National Library of Energy BETA

Sample records for laboratory stand-off experiment

  1. Idaho National Laboratory Stand-Off Experiment Range draft environmental

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    assessment available for public review and comment News Media Contact: Tim Jackson (208) 526-8484 For Immediate Release December 22, 2010 Idaho National Laboratory Stand-Off Experiment Range draft environmental assessment available for public review and comment Idaho Falls, ID � The U.S. Department of Energy today published a draft environmental assessment for a proposed Stand-Off Experiment Range at Idaho National Laboratory. �This range would represent an expansion of capability and

  2. INL Stand-Off Experiment Range will support critical national security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    missions INL Stand-Off Experiment Range will support critical national security missions Idaho Falls, ID - The U.S. Department of Energy has issued a Finding of No Significant Impact stemming from an environmental assessment it performed to examine the potential environmental impacts of operating a Stand-Off Experiment Range at Idaho National Laboratory. "The Stand-Off Experiment Range will enable important research and development on linear accelerator-based systems for the detection

  3. Basis to demonstrate compliance with the National Emission Standards for Hazardous Air Pollutants for the Stand-off Experiments Range

    SciTech Connect (OSTI)

    Michael Sandvig

    2011-01-01

    The purpose of this report is to provide the basis and the documentation to demonstrate general compliance with the National Emission Standard for Hazardous Air Pollutants (NESHAPS) 40 CFR 61 Subpart H, National Emission Standards for Emissions of Radionuclides Other Than Radon from Department of Energy Facilities, (the Standard) for outdoor linear accelerator operations at the Idaho National Laboratory (INL) Stand-off Experiments Range (SOX). The intent of this report is to inform and gain acceptance of this methodology from the governmental bodies regulating the INL.

  4. Nuclear Quadrupole Resonance (NQR) for stand-off detection of...

    Office of Scientific and Technical Information (OSTI)

    Nuclear Quadrupole Resonance (NQR) for stand-off detection of contraband Citation Details In-Document Search Title: Nuclear Quadrupole Resonance (NQR) for stand-off detection of...

  5. Nuclear Quadrupole Resonance (NQR) for stand-off detection of...

    Office of Scientific and Technical Information (OSTI)

    Nuclear Quadrupole Resonance (NQR) for stand-off detection of contraband Citation Details In-Document Search Title: Nuclear Quadrupole Resonance (NQR) for stand-off detection of ...

  6. Nuclear Quadrupole Resonance (NQR) for stand-off detection of contraband

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Nuclear Quadrupole Resonance (NQR) for stand-off detection of contraband Citation Details In-Document Search Title: Nuclear Quadrupole Resonance (NQR) for stand-off detection of contraband Authors: Espy, Michelle A. [1] ; Karaulanov, Todor [1] ; Kim, Young Jin [1] ; Urbaitis, Algis V. [1] ; Volegov, Petr L. [1] ; Yoder, Jacob [1] + Show Author Affiliations Los Alamos National Laboratory Publication Date: 2013-10-03 OSTI Identifier: 1095841 Report

  7. Building America Technology Solutions for New and Existing Homes: Stand-off

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Furring in Deep Energy Retrofits | Department of Energy Stand-off Furring in Deep Energy Retrofits Building America Technology Solutions for New and Existing Homes: Stand-off Furring in Deep Energy Retrofits This research project, conducted by IBACOS and GreenHomes America, investigated cost-effective deep energy retrofit (DER) solutions for improving the building shell exterior while achieving a cost-reduction goal, including reduced labor costs to reach a 50/50 split between material and

  8. Method and device for stand-off laser drilling and cutting

    DOE Patents [OSTI]

    Copley, John A.; Kwok, Hoi S.; Domankevitz, Yacov

    1989-09-26

    A device for perforating material and a method of stand-off drilling using a laser. In its basic form a free-running laser beam creates a melt on the target and then a Q-switched short duration pulse is used to remove the material through the creation of a laser detonation wave. The advantage is a drilling/cutting method capable of working a target at lengthy stand-off distance. The device may employ 2 lasers or a single one operated in a free-running/Q-switched dual mode.

  9. Filament-strung stand-off elements for maintaining pane separation in vacuum insulating glazing units

    DOE Patents [OSTI]

    Bettger, Kenneth J; Stark, David H

    2013-08-20

    A vacuum insulating glazing unit (VIGU) comprises first and second panes of transparent material, first and second anchors, a plurality of filaments, a plurality of stand-off elements, and seals. The first and second panes of transparent material have edges and inner and outer faces, are disposed with their inner faces substantially opposing one another, and are separated by a gap having a predetermined height. The first and second anchors are disposed at opposite edges of one pane of the VIGU. Each filament is attached at one end to the first anchor and at the other end to the second anchor, and the filaments are collectively disposed between the panes substantially parallel to one another. The stand-off elements are affixed to each filament at predetermined positions along the filament, and have a height substantially equal to the predetermined height of the gap such that the each stand-off element touches the inner surfaces of both panes. The seals are disposed about the edges of the panes, enclosing the stand-off elements within a volume between the panes from which the atmosphere may be evacuated to form a partial vacuum.

  10. Method for tracking the location of mobile agents using stand-off detection technique

    DOE Patents [OSTI]

    Schmitt, Randal L.; Bender, Susan Fae Ann; Rodacy, Philip J.; Hargis, Jr., Philip J.; Johnson, Mark S.

    2006-12-26

    A method for tracking the movement and position of mobile agents using light detection and ranging (LIDAR) as a stand-off optical detection technique. The positions of the agents are tracked by analyzing the time-history of a series of optical measurements made over the field of view of the optical system. This provides a (time+3-D) or (time+2-D) mapping of the location of the mobile agents. Repeated pulses of a laser beam impinge on a mobile agent, such as a bee, and are backscattered from the agent into a LIDAR detection system. Alternatively, the incident laser pulses excite fluorescence or phosphorescence from the agent, which is detected using a LIDAR system. Analysis of the spatial location of signals from the agents produced by repeated pulses generates a multidimensional map of agent location.

  11. Research Laboratory Experiments with Energy Efficiency Upgrades...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research Laboratory Experiments with Energy Efficiency Upgrades Research Laboratory Experiments with Energy Efficiency Upgrades August 30, 2012 - 11:52am Addthis Energy efficiency ...

  12. Optimizing Inspection Parameters for Long Stand-Off Detection of SNM

    SciTech Connect (OSTI)

    Johnson, Erik; Blackburn, Brandon; Hynes, Michael; Hausladen, Paul

    2011-12-13

    Detection of special nuclear material (SNM) at extended ranges (>100 m) through the utilization of high energy (>20 MeV) bremsstrahlung photons requires optimizing the structure and interrelation of irradiation (beam-on) and detection (counting) periods. Conventional inspection schemes at lower energies and smaller distances primarily operate by pulsing an accelerator at frequencies of 0.1-1 kHz while collecting emitted radiation from the target under inspection for the few milliseconds in between pulses. Simulation and experimental results for long stand-off scenarios with source photons >20 MeV, however, indicate that two primary phenomena--(1) induced photoneutrons in proximity to the accelerator and (2) beam induced activation of air and soil--preclude the use of conventional inspection schemes. By considering the time structure and magnitude of the beam-induced photon and neutron backgrounds, signals of interest from the target, and natural backgrounds, inspection schemes have been developed to maximize signal to noise ratios (SNR). Analysis of the data indicates that the highest SNR values are found with short (2-5 s) irradiations followed by a 1-2 s period of collecting emitted neutron and photon signatures.

  13. Two LANL laboratory astrophysics experiments

    SciTech Connect (OSTI)

    Intrator, Thomas P.

    2014-01-24

    Two laboratory experiments are described that have been built at Los Alamos (LANL) to gain access to a wide range of fundamental plasma physics issues germane to astro, space, and fusion plasmas. The overarching theme is magnetized plasma dynamics which includes significant currents, MHD forces and instabilities, magnetic field creation and annihilation, sheared flows and shocks. The Relaxation Scaling Experiment (RSX) creates current sheets and flux ropes that exhibit fully 3D dynamics, and can kink, bounce, merge and reconnect, shred, and reform in complicated ways. Recent movies from a large data set describe the 3D magnetic structure of a driven and dissipative single flux rope that spontaneously self-saturates a kink instability. Examples of a coherent shear flow dynamo driven by colliding flux ropes will also be shown. The Magnetized Shock Experiment (MSX) uses Field reversed configuration (FRC) experimental hardware that forms and ejects FRCs at 150km/sec. This is sufficient to drive a collision less magnetized shock when stagnated into a mirror stopping field region with Alfven Mach number MA=3 so that super critical shocks can be studied. We are building a plasmoid accelerator to drive Mach numbers MA >> 3 to access solar wind and more exotic astrophysical regimes. Unique features of this experiment include access to parallel, oblique and perpendicular shocks, shock region much larger than ion gyro radii and ion inertial length, room for turbulence, and large magnetic and fluid Reynolds numbers.

  14. Duality Apparently Confirmed In Jefferson Laboratory Experiments |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab Duality Apparently Confirmed In Jefferson Laboratory Experiments Duality Apparently Confirmed In Jefferson Laboratory Experiments 1999 Isaac Newton, inventor of calculus and creator of classical physics, is thought by some to be the most intelligent person to have ever lived. When Albert Einstein introduced his theories of General and Special Relativity, Newton's Stature was not diminished, but increased. One genius, Newton, made the work of another, Einstein, possible.

  15. Laboratory Shock Experiments on Basalt - Iron Sulfate Mixes at...

    Office of Scientific and Technical Information (OSTI)

    Laboratory Shock Experiments on Basalt - Iron Sulfate Mixes at 40 - 50 GPa and their ... Title: Laboratory Shock Experiments on Basalt - Iron Sulfate Mixes at 40 - 50 GPa and ...

  16. The BDX experiment at Jefferson Laboratory

    SciTech Connect (OSTI)

    Celentano, Andrea

    2015-06-01

    The existence of MeV-GeV dark matter (DM) is theoretically well motivated but remarkably unexplored. The Beam Dump eXperiment (BDX) at Jefferson Laboratory aims to investigate this mass range. Dark matter particles will be detected through scattering on a segmented, plastic scintillator detector placed downstream of the beam-dump at one of the high intensity JLab experimental Halls. The experiment will collect up to 1022 electrons-on-target (EOT) in a one-year period. For these conditions, BDX is sensitive to the DM-nucleon elastic scattering at the level of a thousand counts per year, and is only limited by cosmogenic backgrounds. The experiment is also sensitive to DM-electron elastic and inelastic scattering, at the level of 10 counts/year. The foreseen signal for these channels is a high-energy (> 100 MeV) electromagnetic shower, with almost no background. The experiment has been presented in form of a Letter of Intent to the laboratory, receiving positive feedback, and is currently being designed.

  17. Stand-Off Furring in Deep Energy Retrofits, Syracuse, New York (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)

    Energy Savers [EERE]

    Stand-Off Furring in Deep Energy Retrofits Syracuse, New York PROJECT INFORMATION Project Name: Deep Energy Retrofit Location: Syracuse, NY Project Partners: GreenHomes America, www.greenhomesamerica.com/ IBACOS, www.ibacos.com Building Component: Building envelope Application: Single-family retrofit Year Tested: 2012 Applicable Climate Zone(s): Cold PERFORMANCE DATA Cost of energy efficiency measure (including labor): $23,518 Projected energy savings: Approximately 50% overall savings Exterior

  18. DEP Learning Experiences | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Learning Experiences "Science is a way of thinking much more than it is a body of knowledge." - Carl Sagan, Astrophysicist Argonne Education provides a variety of...

  19. Mini-lidar sensor for the remote stand-off sensing of chemical/biological substances and method for sensing same

    DOE Patents [OSTI]

    Ray, Mark D.; Sedlacek, Arthur J.

    2003-08-19

    A method and apparatus for remote, stand-off, and high efficiency spectroscopic detection of biological and chemical substances. The apparatus including an optical beam transmitter which transmits a beam having an axis of transmission to a target, the beam comprising at least a laser emission. An optical detector having an optical detection path to the target is provided for gathering optical information. The optical detection path has an axis of optical detection. A beam alignment device fixes the transmitter proximal to the detector and directs the beam to the target along the optical detection path such that the axis of transmission is within the optical detection path. Optical information gathered by the optical detector is analyzed by an analyzer which is operatively connected to the detector.

  20. Thorium Fuel Cycle Pilot Experiences at Oak Ridge National Laboratory

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Conference: Thorium Fuel Cycle Pilot Experiences at Oak Ridge National Laboratory Citation Details In-Document Search Title: Thorium Fuel Cycle Pilot Experiences at Oak Ridge National Laboratory Authors: Collins, Emory D [1] ; Patton, Bradley D [1] ; Krichinsky, Alan M [1] ; Williams, David F [1] + Show Author Affiliations ORNL Publication Date: 2014-01-01 OSTI Identifier: 1185559 DOE Contract Number: AC05-00OR22725 Resource Type: Conference Resource Relation:

  1. Laboratory Experiments and Modeling for Interpreting Field Studies of

    Office of Scientific and Technical Information (OSTI)

    Secondary Organic Aerosol Formation Using an Oxidation Flow Reactor (Technical Report) | SciTech Connect SciTech Connect Search Results Technical Report: Laboratory Experiments and Modeling for Interpreting Field Studies of Secondary Organic Aerosol Formation Using an Oxidation Flow Reactor Citation Details In-Document Search Title: Laboratory Experiments and Modeling for Interpreting Field Studies of Secondary Organic Aerosol Formation Using an Oxidation Flow Reactor This grant was

  2. CNM End-of-Experiment Survey | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Diversity Directory Argonne National Laboratory About Safety News Careers Education Community Diversity Directory Energy Environment Security User Facilities Science Work with Argonne CNM End-of-Experiment Survey Please let us know about your experience as a facility user at Argonne's Center for Nanoscale Materials. Project Information What is your proposal number? * Administrative Support The processing of my experiment proposal was * Excellent Satisfactory Marginal Unsatisfactory The

  3. Laboratory plasma physics experiments using merging supersonic plasma jets

    SciTech Connect (OSTI)

    Hsu, S. C.; Moser, A. L.; Merritt, E. C.; Adams, C. S.; Dunn, J. P.; Brockington, S.; Case, A.; Gilmore, M.; Lynn, A. G.; Messer, S. J.; Witherspoon, F. D.

    2015-04-01

    We describe a laboratory plasma physics experiment at Los Alamos National Laboratory that uses two merging supersonic plasma jets formed and launched by pulsed-power-driven railguns. The jets can be formed using any atomic species or mixture available in a compressed-gas bottle and have the following nominal initial parameters at the railgun nozzle exit: ne ? ni ~ 10? cm?, Te ? Ti ? 1.4 eV, Vjet ? 30100 km/s, mean charge $\\bar{Z}$ ? 1, sonic Mach number Ms ? Vjet/Cs > 10, jet diameter = 5 cm, and jet length ? 20 cm. Experiments to date have focused on the study of merging-jet dynamics and the shocks that form as a result of the interaction, in both collisional and collisionless regimes with respect to the inter-jet classical ion mean free path, and with and without an applied magnetic field. However, many other studies are also possible, as discussed in this paper.

  4. Laboratory plasma physics experiments using merging supersonic plasma jets

    SciTech Connect (OSTI)

    Hsu, S. C.; Moser, A. L.; Merritt, E. C.; Adams, C. S.; Dunn, J. P.; Brockington, S.; Case, A.; Gilmore, M.; Lynn, A. G.; Messer, S. J.; Witherspoon, F. D.

    2015-04-01

    We describe a laboratory plasma physics experiment at Los Alamos National Laboratory that uses two merging supersonic plasma jets formed and launched by pulsed-power-driven railguns. The jets can be formed using any atomic species or mixture available in a compressed-gas bottle and have the following nominal initial parameters at the railgun nozzle exit: ne ≈ ni ~ 10¹⁶ cm⁻³, Te ≈ Ti ≈ 1.4 eV, Vjet ≈ 30–100 km/s, mean charge $\\bar{Z}$ ≈ 1, sonic Mach number Ms ≡ Vjet/Cs > 10, jet diameter = 5 cm, and jet length ≈ 20 cm. Experiments to date have focused on the study of merging-jet dynamics and the shocks that form as a result of the interaction, in both collisional and collisionless regimes with respect to the inter-jet classical ion mean free path, and with and without an applied magnetic field. However, many other studies are also possible, as discussed in this paper.

  5. Laboratory plasma physics experiments using merging supersonic plasma jets

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hsu, S. C.; Moser, A. L.; Merritt, E. C.; Adams, C. S.; Dunn, J. P.; Brockington, S.; Case, A.; Gilmore, M.; Lynn, A. G.; Messer, S. J.; et al

    2015-04-01

    We describe a laboratory plasma physics experiment at Los Alamos National Laboratory that uses two merging supersonic plasma jets formed and launched by pulsed-power-driven railguns. The jets can be formed using any atomic species or mixture available in a compressed-gas bottle and have the following nominal initial parameters at the railgun nozzle exit: ne ≈ ni ~ 10¹⁶ cm⁻³, Te ≈ Ti ≈ 1.4 eV, Vjet ≈ 30–100 km/s, mean chargemore » $$\\bar{Z}$$ ≈ 1, sonic Mach number Ms ≡ Vjet/Cs > 10, jet diameter = 5 cm, and jet length ≈ 20 cm. Experiments to date have focused on the study of merging-jet dynamics and the shocks that form as a result of the interaction, in both collisional and collisionless regimes with respect to the inter-jet classical ion mean free path, and with and without an applied magnetic field. However, many other studies are also possible, as discussed in this paper.« less

  6. Laboratory Experiments and Instrument Intercomparison Studies of Carbonaceous Aerosol Particles

    SciTech Connect (OSTI)

    Davidovits, Paul

    2015-10-20

    Aerosols containing black carbon (and some specific types of organic particulate matter) directly absorb incoming light, heating the atmosphere. In addition, all aerosol particles backscatter solar light, leading to a net-cooling effect. Indirect effects involve hydrophilic aerosols, which serve as cloud condensation nuclei (CCN) that affect cloud cover and cloud stability, impacting both atmospheric radiation balance and precipitation patterns. At night, all clouds produce local warming, but overall clouds exert a net-cooling effect on the Earth. The effect of aerosol radiative forcing on climate may be as large as that of the greenhouse gases, but predominantly opposite in sign and much more uncertain. The uncertainties in the representation of aerosol interactions in climate models makes it problematic to use model projections to guide energy policy. The objective of our program is to reduce the uncertainties in the aerosol radiative forcing in the two areas highlighted in the ASR Science and Program Plan. That is, (1) addressing the direct effect by correlating particle chemistry and morphology with particle optical properties (i.e. absorption, scattering, extinction), and (2) addressing the indirect effect by correlating particle hygroscopicity and CCN activity with particle size, chemistry, and morphology. In this connection we are systematically studying particle formation, oxidation, and the effects of particle coating. The work is specifically focused on carbonaceous particles where the uncertainties in the climate relevant properties are the highest. The ongoing work consists of laboratory experiments and related instrument inter-comparison studies both coordinated with field and modeling studies, with the aim of providing reliable data to represent aerosol processes in climate models. The work is performed in the aerosol laboratory at Boston College. At the center of our laboratory setup are two main sources for the production of aerosol particles: (a) two well-characterized source of soot particles and (b) a flow reactor for controlled OH and/or O3 oxidation of relevant gas phase species to produce well-characterized SOA particles. After formation, the aerosol particles are subjected to physical and chemical processes that simulate aerosol growth and aging. A suite of instruments in our laboratory is used to characterize the physical and chemical properties of aerosol particles before and after processing. The Time of Flight Aerosol Mass Spectrometer (ToF-AMS) together with a Scanning Mobility Particle Sizer (SMPS) measures particle mass, volume, density, composition (including black carbon content), dynamic shape factor, and fractal dimension. The–ToF-AMS was developed at ARI with Boston College participation. About 120 AMS instruments are now in service (including 5 built for DOE laboratories) performing field and laboratory studies world-wide. Other major instruments include a thermal denuder, two Differential Mobility Analyzers (DMA), a Cloud Condensation Nuclei Counter (CCN), a Thermal desorption Aerosol GC/MS (TAG) and the new Soot Particle Aerosol Mass Spectrometer (SP-AMS). Optical instrumentation required for the studies have been brought to our laboratory as part of ongoing and planned collaborative projects with colleagues from DOE, NOAA and university laboratories. Optical instruments that will be utilized include a Photoacoustic Spectrometer (PAS), a Cavity Ring Down Aerosol Extinction Spectrometer (CRD-AES), a Photo Thermal Interferometer (PTI), a new 7-wavelength Aethalometer and a Cavity Attenuated Phase Shift Extinction Monitor (CAPS). These instruments are providing aerosol absorption, extinction and scattering coefficients at a range of atmospherically relevant wavelengths. During the past two years our work has continued along the lines of our original proposal. We report on 12 completed and/or continuing projects conducted during the period 08/14 to 0814/2015. These projects are described in 17 manuscripts published in refereed journals.

  7. Remote Systems Experience at the Oak Ridge National Laboratory--A Summary

    Office of Scientific and Technical Information (OSTI)

    of Lessons Learned (Conference) | SciTech Connect Conference: Remote Systems Experience at the Oak Ridge National Laboratory--A Summary of Lessons Learned Citation Details In-Document Search Title: Remote Systems Experience at the Oak Ridge National Laboratory--A Summary of Lessons Learned Oak Ridge National Laboratory (ORNL) has a long history in the development of remote systems to support the nuclear environment. ORNL, working in conjunction with Central Research Laboratories, created

  8. SEP Success Story: Research Laboratory Experiments with Energy Efficiency Upgrades

    Broader source: Energy.gov [DOE]

    This month, the University of Kentucky celebrated the completion of a newly constructed research laboratory, thanks to an investment from the Energy Department’s State Energy Program (SEP) through the American Recovery and Reinvestment Act (ARRA) of 2009. Learn more.

  9. Remote Systems Experience at the Oak Ridge National Laboratory...

    Office of Scientific and Technical Information (OSTI)

    The final outcome is a summary paper outlining ORNL experiences and guidelines for transition of developmental remote systems to real-worldmore hazardous environments. less ...

  10. The Heavy Photon Search experiment at Jefferson Laboratory

    SciTech Connect (OSTI)

    De Napoli, Marzio

    2015-06-01

    Many beyond Standard Model theories predict a new massive gauge boson, a.k.a. 'dark' or 'heavy photon', directly coupling to hidden sector particles with dark charge. The heavy photon is expected to mix with the Standard Model photon through kinetic mixing and therefore couple weakly to normal charge. The Heavy Photon Search (HPS) experiment will search for the heavy photon at the Thomas Jefferson National Accelerator Facility (JLab), in the mass range 20-1000 MeV/c2 and coupling to electric charge ϵ2 = α'/α in the range 10-5 to 10-10. HPS will look for the e+e- decay channel of heavy photons radiated by electron Bremsstrahlung, employing both invariant mass search and detached vertexing techniques. The experiment employs a compact forward spectrometer comprising silicon microstrip detectors for vertexing and tracking and an electromagnetic calorimeter for particle identification and triggering.

  11. Floor-supply displacement air-conditioning: Laboratory experiments

    SciTech Connect (OSTI)

    Akimoto, Takashi; Nobe, Tatsuo; Tanabe, Shinichi; Kimura, Kenichi

    1999-07-01

    The results of laboratory measurements on the performance of a floor-supply displacement air-conditioning system in comparison to a displacement ventilation system with a side-wall-mounted diffuser and a ceiling-based distribution system are described. Thermal stratification was observed, as there were greater vertical air temperature differences in both of the displacement systems than in the ceiling-based system. The floor-supply displacement air-conditioning system produced a uniformly low air velocity at each measurement height, while a rather high air velocity near the floor was observed for the displacement ventilation system with a sidewall-mounted diffuser. Local mean age of air of the floor-supply displacement air-conditioning system was lower than that of the other systems, especially in the lower part of the room. According to the simulation results, the floor-supply displacement air-conditioning system with outdoor air cooling requires 34% less energy than the conventional air-conditioning system with outdoor air cooling.

  12. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories and Facilities Laboratories and Facilities Laboratories and Facilities National Energy Technology Laboratory - The National Energy Technology Laboratory (NETL) is the lead field center for the Office of Fossil Energy's research and development program. Scientists at its Pittsburgh, Pa., and Morgantown, W. Va., campuses conduct onsite research while contract administrators oversee nearly 700 federally-sponsored projects conducted by private sector research partners. The Houston,

  13. Laboratory Shock Experiments on Basalt - Iron Sulfate Mixes at ~ 40 - 50

    Office of Scientific and Technical Information (OSTI)

    GPa and their Relevance to the Martian Reolith Component Present in Shergotties (Conference) | SciTech Connect Laboratory Shock Experiments on Basalt - Iron Sulfate Mixes at ~ 40 - 50 GPa and their Relevance to the Martian Reolith Component Present in Shergotties Citation Details In-Document Search Title: Laboratory Shock Experiments on Basalt - Iron Sulfate Mixes at ~ 40 - 50 GPa and their Relevance to the Martian Reolith Component Present in Shergotties Basaltic shergottites such as

  14. Compressed natural gas and liquefied petroleum gas conversions: The National Renewable Energy Laboratory`s experience

    SciTech Connect (OSTI)

    Motta, R.C.; Kelly, K.J.; Warnock, W.W.

    1996-04-01

    The National Renewable Energy Laboratory (NREL) contracted with conversion companies in six states to convert approximately 900 light-duty Federal fleet vehicles to operate on compressed natural gas (CNG) or liquefied petroleum gas (LPG). The contracts were initiated in order to help the Federal government meet the vehicle acquisition requirements of the Energy Policy Act of 1992 (EPACT) during a period of limited original equipment manufacturer (OEM) model availability. Approximately 90% of all conversions were performed on compact of full-size vans and pickups, and 90% of the conversions were to bi-fuel operation. With a positive response from the fleet managers, this program helped the Federal government meet the vehicle acquisition requirements of EPACT for fiscal years 1993 and 1994, despite limited OEM model availability. The conversions also helped to establish the infrastructure needed to support further growth in the use of alternative fuel vehicles. In conclusion, the program has been successful in helping the Federal government meet the vehicle acquisition requirements of EPACT, establishing infrastructure, increasing the displacement of imported oil, and evaluating the emissions performance of converted vehicles. With the relatively widespread availability of OEM vehicles in the 1996 model year, the program is now being phased out.

  15. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    performance computer system installed at Los Alamos National Laboratory June 17, 2014 Unclassified 'Wolf' system to advance many fields of science LOS ALAMOS, N.M., June 17, 2014-Los Alamos National Laboratory recently installed a new high-performance computer system, called Wolf, which will be used for unclassified research. "This machine modernizes our mid-tier resources available to Laboratory scientists," said Bob Tomlinson, of the Laboratory's High Performance Computing group.

  16. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forest fire near Los Alamos National Laboratory June 26, 2011 Los Alamos, New Mexico, June 26, 2011, 6:07pm-The Las Conchas fire burning in the Jemez Mountains approximately 12...

  17. Insights From Laboratory Experiments On Simulated Faults With Application To Fracture Evolution In Geothermal Systems

    SciTech Connect (OSTI)

    Stephen L. Karner, Ph.D

    2006-06-01

    Laboratory experiments provide a wealth of information related to mechanics of fracture initiation, fracture propagation processes, factors influencing fault strength, and spatio-temporal evolution of fracture properties. Much of the existing literature reports on laboratory studies involving a coupling of thermal, hydraulic, mechanical, and/or chemical processes. As these processes operate within subsurface environments exploited for their energy resource, laboratory results provide insights into factors influencing the mechanical and hydraulic properties of geothermal systems. I report on laboratory observations of strength and fluid transport properties during deformation of simulated faults. The results show systematic trends that vary with stress state, deformation rate, thermal conditions, fluid content, and rock composition. When related to geophysical and geologic measurements obtained from engineered geothermal systems (e.g. microseismicity, wellbore studies, tracer analysis), laboratory results provide a means by which the evolving thermal reservoir can be interpreted in terms of physico-chemical processes. For example, estimates of energy release and microearthquake locations from seismic moment tensor analysis can be related to strength variations observed from friction experiments. Such correlations between laboratory and field data allow for better interpretations about the evolving mechanical and fluid transport properties in the geothermal reservoir ultimately leading to improvements in managing the resource.

