left Tab ABOUT US Right Tab Left Tab...

318

Laboratory Directed Research and Development FY2010 Annual Report  

Science Conference Proceedings (OSTI)

A premier applied-science laboratory, Lawrence Livermore National Laboratory (LLNL) has at its core a primary national security mission - to ensure the safety, security, and reliability of the nation's nuclear weapons stockpile without nuclear testing, and to prevent and counter the spread and use of weapons of mass destruction: nuclear, chemical, and biological. The Laboratory uses the scientific and engineering expertise and facilities developed for its primary mission to pursue advanced technologies to meet other important national security needs - homeland defense, military operations, and missile defense, for example - that evolve in response to emerging threats. For broader national needs, LLNL executes programs in energy security, climate change and long-term energy needs, environmental assessment and management, bioscience and technology to improve human health, and for breakthroughs in fundamental science and technology. With this multidisciplinary expertise, the Laboratory serves as a science and technology resource to the U.S. government and as a partner with industry and academia. This annual report discusses the following topics: (1) Advanced Sensors and Instrumentation; (2) Biological Sciences; (3) Chemistry; (4) Earth and Space Sciences; (5) Energy Supply and Use; (6) Engineering and Manufacturing Processes; (7) Materials Science and Technology; Mathematics and Computing Science; (8) Nuclear Science and Engineering; and (9) Physics.

Jackson, K J

2011-03-22T23:59:59.000Z

319

Virtual Laboratories  

E-Print Network (OSTI)

At the frontier of most areas in science, computer simulations play a central role. The traditional division of natural science into experimental and theoretical investigations is now completely outdated. Instead, theory, simulation, and experimentation form three equally essential aspects, each with its own unique flavor and challenges. Yet, education in computational science is still lagging far behind, and the number of text books in this area is minuscule compared to the many text books on theoretical and experimental science. As a result, many researchers still carry out simulations in a haphazard way, without properly setting up the computational equivalent of a well equipped laboratory. The art of creating such a virtual laboratory, while providing proper extensibility and documentation, is still in its infancy. A new approach is described here, Open Knowledge, as an extension of the notion of Open Source software. Besides open source code, manuals, and primers, an open knowledge project provides simulated dialogues between code developers, thus sharing not only the code, but also the motivations behind the code.

Piet Hut

2006-10-07T23:59:59.000Z

320

Department of Energy finding of no significant impact, Low Energy Demonstration Accelerator, Los Alamos National Laboratory  

Science Conference Proceedings (OSTI)

As part of the DOE`s need to maintain the capability of producing tritium in support of its historic and near-term stewardship of the nation`s nuclear weapons stockpile, the agency has recently completed a Programmatic Environmental Impact Statement for Tritium Supply and Recycling. The Environmental Assessment (EA) for the Low Energy Demonstration Accelerator (LEDA) at Technical Area (TA) 53, LANL, Los Alamos, New Mexico (DOE-EA-1147), March 1996, analyzes the DOE proposal to design, build, and test critical prototypical components of the accelerator system for tritium production, specifically the front-end, low-energy section of the accelerator at LANL. LEDA would be incrementally developed and tested in five separate stages over the next seven years. LEDA would be located at an existing building at TA-53; the LEDA components would be tested in order to verify equipment and prototype design and resolve related performance and production issues for future full-scale operation at Savannah River Site (SRS) in the event the APT plant is built. Production operations would not occur at LANL under the proposed action. The US DOE finds that there would be no significant impact from proceeding with its proposal to design, build, and test critical prototypical components of the accelerator system for tritium production, specifically the front-end, low-energy section of the accelerator, at TA-53, LANL. Based on the environmental assessment that analyses the potential environmental effects that would be expected to occur if the DOE were to design, build, and test prototypical components of the accelerator system for tritium production, the proposed action does not constitute a major federal action which would significantly affect the human environment within the meaning of NEPA. Therefore, no environmental impact statement is required for this proposal.

NONE

1996-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "laboratory stockpile stewardship" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Sandia National Laboratories Site-Wide Environmental Impact Statement...  

National Nuclear Security Administration (NNSA)

Site-Wide Environmental Impact Statement | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency...

322

Laboratory Activities  

Science Conference Proceedings (OSTI)

This chapter summarizes the laboratory activities performed by PNNL’s Vadose Zone Characterization Project in support of the Tank Farm Vadose Zone Program, led by CH2M HILL Hanford Group, Inc. The results of these studies are contained in numerous reports (Lindenmeier et al. 2002; Serne et al. 2002a, 2002b, 2002c, 2002d, 2002e; Lindenmeier et al. 2003; Serne et al. 2004a, 2004b; Brown et al. 2005, 2006a, 2007; Serne et al. 2007) and have generated much of the data reported in Chapter 22 (Geochemistry-Contaminant Movement), Appendix G (Geochemistry-Contaminant Movement), and Cantrell et al. (2007, SST WMA Geochemistry Data Package – in preparation). Sediment samples and characterization results from PNNL’s Vadose Zone Characterization Project are also shared with other science and technology (S&T) research projects, such as those summarized in Chapter 12 (Associated Science Activities).

Brown, Christopher F.; Serne, R. Jeffrey

2008-01-17T23:59:59.000Z

323

Laboratory study on the use of tire shreds and rubber-sand in backfills and reinforced soil applications. Final report  

Science Conference Proceedings (OSTI)

Millions of scrap tires are discarded annually in the United States, the bulk of which are currently landfilled or stockpiled. This consumes valuable landfill space, or, if improperly disposed, creates a fire hazard and provides a prolific breeding ground for rates and mosquitoes. The use of tire shreds as lightweight fill material can sharply reduce the tire disposal problem. The present study, based on laboratory testing and numerical modeling, examines the feasibility of incorporating tire shreds and rubber-sand mixtures as lightweight geomaterial in embankments and backfills.

Bernal, A.; Lovell, C.W.; Salgado, R.

1996-12-20T23:59:59.000Z

324

Strategic Laboratory Leadership Program | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Erik Gottschalk (F); Devin Hodge (A); Jeff Chamberlain (A); Brad Ullrick (A); Bill Rainey (J). Image courtesy of Argonne National Laboratory. Strategic Laboratory Leadership...

325

STATEMENT OF CONSIDERATIONS CLASS ADVANCE WAIVER OF THE GOVERNMENT'S DOMESTIC AND  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

-......- -......- i_*, 002 STATEMENT OF CONSIDERATIONS CLASS ADVANCE WAIVER OF THE GOVERNMENT'S DOMESTIC AND FOREIGN PATENT AND COPYRIGHT RIGHTS UNDER DOMESTIC FIRST AND SECOND TIER SUBCONTRACTS ISSUED BY LLNL/LANL/SNL FOR. THE ACCELERATED STRATEGIC COMPUTING INITIATIVE, THE PATHFORWARD PROJECT; DOE WAIVER NO. W(C)-97-004:'SAN 675 Lawrence Uvermore National Laboratory (LLNL), Lou Alamos National Laboratory (LANL) and Sandia Natlonal Laboratories (SNL) (jointly referred to: a the Laboratoriesa are working on the Accelerated Strategic Computing Initiative (ASCII to develop supercomputers for DOE program needs. To meet the requiremerts of DOE'S Stockpile Stewardship and Management Program, DOE Is enhancing its computational power by developing superoomputers with the capability of

326

Facilities | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Inertial Confinement Fusion Inertial Confinement Fusion Facilities Home > About Us > Our Programs > Defense Programs > Office of Research, Development, Test, and Evaluation > Office of Inertial Confinement Fusion > Facilities Facilities Office of Inertial Confinement Fusion, Facilities ICF operates a set of world-class experimental facilities to create HEDP conditions and to obtain quantitative data in support of its numerous stockpile stewardship-related activities. To learn about three high energy experimental facilities and two small lasers that provide ICF capabilities, select the links below. National Ignition Facility, Lawrence Livermore National Laboratory OMEGA and OMEGA EP, University of Rochester Laboratory for Laser Energetics Z Machine, Sandia National Laboratories

327

Institutional plan FY 1999--FY 2004  

SciTech Connect

Los Alamos has a well-defined and nationally important mission: to reduce the global nuclear danger. This central national security mission consists of four main elements: stockpile stewardship, nuclear materials management, nonproliferation and arms control, and cleanup of the environmental legacy of nuclear weapons activities. The Laboratory provides support for and ensures confidence in the nation`s nuclear stockpile without nuclear testing. This challenge requires the Laboratory to continually hone its scientific acumen and technological capabilities to perform this task reliably using an interdisciplinary approach and advanced experimental and modeling techniques. In the last two National Defense Authorization Acts, Congress identified the need to protect the nation from the proliferation of weapons of mass destruction, which includes nuclear, chemical, and biological weapons, and their potential use by terrorists. Los Alamos is applying multidisciplinary science and engineering skills to address these problems. In addition, the Laboratory`s critical programmatic roles in stockpile stewardship and threat reduction are complemented by its waste management operations and environmental restoration work. Information on specific programs is available in Section 2 of this document.

1998-10-01T23:59:59.000Z

328

ARGONNE NATIONAL LABORATORY is....  

NLE Websites -- All DOE Office Websites (Extended Search)

Scattering June 12-18, 2010 - Argonne National Laboratory June 19-26, 2010 - Oak Ridge National Laboratory Argonne National Laboratory is a U.S. Department of Energy laboratory...

329

IG-0528.PDF  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 8 AUDIT REPORT STOCKPILE SURVEILLANCE TESTING OCTOBER 2001 U.S. DEPARTMENT OF ENERGY OFFICE OF INSPECTOR GENERAL OFFICE OF AUDIT SERVICES October 5, 2001 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman (Signed) Inspector General SIJBJECT: INFORMATION: Audit Report on "Stockpile Surveillance Testing" BACKGROUND In 1993, the President and Congress reaffirmed the moratorium on underground nuclear testing and directed that a science-based Stockpile Stewardship Program be developed to maintain the nation's stockpile of nuclear weapons. The Department of Energy's (Department) plan for the Stockpile Stewardship Program describes it as one of the most complex, scientific-technical programs ever undertaken. The program

330

State Laboratory Contacts IL  

Science Conference Proceedings (OSTI)

State Laboratory Contact Information IL. Idaho. ... State of Iowa Metrology Laboratory Ellsworth Community College 1100 College Ave. ...

