National Library of Energy BETA

Sample records for laboratory stockpile stewardship

  1. Stockpile Stewardship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stockpile Stewardship NIF and Stockpile Stewardship In the 1990s, the U.S. nuclear weapons program shifted emphasis from developing new designs to dismantling thousands of existing weapons and maintaining a much smaller enduring stockpile. The United States ceased underground nuclear testing, and the Department of Energy created the science-based Stockpile Stewardship Program to maintain the safety, security, and reliability of the U.S. nuclear deterrent without full-scale testing. Because it is

  2. Stockpile Stewardship

    National Nuclear Security Administration (NNSA)

    Fiscal Year 2015 Stockpile Stewardship and Management Plan Report to Congress April 2014 United States Department of Energy Washington, DC 20585 Department of Energy | April 2014 Fiscal Year 2015 Stockpile Stewardship and Management Plan | Page i Message from the Secretary This report is the Department of Energy National Nuclear Security Administration Fiscal Year 2015 Stockpile Stewardship and Management Plan. It addresses the statutory requirements of Title 50 of United States Code section

  3. Stockpile Stewardship: Los Alamos

    SciTech Connect (OSTI)

    McMillan, Charlie; Morgan, Nathanial; Goorley, Tom; Merrill, Frank; Funk, Dave; Korzekwa, Deniece; Laintz, Ken

    2012-01-26

    "Heritage of Science" is a short video that highlights the Stockpile Stewardship program at Los Alamos National Laboratory. Stockpile Stewardship was conceived in the early 1990s as a national science-based program that could assure the safety, security, and effectiveness of the U.S. nuclear deterrent without the need for full-scale underground nuclear testing. This video was produced by Los Alamos National Laboratory for screening at the Lab's Bradbury Science Museum in Los Alamos, NM and is narrated by science correspondent Miles O'Brien.

  4. Stockpile Stewardship: Los Alamos

    ScienceCinema (OSTI)

    McMillan, Charlie; Morgan, Nathanial; Goorley, Tom; Merrill, Frank; Funk, Dave; Korzekwa, Deniece; Laintz, Ken

    2014-08-12

    "Heritage of Science" is a short video that highlights the Stockpile Stewardship program at Los Alamos National Laboratory. Stockpile Stewardship was conceived in the early 1990s as a national science-based program that could assure the safety, security, and effectiveness of the U.S. nuclear deterrent without the need for full-scale underground nuclear testing. This video was produced by Los Alamos National Laboratory for screening at the Lab's Bradbury Science Museum in Los Alamos, NM and is narrated by science correspondent Miles O'Brien.

  5. stockpile stewardship

    National Nuclear Security Administration (NNSA)

    stockpilestewardshipdefensesciencedsfacilitieslansce" target"blank">Los Alamos Neutron Science Center (LANSCE), Los Alamos National Laboratory

  6. Stockpile Stewardship Quarterly

    National Nuclear Security Administration (NNSA)

    1, Number 3 * October 2011 Message from the Assistant Deputy Administrator for Stockpile Stewardship, Chris Deeney Comments Questions or comments regarding the Stockpile Stewardship Quarterly should be directed to Terri.Batuyong@nnsa.doe.gov Technical Editor: Chris Werner, Publication Editor: Millicent Mischo Defense Programs Stockpile Stewardship in Action Volume 1, Number 3 Inside this Issue 2 Simulation: A Window into the Detonation of High Explosives 3 Modeling of High-Explosive Detonation

  7. Defense Experimentation and Stockpile Stewardship

    SciTech Connect (OSTI)

    2014-10-28

    A primary mission of the site is to help ensure that the nation's nuclear weapon stockpile remains safe, secure and reliable. The stockpile stewardship program, working with the national weapons laboratories conducts a wide range of experiments using advanced diagnostic technologies, many of which were developed right here at the NNSS.

  8. Defense Experimentation and Stockpile Stewardship

    ScienceCinema (OSTI)

    None

    2015-01-07

    A primary mission of the site is to help ensure that the nation's nuclear weapon stockpile remains safe, secure and reliable. The stockpile stewardship program, working with the national weapons laboratories conducts a wide range of experiments using advanced diagnostic technologies, many of which were developed right here at the NNSS.

  9. Stockpile Stewardship Q

    National Nuclear Security Administration (NNSA)

    2 | JUNE 2015 Office of Research, Development, Test, and Evaluation DOE/NA-0030 This issue of the Stockpile Stewardship Quarterly addresses some of our latest research areas, ranging from computing to manufacturing. The first article on the 20-petaflop Sequoia supercomputer describes why it is number one in the world according to the Graph 500 data analytics benchmark. This is a remarkable tool which supports a required capability for stockpile stewardship. High energy density physics

  10. Stockpile Stewardship Quarterly

    National Nuclear Security Administration (NNSA)

    2 * July 2012 Message from the Assistant Deputy Administrator for Stockpile Stewardship, Chris Deeney Defense Programs Stockpile Stewardship in Action Volume 2, Number 2 Inside this Issue 2 Exploring Shock-Induced Chemistry on Ultrafast Timescales 3 Toward Exascale Simulation of Re-Entry Flight Environment 4 Probing Inertial Confinement Fusion Plasmas 5 Shock Physics 6 Inertial Confinement Fusion 7 Modeling Polar Direct Drive Implosions on NIF 8 Developing Improved Physics Models for Predictive

  11. Stockpile Stewardship Quarterly

    National Nuclear Security Administration (NNSA)

    2, Number 3 * November 2012 Message from the Assistant Deputy Administrator for Stockpile Stewardship, Chris Deeney Defense Programs Stockpile Stewardship in Action Volume 2, Number 3 Inside this Issue 2 Jupiter - An Intermediate-Scale Laser User Facility 4 Trident Intermediate-Scale Laser Facility 5 Mach-Zehnder Fiber-Optic Links for Inertial Confinement Fusion Diagnostics 7 High Energy Density Experiments at the OMEGA Laser Facility 9 Doubling the Electric Power Generated by an LTD Cavity 10

  12. Stockpile Stewardship Q

    National Nuclear Security Administration (NNSA)

    4 | DECEMBER 2015 Office of Research, Development, Test, and Evaluation DOE/NA-0036 We recently celebrated the 20th anniversary of the Stockpile Stewardship Program (SSP). The Washington, DC event (see photo on right) was a wonderful opportunity to highlight the work that has been accomplished to ensure that the stockpile remains safe, secure, and reliable in the absence of nuclear testing. It was an occasion to celebrate the successes of our efforts and to interact with an impressive set of

  13. Nuclear Deterrence and Stockpile Stewardship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Deterrence and Stockpile Stewardship Nuclear Deterrence and Stockpile Stewardship Los Alamos' mission is to solve national security challenges through scientific excellence. April 12, 2012 A B-2 Spirit bomber refuels from a KC-135 Stratotanker A B-2 Spirit bomber refuels from a KC-135 Stratotanker. Contact Operator Los Alamos National Laboratory (505) 667-5061 Charlie McMillan, Director: "For the last 70 years there has not been a world war, and I have to think that our strong

  14. Stockpile Stewardship Q

    National Nuclear Security Administration (NNSA)

    3 | SEPTEMBER 2014 Office of Research, Development, Test, and Evaluation DOE/NA-0024 S ince the last issue of the Stockpile Stewardship Quarterly (SSQ), I have attended several conferences where I met researchers that represent the pipeline for staffing future Research, Development, Test, and Evaluation (RDT&E) activities. I attended the Computational Science Graduate Fellowship Annual Program Review and the American Nuclear Society's Plutonium Futures-The Science conference. It was

  15. Stockpile Stewardship Quarterly

    National Nuclear Security Administration (NNSA)

    3, Number 4 * December 2013 Message from the (Acting) Assistant Deputy Administrator for Research, Development, Test, and Evaluation, Roger A. Lewis Defense Programs Stockpile Stewardship in Action Volume 3, Number 4 Inside this Issue 2 The Annual Nuclear Weapons Assessment Process 4 Stronglink High-Voltage Bypass in Abnormal Thermal Environments 5 The Enhanced Surveillance Fitness for Reuse Evaluation for the B61 Life Extension Program 7 Facilities Used by the Division of Nuclear Experiments 9

  16. Stockpile Stewardship Q

    National Nuclear Security Administration (NNSA)

    2 | JUNE 2014 Office of Research, Development, Test, and Evaluation DOE/NA-0023 I t is with great pleasure that I craft my first message for the Stockpile Stewardship Quarterly. I am honored to lead this organization that performs work crucial to the success of the Defense Programs' mission. I have confidence in the ability of the enterprise to deliver the best science, technology, and engineering solutions to the mission challenges before us. I will be focusing a lot of my time on improving

  17. Stockpile Stewardship era: 1989-present

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Administration Evaluation Stockpile Stewardship Quarterly Newsletter NNSA's Stockpile Stewardship Quarterly (SSQ), produced by the Office of Research, Development, Test and Evaluation, debuted in February 2011. Formerly, the Defense Science Quarterly newsletter, which covered the activities of the Science Campaign, the newsletter was renamed and expanded following a reorganization of NNSA's Defense Programs. With its broader scope, the SSQ provides information about the research activities

  18. EIS-0348 and EIS-0236-S3: Continued Operation of Lawrence Livermore National Laboratory and Supplement Stockpile Stewardship and Management

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's decision to continue operation of Lawrence Livermore National Laboratory (LLNL), which is critical to the National Nuclear Security Administration’s Stockpile Stewardship Program and to preventing the spread and use of nuclear weapons worldwide. This document is also Supplement 3 to the Final Programmatic Environmental Impact Statement for Stockpile Stewardship and Management (EIS-0236) for use of proposed materials at the National Ignition Facility (NIF). This combination ensures timely analysis of the reasonably foreseeable environmental impact of NIF experiments using the proposed materials concurrent with the environmental analyses being conducted for the site-wide activities.

  19. Stockpile Stewardship's 20th Anniversary

    SciTech Connect (OSTI)

    Hecker, Siegfried; Gottemoeller, Rose; Reis, Victor H.; McMillan, Charles; Rohlfing, Joan; Hurricane, Omar; Hagengruber, Roger; Taylor, John

    2015-10-22

    A short oral history of the NNSA's Stockpile Stewardship Program, produced in association with the 20th anniversary of the program. It features Siegfried Hecker, Rose Gottemoeller, Victor Reis, Charles McMillan, Joan Rohlfing, Omar Hurricane, Roger Hagengruber, and John Taylor.

  20. stockpile stewardship program | National Nuclear Security Administrati...

    National Nuclear Security Administration (NNSA)

    The NNSA Releases Annual Stockpile Stewardship & Management Plan Annual Report Provides Insight into Vital National Security ProgramsWASHINGTON, DC - The Department of Energy's ...

  1. Explosives performance key to stockpile stewardship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    key to stockpile stewardship A new video shows how researchers use scientific guns to induce shock waves into explosive materials to study their performance and...

  2. Nuclear stockpile stewardship and Bayesian image analysis (DARHT...

    Office of Scientific and Technical Information (OSTI)

    Conference: Nuclear stockpile stewardship and Bayesian image analysis (DARHT and the BIE) Citation Details In-Document Search Title: Nuclear stockpile stewardship and Bayesian image ...

  3. Stockpile Stewardship at Los Alamos(U)

    SciTech Connect (OSTI)

    Webster, Robert B.

    2012-06-29

    Stockpile stewardship is the retention of nuclear weapons in the stockpile beyond their original design life. These older weapons have potential changes inconsistent with the original design intent and military specifications. The Stockpile Stewardship Program requires us to develop high-fidelity, physics-based capabilities to predict, assess, certify and design nuclear weapons without conducting a nuclear test. Each year, the Lab Directors are required to provide an assessment of the safety, security, and reliability our stockpile to the President of the United States. This includes assessing whether a need to return to testing exists. This is a talk to provide an overview of Stockpile Stewardship's scientific requirements and how stewardship has changed in the absence of nuclear testing. The talk is adapted from an HQ talk to the War college, and historical unclassified talks on weapon's physics.

  4. Explosives performance key to stockpile stewardship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Explosives performance key to stockpile stewardship Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit Explosives performance key to stockpile stewardship A new video shows how researchers use scientific guns to induce shock waves into explosive materials to study their performance and properties January 1, 2015 Adam Pacheco of shock and detonation physics presses the "fire" button during an experiment at the

  5. Explosives performance key to stockpile stewardship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Explosives performance key to stockpile stewardship Explosives performance key to stockpile stewardship A new video shows how researchers use scientific guns to induce shock waves into explosive materials to study their performance and properties. November 3, 2014 Adam Pacheco of shock and detonation physics presses the "fire" button during an experiment at the two-stage gas gun facility. Adam Pacheco of shock and detonation physics presses the "fire" button during an

  6. Stockpile Stewardship Quarterly Volume 1, Number 4

    National Nuclear Security Administration (NNSA)

    1, Number 4 * February 2012 Message from the Assistant Deputy Administrator for Stockpile Stewardship, Chris Deeney Defense Programs Stockpile Stewardship in Action Volume 1, Number 4 Inside this Issue 2 Applying Advanced Simulation Models to Neutron Tube Ion Extraction 3 Advanced Optical Cavities for Subcritical and Hydrodynamic Experiments 5 Progress Toward Ignition on the National Ignition Facility 7 Commissioning URSA Minor: The First LTD-Based Accelerator for Radiography 8 Publication

  7. Stockpile Stewardship Quarterly, Volume 2, Number 1

    National Nuclear Security Administration (NNSA)

    1 * May 2012 Message from the Assistant Deputy Administrator for Stockpile Stewardship, Chris Deeney Defense Programs Stockpile Stewardship in Action Volume 2, Number 1 Inside this Issue 2 LANL and ANL Complete Groundbreaking Shock Experiments at the Advanced Photon Source 3 Characterization of Activity-Size-Distribution of Nuclear Fallout 5 Modeling Mix in High-Energy-Density Plasma 6 Quality Input for Microscopic Fission Theory 8 Fiber Reinforced Composites Under Pressure: A Case Study in

  8. How ASC Supports the Science-based Stockpile Stewardship Program | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration How ASC Supports the Science-based Stockpile Stewardship Program ASC serves the Science-Based Stockpile Stewardship Program (SBSS) in the following ways: Directed Stockpile Work (DSW) involves evaluation, maintenance, and life extension of the current stockpile. The ultimate output of DSW comes through the annual certification process, which certified that each weapon in the stockpile meets its performance requirements and the laboratories do not recommend a

  9. Los Alamos LDRD and our stockpile stewardship mission (u) (Conference) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect LDRD and our stockpile stewardship mission (u) Citation Details In-Document Search Title: Los Alamos LDRD and our stockpile stewardship mission (u) Authors: Chadwick, Mark B [1] + Show Author Affiliations Los Alamos National Laboratory Publication Date: 2011-05-24 OSTI Identifier: 1068893 Report Number(s): LA-UR-11-03037; LA-UR-11-3037 DOE Contract Number: AC52-06NA25396 Resource Type: Conference Resource Relation: Conference: NNSA 2011 LDRD symposium ; June 9, 2011 ;

  10. NNSA Stockpile Stewardship and Management Plan now available | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration Stockpile Stewardship and Management Plan now available Thursday, March 19, 2015 - 2:07pm NNSA Blog NNSA has released its 2016 Stockpile Stewardship and Management Plan (SSMP). The plan documents NNSA's 25-year strategic plan for accomplishing its core stockpile stewardship mission area of maintaining the safety, security and effectiveness of the nuclear stockpile without nuclear testing. The SSMP describes NNSA's comprehensive approach to maintaining and

  11. Stockpile Stewardship and Management Plan | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Mission / Managing the Stockpile Stockpile Stewardship and Management Plan This Department of Energy's (DOE) National Nuclear Security Administration (NNSA) Fiscal Year 2017 Stockpile Stewardship and Management Plan (SSMP) - Biennial Plan Summary (FY 2017 SSMP) is a key planning document for the nuclear security enterprise. This year's summary report updates the Fiscal Year 2016 Stockpile Stewardship and Management Plan (FY 2016 SSMP), the 25-year strategic program of record

  12. Stockpile stewardship past, present, and future

    SciTech Connect (OSTI)

    Adams, Marvin L.

    2014-05-09

    The U.S. National Academies released a report in 2012 on technical issues related to the Comprehensive Test Ban Treaty. One important question addressed therein is whether the U.S. could maintain a safe, secure, and reliable nuclear-weapons stockpile in the absence of nuclear-explosion testing. Here we discuss two main conclusions from the 2012 Academies report, which we paraphrase as follows: 1) Provided that sufficient resources and a national commitment to stockpile stewardship are in place, the U.S. has the technical capabilities to maintain a safe, secure, and reliable stockpile of nuclear weapons into the foreseeable future without nuclear-explosion testing. 2) Doing this would require: a) a strong weapons science and engineering program that addresses gaps in understanding; b) an outstanding workforce that applies deep and broad weapons expertise to deliver solutions to stockpile problems; c) a vigorous, stable surveillance program that delivers the requisite data; d) production facilities that meet stewardship needs. We emphasize that these conclusions are independent of CTBT ratification-they apply provided only that the U.S. continues its nuclear-explosion moratorium.

  13. Hydrodynamic experiment provides key data for Stockpile Stewardship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrodynamic experiment provides Stockpile Stewardship key data Los Alamos hydrodynamic experiment provides key data for Stockpile Stewardship Hydrodynamic experiments such as Leda involve non-nuclear surrogate materials that mimic many of the properties of nuclear materials. December 22, 2014 Los Alamos hydrodynamic experiment provides key data for Stockpile Stewardship "Leda," experimental vessel in the "Zero Room" at the underground U1a facility, at the Nevada National

  14. NNSA Releases Annual Stockpile Stewardship & Management Plan | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration Home / Library / Press Releases NNSA Releases Annual Stockpile Stewardship & Management Plan March 19, 2015 Annual Report Provides Insight into Vital National Security Programs WASHINGTON, DC - The Department of Energy's National Nuclear Security Administration (NNSA) has released its Fiscal Year 2016 Stockpile Stewardship and Management Plan (SSMP). The FY16 SSMP documents NNSA's 25-year strategic plan for accomplishing its core stockpile stewardship

  15. NNSA's Stockpile Stewardship Program Quarterly Experiments summary now

    National Nuclear Security Administration (NNSA)

    available | National Nuclear Security Administration Home / Blog NNSA's Stockpile Stewardship Program Quarterly Experiments summary now available Thursday, June 5, 2014 - 1:06pm NNSA's current quarterly summary of experiments conducted as part of its science-based stockpile stewardship program is now available here. The quarterly summary prepared by NNSA's Office of Defense Programs provides descriptions of key NNSA facilities that conduct stockpile stewardship experiments. These include

  16. Hydrodynamic experiment provides key data for Stockpile Stewardship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    weapon performance in the absence of full-scale underground nuclear testing," said Webster. Los Alamos hydrodynamic experiment provides key data for Stockpile Stewardship In...

  17. How ASC Supports the Science-based Stockpile Stewardship Program...

    National Nuclear Security Administration (NNSA)

    ASC Supports the Science-based Stockpile Stewardship Program | National Nuclear Security ... Home About Us Our Programs Defense Programs Future Science & Technology Programs ...

  18. Nuclear stockpile stewardship and Bayesian image analysis (DARHT and the

    Office of Scientific and Technical Information (OSTI)

    BIE) (Conference) | SciTech Connect Conference: Nuclear stockpile stewardship and Bayesian image analysis (DARHT and the BIE) Citation Details In-Document Search Title: Nuclear stockpile stewardship and Bayesian image analysis (DARHT and the BIE) Since the end of nuclear testing, the reliability of our nation's nuclear weapon stockpile has been performed using sub-critical hydrodynamic testing. These tests involve some pretty 'extreme' radiography. We will be discussing the challenges and

  19. Stockpile Stewardship: 20 years of success | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Mission / Managing the Stockpile Stockpile Stewardship: 20 years of success On Oct. 22, 2015, NNSA celebrated the the proven success of the Stockpile Stewardship Program at a half-day public event featuring remarks by Secretary of Energy Ernest Moniz, Secretary of State John Kerry, and Under Secretary for Nuclear Security and NNSA Administrator Lt. Gen. (retired) Frank G. Klotz. The event also featured remarks by Deputy Secretary of Energy Elizabeth Sherwood-Randall and NNSA

  20. US, UK, France Discuss Stockpile Stewardship, Arms Control and

    National Nuclear Security Administration (NNSA)

    Nonproliferation and Visit the Nevada National Security Site | National Nuclear Security Administration US, UK, France Discuss Stockpile Stewardship, Arms Control and Nonproliferation and Visit the Nevada National Security Site Friday, December 20, 2013 - 10:19am On Dec. 18-19, 2013, the United States hosted a visit by delegations from France and the United Kingdom to see experimental facilities at the Nevada National Security Site (NNSS) related to stockpile stewardship, arms control and

  1. NNSA releases Stockpile Stewardship Program quarterly experiments summary |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration releases Stockpile Stewardship Program quarterly experiments summary May 12, 2015 WASHIGTON, DC. - The National Nuclear Security Administration today released its current quarterly summary of experiments conducted as part of its science-based Stockpile Stewardship Program. The experiments carried out within the program are used in combination with complex computational models and NNSA's Advanced Simulation and Computing (ASC) Program to assess the

  2. Draft Site-wide Environmental Impact Statement for Continued Operation of Lawrence Livermore National Laboratory and Supplemental Stockpile Stewardship and Management Programmatic Environmental Impact Statement

    SciTech Connect (OSTI)

    N /A

    2004-02-27

    This ''Site-wide Environmental Impact Statement for Continued Operation of Lawrence Livermore National Laboratory and Supplemental Stockpile Stewardship and Management Programmatic Environmental Impact Statement'' (LLNL SW/SPEIS) describes the purpose and need for agency action for the continued operation of LLNL and analyzes the environmental impacts of these operations. The primary purpose of continuing operation of LLNL is to provide support for the National Nuclear Security Administration's (NNSA's) nuclear weapons stockpile stewardship missions. LLNL, located about 40 miles east of San Francisco, California, is also needed to support other U.S. Department of Energy (DOE) programs and Federal agencies such as the U.S. Department of Defense, Nuclear Regulatory Commission, U.S. Environmental Protection Agency (EPA), and the newly established U.S. Department of Homeland Security. This LLNL SW/SPEIS analyzes the environmental impacts of reasonable alternatives for ongoing and foreseeable future operations, facilities, and activities at LLNL. The reasonable alternatives include the No Action Alternative, Proposed Action, and the Reduced Operation Alternative. The major decision to be made by DOE/NNSA is to select one of the alternatives for the continued operation of the LLNL. As part of the Proposed Action, DOE/NNSA is considering: using additional materials including plutonium on the National Ignition Facility (NIF); increasing the administrative limit for plutonium in the Superblock, which includes the Plutonium Facility, the Tritium Facility, and the Hardened Engineering Test Building; conducting the Integrated Technology Project, using laser isotope separation to provide material for Stockpile Stewardship experiments, in the Plutonium Facility; increasing the material-at-risk limit for the Plutonium Facility; and increasing the Tritium Facility material-at-risk. A discussion of these issues is presented in Section S.5.2, Proposed Action. The ''National Environmental Policy Act'' (NEPA) establishes environmental policy, sets goals, and provides means for implementing the policy. NEPA contains provisions to ensure that Federal agencies adhere to the letter and spirit of the Act. The key provision requires preparation of an environmental impact statement on ''major Federal actions significantly affecting the quality of the human environment'' (40 ''Code of Federal Regulations'' [CFR] {section}1502.3). NEPA ensures that environmental information is available to public officials and citizens before decisions are made and actions are taken (40 CFR {section}1500.1[b]). DOE has a policy to prepare sitewide environmental impact statements documents for certain large, multiple-facility sites such as LLNL (10 CFR {section}1021.330). In August 1992, DOE released the ''Final Environmental Impact Statement and Environmental Impact Report for Continued Operations of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore'' (LLNL EIS/EIR). A Record of Decision (ROD) (58 ''Federal Register'' [FR] 6268) was issued in January 1993. With the passage of more than 10 years since the publication of the 1992 LLNL EIS/EIR (DOE/EIS-0157) and because of proposed modifications to existing projects and new programs, NNSA determined that it was appropriate to prepare a new LLNL SW/SPEIS.

  3. EIS-0236-SA6; Draft Supplemental Analysis: Pit Manufacturing Facilities at Los Alamos National Laboratory, Stockpile, Stewardship

    Office of Environmental Management (EM)

    | Department of Energy S4: Final Supplemental Programmatic Environmental Impact Statement EIS-0236-S4: Final Supplemental Programmatic Environmental Impact Statement Complex Transformation The National Nuclear Security Administration (NNSA), an agency within the Department of Energy, has the responsibility to maintain the safety, security, and reliability of the United States' nuclear weapons stockpile. This Complex Transformation Supplemental Programmatic Environmental Impact Statement

  4. NNSA Releases Annual Stockpile Stewardship & Management Plan...

    National Nuclear Security Administration (NNSA)

    NNSA maintains and enhances the safety, security, reliability and performance of the U.S. nuclear weapons stockpile without nuclear testing; works to reduce global danger from ...

  5. NNSA releases Stockpile Stewardship Program quarterly experiments...

    National Nuclear Security Administration (NNSA)

    ... NNSA maintains and enhances the safety, security, reliability, and performance of the U.S. nuclear weapons stockpile without nuclear testing; reduces the global danger from weapons ...

  6. stockpile stewardship | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure ...

  7. NNSA releases summary of Stockpile Stewardship experiments |...

    National Nuclear Security Administration (NNSA)

    in combination with complex computational models and NNSA's Advanced Simulation and Computing Program to assess the safety, security and effectiveness of the stockpile. Aug 19,...

  8. Stockpile Stewardship and the National Ignition Facility

    SciTech Connect (OSTI)

    Moses, E

    2012-01-04

    The National Ignition Facility (NIF), the world's most energetic laser system, is operational at Lawrence Livermore National Laboratory (LLNL). Since the completion of the construction project in March 2009, NIF has completed nearly 150 target experiments for the National Ignition Campaign (NIC), High Energy Density Stewardship Science (HEDSS) in the areas of radiation transport, material dynamics at high pressure in the solid state, as well as fundamental science and other national security missions. NIF capabilities and infrastructure are in place to support all of its missions with over 50 X-ray, optical and nuclear diagnostic systems and the ability to shoot cryogenic targets and DT layered capsules. NIF is now qualified for use of tritium and other special materials as well as to perform high yield experiments and classified experiments. DT implosions with record indirect-drive neutron yield of 4.5 x 10{sup 14} neutrons have been achieved. A series of 43 experiments were successfully executed over a 27-day period, demonstrating the ability to perform precise experiments in new regimes of interest to HEDSS. This talk will provide an update of the progress on the NIF capabilities, NIC accomplishments, as well as HEDSS and fundamental science experimental results and an update of the experimental plans for the coming year.

  9. Stockpile Stewardship: How we Ensure the Nuclear Deterrent without Testing

    ScienceCinema (OSTI)

    None

    2015-09-11

    In the 1990s, the U.S. nuclear weapons program shifted emphasis from developing new designs to dismantling thousands of existing weapons and maintaining a much smaller enduring stockpile. The United States ceased underground nuclear testing, and the Department of Energy created the Stockpile Stewardship Program to maintain the safety, security, and reliability of the U.S. nuclear deterrent without full-scale testing. This video gives a behind the scenes look at a set of unique capabilities at Lawrence Livermore that are indispensable to the Stockpile Stewardship Program: high performance computing, the Superblock category II nuclear facility, the JASPER a two stage gas gun, the High Explosive Applications Facility (HEAF), the National Ignition Facility (NIF), and the Site 300 contained firing facility.

  10. Stockpile Stewardship: How we Ensure the Nuclear Deterrent without Testing

    SciTech Connect (OSTI)

    2014-09-04

    In the 1990s, the U.S. nuclear weapons program shifted emphasis from developing new designs to dismantling thousands of existing weapons and maintaining a much smaller enduring stockpile. The United States ceased underground nuclear testing, and the Department of Energy created the Stockpile Stewardship Program to maintain the safety, security, and reliability of the U.S. nuclear deterrent without full-scale testing. This video gives a behind the scenes look at a set of unique capabilities at Lawrence Livermore that are indispensable to the Stockpile Stewardship Program: high performance computing, the Superblock category II nuclear facility, the JASPER a two stage gas gun, the High Explosive Applications Facility (HEAF), the National Ignition Facility (NIF), and the Site 300 contained firing facility.

  11. NNSA releases Stockpile Stewardship Program quarterly experiments...

    National Nuclear Security Administration (NNSA)

    National Ignition Facility at Lawrence Livermore National Laboratory, and the Z machine at Sandia National Laboratories. The summary also provides the number of experiments...

  12. EIS-0236: Programmatic Environmental Impact Statement for Stockpile Stewardship and Management

    Broader source: Energy.gov [DOE]

    DOE must maintain a Complex with sufficient capability and capacity to meet current and future weapons requirements. For those activities associated with the ongoing stockpile stewardship program, DOE proposes to add enhanced capabilities to existing stockpile stewardship facilities to fulfill requirements.DOE proposes to "rightsize" existing facilities or consolidate them to fulfill expected requirements for manufacture of repair or replacement components for an aging U.S. stockpile.

  13. Proposed Laser-Based HED physics experiments for Stockpile Stewardship

    SciTech Connect (OSTI)

    Benage, John F.; Albright, Brian J.; Fernandez, Juan C.

    2012-09-04

    An analysis of the scientific areas in High Energy Density (HED) physics that underpin the enduring LANL mission in Stockpile Stewardship (SS) has identified important research needs that are not being met. That analysis has included the work done as part of defining the mission need for the High Intensity Laser Laboratory (HILL) LANL proposal to NNSA, LDRD DR proposal evaluations, and consideration of the Predictive Capability Framework and LANL NNSA milestones. From that evaluation, we have identified several specific and scientifically-exciting experimental concepts to address those needs. These experiments are particularly responsive to physics issues in Campaigns 1 and 10. These experiments are best done initially at the LANL Trident facility, often relying on the unique capabilities available there, although there are typically meritorious extensions envisioned at future facilities such as HILL, or the NIF once the ARC short-pulse laser is available at sufficient laser intensity. As the focus of the LANL HEDP effort broadens from ICF ignition of the point design at the conclusion of the National Ignition Campaign, into a more SS-centric effort, it is useful to consider these experiments, which address well-defined issues, with specific scientific hypothesis to test or models to validate or disprove, via unit-physics experiments. These experiments are in turn representative of a possible broad experimental portfolio to elucidate the physics of interest to these campaigns. These experiments, described below, include: (1) First direct measurement of the evolution of particulates in isochorically heated dense plasma; (2) Temperature relaxation measurements in a strongly-coupled plasma; (3) Viscosity measurements in a dense plasma; and (4) Ionic structure factors in a dense plasma. All these experiments address scientific topics of importance to our sponsors, involve excellent science at the boundaries of traditional fields, utilize unique capabilities at LANL, and contribute to the Campaign milestone in 2018. Given their interdisciplinary nature, it is not surprising that these research needs are not being addressed by the other excellent high-energy density physics (HEDP) facilities coming on line, facilities aimed squarely at more established fields and missions. Although energy rich, these facilities deliver radiation (e.g., particle beams for isochoric heating) over a timescale that is too slow in these unit physics experiments to eliminate hydrodynamic evolution of the target plasma during the time it is being created. A theme shared by all of these experiments is the need to quickly create a quasi-homogeneous 'initial state' whose properties and evolution we wish to study. Otherwise, we cannot create unit experiments to isolate the physics of interest and validate the models in our codes, something that cannot be done with the integrated experiments often done in HED. Moreover, these experiments in some cases involve combinations of solid and plasmas, or matter in the warm-dense matter state, where neither the theoretical approximations of solid state or of fully-ionized weakly-coupled plasmas can be used. In all cases, the capability of 'isochoric heating' ('flash' heating at constant density) is important. In some cases, the ability to selectively heat to different degrees different species within a target, whether mixed or adjacent to each other, is critical for the experiment. This capability requires the delivery of very high power densities, which require the conversion of the laser into very short and intense pulses of secondary radiation (electrons, ions, neutrons, x-rays). Otherwise, there is no possibility of a clean experiment to constrain the models, in the cases there are any, or inform the creation of one. Another typical requirement of these experiments is the ability to probe these exotic extreme conditions of matter with flexible and diverse sources of secondary radiation. Without a high-intensity high-power laser with some unique attributes available on Trident today (e.g., ultra-high laser-puls

  14. In 20th Year, Stockpile Stewardship Program Celebrated As One of Nation's

    National Nuclear Security Administration (NNSA)

    Greatest Achievements in Science and Security | National Nuclear Security Administration In 20th Year, Stockpile Stewardship Program Celebrated As One of Nation's Greatest Achievements in Science and Security October 21, 2015 (WASHINGTON) - The proven success of the Stockpile Stewardship Program (SSP)-which pushed the limits of modern science and engineering by requiring the transition from explosive nuclear weapons testing to what is effectively virtual nuclear testing-was celebrated today

  15. In 20th Year, Stockpile Stewardship Program Celebrated As One...

    National Nuclear Security Administration (NNSA)

    ... Beyond ensuring the reliability of the nation's nuclear stockpile, the SSP has driven ... NNSA maintains and enhances the safety, security, reliability, and performance of the U.S. ...