  18. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mexican pueblo preserves cultural history through collaborative tours with Los Alamos National Laboratory August 24, 2015 Students gain new insights into their ancestry LOS ALAMOS, N.M., Aug. 24, 2015-San Ildefonso Pueblo's Summer Education Enhancement Program brought together academic and cultural learning in the form of a recent tour of Cave Kiva Trail in Mortandad Canyon."Opening up this archaeological site and sharing it with the descendants of its first inhabitants is a

  19. Compressed Natural Gas and Liquefied Petroleum Gas Conversions: The National Renewable Energy Laboratory's Experience

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Compressed Natural Gas and Liquefied Petroleum Gas Conversions: The National Renewable Energy Laboratory's Experience N T Y A U E O F E N E R G D E P A R T M E N I T E D S T A T S O F A E R I C M Compressed Natural Gas and Liquefied Petroleum Gas Conversions: The National Renewable Energy Laboratory's Experience N T Y A U E O F E N E R G D E P A R T M E N I T E D S T A T S O F A E R I C M Robert C. Motta Kenneth J. Kelly William W. Warnock Executive Summary The National Renewable Energy

  20. Validation experiment of a numerically processed millimeter-wave interferometer in a laboratory

    SciTech Connect (OSTI)

    Kogi, Y., E-mail: kogi@fit.ac.jp; Higashi, T.; Matsukawa, S. [Department of Information Electronics, Fukuoka Institute of Technology, Fukuoka 811-0295 (Japan); Mase, A. [Art, Science and Technology Center for Cooperative Research, Kyushu University, Kasuga, Fukuoka 816-0811 (Japan); Kohagura, J.; Yoshikawa, M. [Plasma Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Nagayama, Y.; Kawahata, K. [National Institute for Fusion Science, Toki, Gifu 509-5202 (Japan); Kuwahara, D. [Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588 (Japan)

    2014-11-15

    We propose a new interferometer system for density profile measurements. This system produces multiple measurement chords by a leaky-wave antenna driven by multiple frequency inputs. The proposed system was validated in laboratory evaluation experiments. We confirmed that the interferometer generates a clear image of a Teflon plate as well as the phase shift corresponding to the plate thickness. In another experiment, we confirmed that quasi-optical mirrors can produce multiple measurement chords; however, the finite spot size of the probe beam degrades the sharpness of the resulting image.

  1. Intermediate-Scale Laboratory Experiments of Subsurface Flow and Transport Resulting from Tank Leaks

    SciTech Connect (OSTI)

    Oostrom, Martinus; Wietsma, Thomas W.

    2014-09-30

    Washington River Protection Solutions contracted with Pacific Northwest National Laboratory to conduct laboratory experiments and supporting numerical simulations to improve the understanding of water flow and contaminant transport in the subsurface between waste tanks and ancillary facilities at Waste Management Area C. The work scope included two separate sets of experiments: •Small flow cell experiments to investigate the occurrence of potential unstable fingering resulting from leaks and the limitations of the STOMP (Subsurface Transport Over Multiple Phases) simulator to predict flow patterns and solute transport behavior under these conditions. Unstable infiltration may, under certain conditions, create vertically elongated fingers potentially transporting contaminants rapidly through the unsaturated zone to groundwater. The types of leak that may create deeply penetrating fingers include slow release, long duration leaks in relatively permeable porous media. Such leaks may have occurred below waste tanks at the Hanford Site. •Large flow experiments to investigate the behavior of two types of tank leaks in a simple layered system mimicking the Waste Management Area C. The investigated leaks include a relatively large leak with a short duration from a tank and a long duration leak with a relatively small leakage rate from a cascade line.

  2. DOE/ID-Number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    822 Idaho National Laboratory Stand-Off Experiment (SOX) Range Environmental Assessment Final March 2011 DOE/EA-1822 Idaho National Laboratory Stand-Off Experiment (SOX) Range Environmental Assessment Final March 2011 Prepared for the U.S. Department of Energy Idaho Operations Office i CONTENTS ACRONYMS ............................................................................................................................................... iii GLOSSARY

  3. Estimated Uncertainties in the Idaho National Laboratory Matched-Index-of-Refraction Lower Plenum Experiment

    SciTech Connect (OSTI)

    Donald M. McEligot; Hugh M. McIlroy, Jr.; Ryan C. Johnson

    2007-11-01

    The purpose of the fluid dynamics experiments in the MIR (Matched-Index-of-Refraction) flow system at Idaho National Laboratory (INL) is to develop benchmark databases for the assessment of Computational Fluid Dynamics (CFD) solutions of the momentum equations, scalar mixing, and turbulence models for typical Very High Temperature Reactor (VHTR) plenum geometries in the limiting case of negligible buoyancy and constant fluid properties. The experiments use optical techniques, primarily particle image velocimetry (PIV) in the INL MIR flow system. The benefit of the MIR technique is that it permits optical measurements to determine flow characteristics in passages and around objects to be obtained without locating a disturbing transducer in the flow field and without distortion of the optical paths. The objective of the present report is to develop understanding of the magnitudes of experimental uncertainties in the results to be obtained in such experiments. Unheated MIR experiments are first steps when the geometry is complicated. One does not want to use a computational technique, which will not even handle constant properties properly. This report addresses the general background, requirements for benchmark databases, estimation of experimental uncertainties in mean velocities and turbulence quantities, the MIR experiment, PIV uncertainties, positioning uncertainties, and other contributing measurement uncertainties.

  4. Dedicated Laboratory Setup for CO{sub 2} TEA Laser Propulsion Experiments at Rensselaer Polytechnic Institute

    SciTech Connect (OSTI)

    Salvador, Israel I.; Kenoyer, David; Myrabo, Leik N.; Notaro, Samuel

    2010-10-08

    Laser propulsion research progress has traditionally been hindered by the scarcity of photon sources with desirable characteristics, as well as integrated specialized flow facilities in a dedicated laboratory environment. For TEA CO{sub 2} lasers, the minimal requirements are time-average powers of >100 W), and pulse energies of >10 J pulses with short duration (e.g., 0.1 to 1 {mu}s); furthermore, for the advanced pulsejet engines of interest here, the laser system must simulate pulse repetition frequencies of 1-10 kilohertz or more, at least for two (carefully sequenced) pulses. A well-equipped laser propulsion laboratory should have an arsenal of sensor and diagnostics tools (such as load cells, thrust stands, moment balances, pressure and heat transfer gages), Tesla-level electromagnet and permanent magnets, flow simulation facilities, and high-speed visualization systems, in addition to other related equipment, such as optics and gas supply systems. In this paper we introduce a cutting-edge Laser Propulsion Laboratory created at Rensselaer Polytechnic Institute, one of the very few in the world to be uniquely set up for beamed energy propulsion (BEP) experiments. The present BEP research program is described, along with the envisioned research strategy that will exploit current and expanded facilities in the near future.

  5. LabView Based Nuclear Physics Laboratory experiments as a remote teaching and training tool for Latin American Educational Centers

    SciTech Connect (OSTI)

    Sajo-Bohus, L.; Greaves, E. D.; Barros, H.; Gonzalez, W.; Rangel, A.

    2007-10-26

    A virtual laboratory via internet to provide a highly iterative and powerful teaching tool for scientific and technical discipline is given. The experimenter takes advantage of a virtual laboratory and he can execute nuclear experiment at introductory level e.g. Gamma ray detection with Geiger-Mueller Counter at remote location using internet communication technology.

  6. ISOTHERMAL AIR INGRESS VALIDATION EXPERIMENTS AT IDAHO NATIONAL LABORATORY: DESCRIPTION AND SUMMARY OF DATA

    SciTech Connect (OSTI)

    Chang H. Oh; Eung S. Kim

    2010-09-01

    Idaho National Laboratory performed air ingress experiments as part of validating computational fluid dynamics code (CFD). An isothermal stratified flow experiment was designed and set to understand stratified flow phenomena in the very high temperature gas cooled reactor (VHTR) and to provide experimental data for validating computer codes. The isothermal experiment focused on three flow characteristics unique in the VHTR air-ingress accident: stratified flow in the horizontal pipe, stratified flow expansion at the pipe and vessel junction, and stratified flow around supporting structures. Brine and sucrose were used as heavy fluids and water was used as light fluids. The density ratios were changed between 0.87 and 0.98. This experiment clearly showed that a stratified flow between heavy and light fluids is generated even for very small density differences. The code was validated by conducting blind CFD simulations and comparing the results to the experimental data. A grid sensitivity study was also performed based on the Richardson extrapolation and the grid convergence index method for modeling confidence. As a result, the calculated current speed showed very good agreement with the experimental data, indicating that the current CFD methods are suitable for predicting density gradient stratified flow phenomena in the air-ingress accident.

  7. EA-1087: Proposed Induction Linac System Experiments in Building 51B at Lawrence Berkeley National Laboratory, Berkeley, California

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to modify existing Building 51B at the U.S. Department of Energy's Lawrence Berkeley National Laboratory to install and conduct experiments...

  8. Remote Systems Experience at the Oak Ridge National Laboratory--A Summary of Lessons Learned

    SciTech Connect (OSTI)

    Noakes, Mark W; Burgess, Thomas W; Rowe, John C

    2011-01-01

    Oak Ridge National Laboratory (ORNL) has a long history in the development of remote systems to support the nuclear environment. ORNL, working in conjunction with Central Research Laboratories, created what is believed to be the first microcomputer-based implementation of dual-arm master-slave remote manipulation. As part of the Consolidated Fuel Reprocessing Program, ORNL developed the dual-arm advanced servomanipulator focusing on remote maintainability for systems exposed to high radiation fields. ORNL also participated in almost all of the various technical areas of the U.S. Department of Energy s Robotics Technology Development Program, while leading the Decontamination and Decommissioning and Tank Waste Retrieval categories. Over the course of this involvement, ORNL has developed a substantial base of working knowledge as to what works when and under what circumstances for many types of remote systems tasks as well as operator interface modes, control bandwidth, and sensing requirements to name a few. By using a select list of manipulator systems that is not meant to be exhaustive, this paper will discuss history and outcome of development, field-testing, deployment, and operations from a lessons learned perspective. The final outcome is a summary paper outlining ORNL experiences and guidelines for transition of developmental remote systems to real-world hazardous environments.

  9. Experiments in sideband suppression on the Los Alamos National Laboratory Free-Electron Laser

    SciTech Connect (OSTI)

    White, C.J.; Coyle, M.R.; Paxton, A.H. (Mission Research Corp., Albuquerque, NM (United States). Laser and Optical R and D Group); O'Shea, P.G.; Bender, S.C.; Byrd, D.A.; Feldman, D.W.; Goldstein, J.C.: Pitcher, E.J.; Zaugg, T.J. (Los Alamos National Lab., NM (United States))

    1993-01-01

    Two versions of the Phase-Step Mirror'' (PSM), a novel optical component that prevents the formation of sidebands in a Free-Electron Laser (FEL) were tested on the Los Alamos National Laboratory (LANL) APEX FEL. Sideband suppression and frequency control with high extraction efficiency and single line, transform limited operation were demonstrated. The results of our LANL experiments and computer simulations showed that for very high gain applications, the first-order sideband is completely suppressed, but the laser gain is so strong that on about pass 300 the sideband at the second-order or next free spectral range of the PSM appears. This second-order sideband may be suppressed by designing a PSM with grooves having two alternating depths, one chosen to suppress the first-order sideband, and the other, the second-order sideband.

  10. Experiments in sideband suppression on the Los Alamos National Laboratory Free-Electron Laser

    SciTech Connect (OSTI)

    White, C.J.; Coyle, M.R.; Paxton, A.H. [Mission Research Corp., Albuquerque, NM (United States). Laser and Optical R and D Group; O`Shea, P.G.; Bender, S.C.; Byrd, D.A.; Feldman, D.W.; Goldstein, J.C.: Pitcher, E.J.; Zaugg, T.J. [Los Alamos National Lab., NM (United States)

    1993-06-01

    Two versions of the ``Phase-Step Mirror`` (PSM), a novel optical component that prevents the formation of sidebands in a Free-Electron Laser (FEL) were tested on the Los Alamos National Laboratory (LANL) APEX FEL. Sideband suppression and frequency control with high extraction efficiency and single line, transform limited operation were demonstrated. The results of our LANL experiments and computer simulations showed that for very high gain applications, the first-order sideband is completely suppressed, but the laser gain is so strong that on about pass 300 the sideband at the second-order or next free spectral range of the PSM appears. This second-order sideband may be suppressed by designing a PSM with grooves having two alternating depths, one chosen to suppress the first-order sideband, and the other, the second-order sideband.

  11. Laboratory Experiments Bearing on the Origin and Evolution of Olivine-rich Chondrules

    SciTech Connect (OSTI)

    Richter, Frank M.; Mendybaev, Ruslan A.; Christensen, John N.; Ebel, Denton; Gaffney, Amy

    2011-06-24

    Evaporation rates of K2O, Na2O, and FeO from chondrule-like liquids and the associated potassium isotopic fractionation of the evaporation residues were measured to help understand the processes and conditions that affected the chemical and isotopic compositions of olivine-rich Type IA and Type IIA chondrules from Semarkona. Both types of chondrules show evidence of having been significantly or totally molten. However, these chondrules do not have large or systematic potassium isotopic fractionation of the sort found in the laboratory evaporation experiments. The experimental results reported here provide new data regarding the evaporation kinetics of sodium and potassium from a chondrule-like melt and the potassium isotopic fractionation of evaporation residues run under various conditions ranging from high vacuum to pressures of one bar of H2+CO2, or H2, or helium. The lack of systematic isotopic fractionation of potassium in the Type IIA and Type IA chondrules compared with what is found in the vacuum and one-bar evaporation residues is interpreted as indicating that they evolved in a partially closed system where the residence time of the surrounding gas was sufficiently long for it to have become saturated in the evaporating species and for isotopic equilibration between the gas and the melt. A diffusion couple experiment juxtaposing chondrule-like melts with different potassium concentrations showed that the diffusivity of potassium is sufficiently fast at liquidus temperatures (DK>2-10-4cm2/s at 1650-C) that diffusion-limited evaporation cannot explain why, despite their having been molten, the Type IIA and Type IA chondrules show no systematic potassium isotopic fractionation.

  12. Atmospheric Radiation Measurement (ARM) Data from Steamboat Springs, Colorado, for the Storm Peak Laboratory Cloud Property Validation Experiment (STORMVEX)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    In October 2010, the initial deployment of the second ARM Mobile Facility (AMF2) took place at Steamboat Springs, Colorado, for the Storm Peak Laboratory Cloud Property Validation Experiment (STORMVEX). The objective of this field campaign was to obtain data about liquid and mixed-phase clouds using AMF2 instruments in conjunction with Storm Peak Laboratory (located at an elevation of 3220 meters on Mt. Werner), a cloud and aerosol research facility operated by the Desert Research Institute. STORMVEX datasets are freely available for viewing and download. Users are asked to register with the ARM Archive; the user's email address is used from that time forward as the login name.

  13. Laboratory Experiments and Instrument Development for the Study of Atmospheric Aerosols

    SciTech Connect (OSTI)

    Davidovits, Paul

    2011-12-10

    Soot particles are generated by incomplete combustion of fossil and biomass fuels. Through direct effects clear air aerosols containing black carbon (BC) such as soot aerosols, absorb incoming light heating the atmosphere, while most other aerosols scatter light and produce cooling. Even though BC represents only 1-2% of the total annual emissions of particulate mass to the atmosphere, it has been estimated that the direct radiative effect of BC is the second-most important contributor to global warming after absorption by CO2. Ongoing studies continue to underscore the climate forcing importance of black carbon. However, estimates of the radiative effects of black carbon on climate remain highly uncertain due to the complexity of particles containing black carbon. Quantitative measurement of BC is challenging because BC often occurs in highly non-spherical soot particles of complex morphology. Freshly emitted soot particles are typically fractal hydrophobic aggregates. The aggregates consist of black carbon spherules with diameters typically in the range of about 15-40 nm, and they are usually coated by adsorbed polyaromatic hydrocarbons (PAHs) produced during combustion. Diesel-generated soot particles are often emitted with an organic coating composed primarily of lubricating oil and unburned fuel, as well as well as PAH compounds. Sulfuric acid has also been detected in diesel and aircraft-emitted soot particles. In the course of aging, these particle coatings may be substantially altered by chemical reactions and/or the deposition of other materials. Such processes transform the optical and CCN properties of the soot aerosols in ways that are not yet well understood. Our work over the past seven years consisted of laboratory research, instrument development and characterization, and field studies with the central focus of improving our understanding of the black carbon aerosol climate impacts. During the sixth year as well as during this seventh year (no-cost extension period) of our grant, we extended our studies to perform experiments on the controlled production and characterization of secondary organic aerosol.

  14. An analytical chemistry laboratory's experiences under Department of Energy Order 5633. 3 - a status report

    SciTech Connect (OSTI)

    Bingham, C.D.

    1989-11-01

    The U.S. Department of Energy (DOE) order 5633.3, Control and Accountability of Nuclear Materials, initiated substantial changes to the requirements for operations involving nuclear materials. In the opinion of this author, the two most significant changes are the clarification of and the increased emphasis on the concept of graded safeguards and the implementation of performance requirements. Graded safeguards recognizes that some materials are more attractive than others to potential adversary actions and, thus, should be afforded a higher level of integrated safeguards effort. An analytical chemistry laboratory, such as the New Brunswick Laboratory (NBL), typically has a small total inventory of special nuclear materials compared to, for example, a production or manufacturing facility. The NBL has a laboratory information management system (LIMS) that not only provides the sample identification and tracking but also incorporates the essential features of MC A required of NBL operations. As a consequence of order 5633.3, NBL had to modify LIMS to accommodate material attractiveness information for the logging process, to reflect changes in the attractiveness as the material was processed through the laboratory, and to enable inventory information to be accumulated by material attractiveness as the material was processed through the laboratory, and to enable inventory information to be accumulated by material attractiveness codes.

  15. Initial Operation of the High Temperature Electrolysis Integrated Laboratory Scale Experiment at INL

    SciTech Connect (OSTI)

    C. M. Stoots; J. E. O'Brien; K. G. Condie; J. S. Herring; J. J. Hartvigsen

    2008-06-01

    An integrated laboratory scale, 15 kW high-temperature electrolysis facility has been developed at the Idaho National Laboratory under the U.S. Department of Energy Nuclear Hydrogen Initiative. Initial operation of this facility resulted in over 400 hours of operation with an average hydrogen production rate of approximately 0.9 Nm3/hr. The integrated laboratory scale facility is designed to address larger-scale issues such as thermal management (feed-stock heating, high-temperature gas handling), multiple-stack hot-zone design, multiple-stack electrical configurations, and other “integral” issues. This paper documents the initial operation of the ILS, with experimental details about heat-up, initial stack performance, as well as long-term operation and stack degradation.

  16. Spray Foam Exterior Insulation with Stand-Off Furring

    SciTech Connect (OSTI)

    Herk, A.; Baker, R.; Prahl, D.

    2014-03-01

    IBACOS, in collaboration with GreenHomes America, was contracted by the New York State Energy Research and Development Authority to research exterior wall insulation solutions. This research investigated cost-effective deep energy retrofit (DER) solutions for improving the building shell exterior while achieving a cost-reduction goal, including reduced labor costs to reach a 50/50 split between material and labor. The strategies included exterior wall insulation plus energy upgrades as needed in the attic, mechanical and ventilation systems, and basement band joist, walls, and floors. The work can be integrated with other home improvements such as siding or window replacement. This strategy minimizes physical connections to existing wall studs, encapsulates existing siding materials (including lead paint) with spray foam, and creates a vented rain screen assembly to promote drying. GreenHomes America applied construction details created by IBACOS to a test home. 2x4 framing members were attached to the wall at band joists and top plates using 'L' clips, with spray foam insulating the wall after framing was installed. Windows were installed simultaneously with the framing, including extension jambs. The use of clips in specific areas provided the best strength potential, and 'picture framing' the spray foam held the 2x4s in place. Short-term testing was performed at this house, with monitoring equipment installed for long-term testing. Testing measurements will be provided in a later report, as well as utility impact (before and after), costs (labor and materials), construction time, standard specifications, and analysis for the exterior wall insulation strategy.

  17. Spray Foam Exterior Insulation with Stand-Off Furring

    SciTech Connect (OSTI)

    Herk, Anatasia; Baker, Richard; Prahl, Duncan

    2014-03-01

    IBACOS, in collaboration with GreenHomes America, was contracted by the New York State Energy Research and Development Authority to research exterior wall insulation solutions. This research investigated cost-effective deep energy retrofit (DER) solutions for improving the building shell exterior while achieving a cost-reduction goal, including reduced labor costs to reach a 50/50 split between material and labor. The strategies included exterior wall insulation plus energy upgrades as needed in the attic, mechanical and ventilation systems, and basement band joist, walls, and floors. The work can be integrated with other home improvements such as siding or window replacement. This strategy minimizes physical connections to existing wall studs, encapsulates existing siding materials (including lead paint) with spray foam, and creates a vented rain screen assembly to promote drying. GreenHomes America applied construction details created by IBACOS to a test home. 2x4 framing members were attached to the wall at band joists and top plates using "L" clips, with spray foam insulating the wall after framing was installed. Windows were installed simultaneously with the framing, including extension jambs. The use of clips in specific areas provided the best strength potential, and "picture framing" the spray foam held the 2x4s in place. Short-term testing was performed at this house, with monitoring equipment installed for long-term testing. Testing measurements will be provided in a later report, as well as utility impact (before and after), costs (labor and materials), construction time, standard specifications, and analysis for the exterior wall insulation strategy.

  18. Stand-off transmission lines and method for making same

    DOE Patents [OSTI]

    Tuckerman, David B.

    1991-01-01

    Standoff transmission lines in an integrated circuit structure are formed by etching away or removing the portion of the dielectric layer separating the microstrip metal lines and the ground plane from the regions that are not under the lines. The microstrip lines can be fabricated by a subtractive process of etching a metal layer, an additive process of direct laser writing fine lines followed by plating up the lines or a subtractive/additive process in which a trench is etched over a nucleation layer and the wire is electrolytically deposited. Microstrip lines supported on freestanding posts of dielectric material surrounded by air gaps are produced. The average dielectric constant between the lines and ground plane is reduced, resulting in higher characteristic impedance, less crosstalk between lines, increased signal propagation velocities, and reduced wafer stress.

  19. Stand-off transmission lines and method for making same

    DOE Patents [OSTI]

    Tuckerman, D.B.

    1991-05-21

    Standoff transmission lines in an integrated circuit structure are formed by etching away or removing the portion of the dielectric layer separating the microstrip metal lines and the ground plane from the regions that are not under the lines. The microstrip lines can be fabricated by a subtractive process of etching a metal layer, an additive process of direct laser writing fine lines followed by plating up the lines or a subtractive/additive process in which a trench is etched over a nucleation layer and the wire is electrolytically deposited. Microstrip lines supported on freestanding posts of dielectric material surrounded by air gaps are produced. The average dielectric constant between the lines and ground plane is reduced, resulting in higher characteristic impedance, less crosstalk between lines, increased signal propagation velocities, and reduced wafer stress. 16 figures.

  20. Energy supply and environmental issues: The Los Alamos National Laboratory experience in regional and international programs

    SciTech Connect (OSTI)

    Goff, S.J.

    1995-12-31

    The Los Alamos National Laboratory, operated by the University of California, encompasses more than forty-three square miles of mesas and canyons in northern New Mexico. A Department of Energy national laboratory, Los Alamos is one of the largest multidisciplinary, multiprogram laboratories in the world. Our mission, to apply science and engineering capabilities to problems of national security, has expanded to include a broad array of programs. We conduct extensive research in energy, nuclear safeguards and security, biomedical science, computational science, environmental protection and cleanup, materials science, and other basic sciences. The Energy Technology Programs Office is responsible for overseeing and developing programs in three strategic areas: energy systems and the environment, transportation and infrastructure, and integrated chemicals and materials processing. Our programs focus on developing reliable, economic and environmentally sound technologies that can help ensure an adequate supply of energy for the nation. To meet these needs, we are involved in programs that range from new and enhanced oil recovery technologies and tapping renewable energy sources, through efforts in industrial processes, electric power systems, clean coal technologies, civilian radioactive waste, high temperature superconductivity, to studying the environmental effects of energy use.

  1. The Forward Tagger facility for low Q{sup 2} experiments at Jefferson Laboratory

    SciTech Connect (OSTI)

    Celentano, Andrea

    2014-06-01

    Low Q{sup 2} electron scattering is an efficient and competitive experimental technique to provide intense, quasi-real photon beams, with a high degree of linear polarization. Such a technique will be employed in Hall B at Jefferson Laboratory by having the primary 11?GeV electron beam from the CEBAF accelerator impinging on a liquid hydrogen target. Low-angle scattered electrons will be detected with the new Forward Tagger facility, while the final state hadrons will be measured with the CLAS12 spectrometer. The unique combination of the two detectors will permit to carry out a broad physics program, and to explore new possibilities for high quality physics.

  2. Experiences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experiences with 100Gbps Network Applications Mehmet Balman, Eric Pouyoul, Yushu Yao, E. Wes Bethel Burlen Loring, Prabhat, John Shalf, Alex Sim, and Brian L. Tierney Lawrence Berkeley National Laboratory One Cyclotron Road Berkeley, CA, 94720, USA {mbalman,epouyoul,yyao,ewbethel,bloring,prabhat,jshalf,asim,btierney}@lbl.gov ABSTRACT 100Gbps networking has finally arrived, and many research and educational institutions have begun to deploy 100Gbps routers and services. ESnet and Internet2 worked

  3. EA-1882: U.S. Department of Energy Loan Guarantee to Littlerock Solar Power Gen 1, LLC for the Littlerock Solar Power Gen 1, LLC Project and to Swan Solar Power Gen Station 1, LLC for the Swan Solar Power Gen Station 1, LLC Project

    Broader source: Energy.gov [DOE]

    DOE prepared an Environmental Assessment for the Idaho National Laboratory (INL) Stand-Off Experiment (SOX) Range.  The objective of the EA was to evaluate the potential environmental impacts of...

  4. New cosmic rays experiments in the underground laboratory of IFIN-HH from Slanic Prahova, Romania

    SciTech Connect (OSTI)

    Mitrica, Bogdan; Stanca, Denis; Brancus, Iliana; Margineanu, Romul; Blebea-Apostu, Ana-Maria; Gomoiu, Claudia; Saftoiu, Alexandra; Toma, Gabriel; Gherghel-Lascu, Alexandru; Niculescu-Oglinzanu, Mihai; Rebel, Heinigerd; Haungs, Andreas; Sima, Octavian

    2015-02-24

    Since 2006 a modern laboratory has been developed by IFIN-HH in the underground of Slanic Prahova salt ore. This work presents a short review of previous scientific activities performed in the underground laboratory, in parallel with some plans for the future. A mobile detector for cosmic muon flux measurements has been set up at IFIN-HH, Romania. The device is used to measure the muon flux on different locations at the surface and underground and it consists of two detection layers, each one including four large scintillator plates. A new rotatable detector for measurements of the directional variation of the muon flux has been designed and it is presently under preliminary tests. Built from four layers of sensitive material and using for collecting the signals and directing them to the micro PMTs a new technique, through optical fibers instead wave length shifters, it allows an easy discrimination of the moun flux on the arrival directions of muons. Combining the possibility to rotate and the directionality properties, the underground muon detector is acting like a muon tomography device, being able to scan, using cosmic muons, the rock material above the detector. In parallel new detection system based on SiPM will be also installed in the following weeks. It should be composed by four layers, each layer consisting in 4 scintillator plates what we consider in the following as a module of detection. For this purpose, first two scintillator layers, with the optical fibers positioned on perpendicular directions are put in coincidence with other two layers, 1 m distance from the first two, with similar optical fiber arrangement, thus allowing reconstructing muon trajectory. It is intended also to design and construct an experimental device for the investigation of such radio antennas and the behavior of the signal in rock salt at the Slanic salt mine in Romania. Another method to detect high energy neutrinos is based on the detection of secondary particles resulting from the interaction with the salt massive. We intent to design and construct a 3D array in the underground of Slanic Prahova salt ore.

  5. Idaho Operations Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 8, 2011 SUBJECT: Final Environmental Assessment for the Idaho National Laboratory Stand-Off Experiment Range and Finding of No Significant Impact Dear Interested Party: The U.S. Department of Energy (DOE) has completed the Final Environmental Assessment (EA) for the Idaho National Laboratory Stand-Off Experiment (SOX) Range and determined that a Finding of No Significant Impact (FONSI) is appropriate. The draft EA was made available for 38-day public review and comment period on December

  6. Changes in protein expression across laboratory and field experiments in Geobacter bemidjiensis

    SciTech Connect (OSTI)

    Merkley, Eric D.; Wrighton, Kelly C.; Castelle, Cindy; Anderson, Brian J.; Wilkins, Michael J.; Shah, Vega; Arbour, Tyler; Brown, Joseph N.; Singer, Steven W.; Smith, Richard D.; Lipton, Mary S.

