National Library of Energy BETA

Sample records for laboratory research design

  1. Research | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Research Proteins are the molecular machines of all cells, and as with any machine, it is impossible to understand how a protein works without knowing what it looks like - that is, imaging its three-dimensional structure. The Advanced Protein Characterization Facility (APCF) will help us to "see" proteins more quickly and with higher proficiency than before. The newly designed and optimized space the APCF provides allows researchers to establish a highly specialized laboratory

  2. NREL: Research Facilities - Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In the lab, researchers study plant structures from the tissue scale to the molecular ... Photobiological Laboratory Researchers use this lab for enzyme engineering to block the ...

  3. National Laboratory Photovoltaics Research

    Broader source: Energy.gov [DOE]

    DOE supports photovoltaic (PV) research and development and facilities at its national laboratories to accelerate progress toward achieving the SunShot Initiative's technological and economic...

  4. Laboratory Graduate Research Appointment | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Graduate Research Program Perform your thesis research among the best and the brightest at Argonne National Laboratory. About the Program Laboratory Graduate Research (Lab Grad) appointments are available to qualified U.S. university graduate students who wish to carry out their thesis research at Argonne National Laboratory under co-sponsorship of an Argonne staff member and a faculty member. The university sets the academic standard and awards the degree. The participation of the

  5. Research | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Delivering environmentally sound solutions to our greatest challenges in energy access and global security Argonne's Energy and Global Security (EGS) directorate is taking on unprecedented challenges as it addresses domestic and global sustainable energy and security. Leveraging collaborations with other researchers at Argonne as well as with experts from industry, academia and other government laboratories, the EGS directorate's scientists and engineers deliver innovative research and

  6. Laboratory Directed Research and Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Phone Book Jobs Laboratory Directorate - Strategic Planning Office Laboratory Directed Research and Development (LDRD) LBNL LDRD Program Guidelines LDRD FY 2017 Call for...

  7. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    To establish Department of Energy (DOE) requirements for laboratory directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation.

  8. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-04-30

    To establish Department of Energy (DOE) requirements for laboratory directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation

  9. Laboratory Directed Research & Development (LDRD)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Directed Research & Development National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of...

  10. Sandia National Laboratories: Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Bioscience Investigating cellular and biomolecular processes for bioenergy and biodefense. Computing and information science Developing essential tools for solving the world's most difficult problems. Engineering science Applying predictive simulation to engineering design and decision-making. Materials science Leading the nation in the knowledge of materials engineering, processing, and aging. Nanodevices and microsystems Developing and delivering custom microsystems and national

  11. DOE - Office of Legacy Management -- Ames Laboratory Research...

    Office of Legacy Management (LM)

    Ames Laboratory Research Reactor Facility - IA 03 FUSRAP Considered Sites Site: Ames Laboratory Research Reactor Facility (IA.03) Designated Name: Alternate Name: Location:...

  12. Contract Research | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contract Research Contract Research The Ames Laboratory can enter into contractual agreements with private companies and institutions for research and expertise that cannot be found within the private sector. The laboratory, on a best effort basis, can provide services and research abilities related to the Laboratory's mission and unique capabilities. These contractual arrangements are often parts of larger federal programs, such as the federal Small Business Innovation Research (SBIR) and

  13. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers: Advanced Power Sources Laboratory Technology Deployment Centers Technology Deployment Centers Ion Beam Lab Advanced Power Sources Laboratory Engineering Sciences Experimental Facilities (ESEF) Explosive Components Facility Materials Science and Engineering Center Pulsed Power and Systems Validation Facility Radiation Detection Materials Characterization Laboratory Shock Thermodynamic Applied Research Facility (STAR) Weapon and Force Protection Center Design, Evaluation and Test

  14. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-10-22

    To establish Department of Energy (DOE) requirements for laboratory directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation. Supersedes DOE O 413.2B.

  15. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-01-08

    To establish the Department's, including the NNSA's, requirements for laboratory-directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation. Cancels DOE O 413.2. Canceled by DOE O 413.2B.

  16. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-04-19

    The Order establishes DOE requirements and responsibilities for laboratory directed research and development while providing laboratory directors with broad flexibility for program implementation. Cancels DOE O 413.2A. Admin Chg 1, 1-31-11.

  17. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers: Design, Evaluation and Test Technology Facility Technology Deployment Centers Technology Deployment Centers Ion Beam Lab Advanced Power Sources Laboratory Engineering Sciences Experimental Facilities (ESEF) Explosive Components Facility Materials Science and Engineering Center Pulsed Power and Systems Validation Facility Radiation Detection Materials Characterization Laboratory Shock Thermodynamic Applied Research Facility (STAR) Weapon and Force Protection Center Design, Evaluation

  18. Research | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    combined with the laboratory's state-of-the-art facilities has produced a wide variety of game-changing discoveries and inventions in fields as diverse as energy storage and...

  19. Transport Research Laboratory | Open Energy Information

    Open Energy Info (EERE)

    Research Laboratory Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Transport Research Laboratory AgencyCompany Organization: Transport Research Laboratory Focus Area:...

  20. Research | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Division of Chemical and Biological Sciences - This Division develops and applies theoretical, computational and experimental methods to the study of surface reaction phenomena, cluster science and nucleation, biological processes and catalysis. World-leading research is conducted at the interface between homogenous and heterogenous catalysis. This research has led to improved processes for biodiesel production. New characterization techniques and theoretical methods to enable improved

  1. Research | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Electronic & Magnetic Materials & Devices NanoBio Interfaces Nanofabrication & Devices Nanophotonics Theory & Modeling X-Ray Microscopy Electron Microscopy Center Related...

  2. Research | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Division focus on research that addresses grand challenges in nanoscience and nanotechnology and advances the division's user mission. Further, we are exploring ways to tailor...

  3. Research | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne in the marketplace: Microchannel plates with ALD Pixelligent Technologies granted innovation research award by Dept. of Energy ARPA-E awards IIT-Argonne team 3.4 million ...

  4. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers: Explosive Components Facility Technology Deployment Centers Technology Deployment Centers Ion Beam Lab Advanced Power Sources Laboratory Engineering Sciences Experimental Facilities (ESEF) Explosive Components Facility Materials Science and Engineering Center Pulsed Power and Systems Validation Facility Radiation Detection Materials Characterization Laboratory Shock Thermodynamic Applied Research Facility (STAR) Weapon and Force Protection Center Design, Evaluation and Test

  5. Sandia Energy - Laboratory- Directed Research and Development...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory- Directed Research and Development (LDRD) Home Secure and Sustainable Energy Future Mission Laboratory- Directed Research and Development (LDRD) Laboratory- Directed...

  6. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-04-19

    The order establishes DOE requirements for laboratory directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation. Cancels DOE O 413.3A. Admin Chg 1, dated 1-31-11, cancels DOE O 413.2B. Certified 7-14-2011.

  7. Photobiology Research Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-06-01

    This fact sheet provides information about Photobiology Research Laboratory capabilities and applications at NREL. The photobiology group's research is in four main areas: (1) Comprehensive studies of fuel-producing photosynthetic, fermentative, and chemolithotrophic model microorganisms; (2) Characterization and engineering of redox enzymes and proteins for fuel production; (3) Genetic and pathway engineering of model organisms to improve production of hydrogen and hydrocarbon fuels; and (4) Studies of nanosystems using biological and non-biological materials in hybrid generation. NREL's photobiology research capabilities include: (1) Controlled and automated photobioreactors and fermenters for growing microorganisms under a variety of environmental conditions; (2) High-and medium-throughput screening of H{sub 2}-producing organisms; (3) Homologous and heterologous expression, purification, and biochemical/biophysical characterization of redox enzymes and proteins; (4) Qualitative and quantitative analyses of gases, metabolites, carbohydrates, lipids, and proteins; (5) Genetic and pathway engineering and development of novel genetic toolboxes; and (6) Design and spectroscopic characterization of enzyme-based biofuel cells and energy conversion nanodevices.

  8. Visual Design Group | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Visual Design Group Ames Laboratory Logos You are here Home Visual Design Group Graphics Services supports the design, printing and production needs of the Ames Laboratory. For...

  9. New Multijunction Design Leads to Ultra-Efficient Solar Cell; Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-09-01

    NREL has demonstrated a 45.7% conversion efficiency for a four-junction solar cell at 234 suns concentration. This achievement represents one of the highest photovoltaic research cell efficiencies ever achieved across all types of solar cells. NREL's new solar cell, which is designed for operation in a concentrator photovoltaic (CPV) system where it can receive more than 1,000 suns of concentrated sunlight, greatly improves earlier designs by adding an additional high quality absorber layer to achieve an ultra-high efficiency.

  10. Laboratory directed research and development

    SciTech Connect (OSTI)

    Not Available

    1991-11-15

    The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory's R D capabilities, and further the development of its strategic initiatives. Among the aims of the projects supported by the Program are establishment of engineering proof-of-principle''; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these project are closely associated with major strategic thrusts of the Laboratory as described in Argonne's Five Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne. Areas of emphasis are (1) advanced accelerator and detector technology, (2) x-ray techniques in biological and physical sciences, (3) advanced reactor technology, (4) materials science, computational science, biological sciences and environmental sciences. Individual reports summarizing the purpose, approach, and results of projects are presented.

  11. Sponsored Research | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sponsored Research Argonne performs a wide range of collaborative work with industry, small business, universities, and state, local, and federal government agencies. The Sponsored Research Office within the Technology Development & Commercialization division at the U.S. Department of Energy's (DOE's) Argonne National Laboratory plays a key role in identifying and structuring the appropriate process and agreement tools that allow Argonne to work with our partners and sponsors. Argonne

  12. Naval Research Laboratory Technology Marketing Summaries - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Naval Research Laboratory Technology Marketing Summaries Here you'll find marketing summaries for technologies available for licensing from the Naval Research Laboratory (NRL). The...

  13. Research Laboratory Experiments with Energy Efficiency Upgrades...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research Laboratory Experiments with Energy Efficiency Upgrades Research Laboratory Experiments with Energy Efficiency Upgrades August 30, 2012 - 11:52am Addthis Energy efficiency ...

  14. National Laboratory Research and Development Funding Opportunities

    Broader source: Energy.gov [DOE]

    Through the National Laboratory Research and Development program, DOE supports research and development and core capabilities at its national laboratories to accelerate progress toward achieving...

  15. Laboratory Directed Research and Development - DOE Directives...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2C, Laboratory Directed Research and Development by Russell Ames Functional areas: Energy Research & Technology To establish Department of Energy (DOE) requirements for laboratory...

  16. Alden Research Laboratory, Inc | Open Energy Information

    Open Energy Info (EERE)

    Research Laboratory, Inc Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name Alden Research Laboratory, Inc. Address 30 Shrewsbury Street Place Holden,...

  17. Argonne Researchers | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Researchers Name Topic - Any - General Argonne Information -Awards -Honors Energy -Energy efficiency --Vehicles ---Alternative fuels ---Automotive engineering ---Biofuels ---Diesel ---Electric drive technology ---Fuel economy ---Fuel injection ---Heavy-duty vehicles ---Hybrid & electric vehicles ---Hydrogen & fuel cells ---Internal combustion ---Maglev systems ---Powertrain research ---Vehicle testing --Building design ---Construction ---Industrial heating & cooling

  18. Cyber Engineering Research Laboratory (CERL)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering Research Laboratory (CERL) - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management

  19. National Renewable Energy Laboratory Report Identifies Research Needed to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Address Power Market Design Challenges | Department of Energy Renewable Energy Laboratory Report Identifies Research Needed to Address Power Market Design Challenges National Renewable Energy Laboratory Report Identifies Research Needed to Address Power Market Design Challenges September 12, 2014 - 12:25pm Addthis A new report by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) identifies research opportunities to improve the ways in which wholesale electricity

  20. Reclassification of the Tritium Research Laboratory

    SciTech Connect (OSTI)

    Johnson, A.J.

    1997-01-01

    This document is a collection of the required actions that were taken to reclassify Building 968, the Tritium Research Laboratory, at Sandia National Laboratories/California.

  1. Researcher, Sandia National Laboratories | National Nuclear Security...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories Award: Fellow of the Institute of Electrical & Electronics Engineers (IEEE) Profile: Paul Dodd, a Sandia National Laboratories researcher, has been named a Fellow...

  2. Stirling engine research at Argonne National Laboratory

    SciTech Connect (OSTI)

    Holtz, R.E.; Daley, J.G.; Roach, P.D.

    1986-06-01

    Stirling engine research at Argonne National Laboratory has been focused at (1) development of mathematical models and analytical tools for predicting component and engine performance, and (2) experimental research into fundamental heat transfer and fluid flow phenomena occurring in Stirling cycle devices. A result of the analytical effort has been the formation of a computer library specifically for Stirling engine researchers and developers. The library contains properties of structural materials commonly used, thermophysical properties of several working fluids, correlations for heat transfer calculations and general specifications of mechanical arrangements (including various drive mechanisms) that can be utilized to model a particular engine. The library also contains alternative modules to perform analysis at different levels of sophistication, including design optimization. A reversing flow heat transfer facility is operating at Argonne to provide data at prototypic Stirling engine operating conditions under controlled laboratory conditions. This information is needed to validate analytical models.

  3. Researcher, Los Alamos National Laboratory - Applied Physics...

    National Nuclear Security Administration (NNSA)

    Applied Physics Division | National Nuclear Security Administration Facebook Twitter ... Researcher, Los Alamos National Laboratory - Applied Physics Division Stephen Becker ...

  4. National Laboratory Research and Development Funding Opportunities |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy National Laboratory Research and Development Funding Opportunities National Laboratory Research and Development Funding Opportunities Through the National Laboratory Research and Development program, DOE supports research and development and core capabilities at its national laboratories to accelerate progress toward achieving SunShot Initiative's Systems Integration targets. These multi-year projects are funded based on a competitive proposal process and address the

  5. Sandia Energy - Sandia Cyber Engineering Research Laboratory...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cyber Engineering Research Laboratory (CERL) Formally Opens Home Infrastructure Security Cyber Infrastructure Assurance Facilities News News & Events Analysis Cyber Engineering...

  6. Algal Biofuels Research Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01

    This fact sheet provides information about Algal Biofuels Research Laboratory capabilities and applications at NREL's National Bioenergy Center.

  7. Princeton Plasma Physics Laboratory Honors Three Researchers...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Laboratory Honors Three Researchers March 12, 2012 Tweet Widget ... the Kaul Prize for Excellence in Plasma Physics Research and Technology Development. ...

  8. Radiological Contamination Control Training for Laboratory Research

    Energy Savers [EERE]

    researchers. Course Description: This course illustrates and reinforces the skills and knowledge needed to assist personnel with radiological controls for laboratory research...

  9. Design of the Target Fabrication Tritium Laboratory

    SciTech Connect (OSTI)

    Sherohman, J.W.; Roberts, D.H.; Levine, B.H.

    1982-05-05

    The design of the Target Fabrication Tritium Laboratory for deuterium-tritium fuel processing for laser fusion targets has been accomplished with the intent of providing redundant safeguard systems. The design of the tritium laboratory is based on a combination of tritium handling techniques that are currently used by experienced laboratories. A description of the laboratory in terms of its interrelated processing systems is presented to provide an understanding of the design features for safe operation.

  10. Sandia National Laboratories: Research: Materials Science: Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Bioscience Computing and Information Science Electromagnetics Engineering Science Geoscience Materials Science About Materials Science Research Image Gallery Video Gallery Facilities Nanodevices and Microsystems Radiation Effects and High Energy Density Science Research Facilities Center for Integrated Nanotechnologies (CINT) CINT Ion Beam Laboratory Ion Beam Laboratory MESA High Performance Computing Processing and Environmental Technology Laboratory Processing and Environmental

  11. NREL: Wind Research - Structural Testing Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structural Testing Laboratory Photo of NREL's Wind Research User Facility. Shown in front are several test bays that protect proprietary information while companies disassemble turbines to analyze, test, and modify individual components. NREL's Structural Testing Laboratory includes office space for industry researchers, houses experimental laboratories, computer facilities, space for assembling turbines, components, and blades for testing. Credit: Patrick Corkery. NREL's Structural Testing

  12. Research Highlights, Recent Developments at Elettra Laboratory...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Trieste Monday, January 9, 2012 - 2:30pm SSRL Conference Room 137-322 Maya Kiskinova Ph.D. Sc.D., Coordinator of Research Projects Elettra Laboratory Elettra laboratory...

  13. Sandia National Laboratories: Research: Research Foundations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Foundations Bioscience Computing and Information Science Engineering Science Geoscience Materials Science Nanodevices and Microsystems Radiation Effects and High Energy Density Science Research Research Foundations Leadership in innovation Integrating unique resources and technical excellence to benefit our nation. Certain research areas are considered key to the success of Sandia's national security programs. These areas - known as research foundations - underpin Sandia's innovations

  14. Laboratory Directed Research and Development FY 1992

    SciTech Connect (OSTI)

    Struble, G.L.; Middleton, C.; Anderson, S.E.; Baldwin, G.; Cherniak, J.C.; Corey, C.W.; Kirvel, R.D.; McElroy, L.A.

    1992-12-31

    The Laboratory Directed Research and Development (LDRD) Program at Lawrence Livermore National Laboratory (LLNL) funds projects that nurture and enrich the core competencies of the Laboratory. The scientific and technical output from the FY 1992 RD Program has been significant. Highlights include (1) Creating the first laser guide star to be coupled with adaptive optics, thus permitting ground-based telescopes to obtain the same resolution as smaller space-based instruments but with more light-gathering power. (2) Significantly improving the limit on the mass of the electron antineutrino so that neutrinos now become a useful tool in diagnosing supernovas and we disproved the existence of a 17-keV neutrino. (3) Developing a new class of organic aerogels that have robust mechanical properties and that have significantly lower thermal conductivity than inorganic aerogels. (4) Developing a new heavy-ion accelerator concept, which may enable us to design heavy-ion experimental systems and use a heavy-ion driver for inertial fusion. (5) Designing and demonstrating a high-power, diode-pumped, solid-state laser concept that will allow us to pursue a variety of research projects, including laser material processing. (6) Demonstrating that high-performance semiconductor arrays can be fabricated more efficiently, which will make this technology available to a broad range of applications such as inertial confinement fusion for civilian power. (7) Developing a new type of fiber channel switch and new fiber channel standards for use in local- and wide-area networks, which will allow scientists and engineers to transfer data at gigabit rates. (8) Developing the nation`s only numerical model for high-technology air filtration systems. Filter designs that use this model will provide safer and cleaner environments in work areas where contamination with particulate hazardous materials is possible.

  15. Sandia Energy - Air Force Research Laboratory Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from the Air Force Research Laboratory in Albuquerque utilized the site at the National Solar Thermal Test Facility to evaluate seismic and optical activity from explosives set...

  16. Sandia Energy - Air Force Research Laboratory Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Air Force Research Laboratory (AFRL) in Albuquerque utilized the site at the National Solar Thermal Test Facility (NSTTF) to evaluate seismic and optical activity from...

  17. Researcher, Los Alamos National Laboratory | National Nuclear...

    National Nuclear Security Administration (NNSA)

    which commends individuals for exemplary research performed at the Laboratory within the past 10 years that has had a significant impact on a scientific discipline or program. ...

  18. Researcher, Sandia National Laboratories | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    National Laboratories Award: Fellow of the American Association for the Advancement of Science Profile: Sandia researchers David Haaland and David Myers have been elected Fellows...

  19. Sandia Energy Cyber Engineering Research Laboratory (CERL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wins-funding-for-programming-in-situ-data-analysisvisualizationfeed 0 Sandia Cyber Engineering Research Laboratory (CERL) Formally Opens http:energy.sandia.gov...

  20. Research and Development | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    requires collaborations with crime laboratories, both to ensure that research problems emerge from forensic science practice and to increase the likelihood that successful projects...

  1. Sandia Energy - Cybersecurity Technologies Research Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cybersecurity Technologies Research Laboratory Home Cyber Permalink Gallery Sandia Builds Android-Based Network to Study Cyber Disruptions Cyber, Cybersecurity Technologies...

  2. Sandia National Laboratories: Research: Facilities: Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Shock Thermodynamic Applied Research Facility (STAR) Weapon and Force ... are often developed to meet the measurement needs of a wide variety of customers. ...

  3. NREL: Concentrating Solar Power Research - Laboratory Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    To research, develop, and test a variety of concentrating solar power technologies, NREL features the following laboratory capabilities: Concentrated Solar Radiation Facility Large ...

  4. Sandia National Laboratories: Research: High Consequence, Automation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Urban Hopper Urban Hopper As part of an ongoing Defense Advanced Research Projects Agency (DARPA) project, Sandia National Laboratories has developed a small, shoebox-sized, GPS ...

  5. Laboratory Directed Research and Development Mission | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Administration Laboratory Directed Research & Development The U.S. Department of Energy (DOE) is charged with a large and complex mission: to ensure America's security and prosperity by addressing its energy, environmental, and nuclear challenges through transformative science and technology solutions. The DOE executes this mission to a large extent at its 17 national laboratories, a group of institutions which were created and are supported by the federal government to perform research

  6. Sandia National Laboratories: Research: Research Foundations: Geoscience

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geoscience Bioscience Computing and Information Science Electromagnetics Engineering Science Geoscience Materials Science Nanodevices and Microsystems Radiation Effects and High Energy Density Science Research Geoscience Geoscience photo The Geoscience Research Foundation performs recognized world-class earth and atmospheric sciences research and development to support Sandia's national security missions. Why our work matters Knowledge of the Earth's subsurface properties, structure and

  7. Sandia National Laboratories: Research: Bioscience

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computing and Information Science Engineering Science Geoscience Materials Science Nanodevices and Microsystems Radiation Effects and High Energy Density Science Research ...

  8. Research Highlights | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Highlights All Highlights Division of Chemical and Biological Sciences Highlights Division of Materials Science and Engineering Highlights

  9. Sandia National Laboratories: Cybersecurity Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Defense Systems About Defense Systems & Assessments Program Areas Accomplishments Cybersecurity Programs Cybersecurity Research Sandia is focused on building science and...

  10. Sustainability Research | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to some of America's greatest sustainability challenges in energy, environment, ... Examples of our sustainability research include the following, Image Magnetic ...

  11. Research Projects | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Projects Bioinspired Materials Complex Hydrides - A new Frontier of Future Energy Applications Complex States, Emergent Phenomena, & Superconductivity in Intermetallic &...

  12. Materials Engineering Research Facility | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Engineering Research Facility Materials Engineering Research Facility exterior 1 of 11 Materials Engineering Research Facility exterior With the Materials Engineering Research Facility's state-of-the-art labs and equipment, Argonne researchers can safely scale up materials from the research bench for commercial testing. Photo courtesy Argonne National Laboratory. Materials Engineering Research Facility exterior 1 of 11 Materials Engineering Research Facility exterior With the Materials

  13. DOE - Office of Legacy Management -- Rocky Mountain Research Laboratories -

    Office of Legacy Management (LM)

    CO 06 Rocky Mountain Research Laboratories - CO 06 FUSRAP Considered Sites Site: ROCKY MOUNTAIN RESEARCH LABORATORIES (CO.06 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: 1020 Yuma Street , Denver , Colorado CO.06-1 Evaluation Year: Circa 1987 CO.06-3 Site Operations: Processed beryllium on a pilot scale. CO.06-1 Site Disposition: Eliminated - No indication of radioactive materials handled at the site CO.06-2 Radioactive

  14. Sandia National Laboratories: Research: Research Foundations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Effects and High Energy Density Science Rings of Saturn, Sandia's workhorse pulsed-power machine. The Radiation Effects and High Energy Density Science Research ...

  15. Research Projects | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Projects Chemical and Biological Sciences Kinetic Theory of Turbulent Multiphase Flow Chemical Analysis of Nanodomains Chemical Physics Homogeneous and Interfacial...

  16. Research Projects | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Projects Analysis of Gas Turbine Thermal Performances Development of Virtual Power Plants High Density Sensor Network Development Virtual Advanced Power Training ...

  17. Research Divisions | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Analysis Computing Center, Intermediate Voltage Electron Microscopy- Tandem Facility and the National Security Facility. The Energy Systems (ES) division conducts...

  18. Research Projects | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Projects Nuclear Computational Low Energy Initiative (NUCLEI) Kinetic Theory of Turbulent Multiphase Flow Chemical Analysis of Nanodomains Chemical Physics Homogeneous and...

  19. Research Initiatives | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Having reliable, clean, and affordable energy sources is a matter of urgent national importance. Argonne is committed to focused research and development on a broad portfolio...

  20. Laboratory Directed Research and Development Program FY 2007

    SciTech Connect (OSTI)

    Hansen, Todd C; editor, Todd C Hansen,

    2008-03-12

    Report on Ernest Orlando Lawrence Berkeley National Laboratory Laboratory Directed Research and Development Program FY 2007

  1. Research Facilities | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Facilities In keeping with its integrated approach to environmental research, SREL has a wide range of analytical and experimental capabilities, from biogeochemical, radiological, and genetic analyses to plant, animal, and microbial facilities, two unique experimental facilities, and standard tools for an array of field research. Radioecology Microbiology Experimental Facilities Biogeochemistry DNA Laboratory Field Research RADIOECOLOGY Scintillation spec. Gamma counter Animal body

  2. Materials Engineering Research Facility | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Engineering Research Facility Argonne's new Materials Engineering Research Facility (MERF) supports the laboratory's Advanced Battery Materials Synthesis and Manufacturing R&D Program. The MERF is enabling the development of manufacturing processes for producing advanced battery materials in sufficient quantity for industrial testing. The research conducted in this program is known as process scale-up. Scale-up R&D involves taking a laboratory-developed material and developing

  3. Research | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Gene Odum forest sampling marked tortoise geochemical sampling quantifying radionuclide absorption collcting microbes microsatellite development R E S E A R C H A R E A S * Aquatic and terrestrial ecology * Biogeochemistry & soil science * Environmental microbiology * Herpetology * Hydrology * Molecular genetics * Physiological ecology * Conservation biology * Radiation ecology * Ecotoxicology and risk assessment * Remediation and restoration SREL scientists pursue a wide variety of

  4. Sandia National Laboratories: Research: Research Foundations: Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Effects and High Energy Density Science Radiation Effects and High Energy Density Science Rings of Saturn, Sandia's workhorse pulsed-power machine. The Radiation Effects and High Energy Density Science Research Foundation seeks to advance science and engineering in the areas of radiation effects sciences, high energy density science, and pulsed-power science and technology to address critical national security issues. Why our work matters We address several issues key to nuclear security and

  5. Advanced Energy Design Guides Slash Energy Use in Schools and Retail Buildings by 50% (Fact Sheet), NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Results Achievement NREL's Commercial Buildings Group executed advanced energy modeling simulations and optimized the design of schools and retail buildings to develop recommendations that result in 50% energy savings over code. NREL developed the simulation tools and led the committee that produced the guides. Key Result The Advanced Energy Design Guides, based on the work of NREL's researchers, provide owners, contractors, engineers, and architects user-friendly, how-to guidance by

  6. Sandia National Laboratories: Research: Biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuels Overcoming challenges to make advanced "drop-in" biofuels a reality Sandia researchers are developing clean and renewable sources of energy to help minimize climate change and reduce U.S. dependence on foreign oil. To this end, we are creating thermochemical, chemical, and biochemical conversion technologies to efficiently generate renewable biofuels that can displace gasoline, diesel, and jet fuel with no loss of performance or engine efficiency. Sandia is focused on two

  7. Sandia National Laboratories: Planetary Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Planetary Research Alt text Our Pulsed Power scientists are answering intriguing questions like these: What are the various planets made of? Why is Saturn more luminous than Jupiter? What causes Neptune's abnormal magnetic field? Does it rain diamonds deep in Neptune's atmosphere? Supercomputers and quantum mechanics are also used to calculate and simulate atoms, molecules, solids, and plasmas under planetary conditions. By combining experiments and theory, we are gaining new revolutionary

  8. Researcher, Lawrence Livermore National Laboratory | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration Researcher, Lawrence Livermore National Laboratory Placeholder for Mike Fitzgerald image Mike Fitzgerald February 2010 AAAS Newcomb Cleveland Prize A Lawrence Livermore National Laboratory researcher's paper published in November 2008 is co-winner of this year's American Association for the Advancement of Science (AAAS) Newcomb Cleveland Prize. The Paper is one of two outstanding papers published in Science from June 1, 2008 through May 31, 2009. Another paper titled

  9. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers: Materials Science and Engineering Designated Technology Deployment Center Materials Science and Engineering Center The Materials Science and Engineering (MSE) Center at Sandia provides knowledge of materials structure, properties, and performance and the processes to produce, transform, and analyze materials to ensure mission success for our customers and partners, both internal and external to the laboratories. The MSE is comprised of several laboratories, each providing unique

  10. NREL: Transportation Research - Fuel Combustion Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Combustion Laboratory NREL's Fuel Combustion Laboratory focuses on characterizing fuels at the molecular level. This information can then be used to understand and predict a fuel's effect on engine performance and emissions. By understanding the effects of fuel chemistry on ignition, as well as the potential emissions impacts, we can develop fuels that enable more efficient engine designs, using both today's technology and future advanced combustion concepts. This lab supports the Renewable

  11. DOE Designated User Facilities Multiple Laboratories

    Broader source: Energy.gov (indexed) [DOE]

    ORNL and PNNL) * Advanced Light Source (ALS) * ... * National Energy Research Scientific Computing Center (NERSC)* * 88 ... is not a designated Office of Science user ...

  12. SRNL Laboratory Directed Research & Development (LDRD)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6/2014 SEARCH SRNL GO About LDRD Initiatives & Research Priorities Current Projects LDRD Technologies LDRD Contacts LDRD Home SRNL Home SRNL Laboratory Directed Research & Development (LDRD) Resources LDRD Annual Reports * 2013 * 2012 * 2011 * 2010 DOE LDRD Homepage DOE Order FY13 SRNL LDRD Annual Report The FY13 SRNL LDRD Annual Report has been released This important program displays both the breadth of SRNL's research efforts and the depth of our commitment to expand the capability

  13. Sandia National Laboratories: Research: Bioscience Leadership

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bioscience Leadership Anup Singh Anup Singh Dr. Anup Singh is the Senior Manager of Biological Science and Technology at Sandia National Laboratories and the Senior Director of Analytical Technologies at the Joint BioEnergy Institute (JBEI). He is also the Program Lead for Biodefense and Infectious Disease Research in the Biological Science and Engineering center at Sandia. He supervises some 70 scientists, including managers, technical staff, postdoctoral researchers and research associates

  14. Department of Energy Designates the Idaho National Laboratory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Designates the Idaho National Laboratory Advanced Test Reactor as a National Scientific User Facility Department of Energy Designates the Idaho National Laboratory Advanced Test ...

  15. Visual Design Group | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Visual Design Group alternative text alternative text alternative text alternative text alternative text alternative text alternative text alternative text The Visual Design Group is a full-service graphics and video/animation studio serving the needs of Ames Laboratory and beyond. We offer a variety of services. Our graphics shop rates are $94/hour. There is no fee currently for our video and animation work. For Graphics Services work, please submit a request form here. For Video/Animation

  16. Idaho National Laboratory Research & Development Impacts

    SciTech Connect (OSTI)

    Stricker, Nicole

    2015-01-01

    Technological advances that drive economic growth require both public and private investment. The U.S. Department of Energy’s national laboratories play a crucial role by conducting the type of research, testing and evaluation that is beyond the scope of regulators, academia or industry. Examples of such work from the past year can be found in these pages. Idaho National Laboratory’s engineering and applied science expertise helps deploy new technologies for nuclear energy, national security and new energy resources. Unique infrastructure, nuclear material inventory and vast expertise converge at INL, the nation’s nuclear energy laboratory. Productive partnerships with academia, industry and government agencies deliver high-impact outcomes. This edition of INL’s Impacts magazine highlights national and regional leadership efforts, growing capabilities, notable collaborations, and technology innovations. Please take a few minutes to learn more about the critical resources and transformative research at one of the nation’s premier applied science laboratories.