  16. Nuclear stockpile stewardship and Bayesian image analysis (DARHT...

    Office of Scientific and Technical Information (OSTI)

    Sponsoring Org: DOE Country of Publication: United States Language: English Subject: 45 ... IMAGE PROCESSING; NUCLEAR WEAPONS; RELIABILITY; STOCKPILES; TESTING; TEST FACILITIES

  17. Opening Remarks at the NNSA Stockpile Stewardship Program 20th Anniversary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Event -- As Delivered | Department of Energy Opening Remarks at the NNSA Stockpile Stewardship Program 20th Anniversary Event -- As Delivered Opening Remarks at the NNSA Stockpile Stewardship Program 20th Anniversary Event -- As Delivered October 22, 2015 - 5:50pm Addthis Dr. Ernest Moniz Dr. Ernest Moniz Secretary of Energy It's great to be here. This is an event that Frank and Madeleine and the deputy secretary and others of us have been really looking forward to as a really important

  18. Picture of the Week: From nuclear weapons testing to stockpile stewardship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 From nuclear weapons testing to stockpile stewardship On Sept. 23, 1992, the last full-scale underground test of a nuclear weapon was conducted by Los Alamos National Lab at the Nevada Test Site. The test, code named "Divider," was the last of 1,030 nuclear tests carried out by the U.S. July 26, 2015 From nuclear weapons testing to stockpile stewardship x View larger version On Sept. 23, 1992, the last full-scale underground test of a nuclear weapon was conducted by Los Alamos

  19. Science based stockpile stewardship, uncertainty quantification, and fission fragment beams

    SciTech Connect (OSTI)

    Stoyer, M A; McNabb, D; Burke, J; Bernstein, L A; Wu, C Y

    2009-09-14

    Stewardship of this nation's nuclear weapons is predicated on developing a fundamental scientific understanding of the physics and chemistry required to describe weapon performance without the need to resort to underground nuclear testing and to predict expected future performance as a result of intended or unintended modifications. In order to construct more reliable models, underground nuclear test data is being reanalyzed in novel ways. The extent to which underground experimental data can be matched with simulations is one measure of the credibility of our capability to predict weapon performance. To improve the interpretation of these experiments with quantified uncertainties, improved nuclear data is required. As an example, the fission yield of a device was often determined by measuring fission products. Conversion of the measured fission products to yield was accomplished through explosion code calculations (models) and a good set of nuclear reaction cross-sections. Because of the unique high-fluence environment of an exploding nuclear weapon, many reactions occurred on radioactive nuclides, for which only theoretically calculated cross-sections are available. Inverse kinematics reactions at CARIBU offer the opportunity to measure cross-sections on unstable neutron-rich fission fragments and thus improve the quality of the nuclear reaction cross-section sets. One of the fission products measured was {sup 95}Zr, the accumulation of all mass 95 fission products of Y, Sr, Rb and Kr (see Fig. 1). Subsequent neutron-induced reactions on these short lived fission products were assumed to cancel out - in other words, the destruction of mass 95 nuclides was more or less equal to the production of mass 95 nuclides. If a {sup 95}Sr was destroyed by an (n,2n) reaction it was also produced by (n,2n) reactions on {sup 96}Sr, for example. However, since these nuclides all have fairly short half-lives (seconds to minutes or even less), no experimental nuclear reaction cross-sections exist, and only theoretically modeled cross-sections are available. Inverse kinematics reactions at CARIBU offer the opportunity, should the beam intensity be sufficient, to measure cross-sections on a few important nuclides in order to benchmark the theoretical calculations and significantly improve the nuclear data. The nuclides in Fig. 1 are prioritized by importance factor and displayed in stoplight colors, green the highest and red the lowest priority.

  20. Los Alamos Explosives Performance Key to Stockpile Stewardship

    ScienceCinema (OSTI)

    Dattelbaum, Dana

    2015-01-05

    As the U.S. Nuclear Deterrent ages, one essential factor in making sure that the weapons will continue to perform as designed is understanding the fundamental properties of the high explosives that are part of a nuclear weapons system. As nuclear weapons go through life extension programs, some changes may be advantageous, particularly through the addition of what are known as "insensitive" high explosives that are much less likely to accidentally detonate than the already very safe "conventional" high explosives that are used in most weapons. At Los Alamos National Laboratory explosives research includes a wide variety of both large- and small-scale experiments that include small contained detonations, gas and powder gun firings, larger outdoor detonations, large-scale hydrodynamic tests, and at the Nevada Nuclear Security Site, underground sub-critical experiments.

  1. Los Alamos Explosives Performance Key to Stockpile Stewardship

    SciTech Connect (OSTI)

    Dattelbaum, Dana

    2014-11-03

    As the U.S. Nuclear Deterrent ages, one essential factor in making sure that the weapons will continue to perform as designed is understanding the fundamental properties of the high explosives that are part of a nuclear weapons system. As nuclear weapons go through life extension programs, some changes may be advantageous, particularly through the addition of what are known as "insensitive" high explosives that are much less likely to accidentally detonate than the already very safe "conventional" high explosives that are used in most weapons. At Los Alamos National Laboratory explosives research includes a wide variety of both large- and small-scale experiments that include small contained detonations, gas and powder gun firings, larger outdoor detonations, large-scale hydrodynamic tests, and at the Nevada Nuclear Security Site, underground sub-critical experiments.

  2. stockpile stewardship

    National Nuclear Security Administration (NNSA)

    in size from a pinhead to a small pea, is filled with a mixture of two isotopes of hydrogen (deuterium (D) and tritium (T)) and is subjected to a sudden application of...

  3. Stockpile Stewardship

    National Nuclear Security Administration (NNSA)

    combating nuclear terrorism and proliferation, and guarding against the threat posed ... of technical options applicable to future nuclear non-proliferation objectives. ...

  4. Development of Designer Diamond Technology for High Pressure High Temperature Experiments in Support of Stockpile Stewardship Program

    SciTech Connect (OSTI)

    Vohra, Yogesh, K.

    2009-10-28

    The role of nitrogen in the fabrication of designer diamond was systematically investigated by adding controlled amount of nitrogen in hydrogen/methane/oxygen plasma. This has led to a successful recipe for reproducible fabrication of designer diamond anvils for high-pressure high-temperature research in support of stockpile stewardship program. In the three-year support period, several designer diamonds fabricated with this new growth chemistry were utilized in high-pressure experiments at UAB and Lawrence Livermore National Laboratory. The designer diamond anvils were utilized in high-pressure studies on heavy rare earth metals, high pressure melting studies on metals, and electrical resistance measurements on iron-based layered superconductors under high pressures. The growth chemistry developed under NNSA support can be adapted for commercial production of designer diamonds.

  5. stockpile | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    stockpile

  6. Use of hazard assessments to achieve risk reduction in the USDOE Stockpile Stewardship (SS-21) Program

    SciTech Connect (OSTI)

    Fischer, S.R.; Konkel, H.; Bott, T.; Eisenhawer, S.W. [Los Alamos National Lab., NM (United States); DeYoung, L.; Hockert, J. [Odgen Environmental and Energy Services, Albuquerque, NM (United States)

    1995-07-01

    This paper summarizes the nuclear explosive hazard assessment activities performed to support US Department of Energy (DOE) Stockpile Stewardship Demonstration Project SS-21, better known as the ``Seamless Safety`` program. Past practice within the DOE Complex has dictated the use of a significant number of post-design/fabrication safety reviews to analyze the safety associated with operations on nuclear explosives and to answer safety questions. These practices have focused on reviewing-in or auditing-in safety vs incorporating safety in the design process. SS-21 was proposed by the DOE as an avenue to develop a program to ``integrate established, recognized, verifiable safety criteria into the process at the design stage rather than continuing the reliance on reviews, evaluations and audits.`` The entire Seamless Safety design and development process is verified by a concurrent hazard assessment (HA). The primary purpose of the SS-21 Demonstration Project HA was to demonstrate the feasibility of performing concurrent HAs as part of an engineering design and development effort and then to evaluate the use of the HA to provide an indication in the risk reduction or gain in safety achieved. To accomplish this objective, HAs were performed on both baseline (i.e., old) and new (i.e. SS-21) B61-0 Center Case Section disassembly processes. These HAs were used to support the identification and documentation of weapon- and process-specific hazards and safety-critical operating steps. Both HAs focused on identifying accidents that had the potential for worker injury, public health effects, facility damage, toxic gas release, and dispersal of radioactive materials. A comparison of the baseline and SS-21 process risks provided a semi-quantitative estimate of the risk reduction gained via the Seamless Safety process.

  7. Laboratory's role in stockpile stewardship focus of 70th anniversary...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    some of the experimental, engineering and computational tools used to monitor nuclear weapons. ... Nuclear Security Administration complex, the relationships with United ...

  8. Sandia National Laboratories: Long-term Stewardship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Long-term Stewardship Environmental Management System Pollution Prevention Information Repository Index Long-term Stewardship About Long-term Stewardship Groundwater sampling The goal of the LTS Program is the long-term protection of human health and the environment from hazards associated with residual contamination at former Environmental Restoration Project (ER) sites, and minimization of Sandia's environmental liability by ensuring environmental compliance with the requirements provided in

  9. Sandia National Laboratories: Pollution Prevention: Electronics Stewardship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electronics Stewardship Supporting the Federal Electronics Challenge (FEC), Sandia is committed to purchasing computer systems designed with the environment in mind. "Green" electronics are defined as equipment whose manufacture, operation, and end of life have as little environmental impact as possible. Electronics stewardship is divided into three phases of product lifecycle. Outlined below are Sandia initiatives to address these phases: Acquisition The federal government has

  10. 2015 Stewardship Science Academic Programs Annual

    SciTech Connect (OSTI)

    Stone, Terri; Mischo, Millicent

    2015-02-01

    The Stockpile Stewardship Academic Programs (SSAP) are essential to maintaining a pipeline of professionals to support the technical capabilities that reside at the National Nuclear Security Administration (NNSA) national laboratories, sites, and plants. Since 1992, the United States has observed the moratorium on nuclear testing while significantly decreasing the nuclear arsenal. To accomplish this without nuclear testing, NNSA and its laboratories developed a science-based Stockpile Stewardship Program to maintain and enhance the experimental and computational tools required to ensure the continued safety, security, and reliability of the stockpile. NNSA launched its academic program portfolio more than a decade ago to engage students skilled in specific technical areas of relevance to stockpile stewardship. The success of this program is reflected by the large number of SSAP students choosing to begin their careers at NNSA national laboratories.

  11. stockpile stewardship program

    National Nuclear Security Administration (NNSA)

    NIF, in particular the first Pu experiment on NIF, the return to operations of the TA-55 gas gun, a successful series of plutonium experiments on Joint Actinide Shock Physics...

  12. Stockpile Stewardship Quarterly

    National Nuclear Security Administration (NNSA)

    ... A high explosive (HE) releases chemical energy in an extremely short period of time. The ... These simulations allow individual chemical reactions to be tracked and provide insight ...

  13. Stockpile Stewardship Quarterly

    National Nuclear Security Administration (NNSA)

    ... Not only does this surveillance help determine the reliability of the weapon, but it can ... to annually assess the safety, reliability, performance, and military ...

  14. Stockpile Stewardship Q

    National Nuclear Security Administration (NNSA)

    ... The shape of N131119 was characteristic of many of the high energy high-foot shots. ... implosions (CH HF, in green), and high-density carbon 2-shock implosion (HDC, in yellow). ...

  15. Stockpile Stewardship Q

    National Nuclear Security Administration (NNSA)

    ... concepts exist, all must bring the fusion fuel to an extreme high-energy-density state. ... liners imploded on the Z Facility. Green and red dashed lines indicate the liner's ...

  16. EIS-0236-S2: Supplemental Programmatic Environmental Impact Statement on Stockpile Stewardship and Management for a Modern Pit Facility

    Broader source: Energy.gov [DOE]

    DOE's NNSA is responsible for the safety and reliability of the U.S. nuclear weapons stockpile, including production readiness required to maintain that stockpile. Pursuant to National Environmental Policy Act of 1969, NNSA has prepared a Supplement to the Programmatic Environmental Impact Statement on: (1) whether to proceed with a Modern Pit Facility (MPF); and (2) if so, where to locate a MPF.

  17. Los Alamos National Laboratory: Long-Term Environmental Stewardship...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    green? Click image to learn more Next Enduring Environmental Stewardship Long-Term Strategy for Environmental Stewardship and Sustainability Long-Term Strategy for Environmental...

  18. Los Alamos National Laboratory: Long-Term Environmental Stewardship...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Long-Term Strategy for Environmental Stewardship and Sustainability Long-Term Strategy for Environmental Stewardship and Sustainability (pdf) From today for years to come Over the ...

  19. Environmental Stewardship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environmental Stewardship /newsroom/_assets/images/s-icon.png Environmental Stewardship Our environmental stewardship commitment: we will clean up contamination from the past, minimize current operational impacts, and create a sustainable future. Community, Events Laboratory Operations Environmental Stewardship Los Alamos National Laboratory recently received a second presidential award as a climate champion. From left are: Mathew Moury, Associate Under Secretary for Environment, Health, Safety

  20. Idaho National Laboratory Comprehensive Land Use and Environmental Stewardship Report

    SciTech Connect (OSTI)

    No name listed on publication

    2011-08-01

    Land and facility use planning and decisions at the Idaho National Laboratory (INL) Site are guided by a comprehensive site planning process in accordance with Department of Energy Policy 430.1, 'Land and Facility Use Policy,' that integrates mission, economic, ecologic, social, and cultural factors. The INL Ten-Year Site Plan, prepared in accordance with Department of Energy Order 430.1B, 'Real Property Asset Management,' outlines the vision and strategy to transform INL to deliver world-leading capabilities that will enable the Department of Energy to accomplish its mission. Land use planning is the overarching function within real property asset management that integrates the other functions of acquisition, recapitalization, maintenance, disposition, real property utilization, and long-term stewardship into a coordinated effort to ensure current and future mission needs are met. All land and facility use projects planned at the INL Site are considered through a formal planning process that supports the Ten-Year Site Plan. This Comprehensive Land Use and Environmental Stewardship Report describes that process. The land use planning process identifies the current condition of existing land and facility assets and the scope of constraints across INL and in the surrounding region. Current land use conditions are included in the Comprehensive Land Use and Environmental Stewardship Report and facility assets and scope of constraints are discussed in the Ten-Year Site Plan. This report also presents the past, present, and future uses of land at the INL Site that are considered during the planning process, as well as outlining the future of the INL Site for the 10, 30, and 100-year timeframes.

  1. Stockpile | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fiscal Year 2015 Stockpile Stewardship and Management Plan Report to Congress April 2014 United States Department of Energy Washington, DC 20585 Department of Energy | April 2014 Fiscal Year 2015 Stockpile Stewardship and Management Plan | Page i Message from the Secretary This report is the Department of Energy National Nuclear Security Administration Fiscal Year 2015 Stockpile Stewardship and Management Plan. It addresses the statutory requirements of Title 50 of United States Code section

  2. Integrating Environmental Stewardship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    stewardship Many Laboratory functions are integrated with environmental stewardship. This Strategy cannot be effective without systematic integration with other related Laboratory...

  3. NNSA's Summary of Experiments Conducted in Support of Stockpile

    National Nuclear Security Administration (NNSA)

    Stewardship now available | National Nuclear Security Administration Summary of Experiments Conducted in Support of Stockpile Stewardship now available Tuesday, March 25, 2014 - 2:38pm The most recent NNSA quarterly summary of experiments conducted as part of its science-based stockpile stewardship program is now available here. The quarterly summary prepared by NNSA's Office of Defense Programs provides descriptions of key NNSA facilities that conduct stockpile stewardship experiments.

  4. managing the stockpile | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    managing the stockpile NNSA Releases Annual Stockpile Stewardship & Management Plan Annual Report Provides Insight into Vital National Security Programs WASHINGTON, DC - The Department of Energy's National Nuclear Security Administration (NNSA) has released its Fiscal Year 2016 Stockpile Stewardship and Management Plan (SSMP). The FY16 SSMP documents NNSA's 25-year strategic plan... Law Enforcement & Emergency Management Liaison Mission StatementThe Office of Secure Transportation (OST)

  5. Environmental Stewardship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stewardship community-environmentassetsimagesiconearthday.jpg Environmental Stewardship Our environmental stewardship commitment: we will clean up contamination from the...

  6. Stewarding a Reduced Stockpile

    SciTech Connect (OSTI)

    Goodwin, B T; Mara, G

    2008-04-18

    The future of the US nuclear arsenal continues to be guided by two distinct drivers: the preservation of world peace and the prevention of further proliferation through our extended deterrent umbrella. Timely implementation of US nuclear policy decisions depends, in part, on the current state of stockpile weapons, their delivery systems, and the supporting infrastructure within the Department of Defense (DoD) and the Department of Energy's National Nuclear Security Administration (NNSA). In turn, the present is a product of past choices and world events. Now more than ever, the nuclear weapons program must respond to the changing global security environment and to increasing budget pressures with innovation and sound investments. As the nation transitions to a reduced stockpile, the successes of the Stockpile Stewardship Program (SSP) present options to transition to a sustainable complex better suited to stockpile size, national strategic goals and budgetary realities. Under any stockpile size, we must maintain essential human capital, forefront capabilities, and have a right-sized effective production capacity. We present new concepts for maintaining high confidence at low stockpile numbers and to effectively eliminate the reserve weapons within an optimized complex. We, as a nation, have choices to make on how we will achieve a credible 21st century deterrent.

  7. Stewardship Science Academic Alliances | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Home Stewardship Science Academic Alliances NNSA's holds Stewardship Science Academic Programs Annual Review Symposium This week, NNSA brought together researchers from various academic programs to report on their accomplishments over the past year and promote interaction in areas of physical science relevant to stockpile stewardship. Sponsored by NNSA's Office of Research, Development, Test, and Evaluation, the...

  8. Why the Nuclear Stockpile Needs Supercomputers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Why the Nuclear Stockpile Needs Supercomputers Why the Nuclear Stockpile Needs Supercomputers April 28, 2011 - 5:20pm Addthis NNSA supercomputers are a key part of our ability to keep our nuclear stockpile safe, secure and effective. Joshua McConaha What does this mean for me? The NNSA's Stockpile Stewardship Program performs a critical role in implementing President Obama's nuclear security agenda Through a scientific mixture of hardware, software, codes and data and using some of the world's

  9. Stewardship Science Academic Alliances | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Stewardship Science Academic Alliances Established in 2002, the Stewardship Science Academic Alliances Program funds academic research in the areas of materials under extreme conditions, low energy nuclear science, radiochemistry, and high energy density physics. One of the goals of the program is to fund research projects at universities that conduct fundamental science and technology research that is of relevance to stockpile stewardship. An important focus of the program is

  10. Lawrence Livermore National Laboratory | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Stewardship Program at a half-day public event featuring remarks by Secretary of Energy Ernest Moniz, Secretary of State In 20th Year, Stockpile Stewardship Program...

  11. Stockpile Stewardship Quarterly Newsletter | National Nuclear...

    National Nuclear Security Administration (NNSA)

    by the Office of Research, Development, Test and Evaluation, debuted in February 2011. ... and news of the offices in the Office of Research, Development, Test and Evaluation. ...

  12. NNSA's Stockpile Stewardship Program Quarterly Experiments summary...

    National Nuclear Security Administration (NNSA)

    These include some of the most sophisticated scientific research facilities in the world including, the Dual Axis Radiographic Hydrodynamic Test facility at Los Alamos National ...

  13. Stockpile Stewardship Program Quarterly Experiments | National...

    National Nuclear Security Administration (NNSA)

    a robust program of scientific inquiry used to ... models and NNSA's Advanced Simulation and Computing (ASC) Program to ... The quarterly summary prepared by NNSA's Office of ...

  14. Analytical Characterization of the Thorium Nitrate Stockpile

    SciTech Connect (OSTI)

    Mattus, CH

    2003-12-30

    For several years, Oak Ridge National Laboratory (ORNL) has been supporting the Defense Logistics Agency-Defense National Stockpile Center with stewardship of a thorium nitrate (ThN) stockpile. The effort for fiscal year 2002 was to prepare a sampling and analysis plan and to use the activities developed in the plan to characterize the ThN stockpile. The sampling was performed in June and July 2002 by RWE NUKEM with oversight by ORNL personnel. The analysis was performed by Southwest Research Institute of San Antonio, Texas, and data validation was performed by NFT, Inc., of Oak Ridge, Tennessee. Of the {approx} 21,000 drums in the stockpile, 99 were sampled and 53 were analyzed for total metals composition, radiological constituents (using alpha and gamma spectrometry), and oxidizing characteristics. Each lot at the Curtis Bay Depot was sampled. Several of the samples were also analyzed for density. The average density of the domestic ThN was found to be 1.89 {+-} 0.08 g/cm{sup 3}. The oxidizer test was performed following procedures issued by the United Nations in 1999. Test results indicated that none of the samples tested was a Division 5.1 oxidizer per Department of Transportation definition. The samples were analyzed for total metals following the U.S. Environmental Protection Agency methods SW-846-6010B and 6020 (EPA 2003) using a combination of inductively coupled plasma--atomic emission spectroscopy and inductively coupled plasma--mass spectroscopy techniques. The results were used to compare the composition of the eight Resource Conservation and Recovery Act metals present in the sample (arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver) to regulatory limits. None of the samples was found to be hazardous for toxicity characteristics. The radiological analyses confirmed, when possible, the results obtained by the inductively coupled plasma analyses. These results--combined with the historical process knowledge acquired on the material and the results of previous tests--classified the ThN as low-level radioactive waste for disposal purposes. This characterization was necessary to continue the efforts associated with disposition of the material at the Nevada Test Site, Mercury, Nevada. With the current work presented in this report, the analytical characterization phase is completed for this source material stockpile.

  15. Environmental Stewardship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tours Value of the River Hydropower Transmission Environmental Stewardship Fish Renewables Irrigation, Navigation Flood Control and Recreation Energy Efficiency...

  16. Lawrence Livermore National Laboratory | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory | July 2011 Aerial View Lawrence Livermore National Laboratory | July 2011 Aerial View Lawrence Livermore National Laboratory's (LLNL) primary mission is research and development in support of national security. As a nuclear weapons design laboratory, LLNL has responsibilities in nuclear stockpile stewardship. LLNL also applies its expertise to prevent the spread and use of

  17. Stewardship Science Academic Alliances Annual

    National Nuclear Security Administration (NNSA)

    target at the critical density layer (green) by an ultra-intense laser pulse ... Stewardship Science Academic Alliances High Energy Density Laboratory Plasmas National ...

  18. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos National Laboratory has been at the forefront of high-explosives research since the Manhattan Project in 1943. The science of high-explosive performance is central to stockpile stewardship. Yet, explosives science at the Laboratory isn't simply about maintaining and certifying the aging U.S. nuclear deterrent; it's also about developing novel applications of that science to other national security challenges. In 2015, Los Alamos executed more than 400 high-explosive-driven experiments

  19. Stewardship Videos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Administration Stewardship Science Academic Alliances Program Stewardship Science Academic Alliances (SSAA) Program Overview Established in 2002, the Stewardship Science Academic Alliances Program funds academic research in the areas of materials under extreme conditions, low energy nuclear science, radiochemistry, and high energy density physics. One of the goals of the program is to fund research projects at universities that conduct fundamental science and technology research that is of

  20. NNSA Delivers Annual Reports to Congress on Progress for Stockpile

    National Nuclear Security Administration (NNSA)

    Stewardship and Nuclear Nonproliferation | National Nuclear Security Administration Delivers Annual Reports to Congress on Progress for Stockpile Stewardship and Nuclear Nonproliferation April 01, 2016 WASHINGTON, D.C.-The Department of Energy's National Nuclear Security Administration (DOE/NNSA) today released the annual reports outlining the strategic direction for two of its vital and enduring missions-maintaining a safe, secure and effective nuclear deterrent and reducing the threat of

  1. stockpile modernization | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Home stockpile modernization Sandia completes major overhaul of key nuclear weapons test facilities Sandia National Laboratories recently completed the renovation of five large-scale test facilities that are crucial to ensuring the safety and reliability of the nation's nuclear weapons systems. The work supports Sandia's ongoing nuclear stockpile modernization work on the B61-12 and W88 Alt,...

  2. Active stewardship: sustainable future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environmental stewardship commitment Environmental stewardship stories Better Electric Grids Power grid efficiency Protecting power grids Smart grid powers community Greenhouse ...

  3. Stewardship Science Academic Alliances Annual

    National Nuclear Security Administration (NNSA)

    Stewardship Science Academic Alliances National Laser Users' Facility High Energy Density Laboratory Plasmas A color composite (redH2, greenHI, blueOIII) of a small portion of ...

  4. Environmental Stewardship | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmental Stewardship Environmental Stewardship Oak Ridge’s EM program regularly monitors capped burial grounds in Melton Valley, near the Oak Ridge National Laboratory. Oak Ridge's EM program regularly monitors capped burial grounds in Melton Valley, near the Oak Ridge National Laboratory. The Oak Ridge Office of EM works with multiple regulatory agencies that promote safety and environmental quality regionally and nationally. Specifically, our office works with the Tennessee

  5. NNSA's holds Stewardship Science Academic Programs Annual Review Symposium

    National Nuclear Security Administration (NNSA)

    | National Nuclear Security Administration Home / Blog NNSA's holds Stewardship Science Academic Programs Annual Review Symposium Thursday, February 20, 2014 - 4:00pm This week, NNSA brought together researchers from various academic programs to report on their accomplishments over the past year and promote interaction in areas of physical science relevant to stockpile stewardship. Sponsored by NNSA's Office of Research, Development, Test, and Evaluation, the symposium is geared toward

  6. Stewardship Science Academic Programs Annual | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Programs Annual To achieve our mission objectives, the Office of Research, Development, Test and Evaluation annually invests resources in university-based programs under the Stewardship Science Academic Programs (SSAP). The SSAP funds research and development across the nation in investigations of relevance to the Stockpile Stewardship Program and invests in the training of the next generation of highly skilled individuals for the nation's national security needs. 2016

  7. Lawrence Livermore National Laboratory | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Yesterday Secretary of Energy Ernest Moniz hosted a ... flexibility in collecting data for stockpile stewardship ... The solar power system installed at Lawrence Livermore ...

  8. Stewardship Science Academic Alliances

    National Nuclear Security Administration (NNSA)

    0%2A en NNSA's holds Stewardship Science Academic Programs Annual Review Symposium http:nnsa.energy.govblognnsas-holds-stewardship-science-academic-programs-annual-review-symp...

  9. Educate yourself about stewardship this Earth Day

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Educate yourself about stewardship this Earth Day Educate yourself about stewardship this Earth Day WHEN: Apr 20, 2016 12:00 PM - 2:00 PM WHERE: Bradbury Science Museum 1350 Central Ave, Los Alamos, NM 87544, USA CONTACT: Linda Anderman (505) 665-9196 CATEGORY: Bradbury INTERNAL: Calendar Login Event Description Earth Day open house Open House at the Bradbury Science Museum hosted by the Lab's Environmental Protection & Compliance-Environmental Stewardship resources team. Laboratory

  10. Los Alamos names new head of stockpile manufacturing and support

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New head of stockpile manufacturing and support Los Alamos names new head of stockpile manufacturing and support Carl Beard is the new associate director for stockpile manufacturing and support. Beard has held this position in an acting capacity since June 2007. January 22, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

  11. How ASC Supports the Science-based Stockpile Stewardship Program...

    National Nuclear Security Administration (NNSA)

    If the defect is considered serious enough to affect the reliability of the weapon type, a Significant Finding Investigation (SFI) is opened. An SFI may involve leaks, loose parts ...

  12. US, UK, France Discuss Stockpile Stewardship, Arms Control and...

    National Nuclear Security Administration (NNSA)

    Discussions included technical issues associated with the goals identified in the 2010 Non-Proliferation Treaty Review Conference Action Plan. About the photo: Policy and technical ...

  13. Opening Remarks at the NNSA Stockpile Stewardship Program 20th...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    But I think - coming back and looking back at this now, after my first go around the DOE track in the '90s, that it's a remarkable story that I think we will be drawing out today, ...

  14. Risk in the Weapons Stockpile

    SciTech Connect (OSTI)

    Noone, Bailey C

    2012-08-14

    When it comes to the nuclear weapons stockpile, risk must be as low as possible. Design and care to keep the stockpile healthy involves all aspects of risk management. Design diversity is a method that helps to mitigate risk.

  15. NREL: Sustainable NREL - Environmental Stewardship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environmental Stewardship Through the laboratory's Sustainable NREL program and its integration in the environmental management system, NREL protects and enhances the vegetation, wildlife, water quality, and natural resources; complies with environmental requirements; protects air quality; and encourages continuous improvement in environmental protection. NREL has several programs that: Reduce greenhouse gases Increase water efficiency Reduce waste and prevent pollution Assist with and encourage

  16. Environmental Stewardship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nearly 400 Lab employees on 32 teams received Pollution Prevention awards during an Earth Day awards ceremony READ MORE image description Los Alamos National Laboratory sits...

  17. Environmental Stewardship | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environmental Stewardship Environmental Stewardship Oak Ridge’s EM program regularly monitors capped burial grounds in Melton Valley, near the Oak Ridge National Laboratory. Oak Ridge's EM program regularly monitors capped burial grounds in Melton Valley, near the Oak Ridge National Laboratory. The Oak Ridge Office of EM works with multiple regulatory agencies that promote safety and environmental quality regionally and nationally. Specifically, our office works with the Tennessee

  18. Stewardship Science Academic Alliances Awards | National Nuclear...

    National Nuclear Security Administration (NNSA)

    University Partnerships Academic Alliances Stewardship Science Academic Alliances Stewardship Science Academic Alliances Awards Stewardship Science Academic Alliances ...

  19. LEP: Extending stockpile life | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    osti.gov/ledp/ The listing of new equipment available through the LEDP Grant Program. 8991BB61130002 - LABORATORY EQUIPMENT AND SUPPLIES http://www.osti.gov/ledp/details.jsp?micnum=8991BB61130002 12 May 2016 00:00:00 -0400

    LEP: Extending stockpile ... LEP: Extending stockpile life Posted: February 7, 2013 - 6:10pm | Y-12 Report | Volume 9, Issue 2 | 2013 The Life Extension Program allows safe, effective weapons to remain in the stockpile well beyond their original service life. Nuclear

  20. EIS-0348 and EIS-0236-S3: EPA Notice of Availability of the Final Environmental Impact Statement

    Broader source: Energy.gov [DOE]

    Continued Operation of Lawrence Livermore National Laboratory and Supplement Stockpile Stewardship and Management

  1. EIS-0348 and EIS-0236-S3: Draft Environmental Impact Statement

    Broader source: Energy.gov [DOE]

    Continued Operation of Lawrence Livermore National Laboratory and Supplement Stockpile Stewardship and Management

  2. EIS-0348 and EIS-0236-S3: Final Site-wide Environmental Impact Statement

    Broader source: Energy.gov [DOE]

    Continued Operation of Lawrence Livermore National Laboratory and Supplement Stockpile Stewardship and Management

  3. SRNL Science and Innovation - Environmental Stewardship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science and Innovation Environmental Stewardship Tank Waste Processing and Disposition Nuclear Materials Storage, Processing, and Transportation Scaled Testing and Demonstration Groundwater and Soil Remediation Nuclear Facility Deactivation and Decommissioning Savannah River National Laboratory is the U.S. Department of Energy Office of Environmental Management's national laboratory. In this role, SRNL applies its unique expertise and applied technology capabilities to assist DOE sites across

  4. Update on the Stockpile Monitor Program

    SciTech Connect (OSTI)

    Rivera, T.; Harry, H.H.

    1999-04-01

    In 1991 the Los Alamos National Laboratory (LANL) launched a program to develop a comprehensive database of warhead storage conditions. Because of the extended lifetimes expected of the Stockpile, it became desirable to obtain as much detailed information on the storage environments as possible. Temperature and relative humidity at various facilities capable of storing and/or handling nuclear weapons were used as monitoring locations. The Stockpile Monitor Program (SMP) was implemented in a variety of locations as illustrated in a figure. Probably the most useful data come from the most extreme conditions monitored. The hottest outside temperatures and relative humidities come from Barksdale, while some of the lowest relative humidity values come from Nellis, which continue to be monitored. The coldest conditions come from Grand Forks, Griffiss, and KI Sawyer, none of which are presently being monitored. For this reason, the authors would like to begin monitoring Minot, ND. The outside extreme temperatures are ameliorated by the structures to a significant degree. For example, the hottest outside temperature (120 F) is contrasted by the corresponding cooler inside temperature (85 F), and the coldest outside temperature ({minus}35 F) is contrasted by the corresponding warmer inside temperature (+25 F). These data have become useful for calculations related to stockpile-to-target sequence (STS) and other analyses. SMP information has been provided to a number of outside agencies.

  5. Maintaining the Stockpile

    National Nuclear Security Administration (NNSA)

    stockpilestewardshipdefensesciencedsfacilitieslansce" target"blank">Los Alamos Neutron Science Center (LANSCE), Los Alamos National Laboratory

  6. Los Alamos names new head of stockpile manufacturing and support

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New head of stockpile manufacturing and support Los Alamos names new head of stockpile manufacturing and support Carl Beard is the new associate director for stockpile...

  7. EM/Stewardship Committee meeting

    Broader source: Energy.gov [DOE]

    The Oak Ridge Site Specific Advisory Board's EM/Stewardship Committee meeting is open to the public.