    2015-03-06

    Bacterial extracellular metal respiration, as carried out by members of the genus Geobacter, is of interest for applications including microbial fuel cells and bioremediation. Geobacter bemidjiensis is the major species whose growth is stimulated during groundwater amendment with acetate. We have carried out label-free proteomics studies of Geobacter bemidjiensis grown with acetate as the electron donor and either fumarate, ferric citrate, or one of two hydrous ferric oxide mineral types as electron acceptor. The major class of proteins whose expression changes across these conditions is c-type cytochromes, many of which are known to be involved in extracellular metal reduction in other, better-characterized Geobacter species. Some proteins with multiple homologues in G. bemidjiensis (OmcS, OmcB) had different expression patterns than observed for their G. sulfurreducens homologues under similar growth conditions. We also compared the proteome from our study to a prior proteomics study of biomass recovered from an aquifer in Colorado, where the microbial community was dominated by strains closely-related to G. bemidjiensis. We detected an increased number of proteins with functions related to motility and chemotaxis in the Colorado field samples compared to the laboratory samples, suggesting the importance of motility for in situ extracellular metal respiration.

  7. Effects of Porous Medium Heterogeneity on Vadose Zone Desiccation: Intermediate-scale Laboratory Experiments and Simulations

    SciTech Connect (OSTI)

    Oostrom, Martinus; Freedman, Vicky L.; Wietsma, Thomas W.; Dane, Jacob H.; Truex, Michael J.

    2012-11-01

    Soil desiccation (drying), involving water evaporation induced by dry gas injection, is a potentially robust vadose zone remediation process to limit contaminant transport through the vadose zone. A series of four intermediate-scale flow cell experiments was conducted in homogeneous and simple layered heterogeneous porous medium systems to investigate the effects of heterogeneity on desiccation of unsaturated porous media. The permeability ratios of porous medium layers ranged from about five to almost two orders of magnitude. The insulated flow cell was equipped with twenty humidity and temperature sensors and a dual-energy gamma system was used to determine water saturations at various times. The multiphase code STOMP was used to simulate the desiccation process. Results show that injected dry gas flowed predominantly in the higher permeability layer and delayed water removal from the lower permeability material. For the configurations tested, water vapor diffusion from the lower to the higher permeability zone was considerable over the duration of the experiments, resulting in much larger relative humidity values of the outgoing air than based on permeability ratios alone. Acceptable numerical matches with the experimental data were obtained when an extension of the saturation-capillary pressure relation below the residual water saturation was used. The agreements between numerical and experimental results suggest that the correct physics are implemented in the simulator and that the thermal and hydraulic properties of the porous media, flow cell wall and insulation materials were properly represented.

  8. Monochromatic x-ray imaging experiments on the Sandia National Laboratories Z facility (invited)

    SciTech Connect (OSTI)

    Sinars, D.B.; Bennett, G.R.; Wenger, D.F.; Cuneo, M.E.; Hanson, D.L.; Porter, J.L.; Adams, R.G.; Rambo, P.K.; Rovang, D.C.; Smith, I.C.

    2004-10-01

    The Z facility is a 20 MA, 100 ns rise time, pulsed power driver for z-pinch plasma radiation sources. The Z facility can make >200 TW, 1-2 MJ, near-blackbody radiation sources through the compression of cylindrical wire arrays. These sources are being used as drivers to study inertial-confinement fusion capsule implosions, complex radiation-hydrodynamic jet experiments, and wire-array z-pinch physics tests. To backlight plasmas in this environment we have built diagnostics based on spherically bent crystals that provide high spatial resolution (9-10 {mu}m), a narrow spectral bandpass (<0.5 eV), and a large field of view (4 mmx20 mm). These diagnostics use the 2 TW, multi-kJ Z-Beamlet laser to produce x-ray emission sources at 1.865 or 6.151 keV for backlighting.

  9. Diagnostic experiments at a 3 MeV test stand at Rutherford Appleton Laboratory (United Kingdom)

    SciTech Connect (OSTI)

    Gabor, C.; Faircloth, D. C.; Lawrie, S. R.; Letchford, A. P.; Lee, D. A.; Pozimski, J. K.

    2010-02-15

    A front end is currently under construction consisting of a H{sup -} Penning ion source (65 keV, 60 mA), low energy beam transport (LEBT), and radio frequency quadrupole (3 MeV output energy) with a medium energy beam transport suitable for high power proton applications. Diagnostics can be divided either in destructive techniques such as beam profile monitor, pepperpot, slit-slit emittance scanner (preferably used during commissioning) or nondestructive, permanently installed devices such as photodetachment-based techniques. Another way to determine beam distributions is a scintillator with charge-coupled device camera. First experiments have been performed to control the beam injection into the LEBT. The influence of beam parameters such as particle energy and space-charge compensation on the two-dimensional distribution and profiles will be presented.

  10. Pore-Water Extraction Intermediate-Scale Laboratory Experiments and Numerical Simulations

    SciTech Connect (OSTI)

    Oostrom, Martinus; Freedman, Vicky L.; Wietsma, Thomas W.; Truex, Michael J.

    2011-06-30

    A series of flow cell experiments was conducted to demonstrate the process of water removal through pore-water extraction in unsaturated systems. In this process, a vacuum (negative pressure) is applied at the extraction well establishing gas and water pressure gradients towards the well. The gradient may force water and dissolved contaminants, such as 99Tc, to move towards the well. The tested flow cell configurations consist of packings, with or without fine-grained well pack material, representing, in terms of particle size distribution, subsurface sediments at the SX tank farm. A pore water extraction process should not be considered to be equal to soil vapor extraction because during soil vapor extraction, the main goal may be to maximize gas removal. For pore water extraction systems, pressure gradients in both the gas and water phases need to be considered while for soil vapor extraction purposes, gas phase flow is the only concern. In general, based on the limited set (six) of flow experiments that were conducted, it can be concluded that pore water extraction rates and cumulative outflow are related to water content, the applied vacuum, and the dimensions of the sediment layer providing the extracted water. In particular, it was observed that application of a 100-cm vacuum (negative pressure) in a controlled manner leads to pore-water extraction until the water pressure gradients towards the well approach zero. Increased cumulative outflow was obtained with an increase in initial water content from 0.11 to 0.18, an increase in the applied vacuum to 200 cm, and when the water-supplying sediment was not limited. The experimental matrix was not sufficiently large to come to conclusions regarding maximizing cumulative outflow.

  11. The Madison plasma dynamo experiment: A facility for studying laboratory plasma astrophysics

    SciTech Connect (OSTI)

    Cooper, C. M.; Brookhart, M.; Collins, C.; Khalzov, I.; Milhone, J.; Nornberg, M.; Weisberg, D.; Forest, C. B. [Department of Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States) [Department of Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States); Center for Magnetic Self Organization, University of Wisconsin, Madison, Wisconsin 53706 (United States); Wallace, J.; Clark, M.; Flanagan, K.; Li, Y.; Nonn, P. [Department of Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States)] [Department of Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States); Ding, W. X. [Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, California 90024 (United States)] [Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, California 90024 (United States); Whyte, D. G. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)] [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Zweibel, E. [Department of Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States) [Department of Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States); Center for Magnetic Self Organization, University of Wisconsin, Madison, Wisconsin 53706 (United States); Department of Astronomy, University of Wisconsin, Madison, Wisconsin 53706 (United States)

    2014-01-15

    The Madison plasma dynamo experiment (MPDX) is a novel, versatile, basic plasma research device designed to investigate flow driven magnetohydrodynamic instabilities and other high-? phenomena with astrophysically relevant parameters. A 3?m diameter vacuum vessel is lined with 36 rings of alternately oriented 4000?G samarium cobalt magnets, which create an axisymmetric multicusp that contains ?14 m{sup 3} of nearly magnetic field free plasma that is well confined and highly ionized (>50%). At present, 8 lanthanum hexaboride (LaB{sub 6}) cathodes and 10 molybdenum anodes are inserted into the vessel and biased up to 500?V, drawing 40?A each cathode, ionizing a low pressure Ar or He fill gas and heating it. Up to 100?kW of electron cyclotron heating power is planned for additional electron heating. The LaB{sub 6} cathodes are positioned in the magnetized edge to drive toroidal rotation through J??B torques that propagate into the unmagnetized core plasma. Dynamo studies on MPDX require a high magnetic Reynolds number Rm?>?1000, and an adjustable fluid Reynolds number 10?1). Initial results from MPDX are presented along with a 0-dimensional power and particle balance model to predict the viscosity and resistivity to achieve dynamo action.

  12. GaMin’11 – an international inter-laboratory comparison for geochemical CO₂ - saline fluid - mineral interaction experiments

    SciTech Connect (OSTI)

    Ostertag-Henning, C.; Risse, A.; Thomas, B.; Rosenbauer, R.; Rochelle, C.; Purser, G.; Kilpatrick, A.; Rosenqvist, J.; Yardley, B.; Karamalidis, A.; Griffith, C.; Hedges, S.; Dilmore, R.; Goodman, A.; Black, J.; Haese, R.; Deusner, C.; Bigalke, N.; Haeckel, M.; Fischer, S.; Liebscher, A.; Icenhower, J. P.; Daval, D.; Saldi, G. D.; Knauss, K. G.; Schmidt, M.; Mito, S.; Sorai, M.; Truche, L.

    2014-12-31

    Due to the strong interest in geochemical CO₂-fluid-rock interaction in the context of geological storage of CO₂ a growing number of research groups have used a variety of different experimental ways to identify important geochemical dissolution or precipitation reactions and – if possible – quantify the rates and extent of mineral or rock alteration. In this inter-laboratory comparison the gas-fluid-mineral reactions of three samples of rock-forming minerals have been investigated by 11 experimental labs. The reported results point to robust identification of the major processes in the experiments by most groups. The dissolution rates derived from the changes in composition of the aqueous phase are consistent overall, but the variation could be reduced by using similar corrections for changing parameters in the reaction cells over time. The comparison of experimental setups and procedures as well as of data corrections identified potential improvements for future gas-fluid-rock studies.

  13. Engineering Evaluation of Proposed Alternative Salt Transfer Method for the Molten Salt Reactor Experiement for the Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Carlberg, Jon A.; Roberts, Kenneth T.; Kollie, Thomas G.; Little, Leslie E.; Brady, Sherman D.

    2009-09-30

    This evaluation was performed by Pro2Serve in accordance with the Technical Specification for an Engineering Evaluation of the Proposed Alternative Salt Transfer Method for the Molten Salt Reactor Experiment at the Oak Ridge National Laboratory (BJC 2009b). The evaluators reviewed the Engineering Evaluation Work Plan for Molten Salt Reactor Experiment Residual Salt Removal, Oak Ridge National Laboratory, Oak Ridge, Tennessee (DOE 2008). The Work Plan (DOE 2008) involves installing a salt transfer probe and new drain line into the Fuel Drain Tanks and Fuel Flush Tank and connecting them to the new salt transfer line at the drain tank cell shield. The probe is to be inserted through the tank ball valve and the molten salt to the bottom of the tank. The tank would then be pressurized through the Reactive Gas Removal System to force the salt into the salt canisters. The Evaluation Team reviewed the work plan, interviewed site personnel, reviewed numerous documents on the Molten Salt Reactor (Sects. 7 and 8), and inspected the probes planned to be used for the transfer. Based on several concerns identified during this review, the team recommends not proceeding with the salt transfer via the proposed alternate salt transfer method. The major concerns identified during this evaluation are: (1) Structural integrity of the tanks - The main concern is with the corrosion that occurred during the fluorination phase of the uranium removal process. This may also apply to the salt transfer line for the Fuel Flush Tank. Corrosion Associated with Fluorination in the Oak Ridge National Laboratory Fluoride Volatility Process (Litman 1961) shows that this problem is significant. (2) Continued generation of Fluorine - Although the generation of Fluorine will be at a lower rate than experienced before the uranium removal, it will continue to be generated. This needs to be taken into consideration regardless of what actions are taken with the salt. (3) More than one phase of material - There are likely multiple phases of material in the salt (metal or compound), either suspended through the salt matrix, layered in the bottom of the tank, or both. These phases may contribute to plugging during any planned transfer. There is not enough data to know for sure. (4) Probe heat trace - The alternate transfer method does not include heat tracing of the bottom of the probe. There is a concern that this may cool the salt and other phases of materials present enough to block the flow of salt. (5) Stress-corrosion cracking - Additionally, there is a concern regarding moisture that may have been introduced into the tanks. Due to time constraints, this concern was not validated. However, if moisture was introduced into the tanks and not removed during heating the tanks before HF and F2 sparging, there would be an additional concern regarding the potential for stress-corrosion cracking of the tank walls.

  14. GaMin’11 – an international inter-laboratory comparison for geochemical CO₂ - saline fluid - mineral interaction experiments

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ostertag-Henning, C.; Risse, A.; Thomas, B.; Rosenbauer, R.; Rochelle, C.; Purser, G.; Kilpatrick, A.; Rosenqvist, J.; Yardley, B.; Karamalidis, A.; et al

    2014-12-31

    Due to the strong interest in geochemical CO₂-fluid-rock interaction in the context of geological storage of CO₂ a growing number of research groups have used a variety of different experimental ways to identify important geochemical dissolution or precipitation reactions and – if possible – quantify the rates and extent of mineral or rock alteration. In this inter-laboratory comparison the gas-fluid-mineral reactions of three samples of rock-forming minerals have been investigated by 11 experimental labs. The reported results point to robust identification of the major processes in the experiments by most groups. The dissolution rates derived from the changes in compositionmore » of the aqueous phase are consistent overall, but the variation could be reduced by using similar corrections for changing parameters in the reaction cells over time. The comparison of experimental setups and procedures as well as of data corrections identified potential improvements for future gas-fluid-rock studies.« less

  15. Waste Stream Generated and Waste Disposal Plans for Molten Salt Reactor Experiment at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Haghighi, M. H.; Szozda, R. M.; Jugan, M. R.

    2002-02-26

    The Molten Salt Reactor Experiment (MSRE) site is located in Tennessee, on the U.S. Department of Energy (DOE) Oak Ridge Reservation (ORR), south of the Oak Ridge National Laboratory (ORNL) main plant across Haw Ridge in Melton Valley. The MSRE was run by ORNL to demonstrate the desirable features of the molten-salt concept in a practical reactor that could be operated safely and reliably. It introduced the idea of a homogeneous reactor using fuel salt media and graphite moderation for power and breeder reactors. The MSRE reactor and associated components are located in cells beneath the floor in the high-bay area of Building 7503 (Figure 1). The reactor was operated from June 1965 to December 1969. When the reactor was shut down, fuel salt was drained from the reactor circuit to two drain tanks. A ''clean'' salt was then circulated through the reactor as a decontamination measure and drained to a third drain tank. When operations ceased, the fuel and flush salts were allowed t o cool and solidify in the drain tanks. At shutdown, the MSRE facility complex was placed in a surveillance and maintenance program. As a result of the S&M program, it was discovered in 1994 that gaseous uranium (233U/232U) hexafluoride (UF6) had moved throughout the MSRE process systems. The UF6 was generated when radiolysis of the fluorine salts caused the individual constituents to dissociate to their component atoms, including free fluorine.Some of the free fluorine combined with uranium fluorides (UF4) in the salt to form UF6. UF6 is gaseous at slightly above ambient temperatures; thus, periodic heating of the fuel salts (which was intended to remedy the radiolysis problems) and simple diffusion had allowed the UF6 to move out of the salt and into the process systems of MSRE.

  16. Using laboratory flow experiments and reactive chemical transport modeling for designing waterflooding of the Agua Fria Reservoir, Poza Rica-Altamira Field, Mexico

    SciTech Connect (OSTI)

    Birkle, P.; Pruess, K.; Xu, T.; Figueroa, R.A. Hernandez; Lopez, M. Diaz; Lopez, E. Contreras

    2008-10-01

    Waterflooding for enhanced oil recovery requires that injected waters must be chemically compatible with connate reservoir waters, in order to avoid mineral dissolution-and-precipitation cycles that could seriously degrade formation permeability and injectivity. Formation plugging is a concern especially in reservoirs with a large content of carbonates, such as calcite and dolomite, as such minerals typically react rapidly with an aqueous phase, and have strongly temperature-dependent solubility. Clay swelling can also pose problems. During a preliminary waterflooding pilot project, the Poza Rica-Altamira oil field, bordering the Gulf coast in the eastern part of Mexico, experienced injectivity loss after five months of reinjection of formation waters into well AF-847 in 1999. Acidizing with HCl restored injectivity. We report on laboratory experiments and reactive chemistry modeling studies that were undertaken in preparation for long-term waterflooding at Agua Frma. Using analogous core plugs obtained from the same reservoir interval, laboratory coreflood experiments were conducted to examine sensitivity of mineral dissolution and precipitation effects to water composition. Native reservoir water, chemically altered waters, and distilled water were used, and temporal changes in core permeability, mineral abundances and aqueous concentrations of solutes were monitored. The experiments were simulated with the multi-phase, nonisothermal reactive transport code TOUGHREACT, and reasonable to good agreement was obtained for changes in solute concentrations. Clay swelling caused an additional impact on permeability behavior during coreflood experiments, whereas the modeled permeability depends exclusively on chemical processes. TOUGHREACT was then used for reservoir-scale simulation of injecting ambient-temperature water (30 C, 86 F) into a reservoir with initial temperature of 80 C (176 F). Untreated native reservoir water was found to cause serious porosity and permeability reduction due to calcite precipitation, which is promoted by the retrograde solubility of this mineral. Using treated water that performed well in the laboratory flow experiments was found to avoid excessive precipitation, and allowed injection to proceed.

  17. Laboratory Experiments on the Effects of Blade Strike from Hydrokinetic Energy Technologies on Larval and Juvenile Freshwater Fishes

    SciTech Connect (OSTI)

    Schweizer, Peter E; Cada, Glenn F; Bevelhimer, Mark S

    2012-03-01

    There is considerable interest in the development of marine and hydrokinetic energy projects in rivers, estuaries, and coastal ocean waters of the United States. Hydrokinetic (HK) technologies convert the energy of moving water in river or tidal currents into electricity, without the impacts of dams and impoundments associated with conventional hydropower or the extraction and combustion of fossil fuels. The Federal Energy Regulatory Commission (FERC) maintains a database that displays the geographical distribution of proposed HK projects in inland and tidal waters (FERC 2012). As of March 2012, 77 preliminary permits had been issued to private developers to study HK projects in inland waters, the development of which would total over 8,000 MW. Most of these projects are proposed for the lower Mississippi River. In addition, the issuance of another 27 preliminary permits for HK projects in inland waters, and 3 preliminary permits for HK tidal projects (totaling over 3,100 MW) were under consideration by FERC. Although numerous HK designs are under development (see DOE 2009 for a description of the technologies and their potential environmental effects), the most commonly proposed current-based projects entail arrays of rotating devices, much like submerged wind turbines, that are positioned in the high-velocity (high energy) river channels. The many diverse HK designs imply a diversity of environmental impacts, but a potential impact common to most is the risk for blade strike to aquatic organisms. In conventional hydropower generation, research on fish passage through reaction turbines at low-head dams suggested that strike and mortality for small fish could be low. As a consequence of the large surface area to mass ratio of small fish, the drag forces in the boundary layer flow at the surface of a rotor blade may pull small fish around the leading edge of a rotor blade without making physical contact (Turnpenny 1998, Turnpenny et al. 2000). Although there is concern that small, fragile fish early life stages may be unable to avoid being struck by the blades of hydrokinetic turbines, we found no empirical data in the published literature that document survival of earliest life-stage fish in passage by rotor blades. In addition to blade strike, research on passage of fish through conventional hydropower turbines suggested that fish mortalities from passage through the rotor swept area could also occur due to shear stresses and pressure chances in the water column (Cada et al. 1997, Turnpenny 1998). However, for most of the proposed HK turbine designs the rotors are projected to operate a lower RPM (revolutions per minute) than observed from conventional reaction turbines; the associated shear stress and pressure changes are expected to be lower and pose a smaller threat to fish survival (DOE 2009). Only a limited number of studies have been conducted to examine the risk of blade strike from hydrokinetic technologies to fish (Turnpenny et al. 1992, Normandeau et al. 2009, Seitz et al. 2011, EPRI 2011); the survival of drifting or weakly swimming fish (especially early life stages) that encounter rotor blades from hydrokinetic (HK) devices is currently unknown. Our study addressed this knowledge gap by testing how fish larvae and juveniles encountered different blade profiles of hydrokinetic devices and how such encounters influenced survivorship. We carried out a laboratory study designed to improve our understanding of how fish larvae and juvenile fish may be affected by encounters with rotor blades from HK turbines in the water column of river and ocean currents. (For convenience, these early life stages will be referred to as young of the year, YOY). The experiments developed information needed to quantify the risk (both probability and consequences) of rotor-blade strike to YOY fish. In particular, this study attempted to determine whether YOY drifting in a high-velocity flow directly in the path of the blade leading edge will make contact with the rotor blade or will bypass the blade while entrained in the boundary layer of water flowing over the blade surface. The study quantified both immediate and delayed mortalities (observed immediately, 3 hours, and 24 hours after encountering the blade) among freshwater YOY fish resulting from contact with the blade or turbulent flows in the wake of the blade.

  18. Operating Experience Level 3, Laboratory Tests Indicate Conditions that Could Potentially Impact Certain Type of HEPA Filter Performance

    Broader source: Energy.gov [DOE]

    OE-3: 2013-02 This Operating Experience Summary provides new information on a potential performance issue associated with certain axial flow high efficiency particulate air (HEPA) filters that do not contain separators in the folded media (separatorless).

  19. Laboratory names new deputy director

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory, valuable insights, and leadership over the last three years," said Laboratory Director Mike Anastasio. "At the same time, I welcome Ike and believe that his experience...

  20. Planning for hybrid-cycle OTEC experiments using the HMTSTA test facility at the Natural Energy Laboratory of Hawaii

    SciTech Connect (OSTI)

    Panchal, C.; Rabas, T.; Genens, L.

    1989-01-01

    The US Department of Energy has built an experimental apparatus for studying the open-cycle Ocean Thermal Energy Conversion (OC-OTEC) system. Experiments using warm and cold seawater are currently uderway to validate the performance predictions for an OC-TEC flash evaporator, surface condenser, and direct-contact condenser. The hybrid cycle is another OTEC option that produces both power and desalinated water, it is comparable in capital cost to OC-OTEC, and it eliminates the problems associated with the large steam turbine. Means are presented in this paper for modifying the existing apparatus to conduct similar experiments on hybrid-cycle OTEC heat exchangers. These data are required to validate predictive methods of the components and for the system integration that were identified in an earlier study of hybrid-cycle OTEC power plants. 7 refs., 4 figs., 2 tabs.

  1. PHENIX Conceptual Design Report. An experiment to be performed at the Brookhaven National Laboratory Relativistic Heavy Ion Collider

    SciTech Connect (OSTI)

    Nagamiya, Shoji; Aronson, Samuel H.; Young, Glenn R.; Paffrath, Leo

    1993-01-29

    The PHENIX Conceptual Design Report (CDR) describes the detector design of the PHENIX experiment for Day-1 operation at the Relativistic Heavy Ion Collider (RHIC). The CDR presents the physics capabilities, technical details, cost estimate, construction schedule, funding profile, management structure, and possible upgrade paths of the PHENIX experiment. The primary goals of the PHENIX experiment are to detect the quark-gluon plasma (QGP) and to measure its properties. Many of the potential signatures for the QGP are measured as a function of a well-defined common variable to see if any or all of these signatures show a simultaneous anomaly due to the formation of the QGP. In addition, basic quantum chromodynamics phenomena, collision dynamics, and thermodynamic features of the initial states of the collision are studied. To achieve these goals, the PHENIX experiment measures lepton pairs (dielectrons and dimuons) to study various properties of vector mesons, such as the mass, the width, and the degree of yield suppression due to the formation of the QGP. The effect of thermal radiation on the continuum is studied in different regions of rapidity and mass. The e{mu} coincidence is measured to study charm production, and aids in understanding the shape of the continuum dilepton spectrum. Photons are measured to study direct emission of single photons and to study {pi}{sup 0} and {eta} production. Charged hadrons are identified to study the spectrum shape, production of antinuclei, the {phi} meson (via K{sup +}K{sup {minus}} decay), jets, and two-boson correlations. The measurements are made down to small cross sections to allow the study of high p{sub T} spectra, and J/{psi} and {Upsilon} production. The PHENIX collaboration consists of over 300 scientists, engineers, and graduate students from 43 institutions in 10 countries. This large international collaboration is supported by US resources and significant foreign resources.

  2. Experiment E89-044 on the Quasielastic 3He(e,e'p) Reaction at Jefferson Laboratory

    SciTech Connect (OSTI)

    E. Penel-Nottaris

    2004-07-07

    The Jefferson Lab Hall A E89-044 experiment has measured the 3He(e,e'p) reaction cross-sections. The extraction of the longitudinal and transverse response functions for the two-body break-up 3He(e,e'p)d reaction in parallel kinematics allows the study of the bound proton electromagnetic properties inside the 3He nucleus and the involved nuclear mechanisms beyond plane wave approximations.

  3. First results from the DarkSide-50 dark matter experiment at Laboratori Nazionali del Gran Sasso

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Agnes, P.

    2015-03-11

    We report the first results of DarkSide-50, a direct search for dark matter operating in the underground Laboratori Nazionali del Gran Sasso (LNGS) and searching for the rare nuclear recoils possibly induced by weakly interacting massive particles (WIMPs). The dark matter detector is a Liquid Argon Time Projection Chamber with a (46.4 0.7) kg active mass, operated inside a 30 t organic liquid scintillator neutron veto, which is in turn installed at the center of a 1 kt water Cherenkov veto for the residual flux of cosmic rays. We report here the null results of a dark matter searchmorefor a (1422 67) kgd exposure with an atmospheric argon fill. This is the most sensitive dark matter search performed with an argon target, corresponding to a 90% CL upper limit on the WIMP-nucleon spin-independent cross section of 6.110??? cm for a WIMP mass of 100 Gev/c .less

  4. INL Laboratory Scale Atomizer

    SciTech Connect (OSTI)

    C.R. Clark; G.C. Knighton; R.S. Fielding; N.P. Hallinan

    2010-01-01

    A laboratory scale atomizer has been built at the Idaho National Laboratory. This has proven useful for laboratory scale tests and has been used to fabricate fuel used in the RERTR miniplate experiments. This instrument evolved over time with various improvements being made ‘on the fly’ in a trial and error process.

  5. Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MiniBooNE Experiment September, 2002 SeptemMyungkee Sung (LSU/MiniBooNE) 4th International Workshop on the Identification of Dark Matter Cosmologically Interesting Region; Hot Dark Matter? LSND Signal at High ∆m 2 KARMEN II narrowed the signal region MiniBooNE will fully address this signal. Neutrino Osillation at High ∆m 2 LSND: Searching for ν µ →ν e ν µ - From µ + decay at rest with endpoint energy 53 MeV L = 30m, L/E ~ 1m/MeV, 167 tons of Mineral Oil Look for ν e Appearance: ν

  6. Environmental health and safety plan for the Molten Salt Reactor Experiment Remediation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Burman, S.N.; Tiner, P.F.; Gosslee, R.C.

    1998-01-01

    The Lockheed Martin Energy Systems, Inc. (Energy Systems) policy is to provide a safe and healthful workplace for all employees and subcontractors. The accomplishment of this policy requires that operations at the Molten Salt Reactor Experiment (MSRE) facility at the Department of Energy (DOE) Oak Ridge National Laboratory (ORNL) are guided by an overall plan and consistent proactive approach to environmental protection and safety and health (S and H) issues. The policy and procedures in this plan apply to all MSRE operations. The provisions of this plan are to be carried out whenever activities are initiated at the MSRE that could be a threat to human health or the environment. This plan implements a policy and establishes criteria for the development of procedures for day-to-day operations to prevent or minimize any adverse impact to the environment and personnel safety and health and to meet standards that define acceptable management of hazardous and radioactive materials and wastes. The plan is written to utilize past experience and the best management practices to minimize hazards to human health or the environment from events such as fires, explosions, falls, mechanical hazards, or any unplanned release of hazardous or radioactive materials to the air.

  7. Learning Experiences | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Education provides a variety of learning opportunities to enhance middle and high school math, science and comptuer science curriculum. We offer programs that strengthen ...