2013-11-07T23:59:59.000Z

331

Natural Resource Management Plan for Brookhaven National Laboratory  

SciTech Connect

This comprehensive Natural Resource Management Plan (NRMP) for Brookhaven National Laboratory (BNL) was built on the successful foundation of the Wildlife Management Plan for BNL, which it replaces. This update to the 2003 plan continues to build on successes and efforts to better understand the ecosystems and natural resources found on the BNL site. The plan establishes the basis for managing the varied natural resources located on the 5,265 acre BNL site, setting goals and actions to achieve those goals. The planning of this document is based on the knowledge and expertise gained over the past 10 years by the Natural Resources management staff at BNL in concert with local natural resource agencies including the New York State Department of Environmental Conservation, Long Island Pine Barrens Joint Planning and Policy Commission, The Nature Conservancy, and others. The development of this plan is an attempt at sound ecological management that not only benefits BNL's ecosystems but also benefits the greater Pine Barrens habitats in which BNL is situated. This plan applies equally to the Upton Ecological and Research Reserve (Upton Reserve). Any difference in management between the larger BNL area and the Upton Reserve are noted in the text. The purpose of the Natural Resource Management Plan (NRMP) is to provide management guidance, promote stewardship of the natural resources found at BNL, and to sustainably integrate their protection with pursuit of the Laboratory's mission. The philosophy or guiding principles of the NRMP are stewardship, sustainability, adaptive ecosystem management, compliance, integration with other plans and requirements, and the incorporation of community involvement, where applicable. The NRMP is periodically reviewed and updated, typically every five years. This review and update was delayed to develop documents associated with a new third party facility, the Long Island Solar Farm. This two hundred acre facility will result in significant changes to this plan warranting the delay. The body of this plan establishes the management goals and actions necessary for managing the natural resources at BNL in a sustainable manner. The appendices provide specific management requirements for threatened and endangered amphibians and fish (Appendices A and B, respectively), and lists of actions in tabular format - including completed items as well as ongoing and new action items (Appendices C and D, respectively).

green, T.

2011-08-15T23:59:59.000Z

332

Natural Resource Management Plan for Brookhaven National Laboratory  

SciTech Connect

This comprehensive Natural Resource Management Plan (NRMP) for Brookhaven National Laboratory (BNL) was built on the successful foundation of the Wildlife Management Plan for BNL, which it replaces. This update to the 2003 plan continues to build on successes and efforts to better understand the ecosystems and natural resources found on the BNL site. The plan establishes the basis for managing the varied natural resources located on the 5,265 acre BNL site, setting goals and actions to achieve those goals. The planning of this document is based on the knowledge and expertise gained over the past 10 years by the Natural Resources management staff at BNL in concert with local natural resource agencies including the New York State Department of Environmental Conservation, Long Island Pine Barrens Joint Planning and Policy Commission, The Nature Conservancy, and others. The development of this plan is an attempt at sound ecological management that not only benefits BNL's ecosystems but also benefits the greater Pine Barrens habitats in which BNL is situated. This plan applies equally to the Upton Ecological and Research Reserve (Upton Reserve). Any difference in management between the larger BNL area and the Upton Reserve are noted in the text. The purpose of the Natural Resource Management Plan (NRMP) is to provide management guidance, promote stewardship of the natural resources found at BNL, and to sustainably integrate their protection with pursuit of the Laboratory's mission. The philosophy or guiding principles of the NRMP are stewardship, sustainability, adaptive ecosystem management, compliance, integration with other plans and requirements, and the incorporation of community involvement, where applicable. The NRMP is periodically reviewed and updated, typically every five years. This review and update was delayed to develop documents associated with a new third party facility, the Long Island Solar Farm. This two hundred acre facility will result in significant changes to this plan warranting the delay. The body of this plan establishes the management goals and actions necessary for managing the natural resources at BNL in a sustainable manner. The appendices provide specific management requirements for threatened and endangered amphibians and fish (Appendices A and B, respectively), and lists of actions in tabular format - including completed items as well as ongoing and new action items (Appendices C and D, respectively).

green, T.

2011-08-15T23:59:59.000Z

333

Notice of Intent to Prepare an Environmental Impact Statement for Decommissioning and/or Long-Term Stewardship at the West Valley Demonstration Project and Western New York Nuclear Service Center (3/13/03)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 4 Federal Register / Vol. 68, No. 49 / Thursday, March 13, 2003 / Notices Dated: March 6, 2003. Gerald A. Reynolds, Assistant Secretary for Civil Rights. [FR Doc. 03-5999 Filed 3-12-03; 8:45 am] BILLING CODE 4000-01-M DEPARTMENT OF ENERGY Notice of Intent to Prepare an Environmental Impact Statement for Decommissioning and/or Long-Term Stewardship at the West Valley Demonstration Project and Western New York Nuclear Service Center AGENCY: Department of Energy. ACTION: Notice of Intent. SUMMARY: The U.S. Department of Energy (DOE) and the New York State Energy Research and Development Authority (NYSERDA) are announcing their intent to prepare an Environmental Impact Statement (EIS) for Decommissioning and/or Long-Term Stewardship at the West Valley Demonstration Project (WVDP) and

334

EA-1446: Final Environmental Assessment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6: Final Environmental Assessment 6: Final Environmental Assessment EA-1446: Final Environmental Assessment Test Capabilities Revitalization at Sandia National Laboratories/New Mexico, Department of Energy, Office of Kirtland Site Operations The purpose for action by the Department of Energy (DOE), National Nuclear Security Administration (NNSA), is to support a primary DOE mission of maintaining and demonstrating the safety, reliability, and performance of the nation's nuclear weapons systems. NNSA performs this mission through its Stockpile Stewardship and Management Program. At Sandia National Laboratories (SNL) this mission includes thermal and mechanical testing. The U.S. Nuclear Regulatory Commission (NRC) has requested that DOE construct and operate facilities necessary to perform drop, thermal, and

335

Environmental Security and Restoration | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental Security & Restoration Environmental Security & Restoration Argonne's work in environmental security and restoration addresses soil, surface water, sediment, and groundwater at contaminated sites. Argonne's work in environmental restoration addresses soil, surface water, sediment, and groundwater at contaminated sites, starting with environmental evaluations and planning projects. Assessments are also conducted of approaches for long-term stewardship of remediated sites with residual contamination. Remedies range from precise excavations to innovative combinations of engineered wetlands and phytoremediation. Argonne researchers conduct approaches for long-term stewardship of remediated sites with residual contamination. The objective of environmental security programs is to support efforts to reduce national

336

Laboratory Equipment & Supplies | Sample Preparation Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

Equipment & Supplies Equipment & Supplies John Bargar, SSRL Scientist Equipment is available to serve disciplines from biology to material science. All laboratories contain the following standard laboratory equipment: pH meters with standard buffers, analytical balances, microcentrifuges, vortex mixers, ultrasonic cleaning baths, magnetic stirrers, hot plates, and glassware. Most laboratories offer ice machines and cold rooms. Specialty storage areas for samples include a -80 freezer, argon and nitrogen glove boxes, radiation contamination areas, inert atmosphere chambers, and cold rooms. For specific information please see: Equipment Inventory Checkout Equipment & Supplies To view equipment inventory by laboratory, refer to the following pages: Biology Chemistry & Material Science Laboratory 1 Inventory

337

Strategic plan 1994  

SciTech Connect

Sandia National Laboratories faces institutional challenges that are unique in its history. Never before have the national laboratories been viewed so critically, and never before has their role been the subject of such study and debate. At the same time, the opporunities to render `exceptional service in the national interest` have never been greater. The business of Sandia today and into the foreseeable future will rely on a strong, integrated technical foundation, represented most fundamentally by its core competencies. While is is impossible to foresee precisely what missions Sandia will pursue many years from now, one thing is clear: Central to its service to the nation will be the application of science-based engineering skills to the stewardship of the nuclear weapons stockpile. Whether on not the nation ever builds a new nuclear weapon, those that remain in stockpile will require continuous stewardship based on the integration of scientific understanding with experienced systems engineering. Sandia`s steadfast commitment to DOE`s stockpile stewardship mission will also be evident in the production of limited numbers of certain vital weapon components as the weapons production complex is realigned. Complementing this enduring responsibility will be expanded missions in energy, environment, and economic competitiveness. The work for other federal agencies will be jointly sponsored under high-level agreements with DOE. Multi-institutional teams will become a common way of doing business. The multiprogram laboratory model will evolve toward a new model of multi-laboratory programs addressing major national needs. Sandia will be a distinct and important component of an integrated system of national laboratories.

1995-03-01T23:59:59.000Z

338

ARM - Laboratory Partners  

NLE Websites -- All DOE Office Websites (Extended Search)

Archive Data Management Facility Data Quality Program Engineering Support External Data Center Laboratory Partners Nine DOE national laboratories share the responsibility of...

339

BROOKHAVEN NATIONAL LABORATORY - Energy  

Laboratory Plan FY 2010-2019 June2,2010 BROOKHAVEN NATIONAL LABORATORY Accelerating Innovation Alane for Hydrogen Storage and Delivery June 2012

340

EML: Environmental Measurements Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Security and Privacy Notices History of the Environmental Measurements Laboratory The Manhattan ProjectAtomic Energy Commission (1942 1975) Our Laboratory traces its roots...

Note: This page contains sample records for the topic "laboratory stockpile stewardship" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

BATT Fabrication Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Scientist working in battery lab BATT Fabrication Laboratory The BATT Fab Lab (Batteries for Advanced Transportation Technologies Fabrication Laboratory) conducts battery cell...

342

Lawrence Livermore National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Lawrence Livermore National Laboratory Lawrence Livermore National Laboratorys (LLNL) primary mission is research and development in support of national security. As a...

343

Sandia National Laboratories: Locations  

NLE Websites -- All DOE Office Websites (Extended Search)

around the world. Sandia's executive management offices and larger laboratory complex are located in Albuquerque, New Mexico. Our second principal laboratory is located...

344

New Brunswick Laboratory - Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Reports New Brunswick Laboratory Activity Reports 2012 Operational Awareness Oversight of the New Brunswick Laboratory, July 2012 Activity Reports 2011 Orientation Visit to the New...

345

Mr. R. D. Maynard, Chair Idaho National Laboratory Site Environmental Management Citizens Advisory Board  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mr. R. D. Maynard, Chair Mr. R. D. Maynard, Chair Idaho National Laboratory Site Environmental Management Citizens Advisory Board Portage, Inc.. 1075 South Utah Avenue, Suite 200 Idaho Falls, Idaho 83402 Dear Mr. Maynard: This is in response to your July 9,2009, letter on the recycling and reuse of excess metals and other materials. We appreciate the Environmental Management Site-Specific Advisory Board's (EM SSAB) continued interest, support, and efforts to provide recommendations that will further waste minimization at the EM sites. The Department of Energy (DOE) has specific policies that establish sound environmental stewardship practices to be achieved by all its sites. In particular, DOE Order 450.1 A, Environmental Protection Program, sets forth sustainable practices for

346

Oak Ridge National Laboratory - Laboratory Directed Research...  

NLE Websites -- All DOE Office Websites (Extended Search)

Seed Money Fund Overview The Seed Money Fund of the ORNL LDRD program supports innovative ideas that have the potential of enhancing the Laboratory's core scientific and technical...

347

About Berkeley Lab: Laboratory Director, Associate Laboratory...  

NLE Websites -- All DOE Office Websites (Extended Search)

2009, replacing former laboratory Director Steve Chu, who was sworn in as U.S. Energy Secretary. Before becoming interim director, Alivisatos was the deputy director of Berkeley...