  8. Nuclear Materials Technology Division/Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summer 1996 Los Alamos National Laboratory o f t h e N u c l e a r M a t e r i a l s T e c h n o l o g y D i v i s i o n Quarterly In This Issue 1 Researcher Offers a Technical Perspective on Plutonium in the Environment 4 Plutonium Materials Science Supports Science-Based Stockpile Stewardship and Management 6 Division Director Discusses Plutonium Future-part 2 8 Does the Interaction of Plutonium Oxide with Water Pose a Potential Storage Hazard? 10 Recent Publications, Presentations, and

  9. Nuclear Materials Technology/Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos National Laboratory The Actinide Research In This Issue 4 Pit Manufacturing Project Presents Many Challenges 6 Can Los Alamos Meet Its Future Nuclear Challenges? 9 Detecting and Predicting Plutonium Aging are Crucial to Stockpile Stewardship 12 Pit Disassembly and Conversion Address a 'Clear and Present Danger' 14 Publications and Invited Talks Newsmakers 15 Energy Secretary Spencer Abraham Addresses Employees 1st quarter 2001 N u c l e a r M a t e r i a l s R e s e a r c h a n d T e

  10. An Introduction to Risk with a Focus on Design Diversity in the Stockpile

    SciTech Connect (OSTI)

    Noone, Bailey C

    2012-08-13

    The maintenance and security of nuclear weapons in the stockpile involves decisions based on risk analysis and quantitative measures of risk. Risk is a factor in all decisions, a particularly important factor in decisions of a large scale. One example of high-risk decisions we will discuss is the risk involved in design diversity within the stockpile of nuclear weapons arsenal. Risk is defined as 'possibility of loss or injury' and the 'degree of probability of such loss' (Kaplan and Garrick 12). To introduce the risk involved with maintaining the weapons stockpile we will draw a parallel to the design and maintenance of Southwest Airlines fleet of Boeing 737 planes. The clear benefits for cost savings in maintenance of having a uniform fleet are what historically drove Southwest to have only Boeing 737s in their fleet. Less money and resources are need for maintenance, training, and materials. Naturally, risk accompanies those benefits. A defect in a part of the plane indicates a potential defect in that same part in all the planes of the fleet. As a result, safety, business, and credibility are at risk. How much variety or diversity does the fleet need to mitigate that risk? With that question in mind, a balance is needed to accommodate the different risks and benefits of the situation. In a similar way, risk is analyzed for the design and maintenance of nuclear weapons in the stockpile. In conclusion, risk must be as low as possible when it comes to the nuclear weapons stockpile. Design and care to keep the stockpile healthy involves all aspects of risk management. Design diversity is a method that helps to mitigate risk, and to help balance options in stockpile stewardship.

  11. Follow-up Audit on Stockpile Surveillance Testing, IG-0744 | Department of

    Energy Savers [EERE]

    Energy Audit on Stockpile Surveillance Testing, IG-0744 Follow-up Audit on Stockpile Surveillance Testing, IG-0744 Significant backlogs existed in each of the three types of tests Surveillance Testing conducted in the Surveillance Testing Program---laboratory tests, flight tests, and component tests---as of September 30? 2005. Laboratory tests are conducted on weapons' non-nuclear systems to detect defects due to handling, aging, manufacturing, or design. Flight tests involve dropping or

  12. NNSA announces winners of Stewardship Science Academic Programs Symposium

    National Nuclear Security Administration (NNSA)

    Poster Session | National Nuclear Security Administration announces winners of Stewardship Science Academic Programs Symposium Poster Session Tuesday, March 31, 2015 - 3:32pm NNSA Blog More than 275 individuals from NNSA and its laboratories, and academia attended this year's Stewardship Science Academic Programs Annual Review Symposium held in Santa Fe, N.M., earlier this month. The symposium featured overviews of work to date from ongoing grants and cooperative agreements from NNSA's

  13. Electronics Stewardship | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electronics Stewardship Mission The team promotes sustainable management of LM's electronic equipment, as deemed appropriate for LM operations and approved by LM, as defined in: ...

  14. stockpile

    National Nuclear Security Administration (NNSA)

    2%2A en The man who trains everyone on the bombs http:nnsa.energy.govblogman-who-trains-everyone-bombs

  15. ORISE: Chemical Stockpile Emergency Preparedness Program Exercise...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Stockpile Emergency Preparedness Program Exercise Training and Analysis Tool Training Tool Improves Information Sharing Between CSEPP and its Response Partners In 2006,...

  16. Accelerator Stewardship Test Facility Program - Elliptical Twin...

    Office of Scientific and Technical Information (OSTI)

    Accelerator Stewardship Test Facility Program - Elliptical Twin Cavity for Accelerator Applications Citation Details In-Document Search Title: Accelerator Stewardship Test Facility ...

  17. Long-Term Stewardship Baseline Report and Transition Guidance

    SciTech Connect (OSTI)

    Kristofferson, Keith

    2001-11-01

    Long-term stewardship consists of those actions necessary to maintain and demonstrate continued protection of human health and the environment after facility cleanup is complete. As the Department of Energys (DOE) lead laboratory for environmental management programs, the Idaho National Engineering and Environmental Laboratory (INEEL) administers DOEs long-term stewardship science and technology efforts. The INEEL provides DOE with technical, and scientific expertise needed to oversee its long-term environmental management obligations complexwide. Long-term stewardship is administered and overseen by the Environmental Management Office of Science and Technology. The INEEL Long-Term Stewardship Program is currently developing the management structures and plans to complete INEEL-specific, long-term stewardship obligations. This guidance document (1) assists in ensuring that the program leads transition planning for the INEEL with respect to facility and site areas and (2) describes the classes and types of criteria and data required to initiate transition for areas and sites where the facility mission has ended and cleanup is complete. Additionally, this document summarizes current information on INEEL facilities, structures, and release sites likely to enter long-term stewardship at the completion of DOEs cleanup mission. This document is not intended to function as a discrete checklist or local procedure to determine readiness to transition. It is an overarching document meant as guidance in implementing specific transition procedures. Several documents formed the foundation upon which this guidance was developed. Principal among these documents was the Long-Term Stewardship Draft Technical Baseline; A Report to Congress on Long-Term Stewardship, Volumes I and II; Infrastructure Long-Range Plan; Comprehensive Facility Land Use Plan; INEEL End-State Plan; and INEEL Institutional Plan.

  18. Research programs at the Department of Energy National Laboratories. Volume 2: Laboratory matrix

    SciTech Connect (OSTI)

    1994-12-01

    For nearly fifty years, the US national laboratories, under the direction of the Department of Energy, have maintained a tradition of outstanding scientific research and innovative technological development. With the end of the Cold War, their roles have undergone profound changes. Although many of their original priorities remain--stewardship of the nation`s nuclear stockpile, for example--pressing budget constraints and new federal mandates have altered their focus. Promotion of energy efficiency, environmental restoration, human health, and technology partnerships with the goal of enhancing US economic and technological competitiveness are key new priorities. The multiprogram national laboratories offer unparalleled expertise in meeting the challenge of changing priorities. This volume aims to demonstrate each laboratory`s uniqueness in applying this expertise. It describes the laboratories` activities in eleven broad areas of research that most or all share in common. Each section of this volume is devoted to a single laboratory. Those included are: Argonne National Laboratory; Brookhaven National Laboratory; Idaho National Engineering Laboratory; Lawrence Berkeley Laboratory; Lawrence Livermore National Laboratory; Los Alamos National Laboratory; National Renewable Energy Laboratory; Oak Ridge National Laboratory; Pacific Northwest Laboratory; and Sandia National Laboratories. The information in this volume was provided by the multiprogram national laboratories and compiled at Lawrence Berkeley Laboratory.

  19. Recommendation 207: Automate the Stewardship Verification Process

    Broader source: Energy.gov [DOE]

    ORSSAB recommends DOE automate the Stewardship Verification Process for the Remediation Effectiveness Report.

  20. Recommendation 182: Stewardship Workshop | Department of Energy

    Office of Environmental Management (EM)

    82: Stewardship Workshop Recommendation 182: Stewardship Workshop The ORSSAB Recommendation to DOE to Endorse and Support a Stewardship Workshop. PDF icon Recommendation 182 PDF icon DOE response to recommendation 182 More Documents & Publications Recommendation 188: Long-Term Stewardship Implementation Recommendation 191: ETTP contract proposal review Recommendation 193: Present Agenda Topics for Conference

  1. Long-Term Stewardship Study

    Energy Savers [EERE]

    Environmental Management Office of Long Term Stewardship LONG-TERM STEWARDSHIP STUDY Volume I - Report Prepared to comply with the terms of a settlement agreement: Natural Resources Defense Council, et al. v. Richardson, et al., Civ. No. 97-936 (SS) (D.D.C. Dec. 12, 1998). Final Study October 2001 - i - Foreword The Department of Energy (DOE) has prepared this Long-term Stewardship Study ("Study" or "Final Study") to comply with the terms of a settlement agreement between

  2. NIF Calendar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Calendar SSP* - Stockpile Stewardship Change Log

  3. From Cleanup to Stewardship | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    From Cleanup to Stewardship From Cleanup to Stewardship From Cleanup to Stewardship, a Companion Report to Accelerating Cleanup: Paths to Closure and Background Information Supporting the Scoping Process Required for the 1998 PEIS Settlement Study. Long-term stewardship was expected to be needed at more than 100 DOE sites after EM completed cleanup of the waste and contamination resulting from nuclear research and nuclear weapons production over the past 50 years. From Cleanup to Stewardship

  4. Recommendation 188: Long-Term Stewardship Implementation | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    88: Long-Term Stewardship Implementation Recommendation 188: Long-Term Stewardship Implementation ORSSAB offers Recommendations and Comments on the Long-Term Stewardship ...

  5. EIS-0348 and EIS-0236-S3: EPA Notice of Availability of the Draft Environmental Impact Statement

    Broader source: Energy.gov [DOE]

    Site-wide Continued Operation of Lawrence Livermore National Laboratory (LLNL) and Stockpile Stewardship and Management, Implementation

  6. Leadership and Stewardship of the Laboratory (Objective 4.1) Notable Outcome - Phase II Alternative Analysis and PNNL Site Plan Recommendation

    SciTech Connect (OSTI)

    Pittman, Jeffery P.; Cassidy, Stephen R.; Mosey, Whitney LC; Leitz, Erlan M.; Oukrop, Lanson J.

    2013-07-31

    Pacific Northwest National Laboratory (PNNL) and the Pacific Northwest Site Office (PNSO) have recently completed an effort to identify the current state of the campus and gaps that exist with regards to space needs, facilities and infrastructure. This effort has been used to establish a campus strategy to ensure PNNL is ready to further the United States (U.S.) Department of Energy (DOE) mission. Ten-year business projections and the impacts on space needs were assessed and incorporated into the long-term facility plans. In identifying/quantifying the space needs for PNNL, the following categories were addressed: Multi-purpose Programmatic (wet chemistry and imaging laboratory space), Strategic (Systems Engineering and Computation Analytics, and Collaboration space), Remediation (space to offset the loss of the Research Technology Laboratory [RTL] Complex due to decontamination and demolition), and Optimization (the exit of older and less cost-effective facilities). The findings of the space assessment indicate a need for wet chemistry space, imaging space, and strategic space needs associated with systems engineering and collaboration space. Based on the analysis, a 10-year campus strategy evolved that balanced four strategic objectives, as directed by the DOE Office of Science (DOE-SC): • Mission Alignment - maintain customer satisfaction • Reasonable & Achievable - do what makes sense from a practical and cost perspective • Campus Continuity - increase the federal control of assets and follow the Campus Master Plan • Guiding Principles - modern, collaborative, flexible, and sustainable. This strategy considered the following possible approaches to meet the identified space needs: • Institutional General Plant Project (IGPP) funded projects • Third party leased facilities • Science Laboratory Infrastructure (SLI) line item funded projects. Pairing the four strategic objectives with additional key metrics as criteria for selection, an initial recommendation was made to DOE-SC to use all three funding mechanisms to deliver the mission need. DOE-SC provided feedback that third party facilities are not to be pursued at this time. The decision was made by DOE that an IGPP-funded program would be the base plan, while retaining the possibility of a 2019 SLI-funded project. The SLI project will be designed to deliver significant impact on science and technology (S&T) and support the development of a modern, synergistic core campus where a collaborative and innovative environment is fostered. The specific scientific impact will be further defined in the 2015 and 2016 Annual Laboratory Plans. Additionally, opportunities will be explored to construct annexes on current federal facilities, including the Environmental Molecular Sciences Laboratory (EMSL), if proven synergistic and cost effective. The final result of this effort is an actionable, flexible plan with scope, schedule, and cost targets for individual acquisition projects. Implemented as planned, the result will increase federal ownership by approximately 15 percent, reduce the operating cost by approximately 7 percent, and reduce the geographic facility footprint by approximately 66,000 gross square feet (GSF). Reduction of surplus space will be addressed while maintaining customer satisfaction, lowering operating costs, reducing the campus footprint, and increasing the federal control of assets. This strategy is documented in PNNL’s 2014 Laboratory Plan.

  7. Lawrence Livermore National Laboratories Perspective on Code Development and High Performance Computing Resources in Support of the National HED/ICF Effort

    SciTech Connect (OSTI)

    Clouse, C. J.; Edwards, M. J.; McCoy, M. G.; Marinak, M. M.; Verdon, C. P.

    2015-07-07

    Through its Advanced Scientific Computing (ASC) and Inertial Confinement Fusion (ICF) code development efforts, Lawrence Livermore National Laboratory (LLNL) provides a world leading numerical simulation capability for the National HED/ICF program in support of the Stockpile Stewardship Program (SSP). In addition the ASC effort provides high performance computing platform capabilities upon which these codes are run. LLNL remains committed to, and will work with, the national HED/ICF program community to help insure numerical simulation needs are met and to make those capabilities available, consistent with programmatic priorities and available resources.

  8. Long-Term Stewardship Program Science and Technology Requirements

    SciTech Connect (OSTI)

    Joan McDonald

    2002-09-01

    Many of the United States’ hazardous and radioactively contaminated waste sites will not be sufficiently remediated to allow unrestricted land use because funding and technology limitations preclude cleanup to pristine conditions. This means that after cleanup is completed, the Department of Energy will have long-term stewardship responsibilities to monitor and safeguard more than 100 sites that still contain residual contamination. Long-term stewardship encompasses all physical and institutional controls, institutions, information, and other mechanisms required to protect human health and the environment from the hazards remaining. The Department of Energy Long-Term Stewardship National Program is in the early stages of development, so considerable planning is still required to identify all the specific roles and responsibilities, policies, and activities needed over the next few years to support the program’s mission. The Idaho National Engineering and Environmental Laboratory was tasked with leading the development of Science and Technology within the Long-Term Stewardship National Program. As part of that role, a task was undertaken to identify the existing science and technology related requirements, identify gaps and conflicts that exist, and make recommendations to the Department of Energy for future requirements related to science and technology requirements for long-term stewardship. This work is summarized in this document.

  9. 3.04 DOE.NA-0014 Stockpile Stewardship Plan.pdf

    National Nuclear Security Administration (NNSA)

    ... Location: Aiken, South Carolina Contractor: Washington Savannah River Company, LLC The United States Nuc Kansas City Plant Mission: Manufacture and procurement of nonnuclear ...

  10. Notice of Intent to Prepare a Supplement to the Stockpile Stewardship...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Amarillo, Texas, Amarillo Globe-News Center, Education Room, 401 S. Buchanan. November 15, ... Socorro, New Mexico, Macey Center (at New Mexico Tech), 801 Leroy Place. December 4, 2006, ...

  11. Lawrence Livermore National Laboratory 2007 Annual Report

    SciTech Connect (OSTI)

    Chrzanowski, P; Walter, K

    2008-04-25

    Lawrence Livermore National Laboratory's many outstanding accomplishments in 2007 are a tribute to a dedicated staff, which is shaping the Laboratory's future as we go through a period of transition and transformation. The achievements highlighted in this annual report illustrate our focus on the important problems that affect our nation's security and global stability, our application of breakthrough science and technology to tackle those problems, and our commitment to safe, secure, and efficient operations. In May 2007, the Department of Energy (DOE) awarded Lawrence Livermore National Security, LLC (LLNS), a new public-private partnership, the contract to manage and operate the Laboratory starting in October. Since its inception in 1952, the Laboratory had been managed by the University of California (UC) for the DOE's National Nuclear Security Administration (NNSA) and predecessor organizations. UC is one of the parent organizations that make up LLNS, and UC's presence in the new management entity will help us carry forward our strong tradition of multidisciplinary science and technology. 'Team science' applied to big problems was pioneered by the Laboratory's co-founder and namesake, Ernest O. Lawrence, and has been our hallmark ever since. Transition began fully a year before DOE's announcement. More than 1,600 activities had to be carried out to transition the Laboratory from management by a not-for-profit to a private entity. People, property, and procedures as well as contracts, formal agreements, and liabilities had to be transferred to LLNS. The pre-transition and transition teams did a superb job, and I thank them for their hard work. Transformation is an ongoing process at Livermore. We continually reinvent ourselves as we seek breakthroughs that impact emerging national needs. An example is our development in the late 1990s of a portable instrument that could rapidly detect DNA signatures, research that started with a view toward the potential threat of terrorist use of biological weapons. As featured in our annual report, activities in this area have grown to many important projects contributing to homeland security and disease prevention and control. At times transformation happens in large steps. Such was the case when nuclear testing stopped in the early 1990s. As one of the nation's nuclear weapon design laboratories, Livermore embarked on the Stockpile Stewardship Program. The objectives are to ensure the safety, security, and reliability of the nation's nuclear weapons stockpile and to develop a science-based, thorough understanding of the performance of nuclear weapons. The ultimate goal is to sustain confidence in an aging stockpile without nuclear testing. Now is another time of major change for the Laboratory as the nation is resizing its nuclear deterrent and NNSA begins taking steps to transform the nuclear weapons complex to meet 21st-century national security needs. As you will notice in the opening commentary to each section of this report, the Laboratory's senior management team is a mixture of new and familiar faces. LLNS drew the best talent from its parent organizations--Bechtel National, UC, Babcock & Wilcox, the Washington Group Division of URS, and Battelle--to lead the Laboratory. We are honored to take on the responsibility and see a future with great opportunities for Livermore to apply its exceptional science and technology to important national problems. We will work with NNSA to build on the successful Stockpile Stewardship Program and transform the nation's nuclear weapons complex to become smaller, safer, more secure, and more cost effective. Our annual report highlights progress in many relevant areas. Laboratory scientists are using astonishing computational capabilities--including BlueGene/L, the world's fastest supercomputer with a revolutionary architecture and over 200,000 processors--to gain key insights about performance of aging nuclear weapons. What we learn will help us sustain the stockpile without nuclear testing. Preparations are underway to start experiments at

  12. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3, 2015 Projects save taxpayer dollars, promote environmental stewardship, sustainability LOS ALAMOS, N.M., April 22, 2015-Nearly 400 Los Alamos National Laboratory employees on 32...

  13. Nanoscale Synthesis and Characterization Laboratory Annual Report 2005

    SciTech Connect (OSTI)

    Hamza, A V; Lesuer, D R

    2006-01-03

    The Nanoscale Synthesis and Characterization Laboratory's (NSCL) primary mission is to create and advance interdisciplinary research and development opportunities in nanoscience and technology. The initial emphasis of the NSCL has been on development of scientific solutions in support of target fabrication for the NIF laser and other stockpile stewardship experimental platforms. Particular emphasis has been placed on the design and development of innovative new materials and structures for use in these targets. Projects range from the development of new high strength nanocrystalline alloys to graded density materials to high Z nanoporous structures. The NSCL also has a mission to recruit and train personnel for Lab programs such as the National Ignition Facility (NIF), Defense and Nuclear Technologies (DNT), and Nonproliferation, Arms control and International security (NAI). The NSCL continues to attract talented scientists to the Laboratory.

  14. Report to Congress on stockpile reliability, weapon remanufacture, and the role of nuclear testing

    SciTech Connect (OSTI)

    Miller, G.H.; Brown, P.S.; Alonso, C.T.

    1987-10-01

    This report analyzes two issues: (1) ''whether past warhead reliability problems demonstrate that nuclear explosive testing is needed to identify or to correct stockpile reliability,'' or (2) ''whether a program of stockpile inspection, nonnuclear testing, and remanufacture would be sufficient to deal with stockpile reliability problems.'' Chapter 1 examines the reasons for nuclear testing. Although the thrust of the request from Congressman Aspin et al., has to do with the need for nuclear testing as it relates to stockpile reliability and remanufacture, there are other very important reasons for nuclear testing. Since there has been increasing interest in the US Congress for more restrictive nuclear test limits, we have addressed the overall need for nuclear testing and the potential impact of further nuclear test limitations. Chapter 1 also summarizes the major conclusions of a recent study conducted by the Scientific and Academic Advisory Committee (SAAC) for the President of the University of California; the SAAC report is entitled, ''Nuclear Weapon Tests: The Role of the University of California-Department of Energy Laboratories.'' Chapter 2 presents a brief history of stockpile problems that involved post-deployment nuclear testing for their resolution. Chapter 3 addresses the problems involved in remanufacturing nuclear weapons, and Chapter 4 discusses measures that should be taken to prepare for possible future restrictive test limits.

  15. nbarbee | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    naval reactors NNSA Leaders Receive 2015 Presidential Rank Awards Last month two NNSA Senior Executive Service leaders were recognized as 2015 Presidential Rank Award Winners for distinguished contributions to public service. Director of NNSA's Office of Policy Steven Erhart was named a Distinguished Executive Winner, and Director of Reactor Engineering in NNSA's... New Report from NNSA Highlights Major Achievements for 2015 Outlines Accomplishments in Stockpile Stewardship, Nuclear

  16. Sandia National Laboratories: National Security Missions: Nuclear Weapons

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Programs Nuclear Weapons Stockpile Stewardship Ensuring the nation's nuclear weapons stockpile is safe, secure, and reliable. About Nuclear Weapons Since 1949, Sandia's scientists and engineers have conducted breakthrough research in weaponization. About Safety & Security Safe and secure nuclear weapons are of paramount importance in a changing global threat environment. Safety and Security Science & Technology Sandia provides the science and engineering to help maintain and certify the

  17. Environmental Stewardship Fact Sheets | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Services » Program Management » Environmental Stewardship » Environmental Stewardship Fact Sheets Environmental Stewardship Fact Sheets Fact Sheets Bear Creek Valley Watershed Bethel Valley Watershed East Tennessee Technology Park Zones 1 and 2 Lower East Fork Poplar Creek Lower Watts Bar Reservoir Clinch River/Poplar Creek Melton Valley Watershed ORAU South Campus Facility Union Valley Upper East Fork Poplar Creek Site Cleanup Waste Management Program Management Budget & Performance

  18. Maintaining the Stockpile | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Maintaining the Stockpile NNSA ensures the Nation sustains a safe, secure, and effective nuclear deterrent through the application of science, technology, engineering, and manufacturing. To deal with the changing face of nuclear deterrence and more-widely dispersed nuclear knowledge, NNSA also ensures the United States maintains excellence in nuclear science and technology that is second to none. Within the Nuclear Security Enterprise, the central mission which includes maintaining the active

  19. Long-Term Stewardship - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comprehensive Land-Use Plan - Environmental Impact Statement (HCP EIS), and 64 FR 61615, "Record ... DOE directives, and Hanford Site procedures. hidden Long-Term Stewardship ...

  20. Stewardship Science Academic Programs Annual | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Stewardship Science Academic Programs Annual To achieve our mission objectives, the Office of Research, Development, Test and Evaluation annually invests resources in ...

  1. EM/Stewardship Committee meeting | Department of Energy

    Office of Environmental Management (EM)

    EM/Stewardship Committee meeting EM/Stewardship Committee meeting June 22, 2016 6:00PM to 7:00PM EDT The Oak Ridge Site Specific Advisory Board's EM/Stewardship Committee meeting is open

  2. Welcome to Los Alamos National Laboratory: A premier national security science laboratory

    SciTech Connect (OSTI)

    Wallace, Terry

    2012-06-25

    Dr Wallace presents visitors with an overview of LANL's national security science mission: stockpile stewardship, protecting against the nuclear threat, and energy security & emerging threats, which are underpinned by excellence in science/technology/engineering capabilities. He shows visitors a general Lab overview of budget, staff, and facilities before providing a more in-depth look at recent Global Security accomplishments and current programs.

  3. Closure for the Seventh Generation - A Report from the Stewardship...

    Office of Environmental Management (EM)

    PDF icon Closure for the Seventh Generation - A Report from the Stewardship ... Long-Term Stewardship Study STGWG Meeting - May 2010 Disposal Practices at the Nevada Test ...

  4. Recommendation 217: Stewardship Point of Contact for the Oak...

    Office of Environmental Management (EM)

    7: Stewardship Point of Contact for the Oak Ridge Reservation Recommendation 217: Stewardship Point of Contact for the Oak Ridge Reservation The Oak Ridge Site Specific Advisory...

  5. Stewardship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contests at U.S. Department of Energy Solar Decathlon | Department of Energy Stevens Institute of Technology Wins Both Architecture and Communications Contests at U.S. Department of Energy Solar Decathlon Stevens Institute of Technology Wins Both Architecture and Communications Contests at U.S. Department of Energy Solar Decathlon October 16, 2015 - 4:37pm Addthis Stevens Institute of Technology took first place in both the Architecture and Communications Contests at the U.S. Department of

  6. Stewardship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nuclear testing," said Webster. These experiments with surrogate materials provide a principle linkage with scaledfull-scale hydrodynamic tests, the suite of prior underground...

  7. NNSA's Summary of Experiments Conducted in Support of Stockpile...

    National Nuclear Security Administration (NNSA)

    computational models and NNSA's Advanced Simulation and Computing (ASC) Program to assess the safety, security and effectiveness of the stockpile. An extraordinary set of science, ...

  8. Sandia National Laboratories: Page Title

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facebook Twitter YouTube Flickr RSS Pulsed Power Publications *only first authors listed 2015 Author Title Journal Volume Apruzese, JP Radiation Transport in Z-Pinches IEEE Transactions on Plasma Science 93 Awe, TJ Experimental Studies of Instability Development in Magnetically Driven Systems NNSA Stockpile Stewardship Quarterly 5 Bailey, JE A higher-than-predicted measurement of iron opacity at solar interior temperatures Nature International Weekly Journal of Science 517 Bennett, N The impact

  9. Open Space Stewardship Workshop for Secondary Teachers

    Broader source: Energy.gov [DOE]

    This practical, hands-on workshop provides an opportunity to experience the equipment and field techniques that are useful in Open Space Stewardship Program. The four day workshop (July 15-19 2013)...

  10. Methods and Process Stewardship | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Business Operations » Project Management Coordination Office » Methods and Process Stewardship Methods and Process Stewardship PMCO leads the development of policies, processes and reporting for project and risk management, including Funding Opportunity Announcement (FOA) and Active Project Management (APM), and leads development of policies for Annual Operating Plans (AOP). PMCO also manages the governance and Change Control Board processes, tools, support and our online resource center, PM

  11. Sandia National Laboratories: Sandia Receives Award for Electronics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stewardship Sandia Receives Award for Electronics Stewardship September 19, 2011 electronics stewardship award ALBUQUERQUE, N.M. - Sandia National Laboratories has received an award for reducing the environmental impacts of the computers, printers and other office electronics it uses through its fiscal year 2010 electronics stewardship activities. The U.S. Environmental Protection Agency (EPA) and the Office of the Federal Environmental Executive, which jointly manage the Federal Electronics

  12. DOE - Office of Legacy Management -- Falls City Uranium Ore Stockpile...

    Office of Legacy Management (LM)

    The history of domestic uranium procurement under U.S. Atomic Energy Commission (AEC) ... The ideal scenario was to accumulate a sufficient stockpile of ore and construct a mill on ...

  13. Los Alamos Selected as Atomic Weapons Laboratory | National Nuclear...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Selected as Atomic Weapons Laboratory | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation ...

  14. Long-Term Stewardship Resource Center | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Long-Term Stewardship Resource Center Long-Term Stewardship Resource Center WELCOME TO THE DEPARTMENT OF ENERGY'S LONG-TERM STEWARDSHIP RESOURCE CENTER The purpose of this web site is to provide the public and the Department of Energy's (DOE) community with a variety of information resources for long-term stewardship (LTS) responsibilities. LTS includes the physical controls, institutions, information and other mechanisms needed to ensure protection of people and the environment at sites or

  15. Laboratory Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Operations /newsroom/_assets/images/operations-icon.png Laboratory Operations Latest announcements from the Lab on its operations. Community, Events Laboratory Operations Environmental Stewardship Melissa Blueflower-Sanchez and Robert Sanchez, owners of R and M Construction, LLC, of Santa Clara Pueblo. Four regional businesses receive Native American Venture Acceleration Fund grants The grants are designed to help the recipients create jobs, increase their revenue base and help

  16. EM/Stewardship Committee meeting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EM/Stewardship Committee meeting EM/Stewardship Committee meeting May 25, 2016 6:00PM to 7:30PM EDT The Oak Ridge Site Specific Advisory Board's EM/Stewardship Committee meeting is open to the public. Location: DOE Information Center Building 1916-T1 1 Science.Gov Way Oak Ridge, TN 37831

  17. DOE/EIS-0236-S1F; National Ignition Facility Final Supplemental...

    Broader source: Energy.gov (indexed) [DOE]

    element of science-based stockpile stewardship. It will allow experimental study of thermonuclear burn in the laboratory. It will extend the range of investigations of...

  18. DOE/EIS-0236-S1F; National Ignition Facility Final Supplemental...

    Broader source: Energy.gov (indexed) [DOE]

    element of science-based stockpile stewardship. It will allow experimental study of thermonuclear burn in the laboratory. It will extend the range of investigations of important...

  19. CoMuEx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    To lead the Laboratory in its diverse activities in the areas concerning mix and turbulence under extreme conditions as related to stockpile stewardship, weapons, ICF, ...

  20. EIS-0348 and EIS-0236-S3: Record of Decision

    Broader source: Energy.gov [DOE]

    Final Site-wide Environmental Impact Statement for Continued Operation of Lawrence Livermore National Laboratory and Supplemental Stockpile Stewardship and Management Programmatic Environmental Impact Statement

  1. The Cielo Petascale Capability Supercomputer: Providing Large...

    Office of Scientific and Technical Information (OSTI)

    Resource Relation: Conference: NNSA Stockpile Stewardship Quarterly ; 2013-03-11 - 2013-03-11 ; Washington, New Mexico, United States Research Org: Los Alamos National Laboratory ...

  2. Audit Report: OAS-M-14-06 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    located at Los Alamos National Laboratory (LANL), is to support the NNSA's Stockpile Stewardship activities by conducting experiments that provide valuable insight on the ...

  3. SRNL Science and Innovation - Environmental Stewardship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tank Waste Processing and Disposition Nuclear Materials Storage, Processing, and Transportation Scaled Testing and Demonstration Groundwater and Soil Remediation Nuclear Facility Deactivation and Decommissioning SRNL Home Groundwater and Soil Remediation - Microblowers Science and Innovation Environmental Stewardship - Groundwater and Soil Remediation SRNL directly supports treatment and remediation of contaminated groundwater and soil, with emphasis upon matching effective and efficient

  4. SRNL Science and Innovation - Environmental Stewardship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tank Waste Processing and Disposition Science and Innovation Environmental Stewardship - Tank Waste Processing and Disposition SRNL designs, develops, and tests processes, flow sheets, and equipment to support processing and disposition of radioactive tank waste. This core competency includes qualification and validation of ongoing operational processes, development and demonstration of next-generation technology options, program analysis, and troubleshooting of process operations. This

  5. Stewardship Science Graduate Fellowship Programs | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration Home / content Stewardship Science Graduate Fellowship Programs The Computational Science Graduate Fellowship (CSGF) The Department of Energy Computational Science Graduate Fellowship program provides outstanding benefits and opportunities to students pursuing doctoral degrees in fields of study that use high performance computing to solve complex science and engineering problems. The program fosters a community of bright, energetic and committed Ph.D. students,

  6. Jeff Griffin, Ph. D. Associate Laboratory...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Griffin, Ph. D. Associate Laboratory Director Environmental Stewardship Savannah River National Laboratory DOE-EM Robotics Team Visit to SRNL SRNL-MS-2015-00246 Rev. 0 December 7,...

  7. Planning guidance for the Chemical Stockpile Emergency Preparedness Program

    SciTech Connect (OSTI)

    Shumpert, B.L.; Watson, A.P.; Sorensen, J.H. and others

    1995-02-01

    This planning guide was developed under the direction of the U.S. Army and the Federal Emergency Management Agency (FEMA) which jointly coordinate and direct the development of the Chemical Stockpile Emergency Preparedness Program (CSEPP). It was produced to assist state, local, and Army installation planners in formulating and coordinating plans for chemical events that may occur at the chemical agent stockpile storage locations in the continental United States. This document provides broad planning guidance for use by both on-post and off-post agencies and organizations in the development of a coordinated plan for responding to chemical events. It contains checklists to assist in assuring that all important aspects are included in the plans and procedures developed at each Chemical Stockpile Disposal Program (CSDP) location. The checklists are supplemented by planning guidelines in the appendices which provide more detailed guidance regarding some issues. The planning guidance contained in this document will help ensure that adequate coordination between on-post and off-post planners occurs during the planning process. This planning guide broadly describes an adequate emergency planning base that assures that critical planning decisions will be made consistently at every chemical agent stockpile location. This planning guide includes material drawn from other documents developed by the FEMA, the Army, and other federal agencies with emergency preparedness program responsibilities. Some of this material has been developed specifically to meet the unique requirements of the CSEPP. In addition to this guidance, other location-specific documents, technical studies, and support studies should be used as needed to assist in the planning at each of the chemical agent stockpile locations to address the specific hazards and conditions at each location.