  8. Technical Information on the Carbonation of the EBR-II Reactor, Summary Report Part 1: Laboratory Experiments and Application to EBR-II Secondary Sodium System

    SciTech Connect (OSTI)

    Steven R. Sherman

    2005-04-01

    Residual sodium is defined as sodium metal that remains behind in pipes, vessels, and tanks after the bulk sodium metal has been melted and drained from such components. The residual sodium has the same chemical properties as bulk sodium, and differs from bulk sodium only in the thickness of the sodium deposit. Typically, sodium is considered residual when the thickness of the deposit is less than 5-6 cm. This residual sodium must be removed or deactivated when a pipe, vessel, system, or entire reactor is permanently taken out of service, in order to make the component or system safer and/or to comply with decommissioning regulations. As an alternative to the established residual sodium deactivation techniques (steam-and-nitrogen, wet vapor nitrogen, etc.), a technique involving the use of moisture and carbon dioxide has been developed. With this technique, sodium metal is converted into sodium bicarbonate by reacting it with humid carbon dioxide. Hydrogen is emitted as a by-product. This technique was first developed in the laboratory by exposing sodium samples to humidified carbon dioxide under controlled conditions, and then demonstrated on a larger scale by treating residual sodium within the Experimental Breeder Reactor II (EBR-II) secondary cooling system, followed by the primary cooling system, respectively. The EBR-II facility is located at the Idaho National Laboratory (INL) in southeastern Idaho, U.S.A. This report is Part 1 of a two-part report. It is divided into three sections. The first section describes the chemistry of carbon dioxide-water-sodium reactions. The second section covers the laboratory experiments that were conducted in order to develop the residual sodium deactivation process. The third section discusses the application of the deactivation process to the treatment of residual sodium within the EBR-II secondary sodium cooling system. Part 2 of the report, under separate cover, describes the application of the technique to residual sodium treatment within the EBR-II primary sodium cooling system and related systems.

  9. INFLATION OF A DIPOLE FIELD IN LABORATORY EXPERIMENTS: TOWARD AN UNDERSTANDING OF MAGNETODISK FORMATION IN THE MAGNETOSPHERE OF A HOT JUPITER

    SciTech Connect (OSTI)

    Antonov, V. M.; Boyarinsev, E. L.; Boyko, A. A.; Zakharov, Yu. P.; Melekhov, A. V.; Ponomarenko, A. G.; Posukh, V. G.; Shaikhislamov, I. F.; Khodachenko, M. L.; Lammer, H.

    2013-05-20

    Giant exoplanets at close orbits, or so-called hot Jupiters, are supposed to have an intensive escape of upper atmospheric material heated and ionized by the radiation of a host star. An interaction between outflowing atmospheric plasma and the intrinsic planetary magnetic dipole field leads to the formation of a crucial feature of a hot Jupiter's magnetosphere-an equatorial current-carrying magnetodisk. The presence of a magnetodisk has been shown to influence the topology of a hot Jupiter's magnetosphere and to change a standoff distance of the magnetopause. In this paper, the basic features of the formation of a hot Jupiter's magnetodisk are studied by means of a laboratory experiment. A localized central source produces plasma that expands outward from the surface of the dipole and inflates the magnetic field. The observed structure of magnetic fields, electric currents, and plasma density indicates the formation of a relatively thin current disk extending beyond the Alfvenic point. At the edge of the current disk, an induced magnetic field was found to be several times larger than the field of the initial dipole.

  10. Technology Solutions Case Study: Stand-Off Furring in Deep Energy Retrofits

    SciTech Connect (OSTI)

    2014-05-01

    IBACOS, in collaboration with GreenHomes America, was contracted by the New York State Energy Research and Development Authority to research exterior wall insulation solutions. This research investigated cost-effective deep energy retrofit (DER) solutions for improving the building shell exterior while achieving a cost-reduction goal, including reduced labor costs to reach a 50/50 split between material and labor. The strategies included exterior wall insulation plus energy upgrades as needed in the attic, mechanical and ventilation systems, and basement band joist, walls, and floors. The work can be integrated with other home improvements such as siding or window replacement. This strategy minimizes physical connections to existing wall studs, encapsulates existing siding materials (including lead paint) with spray foam, and creates a vented rain screen assembly to promote drying. GreenHomes America applied construction details created by IBACOS to a test home. 2x4 framing members were attached to the wall at band joists and top plates using "L" clips, with spray foam insulating the wall after framing was installed. Windows were installed simultaneously with the framing, including extension jambs. The use of clips in specific areas provided the best strength potential, and "picture framing" the spray foam held the 2x4s in place. Short-term testing was performed at this house, with monitoring equipment installed for long-term testing.

  11. Stand-Off Furring in Deep Energy Retrofits, Syracuse, New York (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-05-01

    IBACOS, in collaboration with GreenHomes America, was contracted by the New York State Energy Research and Development Authority to research exterior wall insulation solutions. This research investigated cost-effective deep energy retrofit (DER) solutions for improving the building shell exterior while achieving a cost-reduction goal, including reduced labor costs to reach a 50/50 split between material and labor. The strategies included exterior wall insulation plus energy upgrades as needed in the attic, mechanical and ventilation systems, and basement band joist, walls, and floors. The work can be integrated with other home improvements such as siding or window replacement. This strategy minimizes physical connections to existing wall studs, encapsulates existing siding materials (including lead paint) with spray foam, and creates a vented rain screen assembly to promote drying. GreenHomes America applied construction details created by IBACOS to a test home. 2x4 framing members were attached to the wall at band joists and top plates using 'L' clips, with spray foam insulating the wall after framing was installed. Windows were installed simultaneously with the framing, including extension jambs. The use of clips in specific areas provided the best strength potential, and 'picture framing' the spray foam held the 2x4s in place. Short-term testing was performed at this house, with monitoring equipment installed for long-term testing. Testing measurements will be provided in a later report, as well as utility impact (before and after), costs (labor and materials), construction time, standard specifications, and analysis for the exterior wall insulation strategy.

  12. Heather M. Connaway | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory. Previous work experience includes graduate student research at the Massachusetts Institute of Technology, and internships with Argonne National Laboratory, Oak...

  13. Princeton Plasma Physics Laboratory:

    SciTech Connect (OSTI)

    Phillips, C.A.

    1986-01-01

    This paper discusses progress on experiments at the Princeton Plasma Physics Laboratory. The projects and areas discussed are: Principal Parameters Achieved in Experimental Devices, Tokamak Fusion Test Reactor, Princeton Large Torus, Princeton Beta Experiment, S-1 Spheromak, Current-Drive Experiment, X-ray Laser Studies, Theoretical Division, Tokamak Modeling, Spacecraft Glow Experiment, Compact Ignition Tokamak, Engineering Department, Project Planning and Safety Office, Quality Assurance and Reliability, and Administrative Operations.

  14. Laboratories | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories Our laboratories are available to industry and other organizations for researching, developing, and evaluating energy technologies. We have experienced lab technicians, scientists and engineers ready to design and run tests for you. Some labs are available for conducting your own research. A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z A Accelerated Exposure Testing Laboratory Advanced Optical Materials Laboratory Advanced

  15. Geoscience Laboratory | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    preparation and other relatively straight-forward laboratory manipulations. These include buffer preparations, solid sample grinding, solution concentration, filtration, and...

  16. Laboratory Fellows

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    selected as Los Alamos National Laboratory Fellows November 16, 2010 Scientific disciplines range from fundamental and applied physics to geology LOS ALAMOS, New Mexico, NOVEMBER 16, 2010-Five Los Alamos National Laboratory scientists from diverse fields of research have been named Laboratory Fellows. The five researchers are Brenda Dingus of the Neutron Science and Technology group; William (Bill) Louis of the Subatomic Physics group; John Sarrao, director of Los Alamos's Office of Science

  17. Laboratory Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Operations /newsroom/_assets/images/operations-icon.png Laboratory Operations Latest announcements from the Lab on its operations. Community, Events Laboratory Operations Environmental Stewardship Melissa Blueflower-Sanchez and Robert Sanchez, owners of R and M Construction, LLC, of Santa Clara Pueblo. Four regional businesses receive Native American Venture Acceleration Fund grants The grants are designed to help the recipients create jobs, increase their revenue base and help

  18. Laboratory Building.

    SciTech Connect (OSTI)

    Herrera, Joshua M.

    2015-03-01

    This report is an analysis of the means of egress and life safety requirements for the laboratory building. The building is located at Sandia National Laboratories (SNL) in Albuquerque, NM. The report includes a prescriptive-based analysis as well as a performance-based analysis. Following the analysis are appendices which contain maps of the laboratory building used throughout the analysis. The top of all the maps is assumed to be north.

  19. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos National Laboratory has been at the forefront of high-explosives research since the Manhattan Project in 1943. The science of high-explosive performance is central to stockpile stewardship. Yet, explosives science at the Laboratory isn't simply about maintaining and certifying the aging U.S. nuclear deterrent; it's also about developing novel applications of that science to other national security challenges. In 2015, Los Alamos executed more than 400 high-explosive-driven experiments

  20. Porosity, single-phase permeability, and capillary pressure data from preliminary laboratory experiments on selected samples from Marker Bed 139 at the Waste Isolation Pilot Plant. Volume 1 of 3: Main report, appendix A

    SciTech Connect (OSTI)

    Howarth, S.M.; Christian-Frear, T.

    1997-08-01

    Three groups of core samples from Marker Bed 139 of the Salado Formation at the Waste Isolation Pilot Plant (WIPP) were analyzed to provide data to support the development of numerical models used to predict the long-term hydrologic and structural response of the WIPP repository. These laboratory experiments, part of the FY93 Experimental Scoping Activities of the Salado Two-Phase Flow Laboratory Program, were designed to (1) generate WIPP-specific porosity and single-phase permeability data, (2) provide information needed to design and implement planned tests to measure two-phase flow properties, including threshold pressure, capillary pressure, and relative permeability, and (3) evaluate the suitability of using analog correlations for the Salado Formation to assess the long-term performance of the WIPP. This report contains a description of the boreholes core samples, the core preparation techniques used, sample sizes, testing procedures, test conditions, and results of porosity and single-phase permeability tests performed at three laboratories: TerraTek, Inc. (Salt Lake City, UT), RE/SPEC, Inc. (Rapid City, SD), and Core Laboratories-Special Core Analysis Laboratory (Carrollton, TX) for Rock Physics Associates. In addition, this report contains the only WIPP-specific two-phase-flow capillary-pressure data for twelve core samples. The WIPP-specific data generated in this laboratory study and in WIPP field-test programs and information from suitable analogs will form the basis for specification of single- and two-phase flow parameters for anhydrite markers beds for WIPP performance assessment calculations.

  1. Laboratory Directors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Siegfried S. Hecker (1985-1997) Donald M. Kerr (1979-1985) Harold M. Agnew (1970-1979) Norris Bradbury (1945-1970) J. Robert Oppenheimer (1943-1945) Laboratory Directors Harold M. ...

  2. Effectiveness of 700{degrees}C thermal treatment on primary water stress corrosion sensitivity of Alloy 600 steam generator tubes: Laboratory tests and in field experience

    SciTech Connect (OSTI)

    Cattant, F.; Keroulas, F. de; Garriga-Majo, D.; Todeschini, P.; Van Duysen, J.C.

    1992-12-31

    In France, the steam generators of some 900 MWe reactors, and of all the 1 300 MWe reactors in service are equipped with heat treated Alloy 600 tubes. The purpose of the heat treatment, performed at 700{degrees}C, is to relieve the residual stresses. Generally, it also increases the SCC resistance of the alloy. A laboratory study has been carried out in order to gain a better understanding of the metallurgical factors influencing the PWSCC resistance of Alloy 600 after heat treatment. It has been shown that there are two kinds of tubes for which the heat treatment does not produce a microstructure having a potentially high resistance to SCC: tubes with a high carbon content (over 0.032%) or tubes mill-annealed at high temperatures and heavily cold-worked by the straightening. The analysis of the behaviour of french steam generators reveals that the heat treatment generally had the expected beneficial effect. However, the early cracking in service of some treated tubes led EDF (national power company) to proceed with removals. The majority of the cracked pulled-out tubes exhibit microstructures having a potentially high PWSCC sensibility in laboratory tests. It has been shown that these microstructures can be correlated to a high carbon content.

  3. Low Energy Neutrino Cross Sections: Data from DOE laboratory experiments as compiled in data reviews by the Durham High Energy Physics Database Group

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    This large collection of low-energy (less than 30 GEV) neutrino cross sections is extracted from the results of many experiments from 1973 through 2002. The experiments, facilities, and collaborations include ANL, BNL, and FNAL in the U.S., along with CERN, Gargamelle, SKAT, LSND, and others. The data are presented in both tabular and plotted formats. The Durham High Energy Physics Database Group makes these data available in one place, easy to access and compare. The data are also included in the Durham HEP Reaction Data Database, which can be searched at http://hepdata.cedar.ac.uk/reaction

  4. Center for Plasma in the Laboratory and Astrophysics - UW Madison...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center for Plasma in the Laboratory and Astrophysics CPLA Home - Experiments Madison Symmetric Torus Madsion Dynamo Experiment Rotating Wall Machine Plasma-Couette Experiment...

  5. Pacific Northwest National Laboratory

    Broader source: Energy.gov [DOE]

    The Newberry Geothermal Energy team seeks to establish the FORGE site at Newberry Volcano. The region surrounding the proposed site, along with its geothermal and EGS potential, was previously explored and researched by participating members of the Newberry Geothermal Energy team, and the understanding and data gathered with those efforts provide the scientific foundation for establishing a potential FORGE site. The team brings together the scientific research and management experience of the Pacific Northwest National Laboratory with the research, educational, and outreach experience of Oregon State University, and the industry and EGS experience of AltaRock Energy, Inc.

  6. Princeton Plasma Physics Laboratory

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    This report discusses the following topics: principal parameters achieved in experimental devices fiscal year 1990; tokamak fusion test reactor; compact ignition tokamak; Princeton beta experiment- modification; current drive experiment-upgrade; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma processing: deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for fiscal year 1990; graduate education; plasma physics; graduate education: plasma science and technology; science education program; and Princeton Plasma Physics Laboratory reports fiscal year 1990.

  7. National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supercomputing Challenge draws more than 200 students to Los Alamos National Laboratory April 16, 2015 NOTE TO EDITORS: Media are welcome to attend the awards ceremony from 9 a.m. to noon a.m., April 21 at the Church of Christ, 2323 Diamond Drive, Los Alamos. Student teams from around New Mexico showcase year-long research projects April 20-21 LOS ALAMOS, N.M., April 16, 2015-More than 200 New Mexico students and their teachers are at Los Alamos National Laboratory April 20-21 for the 25th

  8. Ombuds Program | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ombuds Program The Ames Laboratory's Tech Transfer Ombuds Program is for anyone participating in the Ames Laboratory's complex collaborative R&D environment who may experience uncertainties or questions they describe as business concerns, problems or project-related ambiguities. Section 11 of the Technology Transfer Commercialization Act of 2000, Public Law 106-404 directs each USDOE National Laboratory to appoint a Tech Transfer Ombuds in order to: a) make the technology transfer process

  9. Xuedan Ma | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Xuedan Ma Assistant Scientist Education Ph.D. University of Hamburg Postdoc experience Center for Integrated Nanotechnologies, Sandia National Laboratories, 2015-2016 Center for Integrated Nanotechnologies, Los Alamos National Laboratories, 2012-2015 Research Summary Quantum optics of semiconductor nanomaterials Temperature dependent single molecule/particle optical spectroscopy and imaging Plasmonic and dielectric metamaterials; nanophotonics and nano-optics Biological imaging and sensing;

  10. Sandia National Laboratories: Electrostatic Discharge (ESD) Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrostatic Discharge (ESD) Laboratory We have field and laboratory capabilities to measure electrostatic environment generation, storage, and charge transfer effects....

  11. The Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    existing programs in climate change science and infrastructure. The Laboratory has a 15- year history in climate change science. The Climate, Ocean and Sea Ice Modeling (COSIM) project develops and maintains advanced numerical models of the ocean, sea ice, and ice sheets for use in global climate change projections. COSIM models were used extensively in simulations underpinning the recent climate assessment by the Intergovernmental Panel on Climate Change (IPCC) that was awarded the 2007 Nobel

  12. Addendum to Engineering Evaluation of Proposed Alternative Salt Transfer Method for the Molten Salt Reactor Experiement for the Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Wilson, Guy

    2009-10-06

    The purpose of this addendum is to graphically publish data which indicate moisture in leakage and corrosion may have occurred during heating of the tanks at the Molten Salt Reactor Experiment (MSRE) for and during hydrofluorination, fluorination and transfer of uranium. Corrosion, especially by hydrofluoric acid, is not expected to occur uniformly over the tank and piping inner surfaces and therefore is not easily measured by nondestructive techniques that can measure only limited areas. The rate of corrosion exponentially escalates with both temperature and moisture. The temperature, pressure, and concentration data in this addendum indicate periods when elevated corrosion rates were likely to have been experienced. This data was not available in time to be considered as part of the evaluation that was the focus of the report. Pressure and temperature data were acquired via the LabView{trademark} Software, while concentration data was acquired from the Fourier Transform InfraRed (FTIR) system.

  13. Lab Plan | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab Plan Ames Laboratory

  14. Drell-Yan Cross Sections: Data from DOE laboratory experiments as compiled in data reviews by the Durham High Energy Physics Database Group

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Stirling, W. J.; Whalley, M. R.

    A compilation of data on Drell-Yan cross sections above a lepton-pair mass of 4 GeV/c2 is presented. The relevant experiments at Fermilab and CERN are included dating from approximately 1977 to the present day, covering p, p and pi +or- beams on a variety of nuclear and hydrogen targets, with centre-of-mass energies from 8.6 GeV to 630 GeV. The type of data presented include d sigma /dm, d2 sigma /dm dx and d2 sigma /dm dy distributions as well as other variations of these, and also transverse momentum distributions. The data are compared with a standard theoretical model, and a phenomenological 'K-factor' for each set is calculated. (Taken from the abstract of A Compilation of Drell-Yan Cross sections, W.J. Stirling and M.R. Whalley, Journal of Physics G (Nuclear and Particle Physics), Volume 19, Data Review, 1993.) The Durham High Energy Physics (HEP) Database Group makes these data, extracted from papers and data reviews, available in one place in an easy-to-access format. These data are also included in the Durham HEP Reaction Data Database which can be searched at http://hepdata.cedar.ac.uk/reaction

  15. Inclusive Particle Production Data in E+E- Interactions: Data from DOE laboratory experiments as compiled in data reviews by the Durham High Energy Physics Database Group

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lafferty, G. D.; Reeves, P. I.; Whalley, M. R.

    A comprehensive compilation of experimental data on inclusive particle production in e+e- interactions is presented. Data are given in both tabular and graphical form for multiplicities and inclusive differential cross sections from experiments at all of the world`s high energy e+e- colliders. To facilitate comparison between the data sets, curves are also shown from the JETSET 7.4 Monte Carlo program. (Taken from the abstract of A Compilation of Inclusive Particle Production Data in E+E- Annihilation, G.D. Lafferty, P.I. Reeves, and M.R. Whalley, Journal of Physics G (Nuclear and Particle Physics), Volume 21, Number 12A, 1995.) The Durham High Energy Physics (HEP) Database Group makes these data, extracted from papers and data reviews, available in one place in an easy-to-access format. These data are also included in the Durham HEP Reaction Data Database which can be searched at http://hepdata.cedar.ac.uk/reaction

  16. Alkali deposits found in biomass boilers: The behavior of inorganic material in biomass-fired power boilers -- Field and laboratory experiences. Volume 2

    SciTech Connect (OSTI)

    Baxter, L.L.; Miles, T.R.; Miles, T.R. Jr.; Jenkins, B.M.; Dayton, D.C.; Milne, T.A.; Bryers, R.W.; Oden, L.L.

    1996-03-01

    This report documents the major findings of the Alkali Deposits Investigation, a collaborative effort to understand the causes of unmanageable ash deposits in biomass-fired electric power boilers. Volume 1 of this report provide an overview of the project, with selected highlights. This volume provides more detail and discussion of the data and implications. This document includes six sections. The first, the introduction, provides the motivation, context, and focus for the investigation. The remaining sections discuss fuel properties, bench-scale combustion tests, a framework for considering ash deposition processes, pilot-scale tests of biomass fuels, and field tests in commercially operating biomass power generation stations. Detailed chemical analyses of eleven biomass fuels representing a broad cross-section of commercially available fuels reveal their properties that relate to ash deposition tendencies. The fuels fall into three broad categories: (1) straws and grasses (herbaceous materials); (2) pits, shells, hulls and other agricultural byproducts of a generally ligneous nature; and (3) woods and waste fuels of commercial interest. This report presents a systematic and reasonably detailed analysis of fuel property, operating condition, and boiler design issues that dictate ash deposit formation and property development. The span of investigations from bench-top experiments to commercial operation and observations including both practical illustrations and theoretical background provide a self-consistent and reasonably robust basis to understand the qualitative nature of ash deposit formation in biomass boilers. While there remain many quantitative details to be pursued, this project encapsulates essentially all of the conceptual aspects of the issue. It provides a basis for understanding and potentially resolving the technical and environmental issues associated with ash deposition during biomass combustion. 81 refs., 124 figs., 76 tabs.

  17. CCI Virtual Tour | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CCI Virtual Tour Daniel Bouk, a student in the Community College Internship (CCI) program talks about his experience working in Ames Laboratory's Engineering Services department

  18. Sharing Smart Grid Experiences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electricity Delivery and Energy Reliability Prepared by: National Energy Technology Laboratory Sharing Smart Grid Experiences through Performance Feedback v1.0 Page ii Disclaimer ...

  19. Laboratory Activities

    SciTech Connect (OSTI)

    Brown, Christopher F.; Serne, R. Jeffrey

    2008-01-17

    This chapter summarizes the laboratory activities performed by PNNLs Vadose Zone Characterization Project in support of the Tank Farm Vadose Zone Program, led by CH2M HILL Hanford Group, Inc. The results of these studies are contained in numerous reports (Lindenmeier et al. 2002; Serne et al. 2002a, 2002b, 2002c, 2002d, 2002e; Lindenmeier et al. 2003; Serne et al. 2004a, 2004b; Brown et al. 2005, 2006a, 2007; Serne et al. 2007) and have generated much of the data reported in Chapter 22 (Geochemistry-Contaminant Movement), Appendix G (Geochemistry-Contaminant Movement), and Cantrell et al. (2007, SST WMA Geochemistry Data Package in preparation). Sediment samples and characterization results from PNNLs Vadose Zone Characterization Project are also shared with other science and technology (S&T) research projects, such as those summarized in Chapter 12 (Associated Science Activities).

  20. LCLS Sample Preparation Laboratory | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LCLS Sample Preparation Laboratory Kayla Zimmerman | (650) 926-6281 Lisa Hammon, LCLS Lab Coordinator Welcome to the LCLS Sample Preparation Laboratory. This small general use wet...

  1. Heat Transfer Laboratory | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heat Transfer Laboratory Materials in solids or fluid forms play an important role in a ... Argonne's Heat Transfer Laboratory enables researchers to: Synthesize and prepare heat ...

  2. National Laboratory Impact Initiative

    Broader source: Energy.gov [DOE]

    The National Laboratory Impact Initiative supports the relationship between the Office of Energy Efficiency & Renewable Energy and the national laboratory enterprise.  The national laboratories...

  3. Enforcement Letter, Los Alamos National Laboratory- October 9, 2001

    Broader source: Energy.gov [DOE]

    Issued to Los Alamos National Laboratory related to Quality Assurance Provisions at the Los Alamos Critical Experiments Facility

  4. Addressing Complexity In Laboratory Experiments- The Scaling...

    Open Energy Info (EERE)

    the dynamic behavior of the particles within the mixture. The compilation of 17 experimental studies relevant for pyroclastic surges and volcanic plumes indicates that there is...

  5. Education Videos | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Education Videos A SULI Virtual Tour Ames Laboratory researcher and SULI mentor Ikenna Nlebedim and Summer 2015 SULI intern Gavin Hester talk about their experiences in the program which provides hands-on research opportunities to undergraduate students at the nation's national laboratories. Catie Meis talks about SULI and Goldwater Scholarship Iowa State University and former SULI student Catie Meis talks about the SULI program and being named a Goldwater Scholar. SULI student featured in video

  6. Nuclear Engineering Science Laboratory Synthesis program accepting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    applications for spring, summer 2016 Nuclear Engineering Science Laboratory Synthesis program accepting applications for spring, summer 2016 Opportunity provides students with research experience at Oak Ridge National Laboratory FOR IMMEDIATE RELEASE Nov. 11, 2015 FY16-06 OAK RIDGE, Tenn.-The Nuclear Engineering Science Laboratory Synthesis (NESLS) program is accepting applications for spring and summer 2016. NESLS is a cooperative research initiative at Oak Ridge National Laboratory (ORNL)

  7. Independent Oversight Activity Report for Catholic University of America Vitreous State Laboratory Tour and Discussion of Experiments Conducted in Support of Hanford Site Waste Treatment and Immobilization Plant Select Systems Design, November 18, 2013

    Office of Environmental Management (EM)

    Department of Energy Sandia National Laboratories - April 2012 Independent Activity Report, Sandia National Laboratories - April 2012 April 2012 Sandia National Laboratories Site Visit [HIAR-SNL-2012-05-02] This Independent Activity Report documents an operational awareness oversight activity conducted by Office of Health, Safety and Security's (HSS) Office of Safety and Emergency Management Evaluations from April 29 to May 2, 2012, at the Sandia National Laboratories. The activity consisted

  8. Renewable Energy Laboratory

    Open Energy Info (EERE)

    Radiation Budget Measurement Networks, National Oceanic and Atmospheric Administration Air Resources Laboratory and Earth System Research Laboratory Global Monitoring Division *...

  9. Tritium Plasma Experiment and

    Office of Environmental Management (EM)

    Plasma Experiment and its role in PHENIX program Masashi Shimada, Chase Taylor Fusion Safety Program Idaho National Laboratory Rob Kolasinski Sandia National Laboratories, Livermore Tritium Focus Group meeting September 23-25, 2014 at Idaho National Laboratory, Idaho Falls, ID Outline: 1. Motivation 2. Tritium Plasma Experiment 3. INL/STAR's role on US-Japan collaboration 4. Role of TPE in PHENIX project 5. TPE modification and development of plasma-driven permeation M.Shimada | Tritium Focus

  10. NNSA releases Stockpile Stewardship Program quarterly experiments...

    National Nuclear Security Administration (NNSA)

    National Ignition Facility at Lawrence Livermore National Laboratory, and the Z machine at Sandia National Laboratories. The summary also provides the number of experiments...

  11. Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory

    National Nuclear Security Administration (NNSA)

    Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory The Terascale Simulation Facility is a world-class supercomputing

  12. Ames Laboratory Logos | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Laboratory Logos The Ames Laboratory Logo comes in several formats. EPS files are vector graphics created in Adobe Illustrator and saved with a tiff preview so they will...

  13. Laboratory Graduate Research Appointment | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Graduate Research Program Perform your thesis research among the best and the brightest at Argonne National Laboratory. About the Program Laboratory Graduate Research (Lab Grad) appointments are available to qualified U.S. university graduate students who wish to carry out their thesis research at Argonne National Laboratory under co-sponsorship of an Argonne staff member and a faculty member. The university sets the academic standard and awards the degree. The participation of the

  14. Ames Laboratory Emergency Plan | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Laboratory Emergency Plan Version Number: 13.0 Document Number: Plan 46300.001 Effective Date: 11/2014

  15. Heavy Ion Fusion Science Virtual National Laboratory1st Quarter FY08 Milestone Report: Report Initial Work on Developing Plasma Modeling Capability in WARP for NDCX ExperimentsReport Initial work on developing Plasma Modeling Capability in WARP for NDCX Experiments

    SciTech Connect (OSTI)

    Friedman, A.; Cohen, R.H.; Grote, D.P.; Vay, J.-L.

    2007-12-10

    This milestone has been accomplished. The Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL) has developed and implemented an initial beam-in-plasma implicit modeling capability in Warp; has carried out tests validating the behavior of the models employed; has compared the results of electrostatic and electromagnetic models when applied to beam expansion in an NDCX-I relevant regime; has compared Warp and LSP results on a problem relevant to NDCX-I; has modeled wave excitation by a rigid beam propagating through plasma; and has implemented and begun testing a more advanced implicit method that correctly captures electron drift motion even when timesteps too large to resolve the electron gyro-period are employed. The HIFS-VNL is well on its way toward having a state-of-the-art source-to-target simulation capability that will enable more effective support of ongoing experiments in the NDCX series and allow more confident planning for future ones.