  17. 1999 LDRD Laboratory Directed Research and Development

    SciTech Connect (OSTI)

    Rita Spencer; Kyle Wheeler

    2000-06-01

    This is the FY 1999 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  18. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers Technology Deployment Centers CRF Many of Sandia's unique research centers are available for use by U.S. industry, universities, academia, other laboratories, state and local governments, and the scientific community in general. Technology deployment centers are a unique set of scientific research capabilities and resources. The primary function of technology deployment centers is to satisfy Department of Energy programmatic needs, while remaining accessible to outside users. Contact

  19. Researcher, Sandia National Laboratories | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Researcher, Sandia National Laboratories David Haaland David Haaland December 2009 Fellows of the American Association for the Advancement of Science Sandia researchers David Haaland and David Myers have been elected Fellows of the American Association for the Advancement of Science. Election as a Fellow is an honor bestowed upon AAAS members by their peers. Haaland was cited for "distinguished contributions in the area of chemometrics and spectral imaging, especially in

  20. UMass Amherst - Renewable Energy Research Laboratory | Open Energy...

    Open Energy Info (EERE)

    UMass Amherst - Renewable Energy Research Laboratory Jump to: navigation, search Logo: UMass Amherst - Renewable Energy Research Laboratory Name: UMass Amherst - Renewable Energy...

  1. National Laboratory Concentrating Solar Power Research and Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Laboratory Concentrating Solar Power Research and Development National Laboratory Concentrating Solar Power Research and Development This fact sheet describes the current ...

  2. Laboratory for Energy-Related Health Research, California, Site...

    Office of Legacy Management (LM)

    Fact Sheet Laboratory for Energy-Related Health Research, California, Site This fact sheet provides information about the Laboratory for Energy-Related Health Research, California, ...

  3. NREL: Solar Radiation Research - Solar Radiation Research Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photographs Solar Radiation Research Laboratory Photographs The Solar Radiation Research Laboratory (SRRL) houses more than 70 instruments to analyze and record solar radiation and surface meteorology data. Learn more about this equipment by exploring the photographs below. Click on a thumbnail to view the full image. Photo of researcher working on an instrument platform in front of the SRRL building. The SRRL is located on South Table Mountain in Golden, Colorado, at 39.74° N, 105.18° W,

  4. Team Based Program Design Management and Research Operations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Team Based Program Design Management and Research Operations Involvement in Nanoscale Materials ES&H August 2009 Presenter: Kevin Sheffield, Pacific Northwest National Laboratory ...

  5. Laboratory Directed Research and Development FY 2000

    SciTech Connect (OSTI)

    Hansen, Todd; Levy, Karin

    2001-02-27

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Annual report on Laboratory Directed Research and Development for FY2000.

  6. Current Postdoctoral Researchers | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Current Postdocs Current Postdoctoral Researchers Name Topic - Any - General Argonne Information -Awards -Honors Energy -Energy efficiency --Vehicles ---Alternative fuels ---Automotive engineering ---Biofuels ---Diesel ---Electric drive technology ---Fuel economy ---Fuel injection ---Heavy-duty vehicles ---Hybrid & electric vehicles ---Hydrogen & fuel cells ---Internal combustion ---Maglev systems ---Powertrain research ---Vehicle testing --Building design ---Construction ---Industrial

  7. Jefferson Lab - Laboratory Directed Research & Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an LDRD Proposal or LOI View Submitted FY16 LDRD Proposals Proposals from Previous Years Create an LDRD Project Report Mid-year Report Template Mid-year Report Instructions Annual Report Template Annual Report Instructions LDRD Reports LDRD Publications The JLab LDRD program documentation has been modeled on the material developed by SLAC for its LDRD program Laboratory Directed Research & Development Formal LDRD Plans FT16 Plan FY15 Plan FY14 Plan

  8. National Renewable Energy Laboratory 2005 Research Review

    SciTech Connect (OSTI)

    Brown, H.; Gwinner, D.; Miller, M.; Pitchford, P.

    2006-06-01

    Science and technology are at the heart of everything we do at the National Renewable Energy Laboratory, as we pursue innovative, robust, and sustainable ways to produce energy--and as we seek to understand and illuminate the physics, chemistry, biology, and engineering behind alternative energy technologies. This year's Research Review highlights the Lab's work in the areas of alternatives fuels and vehicles, high-performing commercial buildings, and high-efficiency inverted, semi-mismatched solar cells.

  9. Talk explores Laboratory's 50 years of space research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Talk explores Laboratory's 50 years of space research Talk explores Laboratory's 50 years of space research The talk, titled "Los Alamos National Laboratory's 50 Years in Space," will highlight the Laboratory's significant discoveries and events in the field. October 3, 2013 Laboratory fellow and astrophysicist Ed Fenimore, and Laboratory planetary scientist and principal investigator of the ChemCam team Roger Wiens, will talk about Los Alamos National Laboratory's 50 years of space

  10. Energy Secretary Moniz dedicates new research facility at Ames Laboratory |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Ames Laboratory dedicates new research facility at Ames Laboratory Contacts: For Release: May 9, 2016 Adam Schwartz, Director, Ames Laboratory (515) 294-2770 Laura Millsaps, Public Affairs, Ames Laboratory (515) 294-3474 AMES, IOWA-Energy Secretary Ernest Moniz emphasized the role of materials research in clean energy innovation Friday at the dedication of the U.S. Department of Energy's Ames Laboratory Sensitive Instrument Facility. Moniz led laboratory leadership, researchers and

  11. Laboratory Directed Research and Development Plan - FY2013 | The Ames

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Laboratory Directed Research and Development Plan - FY2013 Document Number: NA Effective Date: 10/2014 File (public): PDF icon plan_ldrd_fy

  12. National Laboratory Concentrating Solar Power Research and Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Laboratory Concentrating Solar Power Research and Development National Laboratory ... fields, power plants, receivers, and thermal storage-are necessary to achieve the ...

  13. Mass Spectrometer Laboratory | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mass Spectrometer Laboratory Mass Spectrometer Laboratory A look inside the recently updated Mass Spectrometer Facility managed by Staff Scientish Hao Zhang

  14. Sandia National Laboratories: Research: Facilities: Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Detection Materials Characterization Laboratory This facility provides assistance to users from federal laboratories, U.S. industry and academia in the following areas:...

  15. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development Program Activities for FY 1994

    SciTech Connect (OSTI)

    1995-02-25

    The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory's R and D capabilities, and further the development of its strategic initiatives. Projects are selected from proposals for creative and innovative R and D studies which are not yet eligible for timely support through normal programmatic channels. Among the aims of the projects supported by the Program are establishment of engineering proof-of-principle; assessment of design feasibility for prospective facilities; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these projects are closely associated with major strategic thrusts of the Laboratory as described in Argonne's Five-Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne as indicated in the Laboratory's LDRD Plan for FY 1994. Project summaries of research in the following areas are included: (1) Advanced Accelerator and Detector Technology; (2) X-ray Techniques for Research in Biological and Physical Science; (3) Nuclear Technology; (4) Materials Science and Technology; (5) Computational Science and Technology; (6) Biological Sciences; (7) Environmental Sciences: (8) Environmental Control and Waste Management Technology; and (9) Novel Concepts in Other Areas.

  16. MFRC Research and Development | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MFRC Research and Development 2013 Research Project Summaries 2012 Research Project Summaries 2011 Research Project Summaries 2010 Research Project Summaries 2009 Research Project...

  17. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers: Pulsed Power and Systems Validation Facility Pulsed Power and Systems Validation Facility The Pulsed Power and System Validation Technology Deployment Center offers access to unique equipment to support specialized research, along with the expertise to address complex problems dealing with radiation effects. User Support
 The knowledgeable staff brings a broad spectrum of experience in the design and setup of experiments. Emphasis is placed on optimizing the operation and results

  18. Design of the cryogenic hydrogen release laboratory

    SciTech Connect (OSTI)

    Hecht, Ethan S.; Zimmerman, Mark D.; LaFleur, Angela Christine; Ciotti, Michael

    2015-09-01

    A cooperative research and development agreement was made between Linde, LLC and Sandia to develop a plan for modifying the Turbulent Combustion Laboratory (TCL) with the necessary infrastructure to produce a cold (near liquid temperature) hydrogen jet. A three-stage heat exchanger will be used to cool gaseous hydrogen using liquid nitrogen, gaseous helium, and liquid helium. A cryogenic line from the heat exchanger into the lab will allow high-fidelity diagnostics already in place in the lab to be applied to cold hydrogen jets. Data from these experiments will be used to develop and validate models that inform codes and standards which specify protection criteria for unintended releases from liquid hydrogen storage, transport, and delivery infrastructure.

  19. Laboratory Directed Research and Development Plan - FY2013 |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Directed Research and Development Plan - FY2013 Document Number: NA Effective Date: 102014 File (public): PDF icon planldrdfy...

  20. Laboratory Directed Research & Development (LDRD) Tri-Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Nuclear Security AdministrationLaboratory Directed Research and Development Securing the future of our nation through cutting-edge science and technology Laboratory Directed Research and Development Laboratory Directed Research and Development Menu Performance Metrics Annual Reports Nuclear Security Global Security Scientific Security Energy Security Innovation for our nation The Laboratory Directed Research and Development (LDRD) program was authorized by Congress in 1991 to fund

  1. Research Call to DOE/Federal Laboratories: Technical Support...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research Call to DOEFederal Laboratories: Technical Support for Interconnection-Level Electric Infrastructure Planning RC-BM-2010; Due May 3, 2010. Research Call to DOEFederal ...

  2. Research Call to DOE/Federal Laboratories: Technical Support...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research Call to DOEFederal Laboratories: Technical Support for Interconnection-Level Electric Infrastructure Planning RC-BM-2010; Due May 3, 2010. Research Call to DOEFederal...

  3. Laboratory researcher Joel Rowland to receive DOE Early Career...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rowland to receive DOE Early Career Award Laboratory researcher Joel Rowland to receive DOE Early Career Award Rowland's research was recognized by DOE for incorporating...

  4. NREL Assesses National Design Standards for Offshore Wind (Fact Sheet), NREL Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Report summarizes regulations, standards, and guidelines for the design and operation of offshore wind projects in the United States. In 2012, the American Wind Energy Association (AWEA) published its Offshore Compliance Recommended Practices that are based on existing standards (Inter- national Electrotechnical Commission, International Organization for Standardiza- tion, and American Petroleum Institute) and guidelines (American Bureau of Ship- ping and DNV GL). Although the AWEA document

  5. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers: Radiation Detection Materials Characterization Laboratory Radiation Detection Materials Characterization Laboratory This facility provides assistance to users from federal laboratories, U.S. industry and academia in the following areas: (1) testing and characterizing radiation detector materials and devices; and (2) determining the relationships between the physical properties of the detector materials and the device response. Systems of interest include scintillators and

  6. National Laboratory Concentrating Solar Power Research and Development |

    Office of Environmental Management (EM)

    Department of Energy National Laboratory Concentrating Solar Power Research and Development National Laboratory Concentrating Solar Power Research and Development This fact sheet describes the current concentrating solar power projects working through the National Laboratory R&D program under the SunShot Initiative. PDF icon csp_natl_lab_rd_fact_sheet.pdf More Documents & Publications National Laboratory Concentrating Solar Power Research and Development Particle Receiver Integrated

  7. Audit Implementation Design Plan | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Audit Implementation Design Plan Document Number: NA Effective Date: 08

  8. Frontiers in Energy Research | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The following CEES members have served as co-editors for the newsletter: 2011-2012 Scott Kirklin, Northwestern University 2012-2013 Lynn Trahey, Argonne National Laboratory...

  9. Laboratory Directed Research Development (LDRD) Annual Reports

    Broader source: Energy.gov [DOE]

    DOE’s national laboratories annual reports of long-term national missions and unique scientific and technical capabilities beyond the scope of academic and industrial institutions.

  10. Laboratory Directed Research and Development FY2011 Annual Report

    SciTech Connect (OSTI)

    Craig, W; Sketchley, J; Kotta, P

    2012-03-22

    A premier applied-science laboratory, Lawrence Livermore National Laboratory (LLNL) has earned the reputation as a leader in providing science and technology solutions to the most pressing national and global security problems. The LDRD Program, established by Congress at all DOE national laboratories in 1991, is LLNL's most important single resource for fostering excellent science and technology for today's needs and tomorrow's challenges. The LDRD internally directed research and development funding at LLNL enables high-risk, potentially high-payoff projects at the forefront of science and technology. The LDRD Program at Livermore serves to: (1) Support the Laboratory's missions, strategic plan, and foundational science; (2) Maintain the Laboratory's science and technology vitality; (3) Promote recruiting and retention; (4) Pursue collaborations; (5) Generate intellectual property; and (6) Strengthen the U.S. economy. Myriad LDRD projects over the years have made important contributions to every facet of the Laboratory's mission and strategic plan, including its commitment to nuclear, global, and energy and environmental security, as well as cutting-edge science and technology and engineering in high-energy-density matter, high-performance computing and simulation, materials and chemistry at the extremes, information systems, measurements and experimental science, and energy manipulation. A summary of each project was submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to DOE/NNSA and LLNL mission areas, the technical progress achieved in FY11, and a list of publications that resulted from the research. The projects are: (1) Nuclear Threat Reduction; (2) Biosecurity; (3) High-Performance Computing and Simulation; (4) Intelligence; (5) Cybersecurity; (6) Energy Security; (7) Carbon Capture; (8) Material Properties, Theory, and Design; (9) Radiochemistry; (10) High-Energy-Density Science; (11) Laser Inertial-Fusion Energy; (12) Advanced Laser Optical Systems and Applications; (12) Space Security; (13) Stockpile Stewardship Science; (14) National Security; (15) Alternative Energy; and (16) Climatic Change.

  11. Exemplary Student Research Program | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Exemplary Student Research Program 2013 Exemplary Student Research Program - Student Poster Presentations 1 of 6 2013 Exemplary Student Research Program - Student Poster...

  12. A Virtual Visit to Bioenergy Research at the National Laboratories |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy A Virtual Visit to Bioenergy Research at the National Laboratories A Virtual Visit to Bioenergy Research at the National Laboratories October 22, 2014 - 10:34am Addthis Watch researchers at Pacific Northwest National Laboratory describe their bioenergy research funded by the Energy Department. Alicia Moulton Communications Specialist, Bioenergy Technologies Office For National Bioenergy Day on October 22, bioenergy facilities across the country are holding open houses to

  13. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2011.

    SciTech Connect (OSTI)

    2012-04-25

    As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selected from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.

  14. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2010.

    SciTech Connect (OSTI)

    2012-04-25

    As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selected from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.

  15. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers: Engineering Sciences Experimental Facilities Engineering Sciences Experimental Facilities (ESEF) Technology Deployment Centers Ion Beam Lab Advanced Power Sources Laboratory Engineering Sciences Experimental Facilities (ESEF) Trisonic Wind Tunnel Hypersonic Wind Tunnel High Altitude Chamber Explosive Components Facility Materials Science and Engineering Center Pulsed Power and Systems Validation Facility Radiation Detection Materials Characterization Laboratory Shock Thermodynamic

  16. Frontiers for Laboratory Research of Magnetic Reconnection

    SciTech Connect (OSTI)

    Ji, Hantao; Guo, Fan

    2015-07-16

    Magnetic reconnection occcurs throughout heliophysical and astrophysical plasmas as well as in laboratory fusion plasmas. Two broad categories of reconnection models exist: collisional MHD and collisionless kinetic. Eight major questions with respect to magnetic connection are set down, and past and future devices for studying them in the laboratory are described. Results of some computerized simulations are compared with experiments.

  17. Research programs at the Department of Energy National Laboratories. Volume 2: Laboratory matrix

    SciTech Connect (OSTI)

    1994-12-01

    For nearly fifty years, the US national laboratories, under the direction of the Department of Energy, have maintained a tradition of outstanding scientific research and innovative technological development. With the end of the Cold War, their roles have undergone profound changes. Although many of their original priorities remain--stewardship of the nation`s nuclear stockpile, for example--pressing budget constraints and new federal mandates have altered their focus. Promotion of energy efficiency, environmental restoration, human health, and technology partnerships with the goal of enhancing US economic and technological competitiveness are key new priorities. The multiprogram national laboratories offer unparalleled expertise in meeting the challenge of changing priorities. This volume aims to demonstrate each laboratory`s uniqueness in applying this expertise. It describes the laboratories` activities in eleven broad areas of research that most or all share in common. Each section of this volume is devoted to a single laboratory. Those included are: Argonne National Laboratory; Brookhaven National Laboratory; Idaho National Engineering Laboratory; Lawrence Berkeley Laboratory; Lawrence Livermore National Laboratory; Los Alamos National Laboratory; National Renewable Energy Laboratory; Oak Ridge National Laboratory; Pacific Northwest Laboratory; and Sandia National Laboratories. The information in this volume was provided by the multiprogram national laboratories and compiled at Lawrence Berkeley Laboratory.

  18. Sandia National Laboratories: Careers: Cybersecurity Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Careers Cybersecurity Research Careers Cybersecurity Research Addressing sophisticated cyber threats demands a multidisciplinary team with a unique mindset. Sandia provides...

  19. NREL: Transportation Research - Renewable Fuels and Lubricants Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Fuels and Lubricants Laboratory Photo of a heavy-duty truck being driven on a chassis dynamometer. The heavy-duty chassis dynamometer at the ReFUEL Laboratory simulates on-road driving in a controlled laboratory setting. Photo by Dennis Schroeder, NREL NREL's Renewable Fuels and Lubricants (ReFUEL) Laboratory is a state-of-the-art research and testing facility for advanced fuels and vehicles. Research and development focuses on overcoming barriers to the increased use of renewable

  20. SULI Areas of Research | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Shihuai Zhou) Growth and discovery of novel materials (Paul Canfield) Molecular design of extractants (Theresa Windus) Nanomaterials by Design (Ludovico Cademartiri) ...

  1. Nano Design Works | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nano Design Works Nano Design Works (NDW) capitalizes on the power of nanotechnology and provides services to strengthen its impact. With expertise in nanomaterials, computing,...

  2. Sandia National Laboratories: Research: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Bioscience Computing and Information Science Electromagnetics Engineering Science Geoscience Materials Science About Materials Science Research Image Gallery Video Gallery Facilities Nanodevices and Microsystems Radiation Effects and High Energy Density Science Research Research Materials Processing Sandia research staff understand, characterize, model, and ultimately control materials fabrication technologies that are critical to component development and production. Plasma Spray

  3. Stirling engine research at national and university laboratories in Japan

    SciTech Connect (OSTI)

    Hane, G.J.; Hutchinson, R.A.

    1987-09-01

    Pacific Northwest Laboratory (PNL) reviewed research projects that are related to the development of Stirling engines and that are under way at Japanese national laboratories and universities. The research and development focused on component rather than on whole engine development. PNL obtained the information from a literature review and interviews conducted at the laboratories and universities. The universities have less equipment available and operate with smaller staffs for research than do the laboratories. In particular, the Mechanical Engineering Laboratory and the Aerospace Laboratory conduct high-quality component and fundamental work. Despite having less equipment, some of the researchers at the universities conduct high-quality fundamental research. As is typical in Japan, several of the university professors are very active in consulting and advisory capacities to companies engaged in Stirling engine development, and also with government and association advisory and technical committees. Contacts with these professors and selective examination of their research are good ways to keep abreast of Japanese Stirling developments.

  4. Sandia National Laboratories: News: Publications: Research Magazine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Magazine Annual Report Environmental Reports Fact Sheets Labs Accomplishments Lab News Partnerships Annual Report Research Magazine Archive HPC Annual Reports Search Sandia Publications Strategic Plan News Research Magazine Sandia Research is a new quarterly magazine highlighting Sandia's cutting-edge research and technology. July 2015 Sandia Research - July 2015, Vol 2, Issue 4 "The goal of Sandia's bioscience work is to analyze, understand and control the functions of biological

  5. National Laboratory Concentrating Solar Power Research and Development |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy National Laboratory Concentrating Solar Power Research and Development National Laboratory Concentrating Solar Power Research and Development The SunShot National Laboratory Concentrating Solar Power Research and Development Fact Sheet provides a synopsis of the 12 projects funded to address the technical barriers toward achieving the technoeconomic targets of the SunShot Initiative. Significant cost and performance improvements across all major concentrating CSP

  6. New Field Laboratories and Related Research To Help Promote Environmentally

    Energy Savers [EERE]

    Prudent Development of Unconventional Resources | Department of Energy Field Laboratories and Related Research To Help Promote Environmentally Prudent Development of Unconventional Resources New Field Laboratories and Related Research To Help Promote Environmentally Prudent Development of Unconventional Resources November 6, 2014 - 9:00am Addthis WASHINGTON, D.C. - Today, the Department of Energy announced the selection of three multiyear, field laboratories and six other multiyear research

  7. Laboratory directed research and development. Annual report, fiscal year 1995

    SciTech Connect (OSTI)

    1996-02-01

    This document is a compilation of the several research and development programs having been performed at the Pacific Northwest National Laboratory for the fiscal year 1995.

  8. Laboratory Directed Research and Development Program: FY 2015...

    Office of Scientific and Technical Information (OSTI)

    Laboratory Directed Research and Development Program: FY 2015 Annual Report Citation ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  9. Department of Energy Laboratories, Researchers to Showcase High...

    Office of Science (SC) Website

    Department of Energy Laboratories, Researchers to Showcase High Performance Computing ... Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW ...

  10. Van Andel Research Institute, Los Alamos National Laboratory...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computational model to study lung cancer Van Andel Research Institute, Los Alamos National Laboratory to develop detailed computational model to study lung cancer Scientists are...

  11. Audit of Acquisition of Scientific Research at Ames Laboratory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OF SCIENTIFIC RESEARCH AT AMES LABORATORY The Office of Inspector General wants to make the distribution of its reports as customer friendly and cost effective as possible. ...

  12. Agustin Mihi and Paul V. Braun Materials Research Laboratory...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Agustin Mihi and Paul V. Braun Materials Research Laboratory, University of Illinois at Urbana-Champaign Transfer of Preformed 3D Photonic Crystals onto Dye Sensitized Solar Cells...

  13. Sandia National Laboratories: Visiting Research Scholars

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Visiting Research Scholars Visting Research Scholars at Sandia Overview Since 1998 Sandia's Cooperative Monitoring Center has hosted a unique Visiting Research Scholar (VRS) Program that brings together international subject-matter experts to conduct joint research and analyses on policy and technology challenges related to global security concerns of the US government and its international partners. Often, the invited scholars represent opposing views with a goal of their research to include

  14. Autonomie: Automotive System Design | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Automo&ve Lithium---ion Ba1ery (LIB) Supply Chain and U.S. Compe&&veness Considera&ons Donald Chung, Emma Elgqvist, S hriram Santhanagopalan, CEMAC With contribu,ons from experts at the U.S. Department of Energy, Argonne Na,onal Laboratory, the Na,onal Renewable Energy Laboratory, and Industry Partners June 2, 2015 NREL/PR---6A50---63354 Contract No. DE---AC36---08GO28308 June 2015 CEMAC ▪ Clean Energy Manufacturing Analysis Center ▪ ManufacturingCleanEnergy.org DISCLAIMER

  15. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories and Facilities Laboratories and Facilities Laboratories and Facilities National Energy Technology Laboratory - The National Energy Technology Laboratory (NETL) is the lead field center for the Office of Fossil Energy's research and development program. Scientists at its Pittsburgh, Pa., and Morgantown, W. Va., campuses conduct onsite research while contract administrators oversee nearly 700 federally-sponsored projects conducted by private sector research partners. The Houston,

  16. New Concepts in Fish Ladder Design, Volume II of IV, Results of Laboratory and Field Research on New Concepts in Weir and Pool Fishways, 1982-1984 Final Project Report.

    SciTech Connect (OSTI)

    Aaserude, Robert G.; Orsborn, John F.

    1985-08-01

    A comprehensive review of fishway design practice led to new design concepts that had previously been untested. This concept was based on the observation that fish can be stimulated to leap when presented with certain hydraulic conditions. A laboratory test program was conducted to develop this concept into a new fishway configuration. Field testing revealed that components of the new design improved fish passage. Verification of the initial premise that fish can be stimulated to leap needs further study.

  17. Researcher, Los Alamos National Laboratory - Space and Remote Sensing Group

    National Nuclear Security Administration (NNSA)

    | National Nuclear Security Administration Los Alamos National Laboratory - Space and Remote Sensing Group Patrick Colestock Patrick Colestock November 2009 Los Alamos National Laboratory Fellow Six Los Alamos scientists have been designated 2009 Los Alamos National Laboratory Fellows in recognition of sustained, outstanding scientific contributions and exceptional promise for continued professional achievement. The title of Fellow is bestowed on only about 2 percent of the Laboratory's

  18. Research Aide FAQ | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Frequently Asked Questions Cooperative Education National School on Neutron and X-ray Scattering Givens Summer Associate Program Summer Strategic Trade Control Program Next Generation Safeguards Initiative Summer Internship Program Faculty Partners News & Events About Us Staff Directory About Us Staff Directory Argonne National Laboratory Educational Programs Developing the Next Generation of Scientists & Engineers Home Learning Center Undergraduates Graduates Faculty Partners News

  19. Laboratory and cyclotron requirements for PET research

    SciTech Connect (OSTI)

    Schlyer, D.J.

    1993-06-01

    This report describes four types of PET facilities: Clinical PET with no radionuclide production; clinical PET with a small accelerator; clinical PET with research support; and research PET facilities. General facility considerations are also discussed.

  20. Exemplary Student Research Program | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FAQ Video Argonne's Exemplary Student Research Program Featured Story 'The possibilities of science are limitless,' said high school senior Avinash Prakash. 'Science is continually growing. Through research we are part of a continuing process.' New program puts high school students in role of scientists Contact education@anl.gov Exemplary Student Research Program "Research is creating new knowledge." - Neil Armstrong, Astronaut About the Program Using the world-class facilities at

  1. Sandia National Laboratories: Research: High Consequence, Automation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High-Consequence Automation Robotics Homepage About Robotics Research & Development Advanced Controls Advanced Manipulation Cybernetics High-Consequence Automation Demilitarization...

  2. Transportable Heavy Duty Emissions Testing Laboratory and Research Program

    SciTech Connect (OSTI)

    David Lyons

    2008-03-31

    The objective of this program was to quantify the emissions from heavy-duty vehicles operating on alternative fuels or advanced fuel blends, often with novel engine technology or aftertreatment. In the first year of the program West Virginia University (WVU) researchers determined that a transportable chassis dynamometer emissions measurement approach was required so that fleets of trucks and buses did not need to be ferried across the nation to a fixed facility. A Transportable Heavy-Duty Vehicle Emissions Testing Laboratory (Translab) was designed, constructed and verified. This laboratory consisted of a chassis dynamometer semi-trailer and an analytic trailer housing a full scale exhaust dilution tunnel and sampling system which mimicked closely the system described in the Code of Federal Regulations for engine certification. The Translab was first used to quantify emissions from natural gas and methanol fueled transit buses, and a second Translab unit was constructed to satisfy research demand. Subsequent emissions measurement was performed on trucks and buses using ethanol, Fischer-Tropsch fuel, and biodiesel. A medium-duty chassis dynamometer was also designed and constructed to facilitate research on delivery vehicles in the 10,000 to 20,000lb range. The Translab participated in major programs to evaluate low-sulfur diesel in conjunction with passively regenerating exhaust particulate filtration technology, and substantial reductions in particulate matter were recorded. The researchers also participated in programs to evaluate emissions from advanced natural gas engines with closed loop feedback control. These natural gas engines showed substantially reduced levels of oxides of nitrogen. For all of the trucks and buses characterized, the levels of carbon monoxide, oxides of nitrogen, hydrocarbons, carbon dioxide and particulate matter were quantified, and in many cases non-regulated species such as aldehydes were also sampled. Particle size was also quantified during selected studies. A laboratory was established at WVU to provide for studies which supported and augmented the Translab research, and to provide for development of superior emissions measurement systems. This laboratory research focused on engine control and fuel sulfur issues. In recent years, as engine and aftertreatment technologies advanced, emissions levels were reduced such that they were at or below the Translab detectable limits, and in the same time frame the US Environmental Protection Agency required improved measurement methodologies for engine emissions certification. To remain current and relevant, the researchers designed a new Translab analytic system, housed in a container which can be transported on a semi-trailer. The new system's dilution tunnel flow was designed to use a subsonic venturi with closed loop control of blower speed, and the secondary dilution and particulate matter filter capture were designed to follow new EPA engine certification procedures. A further contribution of the program has been the development of techniques for creating heavy-duty vehicle test schedules, and the creation of schedules to mimic a variety of truck and bus vocations.

  3. Federal Laboratory Consortium Highlights Three NREL Research Projects -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Releases | NREL Federal Laboratory Consortium Highlights Three NREL Research Projects McDonough Lauded as Outstanding Laboratory Representative September 16, 2011 The Federal Laboratory Consortium for Technology Transfer's (FLC) Mid-Continent Region recently recognized the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) and its partners with three awards for excellence in technology transfer. It also named NREL Commercialization and Technology Transfer

  4. Solar pond research at the Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Jones, G.F.; Meyer, K.A.; Hedstrom, J.C.; Grimmer, D.P.

    1984-01-01

    A description of solar pond research at Los Alamos National Laboratory is presented. The main issues in the theory of solar ponds are discussed. Among these are the interfacial-boundary-layer model, models for interface motion and pond performance, heat extraction, and ground heat loss. The core of the research effort at Los Alamos was the development of a one-dimensional computer program to accurately predict dynamic performance of a solar pond. The computer model and the experiments that were designed and performed to validate it are described. The experiments include two laboratory tanks wherein temperature, salinity, and flow visualization data were obtained and a 232 m/sup 2/ outdoor solar pond. Results from preliminary validation show good agreement between the pond's predicted dynamic behavior and that which actually occurred in the experiments. More validation using data from full-sized solar ponds is needed. A new correlation for the ratio of interfacial salt-flux to heat-flux is proposed which agrees well with our data. Recommendations for future research are given.

  5. Laboratory Directed Research and Development FY-10 Annual Report

    SciTech Connect (OSTI)

    Dena Tomchak

    2011-03-01

    The FY 2010 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support the future DOE missions and national research priorities. LDRD is essential to the INL -- it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enhances technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development.

  6. National Renewable Energy Laboratory Report Identifies Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evolution of Wholesale Electricity Market Design with Increasing Levels of Renewable ... According to the report, this evolution is due, in some part, to increased penetrations of ...

  7. Sandia National Laboratory Photovoltaic Design Resources | Open...

    Open Energy Info (EERE)

    access to a computer, instructions and blank worksheets, and 15 specific examples of PV systems designed to meet a wide range of applications. Each example includes sizing,...