  8. The Cold War ends ... now what? | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computing for Stockpile Stewardship (Conference) | SciTech Connect The Cielo Petascale Capability Supercomputer: Providing Large-Scale Computing for Stockpile Stewardship Citation Details In-Document Search Title: The Cielo Petascale Capability Supercomputer: Providing Large-Scale Computing for Stockpile Stewardship Authors: Vigil, Benny Manuel [1] ; Doerfler, Douglas W. [1] + Show Author Affiliations Los Alamos National Laboratory Publication Date: 2013-03-11 OSTI Identifier: 1068213 Report

  9. The Cielo Petascale Capability Supercomputer: Providing Large-Scale

    Office of Scientific and Technical Information (OSTI)

    Computing for Stockpile Stewardship (Conference) | SciTech Connect Conference: The Cielo Petascale Capability Supercomputer: Providing Large-Scale Computing for Stockpile Stewardship Citation Details In-Document Search Title: The Cielo Petascale Capability Supercomputer: Providing Large-Scale Computing for Stockpile Stewardship Authors: Vigil, Benny Manuel [1] ; Doerfler, Douglas W. [1] + Show Author Affiliations Los Alamos National Laboratory Publication Date: 2013-03-11 OSTI Identifier:

  10. Field Work Proposal: PUBLIC OUTREACH EVENT FOR ACCELERATOR STEWARDSHIP TEST

    Office of Scientific and Technical Information (OSTI)

    FACILITY PILOT PROGRAM (Program Document) | SciTech Connect Field Work Proposal: PUBLIC OUTREACH EVENT FOR ACCELERATOR STEWARDSHIP TEST FACILITY PILOT PROGRAM Citation Details In-Document Search Title: Field Work Proposal: PUBLIC OUTREACH EVENT FOR ACCELERATOR STEWARDSHIP TEST FACILITY PILOT PROGRAM Jefferson Lab's outreach efforts towards the goals of Accelerator Stewardship Test Facility Pilot Program consist of the lab's efforts in three venues. The first venue, at the end of March is to

  11. Closure for the Seventh Generation - A Report from the Stewardship

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Committee of the State and Tribal Government Working Group (February 1999) | Department of Energy Closure for the Seventh Generation - A Report from the Stewardship Committee of the State and Tribal Government Working Group (February 1999) Closure for the Seventh Generation - A Report from the Stewardship Committee of the State and Tribal Government Working Group (February 1999) Stakeholder, State and Tribal Government Working Group (STGWG), long-term stewardship, institutional controls. PDF

  12. Stewardship Science Academic Alliances Program | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Stewardship Science Academic Alliances Program Stewardship Science Academic Alliances (SSAA) Program Overview Established in 2002, the Stewardship Science Academic Alliances Program funds academic research in the areas of materials under extreme conditions, low energy nuclear science, radiochemistry, and high energy density physics. One of the goals of the program is to fund research projects at universities that conduct fundamental science and technology research that is of

  13. Executive Order 13547: Stewardship of the Ocean, Our Coasts,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to climate change and ocean acidification, and coordinate with our national security and foreign policy interests. Download Document PDF icon Executive Order 13547: Stewardship of...

  14. Stewardship of the Hanford Site Now and Into the Future

    Office of Environmental Management (EM)

    of the Hanford Site Now and Into the Future Bob Suyama Vice-Chair Hanford Advisory Board Stewardship Roundtable Environmental Management Site-Specific Advisory Board Chairs Meeting...

  15. Long-Term Strategy for Environmental Stewardship and Sustainability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Long-Term Strategy for Environmental Stewardship & Sustainability Hawks nesting Bike rider commutes to work at LANL A bobcat walking on LANL property Weather monitoring at LANL...

  16. Field Work Proposal: PUBLIC OUTREACH EVENT FOR ACCELERATOR STEWARDSHIP...

    Office of Scientific and Technical Information (OSTI)

    Field Work Proposal: PUBLIC OUTREACH EVENT FOR ACCELERATOR STEWARDSHIP TEST FACILITY PILOT PROGRAM Citation Details In-Document Search Title: Field Work Proposal: PUBLIC OUTREACH ...

  17. Long-Term Strategy for Environmental Stewardship and Sustainability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Long-Term Strategy for Environmental Stewardship & Sustainability Hawks nesting Bike rider commutes to work at LANL A bobcat walking on LANL property Weather monitoring at LANL ...

  18. Tri-Laboratory Linux Capacity Cluster 2007 SOW

    SciTech Connect (OSTI)

    Seager, M

    2007-03-22

    The Advanced Simulation and Computing (ASC) Program (formerly know as Accelerated Strategic Computing Initiative, ASCI) has led the world in capability computing for the last ten years. Capability computing is defined as a world-class platform (in the Top10 of the Top500.org list) with scientific simulations running at scale on the platform. Example systems are ASCI Red, Blue-Pacific, Blue-Mountain, White, Q, RedStorm, and Purple. ASC applications have scaled to multiple thousands of CPUs and accomplished a long list of mission milestones on these ASC capability platforms. However, the computing demands of the ASC and Stockpile Stewardship programs also include a vast number of smaller scale runs for day-to-day simulations. Indeed, every 'hero' capability run requires many hundreds to thousands of much smaller runs in preparation and post processing activities. In addition, there are many aspects of the Stockpile Stewardship Program (SSP) that can be directly accomplished with these so-called 'capacity' calculations. The need for capacity is now so great within the program that it is increasingly difficult to allocate the computer resources required by the larger capability runs. To rectify the current 'capacity' computing resource shortfall, the ASC program has allocated a large portion of the overall ASC platforms budget to 'capacity' systems. In addition, within the next five to ten years the Life Extension Programs (LEPs) for major nuclear weapons systems must be accomplished. These LEPs and other SSP programmatic elements will further drive the need for capacity calculations and hence 'capacity' systems as well as future ASC capability calculations on 'capability' systems. To respond to this new workload analysis, the ASC program will be making a large sustained strategic investment in these capacity systems over the next ten years, starting with the United States Government Fiscal Year 2007 (GFY07). However, given the growing need for 'capability' systems as well, the budget demands are extreme and new, more cost effective ways of fielding these systems must be developed. This Tri-Laboratory Linux Capacity Cluster (TLCC) procurement represents the ASC first investment vehicle in these capacity systems. It also represents a new strategy for quickly building, fielding and integrating many Linux clusters of various sizes into classified and unclassified production service through a concept of Scalable Units (SU). The programmatic objective is to dramatically reduce the overall Total Cost of Ownership (TCO) of these 'capacity' systems relative to the best practices in Linux Cluster deployments today. This objective only makes sense in the context of these systems quickly becoming very robust and useful production clusters under the crushing load that will be inflicted on them by the ASC and SSP scientific simulation capacity workload.

  19. Accelerator Stewardship | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerator Stewardship High Energy Physics (HEP) HEP Home About Research Science Drivers of Particle Physics Energy Frontier Intensity Frontier Cosmic Frontier Theoretical and Computational Physics Advanced Technology R&D Accelerator Stewardship Background Awards Information for Investigators Test Facility Pilot Program Workshop Reports Facilities Science Highlights Benefits of HEP Funding Opportunities Advisory Committees Community Resources Contact Information High Energy Physics U.S.

  20. Laboratory Directed Research and Development FY2011 Annual Report

    SciTech Connect (OSTI)

    Craig, W; Sketchley, J; Kotta, P

    2012-03-22

    A premier applied-science laboratory, Lawrence Livermore National Laboratory (LLNL) has earned the reputation as a leader in providing science and technology solutions to the most pressing national and global security problems. The LDRD Program, established by Congress at all DOE national laboratories in 1991, is LLNL's most important single resource for fostering excellent science and technology for today's needs and tomorrow's challenges. The LDRD internally directed research and development funding at LLNL enables high-risk, potentially high-payoff projects at the forefront of science and technology. The LDRD Program at Livermore serves to: (1) Support the Laboratory's missions, strategic plan, and foundational science; (2) Maintain the Laboratory's science and technology vitality; (3) Promote recruiting and retention; (4) Pursue collaborations; (5) Generate intellectual property; and (6) Strengthen the U.S. economy. Myriad LDRD projects over the years have made important contributions to every facet of the Laboratory's mission and strategic plan, including its commitment to nuclear, global, and energy and environmental security, as well as cutting-edge science and technology and engineering in high-energy-density matter, high-performance computing and simulation, materials and chemistry at the extremes, information systems, measurements and experimental science, and energy manipulation. A summary of each project was submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to DOE/NNSA and LLNL mission areas, the technical progress achieved in FY11, and a list of publications that resulted from the research. The projects are: (1) Nuclear Threat Reduction; (2) Biosecurity; (3) High-Performance Computing and Simulation; (4) Intelligence; (5) Cybersecurity; (6) Energy Security; (7) Carbon Capture; (8) Material Properties, Theory, and Design; (9) Radiochemistry; (10) High-Energy-Density Science; (11) Laser Inertial-Fusion Energy; (12) Advanced Laser Optical Systems and Applications; (12) Space Security; (13) Stockpile Stewardship Science; (14) National Security; (15) Alternative Energy; and (16) Climatic Change.

  1. Sandia National Laboratories participation in the National Ignition Facility project

    SciTech Connect (OSTI)

    Boyes, J.; Boyer, W.; Chael, J.; Cook, D.; Cook, W.; Downey, T.; Hands, J.; Harjes, C.; Leeper, R.; McKay, P.; Micano, P.; Olson, R.; Porter, J.; Quintenz, J.; Roberts, V.; Savage, M.; Simpson, W.; Seth, A.; Smith, R.; Wavrik, M.; Wilson, M.

    1996-08-01

    The National Ignition Facility is a $1.1B DOE Defense Programs Inertial Confinement Fusion facility supporting the Science Based Stockpile Stewardship Program. The goal of the facility is to achieve fusion ignition and modest gain in the laboratory. The NIF project is responsible for the design and construction of the 192 beam, 1.8 MJ laser necessary to meet that goal. - The project is a National project with participation by Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), the University of Rochester Laboratory for Laser Energetics (URLLE) and numerous industrial partners. The project is centered at LLNL which has extensive expertise in large solid state lasers. The other partners in the project have negotiated their participation based on the specific expertise they can bring to the project. In some cases, this negotiation resulted in the overall responsibility for a WBS element; in other cases, the participating laboratories have placed individuals in the project in areas that need their individual expertise. The main areas of Sandia`s participation are in the management of the conventional facility design and construction, the design of the power conditioning system, the target chamber system, target diagnostic instruments, data acquisition system and several smaller efforts in the areas of system integration and engineering analysis. Sandia is also contributing to the technology development necessary to support the project by developing the power conditioning system and several target diagnostics, exploring alternate target designs, and by conducting target experiments involving the ``foot`` region of the NIF power pulse. The project has just passed the mid-point of the Title I (preliminary) design phase. This paper will summarize Sandia`s role in supporting the National Ignition Facility and discuss the areas in which Sandia is contributing. 3 figs.

  2. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories and Facilities Laboratories and Facilities Laboratories and Facilities National Energy Technology Laboratory - The National Energy Technology Laboratory (NETL) is the lead field center for the Office of Fossil Energy's research and development program. Scientists at its Pittsburgh, Pa., and Morgantown, W. Va., campuses conduct onsite research while contract administrators oversee nearly 700 federally-sponsored projects conducted by private sector research partners. The Houston,

  3. Long-Term Stewardship Study | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Long-Term Stewardship Study Long-Term Stewardship Study The Department of Energy (DOE) has prepared this Long-term Stewardship Study ("Study" or "Final Study") to comply with the terms of a settlement agreement between DOE, the Natural Resources Defense Council, and 38 other plaintiffs [Natural Resources Defense Council, et al. v. Richardson, et al., Civ. No. 97-936 (SS) (D.D.C. Dec. 12, 1998)]. The Study describes and analyzes several issues and a variety of information

  4. ORSSAB Member Corkie Staley is Committed to Stewardship of Local

    Office of Environmental Management (EM)

    Environment | Department of Energy Corkie Staley is Committed to Stewardship of Local Environment ORSSAB Member Corkie Staley is Committed to Stewardship of Local Environment April 7, 2015 - 9:09am Addthis Corkie Staley's term on the Oak Ridge Site Specific Advisory Board (ORSSAB) is a return engagement. "I was on the board from 2000-2002. During that time I served on the Stewardship Committee and was the board secretary." ORSSAB is a volunteer citizens' panel that provides advice

  5. Materials and Sensor R&D to Transform the Nuclear Stockpile: Livermore?s

    Office of Scientific and Technical Information (OSTI)

    Transformational Materials Initiative (Technical Report) | SciTech Connect Materials and Sensor R&D to Transform the Nuclear Stockpile: Livermore?s Transformational Materials Initiative Citation Details In-Document Search Title: Materials and Sensor R&D to Transform the Nuclear Stockpile: Livermore?s Transformational Materials Initiative As the nation's nuclear weapons age and the demands placed on them change, significant challenges face the nuclear stockpile. Risks include material

  6. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    performance computer system installed at Los Alamos National Laboratory June 17, 2014 Unclassified 'Wolf' system to advance many fields of science LOS ALAMOS, N.M., June 17, 2014-Los Alamos National Laboratory recently installed a new high-performance computer system, called Wolf, which will be used for unclassified research. "This machine modernizes our mid-tier resources available to Laboratory scientists," said Bob Tomlinson, of the Laboratory's High Performance Computing group.

  7. Defense Nuclear Material Stewardship Integrated Inventory Information Management System (IIIMS).

    SciTech Connect (OSTI)

    Aas, Christopher A.; Lenhart, James E.; Bray, Olin H.; Witcher, Christina Jenkin

    2004-11-01

    Sandia National Laboratories was tasked with developing the Defense Nuclear Material Stewardship Integrated Inventory Information Management System (IIIMS) with the sponsorship of NA-125.3 and the concurrence of DOE/NNSA field and area offices. The purpose of IIIMS was to modernize nuclear materials management information systems at the enterprise level. Projects over the course of several years attempted to spearhead this modernization. The scope of IIIMS was broken into broad enterprise-oriented materials management and materials forecasting. The IIIMS prototype was developed to allow multiple participating user groups to explore nuclear material requirements and needs in detail. The purpose of material forecasting was to determine nuclear material availability over a 10 to 15 year period in light of the dynamic nature of nuclear materials management. Formal DOE Directives (requirements) were needed to direct IIIMS efforts but were never issued and the project has been halted. When restarted, duplicating or re-engineering the activities from 1999 to 2003 is unnecessary, and in fact future initiatives can build on previous work. IIIMS requirements should be structured to provide high confidence that discrepancies are detected, and classified information is not divulged. Enterprise-wide materials management systems maintained by the military can be used as overall models to base IIIMS implementation concepts upon.

  8. Update on DOE/NNSA Long Term Stewardship Programs

    Broader source: Energy.gov [DOE]

    At the August 13, 2014 Committee meeting Tom Longo DOE, Explained What the Office of Legacy Management Does and how the Sites Across the DOE Complex are Managed for Long Term Stewardship.

  9. BPA recognized for stewardship in rights-of-way

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for vegetation management, accepts the accreditation plaque for a "Right-of-Way Steward" from the Right-of-Way Stewardship Council. BPA was recognized earlier this week for...

  10. Accelerator Stewardship Test Facility Program - Elliptical Twin Cavity for

    Office of Scientific and Technical Information (OSTI)

    Accelerator Applications (Program Document) | SciTech Connect Accelerator Stewardship Test Facility Program - Elliptical Twin Cavity for Accelerator Applications Citation Details In-Document Search Title: Accelerator Stewardship Test Facility Program - Elliptical Twin Cavity for Accelerator Applications Funding is being requested pursuant to the proposals entitled Elliptical Twin Cavity for Accelerator Applications that was submitted and reviewed through the Portfolio Analysis and Management

  11. Hands-on environmental stewardship deepens Erica Garcia, civil engineer,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    experience Hands-on environmental stewardship deepens student experience Hands-on environmental stewardship deepens Erica Garcia, civil engineer, experience Civil engineer undergraduate spends time in the field sampling water quality for the Lab. July 17, 2012 image description Erica Garcia, an undergraduate student, draws from her past while working on water quality with the Lab's Environmental Protection group. She currently assists with National Pollutant Discharge Elimination System

  12. Risk communications and the Chemical Stockpile Emergency-Planning Program

    SciTech Connect (OSTI)

    Vogt, B.M.; Sorensen, J.H.

    1994-09-01

    The CSEPP (Chemical Stockpile Emergency Preparedness Program) was created to improve emergency planning and response capabilities at the eight sites around the country that store chemical weapons. These weapons are scheduled to be destroyed in the near future. In preparation of the Draft Programmatic Environmental Impact Statement (DPEIS) for the Chemical Stockpile Disposal Program (CSDP), it was proposed that the Army mitigate accidents through an enhanced community emergency preparedness program at the eight storage sites. In 1986, the Army initiated the development of an Emergency Response Concept Plan (ERCP) for the CSDP, one of 12 technical support studies conducted during preparation of the Final Programmatic Environmental Impact Statement (FPEIS). The purpose of this document is to provide a fairly comprehensive source book on risk, risk management, risk communication research and recommended risk communication practices. It does not merely summarize each publication in the risk communication literature, but attempts to synthesize them along the lines of a set of organizing principles. Furthermore, it is not intended to duplicate other guidance manuals (such as Covello et al.`s manual on risk comparison). The source book was developed for the CSEPP in support of the training module on risk communications. Although the examples provided are specific to CSEPP, its use goes beyond that of CSEPP as the findings apply to a broad spectrum of risk communication topics. While the emphasis is on communication in emergency preparedness and response specific to the CSEPP, the materials cover other non-emergency communication settings. 329 refs.

  13. LOS ALAMOS, New Mexico, January 22, 2008-Laboratory Director Michael Anastasio

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    head of stockpile manufacturing and support January 22, 2008 Organization responsible for production of nuclear weapon components and other national security- related products and services LOS ALAMOS, New Mexico, January 22, 2008-Laboratory Director Michael Anastasio has named Carl Beard as the new associate director for stockpile manufacturing and support. Beard has held this position in an acting capacity since June 2007"The stockpile manufacturing directorate produces for the nation

  14. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forest fire near Los Alamos National Laboratory June 26, 2011 Los Alamos, New Mexico, June 26, 2011, 6:07pm-The Las Conchas fire burning in the Jemez Mountains approximately 12...

  15. Planning for quality stewardship: The sitewide environmental impact statement

    SciTech Connect (OSTI)

    Webb, D.

    1995-12-01

    The U.S Department of Energy is responsible for managing many large tracts of Federal land throughout this country. These sites host the nation`s nuclear weapons complex, national laboratories, environmental restoration facilities, and serve other uses. The Department faces unique problems in administering this land. Many have multiple activities taking place at the same time; for example, a site may simultaneously be used for energy research, technology development, waste disposal and wildlife habitat. The sites often use radioactive and other hazardous materials and many are contaminated as a result of past management practices. In 1992 the Department institutes a policy, as stated in its National Environmental Policy Act regulations [10 CFR 1021], to prepare sitewide environmental impact statements for its large, multipurpose sites. For the first time, through the sitewide environmental impact statement process, the Department has an effective tool to plan for quality stewardship of the lands and resources entrusted to its care. The sitewide environmental impact statement is a specialized type of programmatic environmental impact statement which allows the Department to look at the geographically connected actions taking place at a given site. The sitewide statement allows a comprehensive look at the operational baseline for the entire site to determine the total cumulative impact of ongoing operations at the site. The Department can identify areas where a change in management practices would mitigate undesirable impacts; areas not at issue could continue under existing practices. As a result, an environmentally-sound operating envelope can be established. This, in turn, can serve in the future as a threshold to decide if new proposals would result in significant impacts to the site as a whole, to simplify future National Environmental Policy Act reviews.

  16. SRNL Science and Innovation - Environmental Stewardship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scaled Testing and Demonstration SRNL has the rare capability to design and conduct both radiological and non-radiological testing and demonstrations from laboratory scale through pilot- and full-scale. Conventional laboratories, shielded cells, the SRNL Engineering Development Laboratory, and mobile modular facilities enable SRNL to perform a full suite of research activities as well as development leading directly to deployment. This capability plays a critical role in tank waste processing

  17. Sustainable Environmental Stewardship | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Silver level award winners were Ames Laboratory and Portsmouth Gaseous Diffusion Plant. Pollution Prevention and Waste Reduction The purpose of pollution prevention and waste ...

  18. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    strategy for long-term environmental sustainability March 1, 2013 Blueprint for planning work activities with the environment in mind LOS ALAMOS, N.M., March 1, 2013-The Department of Energy and Los Alamos National Laboratory have developed a long-term strategy for environmental stewardship and sustainability that provides a blueprint for protecting the environment while accomplishing the Laboratory's national security missions. "This plan represents a significant amount of effort on the

  19. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2, 2015 Projects save taxpayer dollars, promote environmental stewardship, sustainability LOS ALAMOS, N.M., April 22, 2015-Nearly 400 Los Alamos National Laboratory employees on 32 teams received Pollution Prevention awards during an Earth Day awards ceremony on Wednesday, saving taxpayers $5.6 million while also reusing, recycling, re-tasking and re-routing waste. "The goal of the Laboratory's pollution prevention efforts is to reduce or eliminate waste whenever possible. The awards

  20. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3, 2015 Projects save taxpayer dollars, promote environmental stewardship, sustainability LOS ALAMOS, N.M., April 22, 2015-Nearly 400 Los Alamos National Laboratory employees on 32 teams received Pollution Prevention awards during an Earth Day awards ceremony on Wednesday, saving taxpayers $5.6 million while also reusing, recycling, re-tasking and re-routing waste. "The goal of the Laboratory's pollution prevention efforts is to reduce or eliminate waste whenever possible. The awards

  1. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mexican pueblo preserves cultural history through collaborative tours with Los Alamos National Laboratory August 24, 2015 Students gain new insights into their ancestry LOS ALAMOS, N.M., Aug. 24, 2015-San Ildefonso Pueblo's Summer Education Enhancement Program brought together academic and cultural learning in the form of a recent tour of Cave Kiva Trail in Mortandad Canyon."Opening up this archaeological site and sharing it with the descendants of its first inhabitants is a

  2. Idaho National Laboratory Mission Accomplishments, Fiscal Year 2015

    SciTech Connect (OSTI)

    Allen, Todd Randall; Wright, Virginia Latta

    2015-09-01

    A summary of mission accomplishments for the research organizations at the Idaho National Laboratory for FY 2015. Areas include Nuclear Energy, National and Homeland Security, Science and Technology Addressing Broad DOE Missions; Collaborations; and Stewardship and Operation of Research Facilities.

  3. EIS-0347: Long-Term Management of the National Defense Stockpile Inventory of Excess Mercury

    Broader source: Energy.gov [DOE]

    This Defense Logistics Agency EIS evaluated alternatives for managing the Defense National Stockpile Center inventory of excess mercury. DOE was a cooperating agency for preparation of the draft EIS.

  4. Climate Stewardship Act of 2004 (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01

    The Climate Stewardship Act of 2004 would establish a system of tradable allowances to reduce greenhouse gas emissions. The bill includes requirements for mandatory emissions reporting by covered entities and for voluntary reporting of emissions reduction activities by noncovered entities; a national greenhouse gas database and registry of reductions; and a research program on climate change and related activities.

  5. Stewardship Science Academic Alliances Awards | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Alliances Awards 2015 Awards 2012 Awards Learn More 2012 SSAA Awards 2015 SSAA Awards Related Topics academic alliances defense programs R&D University Partnerships Related News Pantex and Y-12 teams receive NNSA Defense Programs awards NNSA Honors SRS Employees for Excellence 2015 NNSA Defense Programs Science Council Stewardship Science Academic Programs Annual

  6. Materials and Sensor R&D to Transform the Nuclear Stockpile: Livermore?s

    Office of Scientific and Technical Information (OSTI)

    Transformational Materials Initiative (Technical Report) | SciTech Connect Materials and Sensor R&D to Transform the Nuclear Stockpile: Livermore?s Transformational Materials Initiative Citation Details In-Document Search Title: Materials and Sensor R&D to Transform the Nuclear Stockpile: Livermore?s Transformational Materials Initiative × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and

  7. U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile September 17, 2007 - 2:41pm Addthis Declaration Reinforces U.S. Commitment to Nonproliferation VIENNA, AUSTRIA - Secretary of Energy Samuel W. Bodman today announced that the Department of Energy's National Nuclear Security Administration (NNSA) will remove nine metric tons of plutonium from further use as fissile material in U.S.

  8. EIS-0236-S1: National Ignition Facility Final Supplemental Environmental Impact Statement to the Stockpile Stewardship and Management Programmatic Environmental Impact Statement

    Broader source: Energy.gov [DOE]

    This Supplemental Environmental Impact Statement (SEIS) was prepared pursuant to a Joint Stipulation and Order approved and entered as an order of the court on October 27, 1997, in partial...

  9. Los Alamos National Laboratory | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Los Alamos National Laboratory Los Alamos National Laboratory Los Alamos National Laboratory | September 2006 Aerial View Los Alamos National Laboratory | September 2006 Aerial View Los Alamos National Laboratory's (LANL) primary mission is to provide scientific and engineering support to national security programs. LANL performs R&D, design, maintenance, and testing in support of the nuclear weapons stockpile. LANL also performs theoretical and applied R&D in such areas as materials

  10. LX-17-1 Stockpile Returned Material Lot Comparison

    SciTech Connect (OSTI)

    Gagliardi, F.; Pease, S.; Willey, T.

    2015-02-18

    Many different lots of LX-17 have been produced over the years. Two varieties of LX-17, LX-17-0 and LX-17-1, have at one point or another been a part of the Livermore stockpile systems. LX-17-0 was made with dry-aminated TATB whereas LX-17-1 was made with wet-aminated TATB. Both versions have the same TATB to Kel-F 800 mass ratio of 92.5%/7.5%. Both kinds of LX-17 were formulated at Holston during the late 1970s or early to mid-1980s and were certified to have met the necessary specifications that cover the purity, particle size range, explosive to binder ratio, etc. In recent years, Trevor Willy and others have performed a detailed evaluation of solid parts made from each of the LX-17 lots manufactured at Holston. Using the Advanced Light Source at LBNL, Willey and his colleagues radiographed many samples from isostatic pressings using the same scanning conditions. In their investigation they identified that even though the bulk composition can be the same, there may exist a large spread in how smoothly the TATB and binder were distributed within the radiographed volume of different lots of material.1 Overall, the dry-aminated TATB-based material, LX-17-0, had a smooth TATB and binder distribution, whereas the wet-aminated TATB-based LX-17-1 showed a wide range of binder distributions. The results for five different LX-17-1 lots are shown in Figure 1. The wide variation in material distribution has raised the question about whether or not this sort variability will cause significant differences in mechanical behavior.

  11. Saint Joseph's University Institute for Environmental Stewardship

    SciTech Connect (OSTI)

    McCann, Michael; Springer, Clint

    2014-06-18

    Task A: Examination of the physiological, morphological, and reproductive responses of Panicum virgatum (switchgrass) cultivars identified as potential biofuel producing cultivars as well as naturally-occurring varieties of switchgrass to projected changes in climate for the central portion of the United States. This project was a multi-year project set in a field site located at the Konza Prairie Biological Station near Manhattan, KS USA. The major objective of the study was to understand the physiological and growth responses of the important biofuel grass species, Panicum virgatum (switch grass) to simulated changes in precipitation expected for the Central Plains region of the United States. Population level adaptation to broad-scale regional climates or within-population variation in genome size of this genetically and phenotypically diverse C4 grass species may influence the responses to future precipitation variability associated with climate change. Therefore, we investigated switchgrass responses to water variability between natural populations collected across latitudinal gradient and populations. P. virgatum plants from natural populations originating from Kansas, Oklahoma, and Texas received frequent, small precipitation events (“ambient’) or infrequent, large precipitation events (‘altered”) to simulate contrasting rainfall variability expected from this region. We measured leaf-level physiology, aboveground biomass varied significantly by population origin but did not differ by genome size. Our results suggest that trait variation in P. virgatum is primarily attributed to population-level adaptation across latitudinal gradient, not genome size, and that neither population-level adaptation nor genome size may be important predictors of P. virgatum responses to future climatic conditions. Based solely on the data presented here, the most important consideration when deciding what varieties of switchgrass to cultivate for biofuel feedstocks under future climate scenarios is local adaptation and not necessarily genome size as has been hypothesized in the literature. Task B: Installation of an extensive green roof system on the Science Center at Saint Joseph's University for research, research-training and educational outreach activities. An experimental green roof system was designed and installed by an outside contractor (Roofmeadows) on the roof of the Science Center at Saint Joseph's University. The roof system includes four test plots, each with a different drainage system, instrumentation to monitor storm water retention, roof deck temperature, heat flux into and out of the building, rain fall, wind speed and direction, relative humidity and heat emission from the roof system. The vegetative roof was planted with 26 species of plants, distributed throughout the roof area, to assess species/variety growth and coverage characteristics, both in terms of the different drain layer systems, and in terms of the different exposures along the north to south axis of the building. Analysis of the drain layer performance, in terms of storm water retention, shows that the aggregate (stone) drainage layer system performed the best, with the moisture management mat system second, and the geotextile drain layer and reservoir sheet layer systems coming in last. This information is of value in the planning and design of vegetative roof systems since the different types of drainage layer systems have different installation costs and different weights. The different drainage layer systems also seem to be having an impact on plant growth and spread with the test plot with the reservoir sheet layer actually having the poorest plant coverage and plant spread of all areas of the roof studied. Plant growth performance analysis is ongoing, but significant differences have been observed in the third growing season ('13) along the north to south axis, with most species doing better towards the northern end of the roof (in terms of percent ground coverage and plant spread and reproduction). Interestingly, plant growth in all four of the test plots was reduced relative to the lower areas of the roof (the lower area was ca. 2 inches lower than the test plots, due to the space needed for sensors under the plots. The lower roof area uses an aggregate drain layer comparable to that in the third test plot), even when accounting for the north to south differences. The reasons for these differences are not clear and studies are underway to examine the impact of wind scour, drainage rates, temperature, and other factors. This information will be of value to planners of extensive vegetative roof systems in the Philadelphia (and broader) region, since plant growth and roof system overall performance is influenced by local climate, making broad generalizations of performance difficult. Task C: Education and community outreach efforts by the IES involving conferences at SJU, presentations by faculty and students off campus, and educational signage. The Institute for Environmental Stewardship hosted three storm water management workshops on the SJU campus in Philadelphia, in collaboration with the Lower Merion Conservancy, a not-for-profit organization located in Montgomery County, PA. These workshops were free and open to the public. The three workshops (held each year in March) drew more than 200 participants total. The presenters included local and state government agencies, not for profit organizations involved in storm water and open space preservation, designers, engineers, planners and others. Feedback was uniformly positive and we plan to continue the workshops for the foreseeable future. Educational signage has been installed at four locations on campus to explain campus infrastructure related to storm water (rain gardens, vegetative roof and green facades), as well as detailed signage installed on the Science Center roof for the vegetative roof system. More than 100 people (from in and outside of SJU) have thus far participated in tours of the roof system. A digital signage system has been installed in the adjacent library and this system provides information about the vegetative roof project and other efforts. A web camera system for the roof has also been installed and the video will be simulcast to the digital signage and with web site (www.sju.edu/ies) in the near future.

  12. Saint Joseph's University Institute for Environmental Stewardship

    SciTech Connect (OSTI)

    McCann, Micahel P.; Springer, Clint J.

    2014-06-03

    Task A: Examination of the physiological, morphological, and reproductive responses of Panicum virgatum (switchgrass) cultivars identified as potential biofuel producing cultivars as well as naturally-occurring varieties of switchgrass to projected changes in climate for the central portion of the United States. This project was a multi-year project set in a field site located at the Konza Prairie Biological Station near Manhattan, KS USA. The major objective of the study was to understand the physiological and growth responses of the important biofuel grass species, Panicum virgatum (switch grass) to simulated changes in precipitation expected for the Central Plains region of the United States. Population level adaptation to broad-scale regional climates or within-population variation in genome size of this genetically and phenotypically diverse C4 grass species may influence the responses to future precipitation variability associated with climate change. Therefore, we investigated switchgrass responses to water variability between natural populations collected across latitudinal gradient and populations. P. virgatum plants from natural populations originating from Kansas, Oklahoma, and Texas received frequent, small precipitation events (“ambient’) or infrequent, large precipitation events (‘altered”) to simulate contrasting rainfall variability expected from this region. We measured leaf-level physiology, aboveground biomass varied significantly by population origin but did not differ by genome size. Our results suggest that trait variation in P. virgatum is primarily attributed to population-level adaptation across latitudinal gradient, not genome size, and that neither population-level adaptation nor genome size may be important predictors of P. virgatum responses to future climatic conditions. Based solely on the data presented here, the most important consideration when deciding what varieties of switchgrass to cultivate for biofuel feedstocks under future climate scenarios is local adaptation and not necessarily genome size as has been hypothesized in the literature. Task B: Installation of an extensive green roof system on the Science Center at Saint Joseph's University for research, research-training and educational outreach activities. An experimental green roof system was designed and installed by an outside contractor (Roofmeadows) on the roof of the Science Center at Saint Joseph's University. The roof system includes four test plots, each with a different drainage system, instrumentation to monitor storm water retention, roof deck temperature, heat flux into and out of the building, rain fall, wind speed and direction, relative humidity and heat emission from the roof system. The vegetative roof was planted with 26 species of plants, distributed throughout the roof area, to assess species/variety growth and coverage characteristics, both in terms of the different drain layer systems, and in terms of the different exposures along the north to south axis of the building. Analysis of the drain layer performance, in terms of storm water retention, shows that the aggregate (stone) drainage layer system performed the best, with the moisture management mat system second, and the geotextile drain layer and reservoir sheet layer systems coming in last. This information is of value in the planning and design of vegetative roof systems since the different types of drainage layer systems have different installation costs and different weights. The different drainage layer systems also seem to be having an impact on plant growth and spread with the test plot with the reservoir sheet layer actually having the poorest plant coverage and plant spread of all areas of the roof studied. Plant growth performance analysis is ongoing, but significant differences have been observed in the third growing season ('13) along the north to south axis, with most species doing better towards the northern end of the roof (in terms of percent ground coverage and plant spread and reproduction). Interestingly, plant growth in all four of the test plots was reduced relative to the lower areas of the roof (the lower area was ca. 2 inches lower than the test plots, due to the space needed for sensors under the plots. The lower roof area uses an aggregate drain layer comparable to that in the third test plot), even when accounting for the north to south differences. The reasons for these differences are not clear and studies are underway to examine the impact of wind scour, drainage rates, temperature, and other factors. This information will be of value to planners of extensive vegetative roof systems in the Philadelphia (and broader) region, since plant growth and roof system overall performance is influenced by local climate, making broad generalizations of performance difficult. Task C: Education and community outreach efforts by the IES involving conferences at SJU, presentations by faculty and students off campus, and educational signage. The Institute for Environmental Stewardship hosted three storm water management workshops on the SJU campus in Philadelphia, in collaboration with the Lower Merion Conservancy, a not-for-profit organization located in Montgomery County, PA. These workshops were free and open to the public. The three workshops (held each year in March) drew more than 200 participants total. The presenters included local and state government agencies, not for profit organizations involved in storm water and open space preservation, designers, engineers, planners and others. Feedback was uniformly positive and we plan to continue the workshops for the foreseeable future. Educational signage has been installed at four locations on campus to explain campus infrastructure related to storm water (rain gardens, vegetative roof and green facades), as well as detailed signage installed on the Science Center roof for the vegetative roof system. More than 100 people (from in and outside of SJU) have thus far participated in tours of the roof system. A digital signage system has been installed in the adjacent library and this system provides information about the vegetative roof project and other efforts. A web camera system for the roof has also been installed and the video will be simulcast to the digital signage and with web site (www.sju.edu/ies) in the near future.