348

Sandia National Laboratories: Research: Laboratory Directed Research...  

NLE Websites -- All DOE Office Websites (Extended Search)

Encouraging creative research to innovate solutions for our nation's greatest challenges. National laboratories have been entrusted with the role of serving as incubators for...

349

Annual Report Alfvn Laboratory  

E-Print Network (OSTI)

is plasma research using small-scale laboratory experiments, where low-density plasmas are generated

Haviland, David

350

Laboratory Management (Quality) Systems  

Science Conference Proceedings (OSTI)

Laboratory Management (Quality) Systems. NISTIR 7028 Type Evaluation Quality Manual Template. This NISTIR has been ...

2012-05-02T23:59:59.000Z

351

National Renewable Energy Laboratory  

E-Print Network (OSTI)

National Renewable Energy Laboratory Innovation for Our Energy Future ponsorship Format Reversed Color:White rtical Format Reversed-A ertical Format Reversed-B National Renewable Energy Laboratory National Renewable Energy Laboratory Innovation for Our Energy Future National Renewable Energy Laboratory

352

State Laboratory Contacts AC  

Science Conference Proceedings (OSTI)

State Laboratory Contact Information AC. Alabama. Mailing Address, ... PDF. Alaska. Mailing Address, Contact Information. Alaska ...

2013-08-01T23:59:59.000Z

353

Nuclear Magnetic Resonance Laboratory  

Science Conference Proceedings (OSTI)

Nuclear Magnetic Resonance Laboratory. ... A 600 MHz Nuclear Magnetic Resonance Spectrometer. Analytical Data Compilation Reference Materials. ...

2012-10-01T23:59:59.000Z

354

Department of Energy National Laboratories  

Office of Science laboratory National Nuclear Security Administration laboratory Office of Fossil Energy laboratory Office of Energy Efficiency and ...

355

National Laboratories - Energy Innovation Portal  

Name Address City, State; Ames Laboratory: Ames Laboratory: Ames, IA: Argonne National Laboratory: 9700 S. Cass Avenue: Argonne, IL: Brookhaven ...

356

Microsoft Word - 0_FY14SSMP_Front_green_cover.docx  

National Nuclear Security Administration (NNSA)

Fiscal Year 2014 Stockpile Stewardship and Management Plan Report to Congress June 2013 United States Department of Energy Washington, DC 20585 Fiscal Year 2014 Stockpile Stewardship and Management Plan | Page i MESSAGE FROM THE SECRETARY This report provides the Department of Energy National Nuclear Security Administration Fiscal Year 2014 Stockpile Stewardship and Management Plan (SSMP), satisfying the statutory requirements of Section 4203 of the Atomic Energy Defense Act (50 U.S.C. 2523) and related Congressional requests. This plan continues the Administration's commitment to maintain a safe, secure, and effective deterrent without new underground nuclear testing. It remains fully aligned with the national nuclear security

357

EIS-0236: Notice of Intent to Prepare a Supplemental Environmental Impact  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Supplemental Environmental Supplemental Environmental Impact Statement for the Programmatic Environmental Impact Statement EIS-0236: Notice of Intent to Prepare a Supplemental Environmental Impact Statement for the Programmatic Environmental Impact Statement Stockpile Stewardship and Management The Department of Energy (DOE) is announcing a revised schedule for its preparation of a Draft Supplemental Environmental Impact Statement (SEIS) for the National Ignition Facility portion (Volume III, Appendix I) of the Programmatic Environmental Impact Statement for Stockpile Stewardship and Management (DOE/EIS-0236; September, 1997). EIS-0236, Notice of Intent to prepare Supplemental Environmental Impact Statement for the Programmatic Environmental Impact Statement for Stockpile Stewardship and Management (August 1999)

358

California | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 5, 1999 November 5, 1999 EIS-0236-S1: DOE Notice of Availability of the Draft Environmental Impact Statement National Ignition Facility Draft Environmental Impact Statement to the Stockpile Stewardship and Management October 5, 1999 EIS-0236-S1: Draft Supplemental Programmatic Environmental Impact Statement National Ignition Facility Draft Environmental Impact Statement to the Stockpile Stewardship and Management August 5, 1999 EIS-0236: Notice of Intent to Prepare a Supplemental Environmental Impact Statement for the Programmatic Environmental Impact Statement Stockpile Stewardship and Management August 1, 1999 EIS-0285: Draft Environmental Impact Statement Bonneville Power Administration Transmission System Vegetation Management Program (August 1999) April 1, 1999

359

National Laboratories - Energy Innovation Portal  

Name Address City, State; Ames Laboratory: Ames Laboratory: Ames, IA: Argonne National Laboratory: 9700 S. Cass Avenue: Argonne, IL: Brookhaven National Laboratory

360

NOAA Air Resources Laboratory Quarterly Activity Report  

E-Print Network (OSTI)

by the MDNR, and hand-over to the landlord (NNSA) for completion of remedies and all associated monitoring-00276 page 4 of 53 Unresolved Issues 1. NNSA acceptance of long-term stewardship responsibilities needs and all remediation efforts completed or implementation begun. NNSA will then be expected to take over

Note: This page contains sample records for the topic "laboratory stockpile stewardship" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

COMPUTER SYSTEMS LABORATORY STANFORD ELECTRONICS LABORATORIES  

E-Print Network (OSTI)

of Data 2.1 Performance and Utilization Data 2.2 Failure Data 5 5 6 3. Preliminary Analysis 3.1 Load Profiles 3.2 Failure Profiles 7 3.3 Analysis and Discussion of Preliminary Results Some ReliabilityCOMPUTER SYSTEMS LABORATORY I I STANFORD ELECTRONICS LABORATORIES DEPARTMENT OF ElECTRiCAl

Stanford University

362

Los Alamos National Laboratory: About the Long-Term Environmental...  

NLE Websites -- All DOE Office Websites (Extended Search)

About the Long-Term Environmental Stewardship and Sustainability Strategy Integrate, measure and enhance The value of a long-term horizon is to consider the nature of environmental...

363

Lawrence Livermore National Laboratory (LLNL)  

NLE Websites -- All DOE Office Websites

Phonebook | Phonebook | Site Map | Contact Us Search LLNL Go KEY RESEARCH Ensuring the safety, reliability, and security of the U.S. nuclear stockpile and applying science and technology to anticipate, innovate and deliver solutions to global security needs. Weapons Program High Explosives Application Facility Site 300 Global Security Energy and Environmental Security Defense Intelligence Nonproliferation Advancing energy security in the United States through the discovery, development, production and deployment of cost-effective, sustainable systems while protecting the environment. Energy Technologies Carbon Capture and Storage Climate and Carbon U.S. Energy Flow Charts Hydrogen Fuel Geothermal Wind Forecasting Underground Coal Gasification Vehicle Aerodynamics Turning scientific and technological concepts into reality, whether

364

Laboratory Directed Research and Development Program FY2004  

SciTech Connect

The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Goals that are codified in DOE's September 2003 Strategic Plan, with a primary focus on Advancing Scientific Understanding. For that goal, the Fiscal Year (FY) 2004 LDRD projects support every one of the eight strategies described in the plan. In addition, LDRD efforts support the goals of Investing in America's Energy Future (six of the fourteen strategies), Resolving the Environmental Legacy (four of the eight strategies), and Meeting National Security Challenges (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD supports Office of Science strategic plans, including the 20 year Scientific Facilities Plan and the draft Office of Science Strategic Plan. The research also supports the strategic directions periodically under review by the Office of Science Program Offices, such as strategic LDRD projects germane to new research facility concepts and new fundamental science directions.

Hansen, Todd C.

2005-03-22T23:59:59.000Z

365

Laboratory Directed Research and Development Program FY2004  

SciTech Connect

The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Goals that are codified in DOE's September 2003 Strategic Plan, with a primary focus on Advancing Scientific Understanding. For that goal, the Fiscal Year (FY) 2004 LDRD projects support every one of the eight strategies described in the plan. In addition, LDRD efforts support the goals of Investing in America's Energy Future (six of the fourteen strategies), Resolving the Environmental Legacy (four of the eight strategies), and Meeting National Security Challenges (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD supports Office of Science strategic plans, including the 20 year Scientific Facilities Plan and the draft Office of Science Strategic Plan. The research also supports the strategic directions periodically under review by the Office of Science Program Offices, such as strategic LDRD projects germane to new research facility concepts and new fundamental science directions.

Hansen, Todd C.

2005-03-22T23:59:59.000Z

366

Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

AOCS provides a Laboratory Proficiency Program (LPP). Formerly the Smalley Check Sample Program LPP is a collaborative proficiency testing service for oil and fat related commodities, oilseeds, oilseed meals, and edible fats. Laboratory Proficiency Testing

367

Leading Testing Laboratories  

Science Conference Proceedings (OSTI)

... Fax: 86-20-6196-8925 E-Mail: york.li@ledtestlab.com Send E-Mail to Laboratory: Leading Testing Laboratories ... [22/S14] EPA Integral LED Lamps v ...

2013-09-06T23:59:59.000Z

368

Mound Laboratory: Analytical Capability  

SciTech Connect

The Monsanto Research Corporation, Mound Laboratory Analytical Capability report is intended to fulfill a customer need for basic information concerning Mound Laboratory's analytical instrumentation and techniques.

Hendrickson, E. L.

1955-03-01T23:59:59.000Z

369

State Laboratory Contacts DH  

Science Conference Proceedings (OSTI)

State Laboratory Contact Information DH. District of Columbia. ... Lab Closed See State Director's List. No Certificate. Delaware. ...

2013-10-24T23:59:59.000Z

370

Lisheng Safety Laboratory  

Science Conference Proceedings (OSTI)

Lisheng Safety Laboratory. NVLAP Lab Code: 200882-0. Address and Contact Information: Electronic & Lighting (Xiamen) Co. Ltd. No. ...

2013-09-27T23:59:59.000Z

371

Savannah River National Laboratory  

At a glance Remote Electrical Throw Device Engineers at the Savannah River National Laboratory ... sufficient manufacturing capacity, established dist ...

372

Engineering Laboratory Homepage  

Science Conference Proceedings (OSTI)

... and InfrastructureDisaster-Resilient Buildings, Infrastructure, and ... of the Manufacturing Engineering Laboratory. ... Net-Zero Energy Residential Test ...

2013-08-12T23:59:59.000Z

373

National Renewable Energy Laboratory  

National Renewable Energy Laboratory Technology Transfer Marine Corps Taps NREL to Help Replace Aging Steam Plant with Efficient Biomass Cogeneration

374

State Laboratory Contacts M  

Science Conference Proceedings (OSTI)

... Maine Department of Agriculture Metrology Laboratory Div. QA&R 28 Station House Road Augusta, ME 04333, 333 Cony Rd. ...

2013-09-25T23:59:59.000Z

375

Price Sound Laboratory  

Science Conference Proceedings (OSTI)

Price Sound Laboratory. NVLAP Lab Code: 200874-0. Address and Contact Information: 638 RALEIGH STREET WINNIPEG ...