  16. Ames Laboratory Hot Canyon | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Laboratory Hot Canyon This historical film footage, originally produced in the early 1950s as part of a series by WOI-TV, shows atomic research at Ames Laboratory. The work was conducted in a special area of the Laboratory known as the "Hot Canyon."

  17. Car Competition | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Teacher Programs Classroom Resources Undergraduates Graduates Faculty Partners News & Events About Us Staff Directory About Us Staff Directory Argonne National Laboratory Educational Programs Developing the Next Generation of Scientists & Engineers Home Learning Center Undergraduates Graduates Faculty Partners News & Events Learning Center Community Outreach Learning Experiences School Competitions Middle School Science Bowl Middle School Electric Car Competition High School Rube

  18. Community Outreach | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Learning Experiences School Competitions Teacher Programs Classroom Resources Undergraduates Graduates Faculty Partners News & Events About Us Staff Directory About Us Staff Directory Argonne National Laboratory Educational Programs Developing the Next Generation of Scientists & Engineers Home Learning Center Undergraduates Graduates Faculty Partners News & Events Learning Center Community Outreach Hour of Code Introduce a Girl to Engineering Science Careers in Search of Women

  19. The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Hub led by the Ames Laboratory, recovers valuable rare-earth magnetic material from manufacturing waste and creates useful magnets out of it. Ames Laboratory...

  20. mark | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Laboratory Profile Mark Gordon Associate Chemical & Biological Sciences 201 Spedding ... Group Ames Laboratory Research Projects: Chemical Physics TheoreticalComputational Tools ...

  1. Facilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Facility Distributed Energy Research Center Engine Research Facility Heat Transfer Laboratory Tribology Laboratory Transportation Beamline at the Advanced Photon Source...

  2. National Renewable Energy Laboratory

    Office of Environmental Management (EM)

    Renewable Energy Laboratory Innovation for Our Energy Future Renewable Resource Options Geothermal Biomass Solar Hydro Wind National Renewable Energy Laboratory Innovation ...

  3. Sustainability | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sustainability Ames Laboratory is committed to environmental sustainability in all of its operations as outlined in the Laboratory's Site Sustainability Plan. Executive orders set ...

  4. Cytogenetic Biodosimetry Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cytogenetic Biodosimetry Laboratory Blood samples are shipped at room temperature to the laboratory. White blood cells, lymphocytes, are cultured under sterile conditions in an...

  5. Purdue Hydrogen Systems Laboratory

    SciTech Connect (OSTI)

    Jay P Gore; Robert Kramer; Timothee L Pourpoint; P. V. Ramachandran; Arvind Varma; Yuan Zheng

    2011-12-28

    The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up. Efforts continued to explore existing catalytic methods involving nano catalysts for capture of CO2 from the fermentation process.

  6. The Sample Preparation Laboratories | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cynthia Patty 1 Sam Webb 2 John Bargar 3 Arizona 4 Chemicals 5 Team Work 6 Bottles 7 Glass 8 Plan Ahead! See the tabs above for Laboratory Access and forms you'll need to complete. Equipment and Chemicals tabs detail resources already available on site. Avoid delays! Hazardous materials use may require a written Standard Operating Procedure (SOP) before you work. Check the Chemicals tab for more information. The Sample Preparation Laboratories The Sample Preparation Laboratories provide wet lab

  7. Status of Laboratory Goals | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Status of Laboratory Goals Status of Calendar Year 2016 objectives and targets. Item 1 Recommendation: The EMSSC recommends an Open House be held in the Ames Laboratory Storeroom and Warehouse by April 1, 2016. The Open House will provide Ames Laboratory employees the opportunity to discover what supplies are readily available through the storeroom and showcase the Equipment Pool website. This recommendation will increase awareness of the sustainable purchasing requirements by showcasing these

  8. Frontiers for Laboratory Research of Magnetic Reconnection

    SciTech Connect (OSTI)

    Ji, Hantao; Guo, Fan

    2015-07-16

    Magnetic reconnection occcurs throughout heliophysical and astrophysical plasmas as well as in laboratory fusion plasmas. Two broad categories of reconnection models exist: collisional MHD and collisionless kinetic. Eight major questions with respect to magnetic connection are set down, and past and future devices for studying them in the laboratory are described. Results of some computerized simulations are compared with experiments.

  9. Analytical Chemistry Laboratory | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemistry Laboratory provides a broad range of analytical chemistry support services to the scientific and engineering programs. AnalyticalChemistryLaboratoryfactsheet...

  10. Laboratory Equipment & Supplies | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Most laboratories offer ice machines and cold rooms. Specialty storage areas for samples include a -80 freezer, argon and nitrogen glove boxes, radiation contamination areas, inert ...

  11. Equipment | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Zeiss Axiovert 200 Optical Microscope Spark Cutter Fully Equipped Metallographic Laboratory Electropolisher Dimpler

  12. Accounting Resources | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accounting Resources Ames Laboratory Human Resources Forms Ames Laboratory Travel Forms Ames Laboratory Forms (Select Department) ISU Intramural PO Request

  13. In Situ NDA Conformation Measurements Performed at Auxiliary Charcoal Bed and Other Main Charcoal Beds After Uranium Removal from Molten Salt Reactor Experiment ACB at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Haghighi, M. H.; Kring, C. T.; McGehee, J. T.; Jugan, M. R.; Chapman, J.; Meyer, K. E.

    2002-02-26

    The Molten Salt Reactor Experiment (MSRE) site is located in Tennessee, on the U.S. Department of Energy (DOE) Oak Ridge Reservation (ORR). The MSRE was run by Oak Ridge National Laboratory (ORNL) to demonstrate the desirable features of the molten-salt concept in a practical reactor that could be operated safely and reliably. It introduced the idea of a homogeneous reactor using fuel salt media and graphite moderation for power and breeder reactors. The MSRE reactor and associated components are located in cells beneath the floor in the high-bay area of Building 7503. The reactor was operated from June 1965 to December 1969. When the reactor was shut down, fuel salt was drained from the reactor circuit to two drain tanks. A ''clean'' salt was then circulated through the reactor as a decontamination measure and drained to a third drain tank. When operations ceased, the fuel and flush salts were allowed to cool and solidify in the drain tanks. At shutdown, the MSRE facility complex was placed in a surveillance and maintenance program. Beginning in 1987, it was discovered that gaseous uranium (U-233/U-232) hexafluoride (UF6) had moved throughout the MSRE process systems. The UF6 had been generated when radiolysis in the fluorine salts caused the individual constituents to dissociate to their component atoms, including free fluorine. Some of the free fluorine combined with uranium fluorides (UF4) in the salt to produce UF6. UF6 is gaseous at slightly above ambient temperatures; thus, periodic heating of the fuel salts (which was intended to remedy the radiolysis problems) and simple diffusion had allowed the UF6 to move out of the salt and into the process systems of MSRE. One of the systems that UF6 migrated into due to this process was the offgas system which is vented to the MSRE main charcoal beds and MSRE auxiliary charcoal bed (ACB). Recently, the majority of the uranium laden-charcoal material residing within the ACB was safely and successfully removed using the uranium deposit removal system and equipment. After removal a series of NDA measurements was performed to determine the amount of uranium material remaining in the ACB, the amount of uranium material removed from the ACB, and the amount of uranium material remaining in the uranium removal equipment due to removal activities.

  14. National Laboratory's Weapons Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Us » Strategic Programs » National Laboratory Impact Initiative Team National Laboratory Impact Initiative Team The mission of the Office of Energy Efficiency and Renewable Energy's (EERE's) National Laboratory Impact Initiative is to significantly increase the industrial impact of the Energy Department's national laboratories on the U.S. clean energy sector. The goals of the Initiative are to: Increase and enhance laboratory-private sector relationships Increase and streamline access to

  15. Federal Laboratory Consortium | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Federal Laboratory Consortium

  16. Brookhaven National Laboratory | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Brookhaven National Laboratory

  17. Triangle Universities Nuclear Laboratory : 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at LENA| Reaction Rates| UNC Astrophysics| Laboratory for Experimental Nuclear Astrophysics (LENA) The LENA is among only a few accelerator facilities in the world dedicated entirely to nuclear astrophysics experiments. It has two low-energy electrostatic accelerators that are capable of delivering high-current charged-particle beams to a common target. One is an ECR source on a 200-kV platform and the other one is a 1-MV JN Van de Graaff accelerator. Both accelerators are fully

  18. leaves Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    leadership Forum engages current and developing nuclear security leaders In late March, the NNSA Graduate Fellowship Program (NGFP) Alumni Forum brought together current and former fellows with leaders from across the national laboratories and the nuclear security enterprise. The annual event invites participants to share their career experiences as developing leaders... Livermore Field Office sets core values as part of continuous improvement process At their recent off-site continuous

  19. Robert Winarski | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Robert Winarski Physicist Robert Winarski was responsible for the design and construction of Argonne National Laboratory's X-ray Nanoprobe Beamline Project. He conceived of and implemented innovative synchrotron radiation experiments and techniques specifically related to the Nanoprobe. Robert is a scientist in the X-ray Microscopy Group at the Center for Nanoscale Materials and is the leader of the nanotomography program at the Hard X-ray Nanoprobe Beamline (Sector 26). The Hard X-ray Nanoprobe

  20. Andreas Roelofs | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Andreas Roelofs Director, Nano Design Works Andreas Roelofs is the Director of Argonne National Laboratory's newly established Nano Design Works (NDW) center and the acting Deputy Director of both the Nanoscience and Technology Division and the Center for Nanoscale Materials (CNM). Dr. Roelofs has lengthy experience in scientific research and leadership in private industry, startups, and the public sector. His early work focused on investigating scaling effects of ferroelectric thin films and

  1. National Laboratories - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Ignition Facility Glass amplifiers in Laser Bay 2 at the National Ignition Facility. The construction of the 192-beam 1.8 MJ UV NIF, the world's most energetic laser, was completed in March 2009. Current experiments are focusing on using the NIF laser and other ICF high energy density facilities leading to demonstrate fusion ignition and thermonuclear burn in the laboratory. The NIF is also being used to support basic science and SSP experiments. By the end of FY 2012, the NIF will

  2. Constraining PCP Violating Varying Alpha Theory through Laboratory...

    Office of Scientific and Technical Information (OSTI)

    Constraining PCP Violating Varying Alpha Theory through Laboratory Experiments Citation Details In-Document Search Title: Constraining PCP Violating Varying Alpha Theory through ...

  3. Princeton Plasma Physics Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Physics Laboratory P.O. Box 451 Princeton, NJ 08543-0451 GPS: 100 Stellarator Road Princeton, NJ 08540 www.pppl.gov 2015 Princeton Plasma Physics Laboratory. A...

  4. DOE Laboratory Partnerships

    Broader source: Energy.gov [DOE]

    DOE national laboratories were created to support the various missions of the Department, including energy, national security, science and related environmental activities. The laboratories conduct innovative research and development in literally hundreds of technology areas, some available nowhere else.

  5. haberer | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    haberer Ames Laboratory Profile Charles Haberer Facilities Services 158 Metals Development Phone Number: 515-294-3757 Email Address: haberer

  6. islowing | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    islowing Ames Laboratory Profile Igor Slowing Assoc Scientist Chemical & Biological Sciences 2756 Gilman Phone Number: 515-294-1959 Email Address: islowing@iastate.edu Ames Laboratory Associate Ames Laboratory Research Projects: Homogeneous and Interfacial Catalysis in 3D Controlled Environment Nanorefinery Education: Ph.D., Iowa State University, 2003-2008 Licenciate in Chemistry, San Carlos University, Guatemala, 1988-1995 Professional Appointments: Staff Scientist, Ames Laboratory,

  7. levin | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    levin Ames Laboratory Profile Evgenii Levin Scientist I Division of Materials Science & Engineering 107 Spedding Phone Number: 515-294-6093 Email Address: levin@iastate.edu Ames Laboratory Research Projects: Novel Materials Preparation & Processing Methodologies Professional Appointments: Scientist I & Adj. Associate Professor, Ames Laboratory U.S. DOE, and Department of Physics and Astronomy, Iowa State University, 2010- present Associate Scientist & Lecturer, Ames Laboratory

  8. FY 2005 Laboratory Table

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Congressional Budget Request Laboratory Tables Preliminary Department of Energy FY 2005 Congressional Budget Request Office of Management, Budget and Evaluation/CFO February 2004 Laboratory Tables Preliminary Department of Energy Department of Energy FY 2005 Congressional Budget FY 2005 Congressional Budget Request Request Office of Management, Budget and Evaluation/CFO February 2004 Laboratory Tables Laboratory Tables Printed with soy ink on recycled paper Preliminary Preliminary The numbers

  9. Management | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Sciences & Engineering Focus: Understanding & Control of Interfacial Processes Web Site Michael Thackeray Michael Thackeray (Deputy Director) Argonne National Laboratory...

  10. Alamos National Laboratory's 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    $2 million pledged during Los Alamos National Laboratory's 2014 employee giving campaign December 17, 2013 "I Give Because..." theme focuses on unique role Lab plays in local communities LOS ALAMOS, N.M., Dec. 17, 2013-Nearly $2 million has been pledged by Los Alamos National Laboratory employees to United Way and other eligible nonprofit programs during the Laboratory's 2014 Employee Giving Campaign. Los Alamos National Security, LLC, which manages and operates the Laboratory for the

  11. biswasr | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University, 1976 Professional Appointments: Senior Scientist Ames Laboratory and Microelectronics Research Center, 2013- present Adjunct Professor, Dept. of Physics & Astronomy;...

  12. Sandia National Laboratories: Laboratories' Strategic Framework

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Strategic Framework Vision, Mission, and Values Strategic Framework Mission Areas Laboratories Foundation Strategic Objectives and Crosscuts About Strategic Framework strategic framework Sandia continues to be engaged in the significant demands of the nation's nuclear weapons modernization program while conducting a whole range of activities in broader national security. The Laboratories' strategic framework drives strategic decisions about the totality of our work and has positioned our

  13. Multiwell experiment

    SciTech Connect (OSTI)

    Sattler, A.R.; Warpinski, N.R.; Lorenz, J.C.; Hart, C.M.; Branagan, P.T.

    1985-01-01

    The Multiwell Experiment is a research-oriented field laboratory. Its overall objectives are to characterize lenticular, low-permeability gas reservoirs and to develop technology for their production. This field laboratory has been established at a site in the east-central Piceance basin, Colorado. Here the Mesaverde formation lies at a depth of 4000 to 8250 ft. This interval contains different, distinct reservoir types depending upon their depositional environments. These different zones serve as the focus of the various testing and stimulation programs. Field work began in late 1981 and is scheduled through mid-1988. One key to the Multiwell Experiment is three closely spaced wells. Core, log, well testing, and well-to-well seismic data are providing a far better definition of the geological setting than has been available previously. The closely spaced wells also allow interference and tracer tests to obtain in situ reservoir parameters. The vertical variation of in situ stress throughout the intervals of interest is being measured. A series of stimulation experiments is being conducted in one well and the other two wells are being used as observation wells for improved fracture diagnostics and well testing. Another key to achieving the Multiwell Experiment objectives is the synergism resulting from a broad spectrum of activities: geophysical surveys, sedimentological studies, core and log analyses, well testing, in situ stress determination, stimulation, fracture diagnostics, and reservoir analyses. The results from the various activities will define the reservoir and the hydraulic fracture. These, in turn, define the net pay stimulated: the intersection of a hydraulic fracture of known geometry with a reservoir of known morphology and properties. Accomplishments of the past year are listed. 4 refs.

  14. Sandia National Laboratories is a multi-program laboratory operated...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, ... laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed ...

  15. LABORATORY NEW HIRE NOTICE: LABORATORY DELAYED OPENING OR CLOSURE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LABORATORY NEW HIRE NOTICE: LABORATORY DELAYED OPENING OR CLOSURE DUE TO INCLEAMENT WEATHER During the winter months, the Los Alamos National Laboratory (LANL) may at times...

  16. Laboratory program helps small businesses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab helps small businesses Laboratory program helps small businesses The free program, run jointly by Los Alamos and Sandia National Laboratories, leverages the laboratories'...

  17. Going green earns Laboratory gold

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Going green earns Laboratory gold Going green earns Laboratory gold The Laboratory's newest facility is its first to achieve both the Leadership in Energy and Environmental Design...

  18. Budget Office | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that the Laboratory complies with all Department Of Energy cost controls Providing decision-making support to senior Laboratory management Providing support to the Laboratory...

  19. Sandia National Laboratories: Locations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Locations Locations Sandia California CINT photo A national and international presence Sandia operates laboratories, testing facilities, and offices in multiple sites around the United States and participates in research collaborations around the world. Sandia's executive management offices and larger laboratory complex are located in Albuquerque, New Mexico. Our second principal laboratory is located in Livermore, California. Although most of our 9,840 employees work at these two locations,

  20. The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Timothy Hackett and Kathryn White are the SULI students for spring semester 2016. Ames Laboratory's fall Science Undergraduate Laboratory Internship (SULI) students began their program with the start of fall semester Aug. 24. The students are, left to right, Kathryn White, Shannon Goes, Kaiser Aguirre, and Adam Dziulko. Department of Energy Deputy Secretary Elizabeth Sherwood-Randall poses with SULI and CCI students who participated in a roundtable discussion during her visit to Ames Laboratory

  1. Savannah River National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Savannah River National Laboratory srnl.doe.gov SRNL is a DOE National Laboratory operated by Savannah River Nuclear Solutions. At a glance 'Tin whiskers' suppression method Researchers at the Savannah River National Laboratory (SRNL) have identified a treatment method that slows or prevents the formation of whiskers in lead-free solder. Tin whiskers spontaneously grow from thin films of tin, often found in microelectronic devices in the form of solders and platings. Background This problem was

  2. jwang | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    jwang Ames Laboratory Profile Jigang Wang Associate Division of Materials Science & Engineering B15 Spedding Phone Number: 515-294-2964 Email Address: jgwang@iastate.edu Ames Laboratory Research Projects: Metamaterials Education: Ph.D. Electrical Engineering, Rice University, Houston, TX, 2005 M.S. Electrical Engineering, Rice University, Houston, TX, 2002 B.S. Physics, Jilin University, Changchun, P. R. China, 2000 Professional Appointments: Associate Scientist, Ames Laboratory, Iowa State

  3. Education | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Education Education The MFRC has established a network of Midwest crime laboratories and university-based forensic science programs. This network has two general goals: help universities become better casework, research, and development partners for crime laboratories; and to engage crime laboratories in university efforts. These efforts can better-prepare the next generation of forensic scientists, advance the state-of-the-art in forensic science research, and influence students whose

  4. National Energy Technology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Design Standards for the NETL Logo Feburary 2016 The Logo Display of the NETL logo is critical because this symbol represents who we are - it's our signature. Consistent application of the logo is crucial to the success of our identity. As the primary identifier of the National Energy Technology Laboratory, it is essential that the logo's appearance is consistent throughout all of the Laboratory's communications. Over time, consistent and repeated use of the logo will establish a

  5. rshouk | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rshouk Ames Laboratory Profile Robert Houk Prof Chemical & Biological Sciences B27 Spedding Phone Number: 515-294-9462 Email Address: rshouk@iastate.edu Ames Laboratory Associate and Professor, Iowa State University Ames Laboratory Research Projects: Chemical Analysis of Nanodomains Education: Postdoctoral Associate, Iowa State University, 1981 Ph.D. Iowa State University, 1980 B.S. Slippery Rock State College, 1974 Professional Appointments: Senior Chemist and Professor of Chemistry, Iowa

  6. Mentoring | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mentoring Why mentoring? As one of the largest laboratories in the nation for science and engineering research, Argonne National Laboratory is home to some of the most prolific and well-renowned scientists and engineers. To maintain an environment that fosters innovative research, we are committed to ensuring the success of our major players on the frontlines of our research-our Postdoctoral Scientists. The Argonne National Laboratory has a long-standing reputation as a place that offers

  7. Double Beta Decay Experiments

    SciTech Connect (OSTI)

    Nanal, Vandana [Dept. of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Mumbai 400 005 (India)

    2011-11-23

    At present, neutrinoless double beta decay is perhaps the only experiment that can tell us whether the neutrino is a Dirac or a Majorana particle. Given the significance of the 0{nu}{beta}{beta}, there is a widespread interest for these rare event studies employing a variety of novel techniques. This paper describes the current status of DBD experiments. The Indian effort for an underground NDBD experiment at the upcoming INO laboratory is also presented.

  8. kabryden | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    kabryden Ames Laboratory Profile Kristy Bryden Associate Simulation, Modeling, & Decision Science 149 Music Phone Number: 515-294-3971 Email Address: kabryden...

  9. CASL - Idaho National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The laboratory has designed and operated 52 test reactors, including EBR-1, the world's first nuclear power plant Key Contributions System safety analysis Multiscale fuel ...

  10. angiemcg | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    angiemcg Ames Laboratory Profile Angela Mcguigan Secretary II Simulation, Modeling, & Decision Science 1620 Howe Phone Number: 515-294-8060 Email Address: angiemcg...

  11. antropov | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Laboratory Research Projects: Exploratory Development of Theoretical Methods Education: Ph.D. Condensed Matter Physics, Institute of Physics of Metals, Yekaterinburg,...

  12. OAK RIDGE NATIONAL LABORATORY

    Office of Legacy Management (LM)

    Dr. Williams: Trip Report of ORNL Health Physics Support at the Uniroyal Chemical Company ... Laboratory (ORNL) provided health physics support for the Uniroyal Chemical Company. ...

  13. Purchasing | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in 44 states. Purchased Items and supplier base: Biological Materials Chemicals Computers, Monitors and Printers Furniture Laboratory Supplies Metals Office Supplies...

  14. carter | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carter Ames Laboratory Profile Steven Carter Engr IV Facilities Services 158 Metals Development Phone Number: 515-294-7889 Email Address: carter@ameslab.gov...

  15. cbertoni | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cbertoni Ames Laboratory Profile Colleen Bertoni Grad Asst-RA Chemical & Biological Sciences 201 Spedding Phone Number: 515-294-7568 Email Address: cbertoni...

  16. pmberge | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pmberge Ames Laboratory Profile Paul Berge Industrial Spec Division of Materials Science & Engineering 110 Metals Development Phone Number: 515-294-5972 Email Address:...

  17. abhranil | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    abhranil Ames Laboratory Profile Abhranil Biswas Student Associate Chemical & Biological Sciences 2236 Hach Phone Number: 515-294-7568 Email Address: abiswas

  18. aboesenb | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    aboesenb Ames Laboratory Profile Adam Boesenberg Associate Division of Materials Science & Engineering 110 Metals Development Phone Number: 515-294-5903 Email Address: aboesenb

  19. achatman | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    achatman Ames Laboratory Profile Andrew Chatman Division of Materials Science & Engineering 37 Spedding Phone Number: 515-294-4446 Email Address: achatman

  20. ackerman | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ackerman Ames Laboratory Profile David Ackerman Associate Chemical & Biological Sciences 2025 Black Engineering Phone Number: 515-294-1638 Email Address: ackerman

  1. adabbott | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    adabbott Ames Laboratory Profile Adam Abbott Chemical & Biological Sciences Critical Materials Institute 122 Spedding Phone Number: 515-294-4500 Email Address: adabbott

  2. adaoud | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    adaoud Ames Laboratory Profile Abdelwadood Daoud Simulation, Modeling, & Decision Science 1620 Howe Phone Number: 515-294-8060 Email Address: adaoud

  3. adf | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    adf Ames Laboratory Profile Alex Findlater Student Associate Chemical & Biological Sciences 231 Spedding Phone Number: 515-294-7568 Email Address: adf

  4. ahaupert | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ahaupert Ames Laboratory Profile Alysha Haupert Facilities Services 241C Metals Development Phone Number: 515-294-4360 Email Address: ahaupert

  5. aklekner | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    aklekner Ames Laboratory Profile Alon Klekner Engr Tech I Facilities Services 167C Metals Development Phone Number: 515-294-1589 Email Address: aklekner

  6. andresg | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    andresg Ames Laboratory Profile Andres Garcia Grad Asst-RA Chemical & Biological Sciences 307 Wilhelm Phone Number: 515-294-6027 Email Address: andresg

  7. arbenson | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    arbenson Ames Laboratory Profile Alex Benson Division of Materials Science & Engineering 258 Metals Development Phone Number: 515-294-4446 Email Address: arbenson

  8. ashheath | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ashheath Ames Laboratory Profile Ashley Heath Simulation, Modeling, & Decision Science 1620 Howe Phone Number: 515-294-3891 Email Address: ashheath

  9. bastaw | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bastaw Ames Laboratory Profile Ashraf Bastawros Associate Chemical & Biological Sciences 2347 Howe Phone Number: 515-294-3039 Email Address: bastaw

  10. baugie | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    baugie Ames Laboratory Profile Brent Augustine Student Associate Division of Materials Science & Engineering 206 Wilhelm Phone Number: 309-748-0439 Email Address: baugie

  11. bbergman | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bbergman Ames Laboratory Profile Brian Bergman Facil Mechanic III Facilities Services Maintenance Shop Phone Number: 515-294-4346 Email Address: bbergman@ameslab.gov

  12. bboote | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bboote Ames Laboratory Profile Brett Boote Grad Asst-RA Chemical & Biological Sciences 0712 Gilman Phone Number: 515-294-8586 Email Address: bboote@iastate.edu

  13. bcleland | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bcleland Ames Laboratory Profile Beth Cleland Custodian I Facilities Services 241C Metals Development Phone Number: 515-294-5446 Email Address: bcleland

  14. bender | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bender Ames Laboratory Profile Lee Bendickson Lab Tech III Division of Materials Science & Engineering 3288 Molecular Biology Bldg Phone Number: 515-294-5682 Email Address: bender

  15. bkkuhn | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bkkuhn Ames Laboratory Profile Bridget Kuhn Human Resources Office 118 TASF Phone Number: 515-294-2680 Email Address: bkkuhn@iastate.edu

  16. boehmer | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    boehmer Ames Laboratory Profile Anna Boehmer Postdoc Res Associate Division of Materials Science & Engineering A15 Zaffarano Phone Number: 515-294-3246 Email Address: boehmer

  17. boersma | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    boersma Ames Laboratory Profile Stephanie Boersma Budget Analyst V Budget Office 231 TASF Phone Number: 515-294-8785 Email Address: boersma

  18. bondarenko | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bondarenko Ames Laboratory Profile Volodymyr Bondarenko Division of Materials Science & Engineering A117 Zaffarano Phone Number: 515-294-4072 Email Address: bondarenko

  19. bspire | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bspire Ames Laboratory Profile Bruce Spire Erd Machinist Sr Facilities Services 160 Metals Development Phone Number: 515-294-5428 Email Address: bspire

  20. burghera | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    burghera Ames Laboratory Profile Alexander Burgher Facil Mechanic III Facilities Services 158B Metals Development Phone Number: 515-294-3756 Email Address: burghera

  1. byrd | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    byrd Ames Laboratory Profile David Byrd Asst Scientist I Division of Materials Science & Engineering 109 Metals Development Phone Number: 515-294-5747 Email Address: byrd

  2. carraher | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carraher Ames Laboratory Profile Jack Carraher Postdoc Res Associate Chemical & Biological Sciences 2118 BRL Phone Number: 515-294-5826 Email Address: carraher@iastate.edu

  3. cbenetti | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cbenetti Ames Laboratory Profile Caleb Benetti Student Associate Division of Materials Science & Engineering A204 Zaffarano Phone Number: 515-294-4446 Email Address: cbenetti

  4. ccelania | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ccelania Ames Laboratory Profile Christopher Celania Grad Asst-TA/RA Division of Materials Science & Engineering 325 Spedding Phone Number: 641-226-7542 Email Address: ccelania

  5. ccowan | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ccowan Ames Laboratory Profile Carol Cowan Secretary III Human Resources Office 151 TASF Phone Number: 515-294-2680 Email Address: ccowan

  6. chenx | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    chenx Ames Laboratory Profile Xiang Chen Division of Materials Science & Engineering 249 Spedding Phone Number: 515-294-4446 Email Address: chenx

  7. cmarquardt | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cmarquardt Ames Laboratory Profile Cynthia Marquardt Secretary II Facilities Services 158 Metals Development Phone Number: 515-294-3756 Email Address: cmarquardt

  8. crossm | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    crossm Ames Laboratory Profile Jeanine Crosman Secretary III Facilities Services 158H Metals Development Phone Number: 515-294-3496 Email Address: crossm

  9. dabrice | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dabrice Ames Laboratory Profile David Brice Division of Materials Science & Engineering 150 Metals Development Phone Number: 515-294-4446 Email Address: dabrice