  13. Saint Joseph's University Institute for Environmental Stewardship

    SciTech Connect (OSTI)

    McCann, Michael P.; Springer, Clint J.

    2014-06-05

    Task A: Examination of the physiological, morphological, and reproductive responses of Panicum virgatum (switchgrass) cultivars identified as potential biofuel producing cultivars as well as naturally-occurring varieties of switchgrass to projected changes in climate for the central portion of the United States. This project was a multi-year project set in a field site located at the Konza Prairie Biological Station near Manhattan, KS USA. The major objective of the study was to understand the physiological and growth responses of the important biofuel grass species, Panicum virgatum (switch grass) to simulated changes in precipitation expected for the Central Plains region of the United States. Population level adaptation to broad-scale regional climates or within-population variation in genome size of this genetically and phenotypically diverse C4 grass species may influence the responses to future precipitation variability associated with climate change. Therefore, we investigated switchgrass responses to water variability between natural populations collected across latitudinal gradient and populations. P. virgatum plants from natural populations originating from Kansas, Oklahoma, and Texas received frequent, small precipitation events (“ambient’) or infrequent, large precipitation events (‘altered”) to simulate contrasting rainfall variability expected from this region. We measured leaf-level physiology, aboveground biomass varied significantly by population origin but did not differ by genome size. Our results suggest that trait variation in P. virgatum is primarily attributed to population-level adaptation across latitudinal gradient, not genome size, and that neither population-level adaptation nor genome size may be important predictors of P. virgatum responses to future climatic conditions. Based solely on the data presented here, the most important consideration when deciding what varieties of switchgrass to cultivate for biofuel feedstocks under future climate scenarios is local adaptation and not necessarily genome size as has been hypothesized in the literature. Task B: Installation of an extensive green roof system on the Science Center at Saint Joseph's University for research, research-training and educational outreach activities. An experimental green roof system was designed and installed by an outside contractor (Roofmeadows) on the roof of the Science Center at Saint Joseph's University. The roof system includes four test plots, each with a different drainage system, instrumentation to monitor storm water retention, roof deck temperature, heat flux into and out of the building, rain fall, wind speed and direction, relative humidity and heat emission from the roof system. The vegetative roof was planted with 26 species of plants, distributed throughout the roof area, to assess species/variety growth and coverage characteristics, both in terms of the different drain layer systems, and in terms of the different exposures along the north to south axis of the building. Analysis of the drain layer performance, in terms of storm water retention, shows that the aggregate (stone) drainage layer system performed the best, with the moisture management mat system second, and the geotextile drain layer and reservoir sheet layer systems coming in last. This information is of value in the planning and design of vegetative roof systems since the different types of drainage layer systems have different installation costs and different weights. The different drainage layer systems also seem to be having an impact on plant growth and spread with the test plot with the reservoir sheet layer actually having the poorest plant coverage and plant spread of all areas of the roof studied. Plant growth performance analysis is ongoing, but significant differences have been observed in the third growing season ('13) along the north to south axis, with most species doing better towards the northern end of the roof (in terms of percent ground coverage and plant spread and reproduction). Interestingly, plant growth in all four of the test plots was reduced relative to the lower areas of the roof (the lower area was ca. 2 inches lower than the test plots, due to the space needed for sensors under the plots. The lower roof area uses an aggregate drain layer comparable to that in the third test plot), even when accounting for the north to south differences. The reasons for these differences are not clear and studies are underway to examine the impact of wind scour, drainage rates, temperature, and other factors. This information will be of value to planners of extensive vegetative roof systems in the Philadelphia (and broader) region, since plant growth and roof system overall performance is influenced by local climate, making broad generalizations of performance difficult. Task C: Education and community outreach efforts by the IES involving conferences at SJU, presentations by faculty and students off campus, and educational signage. The Institute for Environmental Stewardship hosted three storm water management workshops on the SJU campus in Philadelphia, in collaboration with the Lower Merion Conservancy, a not-for-profit organization located in Montgomery County, PA. These workshops were free and open to the public. The three workshops (held each year in March) drew more than 200 participants total. The presenters included local and state government agencies, not for profit organizations involved in storm water and open space preservation, designers, engineers, planners and others. Feedback was uniformly positive and we plan to continue the workshops for the foreseeable future. Educational signage has been installed at four locations on campus to explain campus infrastructure related to storm water (rain gardens, vegetative roof and green facades), as well as detailed signage installed on the Science Center roof for the vegetative roof system. More than 100 people (from in and outside of SJU) have thus far participated in tours of the roof system. A digital signage system has been installed in the adjacent library and this system provides information about the vegetative roof project and other efforts. A web camera system for the roof has also been installed and the video will be simulcast to the digital signage and with web site (www.sju.edu/ies) in the near future.

  14. Saint Joseph's University Institute for Environmental Stewardship

    SciTech Connect (OSTI)

    McCann, Michael P; Springer, Clint

    2013-10-15

    Task A: Examination of the physiological, morphological, and reproductive responses of Panicum virgatum (switchgrass) cultivars identified as potential biofuel producing cultivars as well as naturally-occurring varieties of switchgrass to projected changes in climate for the central portion of the United States. This project was a multi-year project set in a field site located at the Konza Prairie Biological Station near Manhattan, KS USA. At the field site we planted switchgrass collected from regions in Kansas, Oklahoma, and Texas. After a year of establishment we implemented a set of two-year water treatments that examined the responses in physiology, growth and development of switchgrass to predicted changes in precipitation amount for the central United States. After this experiment was completed we performed a second set of experiments that examined the responses of switchgrass physiology, growth, and development to changes in precipitation frequency. We also included in this analysis how genome size of individuals influenced their responses to precipitation frequency changes. Generally, we found switchgrass to be unresponsive to realistic predictions of precipitation changes for the Central Plains of the United States. These studies have provided significant insight into how this important grassland species will respond to future climate change from both an ecological and applied biological perspective. Finally, we provided insight into the mechanism through which this species changes in the face of altered water availability by not supporting the hypothesis that the control of switchgrass responses to changes in precipitation is altered by genome size. Task B: Installation of an extensive green roof system on the Science Center at Saint Joseph's University for research, research-training and educational outreach activities. An experimental green roof system was designed and installed by an outside contractor (Roofmeadows) on the roof of the Science Center at Saint Joseph's University. The roof system includes four test plots, each with a different drainage system, instrumentation to monitor storm water retention, roof deck temperature, heat flux into and out of the building, rain fall, wind speed and direction, relative humidity and heat emission from the roof system. The vegetative roof was planted with 26 species of plants, distributed throughout the roof area, to assess species/variety growth and coverage characteristics, both in terms of the different drain layer systems, and in terms of the different exposures along the north to south axis of the building. Analysis of the drain layer performance, in terms of storm water retention, shows that the aggregate (stone) drainage layer system performed the best, with the moisture management mat system second, and the geotextile drain layer and reservoir sheet layer systems coming in last. Plant growth performance analysis is ongoing, but significant differences have been observed in the third growing season ('13) along the north to south axis, with most species doing better towards the northern end of the roof (in terms of percent ground coverage and plant spread and reproduction). Interestingly, plant growth in all four of the test plots was reduced relative to the lower areas of the roof (the lower area was ca. 2 inches lower than the test plots, due to the space needed for sensors under the plots. The lower roof area uses an aggregate drain layer comparable to that in the third test plot), even when accounting for the north to south differences. The reasons for these differences are not clear and studies are underway to examine the impact of wind scour, drainage rates, temperature, and other factors. Task C: Education and community outreach efforts by the IES involving conferences at SJU, presentations by faculty and students off campus, and educational signage. The Institute for Environmental Stewardship hosted three storm water management workshops on the SJU campus in Philadelphia, in collaboration with the Lower Merion Conservancy, a not-for-profit organization located in Montgomery County, PA. These workshops were free and open to the public. The three workshops (held each year in March) drew more than 200 participants total. The presenters included local and state government agencies, not for profit organizations involved in storm water and open space preservation, designers, engineers, planners and others. Feedback was uniformly positive and we plan to continue the workshops for the foreseeable future. Educational signage has been installed at four locations on campus to explain campus infrastructure related to storm water (rain gardens, vegetative roof and green facades), as well as detailed signage installed on the Science Center roof for the vegetative roof system. More than 100 people (from in and outside of SJU) have thus far participated in tours of the roof system. A digital signage system has been installed in the adjacent library and this system provides information about the vegetative roof project and other efforts. A web camera system for the roof has also been installed and the video will be simulcast to the digital signage and with web site (www.sju.edu/ies) in the near future.

  15. NNSA Site Receives Award for Environmental Stewardship | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration Press Releases NNSA Site Receives Award for Environmental Stewardship April 30, 2009 WASHINGTON, DC - The National Nuclear Security Administration (NNSA) today congratulated its NNSA's Y-12 National Security Complex for receiving a prestigious White House Closing the Circle award, which recognizes federal leadership in environmental sustainability. Y-12 was honored for its innovation on pollution prevention. "I congratulate Y-12 for its continued support in

  16. Site Transition Summary: Cleanup Completion to Long-Term Stewardship at

    Energy Savers [EERE]

    Department of Energy On-going Mission Sites | Department of Energy Summary: Cleanup Completion to Long-Term Stewardship at Department of Energy On-going Mission Sites Site Transition Summary: Cleanup Completion to Long-Term Stewardship at Department of Energy On-going Mission Sites Long-term stewardship (LTS) includes the physical controls, institutions, information, and other mechanisms needed to ensure protection of people and the environment at sites where the U.S. Department of Energy

  17. Site Transition Summary: Clean-up Completion to Long Term Stewardship

    Broader source: Energy.gov [DOE]

    At the August 13, 2014 Committee meeting Tom Longo DOE, Provided Information on the Long Term Stewardship Process that the Office of Legacy Management is Responsible for.

  18. BNL Celebrates the Fifth Year of the Open Space Stewardship Program

    ScienceCinema (OSTI)

    None

    2013-07-22

    About 400 students, parents, teachers, land stewards, and administrators attended a celebration hosted by BNL to mark the fifth anniversary of the Open Space Stewardship Program (OSSP).

  19. BNL Celebrates the Fifth Year of the Open Space Stewardship Program

    SciTech Connect (OSTI)

    2011-06-10

    About 400 students, parents, teachers, land stewards, and administrators attended a celebration hosted by BNL to mark the fifth anniversary of the Open Space Stewardship Program (OSSP).

  20. The National Ignition Facility: Studying the Stars in the Laboratory

    SciTech Connect (OSTI)

    Boyd, R

    2008-09-17

    The National Ignition Facility, to be completed in 2009, will be the highest energy laser ever built. The high temperatures and densities it will produce will enable a number of experiments in inertial confinement fusion and stockpile stewardship, as well as in nuclear astrophysics, X-ray astronomy, hydrodynamics, and planetary science. The National Ignition Facility, NIF (1), located at Lawrence Livermore National Lab, (LLNL) is expected to produce inertial confinement fusion (ICF) by delivering sufficient laser energy to compress and heat a millimeter-radius pellet of DT sufficiently to produce fusion to {sup 4}He+neutron and 17.6 MeV per reaction. NIF will be completed by March, 2009, at which time a National Ignition Campaign (2), NIC, a series of experiments to optimize the ICF parameters, will begin. Although NIF is a research facility, a successful NIC would have implications for future energy sources. In addition to the goal of ICF, NIF will support programs in stockpile stewardship. However, the conditions that NIF creates will simulate those inside stars and planets sufficiently closely to provide compelling motivation for experiments in basic high-energy-density (HED) science especially, for the first time, in nuclear astrophysics.

  1. Analysis of S.139, the Climate Stewardship Act of 2003

    Reports and Publications (EIA)

    2003-01-01

    On January 9, 2003, Senators John McCain and Joseph I. Lieberman introduced Senate Bill 139 (S.139), the Climate Stewardship Act of 2003, in the U.S. Senate. S.139 would require the Administrator of the U.S. Environmental Protection Agency (EPA) to promulgate regulations to limit greenhouse gas emissions. On January 28, 2003, Senator James M. Inhofe requested that the Energy Information Administration (EIA) perform a comprehensive analysis of S.139. On April 2, 2003, Senators McCain and Lieberman, cosponsors of S.139, made a further request for analyses of their bill. This Service Report responds to both requests.

  2. Microsoft Word - FWP-Accel Stewardship Test Fac Pilot Prog

    Office of Scientific and Technical Information (OSTI)

    FIELD WORK PROPOSAL 1. WORK PROPOSAL NO.: JLAB-HEP15-02 2. REVISION NO.: 3. DATE PREPARED: March 2015 4. WORK PROPOSAL TITLE: PUBLIC OUTREACH EVENT FOR ACCELERATOR STEWARDSHIP TEST FACILITY PILOT PROGRAM 5. BUDGET AND REPORTING CODE: KA2601020 6. WORK PROPOSAL TERM: Begin 4/1/15 End 6/15/15 7. HEADQUARTERS OFFICE PROGRAM MANAGER: Eric Colby, (301-903-5475) cric.colbyWscicncc.doc.gov 8. HEADQUARTERS ORGANIZATION: Office of Science - SC - HEP (SC-25) 9. DOE FIELD ELEMENT WORK PROPOSAL REVIEWER:

  3. Laboratory Policy (LP) Homepage | U.S. DOE Office of Science...

    Office of Science (SC) Website

    The Department of Energy is responsible for the effective stewardship of 17 world-class national laboratories, 10 of which are under the purview of the Office of Science.Read More ...

  4. Los Alamos National Security, LLC Los Alamos National Laboratory (LANL)

    Office of Environmental Management (EM)

    Los Alamos National Laboratory Los Alamos National Laboratory Los Alamos National Laboratory | September 2006 Aerial View Los Alamos National Laboratory | September 2006 Aerial View Los Alamos National Laboratory's (LANL) primary mission is to provide scientific and engineering support to national security programs. LANL performs R&D, design, maintenance, and testing in support of the nuclear weapons stockpile. LANL also performs theoretical and applied R&D in such areas as materials

  5. Labyrinth to Store Energy in Basement for Later Use - News Feature | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Labs In 20th Year, Stockpile Stewardship Program Celebrated As One of Nation's Greatest Achievements in Science and Security (WASHINGTON) - The proven success of the Stockpile Stewardship Program (SSP)-which pushed the limits of modern science and engineering by requiring the transition from explosive nuclear weapons testing to what is effectively virtual nuclear testing-was celebrated today at a half-day public event... Savannah River Analytical Laboratories Achieve International Standard

  6. Labs | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Home Labs In 20th Year, Stockpile Stewardship Program Celebrated As One of Nation's Greatest Achievements in Science and Security (WASHINGTON) - The proven success of the Stockpile Stewardship Program (SSP)-which pushed the limits of modern science and engineering by requiring the transition from explosive nuclear weapons testing to what is effectively virtual nuclear testing-was celebrated today at a half-day public event... Savannah River Analytical Laboratories Achieve International Standard

  7. NNSA Announces Procurement of Penguin Computing Clusters to Support

    National Nuclear Security Administration (NNSA)

    Stockpile Stewardship at National Labs | National Nuclear Security Administration Announces Procurement of Penguin Computing Clusters to Support Stockpile Stewardship at National Labs October 20, 2015 The National Nuclear Security Administration's (NNSA's) Lawrence Livermore National Laboratory today announced the awarding of a subcontract to Penguin Computing - a leading developer of high-performance Linux cluster computing systems based in Silicon Valley - to bolster computing for

  8. Sandia National Laboratories: About Sandia: Environmental Responsibility:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environmental Management: Sandia Management System Environmental Management System Publications Certificates of Registration Environmental Programs Environment, Safety & Health Policy Public Meetings Pollution Prevention Information Repository Index Long-term Stewardship About Environmental Management System Lizard Sandia National Laboratories (Sandia) is committed to environmental protection with its mission and recognizes that the environment must be protected and preserved for future

  9. computing | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    computing NNSA Announces Procurement of Penguin Computing Clusters to Support Stockpile Stewardship at National Labs The National Nuclear Security Administration's (NNSA's) Lawrence Livermore National Laboratory today announced the awarding of a subcontract to Penguin Computing - a leading developer of high-performance Linux cluster computing systems based in Silicon Valley - to bolster computing for stockpile

  10. lllnl | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lllnl NNSA Announces Procurement of Penguin Computing Clusters to Support Stockpile Stewardship at National Labs The National Nuclear Security Administration's (NNSA's) Lawrence Livermore National Laboratory today announced the awarding of a subcontract to Penguin Computing - a leading developer of high-performance Linux cluster computing systems based in Silicon Valley - to bolster computing for stockpile

  11. Sandia National Laboratories: About Sandia: Leadership: Vice President,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    California Laboratory & Energy and Climate: Marianne Walck Walck Vice President, California Laboratory & Energy and Climate Marianne Walck Marianne C. Walck is vice president of Sandia's California laboratory and serves as lead for the Laboratories' Energy and Climate business unit. The California laboratory's principal programs include nuclear weapons stewardship; homeland security with a focus on defending against weapons of mass destruction; combustion, transportation and hydrogen

  12. EIS-0236-S1: Draft Supplemental Programmatic Environmental Impact Statement

    Broader source: Energy.gov [DOE]

    National Ignition Facility Draft Environmental Impact Statement to the Stockpile Stewardship and Management

  13. EIS-0236-S1: DOE Notice of Availability of the Draft Environmental Impact Statement

    Broader source: Energy.gov [DOE]

    National Ignition Facility Draft Environmental Impact Statement to the Stockpile Stewardship and Management

  14. EIS-0236: Record of Decision

    Broader source: Energy.gov [DOE]

    Record of Decision Programmatic Environmental Impact Statement for Stockpile Stewardship and Management

  15. EIS-0236-S1: Notice of Availability for the Draft Supplemental Programmatic Environmental Impact Statement

    Broader source: Energy.gov [DOE]

    National Ignition Facility Draft Environmental Impact Statement to the Stockpile Stewardship and Management

  16. Certainty in Stockpile Computing: Recommending a Verification and Validation Program for Scientific Software

    SciTech Connect (OSTI)

    Lee, J.R.

    1998-11-01

    As computing assumes a more central role in managing the nuclear stockpile, the consequences of an erroneous computer simulation could be severe. Computational failures are common in other endeavors and have caused project failures, significant economic loss, and loss of life. This report examines the causes of software failure and proposes steps to mitigate them. A formal verification and validation program for scientific software is recommended and described.

  17. ARC will make tiny "movies" of thermonuclear and stockpile experiments

    National Nuclear Security Administration (NNSA)

    | National Nuclear Security Administration Home / Blog ARC will make tiny "movies" of thermonuclear and stockpile experiments Wednesday, January 13, 2016 - 12:00am Installation of part of ARC preamplifer systems. X-ray radiograph of a backlit grid produced on the first programmatic ARC shot. The National Ignition Facility's (NIF) performed the first programmatic experiments with Advanced Radiographic Capability (ARC) on December 1-3, 2015. ARC, a petawatt-class laser with peak

  18. Statement on B61 Life Extension Program and Future Stockpile Strategy

    National Nuclear Security Administration (NNSA)

    before the House Armed Services Subcommittee on Strategic Forces | National Nuclear Security Administration Statement on B61 Life Extension Program and Future Stockpile Strategy before the House Armed Services Subcommittee on Strategic Forces October 30, 2013 Introduction Chairman Rogers, Ranking Member Cooper and distinguished members of the Subcommittee, thank you for having me here to discuss the President's plans for nuclear weapon modernization focused on the B61 Life Extension Program

  19. Stockpile coordination project. Harvard Energy Security Program. Final report. [Response of other oil importers to USA SPR policy

    SciTech Connect (OSTI)

    Devarajan, S.; Hubbard, R.G.; Weiner, R.

    1983-10-01

    This report considers the response of other oil importers to the United States' SPR policy. The treatment models the behavior of public stockpiles in other countries as endogenous. Simple theoretical and more complex simulation models are used to compare a cooperative stockpile drawdown policy (among oil importers) to one in which each country acts in its own self-interest. Finally, a specific agreement is proposed that attempts to capture the benefits from cooperation.

  20. Introduction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U1a facility is an underground laboratory used for subcritical experiments; physics experiments that are used to obtain technical information about the U.S. nuclear weapons stockpile. These experiments support the U.S. Department of Energy, National Nuclear Security Administration's (NNSA) Stockpile Stewardship Programs, created to maintain the safety and reliability of the U.S. nuclear weapons stockpile. The U1a borehole was originally excavated in the 1960s for an underground nuclear test that

  1. Long-Term Stewardship of Mixed Wastes: Passive Reactive Barriers for

    Office of Scientific and Technical Information (OSTI)

    Simultaneous In Situ Remediation of Chlorinated Solvent, Heavy Metal, and Radionuclide Contaminants (Technical Report) | SciTech Connect Long-Term Stewardship of Mixed Wastes: Passive Reactive Barriers for Simultaneous In Situ Remediation of Chlorinated Solvent, Heavy Metal, and Radionuclide Contaminants Citation Details In-Document Search Title: Long-Term Stewardship of Mixed Wastes: Passive Reactive Barriers for Simultaneous In Situ Remediation of Chlorinated Solvent, Heavy Metal, and

  2. Long-term Stewardship of Mixed Wastes: Passive Reactive Barriers for

    Office of Scientific and Technical Information (OSTI)

    Simultaneous In Situ Remediation of Chlorinated Solvent, Heavy Metal and Radioactive (Technical Report) | SciTech Connect Long-term Stewardship of Mixed Wastes: Passive Reactive Barriers for Simultaneous In Situ Remediation of Chlorinated Solvent, Heavy Metal and Radioactive Citation Details In-Document Search Title: Long-term Stewardship of Mixed Wastes: Passive Reactive Barriers for Simultaneous In Situ Remediation of Chlorinated Solvent, Heavy Metal and Radioactive This project report

  3. EO 13547: Stewardship of the Ocean, Our Coasts, and the Great Lakes (2010)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy 47: Stewardship of the Ocean, Our Coasts, and the Great Lakes (2010) EO 13547: Stewardship of the Ocean, Our Coasts, and the Great Lakes (2010) This order establishes a national policy to ensure the protection, maintenance, and restoration of the health of ocean, coastal, and Great Lakes ecosystems and resources, enhance the sustainability of ocean and coastal economies, preserve our maritime heritage, support sustainable uses and access, provide for adaptive

  4. SSQ V1 N1_24feb11_FINAL

    National Nuclear Security Administration (NNSA)

    1 2011 Comments Questions or comments regarding the Stockpile Stewardship Quarterly should be directed to Terri Batuyong, Terri.Batuyong@nnsa.doe.gov Technical Editor: Douglas Drake, Publication Editor: Millicent Mischo Inside This Issue Stockpile Stewardship Defense Programs Stockpile Stewardship in Action Volume 1, Number 1 Quarterly Office of Stockpile Stewardship NA-11 Office of Stockpile Stewardship Assistant Deputy Administrator, Dr. Chris Deeney Deputy for Operations, COL Mark Visosky

  5. Chemical risk management strategies for product stewardship and community partnership

    SciTech Connect (OSTI)

    Armstrong, C.E. )

    1993-01-01

    With the recent enactments of the environment, health and safety statutes, the once protective walls of an industrial facility are opening to the scrutiny of an inquisitive public. Indeed, the Emergency Planning and Community Right-to-Know Act (EPCRA), Process Safety Management under OSHA 1910.119, and Title III of the Clean Air Act Amendments impose substantial reporting requirements under the auspices of community right to know'' and require written program plans that must be submitted to become public documents. Through these Acts, the public and industry are becoming partners in the understanding and management of human health and environmental risks posed by the chemical inventories, processes, and emissions from an industrial facility. The types of information required by the Act to be available to the public can include quantities, locations, process throughputs, environmental fates, and emissions volumes of manufacturer-specific chemicals for certain industrial facilities. With their implementation of compliance measures with these requirements, industrial facilities have an opportunity to become a public educator about the chemicals they use in the process of making their products. By proactively soliciting a partnership with communities to learn about their concerns, companies can more effectively communicate risks to the public and provide a new kind of stewardship to their products.

  6. stockpile modernization

    National Nuclear Security Administration (NNSA)

    6%2A en Sandia completes major overhaul of key nuclear weapons test facilities http:nnsa.energy.govblogsandia-completes-major-overhaul-key-nuclear-weapons-test-facilities...

  7. National Security Science April 2016 Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 2016 Los Alamos National Laboratory SCIENCE NATIONAL SECURITY In this issue Los Alamos Leads Explosives-Science Research The Hurt-Locker School: Los Alamos's Advanced Homemade Explosives Course Lab Scientists Analyze North Korea's "Hydrogen Bomb" Test April 2016 Los Alamos National Laboratory Los Alamos National Laboratory has been at the forefront of high-explosives research since the Manhattan Project in 1943. The science of high-explosive performance is central to stockpile

  8. Radiological Laboratory, Utility, Office Building LEED Strategy & Achievement

    SciTech Connect (OSTI)

    Seguin, Nicole R.

    2012-07-18

    Missions that the Radiological Laboratory, utility, Office Building (RLUOB) supports are: (1) Nuclear Materials Handling, Processing, and Fabrication; (2) Stockpile Management; (3) Materials and Manufacturing Technologies; (4) Nonproliferation Programs; (5) Waste Management Activities - Environmental Programs; and (6) Materials Disposition. The key capabilities are actinide analytical chemistry and material characterization.

  9. A database system for characterization of munitions items in conventional ammunition demilitarization stockpiles

    SciTech Connect (OSTI)

    Chun, K.C.; Chiu, S.Y.; Ditmars, J.D.; Huber, C.C.; Nortunen, L.; Sabb, R.

    1994-05-01

    The MIDAS (Munition Items Disposition Action System) database system is an electronic data management system capable of storage and retrieval of information on the detailed structures and material compositions of munitions items designated for demilitarization. The types of such munitions range from bulk propellants and small arms to projectiles and cluster bombs. The database system is also capable of processing data on the quantities of inert, PEP (propellant, explosives and pyrotechnics) and packaging materials associated with munitions, components, or parts, and the quantities of chemical compounds associated with parts made of PEP materials. Development of the MIDAS database system has been undertaken by the US Army to support disposition of unwanted ammunition stockpiles. The inventory of such stockpiles currently includes several thousand items, which total tens of thousands of tons, and is still growing. Providing systematic procedures for disposing of all unwanted conventional munitions is the mission of the MIDAS Demilitarization Program. To carry out this mission, all munitions listed in the Single Manager for Conventional Ammunition inventory must be characterized, and alternatives for resource recovery and recycling and/or disposal of munitions in the demilitarization inventory must be identified.

  10. Sandia National Laboratories: Advanced Pulsed Power Concepts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Pulsed Power Concepts Sandia's Pulsed Power Research Programs Sandia Research Sandia has become the undisputed leader in fast pulsed power science and technology. Beginning in the 1960s, our pulsed power devices have helped assure the performance of every nuclear system in the stockpile. In July 2014's issue of Sandia Research, learn more about the amazing capabilities of the Z Machine and our Pulsed Power technologies and the critical work we perform here at the laboratories. Linear

  11. NNSA announces winners of Stewardship Science Academic Programs...

    National Nuclear Security Administration (NNSA)

    Alliances Program, the NNSA-supported grants from the Joint Program for High Energy Density Laboratory Plasmas, and grants awarded under the National Laser Users' Facility. ...

  12. Human Health and Ecological Risk Assessment for the Operation of the Explosives Waste Treatment Facility at Site 300 of the Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Gallegos, G; Daniels, J; Wegrecki, A

    2007-10-01

    This document contains the human health and ecological risk assessment for the Resource Recovery and Conservation Act (RCRA) permit renewal for the Explosives Waste Treatment Facility (EWTF). Volume 1 is the text of the risk assessment, and Volume 2 (provided on a compact disc) is the supporting modeling data. The EWTF is operated by the Lawrence Livermore National Laboratory (LLNL) at Site 300, which is located in the foothills between the cities of Livermore and Tracy, approximately 17 miles east of Livermore and 8 miles southwest of Tracy. Figure 1 is a map of the San Francisco Bay Area, showing the location of Site 300 and other points of reference. One of the principal activities of Site 300 is to test what are known as 'high explosives' for nuclear weapons. These are the highly energetic materials that provide the force to drive fissionable material to criticality. LLNL scientists develop and test the explosives and the integrated non-nuclear components in support of the United States nuclear stockpile stewardship program as well as in support of conventional weapons and the aircraft, mining, oil exploration, and construction industries. Many Site 300 facilities are used in support of high explosives research. Some facilities are used in the chemical formulation of explosives; others are locations where explosive charges are mechanically pressed; others are locations where the materials are inspected radiographically for such defects as cracks and voids. Finally, some facilities are locations where the machined charges are assembled before they are sent to the onsite test firing facilities, and additional facilities are locations where materials are stored. Wastes generated from high-explosives research are treated by open burning (OB) and open detonation (OD). OB and OD treatments are necessary because they are the safest methods for treating explosives wastes generated at these facilities, and they eliminate the requirement for further handling and transportation that would be required if the wastes were treated off site.

  13. National Security Science July 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    July 2014 Also in this issue What's in the U.S. Nuclear Stockpile? Secrecy and Surveillance: Threats to National Security? July 2014 Los Alamos National Laboratory Los Alamos National Laboratory This issue presents three very personal and timely perspectives on current national security topics. The first perspective regards the events leading up to the birth of the Stockpile Stewardship Program and follows with a personal assessment of the program's current health. As seen by Joe Martz, a Los

  14. Principal Associate Director - Weapons Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Weapons Programs As Principal Associate Director for the Weapons Program, Robert Webster leads the programs to assure the safety, security, and effectiveness of the systems in the nation's nuclear stockpile. Contact Operator Los Alamos National Laboratory (505) 667-5061 Under his leadership, the LANL Weapons Program integrates planning and execution of the stockpile stewardship program, a critical mission of the Laboratory. Robert Webster Bob Webster Under the leadership of Principal Associate

  15. Los Alamos National Laboratory receives Department of Energy environmental

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sustainability award DOE environmental sustainability award Los Alamos National Laboratory receives Department of Energy environmental sustainability award EStar awards recognize excellence in pollution prevention and sustainable environmental stewardship. October 14, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

  16. DOE/EIS-0236, Oakland Operations Office, National Ignition Facility Final Supplemental Environmental Impact Statement to the Stockpile Stewardship and Management Programmatic Environmental Impact Statement Volume II: Response to Public Comments (January 2

    Broader source: Energy.gov [DOE]

    DOE issued the Draft SEIS for public review and comment by mailings to stakeholders and by announcements in the Federal Register (FR) on November 5, 1999, (64 FR 60430) (Attachment 4 of Volume I)...

  17. Technical Assistance Guide: Working with DOE National Laboratories (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-07-01

    A fact sheet that provides an overview of FEMP's technical assistance through the Department of Energy's National Laboratories. The Federal Energy Management Program (FEMP) facilitates the Federal Government's implementation of sound, cost-effective energy management and investment practices to enhance the nation's energy security and environmental stewardship. To advance that mission, FEMP fosters collaboration between Federal agencies and U.S. Department of Energy (DOE) national laboratories. This guide outlines technical assistance capabilities and expertise at DOE national laboratories. Any laboratory assistance must be in accordance with Federal Acquisition Regulation (FAR) Subpart 35.017 requirements and the laboratory's designation as Federal Funded Research and Development Center (FFRDC) facilities.

  18. lanl | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Stewardship Program at a half-day public event featuring remarks by Secretary of Energy Ernest Moniz, Secretary of State In 20th Year, Stockpile Stewardship Program...

  19. DOE's Nuclear Weapons Complex: Challenges to Safety, Security, and Taxpayer Stewardship

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oversight and Investigations Committee on Energy and Commerce U.S. House of Representatives "DOE's Nuclear Weapons Complex: Challenges to Safety, Security, and Taxpayer Stewardship" FOR RELEASE ON DELIVERY 10:00 AM September 12, 2012 1 Mr. Chairman and Members of the Subcommittee, I am pleased to be here at your request to testify on matters relating to the Department of Energy's oversight of the nuclear weapons complex. 1 The National Nuclear Security Administration (NNSA) was

  20. Web Feature Nuclear Stewardship: Lessons from a Not-So-Remote Island

    Office of Legacy Management (LM)

    Geotimes - March 2002 - Amchitka Island Yage 1 ot 6 Web Feature Nuclear Stewardship: Lessons from a Not-So-Remote Island John Eichelberger, Jeff Freymueller. Graham Hill and Matt Patrick The authors' work at Amchitka is part of a program of independent risk assessment of U.S. Department of Energy (DOE) sites funded by DOE and managed by the Consortium for Risk Assessment for Stakeholder Participation (CRESPII). The views expressed here are our own, with the intent to stimulate constructive

  1. Microsoft PowerPoint - Roberts, IV and Stewardship (SSAB April 2010).ppt [Compatibility Mode]

    Office of Environmental Management (EM)

    Independent Verification and Independent Verification and Stewardship April 29, 2010 Sarah Roberts, CHP Acting Program Director, ORISE IEAV Benefits of IV "IV is an important quality assurance step that ensures cleanup goals have been achieved" (DOE Lessons Learned from Independent have been achieved (DOE Lessons Learned from Independent Verification Activities, July 2008) * Offers a cost-effective way to provide assurance that the site was successfully remediated to the risk-based

  2. Energy Market and Economic Impacts of S. 280, the Climate Stewardship and Innovation Act of 2007

    Reports and Publications (EIA)

    2007-01-01

    This report responds to a request from Senators Joseph Lieberman and John McCain for an estimate of the economic impacts of S.280, the Climate Stewardship and Innovation Act of 2007. S. 280 would establish a series of caps on greenhouse gas emissions starting in 2012 followed by increasingly stringent caps beginning in 2020, 2030 and 2050. The report provides estimates of the effects of S. 280 on energy markets and the economy through 2030.