2013-10-31T23:59:59.000Z

376

Laboratory Coordinating Council  

Science Conference Proceedings (OSTI)

The nation's network of DOE Laboratories and Facilities hold an extensive store of research and development expertise and unique equipment developed for their various missions. The Laboratory Coordinating Council (LCC) gives US industry access to a ``virtual'' laboratory that can be tailored to meet the specific requirements of almost any research project. Established in 1995, the LCC responds to the major process industries' R and D needs with the capabilities of 16 DOE Laboratories and Facilities.

Chum, H.

1998-12-21T23:59:59.000Z

377

Cytogenetic Biodosimetry Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Cytogenetic Biodosimetry Laboratory Cytogenetic Biodosimetry Laboratory Blood samples are shipped at room temperature to the laboratory. White blood cells, lymphocytes, are cultured under sterile conditions in an incubator for 48 hours using a standard growth medium. Culture tubes are centrifuged, and cells are re-suspended in a weak salt solution, which allows the chromosomes to separate and spread evenly on slides.

378

Division of Laboratory Sciences  

E-Print Network (OSTI)

#12;#12;Division of Laboratory Sciences U.S. Department of Health and Human Services Centers and Prevention National Center for Environmental Health Division of Laboratory Sciences Atlanta, Georgia 30341're also working in concert with state public health laboratories, providing training, proficiency testing

379

Related Sites | Y-12 National Security Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

Related Sites Related Sites Related Sites Links to the following sources of information are provided as resources. Listings are obtained from government, industry and trade organizations and from other resources. B&W Corporate B&W Corporate The Babcock & Wilcox Company is a leading international provider of energy products and services. B&W Lawrence Livermore Lawrence Livermore National Laboratory helps reduce and counter threats to national and global security through the advancement and application of science and technology. B&W Pantex Located in Amarillo, Texas, the Pantex Plant supports stockpile stewardship, nonproliferation, and safeguards and security. Government System for Award Management The System for Award Management (SAM) (formerly Central Contractor

380

L  

NLE Websites -- All DOE Office Websites (Extended Search)

awrence Livermore National awrence Livermore National Laboratory (LLNL) is the premier research and development facility for science and technology solutions to some of our nation's greatest challenges. Staffed by more than 6500 employees serving in an array of scientific, technical and specialized fields, LLNL has a 60-year legacy of championing "science in the national interest." LLNL's funding largely comes from the National Nuclear Security Administration (NNSA) Office of Defense Programs for nuclear weapons stockpile stewardship activities. Support for national security and homeland security work also comes from the NNSA Office of Defense Nuclear

Note: This page contains sample records for the topic "laboratory stockpile stewardship" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Audit Report: IG-0666 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

666 666 Audit Report: IG-0666 November 30, 2004 Audit Report on "The Los Alamos Neutron Science Center" The Los Alamos Neutron Science Center (LANSCE), located at Los Alamos National Laboratory (Los Alamos), was constructed in 1972. LANSCE is a national user facility that provices pulsed protons and spallation neutrons for defense and civilian research and related applications. Its primary mission is to support the National Nuclear Security Administration's (NNSA) stockpile stewardship activities; the Oiffice of Science in the areas of neutron scattering and nuclear physcis research; and, the Office of Nuclear Energy, Science and Technology in radioactive isotope production. NNSA provided $65 million of LANSCE's $90 million Fiscal Year 2003 budget and

382

Proton Radiography: Its uses and Resolution Scaling  

Science Conference Proceedings (OSTI)

Los Alamos National Laboratory has used high energy protons as a probe in flash radiography for over a decade. In this time the proton radiography project has used 800 MeV protons, provided by the LANSCE accelerator facility at LANL, to diagnose over five-hundred dynamic experiments in support of stockpile stewardship programs as well as basic materials science. Through this effort significant experience has been gained in using charged particles as direct radiographic probes to diagnose transient systems. The results of this experience will be discussed through the presentation of data from experiments recently performed at the LANL pRad.

Mariam, Fesseha G. [Los Alamos National Laboratory

2012-08-09T23:59:59.000Z

383

Academic Alliances | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

High Energy Density Laboratory Plasmas National Laser Users' Facility Stewardship Science Graduate Fellowship Stewardship Science Academic Alliances Banner photo: The Texas...

384

Argonne Tribology Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Tribology Laboratory Tribology Laboratory CemeCon coating chamber CemeCon coating chamber Engineers in Argonne's Tribology Laboratory conduct research on advanced tribological systems (surface engineered materials, lubricants, fuels, and fuel/lubricant additives) for use in aggressive environments (for example, where two surfaces are rubbing together). The Laboratory is equipped with a full range of coating development, friction and wear testing, and characterization facilities. Evaluation of Coatings and Systems The Tribology Laboratory evaluates high performance coatings primarily intended to protect engine-component surfaces that undergo sliding and rolling contact in advanced transportation systems. Also tested are systems powered by diesel and gasoline engines, as well as

385

Leadership | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Message from the Director Board of Governors Organization Chart Argonne Distinguished Fellows Emeritus Scientists & Engineers History Discoveries Prime Contract Contact Us Leadership Argonne integrates world-class science, engineering, and user facilities to deliver innovative research and technologies. We create new knowledge that addresses the scientific and societal needs of our nation. Eric D. Isaacs Eric D. Isaacs, Director, Argonne National Laboratory Director, Argonne National Laboratory Argonne National Laboratory Eric D. Isaacs, a prominent University of Chicago physicist, is President of UChicago Argonne, LLC, and Director of Argonne National Laboratory. Mark Peters Mark Peters, Deputy Lab Director for Programs Deputy Laboratory Director for Programs

386

Argonne National Laboratory - Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Reports Reports Argonne National Laboratory Activity Reports 2012 Operational Awareness Oversight of the Argonne National Laboratory Alpha-Gamma Hot Cell Facility, July 2012 Review Reports 2011 Review of the Argonne National Laboratory Alpha-Gamma Hot Cell Facility Readiness Assessment (Implementation Verification Review Sections), November 2011 Nuclear Safety Enforcement Regulatory Assistance Review of UChicago Argonne, LLC at the Argonne National Laboratory, October 3, 2011 Activity Reports 2011 Orientation Visit to the Argonne National Laboratory, August 2011 Review Reports 2005 Independent Oversight Inspection of Environment, Safety and Health Programs at Argonne National Laboratory, Summary Report, Vol. 1, May, 2005 Independent Oversight Inspection of Environment, Safety, and Health Programs at the Argonne National Laboratory, Technical Appendices, Volume II, May 2005

387

Laboratory Computing Resource Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Computing DOE Logo Computing DOE Logo Search BIO ... Search Argonne Home > BIO home > Laboratory Computing Resource Center BIO Home Page About BIO News Releases Research Publications People Contact Us Organization Chart Site Index Inside BIO BIO Safety About Argonne Argonne National Laboratory Logo Laboratory Computing Resource Center In 2002 Argonne National Laboratory established the Laboratory Computing Project to enable and promote the use of high-performance computing (HPC) across the Laboratory in support of its varied research missions. The Laboratory Computing Resource Center (LCRC) was established, and in April 2003 LCRC began full operations with ArgonneÂ’s first teraflops computing cluster, Jazz. In 2010 Jazz was replaced by Fusion, with a peak performance of 30 teraflops (and still growing). We just acquired Blues which will a performance of 100 teraflops.

388

SSQ V1 N2_6june11_FINAL  

National Nuclear Security Administration (NNSA)

2 2011 2 2011 Comments Questions or comments regarding the Stockpile Stewardship Quarterly should be directed to Terri.Batuyong@nnsa.doe.gov Technical Editor: Douglas Drake, Publication Editor: Millicent Mischo Inside This Issue Stockpile Stewardship Quarterly Defense Programs Stockpile Stewardship in Action Volume 1, Number 2 What do physicists and paparazzi have in common? They know that a picture is worth a thousand words! For this issue of the Stockpile Stewardship Quarterly, the theme is advances in imaging diagnostics. Not only do the images tell a story, as asserted in the old axiom, about the dynamics of high-explosives, laser or pulsed power-driven events, but they are also becoming very quantitative. The

389

Audit Letter Report: OAS-L-10-02  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8-25-93 8-25-93 (08-93) United States Government Department of Energy memorandum DATE: October 2 1,2009 ~ u d i t Report Number: OAS-L- 10-02 ~~.~~ IG-32 1 (A08LV022) SUBJECT: Report on the "Follow-up Audit of Test Readiness at the Nevada ~ e s t Site" Manager, Nevada Site Office INTRODUCTION AND OBJECTIVE As part of a self-imposed moratorium on testing, the United States has not conducted an explosive nuclear test since 1992. Since that time, the Department of Energy's (Department) National Nuclear Security Administration (NNSA) has used the Stockpile Stewardship Program, an effort that includes analytical simulation, laboratory experiments, and weapons refurbishments, to maintain the stockpile without nuclear testing. Under current national policy, however, the Department may be called upon, within a three-year timeframe, to

390

EA-1335: Final Environmental Assessment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EA-1335: Final Environmental Assessment EA-1335: Final Environmental Assessment EA-1335: Final Environmental Assessment Microsystems and Engineering Sciences Applications Complex A primary mission of the U.S. Department of Energy (DOE) is to maintain the nation's nuclear weapons stockpile in a safe, secure, and reliable manner. Aging weapons contain dated and now unavailable technologies. Modernization of these weapon system components is integral to DOE's responsibility to meet its stockpile stewardship requirements for enhanced performance, and increased safety, security, and reliability in weapons systems. To meet this responsibility, there is a need to modernize key weapon components utilizing microelectronics available only at Sandia National Laboratories/New Mexico (SNL/NM). DOE has identified an increasing

391

Going green earns Laboratory gold  

NLE Websites -- All DOE Office Websites (Extended Search)

Going green earns Laboratory gold Going green earns Laboratory gold The Laboratory's newest facility is its first to achieve both the Leadership in Energy and Environmental Design...

392

Vehicle Technologies Office: National Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

National Laboratories to someone by E-mail Share Vehicle Technologies Office: National Laboratories on Facebook Tweet about Vehicle Technologies Office: National Laboratories on...

393

Laboratory program helps small businesses  

NLE Websites -- All DOE Office Websites (Extended Search)

Lab helps small businesses Laboratory program helps small businesses The free program, run jointly by Los Alamos and Sandia National Laboratories, leverages the laboratories'...

394

FY 2005 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Congressional Budget Congressional Budget Request Laboratory Tables Preliminary Department of Energy FY 2005 Congressional Budget Request Office of Management, Budget and Evaluation/CFO February 2004 Laboratory Tables Preliminary Department of Energy Department of Energy FY 2005 Congressional Budget FY 2005 Congressional Budget Request Request Office of Management, Budget and Evaluation/CFO February 2004 Laboratory Tables Laboratory Tables Printed with soy ink on recycled paper Preliminary Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. include both the discretionary and mandatory funding in the budget. balances, deferrals, rescissions, or other adjustments appropria ted as offsets to the DOE appropriations by the Congress.