  10. dbaldwin | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dbaldwin Ames Laboratory Profile David Baldwin Director II Chemical & Biological Sciences 130 Spedding Phone Number: 515-294-2069 Email Address: dbaldwin

  11. dballal | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dballal Ames Laboratory Profile Deepti Ballal Division of Materials Science & Engineering 112 Wilhelm Phone Number: 515-294-9636 Email Address: dballal

  12. dboeke | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dboeke Ames Laboratory Profile David Boeke Research Tech Sr Division of Materials Science & Engineering 122 Metals Development Phone Number: 515-294-5816 Email Address: dboeke

  13. deshong | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    deshong Ames Laboratory Profile Rhonda Deshong Program Asst II Human Resources Office 151 TASF Phone Number: 515-294-0931 Email Address: deshong@ameslab.gov

  14. dfreppon | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dfreppon Ames Laboratory Profile Daniel Freppon Grad Asst-RA Chemical & Biological Sciences 0712 Gilman Phone Number: 515-294-8586 Email Address: dfreppon

  15. djbell | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    djbell Ames Laboratory Profile Daniel Bell Grad Asst-RA Simulation, Modeling, & Decision Science 1620 Howe Phone Number: 515-294-3891 Email Address: djbell

  16. djchadde | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    djchadde Ames Laboratory Profile David Chadderdon Grad Asst-RA Division of Materials Science & Engineering 2140 BRL Phone Number: 515-294-4446 Email Address: djchadde

  17. dmeyer | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dmeyer Ames Laboratory Profile Dale Meyer Engr Tech II Facilities Services 158D Metals Development Phone Number: 515-294-3614 Email Address: dmeyer@ameslab.gov

  18. eckels | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    eckels Ames Laboratory Profile David Eckels Associate Chemical & Biological Sciences 105 Spedding Phone Number: 515-294-7943 Email Address: eckels@ameslab.gov

  19. eguidez | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    eguidez Ames Laboratory Profile Emilie Guidez Associate Chemical & Biological Sciences 201 Spedding Phone Number: 515-294-7568 Email Address: eguidez@ameslab.gov

  20. finzell | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    finzell Ames Laboratory Profile Peter Finzell Grad Asst-RA Simulation, Modeling, & Decision Science 1620 Howe Phone Number: 515-294-8060 Email Address: surgeftr

  1. flanders | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    flanders Ames Laboratory Profile Duane Flanders Sheet Metal Mech Facilities Services Maintenance Shop Phone Number: 515-294-1746 Email Address: flanders@ameslab.gov

  2. galvin | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    galvin Ames Laboratory Profile Glen Galvin Mgr Info Tech I Simulation, Modeling, & Decision Science 1620 Howe Phone Number: 515-294-6604 Email Address: galvin

  3. gbjorlnd | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gbjorlnd Ames Laboratory Profile Grace Bjorland Division of Materials Science & Engineering B36 Spedding Phone Number: 515-294-4446 Email Address: gbjorlnd

  4. gharper | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gharper Ames Laboratory Profile Gregory Harper Sys Control Tech Facilities Services Maintenance Shop Phone Number: 515-294-1746 Email Address: gharper

  5. gsbacon | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gsbacon Ames Laboratory Profile Graham Bacon Division of Materials Science & Engineering 129 Wilhelm Phone Number: 515-294-4446 Email Address: gsbacon

  6. guan | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    guan Ames Laboratory Profile Yong Guan Associate Chemical & Biological Sciences 3219 Coover Phone Number: 515-294-8378 Email Address: guan

  7. hanrahanm | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hanrahanm Ames Laboratory Profile Michael Hanrahan Chemical & Biological Sciences 331 Spedding Phone Number: 515-294-7568 Email Address: mph

  8. hauptman | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hauptman Ames Laboratory Profile John Hauptman Associate Facilities Services A411 Zaffarano Phone Number: 515-294-8572 Email Address: hauptman

  9. hcelliott | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hcelliott Ames Laboratory Profile Henrietta Elliott Custodian I Facilities Services 241C Metals Development Phone Number: 515-294-5446 Email Address: hcelliott

  10. herrman | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    herrman Ames Laboratory Profile Terrance Herrman Engr V Facilities Services 167 Metals Development Phone Number: 515-294-7896 Email Address: herrman

  11. hilstromj | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hilstromj Ames Laboratory Profile Jeremy Hilstrom Office Assistant-X Human Resources Office 118 TASF Phone Number: 515-294-2680 Email Address: hilst000

  12. himashir | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    himashir Ames Laboratory Profile Himashi Andaraarachchi Student Associate Chemical & Biological Sciences 209B Wilhelm Phone Number: 515-294-7568 Email Address: himashir

  13. jac | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    jac Ames Laboratory Profile Justin Conrad Student Associate Chemical & Biological Sciences 305 TASF Phone Number: 515-294-4604 Email Address: jac

  14. jbobbitt | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    jbobbitt Ames Laboratory Profile Jonathan Bobbitt Grad Asst-RA Chemical & Biological Sciences 0712 Gilman Phone Number: 515-294-4285 Email Address: jbobbitt

  15. jboschen | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    jboschen Ames Laboratory Profile Jeffery Boschen Grad Asst-RA Chemical & Biological Sciences 124 Spedding Phone Number: 515-294-7568 Email Address: jboschen

  16. jiahao | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    jiahao Ames Laboratory Profile Jiahao Chen Division of Materials Science & Engineering A300 Zaffarano Phone Number: 515-294-0689 Email Address: jiahao@iastate.edu

  17. jrblaum | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    jrblaum Ames Laboratory Profile Jacqueline Blaum Division of Materials Science & Engineering 37 Spedding Phone Number: 515-294-4446 Email Address: jrblaum

  18. kasuni | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    kasuni Ames Laboratory Profile Walikadage Boteju Grad Asst-RA Chemical & Biological Sciences Critical Materials Institute 2306 Hach Phone Number: 515-294-6342 Email Address: kasuni

  19. kbratlie | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    kbratlie Ames Laboratory Profile Kaitlin Bratlie Associate Division of Materials Science & Engineering 2220 Hoover Phone Number: 515-294-7304 Email Address: kbratlie

  20. klclark | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    klclark Ames Laboratory Profile Katie Clark Program Coord II Human Resources Office 151 TASF Phone Number: 515-294-8753 Email Address: klclark@ameslab.gov

  1. kmbryden | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    kmbryden Ames Laboratory Profile Kenneth Bryden Associate Simulation, Modeling, & Decision Science 2274 Howe Phone Number: 515-294-3891 Email Address: kmbryden

  2. liza | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    liza Ames Laboratory Profile Liza Alexander Grad Asst-RA Chemical & Biological Sciences 2242 Molecular Biology Bldg Phone Number: 515-294-6116 Email Address: liza

  3. long | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    long Ames Laboratory Profile Catherine Long Supv-Custodial Svc Facilities Services 158G Metals Development Phone Number: 515-294-4360 Email Address: long

  4. maheedhar | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    maheedhar Ames Laboratory Profile Maheedhar Gunasekharan Grad Asst-RA Chemical & Biological Sciences 327 Wilhelm Phone Number: 515-294-7568 Email Address: maheedhar

  5. ppezzini | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ppezzini Ames Laboratory Profile Paolo Pezzini Postdoc Res Associate Simulation, Modeling, & Decision Science Off Campus Phone Number: 515-294-3891 Email Address: ppezzini...

  6. dcheng | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dcheng Ames Laboratory Profile Di Cheng Student Associate Division of Materials Science & Engineering A311 Zaffarano Phone Number: 515-294-5373 Email Address: dcheng@iastate.edu...

  7. bartine | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bartine Ames Laboratory Profile Jeffrey Bartine Program Coord III Environmental, Safety, Health, and Assurance G40 TASF Phone Number: 515-294-4743 Email Address: bartine...

  8. Leadership | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    scientific user facility in North America; and the Argonne Accelerator Institute. Harry Weerts Harry Weerts, Associate Laboratory Director, Physical Sciences and Engineering...

  9. mjkramer | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Laboratory Profile Matthew Kramer Director III Division of Materials Science & Engineering 125 Metals Development Phone Number: 515-294-0276 Email Address:...

  10. Workshops | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Workshop Summary June 8-10, 2015 NSRC Workshop on "Big, Deep, and Smart Data Analytics in Materials Imaging" Oak Ridge National Laboratory This workshop brought together ...

  11. hoenig | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hoenig Ames Laboratory Profile Douglas Hoenig Mgr Facility Serv Facilities Services 158J Metals Development Phone Number: 515-294-0930 Email Address: hoenig@ameslab.gov...

  12. grootvel | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    grootvel Ames Laboratory Profile Mark Grootveld Mgr Facility Serv Facilities Services 158 Metals Development Phone Number: 515-294-7895 Email Address: grootveld@ameslab.gov...

  13. Laboratory Organization Chart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Board Directorate Staff Org Chart Berkeley Lab Organization Chart ESnet Protective Services ETAESDR ETAEAEI ETA Chief Operating Officer Laboratory Council RIIO...

  14. NREL: Research Facilities - Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In the lab, researchers study plant structures from the tissue scale to the molecular ... Photobiological Laboratory Researchers use this lab for enzyme engineering to block the ...

  15. Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Assessment of Radionuclide Monitoring in the CSRA Savannah River NERP Research ... Upcoming Seminars The Savannah River Ecology Laboratory is a research unit of the ...

  16. The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    David Jiles, Palmer Endowed Chair of the electrical and computer engineering ... When Ames Laboratory was experiencing a seemingly elevated number of power outages, Lab staff ...

  17. Laboratory disputes citizens' lawsuit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    officials expressed surprise to a lawsuit alleging noncompliance with the federal Clean Water Act filed today by citizens groups. February 7, 2008 Los Alamos National Laboratory...

  18. timma | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    timma Ames Laboratory Profile Timothy Anderson Associate Chemical & Biological Sciences B28 Spedding Phone Number: 515-294-7568 Email Address: timma...

  19. rdanders | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rdanders Ames Laboratory Profile Ross Anderson Research Tech Sr Division of Materials Science & Engineering 108 Metals Development Phone Number: 515-294-5816 Email Address:...

  20. Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    short-pulse laser, scientists from Los Alamos, the Technical University of Darmstadt, Germany, and Sandia National Laboratories focus high-intensity light on an ultra-thin...

  1. Princeton Plasma Physics Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    generations. The Laboratory, managed by Princeton University, has a more-than 60-year history of discovery and leadership in the field of fusion energy. PPPL researchers are...

  2. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    He was the third director of Los Alamos National Laboratory, succeeding Robert Oppenheimer and Norris Bradbury. He served from 1970 to 1979. Joined Manhattan Project in 1943 During ...

  3. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LOS ALAMOS, New Mexico, November 20, 2008- Los Alamos National Laboratory employees once again demonstrated concern for their communities and those in need by pledging a record...

  4. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2009 Los Alamos, New Mexico, December 1, 2009-Los Alamos National Laboratory employees once more demonstrated concern for their communities and those in need by pledging a record...

  5. xinyufu | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    xinyufu Ames Laboratory Profile Xinyu Fu Student Associate Chemical & Biological Sciences 2238 Molecular Biology Bldg Phone Number: 515-294-7568 Email Address: xinyufu...

  6. National Laboratory Geothermal Publications

    Broader source: Energy.gov [DOE]

    You can find publications, including technical papers and reports, about geothermal technologies, research, and development at the following U.S. Department of Energy national laboratories.

  7. mmdaub | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mmdaub Ames Laboratory Profile Molly Granseth Program Asst II Human Resources Office Environmental, Safety, Health, and Assurance 105 TASF Phone Number: 515-294-2864 Email Address:...

  8. Muncrief | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Muncrief Ames Laboratory Profile Diane Muncrief Personnel Officer Human Resources Office 151 TASF Phone Number: 515-294-5731 Email Address: muncrief...

  9. hmorris | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hmorris Ames Laboratory Profile Haley Morris Office Assistant-X Human Resources Office Environmental, Safety, Health, and Assurance 105 TASF Phone Number: 515-294-2153 Email...

  10. Inquiry | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facility, a nearly 10 million building that will house an array of state-of-the art electron microscopy equipment. It's Ames Laboratory's first new research facility in...

  11. Awards | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Performance Award, 2013 (with two other researchers) U.S. Department of Energy Vehicle Technologies Office R&D Award, 2013 Argonne National Laboratory Distinguished...

  12. Sandia National Laboratories:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    event Annual Exercise an earth-shaking activity Sandia President and Laboratories Director Jill Hruby Partnerships, mission synergy key to Sandia's future Sandia California...

  13. Los Alamos National Laboratory's

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    produced by current operations. LANL and regulatory agencies survey the air, soil, sediment, groundwater, and surface water around the Laboratory to make sure contaminants from...

  14. mbonilla | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mbonilla Ames Laboratory Profile Claudia Bonilla escobar Postdoc Res Associate Division of Materials Science & Engineering 252 Spedding Phone Number: 515-294-2041 Email Address: mbonilla

  15. mdotzler | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mdotzler Ames Laboratory Profile Mike Dotzler Facil Mechanic III Facilities Services Maintenance Shop Phone Number: 515-294-4346 Email Address: mdotzler

  16. mhend | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mhend Ames Laboratory Profile Matthew Henderson Sys Analyst I Chemical & Biological Sciences 327 Wilhelm Phone Number: 515-294-1293 Email Address: mhend@ameslab.gov

  17. mhenely | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mhenely Ames Laboratory Profile Michael Henely Custodian I Facilities Services 241C Metals Development Phone Number: 515-294-5446 Email Address: mhenely@iastate.edu

  18. mwiley | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mwiley Ames Laboratory Profile Megan Hovey Student Associate Chemical & Biological Sciences 2252 Hach Phone Number: 515-294-8069 Email Address: mwiley

  19. nalms | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nalms Ames Laboratory Profile Nathan Alms Lab Assistant-X Division of Materials Science & Engineering 322 Spedding Phone Number: 515-294-4446 Email Address: nalms

  20. ndesilva | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ndesilva Ames Laboratory Profile Nuwan De silva Postdoc Res Associate Critical Materials Institute Chemical & Biological Sciences 236 Wilhelm Phone Number: 515-294-7568 Email Address: ndesilva

  1. olsenjro | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    olsenjro Ames Laboratory Profile Jarrett Olsen Custodian I Facilities Services 241C Metals Development Phone Number: 515-294-4360 Email Address: olsenjro@ameslab.gov

  2. pbenzoni | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pbenzoni Ames Laboratory Profile Peter Benzoni Chemical & Biological Sciences 327 Wilhelm Phone Number: 515-294-7568 Email Address: pbenzoni

  3. perrya | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    perrya Ames Laboratory Profile Perry Antonelli Grad Asst-RA Simulation, Modeling, & Decision Science 2240H Hoover Phone Number: 515-294-1841 Email Address: perrya

  4. qslin | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    qslin Ames Laboratory Profile Qisheng Lin Assoc Scientist Division of Materials Science & Engineering 353 Spedding Phone Number: 515-294-3513 Email Address: qslin@ameslab.gov

  5. rberrett | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rberrett Ames Laboratory Profile Ronald Berrett Sys Control Tech Facilities Services Maintenance Shop Phone Number: 515-294-1746 Email Address: rberrett

  6. rfry | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rfry Ames Laboratory Profile Robert Fry Electronics Tech I Facilities Services 258 Metals Development Phone Number: 515-294-4823 Email Address: rfry

  7. rmalmq | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rmalmq Ames Laboratory Profile Richard Malmquist Facil Mechanic III Facilities Services Maintenance Shop Phone Number: 515-294-1228 Email Address: rmalmq

  8. rodgers | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rodgers Ames Laboratory Profile Elizabeth Rodgers Program Coord III Office of Sponsored Research Administration Director's Office 305 TASF Phone Number: 515-294-1254 Email Address: rodgers

  9. rofox | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rofox Ames Laboratory Profile Rodney Fox Associate Chemical & Biological Sciences 3162 Sweeney Phone Number: 515-294-9104 Email Address: rofox@iastate.edu

  10. sburkhow | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sburkhow Ames Laboratory Profile Sadie Burkhow Chemical & Biological Sciences 0712 Gilman Phone Number: 515-294-7568 Email Address: sburkhow

  11. schenad | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    schenad Ames Laboratory Profile Shen Chen Division of Materials Science & Engineering 211 Physics Phone Number: 515-294-9361 Email Address: schenad

  12. schon | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    schon Ames Laboratory Profile Mallory Schon Program Coord II Human Resources Office 151 TASF Phone Number: 515-294-8062 Email Address: schon

  13. seliger | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    seliger Ames Laboratory Profile Victoria Seliger Custodian I Facilities Services 241C Metals Development Phone Number: 515-294-4360 Email Address: seliger

  14. sumitc | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sumitc Ames Laboratory Profile Sumit Chaudhary Associate Division of Materials Science & Engineering 2124 Coover Phone Number: 515-294-0606 Email Address: sumitc

  15. tboell | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tboell Ames Laboratory Profile Tyler Boell Division of Materials Science & Engineering 146 Metals Development Phone Number: 515-294-4446 Email Address: tboell

  16. tjoliveira | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tjoliveira Ames Laboratory Profile Tiago De oliveira Associate Chemical & Biological Sciences 505 Zaffarano Phone Number: 515-294-7568 Email Address: tjoliveira@ameslab.gov

  17. tkales | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tkales Ames Laboratory Profile Thomas Ales Division of Materials Science & Engineering 150 Metals Development Phone Number: 515-294-4446 Email Address: tkales@iastate.edu

  18. vaclav | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    vaclav Ames Laboratory Profile Michael Vaclav Engr IV Facilities Services 158E Metals Development Phone Number: 515-294-7891 Email Address: vaclav

  19. valery | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    valery Ames Laboratory Profile Valery Borovikov Postdoc Res Associate Division of Materials Science & Engineering 205 Metals Development Phone Number: 515-294-4312 Email Address: valery

  20. weverett | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    weverett Ames Laboratory Profile William Everett Student Associate Chemical & Biological Sciences 121 Spedding Phone Number: 515-294-7568 Email Address: weverett@iastate.edu

  1. witt | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    witt Ames Laboratory Profile Lynnette Witt Interim Director Human Resources Human Resources Office 151 TASF Phone Number: 515-294-5740 Email Address: witt@ameslab.gov

  2. dscomito | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dscomito Ames Laboratory Profile Daniel Comito Student Associate Division of Materials Science & Engineering A524 Zaffarano Phone Number: 515-294-9800 Email Address: dscomito...

  3. vdahl | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    vdahl Ames Laboratory Profile Vincent Dahl Mgr Facilities Mnt Facilities Services Maintenance Shop Phone Number: 515-294-1746 Email Address: vdahl...

  4. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    funds July 21, 2009 Funding will aid environmental cleanup and compliance Los Alamos, New Mexico, July 22, 2009-Los Alamos National Laboratory today announced plans to begin...

  5. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and affirmative procurement accomplishments. The Laboratory also received a Department of Energy "E Star" award for its Environmental Management System project, based on a...

  6. sjbajic | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sjbajic Ames Laboratory Profile Stanley Bajic Assoc Scientist Chemical & Biological Sciences 5 Spedding Phone Number: 515-294-8194 Email Address: sjbajic...

  7. jwgong | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Laboratory Profile Jianwu Gong Student Associate Division of Materials Science & Engineering Chemical & Biological Sciences 326 Wilhelm Phone Number: 515-294-7568 Email...

  8. marit | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Honors & Awards: AAAS Fellow, 2007 Regents Award for Faculty Excellence, 2003 Inventor Incentive Award, Ames Laboratory, 2002 Iowa Regents Faculty Citation Award, 2000...

  9. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3, 2015 Projects save taxpayer dollars, promote environmental stewardship, sustainability LOS ALAMOS, N.M., April 22, 2015-Nearly 400 Los Alamos National Laboratory employees on 32...

  10. Projects | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Tool Mark Characterization Development of an AccuTOF-DART Database for Use by Forensic Laboratories Forensic Technology Center of Excellence MFRC Training Development &...

  11. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    accomplishment," Deputy Laboratory Director and this year's campaign champion Ike Richardson said of this year's pledged - 2 - amount. "The LANL team raised 1.5 million, which...

  12. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2009 Lab contributes computer modeling, antibody engineering capabilities Los Alamos, New Mexico, July 28, 2009- Los Alamos National Laboratory scientists will codirect a new...

  13. tchou | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tchou Ames Laboratory Profile Tsung-han Chou Student Associate Division of Materials Science & Engineering 132 Spedding Phone Number: 515-294-6822 Email Address: tchou...

  14. Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    location of the Savannah River Ecology Laboratory, is one of the original ten SREL habitat reserves and was selected to complement the old-field habitatplant succession studies ...

  15. National Laboratory Photovoltaics Research

    Broader source: Energy.gov [DOE]

    DOE supports photovoltaic (PV) research and development and facilities at its national laboratories to accelerate progress toward achieving the SunShot Initiative's technological and economic...

  16. dpaulc | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dpaulc Ames Laboratory Profile Daniel Cole Student Associate Chemical & Biological Sciences 10 Carver Co-Lab Phone Number: 515-294-1235 Email Address: dpaulc...

  17. Factsheets | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    elements on the front and provides information on the back concerning Ames Laboratory's historical involvement in rare earth research, the Critical Materials Institute and the...

  18. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6th Hazmat Challenge July 31, 2012 Competition tests skills of hazardous materials response teams LOS ALAMOS, New Mexico, July 31, 2012 What: Los Alamos National Laboratory (LANL)...

  19. Sustainability | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sustainability "Much of Argonne's cutting-edge research is dedicated to discovery and ... Argonne's Sustainability and Environmental Program embodies the laboratory's commitment to ...

  20. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sustainability award October 14, 2010 LOS ALAMOS, New Mexico, October 14, 2010-Los Alamos National Laboratory recently received an Environmental Sustainability (EStar) ...

  1. joiner | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    joiner Ames Laboratory Profile Stacy Joiner Program Manager I Office of Sponsored Research Administration Director's Office 332 TASF Phone Number: 515-294-5932 Email Address:...

  2. zdorkowski | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    zdorkowski Ames Laboratory Profile Richard Zdorkowski Program Manager I Director's Office Office of Sponsored Research Administration 128 Spedding Phone Number: 515-294-5640 Email...

  3. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory has awarded master task order agreements to three small businesses for environmental support services work worth up to 400 million within a five-year period....

  4. Employees | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    due to weather or other circumstances, assistance for working remotely, clubs and sports leagues, and many other topics of interest to the laboratory community. Quick...

  5. tdball | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tdball Ames Laboratory Profile Teresa Ball Custodian I Facilities Services 241C Metals Development Phone Number: 515-294-4360 Email Address: tdball...

  6. anderegg | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    anderegg Ames Laboratory Profile James Anderegg Asst Scientist III Division of Materials Science & Engineering 325 Spedding Phone Number: 515-294-3480 Email Address:...

  7. jacton | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    jacton Ames Laboratory Profile James Acton Grad Asst-RA Division of Materials Science & Engineering 0215 Hach Phone Number: 515-294-4446 Email Address: jacton...

  8. oliver | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    oliver Ames Laboratory Profile James Oliver Associate Simulation, Modeling, & Decision Science 2274 Howe Phone Number: 515-294-2649 Email Address: oliver@iastate.edu...

  9. vanmarel | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    vanmarel Ames Laboratory Profile Ross Vanmarel Facil Mechanic III Facilities Services 158 Metals Development Phone Number: 515-294-1746 Email Address: vanmarel...

  10. covey | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    covey Ames Laboratory Profile Debra Covey Director II Director's Office Office of Sponsored Research Administration 311 TASF Phone Number: 515-294-1048 Email Address: covey...

  11. Inquiry 2014, Issue 1 | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4, Issue 1 Welcome to Inquiry 2014, Issue 1 Behind the Science at The Ames Laboratory Image For every discovery, big or small, there are countless hours spent in the lab developing experiments, analyzing data and then trying to replicate the results. It takes experimentalists, characterization experts, and theorists all working together. Research at the Ames Laboratory exemplifies just this type of teamwork, as you'll see in the stories presented in this issue. While projects must have

  12. Jefferson Laboratory Findings Excite Theoreticians, Experimentatlists |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab Laboratory Findings Excite Theoreticians, Experimentatlists Jefferson Laboratory Findings Excite Theoreticians, Experimentatlists March 1999 Seemingly reasonable assumptions define the human view of the world. But ruled of thumb can mislead - or be altogether incorrect. Fortunately, in physics, most assumptions can be tested. Those that don't measure up are amended. An experiment at the Department of Energy's Thomas Jefferson National Accelerator Facility (Jefferson Lab) has

  13. LABORATORY DELAYED OPENING, CLOSURE, OR EMERGENCY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DELAYED OPENING, CLOSURE, OR EMERGENCY Los Alamos National Laboratory (LANL) may at times experience a work delay or closure due to inclement weather or unexpected Laboratory emergencies. In the event of a delay, closure, or emergency, Laboratory New Hires should call the following number to receive information regarding the delay or closure: LANL Update Hotline: 505-667-6622, 1-877-723-4101, and/or http://www.lanl.gov (Please note, the LANL hotline and webpage are updated by 5:30 a.m.) New Hire

  14. Development of the integrated, in-situ remediation technology. Topical report for tasks No. 8 and No. 10 entitled: Laboratory and pilot scale experiments of Lasagna{trademark} process, September 26, 1994--May 25, 1996

    SciTech Connect (OSTI)

    Ho, Sa V.; Athmer, C.J.; Sheridan, P.W.

    1997-04-01

    Contamination in low permeability soils poses a significant technical challenge to in-situ remediation efforts. Poor accessibility to the contaminants and difficulty in delivery of treatment reagents have rendered existing in-situ treatments such as bioremediation, vapor extraction, pump and treat rather ineffective when applied to low permeability soils present at many contaminated sites. This technology is an integrated in-situ treatment in which established geotechnical methods are used to install degradation zones directly in the contaminated W and electro-osmosis is utilized to move the contaminants back and forth through those zones until the treatment is completed. This topical report summarizes the results of the lab and pilot sized Lasagna{trademark} experiments conducted at Monsanto. Experiments were conducted with kaofinite and an actual Paducah soil in units ranging from bench-scale containing kg-quantity of soil to pilot-scale containing about half a ton of soil having various treatment zone configurations. The obtained data support the feasibility of scaling up this technology with respect to electrokinetic parameters as well as removal of organic contaminants. A mathematical model was developed that was successful in predicting the temperature rises in the soil. The information and experience gained from these experiments along with the modeling effort enabled us to successfully design and operate a larger field experiment at a DOE TCE-contaminated clay site.