  3. Environment | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    but also to promote responsible environmental stewardship in America and around the globe. Research includes alternative energy systems, environmental risk and economic impact...

  4. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    strategy for long-term environmental sustainability March 1, 2013 Blueprint for planning ... for environmental stewardship and sustainability that provides a blueprint for ...

  5. Sandia National Laboratories: Pollution Prevention

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pollution Prevention Environmental Management System Pollution Prevention Sustainable Acquisition Electronics Stewardship Recycling Reuse Outreach Awards News Information...

  6. Artificial neural network modeling of the spontaneous combustion occurring in the industrial-scale coal stockpiles with 10-18 mm coal grain sizes

    SciTech Connect (OSTI)

    Ozdeniz, A.H.; Yilmaz, N.

    2009-07-01

    Companies consuming large amounts of coal should work with coal stocks in order to not face problems due to production delays. The industrial-scale stockpiles formed for the aforementioned reasons cause environmental problems and economic losses for the companies. This study was performed in a coal stock area of a large company in Konya, which uses large amounts of coal in its manufacturing units. The coal stockpile with 5 m width, 10 m length, 3 m height, and having 120 tons of weight was formed in the coal stock area of the company. The inner temperature data of the stockpile was recorded by 17 temperature sensors placed inside the stockpile at certain points. In order to achieve this goal, the electrical signal conversion of temperatures sensed by 17 temperature sensors placed in certain points inside the coal stockpile, the transfer of these electrical signals into computer media by using analog-digital conversion unit after applying necessary filtration and upgrading processes, and the record of these information into a database in particular time intervals are provided. Additionally, the data relating to the air temperature, air humidity, atmospheric pressure, wind velocity, and wind direction that are the parameters affecting the coal stockpile were also recorded. Afterwards, these measurement values were used for training and testing of an artificial neural network model. Comparison of the experimental and artificial neural network results, accuracy rates of training and testing were found to be 99.5% and 99.17%, respectively. It is shown that possible coal stockpile behavior with this artificial neural network model is powerfully estimated.

  7. DOE/EIS-0236, Oakland Operations Office, National Ignition Facility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOEEIS-0236, Oakland Operations Office, National Ignition Facility Final Supplemental Environmental Impact Statement to the Stockpile Stewardship and Management Programmatic ...

  8. Los Alamos Neutron Science Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    capacity and our availability for stockpile stewardship activities," said Kurt Schoenberg, deputy associate director for Experimental Physical Sciences. "The increased...

  9. SSQ V1 N2_6june11_FINAL

    National Nuclear Security Administration (NNSA)

    2 2011 Comments Questions or comments regarding the Stockpile Stewardship Quarterly should be directed to Terri.Batuyong@nnsa.doe.gov Technical Editor: Douglas Drake, Publication Editor: Millicent Mischo Inside This Issue Stockpile Stewardship Quarterly Defense Programs Stockpile Stewardship in Action Volume 1, Number 2 What do physicists and paparazzi have in common? They know that a picture is worth a thousand words! For this issue of the Stockpile Stewardship Quarterly, the theme is advances

  10. DOE - NNSA/NFO -- National Security Template

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stockpile Stewardship NNSA/NFO Language Options U.S. DOE/NNSA - Nevada Field Office Stockpile Stewardship The Stockpile Stewardship Program was established in response to the Fiscal Year 1994 National Defense Authorization Act (Public Law 103-160), which requires, in the absence of nuclear testing, a program to: Support a focused, multifaceted program to increase the understanding of the enduring stockpile; Predict, detect, and evaluate potential problems of the aging of the stockpile; Refurbish

  11. Sandia National Laboratories: About Sandia: Leadership: Vice President,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science & Technology, Chief Technology Officer: Rob Leland Robert Leland Vice President, Science & Technology; Chief Technology Officer Robert Leland Robert (Rob) W. Leland is vice president, Science and Technology, and chief technology officer at Sandia National Laboratories, which is located in Albuquerque, New Mexico and Livermore, California. Leland is the executive responsible for leadership and management of corporate research and development and capabilities stewardship at

  12. High Energy Density Laboratory Plasmas | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration High Energy Density Laboratory Plasmas NNSA's Office of Inertial Confinement Fusion and DOE's Office of Science established a joint program in HEDLP in 2008. Initially, this program was a combination of work that was funded as part of the NNSA's Stewardship Science Academic Alliances Program in the research area of high energy density physics and the DOE Office of Science's HEDLP Program and Innovative Confinement Concepts Program. Steady advances in increasing the energy,

  13. Integrated Weed Control for Land Stewardship at Legacy Management's Rocky Flats Site in Colorado - 13086

    SciTech Connect (OSTI)

    Nelson, Jody K.

    2013-07-01

    Land stewardship is one of nine sustainability programs in the U.S. Department of Energy's Environmental Management System. Land stewardship includes maintaining and improving ecosystem health. At the Rocky Flats Site near Westminster, Colorado, land stewardship is an integral component of the Office of Legacy Management's post-closure monitoring and management at the site. Nearly 263 hectares (650 acres) were disturbed and re-vegetated during site cleanup and closure operations. Proactive management of revegetation areas is critical to the successful reestablishment of native grasslands, wetlands, and riparian communities. The undisturbed native plant communities that occur at the site also require active management to maintain the high-quality wetlands and other habitats that are home to numerous species of birds and other wildlife such as elk and deer, rare plant communities, and the federally listed threatened Preble's meadow jumping mouse. Over the past several decades, an increase of Noxious weeds has impacted much of Colorado's Front Range. As a result, weed control is a key component of the land stewardship program at Rocky Flats. Thirty-three species of state-listed Noxious weeds are known to occur in the Central and Peripheral Operable Units at Rocky Flats, along with another five species that are considered invasive at the site. Early detection and rapid response to control new invasive species is crucial to the program. An integrated weed control/vegetation management approach is key to maintaining healthy, sustainable plant communities that are able to resist Noxious weed invasions. Weed mapping, field surveys, and field-staff training sessions (to learn how to identify new potential problem species) are conducted to help detect and prevent new weed problems. The integrated approach at Rocky Flats includes administrative and cultural techniques (prevention), mechanical controls, biological controls, and chemical controls. Several species of biocontrol insects have been released to assist with control of different target weed species. Monitoring is conducted to evaluate the effectiveness of control efforts and to provide information for future control efforts. The effective implementation of this integrated approach has reduced the infestation levels of many species and has kept several newly discovered invasive species from spreading and becoming larger problems at the site. (authors)

  14. Long Term Stewardship Challenges at the St. Louis District FUSRAP Sites

    SciTech Connect (OSTI)

    Dell'Orco, L.; Chambers, D.

    2002-02-27

    Non-Federally owned radioactively contaminated sites in St. Louis, Missouri are currently being remediated by the St. Louis District Corps of Engineers under the Formerly Utilized Sites Remedial Action Program (FUSRAP). When FUSRAP remediation is complete, inaccessible soils which have levels of contamination greater than unrestricted use standards, will remain. The purpose of this paper is to document the initial challenges facing the project team during its development of the Long Term Stewardship plan for the management of these soils. These soils are located under buildings, roads, railroads and bridges. The Long Term Stewardship plan for the majority of the sites is being developed simultaneously with the remedy selection process. A living document, it will ultimately document the remedial action end state and location of inaccessible soils and implement the plan for ensuring these soils are not a threat to human health and the environment. Although these soils are protective in their current configuration, at some point in time, when activities such as maintenance, utility or property improvement occur, the soils will become accessible and need to be addressed by the federal government. Up until that point in time they will need to be effectively managed to ensure they remain protective. The St. Louis District is in the process of collaboratively developing this plan with its regulators, affected stakeholders and interested parties.

  15. From Cleanup to Stewardship. A companion report to Accelerating Cleanup: Paths to Closure and background information to support the scoping process required for the 1998 PEIS Settlement Study

    SciTech Connect (OSTI)

    1999-10-01

    Long-term stewardship is expected to be needed at more than 100 DOE sites after DOE's Environmental Management program completes disposal, stabilization, and restoration operations to address waste and contamination resulting from nuclear research and nuclear weapons production conducted over the past 50 years. From Cleanup to stewardship provides background information on the Department of Energy (DOE) long-term stewardship obligations and activities. This document begins to examine the transition from cleanup to long-term stewardship, and it fulfills the Secretary's commitment to the President in the 1999 Performance Agreement to provide a companion report to the Department's Accelerating Cleanup: Paths to Closure report. It also provides background information to support the scoping process required for a study on long-term stewardship required by a 1998 Settlement Agreement.

  16. Environmental Stewardship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science & Innovation » Science & Technology » Environmental Science Environmental Science A revolutionary new turbine technology for hydropower plants is one step closer to its first commercial deployment. At peak performance, an Alden turbine should convert about 94 percent of the water’s energy into usable electricity, comparable or superior to the efficiency of traditional turbines; the overall wildlife survival rate should be over 98 percent, up from 80-85 percent for a

  17. Los Alamos National Laboratory A National Science Laboratory...

    Office of Scientific and Technical Information (OSTI)

    (1) Ensure the safety, security, and reliability of the US nuclear deterrent; (2) ... AGREEMENTS; LANL; NATIONAL SECURITY; RELIABILITY; SAFETY; SECURITY; STOCKPILES

  18. Climate Champion Award to Los Alamos National Laboratory, DOE and NNSA |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Climate Champion Award to Los Alamos National Laboratory, DOE and NNSA Climate Champion Award to Los Alamos National Laboratory, DOE and NNSA December 3, 2015 - 1:48pm Addthis In the photo, L to R: Matt Moury, Associate Undersecretary of Energy for Environment, Health, Safety and Security Mike Sweitzer, NNSA Office of Environment and Sustainability; Josh Silverman, DOE Office of Sustainable Environmental Stewardship; Christy Goldfuss, Managing Director, Council on

  19. U1A Complex

    ScienceCinema (OSTI)

    None

    2015-01-09

    Some of the most sophisticated experiments in the stockpile stewardship program are conducted in an environmentally safe manner, nearly 1000 feet below the ground at the site. The U1a complex a sprawling underground laboratory and tunnel complex is home to a number of unique capabilities.

  20. Energy Market and Economic Impacts of S. 280, the Climate Stewardship and Innovation Act of 2007, Supplement to

    Reports and Publications (EIA)

    2007-01-01

    This paper responds to a September 18, 2007, letter from Senators Barrasso, Inhofe, and Voinovich, seeking further energy and economic analysis to supplement information presented in the Energy Information Administration's (EIA) recent analysis of S.280, the Climate Stewardship and Innovation Act of 2007.

  1. Storage & File Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Administration Mission / Managing the Stockpile Stockpile Stewardship and Management Plan This Department of Energy's (DOE) National Nuclear Security Administration (NNSA) Fiscal Year 2017 Stockpile Stewardship and Management Plan (SSMP) - Biennial Plan Summary (FY 2017 SSMP) is a key planning document for the nuclear security enterprise. This year's summary report updates the Fiscal Year 2016 Stockpile Stewardship and Management Plan (FY 2016 SSMP), the 25-year strategic program of record

  2. EIS-0226: Decommissioning and/or Long-Term Stewardship at the West Valley Demonstration Project and Western New York Nuclear Service Center

    Broader source: Energy.gov [DOE]

    This EIS evaluates the potential environmental impacts of the range of reasonable alternatives to decommission and/or maintain long-term stewardship at WNYNSC. The alternatives analyzed in the EIS...

  3. Iowa Central Quality Fuel Testing Laboratory

    SciTech Connect (OSTI)

    Heach, Don; Bidieman, Julaine

    2013-09-30

    The objective of this project is to finalize the creation of an independent quality fuel testing laboratory on the campus of Iowa Central Community College in Fort Dodge, Iowa that shall provide the exploding biofuels industry a timely and cost-effective centrally located laboratory to complete all state and federal fuel and related tests that are required. The recipient shall work with various state regulatory agencies, biofuel companies and state and national industry associations to ensure that training and testing needs of their members and American consumers are met. The recipient shall work with the Iowa Department of Ag and Land Stewardship on the development of an Iowa Biofuel Quality Standard along with the Development of a standard that can be used throughout industry.

  4. A Report to Congress on Long-Term Stewardship. Volume I - Summary Report

    SciTech Connect (OSTI)

    2001-01-01

    During World War II and the Cold War, the Federal government developed and operated a vast network of industrial facilities for the research, production, and testing of nuclear weapons, as well as for other scientific and engineering research. These processes left a legacy of radioactive and chemical waste, environmental contamination, and hazardous facilities and materials at well over a 100 sites in 30 States and one U.S. Territory. Hundreds of thousands of acres of residually contaminated soils, contaminated groundwater, surface water and sediment contamination, and contaminated buildings are present at many sites across the country. These sites range in size from less than one acre, containing only a single facility, to large sites spanning over 100,000 acres with huge uranium enrichment plants and plutonium processing canyons. Since 1989, the U.S. Department of Energy’s (DOE) Environmental Management (EM) program has made significant progress in addressing this environmental legacy. Millions of cubic meters of waste have been removed, stabilized, or disposed of, resulting in significant risk and cost reduction. In addition, DOE began disposing of transuranic (i.e., plutonium-contaminated) waste in the nation’s first deep geologic repository – the Waste Isolation Pilot Plant in New Mexico. DOE is now carrying out its long-term stewardship obligations at dozens of sites, including smaller sites where DOE has completed cleanup work for the entire site and many larger sites where DOE has remediated portions of the site.

  5. A Report to Congress on Long-Term Stewardship. Volume II, Site Summaries

    SciTech Connect (OSTI)

    2001-01-01

    During World War II and the Cold War, the Federal government developed and operated a vast network of industrial facilities for the research, production, and testing of nuclear weapons, as well as for other scientific and engineering research. These processes left a legacy of radioactive and chemical waste, environmental contamination, and hazardous facilities and materials at well over a 100 sites in 30 States and one U.S. Territory. Hundreds of thousand of acres of residually contaminated soils, contaminated groundwater, surface water and sediment contamination, and contaminated buildings are present at many sites across the country. These sites range in size from less than one acre, containing only a single facility, to large sites spanning over 100,000 acres with huge uranium enrichment plants and plutonium processing canyons. Since 1989, the U.S. Department of Energy’s (DOE) Environmental Management (EM) program has made significant progress in addressing this environmental legacy. Millions of cubic meters of waste have been removed, stabilized, or disposed of, resulting in significant risk and cost reduction. In addition, DOE began disposing of transuranic (i.e., plutonium-contaminated) waste in the nation’s first deep geologic repository – the Waste Isolation Pilot Plant in New Mexico. DOE is now carrying out its long-term stewardship obligations at dozens of sites, including smaller sites where DOE has completed cleanup work for the entire site and many larger sites where DOE has remediated portions of the site.

  6. TM Exhibit A General Conditions (Rev. 7.3, 9-27-13)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TM 12 Glimpses into Sandia National Laboratories' Advanced Simulation & Computing Program This folder provides short descriptions of some projects funded by the Advanced Simulation & Computing (ASC) Program at Sandia National Laboratories. A tri-laboratory program, ASC's emphasis is on high performance computing. Established in 1995 as an essential element of the U. S. National Nuclear Security Administration's (NNSA) Stockpile Stewardship Program (SSP), ASC provides advanced simulation

  7. TM

    National Nuclear Security Administration (NNSA)

    TM 12 Glimpses into Sandia National Laboratories' Advanced Simulation & Computing Program This folder provides short descriptions of some projects funded by the Advanced Simulation & Computing (ASC) Program at Sandia National Laboratories. A tri-laboratory program, ASC's emphasis is on high performance computing. Established in 1995 as an essential element of the U. S. National Nuclear Security Administration's (NNSA) Stockpile Stewardship Program (SSP), ASC provides advanced simulation

  8. ASC at the Labs | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    ASC at the Labs The problems that ASC solves for Science-Based Stockpile Stewardship span the activities and responsibilities of the NNSA's three Defense Programs laboratories (Los Alamos, Sandia, and Lawrence Livermore). Cooperation among the Defense Programs laboratories is essential to solving these problems in an efficient and effective manner with a high degree of confidence. In accordance with this cooperative philosophy, representatives of the laboratories participate in the ongoing ASC

  9. Additional Resources | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Development Additional Resources Photo: DARHT's Accelerators help create the x-rays at DARHT, the world's most advanced radiography facility. Reports 2013 Stewardship Science Academic Programs Annual 2012 Stewardship Science Academic Alliances Annual 2011 Stewardship Science Academic Alliances Annual FY 2011 Stockpile Stewardship and Management Plan, Annex A (April 7, 2010) Supplement to the Stockpile Stewardship Plan, Fiscal Years 2010-2014 (December 2009) Advances in Matter Under Extreme

  10. Additional public meeting on plutonium disposition on September 18

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Development Additional Resources Photo: DARHT's Accelerators help create the x-rays at DARHT, the world's most advanced radiography facility. Reports 2013 Stewardship Science Academic Programs Annual 2012 Stewardship Science Academic Alliances Annual 2011 Stewardship Science Academic Alliances Annual FY 2011 Stockpile Stewardship and Management Plan, Annex A (April 7, 2010) Supplement to the Stockpile Stewardship Plan, Fiscal Years 2010-2014 (December 2009) Advances in Matter Under Extreme

  11. Environmental Stewardship at the Savannah River Site: Generations of Success - 13212

    SciTech Connect (OSTI)

    Looney, Brian B.; Bergren, Christopher L.; Gaughan, Thomas F.; Aylward, Robert S.; Guevara, Karen C.; Whitaker, Wade C.; Hennessey, Brian T.; Mills, Gary L.; Blake, John I.

    2013-07-01

    Approximately sixty years ago, the Savannah River Site (SRS) was built to produce nuclear materials. SRS production operations impacted air, soil, groundwater, ecology, and the local environment. Throughout its history, SRS has addressed these contamination issues directly and has maintained a commitment to environmental stewardship. The Site boasts many environmental firsts. Notably, SRS was the first major Department of Energy (DOE) facility to perform a baseline ecological assessment. This pioneering effort, by Ruth Patrick and the Philadelphia Academy of Sciences, was performed during SRS planning and construction in the early 1950's. This unique early generation of work set the stage for subsequent efforts. Since that time, the scientists and engineers at SRS pro-actively identified environmental problems and developed and implemented effective and efficient environmental management and remediation solutions. This second generation, spanning the 1980's through the 2000's, is exemplified by numerous large and small cleanup actions to address metals and radionuclides, solvents and hydrocarbons, facility and area decommissioning, and ecological restoration. Recently, a third generation of environmental management was initiated as part of Enterprise SRS. This initiative to 'Develop and Deploy Next Generation Cleanup Technologies' formalizes and organizes the major technology matching, development, and implementation processes associated with historical SRS cleanup success as a resource to support future environmental management missions throughout DOE. The four elements of the current, third generation, effort relate to: 1) transition from active to passive cleanup, 2) in situ decommissioning of large nuclear facilities, 3) new long term monitoring paradigms, and 4) a major case study related to support for recovery and restoration of the Japanese Fukushima-Daiichi nuclear power plant and surrounding environment. (authors)

  12. about Savannah River National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In an effort to ensure the safety of the nation's nuclear weapons stockpile, the Savannah ... Operated by Savannah River Nuclear Solutions for the U.S. Department of Energy near Aiken, ...

  13. Physicist, Lawrence Livermore National Laboratory | National...

    National Nuclear Security Administration (NNSA)

    He is honored for his scientific leadership to advance understanding in a long-standing nuclear weapons physics anomaly and his contribution to nuclear weapons stockpile ...

  14. Sandia National Laboratories: Research: Facilities: Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    battery development and prototyping production and stockpile support for power sources lithium ambient-temperature batteries electric vehicle and hybrid electric vehicle...

  15. Sandia National Laboratories Contract Process Announced | National...

    National Nuclear Security Administration (NNSA)

    ... NNSA maintains and enhances the safety, security, and effectiveness of the U.S. nuclear weapons stockpile without nuclear explosive testing; works to reduce global danger from ...

  16. Idaho National Laboratory Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Joanne L. Knight

    2008-04-01

    This plan describes environmental monitoring as required by U.S. Department of Energy (DOE) Order 450.1, Environmental Protection Program, and additional environmental monitoring currently performed by other organizations in and around the Idaho National Laboratory (INL). The objective of DOE Order 450.1 is to implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations. This plan describes the organizations responsible for conducting environmental monitoring across the INL, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. This plan presents a summary of the overall environmental monitoring performed in and around the INL without duplicating detailed information in the various monitoring procedures and program plans currently used to conduct monitoring.

  17. Idaho National Laboratory Site Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Joanne L. Knight

    2010-10-01

    This plan describes environmental monitoring as required by U.S. Department of Energy (DOE) Order 450.1, “Environmental Protection Program,” and additional environmental monitoring currently performed by other organizations in and around the Idaho National Laboratory (INL). The objective of DOE Order 450.1 is to implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations. This plan describes the organizations responsible for conducting environmental monitoring across the INL, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. This plan presents a summary of the overall environmental monitoring performed in and around the INL without duplicating detailed information in the various monitoring procedures and program plans currently used to conduct monitoring.

  18. Idaho National Laboratory Site Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Joanne L. Knight

    2012-08-01

    This plan describes environmental monitoring as required by U.S. Department of Energy (DOE) Order 450.1, “Environmental Protection Program,” and additional environmental monitoring currently performed by other organizations in and around the Idaho National Laboratory (INL). The objective of DOE Order 450.1 is to implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations. This plan describes the organizations responsible for conducting environmental monitoring across the INL, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. This plan presents a summary of the overall environmental monitoring performed in and around the INL without duplicating detailed information in the various monitoring procedures and program plans currently used to conduct monitoring.

  19. managing the stockpile

    National Nuclear Security Administration (NNSA)

    managed by the National Nuclear Security Administration within the U. S. Department of Energy.

    OST is responsible for the safe and secure transport in the contiguous United...

  20. Maintaining the Stockpile

    National Nuclear Security Administration (NNSA)

    %2A en Albuquerque Complex http:nnsa.energy.govaboutusourlocationsnnsa-complex

    Page...

  1. managing the stockpile

    National Nuclear Security Administration (NNSA)

    of radioactive material. This is due largely to the OST philosophy that safety and security are of equal and paramount importance in the accomplishment of NNSA's...

  2. Women @ Energy: Wendy Baca | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Baca Women @ Energy: Wendy Baca July 31, 2014 - 9:30am Addthis Ms. Wendy Baca initiated a second career with Los Alamos National Laboratory in June 2012, as an Executive Advisor in the Principal Associate Directorate for the Weapons Program, supporting initiatives including the NNSA’s Stockpile Stewardship and Management Plan and Strategic Deterrence. Ms. Wendy Baca initiated a second career with Los Alamos National Laboratory in June 2012, as an Executive Advisor in the Principal Associate

  3. LANL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos National Laboratory has been at the forefront of high-explosives research since the Manhattan Project in 1943. The science of high-explosive performance is central to stockpile stewardship. Yet, explosives science at the Laboratory isn't simply about maintaining and certifying the aging U.S. nuclear deterrent; it's also about developing novel applications of that science to other national security challenges. In 2015, Los Alamos executed more than 400 high-explosive-driven experiments

  4. LLNL ASC V&V Strategy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the University of California Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48. LL-DNT-U-2007-012184.1 UNCLASSIFIED UNCLASSIFIED LLNL ASC V&V Strategy Associate Program Leader Defense and Nuclear Technologies Lawrence Livermore National Laboratory Salishan Conference April 22, 2007 Dr. Joseph A. Sefcik UCRL-PRES-229957 LL-DNT-U-2007-012184.2 UNCLASSIFIED UNCLASSIFIED QMU is best understood from the perspective of the overall Stockpile Stewardship enterprise Original

  5. Program Objectives | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Program Objectives High Energy Density Laboratory Plasmas (HEDLP) Program Objectives Support the U.S. scientific community by funding research projects at universities in the areas of fundamental science and technology of relevance to the Stockpile Stewardship Program, with a focus on those areas not supported by other federal agencies, and for which there is a recruiting need within the National Laboratories; Provide advanced research in the area of high energy density physics; Provide

  6. EIS-0236-SA-06: Final Supplement Analysis | Department of Energy

    Office of Environmental Management (EM)

    Final Supplement Analysis EIS-0236-SA-06: Final Supplement Analysis Pit Manufacturing Facilities at Los Alamos National Laboratory, Stockpile Stewardship and Management This Supplement Analysis specifically addresses the issue of those aspects of DOE's nuclear weapons pit manufacturing capability and capacity that were assigned to Los Alamos National Laboratory (LANL) in the SSM Record of Decision (ROD) (a "pit" is a central component of a nuclear weapon). Site-specific implementation

  7. ICYMI: Y-12 National Security Complex earns national Best Workplaces for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fusion ICF Reports There are a wide variety of reports that address the world class research and experiments in ICF being performed on behalf of the U.S. ICF Program and stockpile stewardship. Some of these reports are listed below: Advancing the Science of High Energy Density Laboratory Plasmas, U.S. Department of Energy, Office of Fusion Energy Science, Fusion Energy Science Advisory Committee, 2009. Basic Research Needs for High Energy Density Laboratory Physics: Report of the Workshop on

  8. University Partnerships | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    University Partnerships Historically, universities have had a close relationship with NNSA National Laboratories. In fact, Los Alamos and Lawrence Livermore have been operated for NNSA by the University of California for many years. The mission of the Defense Programs laboratories is focused on Science-Based Stockpile Stewardship, and ASC and the universities share a common and critical interest in making that vision a reality. The success of ASC depends on the ability to demonstrate that

  9. Program Overview | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program Objectives High Energy Density Laboratory Plasmas (HEDLP) Program Objectives Support the U.S. scientific community by funding research projects at universities in the areas of fundamental science and technology of relevance to the Stockpile Stewardship Program, with a focus on those areas not supported by other federal agencies, and for which there is a recruiting need within the National Laboratories; Provide advanced research in the area of high energy density physics; Provide

  10. How DARHT Works - the World's Most Powerful X-ray Machine

    ScienceCinema (OSTI)

    None

    2014-06-25

    The Dual Axis Radiographic Hydrodynamic Test (DARHT) facility at Los Alamos National Laboratory is an essential scientific tool that supports Stockpile Stewardship at the Laboratory. The World's most powerful x-ray machine, it's used to take high-speed images of mock nuclear devices - data that is used to confirm and modify advanced computer codes in assuring the safety, security, and effectiveness of the U.S. nuclear deterrent.

  11. ICF Reports | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Fusion ICF Reports There are a wide variety of reports that address the world class research and experiments in ICF being performed on behalf of the U.S. ICF Program and stockpile stewardship. Some of these reports are listed below: Advancing the Science of High Energy Density Laboratory Plasmas, U.S. Department of Energy, Office of Fusion Energy Science, Fusion Energy Science Advisory Committee, 2009. Basic Research Needs for High Energy Density Laboratory Physics: Report of the Workshop on

  12. Final EIS for Decommissioning and/or Long-Term Stewardship at the WVDP and Western New York Nuclear Service Center

    Energy Savers [EERE]

    DOE/EIS-0226 January 2010 Final Environmental Impact Statement for Decommissioning and/or Long-Term Stewardship at the West Valley Demonstration Project and Western New York Nuclear Service Center A Summary and Guide for Stakeholders The West Valley Site Availability of the Final EIS for Decommissioning and/or Long-Term Stewardship at the West Valley Demonstration Project and Western New York Nuclear Service Center For further information on this Final EIS, or to request a copy of the EIS or

  13. Laboratories | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories Our laboratories are available to industry and other organizations for researching, developing, and evaluating energy technologies. We have experienced lab technicians, scientists and engineers ready to design and run tests for you. Some labs are available for conducting your own research. A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z A Accelerated Exposure Testing Laboratory Advanced Optical Materials Laboratory Advanced

  14. Advancing the Theory of Nuclear Reactions with Rare Isotopes. From the Laboratory to the Cosmos

    SciTech Connect (OSTI)

    Nunes, Filomena

    2015-06-01

    The mission of the Topical Collaboration on the Theory of Reactions for Unstable iSotopes (TORUS) was to develop new methods to advance nuclear reaction theory for unstable isotopes—particularly the (d,p) reaction in which a deuteron, composed of a proton and a neutron, transfers its neutron to an unstable nucleus. After benchmarking the state-of-the-art theories, the TORUS collaboration found that there were no exact methods to study (d,p) reactions involving heavy targets; the difficulty arising from the long-range nature of the well known, yet subtle, Coulomb force. To overcome this challenge, the TORUS collaboration developed a new theory where the complexity of treating the long-range Coulomb interaction is shifted to the calculation of so-called form-factors. An efficient implementation for the computation of these form factors was a major achievement of the TORUS collaboration. All the new machinery developed are essential ingredients to analyse (d,p) reactions involving heavy nuclei relevant for astrophysics, energy production, and stockpile stewardship.

  15. Geoscience Laboratory | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    preparation and other relatively straight-forward laboratory manipulations. These include buffer preparations, solid sample grinding, solution concentration, filtration, and...

  16. The Laboratory Performance Appraisal Process and Performance...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Program Management ... 16 3.1 Provide Effective and Efficient Strategic Planning and Stewardship of Scientific Capabilities and Program Vision...

  17. The Cielo Petascale Capability Supercomputer: Providing Large-Scale

    Office of Scientific and Technical Information (OSTI)

    Computing for Stockpile Stewardship (Conference) | SciTech Connect Conference: The Cielo Petascale Capability Supercomputer: Providing Large-Scale Computing for Stockpile Stewardship Citation Details In-Document Search Title: The Cielo Petascale Capability Supercomputer: Providing Large-Scale Computing for Stockpile Stewardship × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information

  18. ssp20 | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    ssp20 Stockpile Stewardship: 20 years of success On Oct. 22, 2015, NNSA celebrated the the proven success of the Stockpile Stewardship Program at a half-day public event featuring remarks by Secretary of Energy Ernest Moniz, Secretary of State John Kerry, and Under Secretary for Nuclear Security and NNSA Administrator Lt. Gen. (retired) Frank G.... In 20th Year, Stockpile Stewardship Program Celebrated As One of Nation's Greatest Achievements in Science and Security (WASHINGTON) - The proven

  19. Laboratory Fellows

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    selected as Los Alamos National Laboratory Fellows November 16, 2010 Scientific disciplines range from fundamental and applied physics to geology LOS ALAMOS, New Mexico, NOVEMBER 16, 2010-Five Los Alamos National Laboratory scientists from diverse fields of research have been named Laboratory Fellows. The five researchers are Brenda Dingus of the Neutron Science and Technology group; William (Bill) Louis of the Subatomic Physics group; John Sarrao, director of Los Alamos's Office of Science

  20. Laboratory Building.

    SciTech Connect (OSTI)

    Herrera, Joshua M.

    2015-03-01

    This report is an analysis of the means of egress and life safety requirements for the laboratory building. The building is located at Sandia National Laboratories (SNL) in Albuquerque, NM. The report includes a prescriptive-based analysis as well as a performance-based analysis. Following the analysis are appendices which contain maps of the laboratory building used throughout the analysis. The top of all the maps is assumed to be north.

  1. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ~The Chemistry of Powder & Explosives by Tenney L. Davis 11 National Security Science April 2016 Scientists at Los Alamos are solving national security challenges, from the threat of toothpaste bombs on airliners to ensuring the safety of our nuclear stockpile. In February 2014, the U.S. Department of Homeland Security (DHS) got wind of a potential new bomb threat: explosives packed into a toothpaste tube that a terrorist planned to smuggle onto an airplane headed for the Winter Olympics at

  2. Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Stockpile Stewardship National Security National Competitiveness Fusion and Ignition Energy for the Future How to Make a Star Discovery Science Photon Science HAPLS

  3. labnews11-13-15.qxp_la02_02-20-04

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fellowship . . . . . . 2 Marking 20 years of Stockpile Stewardship program . . . . . ... has been hired in the past three years, adding that she is proud of the strides ...

  4. Accomplishments | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    ... In FY 2009, ASC released improved codes to support stockpile stewardship and other nuclear security missions, including secure transportation, NSE infrastructure, and nuclear ...

  5. Audit Report: IG-0666 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (NNSA) stockpile stewardship activities; the Oiffice of Science in the areas of neutron scattering and nuclear physcis research; and, the Office of Nuclear Energy,...

  6. llnl | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Yesterday Secretary of Energy Ernest Moniz hosted a ... flexibility in collecting data for stockpile stewardship ... The solar power system installed at Lawrence Livermore ...

  7. Sequoia ranked third in TOP500 list | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    according to the industry-standard Top500 list. Sequoia, which recently completed its transition to classified computing in support of NNSA's Stockpile Stewardship Program,...

  8. Papers and Presentations - 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FAQs Visit Us Science Stockpile Stewardship National Security National Competitiveness Fusion and Ignition Experiments Fast Ignition Energy for the Future How to Make a Star How...