395

News | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

News Argo exascale architecture Click on image to enlarge. Designing a new operating system for exascale architectures Full Story Argonne National Laboratory has been awarded a...

396

ARGONNE NATIONAL LABORATORY  

NLE Websites -- All DOE Office Websites (Extended Search)

National Laboratory wild@mcs.anl.gov ABSTRACT Code optimization in the high-performance computing realm has traditionally focused on reducing execution time. The problem, in...

397

Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

checking the document effective date on the PS Training website. Brookhaven National Laboratory Photon Sciences Directorate Subject: Photon Sciences TECH PROC LN2 Manual Fill...

398

Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

reminder to persons whose area will be inspected (i.e. Cognizant Space Managers) Brookhaven National Laboratory Photon Sciences Directorate Subject: ENVIRONMENTAL, SAFETY AND...

399

Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

current version by checking the document effective date on the PS Training website. Brookhaven National Laboratory Photon Sciences Directorate Subject: Photon Sciences ELEC PPE -...

400

Pacific Northwest National Laboratory  

NLE Websites -- All DOE Office Websites

Pacific Northwest National Laboratory Skip to Main Content U.S. Department of Energy Search PNNL Search PNNL Home About Research Publications Jobs News Contacts Featured Research...

Note: This page contains sample records for the topic "laboratory stockpile stewardship" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

NATIONAL ENERGY TECHNOLOGY LABORATORY  

NLE Websites -- All DOE Office Websites (Extended Search)

NATIONAL ENERGY TECHNOLOGY LABORATORY In 2011, the Office of Fossil Energy evaluated the realized and estimated benefits provided by its programs. Implemented by NETL, these...

402

Oak Ridge National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Oak Ridge National Laboratory Search Go Find People Contact Site Index Comments Home News News Releases Story Tips Features Contacts ORNL Review Magazine ORNL in the News...

403

Shared Intellect * Shared Laboratories...  

NLE Websites -- All DOE Office Websites (Extended Search)

VOLUME 3, ISSUE 3 NETL-RUA 2013 SPRING MEETING: Growth Through Collaboration National Energy Technology Laboratory - Regional University Alliance (NETL-RUA) members joined...

404

Hollings Marine Laboratory Homepage  

Science Conference Proceedings (OSTI)

... The Hollings Marine Laboratory (HML) is a ... the Nation's coastal environmental- and health-related problems ... s National Ocean Service, the National ...

2013-08-19T23:59:59.000Z

405

Sandia National Laboratories - Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Reports Sandia National Laboratories Review Reports 2013 Review of the Sandia Site Office Quality Assurance Assessment of the Manzano Nuclear Operations, January 2013 Activity...

406

Los Alamos National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

participants to respond to simulated hazardous materials emergencies involving a rail car, a clandestine laboratory, various modes of transportation, industrial piping...

407

Los Alamos National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 - Hours after a disaster declaration by Los Alamos County, Los Alamos National Laboratory officials on Friday described "millions" of dollars in damage to environmental...

408

Sandia National Laboratories: Sandia National Laboratories: Tonopah Test  

NLE Websites -- All DOE Office Websites (Extended Search)

Tonopah Test Range Tonopah Test Range Tonopah Tonopah Test Range (TTR) is the testing range of choice for all national security missions. Sandia conducts operations at TTR in support of the Department of Energy/National Nuclear Security Administration's weapons programs. Principal DOE activities at TTR include stockpile reliability testing; arming, fusing, and firing systems testing; and the testing of nuclear weapon delivery systems. The range also offers a unique test environment for use by other U.S. government agencies and their contractors. Located about 160 miles northwest of Las Vegas, TTR is an immense area of flat terrain ideal for rockets and low-altitude, high-speed aircraft operations. Situated between two mountain ranges, TTR's remote location and restricted airspace ensure that tests can be conducted with a high degree

409

Fumonisin Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing service for B1, B2, B3,and total Fumonisin in corn meal samples. Fumonisin Laboratory Proficiency Testing Program Laboratory Proficiency Program (LPP) aocs applicants certified chemist chemists Lab laboratories Laboratory methods

410

Environmental Stewardship in Process Manufacturing  

Science Conference Proceedings (OSTI)

Oct 27, 2009 ... Analysis of leached samples of several torrefied solid biofuels using scanning electron microscopy and energy-dispersive X-ray spectroscopy ...

411

Green Engineering and Environmental Stewardship  

Science Conference Proceedings (OSTI)

Therefore, “green” or environmentally benign technology should be a focus for ... The other is to protect the global environment by preserving energy and ...

412

Stewardship Science Academic Alliances Annual  

National Nuclear Security Administration (NNSA)

to improve stellar nucleosynthesis models, criticality safety codes and nuclear fission theory. Our research is concentrated on the three topics discussed below. Neutron-induced...

413

Electronics Stewardship Plan, July 2007  

NLE Websites -- All DOE Office Websites (Extended Search)

or exceed these new requirements and goals, and actions to be taken to meet or exceed the Office of Management and Budget's reporting requirements for completion of the...

414

stewardship in a nuclear renaissance  

E-Print Network (OSTI)

Non- Proliferation Treaty calls on all signa- tory states Ă?to pursue negotiations in good faith planners now treat the environmental effects as collateral damage, and treaties currently consider only the number of weapons needed to assure destruction of opposing forces. Instead, treaties must call

Rambaut, Andrew

415

Material Measurement Laboratory Professional Research ...  

Science Conference Proceedings (OSTI)

... at the NIST, Gaithersburg Laboratories in Gaithersburg ... NIST Hollings Marine Laboratory (HML) in ... sponsoring institution of higher education and be ...

2013-05-26T23:59:59.000Z

416

Sandia National Laboratories, California Environmental Management System Program Manual.  

Science Conference Proceedings (OSTI)

The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004and Department of Energy (DOE) Order 450.1. Sandia National Laboratories, California (SNL/CA) has maintained functional environmental programs to assist with regulatory compliance for more than 30 years. During 2005, these existing programs were rolled into a formal environmental management system (EMS) that expands beyond the traditional compliance focus to managing and improving environmental performance and stewardship practices for all site activities. An EMS is a set of inter-related elements that represent a continuing cycle of planning, implementing, evaluating, and improving processes and actions undertaken to achieve environmental policy and goals. The SNL/CA EMS Program conforms to the International Standard for Environmental Management Systems, ISO 14001:2004 (ISO 2004). The site received ISO 14001 certification in September 2006. SNL/CA's EMS Program is applicable to the Sandia, Livermore site only. Although SNL/CA operates as one organizational division of the overall Sandia National Laboratories, the EMS Program is site-specific, with site-specific objectives and targets. SNL/CA (Division 8000) benefits from the organizational structure as it provides corporate level policies, procedures, and standards, and established processes that connect to and support elements of the SNL/CA EMS Program. Additionally, SNL/CA's EMS Program benefits from two corporate functional programs (Facilities Energy Management and Fleet Services programs) that maintain responsibility for energy management and fleet services for all Sandia locations. Each EMS element is further enhanced with site-specific processes and standards. Division 8000 has several groups operating at Sandia National Laboratories, New Mexico (SNL/NM). Although these groups, from an organizational perspective, are part of Division 8000, they are managed locally and fall under the environmental requirements specific to their New Mexico location. The New Mexico groups in Division 8000 follow the corporate EMS Program for New Mexico operations.

Larsen, Barbara L.

2011-04-01T23:59:59.000Z

417

Sandia National Laboratories, California Environmental Management System Program Manual.  

SciTech Connect

The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004 and Department of Energy (DOE) Order 450.1. Sandia National Laboratories, California (SNL/CA) has maintained functional environmental programs to assist with regulatory compliance for more than 30 years. During 2005, these existing programs were rolled into a formal environmental management system (EMS) that expands beyond the traditional compliance focus to managing and improving environmental performance and stewardship practices for all site activities. An EMS is a set of inter-related elements that represent a continuing cycle of planning, implementing, evaluating, and improving processes and actions undertaken to achieve environmental policy and goals. The SNL/CA EMS Program conforms to the International Standard for Environmental Management Systems, ISO 14001:2004 (ISO 2004). The site received ISO 14001 certification in September 2006. SNL/CA's EMS Program is applicable to the Sandia, Livermore site only. Although SNL/CA operates as one organizational division of the overall Sandia National Laboratories, the EMS Program is site-specific, with site-specific objectives and targets. SNL/CA (Division 8000) benefits from the organizational structure as it provides corporate level policies, procedures, and standards, and established processes that connect to and support elements of the SNL/CA EMS Program. Additionally, SNL/CA's EMS Program benefits from two corporate functional programs (Facilities Energy Management and Fleet Services Environmental programs) that maintain responsibility for energy management and fleet services for all Sandia locations. Each EMS element is further enhanced with site-specific processes and standards. Division 8000 has several groups operating at Sandia National Laboratories, New Mexico (SNL/NM). Although these groups, from an organizational perspective, are part of Division 8000, they are managed locally and fall under the environmental requirements specific to their New Mexico location. The New Mexico groups in Division 8000 follow the corporate EMS Program for New Mexico operations.

2009-04-01T23:59:59.000Z

418

Sandia National Laboratories, California Environmental Management System program manual.  

SciTech Connect

The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004and Department of Energy (DOE) Order 436.1. Sandia National Laboratories, California (SNL/CA) has maintained functional environmental programs to assist with regulatory compliance for more than 30 years. During 2005, these existing programs were rolled into a formal environmental management system (EMS) that expands beyond the traditional compliance focus to managing and improving environmental performance and stewardship practices for all site activities. An EMS is a set of inter-related elements that represent a continuing cycle of planning, implementing, evaluating, and improving processes and actions undertaken to achieve environmental policy and goals. The SNL/CA EMS Program conforms to the International Standard for Environmental Management Systems, ISO 14001:2004 (ISO 2004). The site first received ISO 14001 certification in September 2006 and recertification in 2009. SNL/CA's EMS Program is applicable to the Sandia, Livermore site only. Although SNL/CA operates as one organizational division of the overall Sandia National Laboratories, the EMS Program is site-specific, with site-specific objectives and targets. SNL/CA (Division 8000) benefits from the organizational structure as it provides corporate level policies, procedures, and standards, and established processes that connect to and support elements of the SNL/CA EMS Program. Additionally, SNL/CA's EMS Program benefits from two corporate functional programs (Facilities Energy and Water Resource Management and Fleet Services programs) that maintain responsibility for energy management and fleet services for all Sandia locations. Each EMS element is further enhanced with site-specific processes and standards. Division 8000 has several groups operating at Sandia National Laboratories, New Mexico (SNL/NM). Although these groups, from an organizational perspective, are part of Division 8000, they are managed locally and fall under the environmental requirements specific to their New Mexico location. The New Mexico groups in Division 8000 follow the corporate EMS Program for New Mexico operations.