  8. Frontiers for Laboratory Research of Magnetic Reconnection (Conference) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Frontiers for Laboratory Research of Magnetic Reconnection Citation Details In-Document Search Title: Frontiers for Laboratory Research of Magnetic Reconnection Magnetic reconnection occcurs throughout heliophysical and astrophysical plasmas as well as in laboratory fusion plasmas. Two broad categories of reconnection models exist: collisional MHD and collisionless kinetic. Eight major questions with respect to magnetic connection are set down, and past and future devices for

  9. Research Highlights, Recent Developments at Elettra Laboratory in Trieste |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stanford Synchrotron Radiation Lightsource Research Highlights, Recent Developments at Elettra Laboratory in Trieste Monday, January 9, 2012 - 2:30pm SSRL Conference Room 137-322 Maya Kiskinova Ph.D. Sc.D., Coordinator of Research Projects Elettra Laboratory Elettra laboratory operates two light sources: a synchrotron radiation facility (since 1993) and a seeded free electron laser facility under commissioning. Using selected exemplary systems, the talk will address the most recent

  10. Nano Design Works | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nano Design Works Share Speakers Andreas Roelofs Topic Programs Materials science Nanoscience Nano Design Works (NDW) capitalizes on the power of nanotechnology and provides services to strengthen its impact. With expertise in nanomaterials, computing, chemistry, materials, and energy systems, along with its world-class facilities, Argonne is a perfect match for companies looking to make a big impact with tiny materials

  11. VFP Research Projects | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Projects Ames Lab provides hands-on research opportunities in materials science in the following research areas: Mathematical modeling of the aptamers and its effect on small molecule transport into the cell (Marit Nilsen-Hamilton) Synthesis and Characterization of a Hafnium Derivative of the MOF UiO-66-NH2 and its use in Biomass Related Catalysis (Wenyu Huang) Reliable Nanomanufacturing of Ge-Sn Alloys for Solar Energy Conversion (Javier Vela) Past Programs

  12. Distributed Energy Research Center | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distributed Energy Research Center Argonne's Distributed Energy Research Center (DERC) allows researchers to develop and demonstrate novel technologies to reduce emissions and improve efficiency of prime movers used in Distributed Energy applications, primarily stationary reciprocating engines and small gas turbines. Since the prime movers are stationary, the emphasis is in efficient conversion of energy from gaseous fuels and renewables such as wind to electricity. The breadth of the work

  13. Engine Research Facility | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engine Research Facility Argonne's Engine Research Facility allows scientists and engineers to study in-cylinder combustion and emissions under realistic operating conditions. The facility's engines range in size from automobile- to locomotive-sized, as well as stationary electric power production engines. The facility is used to discover and evaluate new technologies to determine their technical feasibility and commercial viability. In addition, Argonne researchers use the facility's engines to

  14. Advanced Powertrain Research Facility | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Powertrain Research Facility Argonne's Advanced Powertrain Research Facility (APRF) enables researchers to conduct vehicle benchmarking and testing activities that provide data critical to the development and commercialization of next-generation vehicles. APRF engineers use the facility's two-wheel drive (2WD) and four-wheel drive (4WD) dynamometers and state-of-the-art instrumentation to reveal important information on performance, fuel economy, energy consumption and emissions output.

  15. National Laboratory Concentrating Solar Power Research | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovation This applied research program supports technological developments that have the potential for dramatic improvements over existing commercial and near-commercial CSP ...

  16. Jefferson Lab - Laboratory Directed Research & Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    scientific capability, and permits seeding and exploration of exciting new opportunities. ... The projects can be characterized as: Small-scale research and development activities or ...

  17. Jefferson Lab - Laboratory Directed Research & Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    scientific capability, and permits seeding and exploration of exciting new opportunities. ... Scale of Proposed Projects Within these eligible research areas, the LDRD program is ...

  18. Past VFP research projects | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Past VFP research projects Nanostructured Organometal Halide Perovskites (Javier Vela) Nanocasting for a new generation of smart nanodevices (Igor Slowing) Exploration of ...

  19. Graduate Research Aide Appointments | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program Visiting Graduate Program Thesis Parts Program Business Internship Program Research Aide Appointments Frequently Asked Questions Cooperative Education National School on...

  20. Center for Transportation Research | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Vehicle Technologies Friction, Wear, and Lubrication Technologies Fuel Spray Analysis Multi-Dimensional Modeling Vehicle-Grid Interoperability CTR research occurs in...

  1. Undergraduate Research Aide Appointment | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Undergraduate Research Aide Appointment "Equipped with his five senses, man explores the universe around him and calls the adventure Science."-Edwin Powell The...

  2. Researchers study grapevine microbiota | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ecologist Jack Gilbert wanted to explore these communities. In research that could lead to ways for farmers to encourage healthier plants without pesticides, Gilbert's team,...

  3. Sandia National Laboratories: Research: High Consequence, Automation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In a Tactical Mobile Robotics (TMR) program for the Defense Advanced Research Projects Agency (DARPA), HCAR demonstrated the ability to remotely surround a facility with a squad of ...

  4. Sandia National Laboratories: Research: High Consequence, Automation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with Stanford University and Lunar to develop The Sandia Hand for the Defense Advanced Research Projects Agency (DARPA)-sponsored Autonomous Robotic Manipulation (ARM) Program. ...

  5. Sandia National Laboratory Photovoltaic Design Resources | Open...

    Open Energy Info (EERE)

    are included, along with additional sources of information and major U.S. PV system suppliers. References Sandia Photovoltaic Research and Development Retrieved from "http:...

  6. Designing the Microbial Research Commons

    SciTech Connect (OSTI)

    Uhlir, Paul F

    2011-10-01

    Recent decades have witnessed an ever-increasing range and volume of digital data. All elements of the pillars of science--whether observation, experiment, or theory and modeling--are being transformed by the continuous cycle of generation, dissemination, and use of factual information. This is even more so in terms of the re-using and re-purposing of digital scientific data beyond the original intent of the data collectors, often with dramatic results. We all know about the potential benefits and impacts of digital data, but we are also aware of the barriers, the challenges in maximizing the access, and use of such data. There is thus a need to think about how a data infrastructure can enhance capabilities for finding, using, and integrating information to accelerate discovery and innovation. How can we best implement an accessible, interoperable digital environment so that the data can be repeatedly used by a wide variety of users in different settings and with different applications? With this objective: to use the microbial communities and microbial data, literature, and the research materials themselves as a test case, the Board on Research Data and Information held an International Symposium on Designing the Microbial Research Commons at the National Academy of Sciences in Washington, DC on 8-9 October 2009. The symposium addressed topics such as models to lower the transaction costs and support access to and use of microbiological materials and digital resources from the perspective of publicly funded research, public-private interactions, and developing country concerns. The overall goal of the symposium was to stimulate more research and implementation of improved legal and institutional models for publicly funded research in microbiology.

  7. Laboratory Technology Research: Abstracts of FY 1996 projects

    SciTech Connect (OSTI)

    1996-12-31

    The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of this country: the world-class basic research capability of the DOE Energy Research (ER) multi-program national laboratories and the unparalleled entrepreneurial spirit of American industry. Projects supported by the LTR program are conducted by the five ER multi-program laboratories: Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge, and Pacific Northwest National Laboratories. These projects explore the applications of basic research advances relevant to Department of Energy`s (DOE) mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials, intelligent processing/manufacturing research, and sustainable environments.

  8. Sandia National Laboratories: Research: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Science Bioscience Computing and Information Science Electromagnetics Engineering Science Geoscience Materials Science About Materials Science Research Image Gallery Video Gallery Facilities Nanodevices and Microsystems Radiation Effects and High Energy Density Science Research Materials Science Creating materials for energy applications and defense needs Aries Applying innovative characterization and diagnostic techniques Hongyou Fan Development of new materials to support national

  9. Accelerator Design and Development | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerator Design and Development Accelerator Design and Development Scientists around the world rely on particle accelerators to yield insights on the structure and function of materials at and below the atomic scale. These accelerators range in size from portable machines for producing medical isotopes to enormous miles-wide colliders for high-energy physics. In order to further develop our understanding of matter and the fabric of the cosmos, we must continue to expand the horizon of

  10. Laboratory Directed Research and Development annual report, fiscal year 1997

    SciTech Connect (OSTI)

    1998-03-01

    The Department of Energy Order 413.2(a) establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 413.2, LDRD is research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this Order. DOE Order 413.2 requires that each laboratory submit an annual report on its LDRD activities to the cognizant Secretarial Officer through the appropriate Operations Office Manager. The report provided in this document represents Pacific Northwest National Laboratory`s LDRD report for FY 1997.

  11. Sandia National Laboratories: Research: High Consequence, Automation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Urban Hopper Urban Hopper As part of an ongoing Defense Advanced Research Projects Agency (DARPA) project, Sandia has developed a small, shoebox-sized, GPS-guided, unmanned ground ...

  12. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers: Shock Thermodynamic Applied Research Facility (STAR) Shock Thermodynamic Applied Research Facility (STAR) The STAR facility, within Sandia's Solid Dynamic Physics Department, is one of a few institutions in the world with a major shock-physics program. This is the only experimental test facility in the world that can cover the full range of pressure (bars to multi-Mbar) for material property study utilizing gas/propellant launchers, ramp-loading pulsers, and ballistic applications.

  13. Water Technology Research | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Technology Research Wastewater treatment plant Wastewater treatment plant Water is an increasingly valuable natural resource. By identifying typical sources and distribution of microbial communities in waterways, researchers can develop hydrological models that incorporate the microbial data, laying out how water flows from different sources and how rain events affect bacterial diversity and count. For example, by studying how microbes flourish in specific areas, it may be possible to

  14. Energy Frontier Research Centers | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The above figure depicts an ALD-Modified "Rust" Surface for enhanced electrode activity. Energy Frontier Research Centers Argonne pulls together science and engineering leaders across institutional boundaries, allowing them to take a collaborative approach to specific scientific challenges. In 2009, the U.S. Department of Energy's Office of Science/Office of Basic Energy Sciences established the Energy Frontier Research Centers (EFRCs). These EFRCs are composed of small teams of

  15. Student Research Participation Program | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SRP Fact Sheet Featured Video Student Intern: Science Communications Contact undergrad@anl.gov Student Research Participation Program "I really enjoyed the overall experience and the skills that I have been able to gain from working here." - Summer Intern Overview A student will spend the first week of his/her Argonne experience with an Argonne staff member devising a research strategy and attending mandatory safety classes. For the next few weeks, the supervisor will provide

  16. Undergraduate Research Aide Appointment | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Additional Resources RA Fact Sheet Contact undergrad@anl.gov Undergraduate Research Aide Appointment "Equipped with his five senses, man explores the universe around him and calls the adventure Science."-Edwin Powell The Research Aide program offers temporary employment opportunities to college/university students to provide the opportunity to apply technical knowledge and skills while assisting Argonne scientific and engineering staff on key mission science projects. Overview

  17. Molecular Supermarket: Streamlining Aisle Design | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Molecular Supermarket: Streamlining Aisle Design New research provides insight into design guidelines for the ideal pore width in nanoporous catalytic materials. Nanoporous ...

  18. Federal Laboratory Multiplies Its Research Capacity | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Federal Laboratory Multiplies Its Research Capacity Federal Laboratory Multiplies Its Research Capacity September 21, 2000 Thanks to high-tech development work and some creative tuning and tweaking, the $650 million Thomas Jefferson National Accelerator Facility in Newport News, Va., can now accelerate beams of electrons to 6 billion electron volts - more energy by half than taxpayers originally paid for. With higher-energy electron beams, researchers using this U.S. Department of Energy

  19. Teachers Conduct Research at Prestigious Department of Energy Laboratory |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab Conduct Research at Prestigious Department of Energy Laboratory Teachers Conduct Research at Prestigious Department of Energy Laboratory Twenty-nine high school and middle school physics, physical science, and engineering/technology teachers from four states are participating in the Continuous Electron Beam Accelerator Facility's Summer Institute for Teacher Enhancement (SITE). The four week Institute enables teachers to conduct practical and essential group research on a

  20. Novel Materials for Energy Research | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Novel Materials for Energy Research Novel Materials for Energy Research The Ames Laboratory is home to the Materials Preparation Center (MPC). The MPC is a DOE Basic Energy Sciences specialized research center. It is one of the premier materials laboratories in the world for the synthesis and processing of rare earth metals and compounds, metallics alloys, complex intermetallics and inorganic compounds in both single crystalline and polycrystalline form. Established in October 1981, the MPC

  1. HIV vaccine research focus of Laboratory-sponsored talk

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HIV vaccine research focus of talk HIV vaccine research focus of Laboratory-sponsored talk Ruy Ribeiro talk explores the mechanisms of HIV infection, puts them in the context of vaccine development, and summarizes current efforts to date to create an effective HIV vaccine. November 13, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience,

  2. Sandia National Laboratories: Research: Facilities: Annular Core Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reactor Facility Annular Core Research Reactor facility Nuclear science photo At the Annular Core Research Reactor (ACRR) facility, Sandia researchers can subject various test objects to a mixed photon and neutron irradiation environment featuring either a very rapid pulse rate or a long-term, steady-state rate. Research and other activities The radiation produced at the ACRR is used for the following research activities: Neutron-scattering experiments Nondestructive testing, including

  3. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers: Weapon and Force Protection Center Weapon and Force Protection Center Video Cameras Weapon and Force Protection Center The Center for Security Systems is a fully integrated research-to- development-to-application center that provides systems and technologies that understand, identify, and solve the nation's security problems. The Center includes extensive development and testing facilities for all aspects of physical security including the following: sensors video image processing

  4. Laboratory-directed research and development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    directed research and development - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  5. Rebecca Sharitz: Research | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Current Research Dynamics of Wetland Forests Restoration of Depression Wetlands Conservation of Rare Sandhills Plant Species Dynamics of Wetland Forests Photo of a floodplain forest The species composition and structure of wetland forests is closely tied to the environmental conditions occurring at critical times in the species' life histories. Since the 1980s, we have been studying the demography of wetland forest species, including seed production, dispersal and germination, and seedling

  6. Savannah River Technology Center (SRTC) Designated as a National Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE)

    In 2004, the Secretary of Energy designated SRTC as a national laboratory based on its contributions and important role it has played in both energy and defense programs of the United States. The lab was also renamed the Savannah River National Laboratory (SRNL).

  7. Argonne National Laboratory Research Highlights 1988

    SciTech Connect (OSTI)

    Not Available

    1988-01-01

    The research and development highlights are summarized. The world's brightest source of X-rays could revolutionize materials research. Test of a prototype insertion device, a key in achieving brilliant X-ray beams, have given the first glimpse of the machine's power. Superconductivity research focuses on the new materials' structure, economics and applications. Other physical science programs advance knowledge of material structures and properties, nuclear physics, molecular structure, and the chemistry and structure of coal. New programming approaches make advanced computers more useful. Innovative approaches to fighting cancer are being developed. More experiments confirm the passive safety of Argonne's Integral Fast Reactor concept. Device simplifies nuclear-waste processing. Advanced fuel cell could provide better mileage, more power than internal combustion engine. New instruments find leaks in underground pipe, measure sodium impurities in molten liquids, detect flaws in ceramics. New antibody findings may explain ability to fight many diseases. Cadmium in cigarettes linked to bone loss in women. Programs fight deforestation in Nepal. New technology could reduce acid rain, mitigate greenhouse effect, enhance oil recovery. Innovative approaches transfer Argonne-developed technology to private industry. Each year Argonne educational programs reach some 1200 students.

  8. Laboratory Directed Research and Development Program FY 2006 Annual Report

    SciTech Connect (OSTI)

    Sjoreen, Terrence P

    2007-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the US Departmental of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2006. The associated FY 2006 ORNL LDRD Self-Assessment (ORNL/PPA-2007/2) provides financial data about the FY 2006 projects and an internal evaluation of the program's management process.

  9. Laboratory directed research and development program, FY 1996

    SciTech Connect (OSTI)

    1997-02-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) Laboratory Directed Research and Development Program FY 1996 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Berkeley Lab LDRD program is a critical tool for directing the Laboratory`s forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for Berkeley Lab scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances the Laboratory`s core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. Areas eligible for support include: (1) Work in forefront areas of science and technology that enrich Laboratory research and development capability; (2) Advanced study of new hypotheses, new experiments, and innovative approaches to develop new concepts or knowledge; (3) Experiments directed toward proof of principle for initial hypothesis testing or verification; and (4) Conception and preliminary technical analysis to explore possible instrumentation, experimental facilities, or new devices.

  10. Laboratory Directed Research and Development Program Assessment for FY 2014

    SciTech Connect (OSTI)

    Hatton, D.

    2014-03-01

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy in accordance with DOE Order 413.2B dated April 19, 2006. This report fulfills that requirement.

  11. SRNL Laboratory Directed Research and Development Poster Session

    Broader source: Energy.gov [DOE]

    On October 15, 2014, Savannah River National Lab researchers and scientists met for the Laboratory Directed Research and Development, or LDRD, Program Year End Review and Poster Session. The DOE program provides the Lab’s only discretionary funding to support high-risk, potentially high-value research

  12. How low can you go? Low pressure drop laboratory design

    SciTech Connect (OSTI)

    Weale, John; Rumsey, Peter; Sartor, Dale; Lock, Lee Eng

    2001-12-01

    Laboratory buildings are characterized by the production of potentially hazardous fumes within the occupied space. The primary objective of a laboratory ventilation system is to isolate and protect the occupants from the fumes, as well as provide minimum outside air at a comfortable temperature. Fume removal results in the need for a large volume of conditioned make-up air, typically a significantly greater volume than required for space temperature conditioning purposes. The high quantity of exhaust naturally results in a once through system, which is also often required by codes that prohibit any recirculation in a laboratory space. The high costs associated with high airflow systems are magnified by the 24 hours a day, 356 days a year ventilation operation often seen in laboratory situations. All too often, the common design approach taken to laboratory mechanical systems results in a traditional office ventilation system upsized to meet a laboratory's requirements. Recognizing the unique aspects of laboratory requirements and operation is essential to optimizing the mechanical system. Figure 1 shows a breakdown of a laboratory building's electricity use, based on a DOE 2 model of a baseline laboratory building design for Montana State University (Bozeman, MT). In laboratory buildings, the largest and easiest target for energy use reduction is usually the ventilation energy. At about 50 percent of the buildings total electricity usage, a 15 percent reduction in the power required by the ventilation system would save more energy than eliminating all lighting energy. As the largest component of a laboratory's energy consumption, the ventilation system is the first target to reduce the energy bill. Significantly improving the standard design efficiency of a ventilation system requires a lower air pressure drop system on both the supply and exhaust system. Implementing low-pressure drop design strategies from the early stages of the design process will result in much lower energy costs throughout the system's life with a minimal increase in first costs. The pressure drop in a laboratory ventilation system is influenced by many independent design challenges. Knowing what these design challenges are and how they can be answered to minimize pressure drop is critical in achieving an energy efficient laboratory.

  13. DOE - Office of Legacy Management -- Naval Research Laboratory...

    Office of Legacy Management (LM)

    RESEARCH LABORATORY DC.02-1 - AEC Memorandum and Source Material License No. C-3393; Johnson to Mutch; August 15, 1955 DC.02-2 - AEC Memorandum; Belmore to Hershman; Subject:...

  14. Laboratory directed research and development 2006 annual report.

    SciTech Connect (OSTI)

    Westrich, Henry Roger

    2007-03-01

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 2006. In addition to a programmatic and financial overview, the report includes progress reports from 430 individual R&D projects in 17 categories.

  15. Laboratory Directed Research and Development Plan | The Ames...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Directed Research and Development Plan Version Number: 0.1 Document Number: Plan 30000.001 Effective Date: 012014 File (public): PDF icon plan30000.001rev0.1.pdf...

  16. Researcher, Los Alamos National Laboratory | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Los Alamos National Laboratory David S. Moore David Moore 2009 LANL Fellows Prize for Outstanding Leadership in Science or Engineering David S. Moore has received the 2009 LANL Fellows Prize for Outstanding Leadership in Science or Engineering, which commends individuals who stimulate the research interests of talented younger Laboratory staff members and who encourage junior researchers to make the personal sacrifices necessary to become effective leaders. The committee

  17. Research Call to DOE/Federal Laboratories: Technical Support for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Interconnection-Level Electric Infrastructure Planning RC-BM-2010; Due May 3, 2010. | Department of Energy Research Call to DOE/Federal Laboratories: Technical Support for Interconnection-Level Electric Infrastructure Planning RC-BM-2010; Due May 3, 2010. Research Call to DOE/Federal Laboratories: Technical Support for Interconnection-Level Electric Infrastructure Planning RC-BM-2010; Due May 3, 2010. The entities that DOE has selected under the American Recovery and Reinvestment Act to

  18. Laboratory researcher Joel Rowland to receive DOE Early Career Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rowland to receive DOE Early Career Award Laboratory researcher Joel Rowland to receive DOE Early Career Award Rowland's research was recognized by DOE for incorporating hydrological controls on carbon cycling in flood plain ecosystems into Earth System Models. May 8, 2014 Joel Rowland Joel Rowland Contact Steve Sandoval Communications Office (505) 665-9206 Email "Joel contributed to the vitality of our Laboratory as a postdoc and continues to provide an innovative and intellectual spark as

  19. Laboratory Directed Research & Development | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Laboratory Directed Research & Development The U.S. Department of Energy (DOE) is charged with a large and complex mission: to ensure America's security and prosperity by addressing its energy, environmental, and nuclear challenges through transformative science and technology solutions. The DOE executes this mission to a large extent at its 17 national laboratories, a group of institutions which were created and are supported by the federal government to perform research

  20. Cooperative Research & Development Agreements (CRADA) | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contract Research Cooperative Research & Development Agreements (CRADA) CRADAs enable the Ames Laboratory and one or more partners (usually from industry or academia) to collaborate, share costs and pool the results of a particular R&D program. The Laboratory may provide personnel, facilities, equipment or other resources to these R&D collaborations. Collaborating partners may provide funds, personnel, equipment or other resources. Key features of CRADA's and CRADA negotiations

  1. 1995 Laboratory-Directed Research and Development Annual report

    SciTech Connect (OSTI)

    Cauffman, D.P.; Shoaf, D.L.; Hill, D.A.; Denison, A.B.

    1995-12-31

    The Laboratory-Directed Research and Development Program (LDRD) is a key component of the discretionary research conducted by Lockheed Idaho Technologies Company (Lockheed Idaho) at the Idaho National Engineering Laboratory (INEL). The threefold purpose and goal of the LDRD program is to maintain the scientific and technical vitality of the INEL, respond to and support new technical opportunities, and enhance the agility and flexibility of the national laboratory and Lockheed Idaho to address the current and future missions of the Department of Energy.

  2. Algal Biofuels Research Laboratory (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Algal Biofuels Research Laboratory Enabling fundamental understanding of algal biology and composition of algal biomass to help develop superior bioenergy strains NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. NREL's algal biofuels research capabilities include: * Growth platforms from 0.2 mL to 270 L scale in multi- well plates, shake flasks, photobioreactors, and open ponds

  3. Laboratory directed research and development annual report: Fiscal year 1992

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The Department of Energy Order DOE 5000.4A establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is ``research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this order. Consistent with the Mission Statement and Strategic Plan provided in PNL`s Institutional Plan, the LDRD investments are focused on developing new and innovative approaches to research related to our ``core competencies.`` Currently, PNL`s core competencies have been identified as: integrated environmental research; process science and engineering; energy distribution and utilization. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these corecompetencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. The projects described in this report represent PNL`s investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. The report provides an overview of PNL`s LDRD program and the management process used for the program and project summaries for each LDRD project.

  4. Laboratory directed research and development annual report: Fiscal year 1992

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The Department of Energy Order DOE 5000.4A establishes DOE's policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this order. Consistent with the Mission Statement and Strategic Plan provided in PNL's Institutional Plan, the LDRD investments are focused on developing new and innovative approaches to research related to our core competencies.'' Currently, PNL's core competencies have been identified as: integrated environmental research; process science and engineering; energy distribution and utilization. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these corecompetencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. The projects described in this report represent PNL's investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. The report provides an overview of PNL's LDRD program and the management process used for the program and project summaries for each LDRD project.

  5. Laboratory Directed Research and Development annual report, Fiscal year 1993

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    The Department of Energy Order DOE 5000.4A establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is ``research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this Order. LDRD includes activities previously defined as ER&D, as well as other discretionary research and development activities not provided for in a DOE program.`` Consistent with the Mission Statement and Strategic Plan provided in PNL`s Institutional Plan, the LDRD investments are focused on developing new and innovative approaches in research related to our ``core competencies.`` Currently, PNL`s core competencies have been identified as integrated environmental research; process technology; energy systems research. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these core competencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. A significant proportion of PNL`s LDRD funds are also allocated to projects within the various research centers that are proposed by individual researchers or small research teams. The projects are described in Section 2.0. The projects described in this report represent PNL`s investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. In accordance with DOE guidelines, the report provides an overview of PNL`s LDRD program and the management process used for the program and project summaries for each LDRD project.

  6. Laboratory technology research - abstracts of FY 1997 projects

    SciTech Connect (OSTI)

    1997-11-01

    The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of this country: the world-class basic research capability of the DOE Energy Research (ER) multi-program national laboratories and the unparalleled entrepreneurial spirit of American industry. A distinguishing feature of the ER multi-program national laboratories is their ability to integrate broad areas of science and engineering in support of national research and development goals. The LTR program leverages this strength for the Nation`s benefit by fostering partnerships with US industry. The partners jointly bring technology research to a point where industry or the Department`s technology development programs can pursue final development and commercialization. Projects supported by the LTR program are conducted by the five ER multi-program laboratories. These projects explore the applications of basic research advances relevant to DOE`s mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials; intelligent processing/manufacturing research; and sustainable environments.

  7. Laboratory Directed Research and Development Program Activities for FY 2007.

    SciTech Connect (OSTI)

    Newman,L.

    2007-12-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal year 2007 budget was $515 million. There are about 2,600 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development', April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. In accordance this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2007. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. We explicitly indicate that research conducted under the LDRD Program should be highly innovative, and an element of high risk as to success is acceptable. In the solicitation for new proposals for Fiscal Year 2007 we especially requested innovative new projects in support of RHIC and the Light Source and any of the Strategic Initiatives listed at the LDRD web site. These included support for NSLS-II, RHIC evolving to a quantum chromo dynamics (QCD) lab, nanoscience, translational and biomedical neuroimaging, energy and, computational sciences. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL.

  8. Laboratory technology research: Abstracts of FY 1998 projects

    SciTech Connect (OSTI)

    1998-11-01

    The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of the country: the world-class basic research capability of the DOE Office of Science (SC) national laboratories and the unparalleled entrepreneurial spirit of American industry. Projects supported by the LTR program in FY 1998 explore the applications of basic research advances relevant to DOE`s mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials, intelligent processing and manufacturing research, and environmental and biomedical research. Abstracts for 85 projects are contained in this report.

  9. An Account of Oak Ridge National Laboratory's Thirteen Research Reactors

    SciTech Connect (OSTI)

    Rosenthal, Murray Wilford

    2009-08-01

    The Oak Ridge National Laboratory has built and operated 13 nuclear reactors in its 66-year history. The first was the graphite reactor, the world's first operational nuclear reactor, which served as a plutonium production pilot plant during World War II. It was followed by two aqueous-homogeneous reactors and two red-hot molten-salt reactors that were parts of power-reactor development programs and by eight others designed for research and radioisotope production. One of the eight was an all-metal fast burst reactor used for health physics studies. All of the others were light-water cooled and moderated, including the famous swimming-pool reactor that was copied dozens of times around the world. Two of the reactors were hoisted 200 feet into the air to study the shielding needs of proposed nuclear-powered aircraft. The final reactor, and the only one still operating today, is the High Flux Isotope Reactor (HFIR) that was built particularly for the production of californium and other heavy elements. With the world's highest flux and recent upgrades that include the addition of a cold neutron source, the 44-year-old HFIR continues to be a valuable tool for research and isotope production, attracting some 500 scientific visitors and guests to Oak Ridge each year. This report describes all of the reactors and their histories.

  10. Undergraduate Research Opportunities - Center for Plasma in the Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Astrophysics - UW Madison Physics Department Undergraduate Research Opportunities UW Madison Center for Plasma in the Laboratory and Astrophysics Undergraduate Research Opportunities CPLA Home - Experiments Madison Symmetric Torus Madsion Dynamo Experiment Rotating Wall Machine Plasma-Couette Experiment Madison Plasma Dynamo Experiment - Theory Groups MHD Turbulence Transport in Fusion Devices Plasma Astrophysics RFP Theory - Multi-Institutional Centers Center for Magnetic Self

  11. Laboratory directed research and development. FY 1995 progress report

    SciTech Connect (OSTI)

    Vigil, J.; Prono, J.

    1996-03-01

    This document presents an overview of Laboratory Directed Research and Development Programs at Los Alamos. The nine technical disciplines in which research is described include materials, engineering and base technologies, plasma, fluids, and particle beams, chemistry, mathematics and computational science, atmic and molecular physics, geoscience, space science, and astrophysics, nuclear and particle physics, and biosciences. Brief descriptions are provided in the above programs.

  12. A guide to research facilities at the National Renewable Energy Laboratory

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    The guide is divided into two parts. Topping the pages are descriptions of laboratories at NREL that provide sophisticated experimental equipment, testing capabilities, or processes that may not be available in the private sector. Scientific categories are designated at the top of the pages in blue; individual laboratory descriptions follow alphabetically, along with the names and phone numbers of the laboratory managers. In blue boxes at the bottom of the pages are articles about NREL, our technology transfer program, and our facilities, as well as guidelines for students, researchers, and industrial collaborators who wish to use them. A list of key contacts and a map of the campus follows the laboratory descriptions.

  13. Optical Design Capabilities at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Lawson, J K

    2002-12-30

    Optical design capabilities continue to play the same strong role at Lawrence Livermore National Laboratory (LLNL) that they have played in the past. From defense applications to the solid-state laser programs to the Atomic Vapor Laser Isotope Separation (AVLIS), members of the optical design group played critical roles in producing effective system designs and are actively continuing this tradition. This talk will explain the role optical design plays at LLNL, outline current capabilities and summarize a few activities in which the optical design team has been recently participating.

  14. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    performance computer system installed at Los Alamos National Laboratory June 17, 2014 Unclassified 'Wolf' system to advance many fields of science LOS ALAMOS, N.M., June 17, 2014-Los Alamos National Laboratory recently installed a new high-performance computer system, called Wolf, which will be used for unclassified research. "This machine modernizes our mid-tier resources available to Laboratory scientists," said Bob Tomlinson, of the Laboratory's High Performance Computing group.

  15. Los Alamos National Laboratory to work on nuclear design, plutonium...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANL selected as preferred alternative site for plutonium research, development, and limited manufacturing, along with nuclear weapons design and engineering, and supercomputing. ...

  16. Van Andel Research Institute, Los Alamos National Laboratory to develop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    detailed computational model to study lung cancer Computational model to study lung cancer Van Andel Research Institute, Los Alamos National Laboratory to develop detailed computational model to study lung cancer Scientists are developing a new tool to better study one of the deadliest types of lung cancer. September 14, 2015 Even the most carefully crafted science projects starts with a rough brainstorm session. This whiteboard is from an early Los Alamos National Laboratory and Van Andel

  17. Princeton Plasma Physics Laboratory Honors Three Researchers | Princeton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Physics Lab Princeton Plasma Physics Laboratory Honors Three Researchers March 12, 2012 Tweet Widget Google Plus One Share on Facebook Gallery: Kenneth Hill received the Kaul Prize for Excellence in Plasma Physics Research and Technology Development. (Photo by Elle Starkman, PPPL Office of Communications) Kenneth Hill received the Kaul Prize for Excellence in Plasma Physics Research and Technology Development. Robert Ellis received the PPPL Distinguished Engineering Fellow award.

  18. Design of the Laboratory-Scale Plutonium Oxide Processing Unit in the Radiochemical Processing Laboratory

    SciTech Connect (OSTI)

    Lumetta, Gregg J.; Meier, David E.; Tingey, Joel M.; Casella, Amanda J.; Delegard, Calvin H.; Edwards, Matthew K.; Orton, Robert D.; Rapko, Brian M.; Smart, John E.