  9. Video Gallery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FAQs Visit Us Science Stockpile Stewardship National Security National Competitiveness Fusion and Ignition Experiments Fast Ignition Energy for the Future How to Make a Star How...

  10. Science & Technology - 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FAQs Visit Us Science Stockpile Stewardship National Security National Competitiveness Fusion and Ignition Experiments Fast Ignition Energy for the Future How to Make a Star How...

  11. Experimental Highlights - 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FAQs Visit Us Science Stockpile Stewardship National Security National Competitiveness Fusion and Ignition Experiments Fast Ignition Energy for the Future How to Make a Star How...

  12. NIF & PS People - 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FAQs Visit Us Science Stockpile Stewardship National Security National Competitiveness Fusion and Ignition Experiments Fast Ignition Energy for the Future How to Make a Star How...

  13. Experimental Highlights - 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FAQs Visit Us Science Stockpile Stewardship National Security National Competitiveness Fusion and Ignition Experiments Fast Ignition Energy for the Future How to Make a Star How...

  14. Papers & Presentations- 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FAQs Visit Us Science Stockpile Stewardship National Security National Competitiveness Fusion and Ignition Experiments Fast Ignition Energy for the Future How to Make a Star How...

  15. NNSA's missions get a boost from brain-inspired, radically different...

    National Nuclear Security Administration (NNSA)

    ASC is a cornerstone of NNSA's Stockpile Stewardship Program to ensure the safety, security and reliability of the nation's nuclear deterrent without underground explosive testing. ...

  16. LLNL Conducts First Plutonium Shot Using the JASPER Gas Gun ...

    National Nuclear Security Administration (NNSA)

    Shock physics experiments complement the ongoing subcritical experiment program at NTS as part of the NNSA's stockpile stewardship program to maintain the safety and reliability of ...

  17. nuclear enterprise

    National Nuclear Security Administration (NNSA)

    Outlines Accomplishments in Stockpile Stewardship, Nuclear Nonproliferation, Naval Reactors and Managing the Nuclear Enterprise

    The...

  18. Science and technology review, September 1997

    SciTech Connect (OSTI)

    Upadhye, R.

    1997-09-01

    This month`s issue contains articles entitled Nova Laser Experiments and Stockpile Stewardship; Sharing the Challenges of Non- proliferation; and Taming Explosives for Training.

  19. Papers and Presentations - 2016

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Stockpile Stewardship National Security National Competitiveness Fusion and Ignition Experiments Fast Ignition Energy for the Future How to Make a Star How ICF Works Discovery ...

  20. Experimental Highlights - 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Stockpile Stewardship National Security National Competitiveness Fusion and Ignition Experiments Fast Ignition Energy for the Future How to Make a Star How ICF Works Discovery ...

  1. COLLOQUIUM: NIF An Unexpected Journey or Lessons Learned to Secure...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    include a historical perspective on the ICF and Stockpile Stewardship program that motivated NIF and the scientific and political strategy that ultimately secured the Facility. ...

  2. Efficiency Improvements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stockpile Stewardship National Security National Competitiveness Fusion and Ignition Experiments Fast Ignition Energy for the Future How to Make a Star How ICF Works Discovery ...

  3. Papers & Presentations-2016

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stockpile Stewardship National Security National Competitiveness Fusion and Ignition Experiments Fast Ignition Energy for the Future How to Make a Star How ICF Works Discovery ...

  4. EIS-0348 and EIS-0236-S3: Final Site-wide Environmental Impact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Security Administration's Stockpile Stewardship Program and to preventing the spread and use of nuclear weapons worldwide. LLNL maintains core competencies in activities...

  5. Enterprise Assessments Review of Explosives Safety Program Implementat...

    Energy Savers [EERE]

    ... The primary mission of the Pantex Plant is the assembly, disassembly, in-process testing, and evaluation of nuclear explosives in support of the NNSA stockpile stewardship program. ...

  6. Enterprise Assessments Review of Explosives Safety Program Implementat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The primary mission of the Pantex Plant is the assembly, disassembly, in-process testing, and evaluation of nuclear explosives in support of the NNSA stockpile stewardship program. ...

  7. New research, publications and videos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    key to stockpile stewardship A new video shows how researchers use scientific guns to induce shock waves into explosive materials to study their performance and...

  8. November

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    key to stockpile stewardship A new video shows how researchers use scientific guns to induce shock waves into explosive materials to study their performance and...

  9. EIS-0236-S4: Notice of Intent to Prepare a Supplement to the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Programmatic Environmental Impact Statement Stockpile Stewardship and Management-Complex 2030 The SEIS will analyze the environmental impacts from the continued...

  10. FY14 - Qtr1.xls

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Document1 1 Summary of Experiments Conducted in Support of Stockpile Stewardship FY14 The U.S. Stockpile Stewardship Program is a robust program of scientific inquiry used to sustain and assess the nuclear weapons stockpile without the use of underground nuclear tests. The experiments carried out within the program are used in combination with Advanced Simulation and Computing (ASC) to continually assess the stockpile to ensure it is safe, secure, and effective. (For links to the ASC program,

  11. Audit Report: IG-0528 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8 Audit Report: IG-0528 October 5, 2001 Stockpile Surveillance Testing In 1993, the President and Congress reaffirmed the moratorium on underground nuclear testing and directed that a science-based Stockpile Stewardship Program be developed to maintain the nation's stockpile of nuclear weapons. The Department of Energy's (Department) plan for the Stockpile Stewardship Program describes it as one of the most complex, scientific-technical programs ever undertaken. The program consists of

  12. Quarterly SSP Experiment Summary-FY11-4Q FINAL 1

    National Nuclear Security Administration (NNSA)

    1-4Q FINAL 1 Summary of Experiments Conducted in Support of Stockpile Stewardship November 2011 The U.S. Stockpile Stewardship Program is a robust program of scientific inquiry used to sustain and assess the nuclear weapons stockpile without the use of underground nuclear tests. The experiments carried out within the program are used in combination with Advanced Simulation and Computing (ASC) to continually assess the stockpile to ensure it is safe, secure, and effective. (For links to the ASC

  13. Quarterly SSP Experiment Summary-FY12-1Q v5 1

    National Nuclear Security Administration (NNSA)

    1Q v5 1 Summary of Experiments Conducted in Support of Stockpile Stewardship February 2012 The U.S. Stockpile Stewardship Program is a robust program of scientific inquiry used to sustain and assess the nuclear weapons stockpile without the use of underground nuclear tests. The experiments carried out within the program are used in combination with Advanced Simulation and Computing (ASC) to continually assess the stockpile to ensure it is safe, secure, and effective. (For links to the ASC

  14. Quarterly SSP Experiment Summary-FY12-2Q (Final) 1

    National Nuclear Security Administration (NNSA)

    2Q (Final) 1 Summary of Experiments Conducted in Support of Stockpile Stewardship May 2012 The U.S. Stockpile Stewardship Program is a robust program of scientific inquiry used to sustain and assess the nuclear weapons stockpile without the use of underground nuclear tests. The experiments carried out within the program are used in combination with Advanced Simulation and Computing (ASC) to continually assess the stockpile to ensure it is safe, secure, and effective. (For links to the ASC

  15. Quarterly SSP Experiment Summary-FY12-3Qv2 1

    National Nuclear Security Administration (NNSA)

    3Qv2 1 Summary of Experiments Conducted in Support of Stockpile Stewardship July 2012 The U.S. Stockpile Stewardship Program is a robust program of scientific inquiry used to sustain and assess the nuclear weapons stockpile without the use of underground nuclear tests. The experiments carried out within the program are used in combination with Advanced Simulation and Computing (ASC) to continually assess the stockpile to ensure it is safe, secure, and effective. (For links to the ASC program,

  16. Quarterly SSP Experiment Summary-FY13-1Q 1

    National Nuclear Security Administration (NNSA)

    3-1Q 1 Summary of Experiments Conducted in Support of Stockpile Stewardship January 2013 The U.S. Stockpile Stewardship Program is a robust program of scientific inquiry used to sustain and assess the nuclear weapons stockpile without the use of underground nuclear tests. The experiments carried out within the program are used in combination with Advanced Simulation and Computing (ASC) to continually assess the stockpile to ensure it is safe, secure, and effective. (For links to the ASC program,

  17. Quarterly SSP Experiment Summary-FY13-4Q final 1

    National Nuclear Security Administration (NNSA)

    FY13-4Q final 1 Summary of Experiments Conducted in Support of Stockpile Stewardship October 2013 The U.S. Stockpile Stewardship Program is a robust program of scientific inquiry used to sustain and assess the nuclear weapons stockpile without the use of underground nuclear tests. The experiments carried out within the program are used in combination with Advanced Simulation and Computing (ASC) to continually assess the stockpile to ensure it is safe, secure, and effective. (For links to the ASC

  18. Quarterly SSP Experiment Summary-Q1FY14 1

    National Nuclear Security Administration (NNSA)

    Q1FY14 1 Summary of Experiments Conducted in Support of Stockpile Stewardship First Quarter FY 2014 The U.S. Stockpile Stewardship Program is a robust program of scientific inquiry used to sustain and assess the nuclear weapons stockpile without the use of underground nuclear tests. The experiments carried out within the program are used in combination with Advanced Simulation and Computing (ASC) to continually assess the stockpile to ensure it is safe, secure, and effective. (For links to the

  19. 1

    National Nuclear Security Administration (NNSA)

    1 Summary of Experiments Conducted in Support of Stockpile Stewardship June 2014 The U.S. Stockpile Stewardship Program is a robust program of scientific inquiry used to sustain and assess the nuclear weapons stockpile without the use of underground nuclear tests. The experiments carried out within the program are used in combination with Advanced Simulation and Computing (ASC) to continually assess the stockpile to ensure it is safe, secure, and effective. (For links to the ASC program, see:

  20. 1

    National Nuclear Security Administration (NNSA)

    1 Summary of Experiments Conducted in Support of Stockpile Stewardship July 2013 The U.S. Stockpile Stewardship Program is a robust program of scientific inquiry used to sustain and assess the nuclear weapons stockpile without the use of underground nuclear tests. The experiments carried out within the program are used in combination with Advanced Simulation and Computing (ASC) to continually assess the stockpile to ensure it is safe, secure, and effective. (For links to the ASC program, see:

  1. FY14

    National Nuclear Security Administration (NNSA)

    Document1 1 Summary of Experiments Conducted in Support of Stockpile Stewardship FY14 The U.S. Stockpile Stewardship Program is a robust program of scientific inquiry used to sustain and assess the nuclear weapons stockpile without the use of underground nuclear tests. The experiments carried out within the program are used in combination with Advanced Simulation and Computing (ASC) to continually assess the stockpile to ensure it is safe, secure, and effective. (For links to the ASC program,

  2. NATURAL RESOURCE MANAGEMENT PLAN FOR BROOKHAVEN NATIONAL LABORATORY.

    SciTech Connect (OSTI)

    GREEN,T.ET AL.

    2003-12-31

    Brookhaven National Laboratory (BNL) is located near the geographic center of Long Island, New York. The Laboratory is situated on 5,265 acres of land composed of Pine Barrens habitat with a central area developed for Laboratory work. In the mid-1990s BNL began developing a wildlife management program. This program was guided by the Wildlife Management Plan (WMP), which was reviewed and approved by various state and federal agencies in September 1999. The WMP primarily addressed concerns with the protection of New York State threatened, endangered, or species of concern, as well as deer populations, invasive species management, and the revegetation of the area surrounding the Relativistic Heavy Ion Collider (RHIC). The WMP provided a strong and sound basis for wildlife management and established a basis for forward motion and the development of this document, the Natural Resource Management Plan (NRMP), which will guide the natural resource management program for BNL. The body of this plan establishes the management goals and actions necessary for managing the natural resources at BNL. The appendices provide specific management requirements for threatened and endangered amphibians and fish (Appendices A and B respectively), lists of actions in tabular format (Appendix C), and regulatory drivers for the Natural Resource Program (Appendix D). The purpose of the Natural Resource Management Plan is to provide management guidance, promote stewardship of the natural resources found at BNL, and to integrate their protection with pursuit of the Laboratory's mission. The philosophy or guiding principles of the NRMP are stewardship, adaptive ecosystem management, compliance, integration with other plans and requirements, and incorporation of community involvement, where applicable.

  3. University Research Program in Robotics - "Technologies for Micro-Electrical-Mechanical Systems in directed Stockpile Work (DSW) Radiation and Campaigns", Final Technical Annual Report, Project Period 9/1/06 - 8/31/07

    SciTech Connect (OSTI)

    James S. Tulenko; Carl D. Crane

    2007-12-13

    The University Research Program in Robotics (URPR) is an integrated group of universities performing fundamental research that addresses broad-based robotics and automation needs of the NNSA Directed Stockpile Work (DSW) and Campaigns. The URPR mission is to provide improved capabilities in robotics science and engineering to meet the future needs of all weapon systems and other associated NNSA/DOE activities.

  4. Water | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water The Energy Sector withdraws more freshwater than any other sector in the United States The Energy Sector withdraws more freshwater than any other sector in the United States Significant opportunities are emerging in the public and private sector to tackle water stewardship: the U.S. Department of Energy has identified the energy-water nexus as an emerging activity that require substantial R&D investment in the coming years, and DOE's Water Energy Nexus report has identified reclaimed

  5. Introduction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Big Explosives Experimental Facility (BEEF) is a hydrodynamic testing facility, located at the Nevada National Security Site (NNSS), about 65 miles northwest of Las Vegas. BEEF provides data, through explosive experiments, to support the Stockpile Stewardship Program, along with a variety of new experimental programs that expand the nation's non-nuclear experiment capabilities. History When the U.S. Department of Energy's Lawrence Livermore National Laboratory (LLNL) facility in Livermore,

  6. Introduction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nevada National Security Site (NNSS) provides a unique and indispensable extension of the national laboratories' experimental capabilities in support of the Stockpile Stewardship Program. In addition to ongoing environmental cleanup of historic nuclear research and testing areas on the NNSS, non-defense research and development activities are conducted in cooperation with universities, industries, and other federal agencies. In the beginning After the first nuclear test at the Trinity Site in

  7. JASPER Reaches Shot 125 Milestone; Future Looks Bright for More Growth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JASPER Reaches Shot 125 Milestone; Future Looks Bright for More Growth The Joint Actinide Shock Physics Research (JASPER) facility at the Nevada National Security Site (NNSS) features more than just one of the most powerful gas guns on the planet - it has quickly become an integral part of the Stockpile Stewardship program for the data it provides. Scientists from the National Laboratories use JASPER to conduct experiments, or "shots," that subject materials to extreme pressures and

  8. IBM era: 1960-64

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IBM era: 1960-64 IBM era: 1960-64 To meet the growing computing needs of the nuclear weapons program, the Laboratory jointly developed with IBM the Stretch, IBM's first transistorized computer. July 10, 2015 trinity to trinity feature image Stretch, IBM's first transistorized computer. "Highly accurate 3D computing is a Holy Grail of the Stockpile Stewardship Program's supercomputing efforts. As the weapons age, 3D features tend to be introduced that require highly accurate 3D modeling to

  9. ICHEP_2012_MB_HRay_post.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inertial Confinement Fusion ICF Facilities Nike mirror array and lens array ICF operates a set of world-class experimental facilities to create HEDP conditions and to obtain quantitative data in support of its numerous stockpile stewardship-related activities. To learn about three high energy experimental facilities and two small lasers that provide ICF capabilities, select the links below. National Ignition Facility, Lawrence Livermore National Laboratory OMEGA and OMEGA EP, University of

  10. The world's first nuclear detonation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The world's first nuclear detonation The world's first nuclear detonation Trinity was the culmination of a fantastic effort of groundbreaking science and engineering by hundreds of men and women at Los Alamos National Laboratory (and other Manhattan Project sites). It took them less than two years to change the world. July 10, 2015 x x "Highly accurate 3D computing is a Holy Grail of the Stockpile Stewardship Program's supercomputing efforts. As the weapons age, 3D features tend to be

  11. DOE - NNSA/NSO -- SiteLines - Issue 141

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January/February 2010 - Issue 141 A publication for all members of the NNSA/NSO family DESS Programs Earn National, International Recognition Defense Experimentation and Stockpile Stewardship (DESS) program accomplishments have received national and international recognition recently. Newsweek magazine highlighted the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) and its efforts to achieve fusion ignition. A featured picture in the November 14 article showed two

  12. SC FPD 360 Mentoring | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CAMPAIGN OFFICE OF DEFENSE SCIENCE Assistant Deputy Administrator for Stockpile Stewardship R&D 100 Award Multiplexed Velocimetry Technology The Science Campaign is part of an evolving security and deterrence environment involved in extending the life of aging weapons under tighter environmental standards. We continue to make technological advances and address the requirements of our weapon systems, laboratories, and production sites. The Science Campaign experimental programs give us a

  13. Audit Letter Report: OAS-L-10-02 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0-02 Audit Letter Report: OAS-L-10-02 October 21, 2009 Follow-up Audit of Test Readiness at the Nevada Test Site As part of a self-imposed moratorium on testing, the United States has not conducted an explosive nuclear test since 1992. Since that time, the Department of Energy's (Department) National Nuclear Security Administration (NNSA) has used the Stockpile Stewardship Program, an effort that includes analytical simulation, laboratory experiments, and weapons refurbishments, to maintain the

  14. SC Brochure_Final_10dec12.indd

    National Nuclear Security Administration (NNSA)

    SCIENCE CAMPAIGN OFFICE OF DEFENSE SCIENCE Assistant Deputy Administrator for Stockpile Stewardship R&D 100 Award Multiplexed Velocimetry Technology The Science Campaign is part of an evolving security and deterrence environment involved in extending the life of aging weapons under tighter environmental standards. We continue to make technological advances and address the requirements of our weapon systems, laboratories, and production sites. The Science Campaign experimental programs give

  15. 2015-09 SSQ V5 N3.indd

    National Nuclear Security Administration (NNSA)

    3 | SEPTEMBER 2015 Offi ce of Research, Development, Test, and Evaluation DOE/NA-0034 This issue of the Stockpile Stewardship Quarterly features recent research which encompasses ignition approaches, opacity measurements, laser shock experiments, a Laboratory Directed Research and Development (LDRD) project of relevance to weapon system testing, and an example of our international collaboration. The first article, about double-shell capsules, introduces an alternative approach to achieving

  16. old.new.factsheets.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 PF-4 LANL Plutonium-Processing Facilities National Security At the Los Alamos National Laboratory (LANL), virtually all plutonium operations occur within the Plutonium Facility at Tech- nical Area 55 (TA-55). TA-55 is the nation's most modern plu- tonium science and manufacturing facility, and it is the only fully operational, full capability plutonium facility in the nation. Thus, TA-55 supports a wide range of national security programs that involve stockpile stewardship, plutonium

  17. Microsoft PowerPoint - HPC - Operations and Monitoring_Final (002) [Compatibility Mode]

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5397 This document is approved for public release; further dissemination unlimited HPC Operations and Monitoring HPC Operations and Monitoring The Laboratory's supercomputers play a vital role in our mission of stockpile stewardship and scientific discoveries. * Our Operations Team is monitoring HPC systems 24/7 by 365. * Extensive modifications were made to customize the IT monitoring application Zenoss to fit our environment. Monitoring infrastructure built around RabbitMQ lays the foundation

  18. Mark Herrmann

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mark Herrmann Mark Herrmann Director, National Ignition Facility NIF Director Mark Herrmann came to LLNL in October 2014 from Sandia National Laboratories, where he served as director of the Pulsed Power Sciences Center. As the NIF Director, Herrmann works closely with the leadership of the National Nuclear Security Administration's Stockpile Stewardship Program (SSP) across the weapons complex including the national Inertial Confinement Fusion (ICF) Program, as well as the National Security

  19. ICF Facilities | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Inertial Confinement Fusion ICF Facilities Nike mirror array and lens array ICF operates a set of world-class experimental facilities to create HEDP conditions and to obtain quantitative data in support of its numerous stockpile stewardship-related activities. To learn about three high energy experimental facilities and two small lasers that provide ICF capabilities, select the links below. National Ignition Facility, Lawrence Livermore National Laboratory OMEGA and OMEGA EP, University of

  20. Groundwater Makes a Splash NNSS Groundwater Experts Meet at Devils Hole

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Administration Groundbreaking at National Ignition Facility Groundbreaking at National Ignition Facility Livermore, CA Secretary Pena participates in the ground breaking ceremony for the National Ignition Facility, a centerpiece of the stockpile stewardship program, at the Lawrence Livermore National Laboratory

    May 15, 2013 Groundwater Makes a Splash NNSS Groundwater Experts Meet at Devils Hole Groundwater was a major topic at this year's Devils Hole Workshop at the Furnace Creek Ranch

  1. NNSA Achievements: 2015 by the Numbers | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Achievements: 2015 by the Numbers VIDEO: 2015 by the numbers How did we perform this year? What did we accomplish? NNSA's nuclear security enterprise - including its laboratories, production facilities, and sites - provides unique technical solutions to solve the national security challenges of today and the future. In 2015, in addition to the Stockpile Stewardship and Management Plan and Prevent, Counter, and Respond - A Strategic Plan to Reduce Global Nuclear Threats, NNSA

  2. TA-55: LANL Plutonium-Processing Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities » TA-55: LANL Plutonium-Processing Facilities TA-55: LANL Plutonium-Processing Facilities TA-55 supports a wide range of national security programs that involve stockpile stewardship, plutonium processing, nuclear materials stabilization, materials disposition, nuclear forensics, nuclear counter-terrorism, and nuclear energy. ...the only fully operational, full capability plutonium facility in the nation. National Security At the Los Alamos National Laboratory (LANL), virtually all

  3. Laboratory Directors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Siegfried S. Hecker (1985-1997) Donald M. Kerr (1979-1985) Harold M. Agnew (1970-1979) Norris Bradbury (1945-1970) J. Robert Oppenheimer (1943-1945) Laboratory Directors Harold M. ...

  4. Idaho National Laboratory Cultural Resource Management Plan

    SciTech Connect (OSTI)

    Julie Braun Williams

    2013-02-01

    As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Office will meet these responsibilities at Idaho National Laboratory in southeastern Idaho. The Idaho National Laboratory is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable, bear valuable physical and intangible legacies, and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through regular reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of appendices provides important details that support the main text.

  5. Idaho National Laboratory Cultural Resource Management Plan

    SciTech Connect (OSTI)

    Lowrey, Diana Lee

    2011-02-01

    As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Office will meet these responsibilities at the Idaho National Laboratory. This Laboratory, which is located in southeastern Idaho, is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable; bear valuable physical and intangible legacies; and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through annual reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of appendices provides important details that support the main text.

  6. Idaho National Laboratory Cultural Resource Management Plan

    SciTech Connect (OSTI)

    Lowrey, Diana Lee

    2009-02-01

    As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Office will meet these responsibilities at the Idaho National Laboratory. This Laboratory, which is located in southeastern Idaho, is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable; bear valuable physical and intangible legacies; and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through annual reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of appendices provides important details that support the main text.

  7. National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supercomputing Challenge draws more than 200 students to Los Alamos National Laboratory April 16, 2015 NOTE TO EDITORS: Media are welcome to attend the awards ceremony from 9 a.m. to noon a.m., April 21 at the Church of Christ, 2323 Diamond Drive, Los Alamos. Student teams from around New Mexico showcase year-long research projects April 20-21 LOS ALAMOS, N.M., April 16, 2015-More than 200 New Mexico students and their teachers are at Los Alamos National Laboratory April 20-21 for the 25th

  8. Sulimar Queen environmental restoration project closure package Sandia environmental stewardship exemplar.

    SciTech Connect (OSTI)

    Tillman, Jack B.

    2008-09-01

    In March 2008, Sandia National Laboratories (Sandia), in partnership with the Bureau of Land Management, Roswell Field Office, completed its responsibilities to plug and abandon wells and restore the surface conditions for the Sulimar Queens Unit, a 2,500 acre oil field, in Chaves County, Southeast New Mexico. Sandia assumed this liability in an agreement to obtain property to create a field laboratory to perform extensive testing and experimentation on enhanced oil recovery techniques for shallow oil fields. In addition to plugging and abandoning 28 wells, the project included the removal of surface structures and surface reclamation of disturbed lands associated with all plugged and abandoned wells, access roads, and other auxiliary facilities within unit boundaries. A contracting strategy was implemented to mitigate risk and reduce cost. As the unit is an important wildlife habitat for prairie chickens, sand dune lizards, and mule deer, the criteria for the restoration and construction process were designed to protect and enhance the wildlife habitat. Lessons learned from this project include: (1) extreme caution should be exercised when entering agreements that include future liabilities, (2) partnering with the regulator has huge benefits, and (3) working with industry experts, who were familiar with the work, and subcontractors, who provided the network to complete the project cost effectively.

  9. Advanced Technology System Scheduling Governance Model

    SciTech Connect (OSTI)

    Ang, Jim; Carnes, Brian; Hoang, Thuc; Vigil, Manuel

    2015-06-11

    In the fall of 2005, the Advanced Simulation and Computing (ASC) Program appointed a team to formulate a governance model for allocating resources and scheduling the stockpile stewardship workload on ASC capability systems. This update to the original document takes into account the new technical challenges and roles for advanced technology (AT) systems and the new ASC Program workload categories that must be supported. The goal of this updated model is to effectively allocate and schedule AT computing resources among all three National Nuclear Security Administration (NNSA) laboratories for weapons deliverables that merit priority on this class of resource. The process outlined below describes how proposed work can be evaluated and approved for resource allocations while preserving high effective utilization of the systems. This approach will provide the broadest possible benefit to the Stockpile Stewardship Program (SSP).

  10. Science, technology and engineering at LANL

    SciTech Connect (OSTI)

    Mercer-smith, Janet A; Wallace, Terry C

    2011-01-06

    The Laboratory provides science solution to the mission areas of nuclear deterrence, global security, and energy security. The capabilities support the Laboratory's vision as the premier national security science laboratory. The strength of LANL's science is at the core of the Laboratory. The Laboratory addresses important science questions for stockpile stewardship, emerging threats, and energy. The underpinning science vitality to support mission areas is supported through the Post Doc program, the fundamental science program in LDRD, collaborations fostered through the Institutes, and the LANL user facilities. LANL fosters the strategy of Science that Matters through investments, people, and facilities.

  11. Strategy for Long-Term Stewardship and Monitoring of Amchitka Island - 12190

    SciTech Connect (OSTI)

    Kautsky, Mark; Nguyen, Jason; Darr, Paul S.; Picel, Mary

    2012-07-01

    The Long-Term Surveillance and Maintenance Plan (LTSMP) for Amchitka details how the U.S. Department of Energy (DOE) intends to fulfill its mission to maintain protection of human health and the environment at and around the sites on Amchitka Island. The LTSMP calls for monitoring to be performed every 5 years, at least in the initial phase of the project. The purpose of the monitoring is to develop a baseline of activity concentrations for selected radionuclides in biota, water, and soil, both on Amchitka and at the reference location on Adak Island, approximately 322 km (200 miles) northeast of Amchitka. Data compiled by the Consortium for Risk Evaluation with Stakeholder Participation (CRESP, 2006) are being included as part of the baseline data set. The specific biological, water, and sediment samples collected during the 2011 sampling event were developed through close coordination with the primary stakeholders, including the Alaska Department of Environmental Conservation, the Aleutian Pribilof Island Association, and the U.S. Fish and Wildlife Service (USFWS). Amchitka is managed by the USFWS as part of the Alaska Maritime National Wildlife Refuge. Two plans were developed to address specific needs of the biological- and the terrestrial-monitoring programs. Results from these monitoring programs will help determine whether the environment is being impacted by radionuclide migration and uptake, and if subsistence and commercial-catch seafood is safe for human consumption. The RESRAD-BIOTA code is being used to evaluate ecological health relative to the radionuclide levels determined from this sampling event. The samples were sent to three laboratories for analysis. With the exception of the seawater samples, most of the samples were sent to the Center for Accelerator Mass Spectrometry at the Lawrence Livermore National Laboratory. A smaller subset of rock-weed samples, Star reindeer lichen samples, and soil samples collected from beneath the lichen were sent to UAF for cesium-137 analysis. Marine sediment samples were also collected and sent to UAF for testing. The seawater samples were sent to the University of Miami Tritium Laboratory for enriched tritium analysis. Results from the seawater samples for tritium were received in September 2011. Results from the 2011 sampling are expected to be available on the LM web site in 2012. (authors)

  12. Sandia National Laboratories: National Security Missions: Nuclear Weapons:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program Areas: Weapons Science Weapons Science & Technology National labs provide the science and technology to maintain and certify the nuclear stockpile in the absence of full-scale weapons testing. The facilities and expertise used to fulfill this mission over the last 60 years are even more critical as the stockpile ages, the total number of weapons decreases (greatly increasing the relative worth of each remaining weapon), and the security threat to the stockpile changes. Science

  13. Sandia National Laboratories: News: Publications: Lab News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lifetime of every nuclear weapon in our stockpile it will be exposed to a whole set of abnormal environments." he said. To withstand any abnormal environments, the weapons are...

  14. Sandia National Laboratories: Electrostatic Discharge (ESD) Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrostatic Discharge (ESD) Laboratory We have field and laboratory capabilities to measure electrostatic environment generation, storage, and charge transfer effects....

  15. Director of Lawrence Livermore National Laboratory to Step Down...

    National Nuclear Security Administration (NNSA)

    The program ensures the safety and reliability of the nation's nuclear stockpile. Tarter has also expanded the lab's work in the areas of non-proliferation and supercomputing. ...

  16. The Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    existing programs in climate change science and infrastructure. The Laboratory has a 15- year history in climate change science. The Climate, Ocean and Sea Ice Modeling (COSIM) project develops and maintains advanced numerical models of the ocean, sea ice, and ice sheets for use in global climate change projections. COSIM models were used extensively in simulations underpinning the recent climate assessment by the Intergovernmental Panel on Climate Change (IPCC) that was awarded the 2007 Nobel

  17. Lab Plan | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab Plan Ames Laboratory

  18. Laboratory Directed Research and Development FY2010 Annual Report

    SciTech Connect (OSTI)

    Jackson, K J

    2011-03-22

    A premier applied-science laboratory, Lawrence Livermore National Laboratory (LLNL) has at its core a primary national security mission - to ensure the safety, security, and reliability of the nation's nuclear weapons stockpile without nuclear testing, and to prevent and counter the spread and use of weapons of mass destruction: nuclear, chemical, and biological. The Laboratory uses the scientific and engineering expertise and facilities developed for its primary mission to pursue advanced technologies to meet other important national security needs - homeland defense, military operations, and missile defense, for example - that evolve in response to emerging threats. For broader national needs, LLNL executes programs in energy security, climate change and long-term energy needs, environmental assessment and management, bioscience and technology to improve human health, and for breakthroughs in fundamental science and technology. With this multidisciplinary expertise, the Laboratory serves as a science and technology resource to the U.S. government and as a partner with industry and academia. This annual report discusses the following topics: (1) Advanced Sensors and Instrumentation; (2) Biological Sciences; (3) Chemistry; (4) Earth and Space Sciences; (5) Energy Supply and Use; (6) Engineering and Manufacturing Processes; (7) Materials Science and Technology; Mathematics and Computing Science; (8) Nuclear Science and Engineering; and (9) Physics.

  19. SSGF Magazine | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    SSGF Magazine Our academic partnerships and fellowship programs are vital to the continued success of the nation's Stockpile Stewardship Program. Through them, we are able to provide exciting hands-on mentoring and professional opportunities to the next generation of stockpile stewards. Read about our Stewardship

  20. Bridging the Cold War and the 21st century: chronicling the history of Sandia National Laboratories

    SciTech Connect (OSTI)

    Mora, C.J.

    1997-04-01

    A historical perspective is given for Sandia National Laboratories from its beginnings as a small engineering group at an offshoot of Los Alamos Laboratory to a facility of 7000 people at its main facility in Albuquerque, another 1000 people in Livermore, California and test ranges in Tonopah, Nevada and Kauai, Hawaii. The Sandia army base became the Z division of Los Alamos and $25 million construction program began the structures that would carry out a test program for nuclear weapons during the cold war. Bell System/AT&T stewardship of the site continued from 1949 to 1993, when Martin Marietta (now Lockheed Martin) was chosen as the new contractor. Management decisions, personnel, and political aspects of the Laboratory are presented up to 1997 and forecasts are given for future policy and programs of Sandia.

  1. Idaho National Laboratory Site Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Jenifer Nordstrom

    2014-02-01

    This plan provides a high-level summary of environmental monitoring performed by various organizations within and around the Idaho National Laboratory (INL) Site as required by U.S. Department of Energy (DOE) Order 435.1, Radioactive Waste Management, and DOE Order 458.1, Radiation Protection of the Public and the Environment, Guide DOE/EH-0173T, Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance, and in accordance with 40 Code of Federal Regulations (CFR) 61, National Emission Standards for Hazardous Air Pollutants. The purpose of these orders is to 1) implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations, and 2) to establish standards and requirements for the operations of DOE and DOE contractors with respect to protection of the environment and members of the public against undue risk from radiation. This plan describes the organizations responsible for conducting environmental monitoring across the INL Site, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. Detailed monitoring procedures, program plans, or other governing documents used by contractors or agencies to implement requirements are referenced in this plan. This plan covers all planned monitoring and environmental surveillance. Nonroutine activities such as special research studies and characterization of individual sites for environmental restoration are outside the scope of this plan.