Larsen, Barbara L.

2012-03-01T23:59:59.000Z

419

SANDIA NATIONAL LABORATORIES  

NLE Websites -- All DOE Office Websites (Extended Search)

Impacts on Sandia and the Nation Impacts on Sandia and the Nation 2 SANDIA NATIONAL LABORATORIES 3 LDRD Impacts on Sandia and the Nation For further information, contact: Wendy R. Cieslak Senior Manager, Science, Technology, and Engineering Strategic Initiatives wrciesl@sandia.gov (505) 844-8633 or Henry R. Westrich LDRD Program Manager hrwestr@sandia.gov 505-844-9092 LDRD Impacts on Sandia and the Nation ABOUT THE COVER: Images from some of the case studies in this brochure: a near-UV light- emitting diode (LED), a cell membrane, a NISAC model, synthetic aperture radar (SAR) image of Washington, D.C. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT 4 SANDIA NATIONAL LABORATORIES 5 LDRD Impacts on Sandia and the Nation Sandia National Laboratories' Laboratory Directed Research and Development (LDRD) Program:

420

FY 2010 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory Tables Laboratory Tables Preliminary May 2009 Office of Chief Financial Officer FY 2010 Congressional Budget Request Laboratory Tables Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Printed with soy ink on recycled paper Laboratory / Facility Index FY 2010 Congressional Budget Page 1 of 3 (Dollars In Thousands) 2:08:56PM Department Of Energy 5/4/2009 Page Number FY 2008 Appropriation FY 2009 Appropriation FY 2010 Request Laboratory Table 1 1 $1,200

Note: This page contains sample records for the topic "laboratory stockpile stewardship" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Laboratory Protection Division, Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Points of Contact Points of Contact Organization Chart (pdf) Groups Emergency Services Emergency Management Security Operations BNL Site Access Main Gate Access Forms Welcome to the... Laboratory Protection Division (LP) Mission Statement: To serve and protect Brookhaven National Laboratory's staff, guests, and interests from the undesirable consequences of unwanted events by providing preparedness, assessment, engineering, and immediate response services for all types of security and non-security related emergencies. Protect DOE special nuclear materials, classified matter, sensitive information, and property against theft, diversion, or destruction; prevent the sabotage of programs that could result in significant scientific or financial impact; prevent the malevolent release of hazardous materials including radiological, chemical, and infectious agents or other criminal acts protecting people, property, and national security, providing a safe and secure environment for employees, the public, and the environment.

422

Enduring Stockpile CMM Shell Inspection Plan (U)  

SciTech Connect

The slides are intended to serve as a high level summary of the CMM Shell Inspection Plan as presented to Pu Sustainment Legacy Pit Production IPT.

Montano, Joshua D. [Los Alamos National Laboratory; Flores, Randy A. [Los Alamos National Laboratory

2012-06-13T23:59:59.000Z

423

Coal stockpiles: how much is enough?  

Science Conference Proceedings (OSTI)

Coal stocks and days supply at electric generating plants have declined dramatically in the USA, from 112 days at the end of 1980 to 38 days at the end of 2004. The article discusses the reasons for this. 3 figs., 1 tab.

Bossard, M.; Gaalass, T. [Pace Global Energy Services (United States). Solid Fuels Team

2005-09-01T23:59:59.000Z

424

Vehicle Research Laboratory - FEERC  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Research Laboratory Vehicle Research Laboratory Expertise The overall FEERC team has been developed to encompass the many disciplines necessary for world-class fuels, engines, and emissions-related research, with experimental, analytical, and modeling capabilities. Staff members specialize in areas including combustion and thermodynamics, emissions measurements, analytical chemistry, catalysis, sensors and diagnostics, dynamometer cell operations, engine controls and control theory. FEERC engineers have many years of experience in vehicle research, chassis laboratory development and operation, and have developed specialized systems and methods for vehicle R&D. Selected Vehicle Research Topics In-use investigation of Lean NOx Traps (LNTs). Vehicle fuel economy features such as lean operation GDI engines,

425

Safeguards Laboratory (SL) | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Safeguards Laboratory Safeguards Laboratory May 30, 2013 The Safeguards Laboratory is a Department of Energy user facility equipped with a comprehensive set of field-deployable instrumentation for safeguards system development and personnel training. Mock-ups using industrial equipment and reference nuclear materials simulate real-world conditions for training, testing, and evaluations. The lab's openness and availability to the private sector enable development of new technologies that combat the proliferation of weapons of mass destruction. Applications Training and International Outreach Nondestructive Analysis Measurements Instrument Evaluations Integrated Safeguards Methodologies Measurement Technique Development Specifications Gamma and X-ray detection systems Handheld survey instruments

426

Sonication standard laboratory module  

DOE Patents (OSTI)

A standard laboratory module for automatically producing a solution of cominants from a soil sample. A sonication tip agitates a solution containing the soil sample in a beaker while a stepper motor rotates the sample. An aspirator tube, connected to a vacuum, draws the upper layer of solution from the beaker through a filter and into another beaker. This beaker can thereafter be removed for analysis of the solution. The standard laboratory module encloses an embedded controller providing process control, status feedback information and maintenance procedures for the equipment and operations within the standard laboratory module.

Beugelsdijk, Tony (Los Alamos, NM); Hollen, Robert M. (Los Alamos, NM); Erkkila, Tracy H. (Los Alamos, NM); Bronisz, Lawrence E. (Los Alamos, NM); Roybal, Jeffrey E. (Santa Fe, NM); Clark, Michael Leon (Menan, ID)

1999-01-01T23:59:59.000Z

427

Los Alamos National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

remembers former director Harold remembers former director Harold Agnew September 30, 2013 Manhattan Project pioneer was LANL director from 1970-1979 LOS ALAMOS, N.M., Sept. 30, 2013-Los Alamos National Laboratory Director Charlie McMillan today remembered Harold Agnew as a national treasure who transformed the Laboratory into what it is in the 21st century. "His contributions to the Laboratory made us the institution we are today," McMillan said. "It was his vision - decades ago - that recognized that national security science - 2 - brings value to a broad spectrum of breakthroughs. Los Alamos and the nation will be forever in Harold's debt." Agnew died at home on Sunday, Sept. 29, his family announced. He was the third director of Los Alamos National Laboratory, succeeding Robert

428

FY 2007 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory tables Laboratory tables preliminary Department of Energy FY 2007 Congressional Budget Request February 2006 Printed with soy ink on recycled paper Office of Chief Financial Officer Laboratory tables preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Laboratory / Facility Index FY 2007 Congressional Budget Page 1 of 3 (Dollars In Thousands) 12:10:40PM Department Of Energy 1/31/2006 Page Number FY 2005 Appropriation FY 2006 Appropriation FY 2007

429

FY 2011 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory Tables Laboratory Tables Department of Energy FY 2011 Congressional Budget Request DOE/CF-0055 March 2010 Office of Chief Financial Officer Laboratory Tables Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Department of Energy FY 2011 Congressional Budget Request DOE/CF-0055 Laboratory / Facility Index FY 2011 Congressional Budget Page 1 of 3 (Dollars In Thousands) 6:24:57AM Department Of Energy 1/29/2010 Page

430

FY 2008 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory Table Laboratory Table Preliminary Department of Energy FY 2008 Congressional Budget Request February 2007 Office of Chief Financial Officer Laboratory Table Preliminary Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Laboratory / Facility Index FY 2008 Congressional Budget Page 1 of 3 (Dollars In Thousands) 6:51:02AM Department Of Energy 2/1/2007 Page Number FY 2006 Appropriation FY 2007 Request FY 2008 Request

431

FY 2006 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory Tables Laboratory Tables Preliminary Department of Energy FY 2006 Congressional Budget Request Office of Management, Budget and Evaluation/CFO February 2005 Laboratory Tables Preliminary Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Laboratory / Facility Index FY 2006 Congressional Budget Page 1 of 3 (Dollars In Thousands) 3:43:16PM Department Of Energy 1/27/2005 Page Number FY 2004 Comp/Approp FY 2005 Comp/Approp

432

Fy 2009 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory Tables Laboratory Tables Preliminary February 2008 Office of Chief Financial Officer Department of Energy FY 2009 Congressional Budget Request Laboratory Tables Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Printed with soy ink on recycled paper Laboratory / Facility Index FY 2009 Congressional Budget Page 1 of 3 (Dollars In Thousands) 8:59:25AM Department Of Energy 1/30/2008 Page Number FY 2007 Appropriation FY 2008 Appropriation FY 2009

433

Savannah River National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Savannah River National Laboratory Savannah River National Laboratory srnl.doe.gov SRNL is a DOE National Laboratory operated by Savannah River Nuclear Solutions. At a glance Additive Manufacturing (3D Printing): Selectively Printed Conductive Pathways Researchers at the Savannah River National Laboratory (SRNL) have developed a rapid prototype conductive material that can be used for electrical shielding or circuit fabrication. Background Several rapid prototype technologies currently exist. A few of the technologies produce metallic parts, but the majority produce nonconductive parts made from various grades of plastic. In all of these technologies however, only conductive material or nonconductive material can be used within one part created. There is no known option for 3D printing conductive material for

434

Los Alamos National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

to 150 million over five years LOS ALAMOS, N.M., May 14, 2013-Los Alamos National Laboratory has awarded a master task order agreement in which three small businesses will...

435

Los Alamos National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

to 400 million over five years LOS ALAMOS, N.M., Sept. 23, 2013-Los Alamos National Laboratory has awarded master task order agreements to three small businesses for environmental...

436

Laboratory announces 2008 Fellows  

NLE Websites -- All DOE Office Websites (Extended Search)

Kurt E. Sickafus recognized for contributions. December 4, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as...

437

Alamos National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Economic development in Northern New Mexico focus of new podcast from Los Alamos National Laboratory November 25, 2013 Podcast part of Lab's new multi-channel effort to better...

438

ASHRAE's Living Laboratory  

SciTech Connect

ASHRAE recently remodeled its headquarters building in Atlanta with the intention of making the building a LEED Gold building. As part of that renovation the building was enhanced with additional sensors and monitoring equipment to allow it to serve as a Living Laboratory for use by members and the general public to study the detailed energy use and performance of buildings. This article provides an overview of the Living Laboratory and its capabilities.

Jarnagin, Ronald E.; Brambley, Michael R.

2008-10-01T23:59:59.000Z

439

CMRR Public Meeting, October 6, 2010  

SciTech Connect

The Chemistry Metallurgy Research Replacement (CMRR) Project seeks to relocate and consolidate mission-critical CMR capabilities at LANL to ensure continuous support of NNSA stockpile stewardship and management strategic objectives; these capabilities are necessary to support the current and directed stockpile work and campaign activities at LANL beyond 2010.