    2015-05-01

    This report describes a design for a laboratory-scale capability to produce plutonium oxide (PuO2) for use in identifying and validating nuclear forensics signatures associated with plutonium production, as well as for use as exercise and reference materials. This capability will be located in the Radiochemical Processing Laboratory at the Pacific Northwest National Laboratory. The key unit operations are described, including PuO2 dissolution, purification of the Pu by ion exchange, precipitation, and re-conversion to PuO2 by calcination.

  19. Laboratory directed research and development annual report. Fiscal year 1994

    SciTech Connect (OSTI)

    1995-02-01

    The Department of Energy Order DOE 5000.4A establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. This report represents Pacific Northwest Laboratory`s (PNL`s) LDRD report for FY 1994. During FY 1994, 161 LDRD projects were selected for support through PNL`s LDRD project selection process. Total funding allocated to these projects was $13.7 million. Consistent with the Mission Statement and Strategic Plan provided in PNL`s Institutional Plan, the LDRD investments are focused on developing new and innovative approaches in research related to our {open_quotes}core competencies.{close_quotes} Currently, PNL`s core competencies have been identified as integrated environmental research; process science and engineering; energy systems development. In this report, the individual summaries of LDRD projects (presented in Section 1.0) are organized according to these core competencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. Projects within the three core competency areas were approximately 91.4 % of total LDRD project funding at PNL in FY 1994. A significant proportion of PNL`s LDRD funds are also allocated to projects within the various research centers that are proposed by individual researchers or small research teams. Funding allocated to each of these projects is typically $35K or less. The projects described in this report represent PNL`s investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. The report provides an overview of PNL`s LDRD program, the management process used for the program, and project summaries for each LDRD project.

  20. Laboratory Directed Research and Development Program FY 2004 Annual Report

    SciTech Connect (OSTI)

    Sjoreen, Terrence P

    2005-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2A, 'Laboratory Directed Research and Development' (January 8, 2001), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report describes all ORNL LDRD research activities supported during FY 2004 and includes final reports for completed projects and shorter progress reports for projects that were active, but not completed, during this period. The FY 2004 ORNL LDRD Self-Assessment (ORNL/PPA-2005/2) provides financial data about the FY 2004 projects and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching national security mission, which encompasses science, energy resources, environmental quality, and national nuclear security. As a national resource, the Laboratory also applies its capabilities and skills to the specific needs of other federal agencies and customers through the DOE Work For Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at . LDRD is a relatively small but vital DOE program that allows ORNL, as well as other multiprogram DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing the Laboratory's ability to address future DOE missions; (3) fostering creativity and stimulating exploration of forefront science and technology; (4) serving as a proving ground for new research; and (5) supporting high-risk, potentially high-value R&D. Through LDRD the Laboratory is able to improve its distinctive capabilities and enhance its ability to conduct cutting-edge R&D for its DOE and WFO sponsors. To meet the LDRD objectives and fulfill the particular needs of the Laboratory, ORNL has established a program with two components: the Director's R&D Fund and the Seed Money Fund. As outlined in Table 1, these two funds are complementary. The Director's R&D Fund develops new capabilities in support of the Laboratory initiatives, while the Seed Money Fund is open to all innovative ideas that have the potential for enhancing the Laboratory's core scientific and technical competencies. Provision for multiple routes of access to ORNL LDRD funds maximizes the likelihood that novel and seminal ideas with scientific and technological merit will be recognized and supported.

  1. Laboratory Directed Research and Development Program FY 2007 Annual Report

    SciTech Connect (OSTI)

    Sjoreen, Terrence P

    2008-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries for all ORNL LDRD research activities supported during FY 2007. The associated FY 2007 ORNL LDRD Self-Assessment (ORNL/PPA-2008/2) provides financial data and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching mission to advance the national, economic, and energy security of the United States and promote scientific and technological innovation in support of that mission. As a national resource, the Laboratory also applies its capabilities and skills to specific needs of other federal agencies and customers through the DOE Work for Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at http://www.ornl.gov/. LDRD is a relatively small but vital DOE program that allows ORNL, as well as other DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing the Laboratory's ability to address future DOE missions; (3) fostering creativity and stimulating exploration of forefront science and technology; (4) serving as a proving ground for new research; and (5) supporting high-risk, potentially high-value R&D. Through LDRD the Laboratory is able to improve its distinctive capabilities and enhance its ability to conduct cutting-edge R&D for its DOE and WFO sponsors. To meet the LDRD objectives and fulfill the particular needs of the Laboratory, ORNL has established a program with two components: the Director's R&D Fund and the Seed Money Fund. As outlined in Table 1, these two funds are complementary. The Director's R&D Fund develops new capabilities in support of the Laboratory initiatives, while the Seed Money Fund is open to all innovative ideas that have the potential for enhancing the Laboratory's core scientific and technical competencies. Provision for multiple routes of access to ORNL LDRD funds maximizes the likelihood that novel ideas with scientific and technological merit will be recognized and supported.

  2. Laboratory Directed Research and Development Program FY 2005 Annual Report

    SciTech Connect (OSTI)

    Sjoreen, Terrence P

    2006-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2A, 'Laboratory Directed Research and Development' (January 8, 2001), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report describes all ORNL LDRD research activities supported during FY 2005 and includes final reports for completed projects and shorter progress reports for projects that were active, but not completed, during this period. The FY 2005 ORNL LDRD Self-Assessment (ORNL/PPA-2006/2) provides financial data about the FY 2005 projects and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching national security mission, which encompasses science, energy resources, environmental quality, and national nuclear security. As a national resource, the Laboratory also applies its capabilities and skills to the specific needs of other federal agencies and customers through the DOE Work For Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at . LDRD is a relatively small but vital DOE program that allows ORNL, as well as other multiprogram DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing the Laboratory's ability to address future DOE missions; (3) fostering creativity and stimulating exploration of forefront science and technology; (4) serving as a proving ground for new research; and (5) supporting high-risk, potentially high-value R&D. Through LDRD the Laboratory is able to improve its distinctive capabilities and enhance its ability to conduct cutting-edge R&D for its DOE and WFO sponsors. To meet the LDRD objectives and fulfill the particular needs of the Laboratory, ORNL has established a program with two components: the Director's R&D Fund and the Seed Money Fund. As outlined in Table 1, these two funds are complementary. The Director's R&D Fund develops new capabilities in support of the Laboratory initiatives, while the Seed Money Fund is open to all innovative ideas that have the potential for enhancing the Laboratory's core scientific and technical competencies. Provision for multiple routes of access to ORNL LDRD funds maximizes the likelihood that novel and seminal ideas with scientific and technological merit will be recognized and supported.

  3. Laboratory Directed Research and Development LDRD-FY-2011

    SciTech Connect (OSTI)

    Dena Tomchak

    2012-03-01

    This report provides a summary of the research conducted at the Idaho National Laboratory (INL) during Fiscal Year (FY) 2011. This report demonstrates the types of cutting edge research the INL is performing to help ensure the nation's energy security. The research conducted under this program is aligned with our strategic direction, benefits the Department of Energy (DOE) and is in compliance with DOE order 413.2B. This report summarizes the diverse research and development portfolio with emphasis on the DOE Office of Nuclear Energy (DOE-NE) mission, encompassing both advanced nuclear science and technology and underlying technologies.

  4. Laboratory Directed Research and Development Program Activities for FY 2008.

    SciTech Connect (OSTI)

    Looney,J.P.; Fox, K.

    2009-04-01

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that maintains a primary mission focus the physical sciences, energy sciences, and life sciences, with additional expertise in environmental sciences, energy technologies, and national security. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal year 2008 budget was $531.6 million. There are about 2,800 employees, and another 4,300 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development,' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Developlnent at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. Accordingly, this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2008. BNL expended $12 million during Fiscal Year 2008 in support of 69 projects. The program has two categories, the annual Open Call LDRDs and Strategic LDRDs, which combine to meet the overall objectives of the LDRD Program. Proposals are solicited annually for review and approval concurrent with the next fiscal year, October 1. For the open call for proposals, an LDRD Selection Committee, comprised of the Associate Laboratory Directors (ALDs) for the Scientific Directorates, an equal number of scientists recommended by the Brookhaven Council, plus the Assistant Laboratory Director for Policy and Strategic Planning, review the proposals submitted in response to the solicitation. The Open Can LDRD category emphasizes innovative research concepts with limited management filtering to encourage the creativity of individual researchers. The competition is open to all BNL staff in programmatic, scientific, engineering, and technical support areas. Researchers submit their project proposals to the Assistant Laboratory Director for Policy and Strategic Planning. A portion of the LDRD budget is held for the Strategic LDRD (S-LDRD) category. Projects in this category focus on innovative R&D activities that support the strategic agenda of the Laboratory. The Laboratory Director entertains requests or articulates the need for S-LDRD funds at any time. Strategic LDRD Proposals also undergo rigorous peer review; the approach to review is tailored to the size and scope of the proposal. These Projects are driven by special opportunities, including: (1) Research project(s) in support of Laboratory strategic initiatives as defined and articulated by the Director; (2) Research project(s) in support of a Laboratory strategic hire; (3) Evolution of Program Development activities into research and development activities; and (4) ALD proposal(s) to the Director to support unique research opportunities. The goals and objectives of BNL's LDRD Program can be inferred fronl the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. We explicitly indicate that research conducted under the LDRD Program should be highly innovative, and an element of high risk as to success is acceptable. To be one of the premier DOE National Laboratories, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and maintaining staff excellence and a means to address National needs within the overall mission of the DOE and BNL.

  5. Laboratory directed research development annual report. Fiscal year 1996

    SciTech Connect (OSTI)

    1997-05-01

    This document comprises Pacific Northwest National Laboratory`s report for Fiscal Year 1996 on research and development programs. The document contains 161 project summaries in 16 areas of research and development. The 16 areas of research and development reported on are: atmospheric sciences, biotechnology, chemical instrumentation and analysis, computer and information science, ecological science, electronics and sensors, health protection and dosimetry, hydrological and geologic sciences, marine sciences, materials science and engineering, molecular science, process science and engineering, risk and safety analysis, socio-technical systems analysis, statistics and applied mathematics, and thermal and energy systems. In addition, this report provides an overview of the research and development program, program management, program funding, and Fiscal Year 1997 projects.

  6. Laboratory Directed Research and Development FY 1998 Progress Report

    SciTech Connect (OSTI)

    John Vigil; Kyle Wheeler

    1999-04-01

    This is the FY 1998 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principle investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  7. Laboratory directed research and development: FY 1997 progress report

    SciTech Connect (OSTI)

    Vigil, J.; Prono, J.

    1998-05-01

    This is the FY 1997 Progress Report for the Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory. It gives an overview of the LDRD program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic and molecular physics and plasmas, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  8. Pre-College Research Participation Program | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    undergrad@anl.gov Pre-College Participation Program "The mind is not a vessel to be filled, but a fire to be kindled."-Plutarch, Biographer About the Program Argonne offers a research participation program for local Illinois high school seniors during the summer between high school graduation and the college fall term. In this immersion experience, participating students work in a laboratory or office environment, performing research and rubbing elbows with scientists and engineers, in

  9. Laboratory Directed Research and Development FY2008 Annual Report

    SciTech Connect (OSTI)

    Kammeraad, J E; Jackson, K J; Sketchley, J A; Kotta, P R

    2009-03-24

    The Laboratory Directed Research and Development (LDRD) Program, authorized by Congress in 1991 and administered by the Institutional Science and Technology Office at Lawrence Livermore, is our primary means for pursuing innovative, long-term, high-risk, and potentially high-payoff research that supports the full spectrum of national security interests encompassed by the missions of the Laboratory, the Department of Energy, and National Nuclear Security Administration. The accomplishments described in this annual report demonstrate the strong alignment of the LDRD portfolio with these missions and contribute to the Laboratory's success in meeting its goals. The LDRD budget of $91.5 million for fiscal year 2008 sponsored 176 projects. These projects were selected through an extensive peer-review process to ensure the highest scientific quality and mission relevance. Each year, the number of deserving proposals far exceeds the funding available, making the selection a tough one indeed. Our ongoing investments in LDRD have reaped long-term rewards for the Laboratory and the nation. Many Laboratory programs trace their roots to research thrusts that began several years ago under LDRD sponsorship. In addition, many LDRD projects contribute to more than one mission area, leveraging the Laboratory's multidisciplinary team approach to science and technology. Safeguarding the nation from terrorist activity and the proliferation of weapons of mass destruction will be an enduring mission of this Laboratory, for which LDRD will continue to play a vital role. The LDRD Program is a success story. Our projects continue to win national recognition for excellence through prestigious awards, papers published in peer-reviewed journals, and patents granted. With its reputation for sponsoring innovative projects, the LDRD Program is also a major vehicle for attracting and retaining the best and the brightest technical staff and for establishing collaborations with universities, industry, and other scientific and research institutions. By keeping the Laboratory at the forefront of science and technology, the LDRD Program enables us to meet our mission challenges, especially those of our ever-evolving national security mission. The Laboratory Directed Research and Development (LDRD) annual report for fiscal year 2008 (FY08) provides a summary of LDRD-funded projects for the fiscal year and consists of two parts: A broad description of the LDRD Program, the LDRD portfolio-management process, program statistics for the year, and highlights of accomplishments for the year. A summary of each project, submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to Department of Energy (DOE)/National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laboratory (LLNL) mission areas, the technical progress achieved in FY08, and a list of publications that resulted from the research in FY08. Summaries are organized in sections by research category (in alphabetical order). Within each research category, the projects are listed in order of their LDRD project category: Strategic Initiative (SI), Exploratory Research (ER), Laboratory-Wide Competition (LW), and Feasibility Study (FS). Within each project category, the individual project summaries appear in order of their project tracking code, a unique identifier that consists of three elements. The first is the fiscal year the project began, the second represents the project category, and the third identifies the serial number of the proposal for that fiscal year.

  10. SEP Success Story: Research Laboratory Experiments with Energy Efficiency Upgrades

    Broader source: Energy.gov [DOE]

    This month, the University of Kentucky celebrated the completion of a newly constructed research laboratory, thanks to an investment from the Energy Department’s State Energy Program (SEP) through the American Recovery and Reinvestment Act (ARRA) of 2009. Learn more.

  11. Conceptual Design Report for the Irradiated Materials Characterization Laboratory (IMCL)

    SciTech Connect (OSTI)

    Stephanie Austad

    2010-06-01

    This document describes the design at a conceptual level for the Irradiated Materials Characterization Laboratory (IMCL) to be located at the Materials and Fuels Complex (MFC) at the Idaho National Laboratory (INL). The IMCL is an 11,000-ft2, Hazard Category-2 nuclear facility that is designed for use as a state of the-art nuclear facility for the purpose of hands-on and remote handling, characterization, and examination of irradiated and nonirradiated nuclear material samples. The IMCL will accommodate a series of future, modular, and reconfigurable instrument enclosures or caves. To provide a bounding design basis envelope for the facility-provided space and infrastructure, an instrument enclosure or cave configuration was developed and is described in some detail. However, the future instrument enclosures may be modular, integral with the instrument, or reconfigurable to enable various characterization environments to be configured as changes in demand occur. They are not provided as part of the facility.

  12. FY2007 Laboratory Directed Research and Development Annual Report

    SciTech Connect (OSTI)

    Craig, W W; Sketchley, J A; Kotta, P R

    2008-03-20

    The Laboratory Directed Research and Development (LDRD) annual report for fiscal year 2007 (FY07) provides a summary of LDRD-funded projects for the fiscal year and consists of two parts: An introduction to the LDRD Program, the LDRD portfolio-management process, program statistics for the year, and highlights of accomplishments for the year. A summary of each project, submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to Department of Energy (DOE)/National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laboratory (LLNL) mission areas, the technical progress achieved in FY07, and a list of publications that resulted from the research in FY07. Summaries are organized in sections by research category (in alphabetical order). Within each research category, the projects are listed in order of their LDRD project category: Strategic Initiative (SI), Exploratory Research (ER), Laboratory-Wide Competition (LW), and Feasibility Study (FS). Within each project category, the individual project summaries appear in order of their project tracking code, a unique identifier that consists of three elements. The first is the fiscal year the project began, the second represents the project category, and the third identifies the serial number of the proposal for that fiscal year.

  13. Laboratory Directed Research and Development FY 2000 Annual Progress Report

    SciTech Connect (OSTI)

    Los Alamos National Laboratory

    2001-05-01

    This is the FY00 Annual Progress report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes progress on each project conducted during FY00, characterizes the projects according to their relevance to major funding sources, and provides an index to principal investigators. Project summaries are grouped by LDRD component: Directed Research and Exploratory Research. Within each component, they are further grouped into the ten technical categories: (1) atomic, molecular, optical, and plasma physics, fluids, and beams, (2) bioscience, (3) chemistry, (4) computer science and software engineering, (5) engineering science, (6) geoscience, space science, and astrophysics, (7) instrumentation and diagnostics, (8) materials science, (9) mathematics, simulation, and modeling, and (10) nuclear and particle physics.

  14. Laboratory Directed Research and Development Program FY 2006

    SciTech Connect (OSTI)

    Hansen , Todd

    2007-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness.

  15. Laboratory Directed Research and Development Program FY98

    SciTech Connect (OSTI)

    Hansen, T.; Chartock, M.

    1999-02-05

    The Ernest Orlando Lawrence Berkeley National Laboratory (LBNL or Berkeley Lab) Laboratory Directed Research and Development Program FY 1998 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The LBNL LDRD program is a critical tool for directing the Laboratory's forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for LBNL scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances LBNL's core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. All projects are work in forefront areas of science and technology. Areas eligible for support include the following: Advanced study of hypotheses, concepts, or innovative approaches to scientific or technical problems; Experiments and analyses directed toward ''proof of principle'' or early determination of the utility of new scientific ideas, technical concepts, or devices; and Conception and preliminary technical analyses of experimental facilities or devices.

  16. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT PROGRAM ACTIVITIES FOR FY2002.

    SciTech Connect (OSTI)

    FOX,K.J.

    2002-12-31

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $450 million. There are about 3,000 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 4 1 3.2A, ''Laboratory Directed Research and Development,'' January 8, 2001, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 413.2A. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL. The LDRD Annual Report contains summaries of all research activities funded during Fiscal Year 2002. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, the LDRD activities have resulted in numerous publications in various professional and scientific journals and presentations at meetings and forums. All Fy 2002 projects are listed and tabulated in the Project Funding Table. Also included in this Annual Report in Appendix A is a summary of the proposed projects for FY 2003. The BNL LDRD budget authority by DOE in FY 2002 was $7 million. The actual allocation totaled $6.7 million. The following sections in this report contain the management processes, peer review, and the portfolio's relatedness to BNL's mission, initiatives and strategic plans. Also included is a metric of success indicators.

  17. Laboratory Directed Research and Development Program. FY 1993

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    This report is compiled from annual reports submitted by principal investigators following the close of fiscal year 1993. This report describes the projects supported and summarizes their accomplishments. The program advances the Laboratory`s core competencies, foundations, scientific capability, and permits exploration of exciting new opportunities. Reports are given from the following divisions: Accelerator and Fusion Research, Chemical Sciences, Earth Sciences, Energy and Environment, Engineering, Environment -- Health and Safety, Information and Computing Sciences, Life Sciences, Materials Sciences, Nuclear Science, Physics, and Structural Biology. (GHH)

  18. COLUMBIA RADIATION LABORATORY RESEARCH INVESTIGATION DIRECTED TOWARD EXTENDING

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    iVP-^"^^? COLUMBIA RADIATION LABORATORY RESEARCH INVESTIGATION DIRECTED TOWARD EXTENDING THE USEFUL RANGE OF THE ELECTROMAGNETIC SPECTRUM Special Technical Report Signal Corps Contract DA-36-039 SC-64630 DA Project No. 3-99-10-022 SC Project No. 102B U. S. Army Laboratory Procurement Office Signal Corps Supply Agency Fort Monmouth, New Jersey The Trustees of Columbia University in the City of New York Box 6, Low Memorial Library New York 27, New York March 1, 1956 DISCLAIMER Portions of

  19. Research and Development Program for transportation packagings at Sandia National Laboratories

    SciTech Connect (OSTI)

    Hohnstreiter, G.F.; Sorenson, K.B.

    1995-02-01

    This document contains information about the research and development programs dealing with waste transport at Sandia National Laboratories. This paper discusses topics such as: Why new packaging is needed; analytical methodologies and design codes;evaluation of packaging components; materials characterization; creative packaging concepts; packaging engineering and analysis; testing; and certification support.

  20. Laboratory Directed Research and Development Program FY2004

    SciTech Connect (OSTI)

    Hansen, Todd C.

    2005-03-22

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Goals that are codified in DOE's September 2003 Strategic Plan, with a primary focus on Advancing Scientific Understanding. For that goal, the Fiscal Year (FY) 2004 LDRD projects support every one of the eight strategies described in the plan. In addition, LDRD efforts support the goals of Investing in America's Energy Future (six of the fourteen strategies), Resolving the Environmental Legacy (four of the eight strategies), and Meeting National Security Challenges (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD supports Office of Science strategic plans, including the 20 year Scientific Facilities Plan and the draft Office of Science Strategic Plan. The research also supports the strategic directions periodically under review by the Office of Science Program Offices, such as strategic LDRD projects germane to new research facility concepts and new fundamental science directions.

  1. Evaluation of Radiometers Deployed at the National Renewable Energy Laboratory's Solar Radiation Research Laboratory

    SciTech Connect (OSTI)

    Habte, A.; Wilcox, S.; Stoffel, T.

    2014-02-01

    This study analyzes the performance of various commercially available radiometers used for measuring global horizontal irradiances and direct normal irradiances. These include pyranometers, pyrheliometers, rotating shadowband radiometers, and a pyranometer with fixed internal shading and are all deployed at the National Renewable Energy Laboratory's Solar Radiation Research Laboratory. Data from 32 global horizontal irradiance and 19 direct normal irradiance radiometers are presented. The radiometers in this study were deployed for one year (from April 1, 2011, through March 31, 2012) and compared to measurements from radiometers with the lowest values of estimated measurement uncertainties for producing reference global horizontal irradiances and direct normal irradiances.

  2. Laboratory directed research and development program FY 1999

    SciTech Connect (OSTI)

    Hansen, Todd; Levy, Karin

    2000-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY99.

  3. Laboratory Directed Research and Development Program FY 2001

    SciTech Connect (OSTI)

    Hansen, Todd; Levy, Karin

    2002-03-15

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY01.

  4. Federal laboratory nondestructive testing research and development applicable to industry

    SciTech Connect (OSTI)

    Smith, S.A.; Moore, N.L.

    1987-02-01

    This document presents the results of a survey of nondestructive testing (NDT) and related sensor technology research and development (R and D) at selected federal laboratories. Objective was to identify and characterize NDT activities that could be applied to improving energy efficiency and overall productivity in US manufacturing. Numerous federally supported R and D programs were identified in areas such as acoustic emissions, eddy current, radiography, computer tomography and ultrasonics. A Preliminary Findings Report was sent to industry representatives, which generated considerable interest.

  5. 1996 Laboratory directed research and development annual report

    SciTech Connect (OSTI)

    Meyers, C.E.; Harvey, C.L.; Lopez-Andreas, L.M.; Chavez, D.L.; Whiddon, C.P.

    1997-04-01

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 1996. In addition to a programmatic and financial overview, the report includes progress reports from 259 individual R&D projects in seventeen categories. The general areas of research include: engineered processes and materials; computational and information sciences; microelectronics and photonics; engineering sciences; pulsed power; advanced manufacturing technologies; biomedical engineering; energy and environmental science and technology; advanced information technologies; counterproliferation; advanced transportation; national security technology; electronics technologies; idea exploration and exploitation; production; and science at the interfaces - engineering with atoms.

  6. Laboratory Directed Research and Development Program, FY 1992

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    This report is compiled from annual reports submitted by principal investigators following the close of the 1992 fiscal year. It describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Divisions that report include: Accelerator and Fusion Research, Chemical Sciences, Earth Sciences, Energy and Environment, Engineering, Environment and Safety and Health, Information and Computing Sciences, Life Sciences, Materials Sciences, Nuclear Science, Physics and Structural Biology.

  7. Laboratory-directed research and development: FY 1996 progress report

    SciTech Connect (OSTI)

    Vigil, J.; Prono, J.

    1997-05-01

    This report summarizes the FY 1996 goals and accomplishments of Laboratory-Directed Research and Development (LDRD) projects. It gives an overview of the LDRD program, summarizes work done on individual research projects, and provides an index to the projects` principal investigators. Projects are grouped by their LDRD component: Individual Projects, Competency Development, and Program Development. Within each component, they are further divided into nine technical disciplines: (1) materials science, (2) engineering and base technologies, (3) plasmas, fluids, and particle beams, (4) chemistry, (5) mathematics and computational sciences, (6) atomic and molecular physics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) biosciences.

  8. Manhattan Project: Early Bomb Design, Los Alamos: Laboratory, 1943-1944

    Office of Scientific and Technical Information (OSTI)

    Little Boy at Tinian Island, August 1945 EARLY BOMB DESIGN (Los Alamos: Laboratory, 1943-1944) Events > Bringing it All Together, 1942-1945 Establishing Los Alamos, 1942-1943 Early Bomb Design, 1943-1944 Basic Research at Los Alamos, 1943-1944 Implosion Becomes a Necessity, 1944 Oak Ridge and Hanford Come Through, 1944-1945 Final Bomb Design, 1944-1945 Atomic Rivals and the ALSOS Mission, 1938-1945 Espionage and the Manhattan Project, 1940-1945 Early work on the design of the atomic bomb

  9. Argonne National Laboratory annual report of Laboratory Directed Research and Development Program Activities FY 2009.

    SciTech Connect (OSTI)

    Office of the Director

    2010-04-09

    I am pleased to submit Argonne National Laboratory's Annual Report on its Laboratory Directed Research and Development (LDRD) activities for fiscal year 2009. Fiscal year 2009 saw a heightened focus by DOE and the nation on the need to develop new sources of energy. Argonne scientists are investigating many different sources of energy, including nuclear, solar, and biofuels, as well as ways to store, use, and transmit energy more safely, cleanly, and efficiently. DOE selected Argonne as the site for two new Energy Frontier Research Centers (EFRCs) - the Institute for Atom-Efficient Chemical Transformations and the Center for Electrical Energy Storage - and funded two other EFRCs to which Argonne is a major partner. The award of at least two of the EFRCs can be directly linked to early LDRD-funded efforts. LDRD has historically seeded important programs and facilities at the lab. Two of these facilities, the Advanced Photon Source and the Center for Nanoscale Materials, are now vital contributors to today's LDRD Program. New and enhanced capabilities, many of which relied on LDRD in their early stages, now help the laboratory pursue its evolving strategic goals. LDRD has, since its inception, been an invaluable resource for positioning the Laboratory to anticipate, and thus be prepared to contribute to, the future science and technology needs of DOE and the nation. During times of change, LDRD becomes all the more vital for facilitating the necessary adjustments while maintaining and enhancing the capabilities of our staff and facilities. Although I am new to the role of Laboratory Director, my immediate prior service as Deputy Laboratory Director for Programs afforded me continuous involvement in the LDRD program and its management. Therefore, I can attest that Argonne's program adhered closely to the requirements of DOE Order 413.2b and associated guidelines governing LDRD. Our LDRD program management continually strives to be more efficient. In addition to meeting all reporting requirements during fiscal year 2009, our LDRD Office continues to enhance its electronic systems to streamline the LDRD management process. You will see from the following individual project reports that Argonne's researchers have once again done a superb job pursuing projects at the forefront of their respective fields and have contributed significantly to the advancement of Argonne's strategic thrusts. This work has not only attracted follow-on sponsorship in many cases, but is also proving to be a valuable basis upon which to continue realignment of our strategic portfolio to better match the Laboratory's Strategic Plan.

  10. Laboratory Directed Research & Development Page National Energy Research Scientific Computing Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Directed Research & Development Page National Energy Research Scientific Computing Center T3E Individual Node Optimization Michael Stewart, SGI/Cray, 4/9/98 * Introduction * T3E Processor * T3E Local Memory * Cache Structure * Optimizing Codes for Cache Usage * Loop Unrolling * Other Useful Optimization Options * References 1 Laboratory Directed Research & Development Page National Energy Research Scientific Computing Center Introduction * Primary topic will be single processor

  11. Laboratory Directed Research and Development Program FY 2008 Annual Report

    SciTech Connect (OSTI)

    editor, Todd C Hansen

    2009-02-23

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2008 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD program supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the Office of Science Program Offices, such as LDRD projects germane to new research facility concepts and new fundamental science directions. Berkeley Lab LDRD program also play an important role in leveraging DOE capabilities for national needs. The fundamental scientific research and development conducted in the program advances the skills and technologies of importance to our Work For Others (WFO) sponsors. Among many directions, these include a broad range of health-related science and technology of interest to the National Institutes of Health, breast cancer and accelerator research supported by the Department of Defense, detector technologies that should be useful to the Department of Homeland Security, and particle detection that will be valuable to the Environmental Protection Agency. The Berkeley Lab Laboratory Directed Research and Development Program FY2008 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the LDRD program planning and documentation process that includes an annual planning cycle, project selection, implementation, and review.

  12. NEW - DOE O 413.2C, Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    To establish Department of Energy (DOE) requirements for laboratory directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation.

  13. Laboratory Directed Research and Development Annual Report for 2009

    SciTech Connect (OSTI)

    Hughes, Pamela J.

    2010-03-31

    This report documents progress made on all LDRD-funded projects during fiscal year 2009. As a US Department of Energy (DOE) Office of Science (SC) national laboratory, Pacific Northwest National Laboratory (PNNL) has an enduring mission to bring molecular and environmental sciences and engineering strengths to bear on DOE missions and national needs. Their vision is to be recognized worldwide and valued nationally for leadership in accelerating the discovery and deployment of solutions to challenges in energy, national security, and the environment. To achieve this mission and vision, they provide distinctive, world-leading science and technology in: (1) the design and scalable synthesis of materials and chemicals; (2) climate change science and emissions management; (3) efficient and secure electricity management from generation to end use; and (4) signature discovery and exploitation for threat detection and reduction. PNNL leadership also extends to operating EMSL: the Environmental Molecular Sciences Laboratory, a national scientific user facility dedicated to providing itnegrated experimental and computational resources for discovery and technological innovation in the environmental molecular sciences.

  14. Tritium research laboratory cleanup and transition project final report

    SciTech Connect (OSTI)

    Johnson, A.J.

    1997-02-01

    This Tritium Research Laboratory Cleanup and Transition Project Final Report provides a high-level summary of this project`s multidimensional accomplishments. Throughout this report references are provided for in-depth information concerning the various topical areas. Project related records also offer solutions to many of the technical and or administrative challenges that such a cleanup effort requires. These documents and the experience obtained during this effort are valuable resources to the DOE, which has more than 1200 other process contaminated facilities awaiting cleanup and reapplication or demolition.

  15. 1997 Laboratory directed research and development. Annual report

    SciTech Connect (OSTI)

    Meyers, C.E.; Harvey, C.L.; Chavez, D.L.; Whiddon, C.P.

    1997-12-31

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 1997. In addition to a programmatic and financial overview, the report includes progress reports from 218 individual R&D projects in eleven categories. Theses reports are grouped into the following areas: materials science and technology; computer sciences; electronics and photonics; phenomenological modeling and engineering simulation; manufacturing science and technology; life-cycle systems engineering; information systems; precision sensing and analysis; environmental sciences; risk and reliability; national grand challenges; focused technologies; and reserve.