  2. Idaho National Laboratory Site Pollution Prevention Plan

    SciTech Connect (OSTI)

    E. D. Sellers

    2007-03-01

    It is the policy of the Department of Energy (DOE) that pollution prevention and sustainable environmental stewardship will be integrated into DOE operations as a good business practice to reduce environmental hazards, protect environmental resources, avoid pollution control costs, and improve operational efficiency and mission sustainability. In furtherance of this policy, DOE established five strategic, performance-based Pollution Prevention (P2) and Sustainable Environmental Stewardship goals and included them as an attachment to DOE O 450.1, Environmental Protection Program. These goals and accompanying strategies are to be implemented by DOE sites through the integration of Pollution Prevention into each site's Environmental Management System (EMS). This document presents a P2 and Sustainability Program and corresponding plan pursuant to DOE Order 450.1 and DOE O 435.1, Radioactive Waste Management. This plan is also required by the state of Idaho, pursuant to the Resource Conservation and Recovery Act (RCRA) partial permit. The objective of this document is to describe the Idaho National Laboratory (INL) Site P2 and Sustainability Program. The purpose of the program is to decrease the environmental footprint of the INL Site while providing enhanced support of its mission. The success of the program is dependent on financial and management support. The signatures on the previous page indicate INL, ICP, and AMWTP Contractor management support and dedication to the program. P2 requirements have been integrated into working procedures to ensure an effective EMS as part of an Integrated Safety Management System (ISMS). This plan focuses on programmatic functions which include environmentally preferable procurement, sustainable design, P2 and Sustainability awareness, waste generation and reduction, source reduction and recycling, energy management, and pollution prevention opportunity assessments. The INL Site P2 and Sustainability Program is administratively managed by the INL Site P2 Coordinator. Development and maintenance of this overall INL Site plan is ultimately the responsibility of DOE-ID. This plan is applicable to all INL Site contractors except those at the Naval Reactors Facility.

  3. Idaho National Engineering and Environmental Laboratory institutional plan -- FY 2000--2004

    SciTech Connect (OSTI)

    Enge, R.S.

    1999-12-01

    In this first institutional plan prepared by Bechtel BWXT Idaho, LLC, for the Idaho National Engineering and Environmental Laboratory, the INEEL will focus its efforts on three strategic thrusts: (1) Environmental Management stewardship for DOE-EM, (2) Nuclear reactor technology for DOE-Nuclear Energy (NE), and (3) Energy R and D, demonstration, and deployment (initial focus on biofuels and chemicals from biomass). The first strategic thrust focuses on meeting DOE-EMs environmental cleanup and long-term stewardship needs in a manner that is safe, cost-effective, science-based, and approved by key stakeholders. The science base at the INEEL will be further used to address a grand challenge for the INEEL and the DOE complex--the development of a fundamental scientific understanding of the migration of subsurface contaminants. The second strategic thrust is directed at DOE-NEs needs for safe, economical, waste-minimized, and proliferation-resistant nuclear technologies. As NE lead laboratories, the INEEL and ANL will pursue specific priorities. The third strategic thrust focuses on DOE's needs for clean, efficient, and renewable energy technology. As an initial effort, the INEEL will enhance its capability in biofuels, bioprocessing, and biochemicals. The content of this institutional plan is designed to meet basic DOE requirements for content and structure and reflect the key INEEL strategic thrusts. Updates to this institutional plan will offer additional content and resource refinements.

  4. Laboratory Activities

    SciTech Connect (OSTI)

    Brown, Christopher F.; Serne, R. Jeffrey

    2008-01-17

    This chapter summarizes the laboratory activities performed by PNNLs Vadose Zone Characterization Project in support of the Tank Farm Vadose Zone Program, led by CH2M HILL Hanford Group, Inc. The results of these studies are contained in numerous reports (Lindenmeier et al. 2002; Serne et al. 2002a, 2002b, 2002c, 2002d, 2002e; Lindenmeier et al. 2003; Serne et al. 2004a, 2004b; Brown et al. 2005, 2006a, 2007; Serne et al. 2007) and have generated much of the data reported in Chapter 22 (Geochemistry-Contaminant Movement), Appendix G (Geochemistry-Contaminant Movement), and Cantrell et al. (2007, SST WMA Geochemistry Data Package in preparation). Sediment samples and characterization results from PNNLs Vadose Zone Characterization Project are also shared with other science and technology (S&T) research projects, such as those summarized in Chapter 12 (Associated Science Activities).

  5. Facilities and Institutes | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities and Infrastructure Facilities and Infrastructure Program Offices and Headquarters elements share the responsibility for management and overall stewardship of the Department's real property assets. Proper management and stewardship ensures real property assets are maintained in a manner that promotes operational readiness, safety, environmental protection, property preservation, and life-cycle cost-effectiveness while meeting the Department's missions. DOE Order 430.1B "Real

  6. DOE - Office of Legacy Management -- Sandia National Laboratories...

    Office of Legacy Management (LM)

    from a wide variety of historical activities. The National Nuclear Security Administration is the site landlord and will be responsible for Long Term Stewardship. Also see...

  7. LCLS Sample Preparation Laboratory | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LCLS Sample Preparation Laboratory Kayla Zimmerman | (650) 926-6281 Lisa Hammon, LCLS Lab Coordinator Welcome to the LCLS Sample Preparation Laboratory. This small general use wet...

  8. Heat Transfer Laboratory | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heat Transfer Laboratory Materials in solids or fluid forms play an important role in a ... Argonne's Heat Transfer Laboratory enables researchers to: Synthesize and prepare heat ...

  9. map11.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    managing the stockpile NNSA Releases Annual Stockpile Stewardship & Management Plan Annual Report Provides Insight into Vital National Security Programs WASHINGTON, DC - The Department of Energy's National Nuclear Security Administration (NNSA) has released its Fiscal Year 2016 Stockpile Stewardship and Management Plan (SSMP). The FY16 SSMP documents NNSA's 25-year strategic plan... Law Enforcement & Emergency Management Liaison Mission StatementThe Office of Secure Transportation (OST)

  10. Accomplishments | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accomplishments ASC Contributions to the Stockpile Stewardship Program (SSP) In FY 2015, ASC worked to improve its unique integrated design codes with a focus on sufficient resolution, dimensionality, and scientific detail necessary to address the increasingly difficult analyses needed for stockpile stewardship. Modern ASC simulation codes are now used for performance assessment of all enduring stockpile systems. The use of ASC codes along with common-model methods and updated material

  11. NNSA and Energy Awareness Month | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Features NNSA and Energy Awareness Month The National Nuclear Security Administration is making significant reductions in energy usage as NNSA meets the demands of the Stockpile Stewardship mission. The National Nuclear Security Administration is making significant reductions in energy usage as NNSA meets the demands of the Stockpile Stewardship mission. The National Nuclear Security Administration is making significant reductions in energy usage as NNSA meets the demands of the Stockpile

  12. Library | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Home Library Enterprise Strategic Vision: A foundational document that lays out the organization's vision for the future 20 Years of Success: A look at two decades of the Stockpile Stewardship Program Prevent, Counter, and Respond: A strategic plan to define and describe our missions to prevent, counter, and respond to the threats of nuclear proliferation and terrorism Stockpile Stewardship and Management Plan: NNSA's plan for maintaining and modernizing the stockpile, revitalizing its physical

  13. Accomplishments | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Accomplishments ASC Contributions to the Stockpile Stewardship Program (SSP) In FY 2015, ASC worked to improve its unique integrated design codes with a focus on sufficient resolution, dimensionality, and scientific detail necessary to address the increasingly difficult analyses needed for stockpile stewardship. Modern ASC simulation codes are now used for performance assessment of all enduring stockpile systems. The use of ASC codes along with common-model methods and updated material

  14. National Laboratory Impact Initiative

    Broader source: Energy.gov [DOE]

    The National Laboratory Impact Initiative supports the relationship between the Office of Energy Efficiency & Renewable Energy and the national laboratory enterprise.  The national laboratories...

  15. Institutional plan FY 1999--FY 2004

    SciTech Connect (OSTI)

    1998-10-01

    Los Alamos has a well-defined and nationally important mission: to reduce the global nuclear danger. This central national security mission consists of four main elements: stockpile stewardship, nuclear materials management, nonproliferation and arms control, and cleanup of the environmental legacy of nuclear weapons activities. The Laboratory provides support for and ensures confidence in the nation`s nuclear stockpile without nuclear testing. This challenge requires the Laboratory to continually hone its scientific acumen and technological capabilities to perform this task reliably using an interdisciplinary approach and advanced experimental and modeling techniques. In the last two National Defense Authorization Acts, Congress identified the need to protect the nation from the proliferation of weapons of mass destruction, which includes nuclear, chemical, and biological weapons, and their potential use by terrorists. Los Alamos is applying multidisciplinary science and engineering skills to address these problems. In addition, the Laboratory`s critical programmatic roles in stockpile stewardship and threat reduction are complemented by its waste management operations and environmental restoration work. Information on specific programs is available in Section 2 of this document.

  16. Los Alamos National Laboratory The

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The world remains a dangerous and unstable place. Russia is loudly rattling its conventional and nuclear sabers. North Korea appears to be striving to build its own nuclear- armed intercontinental ballistic missiles. Every declared nuclear-armed nation is increasing and/or modernizing its nuclear stockpile. More nations are debating whether to acquire their own nuclear weapons. The continuing need for the U.S. nuclear deterrent grows in direct proportion to these growing threats to U.S. national

  17. Renewable Energy Laboratory

    Open Energy Info (EERE)

    Radiation Budget Measurement Networks, National Oceanic and Atmospheric Administration Air Resources Laboratory and Earth System Research Laboratory Global Monitoring Division *...

  18. Integrating Environmental Stewardship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Energy Integrated Waste Management and Consent-Based Siting Booklet Integrated Waste Management and Consent-Based Siting Booklet This booklet provides an overview of issues involved in the Department's vision of an integrated waste management system and its consent-based approach to siting the facilities needed to manage nuclear waste. It briefly discusses the history of waste management efforts in the United States, key features of a consent-based approach, siting efforts in other

  19. Active stewardship: sustainable future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Active hurricane season expected to shut-in higher amount of oil and natural gas production An above-normal 2013 hurricane season is expected to cause a median production loss of about 19 million barrels of U.S. crude oil and 46 billion cubic feet of natural gas production in the Gulf of Mexico, according to the new forecast from the U.S. Energy Information Administration. That's about one-third more than the amount of oil and gas production knocked offline during last year's hurricane season.

  20. Marine Sciences Laboratory Radionuclide Air Emissions Report for Calendar Year 2013

    SciTech Connect (OSTI)

    Snyder, Sandra F.; Barnett, J. M.; Ballinger, Marcel Y.

    2014-05-01

    The U.S. Department of Energy Office of Science (DOE-SC) Pacific Northwest Site Office (PNSO) has oversight and stewardship duties associated with the Pacific Northwest National Laboratory (PNNL) Marine Sciences Laboratory (MSL) located on Battelle Land – Sequim (Sequim). This report is prepared to document compliance with the Code of Federal Regulations (CFR), Title 40, Protection of the Environment, Part 61, National Emission Standards for Hazardous Air Pollutants (NESHAP), Subpart H, “National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities” and Washington Administrative Code (WAC) Chapter 246-247, “Radiation Protection–Air Emissions.” The EDE to the Sequim MEI due to routine operations in 2013 was 5E-05 mrem (5E-07 mSv). No non-routine emissions occurred in 2013. The MSL is in compliance with the federal and state 10 mrem/yr standard.

  1. Marine Sciences Laboratory Radionuclide Air Emissions Report for Calendar Year 2014

    SciTech Connect (OSTI)

    Snyder, Sandra F.; Barnett, J. M.

    2015-05-04

    The U.S. Department of Energy Office of Science (DOE-SC) Pacific Northwest Site Office (PNSO) has oversight and stewardship duties associated with the Pacific Northwest National Laboratory (PNNL) Marine Sciences Laboratory (MSL) located on Battelle Land – Sequim.This report is prepared to document compliance with the Code of Federal Regulations (CFR), Title 40, Protection of the Environment, Part 61, National Emission Standards for Hazardous Air Pollutants (NESHAP), Subpart H, ''National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities” and Washington Administrative Code (WAC) Chapter 246-247, “Radiation Protection–Air Emissions.'' The EDE to the MSL MEI due to routine operations in 2014 was 9E-05 mrem (9E-07 mSv). No non-routine emissions occurred in 2014. The MSL is in compliance with the federal and state 10 mrem/yr standard.

  2. Jet engine test stand and soil stockpile. 107th fighter-interceptor group Niagara Falls Air Force Reserve Station, New York Air National Guard, Niagara Falls, New York. Final site assessment addendum report, 9-12 February 1993

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    THis report outlines additional site assessment activities which were conducted at the Jet Engine Test Stand (JETS), Building No. 852 located at the 197th Fighter-Interceptor Group, Niagara Falls Air National Guard Station (NFANGS), Air Force Reserve Facility (AFRF) approximately 6 miles northeast of Niagara Falls, New York (Figure 1.1). The additional site assessment activities were performed in response to requests, dated February 9 and 12, 1993, by the New York State Department of Environmental Conservation (NYSDEC) to further investigate contaminated soil and groundwater conditions at the JETS and at an existing soil stockpile (Appendix A).

  3. Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory

    National Nuclear Security Administration (NNSA)

    Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory The Terascale Simulation Facility is a world-class supercomputing

  4. Ames Laboratory Logos | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Laboratory Logos The Ames Laboratory Logo comes in several formats. EPS files are vector graphics created in Adobe Illustrator and saved with a tiff preview so they will...

  5. Laboratory Graduate Research Appointment | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Graduate Research Program Perform your thesis research among the best and the brightest at Argonne National Laboratory. About the Program Laboratory Graduate Research (Lab Grad) appointments are available to qualified U.S. university graduate students who wish to carry out their thesis research at Argonne National Laboratory under co-sponsorship of an Argonne staff member and a faculty member. The university sets the academic standard and awards the degree. The participation of the

  6. Ames Laboratory Emergency Plan | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Laboratory Emergency Plan Version Number: 13.0 Document Number: Plan 46300.001 Effective Date: 11/2014

  7. Ames Laboratory Hot Canyon | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Laboratory Hot Canyon This historical film footage, originally produced in the early 1950s as part of a series by WOI-TV, shows atomic research at Ames Laboratory. The work was conducted in a special area of the Laboratory known as the "Hot Canyon."

  8. Wide Bandgap Power Electronics

    Energy Savers [EERE]

    the Nuclear Stockpile Needs Supercomputers Why the Nuclear Stockpile Needs Supercomputers April 28, 2011 - 5:20pm Addthis NNSA supercomputers are a key part of our ability to keep our nuclear stockpile safe, secure and effective. Joshua McConaha What does this mean for me? The NNSA's Stockpile Stewardship Program performs a critical role in implementing President Obama's nuclear security agenda Through a scientific mixture of hardware, software, codes and data and using some of the world's most

  9. Audit Report: IG-0484 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Audit Report: IG-0484 September 22, 2000 Management of the Nuclear Weapons Production Infrastructure Since the cessation of underground testing of nuclear weapons in the early 1990's, the Department of Energy's responsibility to ensure the safety, security, and reliability of the nuclear weapons stockpile has been met through its Stockpile Stewardship Program. This program includes a wide range of activities: stockpile surveillance, stockpile maintenance, non-nuclear experimentation and

  10. The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Hub led by the Ames Laboratory, recovers valuable rare-earth magnetic material from manufacturing waste and creates useful magnets out of it. Ames Laboratory...

  11. mark | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Laboratory Profile Mark Gordon Associate Chemical & Biological Sciences 201 Spedding ... Group Ames Laboratory Research Projects: Chemical Physics TheoreticalComputational Tools ...

  12. Facilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Facility Distributed Energy Research Center Engine Research Facility Heat Transfer Laboratory Tribology Laboratory Transportation Beamline at the Advanced Photon Source...

  13. National Renewable Energy Laboratory

    Office of Environmental Management (EM)

    Renewable Energy Laboratory Innovation for Our Energy Future Renewable Resource Options Geothermal Biomass Solar Hydro Wind National Renewable Energy Laboratory Innovation ...

  14. Sustainability | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sustainability Ames Laboratory is committed to environmental sustainability in all of its operations as outlined in the Laboratory's Site Sustainability Plan. Executive orders set ...

  15. Cytogenetic Biodosimetry Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cytogenetic Biodosimetry Laboratory Blood samples are shipped at room temperature to the laboratory. White blood cells, lymphocytes, are cultured under sterile conditions in an...

  16. Natural Resource Management Plan for Brookhaven National Laboratory

    SciTech Connect (OSTI)

    green, T.

    2011-08-15

    This comprehensive Natural Resource Management Plan (NRMP) for Brookhaven National Laboratory (BNL) was built on the successful foundation of the Wildlife Management Plan for BNL, which it replaces. This update to the 2003 plan continues to build on successes and efforts to better understand the ecosystems and natural resources found on the BNL site. The plan establishes the basis for managing the varied natural resources located on the 5,265 acre BNL site, setting goals and actions to achieve those goals. The planning of this document is based on the knowledge and expertise gained over the past 10 years by the Natural Resources management staff at BNL in concert with local natural resource agencies including the New York State Department of Environmental Conservation, Long Island Pine Barrens Joint Planning and Policy Commission, The Nature Conservancy, and others. The development of this plan is an attempt at sound ecological management that not only benefits BNL's ecosystems but also benefits the greater Pine Barrens habitats in which BNL is situated. This plan applies equally to the Upton Ecological and Research Reserve (Upton Reserve). Any difference in management between the larger BNL area and the Upton Reserve are noted in the text. The purpose of the Natural Resource Management Plan (NRMP) is to provide management guidance, promote stewardship of the natural resources found at BNL, and to sustainably integrate their protection with pursuit of the Laboratory's mission. The philosophy or guiding principles of the NRMP are stewardship, sustainability, adaptive ecosystem management, compliance, integration with other plans and requirements, and the incorporation of community involvement, where applicable. The NRMP is periodically reviewed and updated, typically every five years. This review and update was delayed to develop documents associated with a new third party facility, the Long Island Solar Farm. This two hundred acre facility will result in significant changes to this plan warranting the delay. The body of this plan establishes the management goals and actions necessary for managing the natural resources at BNL in a sustainable manner. The appendices provide specific management requirements for threatened and endangered amphibians and fish (Appendices A and B, respectively), and lists of actions in tabular format - including completed items as well as ongoing and new action items (Appendices C and D, respectively).

  17. The Sample Preparation Laboratories | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cynthia Patty 1 Sam Webb 2 John Bargar 3 Arizona 4 Chemicals 5 Team Work 6 Bottles 7 Glass 8 Plan Ahead! See the tabs above for Laboratory Access and forms you'll need to complete. Equipment and Chemicals tabs detail resources already available on site. Avoid delays! Hazardous materials use may require a written Standard Operating Procedure (SOP) before you work. Check the Chemicals tab for more information. The Sample Preparation Laboratories The Sample Preparation Laboratories provide wet lab

  18. Status of Laboratory Goals | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Status of Laboratory Goals Status of Calendar Year 2016 objectives and targets. Item 1 Recommendation: The EMSSC recommends an Open House be held in the Ames Laboratory Storeroom and Warehouse by April 1, 2016. The Open House will provide Ames Laboratory employees the opportunity to discover what supplies are readily available through the storeroom and showcase the Equipment Pool website. This recommendation will increase awareness of the sustainable purchasing requirements by showcasing these

  19. Analytical Chemistry Laboratory | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemistry Laboratory provides a broad range of analytical chemistry support services to the scientific and engineering programs. AnalyticalChemistryLaboratoryfactsheet...

  20. Laboratory Equipment & Supplies | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Most laboratories offer ice machines and cold rooms. Specialty storage areas for samples include a -80 freezer, argon and nitrogen glove boxes, radiation contamination areas, inert ...

  1. Equipment | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Zeiss Axiovert 200 Optical Microscope Spark Cutter Fully Equipped Metallographic Laboratory Electropolisher Dimpler

  2. Accounting Resources | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accounting Resources Ames Laboratory Human Resources Forms Ames Laboratory Travel Forms Ames Laboratory Forms (Select Department) ISU Intramural PO Request

  3. National Laboratory's Weapons Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Us » Strategic Programs » National Laboratory Impact Initiative Team National Laboratory Impact Initiative Team The mission of the Office of Energy Efficiency and Renewable Energy's (EERE's) National Laboratory Impact Initiative is to significantly increase the industrial impact of the Energy Department's national laboratories on the U.S. clean energy sector. The goals of the Initiative are to: Increase and enhance laboratory-private sector relationships Increase and streamline access to

  4. Sandia National Laboratories: Z Pulsed Power Facility: Z Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to Sandia's mission to assure the reliability and safety of our nuclear stockpile as it ages - it allows scientists to study materials under conditions similar to those produced by...

  5. Laboratory Directed Research and Development Program FY2004

    SciTech Connect (OSTI)

    Hansen, Todd C.

    2005-03-22

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Goals that are codified in DOE's September 2003 Strategic Plan, with a primary focus on Advancing Scientific Understanding. For that goal, the Fiscal Year (FY) 2004 LDRD projects support every one of the eight strategies described in the plan. In addition, LDRD efforts support the goals of Investing in America's Energy Future (six of the fourteen strategies), Resolving the Environmental Legacy (four of the eight strategies), and Meeting National Security Challenges (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD supports Office of Science strategic plans, including the 20 year Scientific Facilities Plan and the draft Office of Science Strategic Plan. The research also supports the strategic directions periodically under review by the Office of Science Program Offices, such as strategic LDRD projects germane to new research facility concepts and new fundamental science directions.

  6. Laboratory Directed Research and Development Program FY2011

    SciTech Connect (OSTI)

    none, none

    2012-04-27

    Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2011 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). Going forward in FY 2012, the LDRD program also supports the Goals codified in the new DOE Strategic Plan of May, 2011. The LDRD program also supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the Office of Science Program Offices, such as LDRD projects germane to new research facility concepts and new fundamental science directions. Brief summares of projects and accomplishments for the period for each division are included.

  7. Oak Ridge National Laboratory Institutional Plan for FY 1999 Through FY 2003

    SciTech Connect (OSTI)

    Trivelpiece, A.W.

    1998-01-01

    In January 1996, when the management and operation (M and O) contract for the Oak Ridge National Laboratory (ORNL) was awarded to Lockheed Martin Energy Research Corporation, they were presented with the opportunity to develop and implement a management structure tailored to the Laboratory's needs and functions. In response, they launched a Laboratory-wide reengineering effort and undertook other work with the goal of fostering excellence, relevance, and stewardship in all aspects of the Laboratory's operations. This effort is paying off in improvements in their ability to meet the expectations established for ORNL as a Department of Energy laboratory overseen by the Office of Science: delivering advances in science and technology, securing new capabilities, improving the ability to operate safely and efficiently at reasonable cost, and being a good neighbor. The development of critical outcomes and objectives, now under way in partnership with the Department's Oak Ridge Operations Office, is aimed at providing a performance-based means of determining how ORNL measures up to these expectations.

  8. Selecting a Host DOE Laboratory | U.S. DOE Office of Science...

    Office of Science (SC) Website

    ... LANL enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, ...

  9. NNSA Hosts NPT Parties at Los Alamos and Sandia National Laboratories...

    National Nuclear Security Administration (NNSA)

    Parties to the Treaty on the Non-Proliferation of Nuclear Weapons (NPT) and one ... Maintaining the Stockpile non-proliferation Non-Proliferation Treaty ...

  10. Federal Laboratory Consortium | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Federal Laboratory Consortium

  11. Brookhaven National Laboratory | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Brookhaven National Laboratory

  12. Sandia National Laboratories: Advanced Simulation and Computing: Physics &

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering Modeling Physics & Engineering Models Crack Modeling The Physics & Engineering Models program provides the models and databases used in simulations supporting the U.S. stockpile. These models and databases describe a large variety of physical and engineering processes that occur during the operation of a nuclear weapon. In addition to supporting the stockpile, a number of other national security missions use Physics & Engineering Models. Sandia's contributions and

  13. 2012-12-06 Quarterly SSP Experiment Summary-FY12-4Q 1

    National Nuclear Security Administration (NNSA)

    2-12-06 Quarterly SSP Experiment Summary-FY12-4Q 1 Summary of Experiments Conducted in Support of Stockpile Stewardship October 2012 The U.S. Stockpile Stewardship Program is a robust program of scientific inquiry used to sustain and assess the nuclear weapons stockpile without the use of underground nuclear tests. The experiments carried out within the program are used in combination with Advanced Simulation and Computing (ASC) to continually assess the stockpile to ensure it is safe, secure,

  14. Environmental Security and Restoration | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environmental Security & Restoration Argonne's work in environmental security and restoration addresses soil, surface water, sediment, and groundwater at contaminated sites. Argonne's work in environmental restoration addresses soil, surface water, sediment, and groundwater at contaminated sites, starting with environmental evaluations and planning projects. Assessments are also conducted of approaches for long-term stewardship of remediated sites with residual contamination. Remedies range

  15. 2013 Los Alamos National Laboratory Hazardous Waste Minimization Report

    SciTech Connect (OSTI)

    Salzman, Sonja L.; English, Charles J.

    2015-08-24

    Waste minimization and pollution prevention are inherent goals within the operating procedures of Los Alamos National Security, LLC (LANS). The US Department of Energy (DOE) and LANS are required to submit an annual hazardous waste minimization report to the New Mexico Environment Department (NMED) in accordance with the Los Alamos National Laboratory (LANL or the Laboratory) Hazardous Waste Facility Permit. The report was prepared pursuant to the requirements of Section 2.9 of the LANL Hazardous Waste Facility Permit. This report describes the hazardous waste minimization program (a component of the overall Waste Minimization/Pollution Prevention [WMin/PP] Program) administered by the Environmental Stewardship Group (ENV-ES). This report also supports the waste minimization and pollution prevention goals of the Environmental Programs Directorate (EP) organizations that are responsible for implementing remediation activities and describes its programs to incorporate waste reduction practices into remediation activities and procedures. LANS was very successful in fiscal year (FY) 2013 (October 1-September 30) in WMin/PP efforts. Staff funded four projects specifically related to reduction of waste with hazardous constituents, and LANS won four national awards for pollution prevention efforts from the National Nuclear Security Administration (NNSA). In FY13, there was no hazardous, mixedtransuranic (MTRU), or mixed low-level (MLLW) remediation waste generated at the Laboratory. More hazardous waste, MTRU waste, and MLLW was generated in FY13 than in FY12, and the majority of the increase was related to MTRU processing or lab cleanouts. These accomplishments and analysis of the waste streams are discussed in much more detail within this report.

  16. Princeton Plasma Physics Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Physics Laboratory P.O. Box 451 Princeton, NJ 08543-0451 GPS: 100 Stellarator Road Princeton, NJ 08540 www.pppl.gov 2015 Princeton Plasma Physics Laboratory. A...

  17. DOE Laboratory Partnerships

    Broader source: Energy.gov [DOE]

    DOE national laboratories were created to support the various missions of the Department, including energy, national security, science and related environmental activities. The laboratories conduct innovative research and development in literally hundreds of technology areas, some available nowhere else.

  18. haberer | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    haberer Ames Laboratory Profile Charles Haberer Facilities Services 158 Metals Development Phone Number: 515-294-3757 Email Address: haberer

  19. islowing | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    islowing Ames Laboratory Profile Igor Slowing Assoc Scientist Chemical & Biological Sciences 2756 Gilman Phone Number: 515-294-1959 Email Address: islowing@iastate.edu Ames Laboratory Associate Ames Laboratory Research Projects: Homogeneous and Interfacial Catalysis in 3D Controlled Environment Nanorefinery Education: Ph.D., Iowa State University, 2003-2008 Licenciate in Chemistry, San Carlos University, Guatemala, 1988-1995 Professional Appointments: Staff Scientist, Ames Laboratory,

  20. levin | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    levin Ames Laboratory Profile Evgenii Levin Scientist I Division of Materials Science & Engineering 107 Spedding Phone Number: 515-294-6093 Email Address: levin@iastate.edu Ames Laboratory Research Projects: Novel Materials Preparation & Processing Methodologies Professional Appointments: Scientist I & Adj. Associate Professor, Ames Laboratory U.S. DOE, and Department of Physics and Astronomy, Iowa State University, 2010- present Associate Scientist & Lecturer, Ames Laboratory

  1. FY 2005 Laboratory Table

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Congressional Budget Request Laboratory Tables Preliminary Department of Energy FY 2005 Congressional Budget Request Office of Management, Budget and Evaluation/CFO February 2004 Laboratory Tables Preliminary Department of Energy Department of Energy FY 2005 Congressional Budget FY 2005 Congressional Budget Request Request Office of Management, Budget and Evaluation/CFO February 2004 Laboratory Tables Laboratory Tables Printed with soy ink on recycled paper Preliminary Preliminary The numbers

  2. Management | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Sciences & Engineering Focus: Understanding & Control of Interfacial Processes Web Site Michael Thackeray Michael Thackeray (Deputy Director) Argonne National Laboratory...

  3. Alamos National Laboratory's 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    $2 million pledged during Los Alamos National Laboratory's 2014 employee giving campaign December 17, 2013 "I Give Because..." theme focuses on unique role Lab plays in local communities LOS ALAMOS, N.M., Dec. 17, 2013-Nearly $2 million has been pledged by Los Alamos National Laboratory employees to United Way and other eligible nonprofit programs during the Laboratory's 2014 Employee Giving Campaign. Los Alamos National Security, LLC, which manages and operates the Laboratory for the

  4. biswasr | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University, 1976 Professional Appointments: Senior Scientist Ames Laboratory and Microelectronics Research Center, 2013- present Adjunct Professor, Dept. of Physics & Astronomy;...

  5. Sandia National Laboratories: Laboratories' Strategic Framework

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Strategic Framework Vision, Mission, and Values Strategic Framework Mission Areas Laboratories Foundation Strategic Objectives and Crosscuts About Strategic Framework strategic framework Sandia continues to be engaged in the significant demands of the nation's nuclear weapons modernization program while conducting a whole range of activities in broader national security. The Laboratories' strategic framework drives strategic decisions about the totality of our work and has positioned our

  6. INL Laboratory Scale Atomizer

    SciTech Connect (OSTI)

    C.R. Clark; G.C. Knighton; R.S. Fielding; N.P. Hallinan

    2010-01-01

    A laboratory scale atomizer has been built at the Idaho National Laboratory. This has proven useful for laboratory scale tests and has been used to fabricate fuel used in the RERTR miniplate experiments. This instrument evolved over time with various improvements being made ‘on the fly’ in a trial and error process.

  7. Ames Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    of R&D) NA Construction and Operation of Research Facilities A- S&T ProjectProgram Management B+ Contractor LeadershipStewardship A- Environment Safety and Health B+...

  8. Ames Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    of R&D) NA Construction and Operation of Research Facilities A- S&T ProjectProgram Management B+ Contractor LeadershipStewardship A Environment Safety and Health A-...

  9. Flight Path 60R - About GEANIE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Target 4 Flight Path 60R (GEANIE) GErmanium Array for Neutron Induced Excitations (GEANIE) is the first large-scale, escape-suppressed, high-resolution gamma-ray spectrometer to be used at a white neutron source. It is now installed at the WNR high-energy neutron facility at LANSCE. The operation and upgrade of GEANIE is a joint project of the Lawrence Livermore and Los Alamos National Laboratories, funded primarily by the Stockpile Stewardship program of the NNSA. geanie2 The GEANIE Array

  10. Proton Radiography: Its uses and Resolution Scaling

    SciTech Connect (OSTI)

    Mariam, Fesseha G. [Los Alamos National Laboratory

    2012-08-09

    Los Alamos National Laboratory has used high energy protons as a probe in flash radiography for over a decade. In this time the proton radiography project has used 800 MeV protons, provided by the LANSCE accelerator facility at LANL, to diagnose over five-hundred dynamic experiments in support of stockpile stewardship programs as well as basic materials science. Through this effort significant experience has been gained in using charged particles as direct radiographic probes to diagnose transient systems. The results of this experience will be discussed through the presentation of data from experiments recently performed at the LANL pRad.

  11. Sandia National Laboratories is a multi-program laboratory operated...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, ... laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed ...

  12. LABORATORY NEW HIRE NOTICE: LABORATORY DELAYED OPENING OR CLOSURE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LABORATORY NEW HIRE NOTICE: LABORATORY DELAYED OPENING OR CLOSURE DUE TO INCLEAMENT WEATHER During the winter months, the Los Alamos National Laboratory (LANL) may at times...

  13. Physics World names NIF fuel gain top 10 breakthrough of the...

    National Nuclear Security Administration (NNSA)

    NIF - the world's largest and most energetic laser - is funded by NNSA and is a key element of NNSA's Stockpile Stewardship Program to maintain the effectiveness and safety of the ...

  14. SSMP

    National Nuclear Security Administration (NNSA)

    released its Fiscal Year 2016 Stockpile Stewardship and Management Plan (SSMP). The FY16 SSMP documents NNSA's 25-year strategic plan for...

  15. ssp20

    National Nuclear Security Administration (NNSA)

    1%2A en 20th Anniversary of U.S. Commitment to Science-based Stockpile Stewardship http:nnsa.energy.govmediaroompressreleases20th-anniversary-ssp-commitment

  16. Comprehensive Test Ban Treaty

    National Nuclear Security Administration (NNSA)

    30%2A en 20th Anniversary of U.S. Commitment to Science-based Stockpile Stewardship http:nnsa.energy.govmediaroompressreleases20th-anniversary-ssp-commitment

  17. secretary of energy

    National Nuclear Security Administration (NNSA)

    8%2A en Stockpile Stewardship: 20 years of success http:nnsa.energy.govssp20

    Page...

  18. lasers. National Ignition Facility

    National Nuclear Security Administration (NNSA)

    data for NNSA's science-based Stockpile Stewardship Program in the area of high-energy-density physics, a scientific field of direct relevance to nuclear deterrence and national...

  19. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    DOE LANL United States English Conference Conference NNSA Stockpile Stewardship Quarterly Washington New Mexico United States Medium ED OSTI ID Legacy ID OSTI ID LA UR AC52 NA25396...

  20. sandia national labs | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    NNSA celebrated the the proven success of the Stockpile Stewardship Program at a half-day public event featuring remarks by Secretary of Energy Ernest Moniz, Secretary of State...