Holmes, Richard, A [Los Alamos National Laboratory

2010-12-16T23:59:59.000Z

440

Audit Report: IG-0528 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 8 Audit Report: IG-0528 October 5, 2001 Stockpile Surveillance Testing In 1993, the President and Congress reaffirmed the moratorium on underground nuclear testing and directed that a science-based Stockpile Stewardship Program be developed to maintain the nation's stockpile of nuclear weapons. The Department of Energy's (Department) plan for the Stockpile Stewardship Program describes it as one of the most complex, scientific-technical programs ever undertaken. The program consists of surveillance, experimentation, computation, and production. Its focus is to maintain "high confidence" in the safety and reliability of the stockpile without nuclear testing. Audit Report: IG-0528 More Documents & Publications Audit Report: IG-0744 Follow-up Audit on Stockpile Surveillance Testing, IG-0744

Note: This page contains sample records for the topic "laboratory stockpile stewardship" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Audit Report: IG-0528 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

28 28 Audit Report: IG-0528 October 5, 2001 Stockpile Surveillance Testing In 1993, the President and Congress reaffirmed the moratorium on underground nuclear testing and directed that a science-based Stockpile Stewardship Program be developed to maintain the nation's stockpile of nuclear weapons. The Department of Energy's (Department) plan for the Stockpile Stewardship Program describes it as one of the most complex, scientific-technical programs ever undertaken. The program consists of surveillance, experimentation, computation, and production. Its focus is to maintain "high confidence" in the safety and reliability of the stockpile without nuclear testing. Audit Report: IG-0528 More Documents & Publications Audit Report: IG-0744 Follow-up Audit on Stockpile Surveillance Testing, IG-0744

442

MEDICAL LABORATORY SCIENCES The role of the medical laboratory  

E-Print Network (OSTI)

in Medical Laboratory Sciences and are eligible to sit for national certification examinations. Admission website, wichita.edu/chp under Medical Laboratory Sciences. The application requires a completed

443

Sandia National Laboratories: Sandia National Laboratories: Missions:  

NLE Websites -- All DOE Office Websites (Extended Search)

About Nuclear Weapons at Sandia About Nuclear Weapons at Sandia Weapons Researcher World-class scientists and engineers come to Sandia to conduct breakthrough research in nuclear weapons. Sandia designs more than 6,300 parts of a modern nuclear weapon's 6,500 components. Our state-of-the-art laboratories facilitate large-scale testing and computer simulation. Sandia's work is of the highest consequence and those doing the work face awesome responsibilities. Unlike other national labs, which focus on the physics package, Sandia's work is to weaponize the physics package. Sandia must ensure that the other 95% of the weapon's parts work perfectly at every point of contact with the delivery systems. This requires the broadest competencies in engineering, with a deep science foundation. At the core of Sandia's nuclear weapons program is warhead systems

444

Sandia Laboratories energy programs  

DOE Green Energy (OSTI)

As one of the multiprogram laboratories of the Energy Research and Development Administration, Sandia Laboratories applies its resources to a number of nationally important programs. About 75 percent of these resources are applied to research and development for national security programs having to do primarily with nuclear weapons--the principal responsibility of the Laboratories. The remaining 25 percent are applied to energy programs and energy-related activities, particularly those requiring resources that are also used in nuclear weapon and other national security programs. Examples of such energy programs and activities are research into nuclear fusion, protection of nuclear materials from theft or diversion, and the disposal of radioactive waste. A number of technologies and disciplines developed for the weapon program are immediately applicable for the development of various energy sources. Instruments developed to detect, measure, and record the detonation of nuclear devices underground, now being used to support the development of in-situ processing of coal and oil shale, are examples. The purpose of this report is to provide an overview of these and other energy programs being conducted by these laboratories in the development of economical and environmentally acceptable alternative energy sources. Energy programs are undertaken when they require capabilities used at the Laboratories for the weapon program, and when they have no adverse effect upon that primary mission. The parallel operation of weapon and energy activities allows optimum use of facilities and other resources.

Lundergan, C.D.; Mead, P.L.; Gillespie, R.S. (eds.)

1977-03-01T23:59:59.000Z

445

FY 2013 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 8 Department of Energy FY 2013 Congressional Budget Request Laboratory Tables y Preliminary February 2012 Office of Chief Financial Officer DOE/CF-0078 Department of Energy FY 2013 Congressional Budget Request Laboratory Tables P li i Preliminary h b d i d i hi d h l l f b d h i f h The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. February 2012 Office of Chief Financial Officer Printed with soy ink on recycled paper Laboratory / Facility Index FY 2013 Congressional Budget

446

Alamos National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

record neutron beam at Los record neutron beam at Los Alamos National Laboratory July 10, 2012 New method has potential to advance materials measurement LOS ALAMOS, New Mexico, July 10, 2012-Using a one-of-a-kind laser system at Los Alamos National Laboratory, scientists have created the largest neutron beam ever made by a short-pulse laser, breaking a world record. Neutron beams are usually made with particle accelerators or nuclear reactors and are commonly used in a wide variety of scientific research, particularly in advanced materials science. Using the TRIDENT laser, a unique and powerful 200 trillion-watt short-pulse laser, scientists from Los Alamos, the Technical University of Darmstadt, Germany, and Sandia National Laboratories focus high-intensity light on an ultra-thin plastic sheet

447

IDAHO NATIONAL LABORATORY  

NLE Websites -- All DOE Office Websites (Extended Search)

History of the Idaho National Laboratory (INL) History of the Idaho National Laboratory (INL) You are here: DOE-ID Home > Inside ID > Brief History Site History The Idaho National Laboratory (INL), an 890-square-mile section of desert in southeast Idaho, was established in 1949 as the National Reactor Testing Station. Initially, the missions at the INL were the development of civilian and defense nuclear reactor technologies and management of spent nuclear fuel. Fifty-two reactors—most of them first-of-a-kind—were built, including the Navy’s first prototype nuclear propulsion plant. Of the 52 reactors, three remain in operation at the site. In 1951, the INL achieved one of the most significant scientific accomplishments of the century—the first use of nuclear fission to produce a usable quantity of electricity at the Experimental Breeder Reactor No.

448

National Energy Technology Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Design Standards for the NETL Logo Design Standards for the NETL Logo May 2013 The Logo Display of the NETL logo is critical because this symbol represents who we are - it's our signature. Consistent application of the logo is crucial to the success of our identity. As the primary identifier of the National Energy Technology Laboratory, it is essential that the logo's appearance is consistent throughout all of the Laboratory's communications. Over time, consistent and repeated use of the logo will establish a strengthened visual identity for the laboratory. To ensure consistency it is critical for every user of the logo, regardless of personal preference, to use it in accordance with the guidelines that follow. The height of the NETL logo is .75 times the length, a 3 by 4 ratio. This relationship is always the same, regardless of

449

Idaho National Laboratory - Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Reports Reports Idaho National Laboratory Review Reports 2013 Review of Radiation Protection Program Implementation at the Advanced Mixed Waste Treatment Project of the Idaho Site, April 2013 Review of the Facility Representative Program at the Idaho Site, March 2013 Activity Reports 2013 Accident Investigation at the Idaho National Laboratory Engineering Demonstration Facility, February 2013 Review Reports 2012 Review of Radiation Protection Program Implementation at the Idaho Site, November 2012 Assessment of Nuclear Safety Culture at the Idaho Cleanup Project Sodium Bearing Waste Treatment Project, November 2012 Review of Site Preparedness for Severe Natural Phenomena Events at the Idaho National Laboratory, July 2012 Review of the Sodium Bearing Waste Treatment Project - Integrated Waste Treatment Unit Federal Operational Readiness Review, June 2012

450

FY 2012 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 5 Department of Energy FY 2012 Congressional Budget Request Laboratory Tables y Preliminary February 2012 Office of Chief Financial Officer DOE/CF-0065 Department of Energy FY 2012 Congressional Budget Request Laboratory Tables P li i Preliminary h b d i d i hi d h l l f b d h i f h The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. February 2012 Office of Chief Financial Officer Printed with soy ink on recycled paper Laboratory / Facility Index FY 2012 Congressional Budget

451

Laboratory disputes citizens' lawsuit  

NLE Websites -- All DOE Office Websites (Extended Search)

Lab disputes ctizens' lawsuit Lab disputes ctizens' lawsuit Laboratory disputes citizens' lawsuit Lab officials expressed surprise to a lawsuit alleging noncompliance with the federal Clean Water Act filed today by citizens groups. February 7, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Contact James E. Rickman

452

LANL: Materials Science Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science Laboratory (MSL) is Materials Science Laboratory (MSL) is an interdisciplinary facility dedicated to research on current materials and those of future interest. It is a 56,000 square-foot modern facility that can be easily reconfigured to accom- modate new processes and operations. It compris- es 27 laboratories, 15 support rooms, and 60 offices. The MSL supports many distinct materi- als research topics, grouped into four focus areas: mechanical behavior, materials processing, syn- thesis, and characterization. Research within the MSL supports programs of national interest in defense, energy, and the basic sciences. The MSL is a non-classified area in the Materials Science Complex in close proximity to classified and other non-classified materials research facilities. The Materials Science

453

SANDIA NATIONAL LABORATORIES  

NLE Websites -- All DOE Office Websites (Extended Search)

NATIONAL LABORATORIES NATIONAL LABORATORIES SF 6432-CS (10-98) SECTION II STANDARD TERMS & CONDITIONS FOR COMMERCIAL SERVICES PROCURED ON A FIRM FIXED PRICE OR FIXED RATE BASIS THE FOLLOWING CLAUSES APPLY TO THIS CONTRACT AS INDICATED UNLESS SPECIFICALLY DELETED, OR EXCEPT TO THE EXTENT THEY ARE SPECIFICALLY SUPPLEMENTED OR AMENDED IN WRITING IN THE SIGNATURE PAGE OR SECTION I. CS10 - DEFINITIONS The following terms shall have the meanings set forth below for all purposes of this contract. (a) GOVERNMENT means the United States of America and includes the U.S. Department of Energy (DOE) or any duly authorized representative thereof. (b) SANDIA means Sandia National Laboratories, operated by Sandia Corporation under Contract No. DE-ACO4-94AL-85000 with the U.S. Department of Energy.

454

Advanced Hydride Laboratory  

DOE Green Energy (OSTI)

Metal hydrides have been used at the Savannah River Tritium Facilities since 1984. However, the most extensive application of metal hydride technology at the Savannah River Site is being planned for the Replacement Tritium Facility, a $140 million facility schedules for completion in 1990 and startup in 1991. In the new facility, metal hydride technology will be used to store, separate, isotopically purify, pump, and compress hydrogen isotopes. In support of the Replacement Tritium Facility, a $3.2 million, cold,'' process demonstration facility, the Advanced Hydride Laboratory began operation in November of 1987. The purpose of the Advanced Hydride Laboratory is to demonstrate the Replacement Tritium Facility's metal hydride technology by integrating the various unit operations into an overall process. This paper will describe the Advanced Hydride Laboratory, its role and its impact on the application of metal hydride technology to tritium handling.

Motyka, T.