  16. Manhattan Project: Final Bomb Design, Los Alamos: Laboratory, 1944-1945

    Office of Scientific and Technical Information (OSTI)

    The first 0.11 seconds of the nuclear age, Trinity, July 16, 1945. FINAL BOMB DESIGN (Los Alamos: Laboratory, 1944-1945) Events > Bringing It All Together, 1942-1945 Establishing Los Alamos, 1942-1943 Early Bomb Design, 1943-1944 Basic Research at Los Alamos, 1943-1944 Implosion Becomes a Necessity, 1944 Oak Ridge and Hanford Come Through, 1944-1945 Final Bomb Design, 1944-1945 Atomic Rivals and the ALSOS Mission, 1938-1945 Espionage and the Manhattan Project, 1940-1945 American troops

  17. Laboratory Directed Research and Development Program FY2011

    SciTech Connect (OSTI)

    none, none

    2012-04-27

    Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2011 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). Going forward in FY 2012, the LDRD program also supports the Goals codified in the new DOE Strategic Plan of May, 2011. The LDRD program also supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the Office of Science Program Offices, such as LDRD projects germane to new research facility concepts and new fundamental science directions. Brief summares of projects and accomplishments for the period for each division are included.

  18. Overview of Engine Combustion Research at Sandia National Laboratories

    SciTech Connect (OSTI)

    Robert W. Carling; Gurpreet Singh

    1999-04-26

    The objectives of this paper are to describe the ongoing projects in diesel engine combustion research at Sandia National Laboratories' Combustion Research Facility and to detail recent experimental results. The approach we are employing is to assemble experimental hardware that mimic realistic engine geometries while enabling optical access. For example, we are using multi-cylinder engine heads or one-cylinder versions of production heads mated to one-cylinder engine blocks. Optical access is then obtained through a periscope in an exhaust valve, quartz windows in the piston crown, windows in spacer plates just below the head, or quartz cylinder liners. We have three diesel engine experiments supported by the Department of Energy, Office of Heavy Vehicle Technologies: a one-cylinder version of a Cummins heavy-duty engine, a diesel simulation facility, and a one-cylinder Caterpillar engine to evaluate combustion of alternative diesel fuels.

  19. Laboratory Directed Research and Development 1998 Annual Report

    SciTech Connect (OSTI)

    Pam Hughes; Sheila Bennett eds.

    1999-07-14

    The Laboratory's Directed Research and Development (LDRD) program encourages the advancement of science and the development of major new technical capabilities from which future research and development will grow. Through LDRD funding, Pacific Northwest continually replenishes its inventory of ideas that have the potential to address major national needs. The LDRD program has enabled the Laboratory to bring to bear its scientific and technical capabilities on all of DOE's missions, particularly in the arena of environmental problems. Many of the concepts related to environmental cleanup originally developed with LDRD funds are now receiving programmatic support from DOE, LDRD-funded work in atmospheric sciences is now being applied to DOE's Atmospheric Radiation Measurement Program. We also have used concepts initially explored through LDRD to develop several winning proposals in the Environmental Management Science Program. The success of our LDRD program is founded on good management practices that ensure funding is allocated and projects are conducted in compliance with DOE requirements. We thoroughly evaluate the LDRD proposals based on their scientific and technical merit, as well as their relevance to DOE's programmatic needs. After a proposal is funded, we assess progress annually using external peer reviews. This year, as in years past, the LDRD program has once again proven to be the major enabling vehicle for our staff to formulate new ideas, advance scientific capability, and develop potential applications for DOE's most significant challenges.

  20. NETL Researcher Honored with 2013 Federal Laboratory Consortium...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    King of the National Energy Technology Laboratory (NETL) has been awarded a Far West region Federal Laboratory Consortium (FLC) award for Outstanding Technology Development for his...

  1. Laboratory directed research and development program FY 2003

    SciTech Connect (OSTI)

    Hansen, Todd

    2004-03-27

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. In FY03, Berkeley Lab was authorized by DOE to establish a funding ceiling for the LDRD program of $15.0 M, which equates to about 3.2% of Berkeley Lab's FY03 projected operating and capital equipment budgets. This funding level was provided to develop new scientific ideas and opportunities and allow the Berkeley Lab Director an opportunity to initiate new directions. Budget constraints limited available resources, however, so only $10.1 M was expended for operating and $0.6 M for capital equipment (2.4% of actual Berkeley Lab FY03 costs). In FY03, scientists submitted 168 proposals, requesting over $24.2 M in operating funding. Eighty-two projects were funded, with awards ranging from $45 K to $500 K. These projects are summarized in Table 1.

  2. Idaho National Laboratory Directed Research and Development FY-2009

    SciTech Connect (OSTI)

    Not Available

    2010-03-01

    The FY 2009 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support the future DOE missions and national research priorities. LDRD is essential to the INL - it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enhances technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development. Established by Congress in 1991, LDRD proves its benefit each year through new programs, intellectual property, patents, copyrights, publications, national and international awards, and new hires from the universities and industry, which helps refresh the scientific and engineering workforce. The benefits of INL's LDRD research are many as shown in the tables below. Last year, 91 faculty members from various universities contributed to LDRD research, along with 7 post docs and 64 students. Of the total invention disclosures submitted in FY 2009, 7 are attributable to LDRD research. Sixty three refereed journal articles were accepted or published, and 93 invited presentations were attributable to LDRD research conducted in FY 2009. The LDRD Program is administered in accordance with requirements set in DOE Order 413.2B, accompanying contractor requirements, and other DOE and federal requirements invoked through the INL contract. The LDRD Program is implemented in accordance with the annual INL LDRD Program Plan, which is approved by the DOE, Nuclear Energy Program Secretarial Office. This plan outlines the method the laboratory uses to develop its research portfolio, including peer and management reviews, and the use of other INL management systems to ensure quality, financial, safety, security and environmental requirements and risks are appropriately handled. The LDRD Program is assessed annually for both output and process efficiency to ensure the investment is providing expected returns on technical capability enhancement. The call for proposals and project selection process for the INL LDRD program begins typically in April, with preliminary budget allocations, and submittal of the technical requests for preproposals. A call for preproposals is made at this time as well, and the preparation of full proposals follows in June and closes in July. The technical and management review follows this, and the portfolio is submitted for DOE-ID concurrence in early September. Project initiation is in early October. The technical review process is independent of, and in addition to the management review. These review processes are very stringent and comprehensive, ensuring technical viability and suitable technical risk are encompassed within each project that is selected for funding. Each proposal is reviewed by two or three anonymous technical peers, and the reviews are consolidated into a cohesive commentary of the overall research based on criteria published in the call for proposals. A grade is assigned to the technical review and the review comments and grade are released back to the principal investigators and the managers interested in funding the proposals. Management criteria are published in the call for proposals, and management comments and selection results are available for principal investigator and other interested management as appropriate. The DOE Idaho Operations Office performs a final review and concurs on each project prior to project authorization, and on major scope/budget changes should they occur during the project's implementation. This report begins with several research highlights that exemplify the diversity of scientific and engineering research performed at the INL in FY 2009. Progress summaries for all projects are organized into sections reflecting the major areas of research focus at the INL. These sections begin with the DOE-NE Nuclear Science and Technology mission support area, followed by the National and Homeland Security and the Energy and Environmental Science and Technology areas. The major INL initiatives and the INL's Distinctive Signatures areas complete the project summaries. The appendices provide information on project relevance to DOE missions and major national programs as well as an author index, list of refereed publications and index of key terms.

  3. FY 1999 Laboratory Directed Research and Development annual report

    SciTech Connect (OSTI)

    PJ Hughes

    2000-06-13

    A short synopsis of each project is given covering the following main areas of research and development: Atmospheric sciences; Biotechnology; Chemical and instrumentation analysis; Computer and information science; Design and manufacture engineering; Ecological science; Electronics and sensors; Experimental technology; Health protection and dosimetry; Hydrologic and geologic science; Marine sciences; Materials science; Nuclear science and engineering; Process science and engineering; Sociotechnical systems analysis; Statistics and applied mathematics; and Thermal and energy systems.

  4. Applying User Centered Design to Research Work

    SciTech Connect (OSTI)

    Scholtz, Jean; Love, Oriana J.; Pike, William A.; Bruce, Joseph R.; Kim, Dee DH; McBain, Arthur S.

    2014-07-01

    The SuperIdentity (SID) research project is a collaboration between six universities in the UK (Bath, Dundee, Kent, Leicester, Oxford, and Southampton) and the Pacific Northwest National Laboratory (PNNL). SID offers an innovative and exciting new approach to the concept of identity. The assumption underlying our hypothesis is that while there may be many dimensions to an identity - some more stable than others - all should ultimately reference back to a single core identity or a 'SuperIdentity.' The obvious consequence is that identification is improved by the combination of measures. Our work at PNNL has focused on the developing use cases to use in developing a model of identity and in developing visualizations for both researchers to explore the model and in the future for end users to use in determining various paths that may be possible to obtain various identity attributes from a set that is already known.

  5. DRAFT - DOE O 413.2C, Laboratory Directed Research and Development...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    13.2C, Laboratory Directed Research and Development by Website Administrator The Order establishes DOE requirements for laboratory directed research and development. DOE O 413.2C,...

  6. Review of subsidence prediction research conducted at Sandia National Laboratories

    SciTech Connect (OSTI)

    Sutherland, H.J.; Schuler, K.W.

    1982-04-01

    This paper reviews the results of the subsidence research program at Sandia National Laboratories. The manuscript highlights the following: the application of empirical methods (profile functions) to the subsidence above longwall panels in the US; the use of the rubble model to describe the behavior of broken strata as it distends when it falls to the mine floor (or top of the rubble pile) and then is subsequently compacted as it is loaded by overlying elements of strata; and, the application of physical modeling techniques (centrifuge simulations) and numerical techniques to study the failure mechanisms in highly structured stratigraphy. The capabilities of the latter two are illustrated by comparing their predictions to the results of a field case that has complicated stratigraphy.

  7. Establishing and Promoting a Culture of Safety in Chemistry Laboratory Research

    SciTech Connect (OSTI)

    Fryberger, Teresa

    2014-12-23

    Final technical/scientific report for the project, Establishing and Promoting a Culture of Safety in Chemistry Laboratory Research.

  8. Independent Oversight Review, Los Alamos National Laboratory Chemistry and Metallurgy Research Facility- January 2012

    Broader source: Energy.gov [DOE]

    Review of the Los Alamos National Laboratory Chemistry and Metallurgy Research Facility Fire Suppression Vital Safety System

  9. Pacific Northwest Laboratory annual report for 1990 to the DOE Office of Energy Research

    SciTech Connect (OSTI)

    Park, J. F.; Kreml, S. A.; Wildung, R. E.; Hefty, M. G.; Perez, D. A.; Chase, K. K.; Elderkin, C. E.; Owczarski, E. L.; Toburen, L. H.; Parnell, K. A.; Faust, L. G.; Moraski, R. V.; Selby, J. M.; Hilliard, D. K.; Tenforde, T. S.

    1991-02-01

    This report summarizes progress in the environmental sciences research conducted by Pacific Northwest Laboratory (PNL) for the Office of Health and Environment Research in FY 1990. Research is directed toward developing the knowledge needed to guide government policy and technology development for two important environmental problems: environmental restoration and global change. The report is organized by major research areas contributing to resolution of these problems. Additional sections summarize exploratory research, educational institutional interactions, technology transfer, and publications. The PNL research program continues make contributions toward defining and quantifying processes that effect the environment at the local, regional, and global levels. Each research project forms a component in an integrated laboratory, intermediate-scale, and field approach designed to examine multiple phenomena at increasing levels of complexity. This approach is providing system-level insights into critical environmental processes. University liaisons continue to be expanded to strengthen the research and to use PNL resources to train the scientists needed to address long-term environmental problems.

  10. NETL Researcher Honored with 2013 Federal Laboratory Award Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Award Morgantown, W.Va. - Dr. Stephen E. Zitney of the National Energy Technology Laboratory (NETL) has been awarded a Mid-Atlantic region Federal Laboratory Consortium (FLC) award...

  11. Hydraulic manipulator design, analysis, and control at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Kress, R.L.; Jansen, J.F.; Love, L.J.; Basher, A.M.H.

    1996-09-01

    To meet the increased payload capacities demanded by present-day tasks, manipulator designers have turned to hydraulics as a means of actuation. Hydraulics have always been the actuator of choice when designing heavy-life construction and mining equipment such as bulldozers, backhoes, and tunneling devices. In order to successfully design, build, and deploy a new hydraulic manipulator (or subsystem) sophisticated modeling, analysis, and control experiments are usually needed. To support the development and deployment of new hydraulic manipulators Oak Ridge National Laboratory (ORNL) has outfitted a significant experimental laboratory and has developed the software capability for research into hydraulic manipulators, hydraulic actuators, hydraulic systems, modeling of hydraulic systems, and hydraulic controls. The hydraulics laboratory at ORNL has three different manipulators. First is a 6-Degree-of-Freedom (6-DoF), multi-planer, teleoperated, flexible controls test bed used for the development of waste tank clean-up manipulator controls, thermal studies, system characterization, and manipulator tracking. Finally, is a human amplifier test bed used for the development of an entire new class of teleoperated systems. To compliment the hardware in the hydraulics laboratory, ORNL has developed a hydraulics simulation capability including a custom package to model the hydraulic systems and manipulators for performance studies and control development. This paper outlines the history of hydraulic manipulator developments at ORNL, describes the hydraulics laboratory, discusses the use of the equipment within the laboratory, and presents some of the initial results from experiments and modeling associated with these hydraulic manipulators. Included are some of the results from the development of the human amplifier/de-amplifier concepts, the characterization of the thermal sensitivity of hydraulic systems, and end-point tracking accuracy studies. Experimental and analytical results are included.

  12. Laboratory Directed Research and Development (LDRD) | U.S. DOE Office of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science (SC) Directed Research and Development (LDRD) Laboratory Policy (LP) LP Home About Laboratory Appraisal Process Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Frequently Asked Questions Impact Legislative History Program Contacts Management & Operating (M&O) Contracts Technology Transfer Work for Others Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P:

  13. Research Update: Towards designed functionalities in oxide-based...

    Office of Scientific and Technical Information (OSTI)

    Research Update: Towards designed functionalities in oxide-based electronic materials Citation Details In-Document Search Title: Research Update: Towards designed functionalities...

  14. SNERDI Shanghai Nuclear Engineering Research and Design Institute...

    Open Energy Info (EERE)

    SNERDI Shanghai Nuclear Engineering Research and Design Institute Jump to: navigation, search Name: SNERDI (Shanghai Nuclear Engineering Research and Design Institute) Place:...

  15. Argonne's Exemplary Student Research Program | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne's Exemplary Student Research Program Share

  16. Laboratories | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories Our laboratories are available to industry and other organizations for researching, developing, and evaluating energy technologies. We have experienced lab technicians, scientists and engineers ready to design and run tests for you. Some labs are available for conducting your own research. A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z A Accelerated Exposure Testing Laboratory Advanced Optical Materials Laboratory Advanced

  17. Chemistry and materials science progress report. Weapons-supporting research and laboratory directed research and development: FY 1995

    SciTech Connect (OSTI)

    NONE

    1996-04-01

    This report covers different materials and chemistry research projects carried out a Lawrence Livermore National Laboratory during 1995 in support of nuclear weapons programs and other programs. There are 16 papers supporting weapons research and 12 papers supporting laboratory directed research.

  18. Ernest Orlando Berkeley National Laboratory - Fundamental and applied research on lean premixed combustion

    SciTech Connect (OSTI)

    Cheng, Robert K.

    1999-07-07

    Ernest Orland Lawrence Berkeley National Laboratory (Berkeley Lab) is the oldest of America's national laboratories and has been a leader in science and engineering technology for more than 65 years, serving as a powerful resource to meet Us national needs. As a multi-program Department of Energy laboratory, Berkeley Lab is dedicated to performing leading edge research in the biological, physical, materials, chemical, energy, environmental and computing sciences. Ernest Orlando Lawrence, the Lab's founder and the first of its nine Nobel prize winners, invented the cyclotron, which led to a Golden Age of particle physics and revolutionary discoveries about the nature of the universe. To this day, the Lab remains a world center for accelerator and detector innovation and design. The Lab is the birthplace of nuclear medicine and the cradle of invention for medical imaging. In the field of heart disease, Lab researchers were the first to isolate lipoproteins and the first to determine that the ratio of high density to low density lipoproteins is a strong indicator of heart disease risk. The demise of the dinosaurs--the revelation that they had been killed off by a massive comet or asteroid that had slammed into the Earth--was a theory developed here. The invention of the chemical laser, the unlocking of the secrets of photosynthesis--this is a short preview of the legacy of this Laboratory.

  19. New Field Laboratories and Related Research To Help Promote Environmen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... aimed at addressing specific areas of interest; these feature both initial laboratory ... field potential, development of upscaling theory, and field testing of the cyclic gas ...

  20. A Sustainable Focus for Laboratory Design, Engineering, and Operation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    International Institute for Sustainable Laboratories (I2SL), partnership changes, initiatives, energy efficiency ... More Documents & Publications Top ECMs for Labs and Data ...

  1. Mechanical Design of Hybrid Densitometer for Laboratory Applications

    SciTech Connect (OSTI)

    G. Walton; P. J. Polk; S. -T. Hsue

    1999-01-01

    The hybrid K-edge densitometry (KED) and x-ray fluorescence (XRF) densitometer is a unique nondestructive assay (NDA) technique to determine the concentrations of nuclear material (SNM) in solutions. The technique is ideally suited to assay the dissolver solutions as well as the uranium and plutonium product solutions from reprocessing It is an important instrument for safeguarding reprocessing; it is also a useful tool in analytical laboratories because of its capability of analyzing mixed solutions of SNM without chemical separation. Figure 1 shows the hardware of an hybrid system developed at Los Alamos. The hybrid densitometer employs a combination of two complimentary techniques: absorption KED and XRF. The KED technique measures the transmission of a tightly collimated photon beam through the sample; it is therefore quite insensitive to the radiation emitted by the sample material. Fission product level of {approximately}1 Ci/mL can be tolerated. The technique is insensitive to matrix variation. XRF measures the fluorescent x-rays from the same sample and can be used to determine the ratios of SNM. The technique can be applied to thorium, uranium, neptunium, plutonium, and americium concentration determination. The technique can also be applied to mixed solutions found in nuclear fuel cycle without separation: thorium-uranium, uranium-plutoniun neptunium-plutonium-americium. The design of the hybrid densitometer is shown schematically in Figs. 1 and 2; Fig. 1 shows the top view; Fig. 2 shows the side view. The heart of the design is the changer. The sample changer can accommodate a sample tray, which holds up to six samples. The samples can be a 2-cm path length cell, 4-cm path length cell, or a mixture of both sizes. The sample tray is controlled by a "Compumotor" which in turn is controlled by a computer. The absolute position of the sample cell can be reproduced to a standard deviation of 0.02 mm. The sample changer is housed inside square stainless steel tubing which is bolted onto the glove box. The sample cells can be observed during the movement or assay through a leaded glass viewport, as shown in Fig. 3.

  2. DOE O 413.2B Admin Chg 1, Laboratory Directed Research and Development

    Broader source: Energy.gov [DOE]

    The Department has made administrative changes to the above listed Directive. The order establishes DOE requirements for laboratory directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation.

  3. Signal and Image Processing Research at the Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Roberts, R S; Poyneer, L A; Kegelmeyer, L M; Carrano, C J; Chambers, D H; Candy, J V

    2009-06-29

    Lawrence Livermore National Laboratory is a large, multidisciplinary institution that conducts fundamental and applied research in the physical sciences. Research programs at the Laboratory run the gamut from theoretical investigations, to modeling and simulation, to validation through experiment. Over the years, the Laboratory has developed a substantial research component in the areas of signal and image processing to support these activities. This paper surveys some of the current research in signal and image processing at the Laboratory. Of necessity, the paper does not delve deeply into any one research area, but an extensive citation list is provided for further study of the topics presented.

  4. Advanced materials by design: bioelectronics | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced materials by design: bioelectronics Transient materials is an emerging area of materials design with the key attribute being the ability to physically dissolve into the...

  5. Sandia National Laboratories Hits Milestone, Gears Up for 2016 Research

    Broader source: Energy.gov [DOE]

    Sandia National Laboratories (SNL) recently reached a major milestone by successfully remounting a rotor on one of its heavily modified Vestas V27 turbines at the SWiFT facility in Lubbock, Texas.

  6. NREL: Wind Research - NREL and Sandia National Laboratories to...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Sandia National Laboratories to Sharpen Wind Farm Turbine Controls A meteorological tower in the background, one wind turbine in the front, and one turbine to the right. A view ...

  7. NREL: Hydrogen and Fuel Cells Research - Safety Sensor Testing Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Sensor Testing Laboratory The Safety Sensor Testing Laboratory at NREL's Energy Systems Integration Facility aims to ensure that hydrogen sensor technology is available to meet end-user needs and to foster the proper use of sensors. Hydrogen sensors are an important enabling technology for the safe implementation of the emerging hydrogen infrastructure. Codes require hydrogen detectors (e.g., NFPA 2-Hydrogen Technologies Code), but currently provide little guidance on deployment. In

  8. Sandia National Laboratories' blade design to be showcased at AWEA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia National Laboratories NNSA's Sandia National Laboratories are responsible for the development, testing, and production of specialized nonnuclear components and quality assurance and systems engineering for all of the United States' nuclear weapons. Sandia has locations in Albuquerque, NM; Livermore, CA; Kauai, HI; and Tonopah, NV. The labs are operated by Sandia Corporation. Visit our website Z-Machine Related News Cheaper catalyst may lower fuel costs for hydrogen-powered cars Sandia

  9. Annular Core Research Reactor at Sandia National Laboratories...

    National Nuclear Security Administration (NNSA)

    Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home NNSA Blog Annular Core Research Reactor at Sandia National ... Annular Core Research Reactor at Sandia National...

  10. Pacific Northwest Laboratory annual report for 1991 to the DOE Office of Energy Research

    SciTech Connect (OSTI)

    Perez, D.A.

    1992-02-01

    This report summarizes progress in environmental sciences research conducted by Pacific Northwest Laboratory (PNL) for the US Department of Energy's (DOE) Office of Health and Environmental Research in FY 1991. Each project in the PNL research program is a component in an integrated laboratory, intermediate-scale, and field approach designed to examine multiple phenomena at increasing levels of complexity. Examples include definition of the role of fundamental geochemical and physical phenomena on the diversity and function of microorganisms in the deep subsurface, and determination of the controls on nutrient, water, and energy dynamics in arid ecosystems and their response to stress at the landscape scale. The Environmental Science Research Center has enable PNL to extend fundamental knowledge of subsurface science to develop emerging new concepts for use in natural systems and in environmental restoration of DOE sites. New PNL investments have been made in developing advanced concepts for addressing chemical desorption kinetics, enzyme transformations and redesign, the role of heterogeneity in contaminant transport, and modeling of fundamental ecological processes.

  11. Laboratory Directed Research and Development Annual Report - Fiscal Year 2000

    SciTech Connect (OSTI)

    Fisher, Darrell R.; Hughes, Pamela J.; Pearson, Erik W.

    2001-04-01

    The projects described in this report represent the Laboratory's investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. In accordance with DOE guidelines, the report provides, a) a director's statement, b) an overview of the laboratory's LDRD program, including PNNL's management process and a self-assessment of the program, c) a five-year project funding table, and d) project summaries for each LDRD project.

  12. EM Laboratory Researcher James Marra Recognized for Leadership

    Broader source: Energy.gov [DOE]

    AIKEN, S.C. – Dr. James Marra, an investigator with EM’s Savannah River National Laboratory (SRNL), was named the 2014 recipient of the D.T. Rankin Award for exemplary service to the Nuclear and Environmental Technology Division of the American Ceramic Society (ACerS).

  13. Laboratory Directed Research and Development FY2010 Annual Report

    SciTech Connect (OSTI)

    Jackson, K J

    2011-03-22

    A premier applied-science laboratory, Lawrence Livermore National Laboratory (LLNL) has at its core a primary national security mission - to ensure the safety, security, and reliability of the nation's nuclear weapons stockpile without nuclear testing, and to prevent and counter the spread and use of weapons of mass destruction: nuclear, chemical, and biological. The Laboratory uses the scientific and engineering expertise and facilities developed for its primary mission to pursue advanced technologies to meet other important national security needs - homeland defense, military operations, and missile defense, for example - that evolve in response to emerging threats. For broader national needs, LLNL executes programs in energy security, climate change and long-term energy needs, environmental assessment and management, bioscience and technology to improve human health, and for breakthroughs in fundamental science and technology. With this multidisciplinary expertise, the Laboratory serves as a science and technology resource to the U.S. government and as a partner with industry and academia. This annual report discusses the following topics: (1) Advanced Sensors and Instrumentation; (2) Biological Sciences; (3) Chemistry; (4) Earth and Space Sciences; (5) Energy Supply and Use; (6) Engineering and Manufacturing Processes; (7) Materials Science and Technology; Mathematics and Computing Science; (8) Nuclear Science and Engineering; and (9) Physics.

  14. Natural Gas Storage Research at Savannah River National Laboratory

    SciTech Connect (OSTI)

    Anton, Don; Sulic, Martin; Tamburello, David A.

    2015-05-04

    As an alternative to imported oil, scientists at the Department of Energy’s Savannah River National Laboratory are looking at abundant, domestically sourced natural gas, as an alternative transportation fuel. SRNL is investigating light, inexpensive, adsorbed natural gas storage systems that may fuel the next generation of automobiles.

  15. Wind Turbine Blade Design | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fabric Wind Turbine Blade Design Offers Clean Energy Click to email this to a friend ... Fabric Wind Turbine Blade Design Offers Clean Energy Today, conventional wind turbine ...

  16. Sandia National Laboratories: Research: Materials Science: Image Gallery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Science Bioscience Computing and Information Science Electromagnetics Engineering Science Geoscience Materials Science About Materials Science Research Image Gallery Video Gallery Facilities Nanodevices and Microsystems Radiation Effects and High Energy Density Science Research Image Gallery

  17. Sandia National Laboratories: Research: Materials Science: Video Gallery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Science Bioscience Computing and Information Science Electromagnetics Engineering Science Geoscience Materials Science About Materials Science Research Image Gallery Video Gallery Facilities Nanodevices and Microsystems Radiation Effects and High Energy Density Science Research Video Gallery

  18. Ames Laboratory will lead new consortium to research caloric...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    research caloric materials, advance refrigeration technology Contacts: For release: Feb. ... friendly and energy-efficient refrigeration technologies, sponsored by DOE's ...

  19. Sandia National Laboratories: Research: Materials Science: About Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Science Bioscience Computing and Information Science Electromagnetics Engineering Science Geoscience Materials Science About Materials Science Research Image Gallery Video Gallery Facilities Nanodevices and Microsystems Radiation Effects and High Energy Density Science Research About Materials Science Xunhu Dai Sandia excels in innovative fundamental materials science research - developing and integrating the theoretical insights, computational simulation tools and deliberate

  20. Sandia National Laboratories: Research: High Consequence, Automation, &

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Robotics: Guided Bullet Technology Guided Bullet Technology Robotics Facility Leveraging the capabilities of the High Consequence, Automation, & Robotics Precision Micro Assembly Lab, we have designed a self-guided .50 caliber projectile that utilizes a laser designated target and is configured to be fired from a small caliber, smooth bore gun barrel. Self-guided projectiles increase the probability of hit at targets at long range. Design The self-guided projectile utilizes a laser

  1. CO-LABS Releases Economic Impact Study of Federal Research Laboratories in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Colorado - News Releases | NREL CO-LABS Releases Economic Impact Study of Federal Research Laboratories in Colorado March 31, 2011 Today, CO-LABS released the broader economic Impact Study of federal research laboratories in Colorado including data referenced by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) in February. NREL's impact on Colorado's economy tripled in just three years boosting Colorado's annual economy $714 million, according to the study prepared

  2. National Renewable Energy Laboratory (NREL) 2006 Research Review

    SciTech Connect (OSTI)

    Not Available

    2007-07-01

    This 2006 issue of the NREL Research Review again reveals just how vital and diverse our research portfolio has become. Our feature story looks at how our move to embrace the tenants of "translational research" is strengthening our ability to meet the nation's energy goals. By closing the gap between basic science and applied research and development (R&D)--and focusing a bright light on the valuable end uses of our work--translational research promises to shorten the time it takes to push new technology off the lab bench and into the marketplace. This issue also examines our research into fuels of the future and our computer modeling of wind power deployment, both of which point out the real-world benefits of our work.

  3. Frontiers: Research Highlights 1946-1996 [50th Anniversary Edition. Argonne National Laboratory

    DOE R&D Accomplishments [OSTI]

    1996-01-01

    This special edition of 'Frontiers' commemorates Argonne National Laboratory's 50th anniversary of service to science and society. America's first national laboratory, Argonne has been in the forefront of U.S. scientific and technological research from its beginning. Past accomplishments, current research, and future plans are highlighted.

  4. Frontiers: Research highlights 1946-1996 [50th Anniversary Edition. Argonne National Laboratory

    SciTech Connect (OSTI)

    1996-12-31

    This special edition of 'Frontiers' commemorates Argonne National Laboratory's 50th anniversary of service to science and society. America's first national laboratory, Argonne has been in the forefront of U.S. scientific and technological research from its beginning. Past accomplishments, current research, and future plans are highlighted.

  5. DOE Research Set-Aside Program | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE Research Contributions to Radiation and Cancer Therapy Resources with Additional Information Planned radiation treatment Peregrine calculation from Mission Possible: DOE Advanced Biomedical Technology Research, page 10 Over the time span of many years, DOE's research has made many contributions to radiation and cancer therapy, including PEREGRINE and Boron Neutron Capture Therapy (BNCT). 'PEREGRINE, a hardware and software system that addresses the problem of radiation therapy dosage using

  6. National Laboratory Concentrating Solar Power Research and Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrating Solar Power Research and Development Motivation The U.S. Department of Energy (DOE) launched the SunShot Initiative as a collaborative national endeavor to make...

  7. NREL: Research Facilities - Laboratories and Facilities by Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    researching a multitude of building technologies, including heating, ventilation, and air-conditioning (HVAC) systems; desiccant cooling and dehumidification systems; active solar...

  8. SEP Success Story: Research Laboratory Experiments with Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Bossone Research Enterprise Center is one of six buildings on Drexel University's Philadelphia campus to undergo energy efficiency upgrades to its heating and cooling systems ...

  9. Opportunities for Field Research | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pine (P. palustris) forests; orangesreds upland hardwoods; pinkviolet forested wetlands; dark blue water. SRS vegetation map RESEARCH SITES Ninety percent (720km2) of the...

  10. What Happens in Research-Based Design | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    paths we have at GE Global Research ("GE Leaders are Researchers Too",). The field of gas turbine heat transfer is growing in importance, and as a result, we have a lot of job...