  15. devo | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    devo Ames Laboratory Profile Deborah Schlagel Asst Scientist III Division of Materials Science & Engineering 111 Metals Development Phone Number: 515-294-3924 Email Address: schlagel@iastate.edu Ames Laboratory Research Projects: Novel Materials Preparation & Processing Methodologies Research Interests: Synthesis of single crystals of Huesler alloys, magneto-responsive materials, superconductors, elements and alloys Single crystal characterization and property analysis

  16. riedemann | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    riedemann Ames Laboratory Profile Trevor Riedemann Asst Scientist III Division of Materials Science & Engineering 110 Metals Development Phone Number: 515-294-1366 Email Address: riedemann@ameslab.gov Assistant Scientist III Website(s): Novel Materials Preparation & Processing Methodologies Materials Preparation Center Ames Laboratory Research Projects: Novel Materials Preparation & Processing Methodologies Education: Masters of Science, Metallurgy, Iowa State University, 1996

  17. Undergraduate Research Opportunities - Center for Plasma in the Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Astrophysics - UW Madison Physics Department Undergraduate Research Opportunities UW Madison Center for Plasma in the Laboratory and Astrophysics Undergraduate Research Opportunities CPLA Home - Experiments Madison Symmetric Torus Madsion Dynamo Experiment Rotating Wall Machine Plasma-Couette Experiment Madison Plasma Dynamo Experiment - Theory Groups MHD Turbulence Transport in Fusion Devices Plasma Astrophysics RFP Theory - Multi-Institutional Centers Center for Magnetic Self

  18. Sandia National Laboratories: Sandia National Laboratories: Missions:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Defense Systems & Assessments: About Us Defense Systems About Defense Systems & Assessments Program Areas Accomplishments Cybersecurity Programs About Defense Systems & Assessments soldier silhouetted by a sunset Defense Systems & Assessments supports guardians of peace and freedom on the battlefield and in the laboratory by applying engineering, science, and technology solutions to deter, detect, defeat, and defend threats to our national security. We analyze and exploit the

  19. Sandia National Laboratories: Sandia National Laboratories: Missions:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Weapons: About About Nuclear Weapons at Sandia Weapons Researcher World-class scientists and engineers come to Sandia to conduct breakthrough research in nuclear weapons. Sandia designs more than 6,300 parts of a modern nuclear weapon's 6,500 components. Our state-of-the-art laboratories facilitate large-scale testing and computer simulation. Sandia's work is of the highest consequence and those doing the work face awesome responsibilities. Unlike other national labs, which focus on

  20. Sandia National Laboratories

    National Nuclear Security Administration (NNSA)

    National Laboratories Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Sand 2011-4582 P. ENERGY U.S. DEPARTMENT OF Albuquerque N e w M e x i c o Sandia Mountains Q Q ApproximatelyQ8,800QacresQQ ofQDOE-ownedQandQQ permittedQland Q Q LocatedQwithinQtheQQ KirtlandQAirQForceQQ

  1. Sandia National Laboratories beginnings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia National Laboratories beginnings focus of Los Alamos' 70th anniversary lecture March 6, 2013 LOS ALAMOS, N.M., March 6, 2013-Sandia National Laboratories historian Rebecca Ullrich discusses Sandia's transition from a Los Alamos division to an independent organization during a talk at 5:30 p.m., March 13 at the Bradbury Science Museum in Los Alamos. The talk is part of the Laboratory's 70th anniversary lecture series. Sandia Labs' origins are in Los Alamos' Z Division, the engineering

  2. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    70th anniversary app for iPhone, iPads June 5, 2013 LOS ALAMOS, N.M., June 4, 2013-Los Alamos National Laboratory has launched its first app for iPhones and iPads as part of the Laboratory's yearlong celebration of 70 years serving the nation. The free application is available from the Apple Store (search for Los Alamos National Lab). The app enables users to learn more about the Laboratory's national security mission, cutting edge research, unique history, top-flight scientists and the many

  3. Sonication standard laboratory module

    DOE Patents [OSTI]

    Beugelsdijk, Tony; Hollen, Robert M.; Erkkila, Tracy H.; Bronisz, Lawrence E.; Roybal, Jeffrey E.; Clark, Michael Leon

    1999-01-01

    A standard laboratory module for automatically producing a solution of cominants from a soil sample. A sonication tip agitates a solution containing the soil sample in a beaker while a stepper motor rotates the sample. An aspirator tube, connected to a vacuum, draws the upper layer of solution from the beaker through a filter and into another beaker. This beaker can thereafter be removed for analysis of the solution. The standard laboratory module encloses an embedded controller providing process control, status feedback information and maintenance procedures for the equipment and operations within the standard laboratory module.

  4. ARGONNE NATIONAL LABORATORY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARGONNE NATIONAL LABORATORY P. 0. Box 5207 Chicago 80, Ill. N U C W SHELL STRUCTURE AND 18-DECAY I. ODD A IVUCLEZ PI, G. Mayer and S . A. Moszkowski Argonne National Laboratory Chicago, I l l i n o i s m-4626 Physics & Mathematics L. W. Nordheim Duke University Durham, North Carolina ( A t present on Ieave a t the Los Alamos S c i e n t i f i c Laboratory, Los Alamos, New Mexfco) 1 1 . EVEN A NUCLEX L. W. Nordheim The study reported i n Part I was started independently by the Chicago and

  5. Honey, I Shrunk the Plasma: Studying Astrophysical Processes in Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experiments | Princeton Plasma Physics Lab February 14, 2015, 9:30am to 11:00am Science On Saturday MBG Auditorium Honey, I Shrunk the Plasma: Studying Astrophysical Processes in Laboratory Experiments Dr. Clayton Myers, Associate Research Physicist PPPL Abstract: PDF icon Myers.pdf Science on Saturday, 14FEB2015, "Honey, I Shrunk the Plasma: Studying Astrophysical Processess in Laboratory Experiments", Dr. Clayton Myers, PPPL Contact Information Website: Science on Saturday

  6. Brookhaven National Laboratory

    Broader source: Energy.gov [DOE]

    Site OverviewThe Brookhaven National Laboratory (BNL) was established in 1947 by the Atomic Energy Commission (AEC) (predecessor to U.S. Department of Energy [DOE]). Formerly Camp Upton, a U.S....

  7. The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Insider Honors and Awards Gordon receives INCITE grant Ames Laboratory scientist Mark Gordon has been awarded a 2016 INCITE grant from the U.S. Department of Energy's (DOE) Office ...

  8. baik | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    baik Ames Laboratory Profile Kamalakar Baikerikar Assoc Scientist Division of Materials Science & Engineering 221 Metals Development Phone Number: 515-294-7995 Email Address: baik@ameslab.gov

  9. bcarsten | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bcarsten Ames Laboratory Profile Beverly Carstensen Secretary II Division of Materials Science & Engineering 105 Metals Development Phone Number: 515-294-4071 Email Address: bcarsten@ameslab.gov

  10. bwing | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bwing Ames Laboratory Profile William Wing Erd Machinist Sr Division of Materials Science & Engineering Facilities Services 160 Metals Development Phone Number: 515-294-5428 Email Address: bwing

  11. feenstra | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    feenstra Ames Laboratory Profile Adam Feenstra Grad Asst-RA Chemical & Biological Sciences 35B Carver Co-Lab Phone Number: 515-294-2368 Email Address: feenstra

  12. foughtel | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    forrestal

    fors

    foughtel Ames Laboratory Profile Eliscia Fought Student Associate Chemical & Biological Sciences 124 Spedding Phone Number: 515-294-7568 Email Address: foughtel

  13. hansenre | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hansenre Ames Laboratory Profile Rebecca Hansen Grad Asst-RA Chemical & Biological Sciences 0027A Carver Co-Lab Phone Number: 515-294-2368 Email Address: hansenre

  14. kgalayda | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    kgalayda Ames Laboratory Profile Katherine Galayda Grad Asst-RA Chemical & Biological Sciences B5 Spedding Phone Number: 515-294-3887 Email Address: kgalayda@iastate.edu

  15. The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    85th birthday While scientists often talk about their life's work, few lives have been fuller than that of Ames Laboratory's Karl A. Gschneidner, Jr. who was honored for over six...

  16. naa | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    naa Ames Laboratory Profile Nathaniel Anderson Grad Asst-RA Division of Materials Science & Engineering B36 Spedding Phone Number: 515-294-0255 Email Address: naa@iastate.edu...

  17. Idaho National Laboratory

    ScienceCinema (OSTI)

    McCarthy, Kathy

    2013-05-28

    INL is the leading laboratory for nuclear R&D. Nuclear engineer Dr. Kathy McCarthy talks aobut the work there and the long-term benefits it will provide.

  18. Argonne National Laboratory

    Broader source: Energy.gov [DOE]

    HISTORYThe Argonne National Laboratory (ANL) site is approximately 27 miles southwest of downtown Chicago in DuPage County, Illinois.  The 1,500 acre ANL site is completely surrounded by the 2,240...

  19. Research | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    combined with the laboratory's state-of-the-art facilities has produced a wide variety of game-changing discoveries and inventions in fields as diverse as energy storage and...

  20. sandia national laboratory

    National Nuclear Security Administration (NNSA)

    %2A en Sandia National Laboratories http:nnsa.energy.govaboutusourlocationssandia

    Page...

  1. DOE Laboratory Accreditation Program

    Broader source: Energy.gov [DOE]

    Administered by the Office of Worker Safety and Health Policy, the DOE Laboratory Accreditation Program (DOELAP) is responsible for implementing performance standards for DOE contractor external dosimetry and radiobioassay programs through periodic performance testing and on-site program assessments.

  2. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    science. Information about the teacher conference is available from the Laboratory's Scott Robbins of the Education and Postdoc Office at 667-3639 or srobbins@lanl.gov by e-mail...

  3. mduenas | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mduenas Ames Laboratory Profile Maria Duenas fadic Grad Asst-RA Chemical & Biological Sciences 35A Carver Co-Lab Phone Number: 515-294-2368 Email Address: mduenas@iastate.edu

  4. nabrajbhattarai | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nabrajbhattarai Ames Laboratory Profile Nabraj Bhattarai Postdoc Res Associate Division of Materials Science & Engineering 216 Wilhelm Phone Number: 515-294-2162 Email Address: nabrajbhattarai@ameslab.gov

  5. pieper | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pieper Ames Laboratory Profile Elizabeth Pieper Program Coord I Office of Sponsored Research Administration Director's Office 311 TASF Phone Number: 515-294-6486 Email Address: pieper@ameslab.gov

  6. szhou | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    szhou Ames Laboratory Profile Shihuai Zhou Asst Scientist III Division of Materials Science & Engineering 204 Wilhelm Phone Number: 515-294-5489 Email Address: szhou@ameslab.gov

  7. zrein | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    zrein Ames Laboratory Profile Zachary Reinhart Grad Asst-RA Simulation, Modeling, & Decision Science 1620 Howe Phone Number: 515-294-3891 Email Address: zrein@iastate.edu

  8. Lawrence Berkeley National Laboratory

    National Nuclear Security Administration (NNSA)

    7%2A en Solar power purchase for DOE laboratories http:nnsa.energy.govmediaroompressreleasessolarpower

  9. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Veteran-Owned small businesses.Roybal added that purchases by the Laboratory also help stimulate the Northern New Mexico economy by creating or sustaining jobs in small business...

  10. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Los Alamos Students mobile app is free and can be downloaded from iTunes and Google Play (for android platforms). "The Laboratory's new Student App is a great way for...

  11. Los Alamos National Laboratory

    Broader source: Energy.gov [DOE]

    HISTORYLos Alamos National Laboratory (LANL) is located in Los Alamos County in north central New Mexico (NM). LANL, founded in 1943 during World War II as Project Y, served as a secret facility...

  12. Sandia National Laboratories

    Broader source: Energy.gov [DOE]

    The Sandia National Laboratories (SNL) is comprised of 2,820 acres within the boundaries of the 118 square miles Kirtland Air Force Base, and is located 6.5 miles east of downtown Albuquerque, New...

  13. BENSON | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BENSON Ames Laboratory Profile Zackery Benson Lab Assistant-X Division of Materials Science & Engineering A204 Zaffarano Phone Number: 515-294-4446 Email Address: zbenson@ameslab.gov

  14. kcho | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    kcho Ames Laboratory Profile Kyuil Cho Asst Scientist III Division of Materials Science & Engineering A02 Zaffarano Phone Number: 515-294-7249 Email Address: kcho@ameslab.gov...

  15. Tours | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Visitor Information Tours Vacume The Office of Public Affairs provides tours of the Ames Laboratory for a variety of groups, including college students; teachers; and professionals representing diverse occupations and interests. Care is taken to match tours to the expressed interests of the visiting group. Our hope is to help the public become more aware of the Ames Laboratory, create stronger Lab/community relations and encourage interest in science and math. In planning tours, our top

  16. Environmental | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environmental The Environmental Management Program at the Ames Laboratory includes Waste Management, Pollution Prevention, Recycling, Cultural Resources, and the Laboratory's Environmental Management System. Click on a subject to view applicable documents about each category. For more information you can also contact Sarah Morris-Benavides, Environmental Specialist at (515) 294-7923 or at sarahmb@ameslab.gov. Waste Management Pollution Prevention Recycling Cultural Resources Environmental

  17. Safety | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Careers Education Community Diversity Directory Argonne National Laboratory About Safety News Careers Education Community Diversity Directory Energy Environment Security User Facilities Science Work with Argonne Safety Biosafety Safety Safety is integral to Argonne's scientific research and engineering technology mission. As a leading U.S. Department of Energy multi-program research laboratory, our obligation to the American people demands that we conduct our research and operations safely

  18. The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wellness Active for Life Challenge Begins Active for Life is a nationwide wellness program sponsored by the American Cancer Society. This 8-week voluntary program, which kicks off on Monday, April 4, encourages Ames Laboratory employees to begin and/or maintain an active, physically-fit lifestyle. Employees form wellness teams to set individual and team wellness goals. The teams will compete against one another internally within the Ames Laboratory community AND as a whole against other U.S.

  19. jonesll | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    jonesll Ames Laboratory Profile Lawrence Jones Assoc Scientist Division of Materials Science & Engineering Facilities Services 121 Metals Development Phone Number: 515-294-5236 Email Address: jonesll@ameslab.gov Ames Laboratory Research Projects: Novel Materials Preparation & Processing Methodologies Education: M.S. Metallurgical Engineering, Iowa State University, 1985 B.S. Metallurgical Engineering, Iowa State University, 1983 Professional Appointments: Iowa State University; Ames

  20. FY 2006 Laboratory Table

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory Tables Preliminary Department of Energy FY 2006 Congressional Budget Request Office of Management, Budget and Evaluation/CFO February 2005 Laboratory Tables Preliminary Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals,

  1. FY 2008 Laboratory Table

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory Table Preliminary Department of Energy FY 2008 Congressional Budget Request February 2007 Office of Chief Financial Officer Laboratory Table Preliminary Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or other

  2. FY 2010 Laboratory Table

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory Tables Preliminary May 2009 Office of Chief Financial Officer FY 2010 Congressional Budget Request Laboratory Tables Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by

  3. FY 2011 Laboratory Table

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory Tables Department of Energy FY 2011 Congressional Budget Request DOE/CF-0055 March 2010 Office of Chief Financial Officer Laboratory Tables Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments

  4. Safety | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Argonne National Laboratory and the U.S. Department of Energy (DOE) are very concerned about the well-being of all employees. Students at the undergraduate and graduate level as well as postdoctoral appointees form an essential component of the research endeavor at the laboratory. However, research does not stand alone but must be integrated into a program of environment, safety, and security. From time to time, incidents regarding students and postdocs occur across the DOE complex. It is

  5. Sandia National Laboratories:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Prognostics Management System Reduces Offshore Wind O&M Costs | Department of Energy Sandia National Laboratories' Structural Health Monitoring and Prognostics Management System Reduces Offshore Wind O&M Costs Sandia National Laboratories' Structural Health Monitoring and Prognostics Management System Reduces Offshore Wind O&M Costs September 16, 2015 - 11:53am Addthis Offshore wind energy could potentially play a significant role in helping the United States obtain an energy

  6. Sandia National Laboratories:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    21, 2016 Articles 25 years of Laboratory-Directed Research and Development Headlights of a laboratory Sandia total spending, economic impact up in 2015 A driving force Sandia researchers break down lightning strikes into microseconds When lightning strikes Enormous blades for offshore energy A mighty wind CSI: Dognapping program honored for science outreach CSI: Dognapping Program helps new Sandians get started on the right path ANGLEing toward success

  7. Visitors | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Visitors Visitors are welcome at Ames Laboratory. As a U.S. Department of Energy research facility, Ames Laboratory is subject to security conditions established by the Department of Homeland Security. To make sure that you are complying with the current security conditions, please check with the Plant Protection Desk on the ground floor level of the Technical and Administrative Services Facility (TASF) building. Protection personnel can help you locate a specific staff member or direct you to a

  8. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 million to local United Way organizations, other nonprofits November 18, 2010 LOS ALAMOS, New Mexico, November 18, 2010-Los Alamos National Laboratory employees have again demonstrated concern for their communities and those in need by pledging a record $1.5 million to United Way and other eligible nonprofit programs. Los Alamos National Security, LLC, which operates the Laboratory, plans to prorate its $1 million match among the selected nonprofit organizations, bringing the total donation to

  9. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy environmental sustainability award October 14, 2010 LOS ALAMOS, New Mexico, October 14, 2010-Los Alamos National Laboratory recently received an Environmental Sustainability (EStar) award from the Department of Energy for integrating sustainable practices in its design for the Radiological Laboratory/ Utility/Office Building (RLUOB). The RLUOB is part of the Lab's Chemistry and Metallurgy Research Replacement (CMRR) Project. The Lab ultimately expects to achieve Leadership

  10. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    strategy for long-term environmental sustainability March 1, 2013 Blueprint for planning work activities with the environment in mind LOS ALAMOS, N.M., March 1, 2013-The Department of Energy and Los Alamos National Laboratory have developed a long-term strategy for environmental stewardship and sustainability that provides a blueprint for protecting the environment while accomplishing the Laboratory's national security missions. "This plan represents a significant amount of effort on the

  11. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 14, 2013 Value of up to $150 million over five years LOS ALAMOS, N.M., May 14, 2013-Los Alamos National Laboratory has awarded a master task order agreement in which three small businesses will compete for environmental work worth up to $150 million over five years. The businesses each have offices in northern New Mexico. The agreement is for technical services for the Laboratory's Environmental Programs directorate and includes work such as environmental engineering design, regulatory

  12. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2, 2015 Projects save taxpayer dollars, promote environmental stewardship, sustainability LOS ALAMOS, N.M., April 22, 2015-Nearly 400 Los Alamos National Laboratory employees on 32 teams received Pollution Prevention awards during an Earth Day awards ceremony on Wednesday, saving taxpayers $5.6 million while also reusing, recycling, re-tasking and re-routing waste. "The goal of the Laboratory's pollution prevention efforts is to reduce or eliminate waste whenever possible. The awards

  13. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3, 2015 Projects save taxpayer dollars, promote environmental stewardship, sustainability LOS ALAMOS, N.M., April 22, 2015-Nearly 400 Los Alamos National Laboratory employees on 32 teams received Pollution Prevention awards during an Earth Day awards ceremony on Wednesday, saving taxpayers $5.6 million while also reusing, recycling, re-tasking and re-routing waste. "The goal of the Laboratory's pollution prevention efforts is to reduce or eliminate waste whenever possible. The awards

  14. Advanced Materials Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SunShot Grand Challenge: Regional Test Centers Advanced Materials Laboratory Home/Tag:Advanced Materials Laboratory Structures of the zwitterionic coatings synthesized for this study. Permalink Gallery Investigations on Anti-biofouling Zwitterionic Coatings for MHK Is Now in Press Analysis, Capabilities, Energy, News, News & Events, Renewable Energy, Research & Capabilities, Water Power Investigations on Anti-biofouling Zwitterionic Coatings for MHK Is Now in Press Sandia's Marine

  15. Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    record neutron beam at Los Alamos National Laboratory July 10, 2012 New method has potential to advance materials measurement LOS ALAMOS, New Mexico, July 10, 2012-Using a one-of-a-kind laser system at Los Alamos National Laboratory, scientists have created the largest neutron beam ever made by a short-pulse laser, breaking a world record. Neutron beams are usually made with particle accelerators or nuclear reactors and are commonly used in a wide variety of scientific research, particularly in

  16. Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Economic development in Northern New Mexico focus of new podcast from Los Alamos National Laboratory November 25, 2013 Podcast part of Lab's new multi-channel effort to better engage with the community LOS ALAMOS, N.M., Nov. 27, 2013-Podcasts and webinars are among the new communications tools being rolled out by Los Alamos National Laboratory's Community Programs Office to reach a broader audience. The first podcast discusses economic development and the Northern New Mexico 20/20 Campaign, a

  17. Laboratory-Scale Column Testing Using IONSIV IE-911 for Removing Cesium from Acidic Tank Waste Simulant. 2: Determination of Cesium Exchange Capacity and Effective Mass Transfer Coefficient from a 500-cm3 Column Experiement

    SciTech Connect (OSTI)

    T.J. Tranter; R.D. Tillotson; T.A. Todd

    2005-04-01

    A semi-scale column test was performed using a commercial form of crystalline silicotitanate (CST) for removing radio-cesium from a surrogate acidic tank solution, which represents liquid waste stored at the Idaho National Engineering and Environmental Laboratory (INEEL). The engineered form of CST ion exchanger, known as IONSIVtmIE-911 (UOP, Mt. Laurel,NJ, USA), was tested in a 500-cm3 column to obtain a cesium breakthrough curve. The cesium exchange capacity of this column matched that obtained from previous testing with a 15-mc3 column. A numerical algorithm using implicit finite difference approximations was developed to solve the governing mass transport equations for the CST columns. An effective mass transfer coefficient was derived from solving these equations for previously reported 15 cm3 tests. The effective mass transfer coefficient was then used to predict the cesium breakthrough curve for the 500-cm3 column and compared to the experimental data reported in this paper. The calculated breakthrough curve showed excellent agreement with the data from the 500-cm3 column even though the interstitial velocity was a factor of two greater. Thus, this approach should provide a reasonable method for scale up to larger columns for treating actual tank waste.

  18. Hour of Code | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Learning Experiences School Competitions Teacher Programs Classroom Resources Undergraduates Graduates Faculty Partners News & Events About Us Staff Directory About Us Staff Directory Argonne National Laboratory Educational Programs Developing the Next Generation of Scientists & Engineers Home Learning Center Undergraduates Graduates Faculty Partners News & Events Learning Center Community Outreach Hour of Code Introduce a Girl to Engineering Science Careers in Search of Women

  19. Rube Goldberg Registration | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Registration Teacher Programs Classroom Resources Undergraduates Graduates Faculty Partners News & Events About Us Staff Directory About Us Staff Directory Argonne National Laboratory Educational Programs Developing the Next Generation of Scientists & Engineers Home Learning Center Undergraduates Graduates Faculty Partners News & Events Learning Center Community Outreach Learning Experiences School Competitions Middle School Science Bowl Middle School Electric Car Competition High

  20. Rube Goldberg Competition | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Registration Teacher Programs Classroom Resources Undergraduates Graduates Faculty Partners News & Events About Us Staff Directory About Us Staff Directory Argonne National Laboratory Educational Programs Developing the Next Generation of Scientists & Engineers Home Learning Center Undergraduates Graduates Faculty Partners News & Events Learning Center Community Outreach Learning Experiences School Competitions Middle School Science Bowl Middle School Electric Car Competition High

  1. Remediation of Uranium in the Hanford Vadose Zone Using Gas-Transported Reactants: Laboratory Scale Experiments in Support of the Deep Vadose Zone Treatability Test Plan for the Hanford Central Plateau

    SciTech Connect (OSTI)

    Szecsody, James E.; Truex, Michael J.; Zhong, Lirong; Williams, Mark D.; Resch, Charles T.; McKinley, James P.

    2010-01-04

    This laboratory-scale investigation is focused on decreasing mobility of uranium in subsurface contaminated sediments in the vadose zone by in situ geochemical manipulation at low water content. This geochemical manipulation of the sediment surface phases included reduction, pH change (acidic and alkaline), and additions of chemicals (phosphate, ferric iron) to form specific precipitates. Reactants were advected into 1-D columns packed with Hanford 200 area U-contaminated sediment as a reactive gas (for CO2, NH3, H2S, SO2), with a 0.1% water content mist (for NaOH, Fe(III), HCl, PO4) and with a 1% water content foam (for PO4). Uranium is present in the sediment in multiple phases that include (in decreasing mobility): aqueous U(VI) complexes, adsorbed U, reduced U(IV) precipitates, rind-carbonates, total carbonates, oxides, silicates, phosphates, and in vanadate minerals. Geochemical changes were evaluated in the ability to change the mixture of surface U phases to less mobile forms, as defined by a series of liquid extractions that dissolve progressively less soluble phases. Although liquid extractions provide some useful information as to the generalized uranium surface phases (and are considered operational definitions of extracted phases), positive identification (by x-ray diffraction, electron microprobe, other techniques) was also used to positively identify U phases and effects of treatment. Some of the changes in U mobility directly involve U phases, whereas other changes result in precipitate coatings on U surface phases. The long-term implication of the U surface phase changes to alter U mass mobility in the vadose zone was then investigated using simulations of 1-D infiltration and downward migration of six U phases to the water table. In terms of the short-term decrease in U mobility (in decreasing order), NH3, NaOH mist, CO2, HCl mist, and Fe(III) mist showed 20% to 35% change in U surface phases. Phosphate addition (mist or foam advected) showed inconsistent change in aqueous and adsorbed U, but significant coating (likely phosphates) on U-carbonates. The two reductive gas treatments (H2S and SO2) showed little change. For long-term decrease in U reduction, mineral phases created that had low solubility (phosphates, silicates) were desired, so NH3, phosphates (mist and foam delivered), and NaOH mist showed the greatest formation of these minerals. In addition, simulations showed the greatest decrease in U mass transport time to reach groundwater (and concentration) for these silicate/phosphate minerals. Advection of reactive gasses was the easiest to implement at the laboratory scale (and presumably field scale). Both mist and foam advection show promise and need further development, but current implementation move reactants shorter distances relative to reactive gasses. Overall, the ammonia and carbon dioxide gas had the greatest overall geochemical performance and ability to implement at field scale. Corresponding mist-delivered technologies (NaOH mist for ammonia and HCl mist for carbon dioxide) performed as well or better geochemically, but are not as easily upscaled. Phosphate delivery by mist was rated slightly higher than by foam delivery simply due to the complexity of foam injection and unknown effect of U mobility by the presence of the surfactant.

  2. Sharing Smart Grid Experiences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sharing Smart Grid Experiences through Performance Feedback March 31, 2011 DOE/NETL- DE-FE0004001 U.S. Department of Energy Office of Electricity Delivery and Energy Reliability Prepared by: National Energy Technology Laboratory Sharing Smart Grid Experiences through Performance Feedback v1.0 Page ii Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their

  3. Remote Access | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Laboratory Information Systems supports VPN for remotely accessing internal computers and network services. These are: Once connected remotely to Ames Laboratory,...

  4. Stephen Streiffer | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stephen Streiffer, Associate Lab Director Stephen Streiffer Associate Laboratory Director - Photon Sciences Stephen Streiffer is the Associate Laboratory Director for Photon...

  5. Management Council | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Illinois at Urbana-Champaign Vice Chancellor for Research Professor of Physics Web Site Harry Weerts Harry Weerts Argonne National Laboratory Interim Associate Laboratory Director...

  6. Laboratory Directed Research and Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Phone Book Jobs Laboratory Directorate - Strategic Planning Office Laboratory Directed Research and Development (LDRD) LBNL LDRD Program Guidelines LDRD FY 2017 Call for...

  7. Triangle Universities Nuclear Laboratory : 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and NSCL Robert Tribble, Brookhaven National Laboratory HIGS Program Advisory Committee (PAC) - as of March 2014 Gerald Garvey (Chair), Los Alamos National Laboratory Elizabeth...

  8. Los Alamos National Laboratory Institutes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    educational programs to provide Laboratory personnel with specific knowledge and skills that make them more effective in completing projects that meet Laboratory...

  9. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    To establish Department of Energy (DOE) requirements for laboratory directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation.

  10. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-04-30

    To establish Department of Energy (DOE) requirements for laboratory directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation

  11. Laboratory Directed Research & Development (LDRD)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Directed Research & Development National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of...

  12. Los Alamos National Laboratory attracts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Los Alamos National Laboratory Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national...

  13. Ames Laboratory | Open Energy Information

    Open Energy Info (EERE)

    Laboratory Jump to: navigation, search Name: Ames Laboratory Place: Ames, Iowa Zip: 50011-3020 Product: Research facility focused on solutions to energy-related problems....

  14. Laboratory program helps small businesses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory program helps small businesses Laboratory program helps small businesses The NMSBA allows for-profit small businesses to request technical assistance that capitalizes on...

  15. Hydrokinetic Laboratory | Open Energy Information

    Open Energy Info (EERE)

    Hydrokinetic Laboratory Jump to: navigation, search Name: Hydrokinetic Laboratory Region: United States Sector: Marine and Hydrokinetic Website: www.hklabllc.com This company is...