1989-01-01T23:59:59.000Z

455

Boulder Laboratories Building 1 Renovation  

Science Conference Proceedings (OSTI)

... fresh air for modern laboratory work, electrical ... of Building 1 at the NIST Boulder laboratories. ... conservation of water, energy, and construction ...

2012-02-13T23:59:59.000Z

456

Leadership Development | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

include work-life balance, stress management and innovative solutions to career and gender issues. Photo Gallery: Strategic Laboratory Leadership Program Strategic Laboratory...

457

DOE Laboratory Accreditation Program - Library  

NLE Websites -- All DOE Office Websites (Extended Search)

Library DOE Laboratory Accreditation Program DOELAP Regulatory Basis 10 CFR 835.402, Individual Monitoring, as amended DOELAP Program Administration DOE-STD 1111-98, DOE Laboratory...

458

Community Relations, Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Tour group Tour Program Meet the scientists who make the research at Brookhaven National Laboratory happen Brookhaven National Laboratory offers the unique opportunity for...

459

Historical Photographs: Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Brookhaven National Laboratory 1. Positron emitter detector (circa 1962) used to detect brain tumors at Brookhaven National Laboratory (252Kbytes) 2. Medical activities at...

460

National Laboratories - EERE Commercialization Office  

National Laboratories. The U.S. Department of Energy's (DOE) national laboratories play an important role in the development and commercialization of ...

Note: This page contains sample records for the topic "laboratory stockpile stewardship" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Vehicle Technologies Office: National Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

National Laboratories Several of the U.S. Department of Energy (DOE) national laboratories host multidisciplinary transportation research centers. A wide-range of cutting-edge...

462

Biology Department - Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Deborah Stoner-Ma Brookhaven National Laboratory From: -5132011 Currently at: Stony Brook University Director of Chemical Laboratories Department of Chemistry Stony Brook...

463

National Laboratories - EERE Commercialization Office  

National Laboratories. The U.S. Department of Energy's (DOE) national laboratories play an important role in the development and commercialization of new energy ...

464

CERTS Microgrid Laboratory Test Bed  

NLE Websites -- All DOE Office Websites (Extended Search)

CERTS Microgrid Laboratory Test Bed Title CERTS Microgrid Laboratory Test Bed Publication Type Report Year of Publication 2010 Authors Lasseter, Robert H., Joseph H. Eto, Ben...

465

Lawrence Livermore National Laboratory (LLNL):  

NLE Websites -- All DOE Office Websites (Extended Search)

IPO Fact Sheet Strategic Diversity Program Lawrence Livermore National Laboratory (LLNL) works with other national laboratories to coordinate and integrate programmatic...

466

CERTS Microgrid Laboratory Test Bed  

E-Print Network (OSTI)

and John Stevens are with Sandia National Laboratories,of the Technical Staff at Sandia National Labs in the Energybefore taking a job with Sandia National Laboratories and

Lasseter, R. H.

2010-01-01T23:59:59.000Z

467

Lawrence Wos | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Emeritus Lawrence Wos Larry Wos is an emeritus scientist in the Mathematics and Computer Science Division at Argonne National Laboratory; he joined the laboratory in February 1957....

468

Analytical laboratory quality audits  

SciTech Connect

Analytical Laboratory Quality Audits are designed to improve laboratory performance. The success of the audit, as for many activities, is based on adequate preparation, precise performance, well documented and insightful reporting, and productive follow-up. Adequate preparation starts with definition of the purpose, scope, and authority for the audit and the primary standards against which the laboratory quality program will be tested. The scope and technical processes involved lead to determining the needed audit team resources. Contact is made with the auditee and a formal audit plan is developed, approved and sent to the auditee laboratory management. Review of the auditee's quality manual, key procedures and historical information during preparation leads to better checklist development and more efficient and effective use of the limited time for data gathering during the audit itself. The audit begins with the opening meeting that sets the stage for the interactions between the audit team and the laboratory staff. Arrangements are worked out for the necessary interviews and examination of processes and records. The information developed during the audit is recorded on the checklists. Laboratory management is kept informed of issues during the audit so there are no surprises at the closing meeting. The audit report documents whether the management control systems are effective. In addition to findings of nonconformance, positive reinforcement of exemplary practices provides balance and fairness. Audit closure begins with receipt and evaluation of proposed corrective actions from the nonconformances identified in the audit report. After corrective actions are accepted, their implementation is verified. Upon closure of the corrective actions, the audit is officially closed.

Kelley, William D.

2001-06-11T23:59:59.000Z

469

Science @WIPP: Underground Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

WIPP WIPP Underground Laboratory Double Beta Decay Dark Matter Biology Repository Science Renewable Energy Underground Laboratory The deep geologic repository at WIPP provides an ideal environment for experiments in many scientific disciplines, including particle astrophysics, waste repository science, mining technology, low radiation dose physics, fissile materials accountability and transparency, and deep geophysics. The designation of the Carlsbad Department of Energy office as a "field" office has allowed WIPP to offer its mine operations infrastructure and space in the underground to researchers requiring a deep underground setting with dry conditions and very low levels of naturally occurring radioactive materials. Please contact Roger Nelson, chief scientist of the Department of

470

Sandia National Laboratories (SNL)  

National Nuclear Security Administration (NNSA)

Sandia National Laboratories (SNL) Sandia National Laboratories (SNL) Current Projects with the Russian Federation Project Title: Development of Models of Energy Transfer in Nanostructured Materials. Russian Institute: Institute for Problems in Mechanical Engineering, Russian Academy of Sciences (IPME RAS), St. Petersburg. Brief Description: To develop modeling approaches and simulations to examine energy transport and transfer in materials with structural features at the nanoscale. Tasks include developing such a model for thin crystal structures subjected to short duration laser excitation, and using atomic-scale simulations to evaluate microscopic expressions for stress and heat flux in crystals containing defects such as vacancies, dislocations and bi-material interfaces.

471

National Energy Technology Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

CRTD-80 CRTD-80 National Energy Technology Laboratory Final Report Carbon Sequestration Project Review Meeting Greater Pittsburgh International Airport Hyatt Hotel September 26-29, 2005 Volume I: Meeting Summary and Recommendations José D. Figueroa NETL Project Manager and Meeting Coordinator D:\Project Files\EPD\RDS Sequestration Project Review Task\Volume 1\ASME Final Version Nov 28 2005\2005 Carbon Sequestration Project Review Meeting Final 11292005.doc National Energy Technology Laboratory Final Report Carbon Sequestration Project Review Meeting Greater Pittsburgh International Airport Hyatt Hotel September 26-29, 2005 Volume I: Meeting Summary and Recommendations José D. Figueroa NETL Project Manager and Meeting Coordinator

472

Microsoft Word - DSQ Winter 2010_15mar10.doc  

National Nuclear Security Administration (NNSA)

Winter 2010 Winter 2010 Comments Questions or comments regarding the Defense Science Quarterly should be directed to Terri Batuyong, NA-121.1 (Terri.Batuyong@nnsa.doe.gov). Technical Editor: Christina Coulter Defense Science Quarterly Inside This Issue 1 Message from the Director 2 Recent Stockpile Stewardship Relevant Experiments on the National Ignition Facility 3 High-Resolution UV Holography Lens for Particle Size Distribution Measurements 4 2009 Dawson Award of Excellence 4 NSTec Livermore Operations Energy Milestone 5 H3837: DARHT's First Dual-Axis Shot 5 NLUF Experiment Published in Astrophysical Journal 6 Publication Highlights 7 2010 Stockpile Stewardship Academic Alliance Symposium 8 Stewardship Science Graduate Fellowship Program

473

Accelerator Laboratory AGN-201M Nuclear Reactor Laboratory  

E-Print Network (OSTI)

Laboratory Nuclear Power Institute (NPI) Nuclear Science Center (1MW Triga Reactor) (NSC) Nuclear SecurityAccelerator Laboratory AGN-201M Nuclear Reactor Laboratory Center for Large-scale Scientific Simulations (CLASS) Fuel Cycle and Materials Laboratory (FCML) Institute for National Security, Education

474

Infrared Thermography Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Infrared Thermography Laboratory Infrared Thermography Laboratory The Infrared Thermography Laboratory (IRLab) conducts detailed laboratory experiments on the thermal performance of windows and other insulated systems. During a typical experiment, a specimen is placed between two environmental chambers that simulate a long, cold night during winter. Besides generating informative thermal images, the experiments collect several types of quantitative data with high spatial resolution that are useful for understanding subtle details in the thermal performance and for validating computer simulations of heat and fluid flows. Thermography experiments in the IRLab use an infrared imager to produce qualitative thermal images, or thermograms, that help provide a visual interpretation of how heat is flowing through the specimen. The infrared thermograms are also taken and postprocessed to extract numerical data to perform quantitative thermography that produces a database of the distribution of surface temperatures on the warm side of various specimen. A traversing system is also used to measure the distribution of air temperatures and velocities near the specimen. Research results are presented at various technical conferences -- see our schedule of upcoming conferences. Technical papers on infrared thermography are available for downloading. The IRLab contains a machine tool shop area that supports fabrication efforts in the Building Technologies Department. Other types of research, such as Non-Destructive Evaluation, are also conducted in the IRLab.

475

Pacific Northwest National Laboratory  

E-Print Network (OSTI)

Science. Technology. Innovation. PNNL-SA-34741 Pacific Northwest National Laboratory (PNNL) is addressing cognition and learning to the development of student- centered, scenario-based training. PNNL's Pachelbel (PNNL) has developed a cognitive-based, student-centered approach to training that is being applied

476

ARGONNE NATIONAL LABORATORY  

NLE Websites -- All DOE Office Websites (Extended Search)

L e m o n t , I l l i n o i s ENVIRONMENTAL RADIOACTIVITY AT ARGONNE NATIONAL LABORATORY R e p o r t f o r t h e Y e a r 1954 W r i t t e n by J. Sedlet E x p e r i m e n t a l w...

477

from Savannah River National Laboratory  

Issue: Depleted uranium present in shallow soils and sediments at Lawrence Livermore National Laboratory Site 300.

478

Safety Environmental Laboratories & Consulting Inc.  

Science Conference Proceedings (OSTI)

Safety Environmental Laboratories & Consulting Inc. NVLAP Lab Code: 200873-0. Address and Contact Information: 989 ...

2013-09-27T23:59:59.000Z

479

Biometrics Identity Management Agency Laboratory  

Science Conference Proceedings (OSTI)

Biometrics Identity Management Agency Laboratory. NVLAP Lab Code: 200933-0. Address and Contact Information: 1000 ...

2013-08-09T23:59:59.000Z

480

NIST: Physical Measurement Laboratory - Research ...  

Science Conference Proceedings (OSTI)

... Fellowships: SURFing the Physical Measurement Laboratory ... Optical, Radiation, and Chemical Physics. ... involves PML's Quantum Physics Division. ...

2010-10-05T23:59:59.000Z

Note: This page contains sample records for the topic "laboratory stockpile stewardship" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11