  11. Sandia National Laboratories: Research: High Consequence, Automation, &

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Robotics: Advanced Controls Controls Robotics Homepage About Robotics Research & Development Advanced Controls One-Control Many Swarm Control Technology Multi-Robot Cooperative Behavior Advanced Manipulation Cybernetics High-Consequence Automation Perception and Decision Tools Unique Mobility Facilities Publications and Factsheets Robotics Image Gallery Robotics Videos Contact Robotics Research Advanced Controls Swarm Sandia's High Consequence, Automation, & Robotics (HCAR) team

  12. Sandia National Laboratories: Research: High Consequence, Automation, &

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Robotics: Advanced Manipulation Manipulation Robotics Homepage About Robotics Research & Development Advanced Controls Advanced Manipulation Mighty Mouse (M2) Sandia Hand Cybernetics High-Consequence Automation Perception and Decision Tools Unique Mobility Facilities Publications and Factsheets Robotics Image Gallery Robotics Videos Contact Robotics Research Advanced Manipulation Addressing robotics challenges The Sandia Hand has overcome issues that have prevented widespread adoption of

  13. Sandia National Laboratories: Research: High Consequence, Automation, &

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Robotics: Facilities High Consequence, Automation, & Robotics Robotics Homepage About Robotics Research & Development Advanced Controls Advanced Manipulation Cybernetics High-Consequence Automation Perception and Decision Tools Unique Mobility Facilities Publications and Factsheets Robotics Image Gallery Robotics Videos Contact Robotics Research Facilities Advancing the evolution of robotic & intelligent system technologies Robot Vehicle Range A cutting-edge outdoor test &

  14. Sandia National Laboratories: Research: Intelligent Systems, Robotics, &

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cybernetics: Contacts High Consequence, Automation, & Robotics Robotics Homepage About Robotics Research & Development Advanced Controls Advanced Manipulation Cybernetics High-Consequence Automation Perception and Decision Tools Unique Mobility Facilities Publications and Factsheets Robotics Image Gallery Robotics Videos Contact Robotics Research Contact Robotics For more information, please contact us. * Items are Required First Name * Last Name * Email Address * Phone Company Name

  15. Sandia National Laboratories: Research: Intelligent Systems, Robotics, &

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cybernetics: Factsheets Publications and Factsheets Robotics Homepage About Robotics Research & Development Advanced Controls Advanced Manipulation Cybernetics High-Consequence Automation Perception and Decision Tools Unique Mobility Facilities Publications and Factsheets Robotics Image Gallery Robotics Videos Contact Robotics Research Publications and Factsheets Factsheets Intelligent Systems, Robotics, and Cybernetics (PDF, 991 KB) Gemini Scout - Mine Rescue Vehicle (PDF, 922 KB) One

  16. Sandia National Laboratories: Research: Intelligent Systems, Robotics, &

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cybernetics: Perception Perception and Decision Tools Robotics Homepage About Robotics Research & Development Advanced Controls Advanced Manipulation Cybernetics High-Consequence Automation Perception and Decision Tools 3-D World Model Building Visual Targeting Explosive Ordnance Disposal (EOD) Decision Support Tools Unique Mobility Facilities Publications and Factsheets Robotics Image Gallery Robotics Videos Contact Robotics Research Perception & Decision Tools XTK Intelligent

  17. Design and Laboratory Evaluation of Future Elongation and Diameter Measurements at the Advanced Test Reactor

    SciTech Connect (OSTI)

    K. L. Davis; D. L. Knudson; J. L. Rempe; J. C. Crepeau; S. Solstad

    2015-07-01

    New materials are being considered for fuel, cladding, and structures in next generation and existing nuclear reactors. Such materials can undergo significant dimensional and physical changes during high temperature irradiations. In order to accurately predict these changes, real-time data must be obtained under prototypic irradiation conditions for model development and validation. To provide such data, researchers at the Idaho National Laboratory (INL) High Temperature Test Laboratory (HTTL) are developing several instrumented test rigs to obtain data real-time from specimens irradiated in well-controlled pressurized water reactor (PWR) coolant conditions in the Advanced Test Reactor (ATR). This paper reports the status of INL efforts to develop and evaluate prototype test rigs that rely on Linear Variable Differential Transformers (LVDTs) in laboratory settings. Although similar LVDT-based test rigs have been deployed in lower flux Materials Testing Reactors (MTRs), this effort is unique because it relies on robust LVDTs that can withstand higher temperatures and higher fluxes than often found in other MTR irradiations. Specifically, the test rigs are designed for detecting changes in length and diameter of specimens irradiated in ATR PWR loops. Once implemented, these test rigs will provide ATR users with unique capabilities that are sorely needed to obtain measurements such as elongation caused by thermal expansion and/or creep loading and diameter changes associated with fuel and cladding swelling, pellet-clad interaction, and crud buildup.

  18. A Sustainable Focus for Laboratory Design, Engineerign, and Operation

    Energy Savers [EERE]

    HVAC designs 4. Get real with plug loads: Right-size HVAC systems 5. Just say no to re-heat: Minimize simultaneous heating and cooling Annual electricity use in Louis Stokes...

  19. Sandia National Laboratories and the Electric Power Research Institute (EPRI)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Nuclear Security Administration Sandia National Laboratories Site-Wide Environmental Impact Statement Documents SNL NOI Federal Register Notice 2011-15951 SNL Facility Poster 1 SNL Facility Poster 2 SNL Facility Poster 3 SNL Fact Sheet SNL SWEIS Fact Sheet

    nd PV Performance Modeling Workshop Photo courtesy of Sempra Energy Dates: 1:00 PM to 5:00 PM on Wednesday, May 1, 2013 with special evening session 7:00 to 9:00 pm 8:00 AM to 5:00 PM on Thursday, May 1, 2013 Location: The

  20. Research projects will help optimize grid | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Technical Report) | SciTech Connect Research in theoretical nuclear and neutrino physics. Final report Citation Details In-Document Search Title: Research in theoretical nuclear and neutrino physics. Final report The main focus of the research supported by the nuclear theory grant DE-FG02-04ER41319 was on studying parton dynamics in high-energy heavy ion collisions, perturbative approach to charm production and its contribution to atmospheric neutrinos, application of AdS/CFT approach to

  1. Pacific Northwest Laboratory: Director`s overview of research performed for DOE Office of Health And Environmental Research

    SciTech Connect (OSTI)

    1995-06-01

    A significant portion of the research undertaken at Pacific Northwest Laboratory (PNL) is focused on the strategic programs of the US Department of Energy`s (DOE) Office of Health and Environmental Research (OHER). These programs, which include Environmental Processes (Subsurface Science, Ecosystem Function and Response, and Atmospheric Chemistry), Global Change (Climate Change, Environmental Vulnerability, and Integrated Assessments), Biotechnology (Human Genome and Structural Biology), and Health (Health Effects and Medical Applications), have been established by OHER to support DOE business areas in science and technology and environmental quality. PNL uses a set of critical capabilities based on the Laboratory`s research facilities and the scientific and technological expertise of its staff to help OHER achieve its programmatic research goals. Integration of these capabilities across the Laboratory enables PNL to assemble multidisciplinary research teams that are highly effective in addressing the complex scientific and technical issues associated with OHER-sponsored research. PNL research efforts increasingly are focused on complex environmental and health problems that require multidisciplinary teams to address the multitude of time and spatial scales found in health and environmental research. PNL is currently engaged in research in the following areas for these OHER Divisions: Environmental Sciences -- atmospheric radiation monitoring, climate modeling, carbon cycle, atmospheric chemistry, ecological research, subsurface sciences, bioremediation, and environmental molecular sciences; Health Effects and Life Sciences -- cell/molecular biology, and biotechnology; Medical Applications and Biophysical Research -- analytical technology, and radiological and chemical physics. PNL`s contributions to OHER strategic research programs are described in this report.

  2. The High Temperature Materials Laboratory: A research and user facility at the Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    HTML is a modern facility for high-temperature ceramic research; it is also a major user facility, providing industry and university communities access to special research equipment for studying microstructure and microchemistry of materials. User research equipment is divided among six User Centers: Materials Analysis, X-ray Diffraction, Physical Properties, Mechanical Properties, Ceramic Specimen Preparation, and Residual Stress. This brochure provides brief descriptions of each of the major research instruments in the User Centers: scanning Auger microprobe, field emission SEMs, electron microprobe, multitechnique surface analyzer, analytical electron microscope, HRTEM, optical microscopy image analysis, goniometer, scanning calorimetry, simultaneous thermal analysis, thermal properties (expansion, diffusivity, conductivity), high-temperature tensile test facilities, flexure, electromechanical test facilities (flexure, compression creep, environmental), microhardness microprobe, ceramic machining. Hands-on operation by qualified users is encouraged; staff is available. Both proprietary and nonproprietary research may be performed; the former on full cost recovery basis.

  3. The High Temperature Materials Laboratory: A research and user facility at the Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Not Available

    1992-12-01

    HTML is a modern facility for high-temperature ceramic research; it is also a major user facility, providing industry and university communities access to special research equipment for studying microstructure and microchemistry of materials. User research equipment is divided among six User Centers: Materials Analysis, X-ray Diffraction, Physical Properties, Mechanical Properties, Ceramic Specimen Preparation, and Residual Stress. This brochure provides brief descriptions of each of the major research instruments in the User Centers: scanning Auger microprobe, field emission SEMs, electron microprobe, multitechnique surface analyzer, analytical electron microscope, HRTEM, optical microscopy & image analysis, goniometer, scanning calorimetry, simultaneous thermal analysis, thermal properties (expansion, diffusivity, conductivity), high-temperature tensile test facilities, flexure, electromechanical test facilities (flexure, compression creep, environmental), microhardness microprobe, ceramic machining. Hands-on operation by qualified users is encouraged; staff is available. Both proprietary and nonproprietary research may be performed; the former on full cost recovery basis.

  4. Sandia National Laboratories: Research: R&D 100 Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research R&D 100 Awards R&D Magazine honors inventors by identifying the 100 most technologically significant products and advancements each year and recognizing the winning innovators and their organizations. Winners are chosen from an international pool of submissions from universities, private corporations, and government labs. In 2015, Sandia researchers and their collaborators earned five R&D 100 Awards. Since 1976, Sandia has earned 109 of these coveted awards - often referred

  5. Sandia National Laboratories: Z Pulsed Power Facility: Z Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Z Research Every great advance in science has issued from a new audacity of imagination. - John Dewey Z researchers meet the toughest scientific challenges with innovation and ingenuity that breed groundbreaking results. Read Z's publications and the sections below to learn more about this work. Shane Science Z provides the fastest, most accurate, and cheapest method to determine how materials will react under high pressures and temperatures, characteristics that can then be expressed in

  6. Accelerating Geothermal Research (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerating Geothermal Research Supporting a Cleaner Environment NREL is a strategic partner of the U.S. Department of Energy (DOE) Geothermal Technologies Office (GTO). NREL teams are leading the research and deployment efforts through various projects. Summaries of a few key activities follow. Geothermal-Solar Hybrids: The objective is to examine the viability of using solar thermal heat combined with geother- mal energy to improve plant efficiency and reduce cost. This project, performed by

  7. Materials research at selected Japanese laboratories. Based on a 1992 visit: Overview, summary of highlights, notes on laboratories and topics

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    I visited Japan from June 29 to August 1, 1992. The purpose of this visit was to assess the status of materials science research at selected governmental, university and industrial laboratories and to established acquaintances with Japanese researchers. The areas of research covered by these visits included ceramics, oxide superconductors, intermetallics alloys, superhard materials and diamond films, high-temperature materials and properties, mechanical properties, fracture, creep, fatigue, defects, materials for nuclear reactor applications and irradiation effects, high pressure synthesis, self-propagating high temperature synthesis, microanalysis, magnetic properties and magnetic facilities, and surface science.

  8. University of Illinois at Urbana-Champaign, Materials Research Laboratory progress report for FY 1991

    SciTech Connect (OSTI)

    Not Available

    1991-10-01

    The Materials Research Laboratory at the University of Illinois is an interdisciplinary laboratory operated in the College of Engineering. Its focus is the science of materials and it supports research in the areas of condensed matter physics, solid state chemistry, and materials science. This report addresses topics such as: an MRL overview; budget; general programmatic and institutional issues; new programs; research summaries for metallurgy, ceramics, solid state physics, and materials chemistry.

  9. Laboratory for Energy-Related Health Research Compliance Order, October 6, 1995 Summary

    Office of Environmental Management (EM)

    Energy-Related Health Research Agreement Name Federal Facility Compliance Act Order for the Laboratory for Energy-Related Health Research (LEHR) Compliance Order HWCA # 95/96-020 State California Agreement Type Compliance Order Legal Driver(s) FFCAct Scope Summary Require compliance by the DOE with a Site Treatment Plan for the treatment of mixed waste at the Laboratory for Energy-Related Health Research Parties DOE; State of California Environmental Protection Agency (Department of Toxic

  10. Nuclear Materials Research and Technology/Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Magnetic Levitation Results in High-Purity Plutonium Metal 4 Researchers Prepare and Characterize First Transuranic Crown Ether Complex 6 "Excess" Nuclear Materials Hold Keys to Medicine, Research, Space Power 8 LANL Develops TRU Waste Mobile Analysis Methods for RCRA-Listed Metals 10 Recent Publications 11 Secretary Richardson Dedicates ARIES 12 NewsMakers 3rd quarter 1998 N u c l e a r M a t e r i a l s R e s e a r c h a n d T e c h n o l o g y Magnetic Levitation Results in

  11. Collaborative Military Vehicle Design | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research: Holiday Shopping & Electric Vehicles IMG0475 Innovation 247: We're Always Open primusenginefeaturedimage3 GE Innovation and Manufacturing in Europe ...

  12. Sandia National Laboratories: Research: High Consequence, Automation, &

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Robotics: Cybernetics Cybernetics Advanced prosthetics We leverage Sandia's expertise in material science, microsystems, and advanced modeling and simulation to design and develop advanced cybernetic technologies for a variety of applications. Cybernetics includes the development of mechanical, physical, biological, and cognitive systems that enable the development of advanced man-machine interface technologies. Our work in this area has led to the development of dynamic prosthetics

  13. DOE National Laboratory Research Projects Win 31 R&D Awards for 2007 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy National Laboratory Research Projects Win 31 R&D Awards for 2007 DOE National Laboratory Research Projects Win 31 R&D Awards for 2007 October 19, 2007 - 3:21pm Addthis WASHINGTON, DC - The U.S. Department of Energy's Under Secretary for Science Raymond L. Orbach today lauded researchers from ten of the Department of Energy's world-class national laboratories that last night were awarded 31 of the world's top 100 scientific and technological innovations in 2007,

  14. Sandia National Laboratories: Research: High Consequence, Automation, &

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Robotics: Neural Control of Prosthetics Neural Control of Prosthetics Advanced prosthetics Researchers in High Consequence, Automation, & Robotics are working on ways to improve amputees' control over prosthetics with direct help from their own nervous systems. Neural interfaces operate where the nervous system and an artificial device intersect. Interfaces can monitor nerve signals or provide inputs that let amputees control prosthetic devices by direct neural signals, the same way they

  15. Catalog of Research Abstracts, 1993: Partnership opportunities at Lawrence Berkeley Laboratory

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    The 1993 edition of Lawrence Berkeley Laboratory`s Catalog of Research Abstracts is a comprehensive listing of ongoing research projects in LBL`s ten research divisions. Lawrence Berkeley Laboratory (LBL) is a major multi-program national laboratory managed by the University of California for the US Department of Energy (DOE). LBL has more than 3000 employees, including over 1000 scientists and engineers. With an annual budget of approximately $250 million, LBL conducts a wide range of research activities, many that address the long-term needs of American industry and have the potential for a positive impact on US competitiveness. LBL actively seeks to share its expertise with the private sector to increase US competitiveness in world markets. LBL has transferable expertise in conservation and renewable energy, environmental remediation, materials sciences, computing sciences, and biotechnology, which includes fundamental genetic research and nuclear medicine. This catalog gives an excellent overview of LBL`s expertise, and is a good resource for those seeking partnerships with national laboratories. Such partnerships allow private enterprise access to the exceptional scientific and engineering capabilities of the federal laboratory systems. Such arrangements also leverage the research and development resources of the private partner. Most importantly, they are a means of accessing the cutting-edge technologies and innovations being discovered every day in our federal laboratories.

  16. ORNLs Laboratory Directed Research and Development Program FY 2010 Annual Report

    SciTech Connect (OSTI)

    NA, NA

    2011-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2010. The associated FY 2010 ORNL LDRD Self-Assessment (ORNL/PPA-2011/2) provides financial data and an internal evaluation of the program’s management process.

  17. ORNLs Laboratory Directed Research and Development Program FY 2013 Annual Report

    SciTech Connect (OSTI)

    NA, NA

    2014-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the US Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2013. The associated FY 2013 ORNL LDRD Self-Assessment (ORNL/PPA-2014/2) provides financial data and an internal evaluation of the program’s management process.

  18. ORNLs Laboratory Directed Research and Development Program FY 2008 Annual Report

    SciTech Connect (OSTI)

    NA, NA

    2009-03-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2008. The associated FY 2008 ORNL LDRD Self-Assessment (ORNL/PPA-2008/2) provides financial data and an internal evaluation of the program’s management process.

  19. ORNLs Laboratory Directed Research and Development Program FY 2011 Annual Report

    SciTech Connect (OSTI)

    NA, NA

    2012-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2011. The associated FY 2011 ORNL LDRD Self-Assessment (ORNL/PPA-2012/2) provides financial data and an internal evaluation of the program’s management process.

  20. ORNLs Laboratory Directed Research and Development Program FY 2009 Annual Report

    SciTech Connect (OSTI)

    NA, NA

    2010-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2009. The associated FY 2009 ORNL LDRD Self-Assessment (ORNL/PPA-2010/2) provides financial data and an internal evaluation of the program’s management process.

  1. ORNLs Laboratory Directed Research and Development Program FY 2012 Annual Report

    SciTech Connect (OSTI)

    NA, NA

    2013-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the US Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2012. The associated FY 2012 ORNL LDRD Self-Assessment (ORNL/PPA-2012/2) provides financial data and an internal evaluation of the program’s management process.

  2. Surveys of research in the Chemistry Division, Argonne National Laboratory

    SciTech Connect (OSTI)

    Grazis, B.M.

    1992-11-01

    Research reports are presented on reactive intermediates in condensed phase (radiation chemistry, photochemistry), electron transfer and energy conversion, photosynthesis and solar energy conversion, metal cluster chemistry, chemical dynamics in gas phase, photoionization-photoelectrons, characterization and reactivity of coal and coal macerals, premium coal sample program, chemical separations, heavy elements coordination chemistry, heavy elements photophysics/photochemistry, f-electron interactions, radiation chemistry of high-level wastes (gas generation in waste tanks), ultrafast molecular electronic devices, and nuclear medicine. Separate abstracts have been prepared. Accelerator activites and computer system/network services are also reported.

  3. Surveys of research in the Chemistry Division, Argonne National Laboratory

    SciTech Connect (OSTI)

    Grazis, B.M.

    1992-01-01

    Research reports are presented on reactive intermediates in condensed phase (radiation chemistry, photochemistry), electron transfer and energy conversion, photosynthesis and solar energy conversion, metal cluster chemistry, chemical dynamics in gas phase, photoionization-photoelectrons, characterization and reactivity of coal and coal macerals, premium coal sample program, chemical separations, heavy elements coordination chemistry, heavy elements photophysics/photochemistry, f-electron interactions, radiation chemistry of high-level wastes (gas generation in waste tanks), ultrafast molecular electronic devices, and nuclear medicine. Separate abstracts have been prepared. Accelerator activites and computer system/network services are also reported.

  4. University of Illinois at Urbana-Champaign, Materials Research Laboratory progress report for FY 1992

    SciTech Connect (OSTI)

    Not Available

    1992-07-01

    This interdisciplinary laboratory in the College of Engineering support research in areas of condensed matter physics, solid state chemistry, and materials science. These research programs are developed with the assistance of faculty, students, and research associates in the departments of Physics, Materials Science and Engineering, chemistry, Chemical Engineering, Electrical Engineering, Mechanical Engineering, and Nuclear Engineering.

  5. EA-0845: Expansion of the Idaho National Engineering Laboratory Research Center, Idaho Falls, Idaho

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to expand and upgrade facilities at the U.S. Department of Energy's Idaho National Engineering Laboratory Research Center, located in Idaho...

  6. Russian surety research projects in the Sandia National Laboratories Cooperative Measures Program

    SciTech Connect (OSTI)

    Smith, R.E.

    1996-07-01

    Over forty safety and security related research and development projects have been initiated between Sandia National Laboratories and the Russian nuclear weapons laboratories VNIIEF and VNIITF. About half of these projects have been completed. All relate to either safety or security methodology development, processes, accident environment analysis and testing, accident databases, assessments or product design of devices. All projects have a potential benefit to various safety or security programs and some may directly have commercial applications. In general, these projects could benefit risk assessments associated with systems that could result in accidents or incidents having high public consequences. These systems typically have already been engineered to have very low assessed probabilities of occurrence of such accidents or incidents. This paper gives an overview of the Sandia surety program with a focus on the potential for future collaboration between Sandia, three Russian Institutes; VNIIEF, VNIITF and VNIIA, and other industry and government organizations. The intent is to serve as an introduction to a roundtable session on Russian Safety Collaboration at the 14th International System Safety Conference. The current Sandia collaboration program scope and rationale is presented along with the evolved program focus. An overview of the projects is given and a few specific projects are briefly highlighted with tangible results to date.

  7. Title I conceptual design for Pit 6 landfill closure at Lawrence Livermore National Laboratory Site 300

    SciTech Connect (OSTI)

    MacDonnell, B.A.; Obenauf, K.S.

    1996-08-01

    The objective of this design project is to evaluate and prepare design and construction documents for a closure cover cap for the Pit 6 Landfill located at Lawrence Livermore National Laboratory Site 300. This submittal constitutes the Title I Design (Conceptual Design) for the closure cover of the Pit 6 Landfill. A Title I Design is generally 30 percent of the design effort. Title H Design takes the design to 100 percent complete. Comments and edits to this Title I Design will be addressed in the Title II design submittal. Contents of this report are as follows: project background; design issues and engineering approach; design drawings; calculation packages; construction specifications outline; and construction quality assurance plan outline.

  8. Design of Mixed Batch Reactor and Column Studies at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Wu, Weimin; Criddle, Craig S.

    2015-11-16

    We (the Stanford research team) were invited as external collaborators to contribute expertise in environmental engineering and field research at the ORNL IFRC, Oak Ridge, TN, for projects carried out at the Argonne National Laboratory and funded by US DOE. Specifically, we assisted in the design of batch and column reactors using ORNL IFRC materials to ensure the experiments were relevant to field conditions. During the funded research period, we characterized ORNL IFRC groundwater and sediments in batch microcosm and column experiments conducted at ANL, and we communicated with ANL team members through email and conference calls and face-to-face meetings at the annual ERSP PI meeting and national meetings. Microcosm test results demonstrated that U(VI) in sediments was reduced to U(IV) when amended with ethanol. The reduced products were not uraninite but unknown U(IV) complexes associated with Fe. Fe(III) in solid phase was only partially reduced. Due to budget reductions at ANL, Stanford contributions ended in 2011.

  9. Safeguards by Design (SBD): Safeguards Guidance for Research...

    Office of Scientific and Technical Information (OSTI)

    Safeguards by Design (SBD): Safeguards Guidance for Research Reactors and Critical ... Language: English Subject: Energy Planning, Policy, & Economy(29); Nuclear Disarmament, ...

  10. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forest fire near Los Alamos National Laboratory June 26, 2011 Los Alamos, New Mexico, June 26, 2011, 6:07pm-The Las Conchas fire burning in the Jemez Mountains approximately 12...

  11. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DEPARTMENT OF ENERGY - DECEMBER 2006

    SciTech Connect (OSTI)

    FOX, K.J.

    2006-12-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's total annual budget has averaged about $460 million. There are about 2,500 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, ''Laboratory Directed Research and Development,'' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy National Nuclear Security Administration Laboratories dated June 13, 2006. In accordance this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2006.

  12. Annular Core Research Reactor - Critical to Science-Based Weapons Design,

    National Nuclear Security Administration (NNSA)

    Certification | National Nuclear Security Administration Annular Core Research Reactor - Critical to Science-Based Weapons Design, Certification Wednesday, January 14, 2015 - 1:32pm NNSA Blog NNSA Sandia Field Office Facility Representative Erwin Hoo provided NNSA Administrator Frank Klotz a tour of the Annular Core Research Reactor (ACRR) at Sandia National Laboratories in Albuquerque on Jan. 13. The ACRR is a mission critical asset - the only remaining NNSA capability for high-power, short

  13. Review of Pacific Northwest Laboratory research on aquatic effects of hydroelectric generation and assessment of research needs

    SciTech Connect (OSTI)

    Fickeisen, D.H.; Becker, C.D.; Neitzel, D.A.

    1981-05-01

    This report is an overview of Pacific Northwest Laboratory's (PNL) research on how hydroelectric generation affects aquatic biota and environments. The major accomplishments of this research are described, and additional work needed to permit optimal use of available data is identified. The research goals are to: (1) identify impacts of hydroelectric generation, (2) provide guidance in allocating scarce water resources, and (3) develop techniques to avoid or reduce the impacts on aquatic communities or to compensate for unavoidable impacts. Through laboratory and field experiments, an understanding is being developed of the generic impacts of hydrogeneration. Because PNL is located near the Columbia River, which is extensively developed for hydroelectric generation, it is used as a natural laboratory for studying a large-scale operating system. Although the impacts studied result from a particular system of dams and operating procedures and occur within a specific ecosystem, the results of these studies have application at hydroelectric generating facilities throughout the United States.

  14. Laboratory evaluation of dynamic traffic assignment systems: Requirements, framework, and system design

    SciTech Connect (OSTI)

    Miaou, S.-P.; Pillai, R.S.; Summers, M.S.; Rathi, A.K.; Lieu, H.C.

    1997-01-01

    The success of Advanced Traveler Information 5ystems (ATIS) and Advanced Traffic Management Systems (ATMS) depends on the availability and dissemination of timely and accurate estimates of current and emerging traffic network conditions. Real-time Dynamic Traffic Assignment (DTA) systems are being developed to provide the required timely information. The DTA systems will provide faithful and coherent real-time, pre-trip, and en-route guidance/information which includes routing, mode, and departure time suggestions for use by travelers, ATIS, and ATMS. To ensure the credibility and deployment potential of such DTA systems, an evaluation system supporting all phases of DTA system development has been designed and presented in this paper. This evaluation system is called the DTA System Laboratory (DSL). A major component of the DSL is a ground- truth simulator, the DTA Evaluation System (DES). The DES is envisioned to be a virtual representation of a transportation system in which ATMS and ATIS technologies are deployed. It simulates the driving and decision-making behavior of travelers in response to ATIS and ATMS guidance, information, and control. This paper presents the major evaluation requirements for a DTA Systems, a modular modeling framework for the DES, and a distributed DES design. The modeling framework for the DES is modular, meets the requirements, can be assembled using both legacy and independently developed modules, and can be implemented as a either a single process or a distributed system. The distributed design is extendible, provides for the optimization of distributed performance, and object-oriented design within each distributed component. A status report on the development of the DES and other research applications is also provided.

  15. NREL: Water Power Research - Design Review and Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Design Review and Analysis NREL is leveraging its 35 years of experience in renewable energy technologies to accelerate the development of robust and efficient water power devices and components. As part of this effort, NREL researchers provide industry partners with design reviews and analyses. In addition to design reviews, NREL offers technical assistance to solve specific technical problems and conducts parallel research to provide a foundation for the increasingly complex engineering

  16. Advanced Envelope Research for Factory Built Housing, Phase 3-Design

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development and Prototyping | Department of Energy Factory Built Housing, Phase 3-Design Development and Prototyping Advanced Envelope Research for Factory Built Housing, Phase 3-Design Development and Prototyping The Advanced Envelope Research project, managed by Building America team ARIES Collaborative, will provide factory homebuilders with high performance, cost-effective alternative envelope designs. In the near term, these technologies will play a central role in meeting stringent

  17. Savannah River Ecology Laboratory Annual Technical Progress Report of Ecological Research, June 30, 2001

    SciTech Connect (OSTI)

    Bertsch, Paul M.; Janecek, Laura; Rosier, Brenda

    2001-06-30

    The Savannah River Ecology Laboratory (SREL) is a research unit of the University of Georgia (UGA) and has been conducting ecological research on the Savannah River Site (SRS) in South Carolina for 50 years. The overall mission of the Laboratory is to acquire and communicate knowledge of ecological processes and principles. SREL conducts fundamental and applied ecological research, as well as education and outreach programs, under a Cooperative Agreement with the U.S. Department of Energy (DOE) SRS near Aiken, South Carolina. The Laboratory's research mission during the 2001 fiscal year was fulfilled with the publication of one book and 83 journal articles and book chapters by faculty, technical staff, students, and visiting scientists. An additional 77 journal articles have been submitted or are in press. Other noteworthy events took place as faculty members and graduate students received awards. These are described in the section Special Accomplishments of Faculty, Staff, Students, and Administration on page 54. Notable scientific accomplishments include work conducted on contaminant transport, global reptile decline, phytoremediation, and radioecology. Dr. Domy Adriano authored the second edition of his book ''Trace Elements in Terrestrial Environments: Biogeochemistry, Bioavailability, and Risks of Metals'', which was recently published by Springer-Verlag. The book provides a comprehensive treatment of many important aspects of trace elements in the environment. The first edition of the book, published in 1986, has become a widely acclaimed and cited reference. International attention was focused on the problem of reptile species decline with the publication of an article on this topic in the journal ''Bioscience'' in August, 2000. The article's authors included Dr. Whit Gibbons and a number of other SREL herpetologists who researched the growing worldwide problem of decline of reptile species. Factors related to these declines include habitat loss and degradation, introduction of invasive species, environmental pollution, disease, global climate change, and unsustainable commercial use. The conclusion reached by the article is that the disappearance of reptiles from the natural world is genuine and should be a matter of concern; current evidence suggests that these declines constitute a worldwide crisis. SREL's research in the area of phytoremediation was enhanced with the addition of Dr. Lee Newman as a faculty member in January 2001. Dr. Newman, an internationally recognized authority in the field, holds a joint appointment with the University of South Carolina and SREL. She is developing a collaborative program in phytoremediation on the SRS and offsite. Work is nearing completion on SREU s outdoor mesocosm irradiation facility, which is designed for studying the effects of low-level radiation doses on organisms. The 1-acre facility at Par Pond consists of 48 fiberglass tanks that can maintain small organisms such as fish and amphibians. Thirty of the tanks have sealed {sup 137}Cs sources suspended above them containing either 0.02,0.2, or 2.0 Ci. These sources can deliver average dose rates of 4, 40 and 400 mGy per day, respectively, to organisms under replicated conditions.

  18. PEV Grid Integration Research - Vehicles, Buildings, and Renewables Working Together (Presentation), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PEV Grid Integration Research Vehicles, Buildings, and Renewables Working Together Tony Markel Electric Vehicle Grid Integration National Renewable Energy Laboratory IEEE PES General Meeting Denver, Colorado July 29, 2015 1 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy LLC. NREL/PR-5400-64757 2 National Energy Imperatives Ensuring resilient and reliable energy systems Stimulating

  19. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mexican pueblo preserves cultural history through collaborative tours with Los Alamos National Laboratory August 24, 2015 Students gain new insights into their ancestry LOS ALAMOS, N.M., Aug. 24, 2015-San Ildefonso Pueblo's Summer Education Enhancement Program brought together academic and cultural learning in the form of a recent tour of Cave Kiva Trail in Mortandad Canyon."Opening up this archaeological site and sharing it with the descendants of its first inhabitants is a

  20. The Design-Build Process for the Research Support Facility (RSF), Energy Efficiency & Renewable Energy (EERE)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Design-Build Process for the Research Support Facility An in-depth look at how the U.S. Department of Energy and the National Renewable Energy Laboratory used a performance-based design-build contract process to build one of the most energy efficient office buildings in the world. Table of Contents The Design-Build Process for the Research Support Facility | 1 Table of Contents Executive Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  1. Pacific Northwest Laboratory annual report for 1990 to the DOE Office of Energy Research

    SciTech Connect (OSTI)

    Park, J.F.