  16. FY 2012 Laboratory Table

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 Department of Energy FY 2012 Congressional Budget Request Laboratory Tables y Preliminary February 2012 Office of Chief Financial Officer DOE/CF-0065 Department of Energy FY 2012 Congressional Budget Request Laboratory Tables P li i Preliminary h b d i d i hi d h l l f b d h i f h The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider

  17. FY 2013 Laboratory Table

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8 Department of Energy FY 2013 Congressional Budget Request Laboratory Tables y Preliminary February 2012 Office of Chief Financial Officer DOE/CF-0078 Department of Energy FY 2013 Congressional Budget Request Laboratory Tables P li i Preliminary h b d i d i hi d h l l f b d h i f h The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider

  18. IDAHO NATIONAL LABORATORY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Idaho National Laboratory (INL) You are here: DOE-ID Home > Inside ID > Brief History Site History The Idaho National Laboratory (INL), an 890-square-mile section of desert in southeast Idaho, was established in 1949 as the National Reactor Testing Station. Initially, the missions at the INL were the development of civilian and defense nuclear reactor technologies and management of spent nuclear fuel. Fifty-two reactors—most of them first-of-a-kind—were built, including the Navy’s

  19. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pledge $2.17 million in 2015 giving campaign November 25, 2014 More than 250 nonprofits, social service providers will benefit LOS ALAMOS, N.M., Nov. 25, 2014-The work of more than 250 community and social service organizations will benefit from the more than $2.17 million pledged by Los Alamos National Laboratory employees to United Way and other nonprofits during the Laboratory's 2015 Employee Giving Campaign. "We are proud to help the many community focused non-profit organizations

  20. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    On a broad mesquite plain in central New Mexico, a small crew fits a metal cylinder into a rocket the size of a baseball bat, then slips the rocket onto guide rods on a platform. A "Los Alamos" logo on the fuselage certifies this launch as official science by the world-famous national laboratory, not a weekend outing with the kids. Bryce Tappan and a handful of scientists, engineers, and students from Los Alamos National Laboratory and New Mexico Tech stand back as another crew member

  1. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos National Laboratory Around 10 a.m. Pyongyang Time on Wednesday, January 6, 2016, seismic analysts around the world picked up something unusual-a 5.1-magnitude seismic event in the northeast corner of North Korea. Earthquakes of this size aren't common on the Korean Peninsula, which likely meant the violent shaking was caused by something else: an explosion. Enter Los Alamos National Laboratory. Los Alamos isn't just in the business of developing, testing, and maintaining explosives. A

  2. Los Alamos National Laboratory's

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos National Laboratory Los Alamos National Laboratory DE-AC52-06NA25396 Operated by Los Alamos National Security, LLC Conformed to Modification 0341 dated 02/29/2016 BASIC Contract (Official) Modifications (Official) Funding Mods Available Upon Request Conformed Contract (Unofficial) LANL Basic Contract dated 12/21/05 (pdf, 5,501KB) LANL A004 (8/11/06) (pdf, 501KB) LANL Conformed Contract (Conformed to to Modification 0341 dated 02/29/2016) LANL A008 (9/29/06) (pdf, 485KB) LANL A009

  3. Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hazardous devices teams showcase skills at Robot Rodeo June 24-27 June 18, 2014 Bomb squads compete in timed scenarios at Los Alamos National Laboratory LOS ALAMOS, N.M., June 19, 2014-Hazardous devices teams from around the Southwest will wrangle their bomb squad robots at the eighth annual Robot Rodeo beginning Tuesday, June 24 at Los Alamos National Laboratory. "The Robot Rodeo gives bomb squad teams the opportunity to practice and hone their skills in a lively but low-risk

  4. Sandia National Laboratories: Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Bioscience Computing and Information Science Electromagnetics Facilities Electromagnetic Environments Simulator (EMES) Mode Stirred Chamber Lightning Facility Electrostatic Discharge (ESD) Laboratory Other Facilities and Capabilities Programs & Capabilities Partnership Opportunities EM News & Reports Contact Information Engineering Science Geoscience Materials Science Nanodevices and Microsystems Radiation Effects and High Energy Density Science Research Facilities

  5. Capabilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Catalysis Partnerships Licensing Sponsored Research Technical Services Technologist in Residence News Press Releases Feature Stories In the News Photos Videos Ombudsman Ombudsman Argonne National Laboratory Technology Development and Commercialization About Technologies Available for Licensing Capabilities Partnerships News Capabilities Catalysis Capabilities Argonne offers a wide range of R&D capabilities that collaborators from private industry, federal agencies, and state and local

  6. Energy Systems Laboratory Groundbreaking

    ScienceCinema (OSTI)

    Hill, David; Otter, C.L.; Simpson, Mike; Rogers, J.W.;

    2013-05-28

    INL recently broke ground for a research facility that will house research programs for bioenergy, advanced battery systems, and new hybrid energy systems that integrate renewable, fossil and nuclear energy sources. Here's video from the groundbreaking ceremony for INL's new Energy Systems Laboratory. You can learn more about CAES research at http://www.facebook.com/idahonationallaboratory.

  7. Mentoring | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mentoring Blog Postdoctoral Programs Lab-Corps Program Life at Argonne Benefits Education Community Diversity Directory Argonne National Laboratory About Safety News Careers Education Community Diversity Directory Energy Environment Security User Facilities Science Work with Argonne Careers Apply for a Job External Applicants Internal Applicants Postdoctoral Applicants Fellowships Students Faculty Programs Why Argonne Your Career Leadership Development Mentoring Mentoring Blog Postdoctoral

  8. National Laboratory Contacts

    Broader source: Energy.gov [DOE]

    Several of the U.S. Department of Energy (DOE) national laboratories host multidisciplinary transportation research centers. A wide-range of cutting-edge transportation research occurs at these facilities, funded by both DOE and cooperative research and development agreements (CRADAs) with industry

  9. Laboratory testing for enhanced undersea cable survivability

    SciTech Connect (OSTI)

    Stange, W.F.

    1983-01-01

    Examples of useful testing procedures with summaries of test results gleaned from years of cable testing experience illustrate how laboratory testing has identified failure modes, uncovered design deficiencies, characterized performance and supported system design for improved at-sea survivability. Repeated test results give insight into the performance capabilities and limitations of contemporary cables with metal and aramid strength members and demonstrate that successful at-sea performance invariably depends upon the effective mating of cable, attachment hardware and handling equipment. Analysis of the potentially high cost of cable failure at sea clearly demonstrates that it pays to test in the laboratory.

  10. Los Alamos National Laboratory A National Science Laboratory (Conference) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Los Alamos National Laboratory A National Science Laboratory Citation Details In-Document Search Title: Los Alamos National Laboratory A National Science Laboratory Our mission as a DOE national security science laboratory is to develop and apply science, technology, and engineering solutions that: (1) Ensure the safety, security, and reliability of the US nuclear deterrent; (2) Protect against the nuclear threat; and (3) Solve Energy Security and other emerging national

  11. Booster Neutrino Experiment - Introduction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    close The MiniBooNE Experiment next The Oscillating Neutrino The first phase of the Booster Neutrino Experiment (BooNE) at the Fermi National Accelerator Laboratory is a smaller version of the final planned experiment, and has been dubbed "MiniBooNE." The physicists working on MiniBooNE are trying to find out more about the fundamental properties of neutrinos. But, what exactly is a neutrino? To answer that question, we need to look at what's called the Standard Model of particles and

  12. Sandia National Laboratories: Internships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to gain experience working at a world class pulsed power facility in the areas of radiation effects sciences, pulsed power engineering, and high energy density sciences. ...

  13. Biology Chemistry & Material Science Laboratory 2 | Sample Preparation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Cynthia Patty | (650) 926-3925 Biology Chemistry & Material Science Laboratory 2 Inventory The BioChemMat Lab 2 (BCM 2) at SSRL is dedicated to researcher experiments, including...

  14. Biology Chemistry & Material Science Laboratory 1 | Sample Preparation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Cynthia Patty | (650) 926-3925 Biology Chemistry & Material Science Laboratory 1 Inventory The BioChemMat Lab 1 at SSRL is dedicated to researcher experiments, including x-ray...

  15. Anthony Cugini Named Director of DOE's National Energy Technology Laboratory

    Broader source: Energy.gov [DOE]

    Anthony V. Cugini, a senior scientist with a range of research experience and interests over a wide cross section of energy and environmental technologies, has been named director of the U.S. Department of Energy's National Energy Technology Laboratory.

  16. Employment Opportunities | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Employment Opportunities Thank you for your interest in working for Ames Laboratory. Ames Laboratory is a Department of Energy national laboratory operated by Iowa State University. Ames Laboratory employees are Iowa State University employees, and employment opportunities are posted and filled through the Iowa State University recruitment process. Therefore, employment opportunities can be found on the Iowa State University job opportunities page.

  17. The Department of Energy's National Laboratories

    Office of Scientific and Technical Information (OSTI)

    THE DEPARTMENT OF ENERGY'S National Laboratories All National Laboratories Achievements History Argonne National Laboratory (ANL) Achievements History Brookhaven National ...

  18. Smart Grid Integration Laboratory

    SciTech Connect (OSTI)

    Troxell, Wade

    2011-12-22

    The initial federal funding for the Colorado State University Smart Grid Integration Laboratory is through a Congressionally Directed Project (CDP), DE-OE0000070 Smart Grid Integration Laboratory. The original program requested in three one-year increments for staff acquisition, curriculum development, and instrumentation all which will benefit the Laboratory. This report focuses on the initial phase of staff acquisition which was directed and administered by DOE NETL/ West Virginia under Project Officer Tom George. Using this CDP funding, we have developed the leadership and intellectual capacity for the SGIC. This was accomplished by investing (hiring) a core team of Smart Grid Systems engineering faculty focused on education, research, and innovation of a secure and smart grid infrastructure. The Smart Grid Integration Laboratory will be housed with the separately funded Integrid Laboratory as part of CSU's overall Smart Grid Integration Center (SGIC). The period of performance of this grant was 10/1/2009 to 9/30/2011 which included one no cost extension due to time delays in faculty hiring. The Smart Grid Integration Laboratory's focus is to build foundations to help graduate and undergraduates acquire systems engineering knowledge; conduct innovative research; and team externally with grid smart organizations. Using the results of the separately funded Smart Grid Workforce Education Workshop (May 2009) sponsored by the City of Fort Collins, Northern Colorado Clean Energy Cluster, Colorado State University Continuing Education, Spirae, and Siemens has been used to guide the hiring of faculty, program curriculum and education plan. This project develops faculty leaders with the intellectual capacity to inspire its students to become leaders that substantially contribute to the development and maintenance of Smart Grid infrastructure through topics such as: (1) Distributed energy systems modeling and control; (2) Energy and power conversion; (3) Simulation of electrical power distribution system that integrates significant quantities of renewable and distributed energy resources; (4) System dynamic modeling that considers end-user behavior, economics, security and regulatory frameworks; (5) Best practices for energy management IT control solutions for effective distributed energy integration (including security with the underlying physical power systems); (6) Experimental verification of effects of various arrangements of renewable generation, distributed generation and user load types along with conventional generation and transmission. Understanding the core technologies for enabling them to be used in an integrated fashion within a distribution network remains is a benefit to the future energy paradigm and future and present energy engineers.

  19. Los Alamos names Laboratory Fellows

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Fellows for 2015 January 27, 2016 Honorees span sciences in materials, weapons physics and complex systems LOS ALAMOS, N.M., Jan. 27, 2016-Four Los Alamos National Laboratory scientists have been selected as 2015 Laboratory Fellows. The honorees this year are Michael Bernardin, Avadh Saxena, Carlos Tome and Piotr Zelenay. "The Laboratory Fellows Organization recognizes researchers for innovative scientific and technical advances in their respective fields," said Laboratory

  20. New Brunswick Laboratory | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Brunswick Laboratory New Brunswick Laboratory New Brunswick Laboratory BLDG 350 | Photo courtesy of Michael Kappel, August 29, 2009 New Brunswick Laboratory BLDG 350 | Photo ...

  1. National Laboratory Contacts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory Contacts National Laboratory Contacts The Geothermal Technologies Office works closely with several DOE national laboratories in managing and contributing to research and development projects. Below are the primary contacts at these laboratories. Laboratory Name Idaho National Laboratory Greg Mines, Lead Manager Lawrence Berkeley National Laboratory Mack Kennedy, Lead Scientist Lawrence Livermore National Laboratory Jeff Roberts, Lead Scientist National Renewable Energy Laboratory Tom

  2. Remote Sensing Laboratory - RSL

    SciTech Connect (OSTI)

    2014-11-06

    One of the primary resources supporting homeland security is the Remote Sensing Laboratory, or RSL. The Laboratory creates advanced technologies for emergency response operations, radiological incident response, and other remote sensing activities. RSL emergency response teams are on call 24-hours a day, and maintain the capability to deploy domestically and internationally in response to threats involving the loss, theft, or release of nuclear or radioactive material. Such incidents might include Nuclear Power Plant accidents, terrorist incidents involving nuclear or radiological materials, NASA launches, and transportation accidents involving nuclear materials. Working with the US Department of Homeland Security, RSL personnel equip, maintain, and conduct training on the mobile detection deployment unit, to provide nuclear radiological security at major national events such as the super bowl, the Indianapolis 500, New Year's Eve celebrations, presidential inaugurations, international meetings and conferences, just about any event where large numbers of people will gather.

  3. ambrose | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Light-Duty Vehicles T O F E N E R G Y D E P A R T M E N U E N I T E D S T A T S O F A E R I C A M SUMMARY OF RESULTS FROM THE NATIONAL RENEWABLE ENERGY LABORATORY'S VEHICLE EVALUATION DATA COLLECTION EFFORTS Alternative Fuel Light-Duty Vehicles SUMMARY OF RESULTS FROM THE NATIONAL RENEWABLE ENERGY LABORATORY'S VEHICLE EVALUATION DATA COLLECTION EFFORTS PEG WHALEN KENNETH KELLY ROB MOTTA JOHN BRODERICK MAY 1996 N T Y A U E O F E N E R G D E P A R T M E N I T E D S T A T S O F A E R I C M Summary

  4. Remote Sensing Laboratory - RSL

    ScienceCinema (OSTI)

    None

    2015-01-09

    One of the primary resources supporting homeland security is the Remote Sensing Laboratory, or RSL. The Laboratory creates advanced technologies for emergency response operations, radiological incident response, and other remote sensing activities. RSL emergency response teams are on call 24-hours a day, and maintain the capability to deploy domestically and internationally in response to threats involving the loss, theft, or release of nuclear or radioactive material. Such incidents might include Nuclear Power Plant accidents, terrorist incidents involving nuclear or radiological materials, NASA launches, and transportation accidents involving nuclear materials. Working with the US Department of Homeland Security, RSL personnel equip, maintain, and conduct training on the mobile detection deployment unit, to provide nuclear radiological security at major national events such as the super bowl, the Indianapolis 500, New Year's Eve celebrations, presidential inaugurations, international meetings and conferences, just about any event where large numbers of people will gather.

  5. Transportation | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation From modeling and simulation programs to advanced electric powertrains, engines, biofuels, lubricants, and batteries, Argonne's transportation research is vital to the development of next-generation vehicles. Revolutionary advances in transportation are critical to reducing our nation's petroleum consumption and the environmental impact of our vehicles. Some of the most exciting new vehicle technologies are being ushered along by research conducted at Argonne National Laboratory.

  6. Transportation | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Influencing the future of vehicles, fuels Argonne's transportation research efforts bring together scientists and engineers from many disciplines to find cost-effective solutions to critical issues like foreign-oil dependency and greenhouse gas emissions. As one of the U.S. Department of Energy's lead laboratories for research in hybrid powertrains, batteries, and fuel-efficient technologies, Argonne's transportation program is critical to advancing the development of

  7. Operations | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operations Welcome to the Ames Laboratory and the operations pages of our website. Our website has recently been revised starting with the front page, the science division pages and a few pages needed for public interface. If you find that the pages you need are not available please contact the Manager in charge (i.e., Purchasing, Sponsored Programs, etc.) and we will get you the information you need.

  8. Sandia National Laboratories: Agreements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Agreements Agreements We have transferred technology to the commercial sector for more than three decades, and make it possible for partners to access our world-class science, people, and infrastructure. Sandia National Laboratories has a robust technology transfer mission that is facilitated by several types of agreements. In compliance with the various statutory and administrative requirements, Sandia provides its expertise, technology and capabilities for benefit of the United States economy

  9. Sandia National Laboratories: Strategy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Top Strategy Vision, Mission, and Values Strategic Framework Strategic Objectives and Crosscuts About Strategy Scientist Welcome to our FY16-FY20 Strategic Plan, which both reflects our continued dedication to the work we do and reinforces the importance of the integrated Laboratories' strategic framework to our future. This plan is the result of the leadership team's journey over the past few years in response to the needs of our nation. In an external environment that continues to change,

  10. Sandia National Laboratories conducts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    conducts research and development (R&D) in solar power, including photovoltaics and concentrating solar power, to strengthen the U.S. solar industry and improve the manufacturability, reliability, and cost competitiveness of solar energy technologies and systems. Researchers at Sandia partner with the U.S. Department of Energy (DOE) and other government agencies, industry, academia, and other laboratories to accelerate development and acceptance of current and emerging solar power

  11. Argonne National Laboratory

    Office of Environmental Management (EM)

    Are You Keeping Warm This Winter? Are You Keeping Warm This Winter? January 23, 2013 - 4:33pm Addthis An efficient heater can save money and energy while keeping you warmer. | Photo by Dennis Schroeder, NREL 20288. An efficient heater can save money and energy while keeping you warmer. | Photo by Dennis Schroeder, NREL 20288. Elizabeth Spencer Communicator, National Renewable Energy Laboratory How can I participate? Get an energy audit and learn about your heating options to warm your home while

  12. besser | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    besser Ames Laboratory Profile Matthew Besser Asst Scientist IV Division of Materials Science & Engineering 121 Metals Development Phone Number: 515-294-5236 Email Address: besser@ameslab.gov Assistant Scientist and Materials Preparation Center Director Publications 2013 Calvo-Dahlborg, M.; Popel, P.S.; Kramer, M.J.; Besser, M.; Morris, J.R.; Dahlborg, U. Superheat-dependent microstructure of molten Al-Si alloys of different compositions studied by small angle neutron scattering. Journal of

  13. goldston | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gms NNSA Co-Hosts Nuclear Security Summit Workshop on Maritime Security with UK WASHINGTON - This week, the Department of Energy's National Nuclear Security Administration (DOE/NNSA) and the U.K. Department of Energy and Climate Change concluded a workshop at Wilton Park, United Kingdom, on the growing challenge of securing the global maritime supply chain. In...

    goldston Ames Laboratory Profile Jennifer Goldston Grad Asst-RA Chemical & Biological Sciences 213 Spedding Phone Number:

  14. Research | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Research Proteins are the molecular machines of all cells, and as with any machine, it is impossible to understand how a protein works without knowing what it looks like - that is, imaging its three-dimensional structure. The Advanced Protein Characterization Facility (APCF) will help us to "see" proteins more quickly and with higher proficiency than before. The newly designed and optimized space the APCF provides allows researchers to establish a highly specialized laboratory

  15. National Energy Technology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory the ENERGY lab Wellbore Integrity Assurance with NETL's Safe-Cementing Research CONTENTS 04 06 08 10 12 14 A View from the Top Federal Research Capabilities Researchers Projects Contact Us Wellbore cement integrity is paramount to safe, successful oil and natural gas drilling. Cement acts as the primary barrier between the wellbore and the environment. An unstable cement can compromise wellbore control, and research indicates that poor cement integrity is a primary factor contributing

  16. National Renewable Energy Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Because original equipment manufacturer (OEM) vehicles designed to run on compressed natural gas (CNG) and liquefied petroleum gas (LPG) have only been available in limited models in past years, many fleets have had to rely on conversions as a source for alternative fuel vehicles (AFVs). The Federal fleet is no different-so far it has converted approximately 900 vehicles to CNG or LPG, providing the National Renewable Energy Laboratory (NREL) with an opportunity to test a variety of conversion

  17. News | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BROCHURES & NEWSLETTERS CNM Overview Brochure CNM Fact Sheet News Research Highlights Researchers from Argonne National Laboratory developed a first-principles-based, variable-charge force field that has shown to accurately predict bulk and nanoscale structural and thermodynamic properties of IrO2. Catalytic properties pertaining to the oxygen reduction reaction, which drives water-splitting for the production of hydrogen fuel, were found to depend on the coordination and charge transfer at

  18. Sandia National Laboratories Problem

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia National Laboratories Problem Natural disasters such as Hurricane Katrina in New Orleans and the tsunami in Japan in 2011 create emergency situations that must be dealt with quickly and effectively in order to minimize injury and loss of life. Simulating such events before they occur can help emergency responders fine-tune their preparations. To create the most accurate modeling scenarios, exercise planners need to know critical details of the event, such as infrastructure damage and

  19. Research | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Delivering environmentally sound solutions to our greatest challenges in energy access and global security Argonne's Energy and Global Security (EGS) directorate is taking on unprecedented challenges as it addresses domestic and global sustainable energy and security. Leveraging collaborations with other researchers at Argonne as well as with experts from industry, academia and other government laboratories, the EGS directorate's scientists and engineers deliver innovative research and

  20. Publications | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inquiries Publications Below is a bibliography of publications that cite the MPC (or more generically, the Ames Laboratory) as the source for the pure metals, alloys, or single crystals used in said publication. This list is non-exhaustive. If you have a paper in which such a citation is made please send us the citation. Expectations for citation or acknowledgement: MPC operations are funded by the US DOE Office of Basic Energy Sciences. Acknowledgement of the use MPC facilities/services is

  1. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    scientists will codirect $14.5 million National Center for Systems Biology July 28, 2009 Lab contributes computer modeling, antibody engineering capabilities Los Alamos, New Mexico, July 28, 2009- Los Alamos National Laboratory scientists will codirect a new National Center for Systems Biology located at the University of New Mexico in Albuquerque. The new Spatiotemporal Modeling Center (STMC) is funded by a $14.5 million, five- year grant from the National Institute for General Medical Sciences

  2. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4th Hazmat Challenge July 22, 2010 Competition tests skills of hazardous materials response teams LOS ALAMOS, New Mexico, July 22, 2010-Fourteen hazardous materials response teams from New Mexico and Oklahoma will test their skills at the 14th annual Hazmat Challenge July 27-30 sponsored by Los Alamos National Laboratory. The challenge provides hazardous materials responders the opportunity to network and learn new techniques under realistic conditions in a safe environment. Held at the

  3. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7th annual Hazmat Challenge July 23, 2013 Competition tests skills of hazardous materials response teams from three states Editor's Note: News media representatives interested in attending the Hazmat Challenge can contact the Laboratory's Communications Office at 505-667-7000 to coordinate travel to the site. LOS ALAMOS, N.M., July 23, 2013-Twelve hazardous materials response teams from New Mexico, Missouri and Oklahoma will test their skills at the 17th annual Hazmat Challenge July 30 through

  4. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    describes storm damage to environmental monitoring stations, canyons September 18, 2013 Stations supporting Santa Fe water utility returned to service LOS ALAMOS, N.M., Sept. 20, 2013 - Hours after a disaster declaration by Los Alamos County, Los Alamos National Laboratory officials on Friday described "millions" of dollars in damage to environmental monitoring stations, monitoring wells, access roads and badly eroded canyon bottoms. - 2 - "Last week we experienced an epic

  5. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    September 23, 2013 Value of up to $400 million over five years LOS ALAMOS, N.M., Sept. 23, 2013-Los Alamos National Laboratory has awarded master task order agreements to three small businesses for environmental support services work worth up to $400 million within a five-year period. The businesses were selected based on a technical proficiency and lowest price basis. The companies-Terranear PMC, Navarro Research and Engineering, Inc. and Portage, Inc.-were chosen from 11 prospective bidders.

  6. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    second Presidential Award as a climate champion December 8, 2015 LOS ALAMOS, N.M., Dec. 8, 2015-In recognition of their proactive commitment to protecting the environment of Northern New Mexico from the potential impacts of a changing climate, a consortium of Los Alamos National Laboratory's federal and contractor staff received the GreenGov Presidential Award on Nov. 30. "We recognized the need for a different approach after a devastating wildfire and a series of impactful environmental

  7. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    July 2015 Films of the U.S. atmospheric nuclear tests provide breathtaking reminders of the power of nuclear weapons. Now a new project is salvaging and mining these deteriorating films for fresh-and crucial- scientific data about the weapons' yields. To understand why Lawrence Livermore National Laboratory nuclear weapons physicist Greg Spriggs is spearheading, in partnership with Los Alamos, an urgent search-and-rescue mission to salvage several thousand films documenting U.S. atmospheric

  8. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    For Lawrence Livermore National Laboratory's weapon-physicist Greg Spriggs, leader of the Film Scanning and Reanalysis Project, the work has become a search-and-rescue mission. He has to find thousands of scientific test films and digitize them before they deteriorate beyond usefulness. Lost and Found Old and imprecise records told Spriggs how many original films there were, but not where they were. In fact, they were stored in several different archives. He has now found most of them at

  9. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ii Judicial Science School * Los Alamos National Laboratory * UCSD Jacobs School of Engineering Foreword Scientific evidence is introduced in our courts with increasing frequency and greater complexity, which requires judges to have a better understanding of science. Preparing judges to competently rule on the admissibility of scientific evidence represents a new challenge in judicial education. The role of uncertainty in science requires special attention. What better way to educate judges

  10. Videos | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Press Releases Feature Stories Science Highlights In the News Fact Sheets and Other Publications Photos Videos Events About Us Intranet About Us Intranet Argonne National Laboratory Computing, Environment and Life Sciences Organizations Facilities and Institutes News Events News Press Releases Feature Stories Science Highlights In the News Fact Sheets and Other Publications Photos Videos Videos Browse By - Any - General Argonne Information -Awards -Honors Energy -Energy efficiency --Vehicles

  11. Students | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Apply for a Job Connect with Argonne LinkedIn Facebook Twitter YouTube Google+ More Social Media » Students Interested in exploring what it would be like to work at a national laboratory? If you are a student in science, technology, engineering or math, you can find out more at Argonne. Through summer and school semester research opportunities, you can discover what being an innovative, groundbreaking scientist or engineer means. Learn More Pre-College Research Participation Program Internship

  12. Contract | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne's Prime Contract is the contract between the U.S. Department of Energy and UChicago Argonne, LLC that sets out the terms and conditions for the operation of Argonne National Laboratory. Please direct general comments and questions about the Argonne Prime Contract to William Luck. Navigation Tips Listed below are tips on navigating through the Argonne Prime Contract. The navigation menu contains the currently available options. Select the main Argonne Prime Contract at any time to return

  13. Awards | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Awards Each year, Argonne National Laboratory and many of its world-class scientists and engineers are recognized for their outstanding talents and the innovative technologies they develop with their research teams and in association with industry partners. Argonne researchers have received or been recognized by: R&D 100 Awards: Each year, R&D Magazine recognizes the 100 most technologically significant new products of the last year. The competition has two purposes: to recognize

  14. Theses - Publications - Center for Plasma in the Laboratory and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Astrophysics - UW Madison Physics Department Theses UW Madison Center for Plasma in the Laboratory and Astrophysics Publications: Theses CPLA Home - Experiments Madison Symmetric Torus Madsion Dynamo Experiment Rotating Wall Machine Plasma-Couette Experiment Madison Plasma Dynamo Experiment - Theory Groups MHD Turbulence Transport in Fusion Devices Plasma Astrophysics RFP Theory - Multi-Institutional Centers Center for Magnetic Self Organization Center for Theory and Computation Center for

  15. Laboratory Science Highlights

    Office of Science (SC) Website

    In this experiment, a 5.5-GeV beam of electrons was directed onto a target of liquid hydrogen, which has a single proton in its nucleus. The researchers collected data on...

  16. Ames Laboratory Purchase Card Policy & Procedure | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Laboratory Purchase Card Policy & Procedure Version Number: 3 Document Number: Policy 48300.006 Effective Date: 04/2016 File (public): PDF icon Policy 48300.006 Rev 3 Ames Laboratory Purchase Card Policy & Procedure

  17. Sandia National Laboratories: News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Detecting biothreat agents Likely applications in emergency rooms. Detecting biothreat agents Taking tech to the private sector Bringing lab experience to world of business. Bringing lab experience to world of business World's largest fiber optic network New network saves energy, money. World's largest fiber optic network Improving high-temperature electronics An alloy suitable for extreme environments. Improving high-temperature electronics Featured Images Featured Video Featured

  18. Competitions | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compensation Whether you're a new college graduate, someone with industry experience looking to move into a Federal job or a current government employee looking for a new adventure, NNSA can offer you a competitive salary and exciting career opportunities. Whether you're a new college graduate, someone with industry experience looking to move into a Federal job or a current government employee looking for a new adventure, NNSA can offer you a competitive salary and exciting career opportunities.

  19. Sandia National Laboratories: About Sandia: Leadership: Deputy Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Director and Executive Vice President, National Security Programs: Stephen Rottler Stephen Rottler Deputy Laboratories Director and Executive Vice President, National Security Programs Stephen Rottler J. Stephen (Steve) Rottler is the Deputy Laboratories Director and Executive Vice President, National Security Programs at Sandia National Laboratories. In this role, he leads the Laboratories' Nuclear Weapon Program Management Unit and is the Senior Intelligence Executive with responsibility

  20. Ames Laboratory Conflict of Interest Policy | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Laboratory Conflict of Interest Policy The Ames Laboratory has developed a conflict of interest and consulting policy for Laboratory employees. The Policy is more stringent than Iowa State University's (Laboratory Contractor) policy as a result of integrating requirements stipulated in the University's contract with the Department of Energy (DE-AC02-07CH11358) with the University's conflict of interest policies. Please take time to review the policy to make sure you are complying with its