    1991-06-01

    This report summarizes progress on OHER human health, biological, and general life sciences research programs conducted at PNL in FY 1990. The research develops the knowledge and scientific principles necessary to identify understand, and anticipate the long-term health consequences of energy-related radiation and chemicals. Our continuing emphasis is to decrease the uncertainty of health risk estimates from existing and developing energy-related technologies through an increased of understanding of how radiation and chemicals cause biological damage. The sequence of this report of PNL research reflects the OHER programmatic structure. The first section, on human health research, concerns epidemiological and statistical studies for assessing health risks. The next section contains reports of biological research in laboratory animals and in vitro cell systems, including research with radionuclides and chemicals. The general life sciences research section reports research conducted for the OHER human genome research program.

  2. Mid-Pacific Research Laboratory annual report, October 1, 1982-September 30, 1983

    SciTech Connect (OSTI)

    Colin, P.L.; Harrison, J.T. III

    1982-02-01

    Fiscal year 1983 marked the end of on-site operations of the Mid-Pacific Research Laboratory at Enewetak Atoll in the Northern Marshall Islands. With the departure of the laboratory staff from Enewetak on 22 September, research conducted by the resident scientific staff ceased. Henceforth, MPRL will exist in the form of a research readiness program involving a part-time technician at the Hawaii Institute of Marine Biology who will inventory and maintain residual scientific assets and be available to support expeditionary research efforts in the Pacific area. A summary of research efforts in FY 83 is reported including descriptions of the redistribution of coarse surface particles by callianassid to deeper layers of the sediment. The relationship of this bioturbation to the redistribution of Bravo event fallout is related.

  3. DOE National Laboratory Research Projects Win 31 R&D 100 Awards for 2007 |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. DOE Office of Science (SC) DOE National Laboratory Research Projects Win 31 R&D 100 Awards for 2007 News News Home Featured Articles Science Headlines 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 Science Highlights Presentations & Testimony News Archives Communications and Public Affairs Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 10.19.07 DOE National Laboratory Research

  4. Performance of the BL4 Beamline for Surface and Interface Research at the Siam Photon Laboratory

    SciTech Connect (OSTI)

    Nakajima, Hideki; Buddhakala, Moragote; Chumpolkulwong, Somchai; Supruangnet, Ratchadapora; Kakizaki, Akito; Songsiriritthigul, Prayoon

    2007-01-19

    The evaluations of the monochromator of the BL4 beamline at the Siam Photon Laboratory were carried out by gas-phase photoionization measurements. The beamline employs a varied-line-spacing plane grating monochromator, which delivers photons with energies between 20-240 eV. The resolving power of the monochromator depends strongly with the alignment of the exit slit. The designed resolving power of 5000 has been achieved. The experimental station of the beamline has been upgraded for surface and interface research. The new experimental station removes the disadvantage and expands the capabilities of the old one in such a way that photoemission experiments using synchrotron light can be performed in parallel with other in situ surface analysis techniques, as well as with preparation of other samples. The new system includes the old photoemission system and a multi-UHV-chamber system. The standard surface-sensitive techniques available in addition to photoemission spectroscopy using synchrotron light are UPS, XPS, AES and LEED. The new experimental station also includes a metal MBE system for preparing samples for the studies of ultra-thin magnetic films and metal-semiconductor interfaces.

  5. Fusion Materials Research at Oak Ridge National Laboratory in Fiscal Year 2015

    SciTech Connect (OSTI)

    Wiffen, F. W.; Katoh, Yutai; Melton, Stephanie G.

    2015-12-01

    The realization of fusion energy is a formidable challenge with significant achievements resulting from close integration of the plasma physics and applied technology disciplines. Presently, the most significant technological challenge for the near-term experiments such as ITER, and next generation fusion power systems, is the inability of current materials and components to withstand the harsh fusion nuclear environment. The overarching goal of the Oak Ridge National Laboratory (ORNL) fusion materials program is to provide the applied materials science support and understanding to underpin the ongoing Department of Energy (DOE) Office of Science fusion energy program while developing materials for fusion power systems. In doing so the program continues to be integrated both with the larger United States (US) and international fusion materials communities, and with the international fusion design and technology communities.This document provides a summary of Fiscal Year (FY) 2015 activities supporting the Office of Science, Office of Fusion Energy Sciences Materials Research for Magnetic Fusion Energy (AT-60-20-10-0) carried out by ORNL. The organization of this report is mainly by material type, with sections on specific technical activities. Four projects selected in the Funding Opportunity Announcement (FOA) solicitation of late 2011 and funded in FY2012-FY2014 are identified by “FOA” in the titles. This report includes the final funded work of these projects, although ORNL plans to continue some of this work within the base program.

  6. NNSA Laboratory Directed Research and Development Program 2008 Symposium--Focus on Energy Security

    SciTech Connect (OSTI)

    Kotta, P R; Sketchley, J A

    2008-08-20

    The Laboratory Directed Research and Development (LDRD) Program was authorized by Congress in 1991 to fund leading-edge research and development central to the national laboratories core missions. LDRD anticipates and engages in projects on the forefront of science and engineering at the Department of Energy (DOE) national laboratories, and has a long history of addressing pressing national security needs at the National Nuclear Security Administration (NNSA) laboratories. LDRD has been a scientific success story, where projects continue to win national recognition for excellence through prestigious awards, papers published and cited in peer-reviewed journals, mainstream media coverage, and patents granted. The LDRD Program is also a powerful means to attract and retain top researchers from around the world, to foster collaborations with other prominent scientific and technological institutions, and to leverage some of the world's most technologically advanced assets. This enables the LDRD Program to invest in high-risk and potentially high-payoff research that creates innovative technical solutions for some of our nation's most difficult challenges. Worldwide energy demand is growing at an alarming rate, as developing nations continue to expand their industrial and economic base on the back of limited global resources. The resulting international conflicts and environmental consequences pose serious challenges not only to this nation, but to the international community as well. The NNSA and its national security laboratories have been increasingly called upon to devote their scientific and technological capabilities to help address issues that are not limited solely to the historic nuclear weapons core mission, but are more expansive and encompass a spectrum of national security missions, including energy security. This year's symposium highlights some of the exciting areas of research in alternative fuels and technology, nuclear power, carbon sequestration, energy efficiency, and other energy security research projects that are being conducted under the LDRD Program at the DOE/NNSA national laboratories and under the Site Directed Research and Development Program (SDRD) at the Nevada Test Site. Speakers from DOE/NNSA, other federal agencies, the NNSA laboratories, and the private sector will provide their insights into the national security implications of emerging energy and environmental issues, and the LDRD investments in energy security at the national laboratories. Please take this opportunity to reflect upon the science and engineering needs of our country's energy demands, including those issues posed by climate change, paying attention to the innovative contributions that LDRD is providing to the nation.

  7. New facility design and work method for the quantitative fit testing laboratory. Master's thesis

    SciTech Connect (OSTI)

    Ward, G.F.

    1989-05-01

    The United States Air Force School of Aerospace Medicine (USAFSAM) tests the quantitative fit of masks which are worn by military personnel during nuclear, biological, and chemical warfare. Subjects are placed in a Dynatech-Frontier Fit Testing Chamber, salt air is fed into the chamber, and samples of air are drawn from the mask and the chamber. The ratio of salt air outside the mask to salt air inside the mask is called the quantitative fit factor. A motion-time study was conducted to evaluate the efficiency of the layout and work method presently used in the laboratory. A link analysis was done to determine equipment priorities, and the link data and design guidelines were used to develop three proposed laboratory designs. The proposals were evaluated by projecting the time and motion efficiency, and the energy expended working in each design. Also evaluated were the lengths of the equipment links for each proposal, and each proposal's adherence to design guidelines. A mock-up was built of the best design proposal, and a second motion-time study was run. Results showed that with the new laboratory and work procedures, the USAFSAM analyst could test 116 more subjects per year than are currently tested. Finally, the results of a questionnaire given to the analyst indicated that user acceptance of the work area improved with the new design.

  8. Center for Inverse Design: Research Thrusts and Subtasks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Thrusts and Subtasks The Center for Inverse Design creates an unprecedented coupling of theory and experiment to realize the thesis that inverse design can revolutionize the way materials science will be done in the future. Inverse design entails the theory-driven search of materials with given functionality, and discovery of hitherto unreported materials with relevant functionality. We have three thrusts, with six subtasks, that map directly into the overall Center objectives.

  9. PEV Grid Integration Research: Vehicles, Buildings, and Renewables Working Together (Presentation), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grid Integration Research Vehicles, Buildings, and Renewables Working Together Tony Markel Sr. Engineer Electric Vehicle Grid Integration National Renewable Energy Laboratory EPRI EV IWC Mtg. White Plains, NY June 19, 2014 NREL/PR-5400-62244 2 DOE EVGI and INTEGRATE Research Efforts * Electric Vehicle Grid Integration (EVGI) and INTEGRATE are addressing the opportunities and technical requirements for vehicle grid integration that will increase marketability and lead to greater reduction in the

  10. Energetic materials research and development activities at Sandia National Laboratories supported under DP-10 programs

    SciTech Connect (OSTI)

    Ratzel, A.C. III

    1998-09-01

    This report provides summary descriptions of Energetic Materials (EM) Research and Development activities performed at Sandia National Laboratories and funded through the Department of Energy DP-10 Program Office in FY97 and FY98. The work falls under three major focus areas: EM Chemistry, EM Characterization, and EM Phenomenological Model Development. The research supports the Sandia component mission and also Sandia's overall role as safety steward for the DOE Nuclear Weapons Complex.

  11. Federal Facility Agreement for the Laboratory for Energy-Related Health Research Summary

    Office of Environmental Management (EM)

    Energy Related Health Research Agreement Name Federal Facility Agreement for the Laboratory for Energy- Related Health Research State California Agreement Type Federal Facility Agreement Legal Driver(s) CERCLA/RCRA Scope Summary Establish a procedural framework and schedule for developing, implementing and monitoring appropriate response actions at LEHR Parties DOE; USEPA; California Department of Toxic Substances Control; Central Valley Regional Water Quality Control Board; California

  12. Savannah River Ecology Laboratory. Annual technical progress report of ecological research

    SciTech Connect (OSTI)

    Smith, M.H.

    1996-07-31

    The Savannah River Ecology Laboratory (SREL) is a research unit of the University of Georgia (UGA). The overall mission of the Laboratory is to acquire and communicate knowledge of ecological processes and principles. SREL conducts basic and applied ecological research, as well as education and outreach programs, under a contract with the U.S. Department of Energy (DOE) at the Savannah River Site (SRS) near Aiken, South Carolina. Significant accomplishments were made during the past year in the areas of research, education and service. The Laboratory`s research mission was fulfilled with the publication of two books and 143 journal articles and book chapters by faculty, technical and students, and visiting scientists. An additional three books and about 80 journal articles currently are in press. Faculty, technician and students presented 193 lectures, scientific presentations, and posters to colleges and universities, including minority institutions. Dr. J Vaun McArthur organized and conducted the Third Annual SREL Symposium on the Environment: New Concepts in Strewn Ecology: An Integrative Approach. Dr. Michael Newman conducted a 5-day course titled Quantitative Methods in Ecotoxicology, and Dr. Brian Teppen of The Advanced Analytical Center for Environmental Sciences (AACES) taught a 3-day short course titled Introduction to Molecular Modeling of Environmental Systems. Dr. I. Lehr Brisbin co-hosted a meeting of the Crocodile Special Interest Group. Dr. Rebecca Sharitz attended four symposia in Japan during May and June 1996 and conducted meetings of the Executive Committee and Board of the International Association for Ecology (ENTECOL).

  13. EA-2026: Biomedical Research at Existing Biosafety Level 3 Laboratories with Registered Select Agent Programs

    Broader source: Energy.gov [DOE]

    This EA will evaluate the environmental consequences resulting from DOE’s proposed action for Pacific Northwest National Laboratory-affiliated staff to access and use existing, operating biosafety level 3 (BSL-3) facilities with select agent registration to conduct biomedical research.

  14. Fuel Cell Vehicles Enhance NREL Hydrogen Research Capabilities (Fact Sheet), NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    * www.nrel.gov Printed with a renewable-source ink on paper containing at least 50% wastepaper, including 10% post consumer waste. Expanded research, development, and testing activities will help advance fuel cell electric vehicle technology. The National Renewable Energy Laboratory (NREL) has acquired four Fuel Cell Hybrid Vehicle-Advanced (FCHV-adv) sport utility vehicles on loan from Toyota. Over the next two years the lab will use the FCHVs, also known as fuel cell electric vehicles or

  15. Conceptual Design for the Pilot-Scale Plutonium Oxide Processing Unit in the Radiochemical Processing Laboratory

    SciTech Connect (OSTI)

    Lumetta, Gregg J.; Meier, David E.; Tingey, Joel M.; Casella, Amanda J.; Delegard, Calvin H.; Edwards, Matthew K.; Jones, Susan A.; Rapko, Brian M.

    2014-08-05

    This report describes a conceptual design for a pilot-scale capability to produce plutonium oxide for use as exercise and reference materials, and for use in identifying and validating nuclear forensics signatures associated with plutonium production. This capability is referred to as the Pilot-scale Plutonium oxide Processing Unit (P3U), and it will be located in the Radiochemical Processing Laboratory at the Pacific Northwest National Laboratory. The key unit operations are described, including plutonium dioxide (PuO2) dissolution, purification of the Pu by ion exchange, precipitation, and conversion to oxide by calcination.

  16. Pacific Northwest Laboratory annual report for 1991 to the DOE Office of Energy Research. Part 3, Atmospheric and climate research

    SciTech Connect (OSTI)

    Not Available

    1992-05-01

    Within the US Department of Energy`s (DOE`s) Office of Health and Environmental Research (OHER), the atmospheric sciences and carbon dioxide research programs are part of the Environmental Sciences Division (ESD). One of the central missions of the division Is to provide the DOE with scientifically defensible information on the local, regional, and global distributions of energy-related pollutants and their effects on climate. This information is vital to the definition and Implementation of a sound national energy strategy. This volume reports on the progress and status of all OHER atmospheric science and climate research projects at the Pacific Northwest Laboratory (PNL). Research at PNL provides basic scientific underpinnings to DOE`s program of global climate research. Research projects within the core carbon dioxide and ocean research programs are now integrated with those in the Atmospheric Radiation Measurements (ARM), the Computer Hardware, Advanced Mathematics and Model Physics (CHAMMP), and quantitative links programs to form DOEs contribution to the US Global Change Research Program. Climate research in the ESD has the common goal of improving our understanding of the physical, chemical, biological, and social processes that influence the Earth system so that national and international policymaking relating to natural and human-induced changes in the Earth system can be given a firm scientific basis. This report describes the progress In FY 1991 in each of these areas.

  17. Savannah River Ecology Laboratory. Annual technical progress report of ecological research, period ending July 31, 1994

    SciTech Connect (OSTI)

    Not Available

    1994-07-31

    The Savannah River Ecology Laboratory (SREL) is a research unit of the University of Georgia (UGA) that is managed in conjunction with the University`s Institute of Ecology. The laboratory`s overall mission is to acquire and communicate knowledge of ecological processes and principles. SREL conducts basic and applied ecological research, as well as education and outreach programs, under an M&O contract with the US Department of Energy at the Savannah River Site. Significant accomplishments were made during the year ending July 31, 1994 in the areas of research, education and service. Reviewed in this document are research projects in the following areas: Environmental Operations Support (impacted wetlands, streams, trace organics, radioecology, database synthesis, wild life studies, zooplankton, safety and quality assurance); wood stork foraging and breeding ecology; defence waste processing facility; environmental risk assessment (endangered species, fish, ash basin studies); ecosystem alteration by chemical pollutants; wetlands systems; biodiversity on the SRS; Environmental toxicology; environmental outreach and education; Par Pond drawdown studies in wildlife and fish and metals; theoretical ecology; DOE-SR National Environmental Research Park; wildlife studies. Summaries of educational programs and publications are also give.

  18. Expansion of the Idaho National Engineering Laboratory Research Center: Environmental assessment

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    The US Department of Energy (DOE) proposes to expand and upgrade facilities at the Idaho National Engineering Laboratory (INEL) Research Center (IRC) by constructing a research laboratory addition on the northeast corner of existing laboratory building; upgrading the fume hood system in the existing laboratory building; and constructing a hazardous waste handling facility and a chemical storage building. The DOE also proposes to expand the capabilities of biotechnology research programs by increasing use of radiolabeled compounds to levels in excess of current facility limits for three radionuclides (carbon-14, sulfur-35, and phosphorus-32). This Environmental assessment identifies the need for the new facilities, describes the proposed projects and environmental setting, and evaluates the potential environmental effects. Impacts associated with current operation are discussed and established as a baseline. Impacts associated with the proposed action and cumulative impacts are described against this background. Alternatives to the proposed action (No action; Locating proposed facilities at a different site) are discussed and a list of applicable regulations is provided. The no action alternative is continuation of existing operations at existing levels as described in Section 4 of this EA. Proposed facilities could be constructed at a different location, but these facilities would not be useful or practical since they are needed to provide a support function for IRC operations. Further, the potential environmental impacts would not be reduced if a different site was selected.

  19. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DOE - DECEMBER 2001.

    SciTech Connect (OSTI)

    FOX,K.J.

    2001-12-01

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $450 million. There are about 3,000 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 4 13.2, ''Laboratory Directed Research and Development,'' March 5, 1997, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 4 13.2. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL. The LDRD Annual Report contains summaries of all research activities funded during Fiscal Year 2001. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, the LDRD activities have resulted in numerous publications in various professional and scientific journals and presentations at meetings and forums. All FY 2001 projects are listed and tabulated in the Project Funding Table. Also included in this Annual Report in Appendix A is a summary of the proposed projects for FY 2002. The BNL LDRD budget authority by DOE in FY 2001 was $6 million. The actual allocation totaled $5.3 million. The following sections in this report contain the management processes, peer review, and the portfolio's relatedness to BNL's mission, initiatives and strategic plans. Also included is a metric of success indicators.

  20. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DEPARTMENT OF ENERGY - DECEMBER 2004

    SciTech Connect (OSTI)

    FOX,K.J.

    2004-12-31

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $460 million. There are about 2,800 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 4 13.2A, ''Laboratory Directed Research and Development,'' January 8, 2001, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 413.2A. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL. The LDRD Annual Report contains summaries of all research activities funded during Fiscal Year 2004. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, the LDRD activities have resulted in numerous publications in various professional and scientific journals and presentations at meetings and forums. All FY 2004 projects are listed and tabulated in the Project Funding Table. Also included in this Annual Report in Appendix A is a summary of the proposed projects for FY 2005. The BNL LDRD budget authority by DOE in FY 2004 was $9.5 million. The actual allocation totaled $8.5 million. The following sections in this report contain the management processes, peer review, and the portfolio's relatedness to BNL's mission, initiatives and strategic plans. Also included is a metric of success indicators and Self Assessment.

  1. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DEPARTMENT OF ENERGY - DECEMBER 2003

    SciTech Connect (OSTI)

    FOX,K.J.

    2003-12-31

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $450 million. There are about 3,000 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 41 3.2A, ''Laboratory Directed Research and Development,'' January 8, 2001, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 413.2A. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL. The LDRD Annual Report contains summaries of all research activities funded during Fiscal Year 2003. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, the LDRD activities have resulted in numerous publications in various professional and scientific journals and presentations at meetings and forums. All FY 2003 projects are listed and tabulated in the Project Funding Table. Also included in this Annual Report in Appendix A is a summary of the proposed projects for FY 2004. The BNL LDRD budget authority by DOE in FY 2003 was $8.5 million. The actual allocation totaled $7.8 million. The following sections in this report contain the management processes, peer review, and the portfolio's relatedness to BNL's mission, initiatives and strategic plans. Also included is a metric of success indicators.

  2. Exploratory Research and Development Fund, FY 1990. Report on Lawrence Berkeley Laboratory

    SciTech Connect (OSTI)

    Not Available

    1992-05-01

    The Lawrence Berkeley Laboratory Exploratory R&D Fund FY 1990 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of an Exploratory R&D Fund (ERF) planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The research areas covered in this report are: Accelerator and fusion research; applied science; cell and molecular biology; chemical biodynamics; chemical sciences; earth sciences; engineering; information and computing sciences; materials sciences; nuclear science; physics and research medicine and radiation biophysics.

  3. Pacific Northwest Laboratory annual report for 1991 to the DOE Office of Energy Research. Part 2, Environmental sciences

    SciTech Connect (OSTI)

    Perez, D.A.

    1992-02-01

    This report summarizes progress in environmental sciences research conducted by Pacific Northwest Laboratory (PNL) for the US Department of Energy`s (DOE) Office of Health and Environmental Research in FY 1991. Each project in the PNL research program is a component in an integrated laboratory, intermediate-scale, and field approach designed to examine multiple phenomena at increasing levels of complexity. Examples include definition of the role of fundamental geochemical and physical phenomena on the diversity and function of microorganisms in the deep subsurface, and determination of the controls on nutrient, water, and energy dynamics in arid ecosystems and their response to stress at the landscape scale. The Environmental Science Research Center has enable PNL to extend fundamental knowledge of subsurface science to develop emerging new concepts for use in natural systems and in environmental restoration of DOE sites. New PNL investments have been made in developing advanced concepts for addressing chemical desorption kinetics, enzyme transformations and redesign, the role of heterogeneity in contaminant transport, and modeling of fundamental ecological processes.

  4. PPPL-led researchers seek to demonstrate a novel design for a key

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    diagnostic tool for ITER | Princeton Plasma Physics Lab PPPL-led researchers seek to demonstrate a novel design for a key diagnostic tool for ITER By John Greenwald April 13, 2012 Tweet Widget Google Plus One Share on Facebook Dave Johnson (Photo by Elle Starkman, PPPL Office of Communications) Dave Johnson Scientists working under the leadership of the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) have developed and are preparing to test a novel design for a key

  5. A PACIFIC-WIDE GEOTHERMAL RESEARCH LABORATORY: THE PUNA GEOTHERMAL RESEARCH FACILITY

    SciTech Connect (OSTI)

    Takahashi, P.; Seki, A.; Chen, B.

    1985-01-22

    The Hawaii Geothermal Project (HGP-A) well, located in the Kilauea volcano east rift zone, was drilled to a depth of 6450 feet in 1976. It is considered to be one of the hot-test producing geothermal wells in the world. This single well provides 52,800 pounds per hour of 371 F and 160 pounds per square inch-absolute (psia) steam to a 3-megawatt power plant, while the separated brine is discharged in percolating ponds. About 50,000 pounds per hour of 368 F and 155 psia brine is discharged. Geothermal energy development has increased steadily in Hawaii since the completion of HGP-A in 1976: (1) a 3 megawatt power plant at HGP-A was completed and has been operating since 1981; (2) Hawaiian Electric Company (HECO) has requested that their next increment in power production be from geothermal steam; (3) three development consortia are actively, or in the process of, drilling geothermal exploration wells on the Big Island; and (4) engineering work on the development of a 400 megawatt undersea cable for energy transmission is continuing, with exploratory discussions being initiated on other alternatives such as hydrogen. The purpose for establishing the Puna Geothermal Research Facility (PGRF) is multifold. PGRF provides a facility in Puna for high technology research, development, and demonstration in geothermal and related activities; initiate an industrial park development; and examine multi-purpose dehydration and biomass applications related to geothermal energy utilization.

  6. Advanced Control Design and Field Testing for Wind Turbines at the National Renewable Energy Laboratory: Preprint

    SciTech Connect (OSTI)

    Hand, M. M.; Johnson, K. E.; Fingersh, L. J.; Wright, A. D.

    2004-05-01

    Utility-scale wind turbines require active control systems to operate at variable rotational speeds. As turbines become larger and more flexible, advanced control algorithms become necessary to meet multiple objectives such as speed regulation, blade load mitigation, and mode stabilization. At the same time, they must maximize energy capture. The National Renewable Energy Laboratory has developed control design and testing capabilities to meet these growing challenges.

  7. Laboratory directed research and development. FY 1991 program activities: Summary report

    SciTech Connect (OSTI)

    Not Available

    1991-11-15

    The purposes of Argonne`s Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory`s R&D capabilities, and further the development of its strategic initiatives. Among the aims of the projects supported by the Program are establishment of engineering ``proof-of-principle``; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these project are closely associated with major strategic thrusts of the Laboratory as described in Argonne`s Five Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne. Areas of emphasis are (1) advanced accelerator and detector technology, (2) x-ray techniques in biological and physical sciences, (3) advanced reactor technology, (4) materials science, computational science, biological sciences and environmental sciences. Individual reports summarizing the purpose, approach, and results of projects are presented.

  8. Design of the First Infrared Beamline at the Siam Photon Laboratory

    SciTech Connect (OSTI)

    Pattanasiriwisawa, W.; Songsiriritthigul, P.; Dumas, P.

    2010-06-23

    This report presents the optical design and optical simulations for the first infrared beamline at the Siam Photon Laboratory. The beamline collects the edge radiation and bending magnet radiation, producing from the BM4 bending magnet of the 1.2 GeV storage ring of the Siam Photon Source. The optical design is optimized for the far- to mid-infrared spectral range (4000-100 cm{sup -1}) for microspectroscopic applications. The optical performance has been examined by computer simulations.

  9. Faculty and Student Teams and National Laboratories: Expanding the Reach of Research Opportunities and Workforce Development

    SciTech Connect (OSTI)

    Blackburn,N.; White, K.; Stegman, M.

    2009-08-05

    The Faculty and Student Teams (FaST) Program, a cooperative effort between the US Department of Energy (DOE) Office of Science and the National Science Foundation (NSF), brings together collaborative research teams composed of a researcher at Brookhaven National Laboratory, and a faculty member with two or three undergraduate students from a college or university. Begun by the Department of Energy in 2000 with the primary goal of building research capacity at a faculty member's home institution, the FaST Program focuses its recruiting efforts on faculty from colleges and universities with limited research facilities and those institutions that serve populations under-represented in the fields of science, engineering and technology, particularly women and minorities. Once assembled, a FaST team spends a summer engaged in hands-on research working alongside a laboratory scientist. This intensely collaborative environment fosters sustainable relationships between the faulty members and BNL that allow faculty members and their BNL colleagues to submit joint proposals to federal agencies, publish papers in peer-reviewed journals, reform local curriculum, and develop new or expand existing research labs at their home institutions.

  10. NREL Technical Reports Guide the Way to 50% Energy Savings in Hospitals, Office Buildings (Fact Sheet), NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    existing technologies, designers and operators of large buildings could slash national energy use across a broad range of climates. Researchers at the National Renewable Energy Laboratory (NREL) have developed two technical reports that provide recommendations to help designers and opera- tors of large office buildings and hospitals achieve at least a 50% energy savings using existing technology. Strategies for 50% Energy Savings in Large Office Buildings found that a 50% energy savings can be

  11. Research identifies designs for lowering subsea production cost

    SciTech Connect (OSTI)

    Rothberg, R.H.; Hall, J.E. ); Douglas, L.D. ); Manuel, W.S. ); Kirkland, K.G.

    1993-03-08

    To reduce costs and simplify installation operations for subsea hardware, Amoco Production Co. in 1986 began the development of a diverless subsea production system (DSPS). At present, Amoco has completed the testing phase for selected prototype components and has completed a deepwater system design that incorporates many of these ideas. This program has yielded several configurations suitable for full-field development; however, the emphasis of the research and development program has been to identify, design, and test components of key subsystems. This first of a three-part series describes the design considerations, equipment configuration, and subsea trees.

  12. LOS ALAMOS, N.M., Nov. 19, 2013-Researchers at Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    virus spread and evolution studied through computer modeling November 19, 2013 LOS ALAMOS, N.M., Nov. 19, 2013-Researchers at Los Alamos National Laboratory are investigating the complex relationships between the spread of the HIV virus in a population (epidemiology) and the actual, rapid evolution of the virus (phylogenetics) within each patient's body. "We have developed novel ways of estimating epidemics dynamics such as who infected whom, and the true population incidence of infection

  13. Change LOS ALAMOS, N.M., May 19, 2015-Researchers at Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Drought-induced tree mortality accelerating in forests May 19, 2015 Los Alamos' paper published in Nature Climate Change LOS ALAMOS, N.M., May 19, 2015-Researchers at Los Alamos National Laboratory have found that drought and heat-induced tree mortality is accelerating in many forest biomes as a consequence of a warming climate in their paper "Darcy's law predicts widespread forest mortality under climate warming," published in the journal Nature Climate Change. "The warming

  14. Letter to Science from Michael Wang, Center for Transportation Research, Argonne National Laboratory

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Letter to Science (Original version submitted to Science on Feb. 14 th , 2008; revised on March 14 th , 2008) Michael Wang Center for Transportation Research Argonne National Laboratory Zia Haq Office of Biomass Program Office of Energy Efficiency and Renewable Energy U.S. Department of Energy The article by Searchinger et al. in Sciencexpress ("Use of U.S. Croplands for Biofuels Increases Greenhouse Gases through Emissions from Land Use Change," February 7, 2008) provides a timely

  15. Design and Validation of Control Room Upgrades Using a Research Simulator Facility

    SciTech Connect (OSTI)

    Ronald L. Boring; Vivek Agarwal; Jeffrey C. Joe; Julius J. Persensky

    2012-11-01

    Since 1981, the United States (U.S.) Nuclear Regulatory Commission (NRC) [1] requires a plant- specific simulator facility for use in training at U.S. nuclear power plants (NPPs). These training simulators are in near constant use for training and qualification of licensed NPP operators. In the early 1980s, the Halden Man-Machine Laboratory (HAMMLab) at the Halden Reactor Project (HRP) in Norway first built perhaps the most well known set of research simulators. The HRP offered a high- fidelity simulator facility in which the simulator is functionally linked to a specific plant but in which the human-machine interface (HMI) may differ from that found in the plant. As such, HAMMLab incorporated more advanced digital instrumentation and controls (I&C) than the plant, thereby giving it considerable interface flexibility that researchers took full advantage of when designing and validating different ways to upgrade NPP control rooms. Several U.S. partnersthe U.S. NRC, the Electrical Power Research Institute (EPRI), Sandia National Laboratories, and Idaho National Laboratory (INL) as well as international members of the HRP, have been working with HRP to run control room simulator studies. These studies, which use crews from Scandinavian plants, are used to determine crew behavior in a variety of normal and off-normal plant operations. The findings have ultimately been used to guide safety considerations at plants and to inform advanced HMI designboth for the regulator and in industry. Given the desire to use U.S. crews of licensed operators on a simulator of a U.S. NPP, there is a clear need for a research simulator facility in the U.S. There is no general-purpose reconfigurable research oriented control room simulator facility in the U.S. that can be used for a variety of studies, including the design and validation of control room upgrades.

  16. Chemistry {ampersand} Materials Science program report, Weapons Resarch and Development and Laboratory Directed Research and Development FY96

    SciTech Connect (OSTI)

    Chase, L.

    1997-03-01

    This report is the annual progress report for the Chemistry Materials Science Program: Weapons Research and Development and Laboratory Directed Research and Development. Twenty-one projects are described separately by their principal investigators.

  17. LOS ALAMOS, N.M., June 4, 2013-Los Alamos National Laboratory researchers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    laser-driven neutrons to stop nuclear smugglers June 4, 2013 Los Alamos shows first nuclear material detection by single short-pulse-laser-driven neutron source LOS ALAMOS, N.M., June 4, 2013-Los Alamos National Laboratory researchers have successfully demonstrated for the first time that laser-generated neutrons can be enlisted as a useful tool in the War on Terror. The international research team in February used the short-pulse laser at Los Alamos's TRIDENT facility to generate a neutron beam

  18. Pacific Northwest Laboratory annual report for 1991 to the DOE Office of Energy Research

    SciTech Connect (OSTI)

    Not Available

    1992-05-01

    Within the US Department of Energy's (DOE's) Office of Health and Environmental Research (OHER), the atmospheric sciences and carbon dioxide research programs are part of the Environmental Sciences Division (ESD). One of the central missions of the division Is to provide the DOE with scientifically defensible information on the local, regional, and global distributions of energy-related pollutants and their effects on climate. This information is vital to the definition and Implementation of a sound national energy strategy. This volume reports on the progress and status of all OHER atmospheric science and climate research projects at the Pacific Northwest Laboratory (PNL). Research at PNL provides basic scientific underpinnings to DOE's program of global climate research. Research projects within the core carbon dioxide and ocean research programs are now integrated with those in the Atmospheric Radiation Measurements (ARM), the Computer Hardware, Advanced Mathematics and Model Physics (CHAMMP), and quantitative links programs to form DOEs contribution to the US Global Change Research Program. Climate research in the ESD has the common goal of improving our understanding of the physical, chemical, biological, and social processes that influence the Earth system so that national and international policymaking relating to natural and human-induced changes in the Earth system can be given a firm scientific basis. This report describes the progress In FY 1991 in each of these areas.

  19. Biological and Environmental Research Program at Oak Ridge National Laboratory, FY 1992--1994

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    This report is the 1992--1994 Program Director`s Overview Report for Oak Ridge National Laboratory`s (ORNL`s) Biological and Environmental Research (BER) Program, and as such it addresses KP-funded work at ORNL conducted during FY 1991 and in progress during FY 1992; it also serves as a planning document for the remainder of FY 1992 through FY 1994. Non-BER funded work at ORNL relevant to the mission of OHER is also discussed. The second section of the report describes ORNL facilities and resources used by the BER program. The third section addresses research management practices at ORNL. The fourth, fifth, and sixth sections address BER-funded research in progress, program accomplishments and research highlights, and program orientation for the remainder of FY 1992 through FY 1994, respectively. Work for non-BER sponsors is described in the seventh section, followed by a discussion of significant near and long-term issues facing BER work at ORNL in the eighth section. The last section provides a statistical summary of BER research at ORNL. Appendices supplement the above topics with additional detail.

  20. Pacific Northwest Laboratory annual report for 1992 to the DOE Office of Energy Research

    SciTech Connect (OSTI)

    Grove, L.K.

    1993-03-01

    The 1992 Annual Report from Pacific Northwest Laboratory (PNL) to the US Department of Energy (DOE) describes research in environment and health conducted during fiscal year 1992. This report consists of four volumes oriented to particular segments of the PNL program, describing research performed for the DOE Office of Health and Environmental Research in the Office of Energy Research. The parts of the 1992 Annual Report are: Biomedical Sciences; Environmental Sciences; Atmospheric Sciences; and Physical Sciences. This Report is Part II: Environmental Sciences. Included in this report are developments in Subsurface Science, Terrestrial Science, Laboratory-Directed Research and Development, Interactions with Educational Institutions, Technology Transfer, Publications, and Presentations. The research is directed toward developing a fundamental understanding of subsurface and terrestrial systems as a basis for both managing these critical resources and addressing environmental problems such as environmental restoration and global change. The Technology Transfer section of this report describes a number of examples in which fundamental research is laying the groundwork for the technology needed to resolve important environmental problems. The Interactions with Educational Institutions section of the report illustrates the results of a long-term, proactive program to make PNL facilities available for university and preuniversity education and to involve educational institutions in research programs. The areas under investigation include the effect of geochemical and physical phenomena on the diversity and function of microorganisms in deep subsurface environments, ways to address subsurface heterogeneity, and ways to determine the key biochemical and physiological pathways (and DNA markers) that control nutrient, water, and energy dynamics in arid ecosystems and the response of these systems to disturbance and climatic change.

  1. The Use of Underground Research Laboratories to Support Repository Development Programs. A Roadmap for the Underground Research Facilities Network.

    SciTech Connect (OSTI)

    MacKinnon, Robert J.

    2015-10-26

    Under the auspices of the International Atomic Energy Agency (IAEA), nationally developed underground research laboratories (URLs) and associated research institutions are being offered for use by other nations. These facilities form an Underground Research Facilities (URF) Network for training in and demonstration of waste disposal technologies and the sharing of knowledge and experience related to geologic repository development, research, and engineering. In order to achieve its objectives, the URF Network regularly sponsors workshops and training events related to the knowledge base that is transferable between existing URL programs and to nations with an interest in developing a new URL. This report describes the role of URLs in the context of a general timeline for repository development. This description includes identification of key phases and activities that contribute to repository development as a repository program evolves from an early research and development phase to later phases such as construction, operations, and closure. This information is cast in the form of a matrix with the entries in this matrix forming the basis of the URF Network roadmap that will be used to identify and plan future workshops and training events.

  2. System Upgrades at the Advanced Test Reactor Help Ensure that Nuclear Energy Research Continues at the Idaho National Laboratory

    SciTech Connect (OSTI)

    Craig Wise

    2011-12-01

    Fully operational in 1967, the Advanced Test Reactor (ATR) is a first-of-its-kind materials test reactor. Located on the Idaho National Laboratorys desert site, this reactor remains at the forefront of nuclear science, producing extremely high neutron irradiation in a relatively short time span. The Advanced Test Reactor is also the only U.S. reactor that can replicate multiple reactor environments concurrently. The Idaho National Laboratory and the Department of Energy recently invested over 13 million dollars to replace three of ATRs instrumentation and control systems. The new systems offer the latest software and technology advancements, ensuring the availability of the reactor for future energy research. Engineers and project managers successfully completed the four year project in March while the ATR was in a scheduled maintenance outage. These new systems represent state-of-the-art monitoring and annunciation capabilities, said Don Feldman, ATR Station Manager. They are comparable to systems currently used for advanced reactor designs planned for construction in the U.S. and in operation in some foreign countries.

  3. Determination of effective acceleration for use in design at the Lawrence Livermore National Laboratory site

    SciTech Connect (OSTI)

    Coats, D.W. Jr.

    1991-09-01

    An rms-based effective acceleration study has been conducted for the Lawrence Livermore National Laboratory. The study used real time history records with epicentral distances, magnitudes and site conditions deemed appropriate for the LLNL Livermore site. Only those records having strong motion durations, T{sub D}{prime}, >3.0 seconds, and peak ground acceleration {ge} .4g were selected for determining the effective acceleration hazard curve used in design. These parameters are consistent with LLNL's use of broad-band Newmark-Hall Spectra for design, and the high peak instrumental accelerations corresponding to the return intervals of interest. Study results were used to modify the acceleration hazard curve for facility design/evaluation at LLNL.

  4. Determination of effective acceleration for use in design at the Lawrence Livermore National Laboratory site

    SciTech Connect (OSTI)

    Coats, D.W. Jr.

    1991-09-01

    An rms-based effective acceleration study has been conducted for the Lawrence Livermore National Laboratory. The study used real time history records with epicentral distances, magnitudes and site conditions deemed appropriate for the LLNL Livermore site. Only those records having strong motion durations, T{sub D}{prime}, >3.0 seconds, and peak ground acceleration {ge} .4g were selected for determining the effective acceleration hazard curve used in design. These parameters are consistent with LLNL`s use of broad-band Newmark-Hall Spectra for design, and the high peak instrumental accelerations corresponding to the return intervals of interest. Study results were used to modify the acceleration hazard curve for facility design/evaluation at LLNL.

  5. Current Research on Thermochemical Conversion of Biomass at the National Renewable Energy Laboratory

    SciTech Connect (OSTI)

    Baldwin, R. M.; Magrini-Bair, K. A.; Nimlos, M. R.; Pepiot, P.; Donohoe, B. S.; Hensley, J. E.; Phillips, S. D.

    2012-04-05

    The thermochemical research platform at the National Bioenergy Center, National Renewable Energy Laboratory (NREL) is primarily focused on conversion of biomass to transportation fuels using non-biological techniques. Research is conducted in three general areas relating to fuels synthesis via thermochemical conversion by gasification: (1) Biomass gasification fundamentals, chemistry and mechanisms of tar formation; (2) Catalytic tar reforming and syngas cleaning; and (3) Syngas conversion to mixed alcohols. In addition, the platform supports activities in both technoeconomic analysis (TEA) and life cycle assessment (LCA) of thermochemical conversion processes. Results from the TEA and LCA are used to inform and guide laboratory research for alternative biomass-to-fuels strategies. Detailed process models are developed using the best available material and energy balance information and unit operations models created at NREL and elsewhere. These models are used to identify cost drivers which then form the basis for research programs aimed at reducing costs and improving process efficiency while maintaining sustainability and an overall net reduction in greenhouse gases.

  6. Heat Pump Water Heater Technology Assessment Based on Laboratory Research and Energy Simulation Models: Preprint

    SciTech Connect (OSTI)

    Hudon, K.; Sparn, B.; Christensen, D.; Maguire, J.

    2012-02-01

    This paper explores the laboratory performance of five integrated Heat Pump Water Heaters (HPWHs) across a wide range of operating conditions representative of US climate regions. Laboratory results demonstrate the efficiency of this technology under most of the conditions tested and show that differences in control schemes and design features impact the performance of the individual units. These results were used to understand current model limitations, and then to bracket the energy savings potential for HPWH technology in various US climate regions. Simulation results show that HPWHs are expected to provide significant energy savings in many climate zones when compared to other types of water heaters (up to 64%, including impact on HVAC systems).

  7. Vegetation study in support of the design and optimization of vegetative soil covers, Sandia National Laboratories, Albuquerque, New Mexico.

    SciTech Connect (OSTI)

    Peace, Gerald L.; Goering, Timothy James (GRAM inc., Albuquerque, NM); Knight, Paul J. (Marron and Associates, Albuquerque, NM); Ashton, Thomas S. (Marron and Associates, Albuquerque, NM)

    2004-11-01

    A vegetation study was conducted in Technical Area 3 at Sandia National Laboratories, Albuquerque, New Mexico in 2003 to assist in the design and optimization of vegetative soil covers for hazardous, radioactive, and mixed waste landfills at Sandia National Laboratories/New Mexico and Kirtland Air Force Base. The objective of the study was to obtain site-specific, vegetative input parameters for the one-dimensional code UNSAT-H and to identify suitable, diverse native plant species for use on vegetative soil covers that will persist indefinitely as a climax ecological community with little or no maintenance. The identification and selection of appropriate native plant species is critical to the proper design and long-term performance of vegetative soil covers. Major emphasis was placed on the acquisition of representative, site-specific vegetation data. Vegetative input parameters measured in the field during this study include root depth, root length density, and percent bare area. Site-specific leaf area index was not obtained in the area because there was no suitable platform to measure leaf area during the 2003 growing season due to severe drought that has persisted in New Mexico since 1999. Regional LAI data was obtained from two unique desert biomes in New Mexico, Sevilletta Wildlife Refuge and Jornada Research Station.

  8. The Eleventh Design Research Institute of IT Co Ltd EDRI | Open...

    Open Energy Info (EERE)

    Eleventh Design Research Institute of IT Co Ltd EDRI Jump to: navigation, search Name: The Eleventh Design & Research Institute of IT Co Ltd (EDRI) Place: Chengdu, Sichuan...

  9. LOS ALAMOS, N.M., March 19, 2015-Los Alamos National Laboratory researcher

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to explore new strategies for diagnosing challenging diseases March 19, 2015 First talk is Tuesday, March 24 in Los Alamos LOS ALAMOS, N.M., March 19, 2015-Los Alamos National Laboratory researcher Harshini Mukundan discusses the re-emergence of tuberculosis in a series of three lectures called "The Microbe Strikes Back: The Return of Tuberculosis." The talks, which focus on how effective diagnosis can prevent its spread and save lives, take place in Los Alamos, Albuquerque and Santa

  10. Field Testing Research at the NWTC (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accreditation The NWTC is accredited to perform the following tests in accordance with international standards: * Acoustic noise to IEC 61400-11 and MEASNET * Power performance to IEC 61400- 12-1 and MEASNET * Mechanical loads to IEC 61400-13 * Power quality to IEC 61400-21 and MEASNET * Duration testing to IEC 61400-2 * Safety and function to IEC 61400-2 and IEC 61400-22 Field Testing Research at the NWTC The National Wind Technology Center (NWTC) at the National Renewable Laboratory (NREL) has

  11. Mid-Pacific Research Laboratory. Annual report, 1 October 1979-30 September 1980

    SciTech Connect (OSTI)

    Colin, P.L.; Harrison, J.T. III

    1981-04-01

    Progress is reported in the research program which concentrates on sediment bottom communities of the Eniwetak lagoon. Biological and physical-chemical processes of the lagoon floor are relevant to radionuclide mobilization and redistribution. Because of the paucity of general information about the deep lagoon, initial studies were designed to assess benthic community distribution and structure. Two-hundred stations throughout the lagoon are being surveyed using a camera system designed and built at MPRL. These studies of benthic community distribution are augmented by a concurrent research effort to quantify benthic primary production, community metabolism, and cycling of nutrients between the sediments and the overlying water column. Net daily oxygen and nutrient flow data are tabulated. Facilities are described, community relations are discussed, and a plan for future research is given.

  12. Biological and Environmental Research Program at Oak Ridge National Laboratory, FY 1992--1994

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    This report is the 1992--1994 Program Director's Overview Report for Oak Ridge National Laboratory's (ORNL's) Biological and Environmental Research (BER) Program, and as such it addresses KP-funded work at ORNL conducted during FY 1991 and in progress during FY 1992; it also serves as a planning document for the remainder of FY 1992 through FY 1994. Non-BER funded work at ORNL relevant to the mission of OHER is also discussed. The second section of the report describes ORNL facilities and resources used by the BER program. The third section addresses research management practices at ORNL. The fourth, fifth, and sixth sections address BER-funded research in progress, program accomplishments and research highlights, and program orientation for the remainder of FY 1992 through FY 1994, respectively. Work for non-BER sponsors is described in the seventh section, followed by a discussion of significant near and long-term issues facing BER work at ORNL in the eighth section. The last section provides a statistical summary of BER research at ORNL. Appendices supplement the above topics with additional detail.

  13. Department of Energy Designates the Idaho National Laboratory Advanced Test Reactor as a National Scientific User Facility

    Broader source: Energy.gov [DOE]

    WASHINGTON, DC - The U.S. Department of Energy (DOE) today designated the Idaho National Laboratory's (INL) Advanced Test Reactor (ATR) as a National Scientific User Facility.  Establishing the ATR...

  14. Los Alamos national Laboratory overview of the SAVY-4000 design: meeting the challenge for worker safety

    SciTech Connect (OSTI)

    Stone, Timothy Amos

    2012-06-12

    Incidents involving release of nuclear materials stored in containers of convenience such as food pack cans, slip lid taped cans, paint cans, etc. has resulted in defense board concerns over the lack of prescriptive performance requirements for interim storage of nuclear materials. Los Alamos National Laboratory (LANL) has shared in these incidents and in response proactively moved into developing a performance based storage container design, the SAVY-4000. The SAVY-4000 is the first vented general use nuclear material container demonstrated to meet the requirements of DOE M 441.1-1, Nuclear Material Packaging Manual. The SAVY-4000 is an innovative and creative design demonstrated by the fact that it can be opened and closed in a few seconds without torque wrenches or other tools; has a built-in, fire-rated filter that prevents the build-up of hydrogen gas, yet retains 99.97% of plutonium particulates, and prevents release of material even in a 12 foot drop. Finally, it has been tested to 500C for 2 hours, and will reduce the risk to the public in the event of an earthquake/fire scenario. This will allow major nuclear facilities to credit the container towards source term Material at Risk (MAR) reduction. The container was approved for nuclear material storage in theTA-55 Plutonium Facility on March 15, 2011, and the first order of 79 containers was received at LANL on March 21, 2011. The first four SAVY-4000 containers were packaged with plutonium on August 2, 2011. Key aspects ofthe SAVY-4000 vented storage container design will be discussed which include design qualification and testing, implementation plan development and status, risk ranking methodology for re-packaging, in use implementation with interface to LANMAS, surveillance strategy, the design life extension program as enhanced by surveillance activities and production status with the intent to extend well beyond the current five year design life.

  15. Pacific Northwest Laboratory annual report for 1993 to the DOE Office of Energy Research. Part 4: Physical sciences

    SciTech Connect (OSTI)

    Braby, L.A.

    1994-08-01

    Part 4 of the Pacific Northwest Laboratory Annual Report for 1993 to the DOE Office of Energy Research includes those programs funded under the title ``Physical and Technological Research.`` The Field Task Program Studies reported in this document are grouped by budget category. Attention is focused on the following subject areas: dosimetry research; and radiological and chemical physics.

  16. Systems Engineering Applications to Wind Energy Research, Design, and Development (Poster)

    SciTech Connect (OSTI)

    Dykes, K.; Damiani, R.; Felker, F.; Graf, P.; Hand, M.; Meadows, R.; Musial, W.; Moriarty, P.; Ning, A.; Scott, G.; Sirnivas, S.; Veers, P.

    2012-06-01

    Over the last few decades, wind energy has evolved into a large international industry involving major players in the manufacturing, construction, and utility sectors. Coinciding with the industry's growth, significant innovation in the technology has resulted in larger turbines with lower associated costs of energy and more complex designs in all subsystems. However, as the deployment of the technology grows, and its role within the electricity sector becomes more prominent, so has the expectations of the technology in terms of performance, reliability, and cost. The industry currently partitions its efforts into separate paths for turbine design, plant design and development, grid interaction and operation, and mitigation of adverse community and environmental impacts. These activities must be integrated to meet a diverse set of goals while recognizing trade-offs between them. To address these challenges, the National Renewable Energy Laboratory (NREL) has embarked on the Wind Energy Systems Engineering (WESE) initiative to use methods of systems engineering in the research, design, and development of wind energy systems. Systems engineering is a field that has a long history of application to complex technical systems. The work completed to date represents a first step in understanding this potential. It reviews systems engineering methods as applied to related technical systems and illustrates how these methods can be combined in a WESE framework to meet the research, design, and development needs for the future of the industry.

  17. EA-1148: Electrometallurgical Treatment Research and Demonstration Project in the Fuel Conditioning Facility at Argonne National Laboratory- West

    Broader source: Energy.gov [DOE]

    DOE prepared an EA that evaluated the potential environmental impacts associated with the research and demonstration of electrometallurgical technology for treating Experimental Breeder Reactor-II Spent Nuclear Fuel in the Fuel Conditioning Facility at Argonne National Laboratory-West.

  18. NREL's Water Power Software Makes a Splash (Fact Sheet), NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Open-source software provides essential modeling and simulation help in water power research and development. Researchers at the National Renewable Energy Laboratory's (NREL) National Wind Technology Center are continuing their work on the Wave Energy Converter SIMulator (WEC-Sim), a free, open-source software modeling tool being jointly developed by NREL and Sandia National Laboratories. WEC-Sim promises to help level the playing field in the wave energy converter (WEC) industry. WEC-Sim allows

  19. Design and initial deployment of the wireless local area networking infrastructure at Sandia National Laboratories.

    SciTech Connect (OSTI)

    Long, John P.; Hamill, Michael J.; Mitchell, M. G.; Miller, Marc M.; Witzke, Edward L.; Wiener, Dallas J

    2006-11-01

    A major portion of the Wireless Networking Project at Sandia National Laboratories over the last few years has been to examine IEEE 802.11 wireless networking for possible use at Sandia and if practical, introduce this technology. This project team deployed 802.11a, b, and g Wireless Local Area Networking at Sandia. This report examines the basics of wireless networking and captures key results from project tests and experiments. It also records project members thoughts and designs on wireless LAN architecture and security issues. It documents some of the actions and milestones of this project, including pilot and production deployment of wireless networking equipment, and captures the team's rationale behind some of the decisions made. Finally, the report examines lessons learned, future directions, and conclusions.

  20. Survey and analysis of materials research and development at selected federal laboratories

    SciTech Connect (OSTI)

    Reed, J.E.; Fink, C.R.

    1984-04-01

    This document presents the results of an effort to transfer existing, but relatively unknown, materials R and D from selected federal laboratories to industry. More specifically, recent materials-related work at seven federal laboratories potentially applicable to improving process energy efficiency and overall productiviy in six energy-intensive manufacturing industries was evaluated, catalogued, and distributed to industry representatives to gauge their reaction. Laboratories surveyed include: Air Force Wright Aeronautical Laboratories Material Laboratory (AFWAL). Pacific Northwest Laboratory (PNL), National Aeronautics and Space Administration Marshall Flight Center (NASA Marshall), Oak Ridge National Laboratory (ORNL), Brookhaven National Laboratory (BNL), Idaho National Engineering Laboratory (INEL), and Jet Propulsion Laboratory (JPL). Industries included in the effort are: aluminum, cement, paper and allied products, petroleum, steel and textiles.

  1. Environmental Survey preliminary report, Laboratory for Energy-Related Health Research, Davis, California

    SciTech Connect (OSTI)

    Not Available

    1988-03-01

    This report presents the preliminary findings from the first phase of the Survey of the United States Department of Energy (DOE) Laboratory for Energy-Related Health Research (LEHR) at the University of California, Davis (UC Davis), conducted November 16 through 20, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the LEHR. The Survey covers all environmental media and all areas of environmental regulation, and is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations at the LEHR and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The Sampling and Analysis Plan will be executed by a DOE National Laboratory or a support contractor. When completed, the results will be incorporated into the Environmental Survey Interim Report for the LEHR at UC Davis. The Interim Report will reflect the final determinations of the LEHR Survey. 75 refs., 26 figs., 23 tabs.

  2. Final report for the Integrated and Robust Security Infrastructure (IRSI) laboratory directed research and development project

    SciTech Connect (OSTI)

    Hutchinson, R.L.; Hamilton, V.A.; Istrail, G.G.; Espinoza, J.; Murphy, M.D.

    1997-11-01

    This report describes the results of a Sandia-funded laboratory-directed research and development project titled {open_quotes}Integrated and Robust Security Infrastructure{close_quotes} (IRSI). IRSI was to provide a broad range of commercial-grade security services to any software application. IRSI has two primary goals: application transparency and manageable public key infrastructure. IRSI must provide its security services to any application without the need to modify the application to invoke the security services. Public key mechanisms are well suited for a network with many end users and systems. There are many issues that make it difficult to deploy and manage a public key infrastructure. IRSI addressed some of these issues to create a more manageable public key infrastructure.

  3. OVERVIEW OF HIGH-DENSITY FRC RESEARCH ON FRX-L AT LOS ALAMOS NATIONAL LABORATORY.

    SciTech Connect (OSTI)

    Taccetti, J. M.; Zhang, S. Y.; Wurden, G. A.; Maqueda, R. J.; Tuszewski, M.; Siemon, R.; Begay, D.; Mignardot, E.; Sanchez, P.; Waganaar, B.; Degnan, J. H.; Sommars, W.; Grabowski, C.

    2002-10-07

    We present an overview of the FRC research on the Field Reversed configuration eXperiment – Liner (FRX-L) device at Los Alamos National Laboratory. This is a target plasma ‘injector’ to be used for magnetized target fusion (MTF) applications. MTF is an approach to fusion wherein a magnetized target plasma is compressed to fusion conditions. Our target plasma is an FRC because it has the required closed-field-line topology, and is translatable and compressible. The existing empirical database also indicates that the type of FRC required for MTF would be achievable. FRX-L includes the formation and translation of the FRC into a mock target chamber. We are currently in the process of forming the high-density FRC.

  4. Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Isotopes produced at Los Alamos National Laboratory are saving lives, advancing cutting-edge research and keeping the U.S. safe. Research thorium test foil A thorium test foil ...

  5. Inverse Design: Playing "Jeopardy" in Materials Science (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    SciTech Connect (OSTI)

    Alex Zunger; Tumas, Bill; CID Staff

    2011-05-01

    'Inverse Design: Playing 'Jeopardy' in Materials Science' was submitted by the Center for Inverse Design (CID) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CID, an EFRC directed by Bill Tumas at the National Renewable Energy Laboratory is a partnership of scientists from five institutions: NREL (lead), Northwestern University, University of Colorado, Stanford University, and Oregon State University. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Inverse Design is 'to replace trial-and-error methods used in the development of materials for solar energy conversion with an inverse design approach powered by theory and computation.' Research topics are: solar photovoltaic, photonic, metamaterial, defects, spin dynamics, matter by design, novel materials synthesis, and defect tolerant materials.

  6. Inverse Design: Playing "Jeopardy" in Materials Science (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema (OSTI)

    Alex Zunger (former Director, Center for Inverse Design); Tumas, Bill (Director, Center for Inverse Design); CID Staff

    2011-11-02

    'Inverse Design: Playing 'Jeopardy' in Materials Science' was submitted by the Center for Inverse Design (CID) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CID, an EFRC directed by Bill Tumas at the National Renewable Energy Laboratory is a partnership of scientists from five institutions: NREL (lead), Northwestern University, University of Colorado, Stanford University, and Oregon State University. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Inverse Design is 'to replace trial-and-error methods used in the development of materials for solar energy conversion with an inverse design approach powered by theory and computation.' Research topics are: solar photovoltaic, photonic, metamaterial, defects, spin dynamics, matter by design, novel materials synthesis, and defect tolerant materials.

  7. Advanced Envelope Research for Factory Built Housing, Phase 3?Design...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    performed using BEopt (Building Energy Optimization), software developed by the National Renewable Energy Laboratory for the purpose of selecting among measures based on their...

  8. Los Alamos National Laboratory new generation standard nuclear material storage container - the SAVY4000 design

    SciTech Connect (OSTI)

    Stone, Timothy Amos

    2010-01-01

    Incidents involving release of nuclear materials stored in containers of convenience such as food pack cans, slip lid taped cans, paint cans, etc. has resulted in defense board concerns over the lack of prescriptive performance requirements for interim storage of nuclear materials. Los Alamos National Laboratory (LANL) has shared in these incidents and in response proactively moved into developing a performance based standard involving storage of nuclear material (RD003). This RD003 requirements document has sense been updated to reflect requirements as identified with recently issued DOE M 441.1-1 'Nuclear Material Packaging Manual'. The new packaging manual was issued at the encouragement of the Defense Nuclear Facilities Safety Board with a clear directive for protecting the worker from exposure due to loss of containment of stored materials. The Manual specifies a detailed and all inclusive approach to achieve a high level of protection; from package design & performance requirements, design life determinations of limited life components, authorized contents evaluations, and surveillance/maintenance to ensure in use package integrity over time. Materials in scope involve those stored outside an approved engineered-contamination barrier that would result in a worker exposure of in excess of 5 rem Committed Effective Does Equivalent (CEDE). Key aspects of meeting the challenge as developed around the SAVY-3000 vented storage container design will be discussed. Design performance and acceptance criteria against the manual, bounding conditions as established that the user must ensure are met to authorize contents in the package (based upon the activity of heat-source plutonium (90% Pu-238) oxide, which bounds the requirements for weapons-grade plutonium oxide), interface as a safety class system within the facility under the LANL plutonium facility DSA, design life determinations for limited life components, and a sense of design specific surveillance program implementation as LANL moves forward into production and use of the SAVY-3000 will all be addressed. The SAVY-3000 is intended as a work horse package for the DOE complex as a vented storage container primarily for plutonium in solid form.

  9. Pacific Northwest Laboratory annual report for 1993 to the DOE Office of Energy Research. Part 1: Biomedical Sciences

    SciTech Connect (OSTI)

    Lumetta, C.C.; Park, J.F.

    1994-03-01

    This report summarizes FY 1993 progress in biological and general life sciences research programs conducted for the Department of Energy`s Office of Health and Environmental REsearch (OHER) at Pacific Northwest Laboratory (PNL). This research provides knowledge of fundamental principles necessary to identify, understand, and anticipate the long-term health consequences of exposure to energy-related radiation and chemicals. The Biological Research section contains reports of studies using laboratory animals, in vitro cell systems, and molecular biological systems. This research includes studies of the impact of radiation, radionuclides, and chemicals on biological responses at all levels of biological organization. The General Life Sciences Research section reports research conducted for the OHER human genome program.

  10. Pacific Northwest Laboratory annual report for 1993 to the DOE Office of Energy Research. Part 2: Environmental sciences

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    This 1993 Annual Report from Pacific Northwest Laboratory (PNL) to the US DOE describes research in environment and health conducted during fiscal year (FY) 1993. The report is divided into four parts, each in a separate volume. This part, Volume 2, covers Environmental Sciences. The research is directed toward developing a fundamental understanding of subsurface and terrestrial systems as a basis for both managing these critical resources and addressing environmental problems such as environmental restoration and global change. There are sections on Subsurface Science, Terrestrial Science, Technology Transfer, Interactions with Educational Institutions, and Laboratory Directed Research and Development.

  11. Plasma-Surface Interaction Research At The Cambridge Laboratory Of Accelerator Studies Of Surfaces

    SciTech Connect (OSTI)

    Wright, G. M.; Barnard, H. S.; Hartwig, Z. S.; Stahle, P. W.; Sullivan, R. M.; Woller, K. B.; Whyte, D. G.

    2011-06-01

    The material requirements for plasma-facing components in a nuclear fusion reactor are some of the strictest and most challenging facing us today. These materials are simultaneously exposed to extreme heat loads (20 MW/m{sup 2} steady-state, 1 GW/m{sup 2} in millisecond transients) and particle fluxes (>10{sup 24} m{sup -2} s{sup -1}) while also undergoing high neutron irradiation (10{sup 18} neutrons/m{sup 2} s). At the Cambridge Laboratory of Accelerator Studies of Surfaces (CLASS), many of the most important issues in plasma-surface interaction research, such as plasma-driven material erosion and deposition, material transport and irradiation and hydrogenic retention are investigated with the use of a 1.7 MV tandem ion accelerator. Ion-Beam Analysis (IBA) is used to investigate and quantify changes in materials due to plasma exposure and ion irradiation is used as a proxy for neutron irradiation to investigate plasma-surface interactions for irradiated materials. This report will outline the capabilities and current research activities at CLASS.

  12. Idaho National Laboratory Lead or Lead-Bismuth Eutectic (LBE) Test Facility - R&D Requirements, Design Criteria, Design Concept, and Concept Guidance

    SciTech Connect (OSTI)

    Eric P. Loewen; Paul Demkowicz

    2005-05-01

    The Idaho National Laboratory Lead-Bismuth Eutectic Test Facility will advance the state of nuclear technology relative to heavy-metal coolants (primarily Pb and Pb-Bi), thereby allowing the U.S. to maintain the pre-eminent position in overseas markets and a future domestic market. The end results will be a better qualitative understanding and quantitative measure of the thermal physics and chemistry conditions in the molten metal systems for varied flow conditions (single and multiphase), flow regime transitions, heat input methods, pumping requirements for varied conditions and geometries, and corrosion performance. Furthering INL knowledge in these areas is crucial to sustaining a competitive global position. This fundamental heavy-metal research supports the National Energy Policy Development Groups stated need for energy systems to support electrical generation.1 The project will also assist the Department of Energy in achieving goals outlined in the Nuclear Energy Research Advisory Committee Long Term Nuclear Technology Research and Development Plan,2 the Generation IV Roadmap for Lead Fast Reactor development, and Advanced Fuel Cycle Initiative research and development. This multi-unit Lead-Bismuth Eutectic Test Facility with its flexible and reconfigurable apparatus will maintain and extend the U.S. nuclear knowledge base, while educating young scientists and engineers. The uniqueness of the Lead-Bismuth Eutectic Test Facility is its integrated Pool Unit and Storage Unit. This combination will support large-scale investigation of structural and fuel cladding material compatibility issues with heavy-metal coolants, oxygen chemistry control, and thermal hydraulic physics properties. Its ability to reconfigure flow conditions and piping configurations to more accurately approximate prototypical reactor designs will provide a key resource for Lead Fast Reactor research and development. The other principal elements of the Lead-Bismuth Eutectic Test Facility (in addition to the Pool Unit and Storage Unit) are the Bench Scale Unit and Supporting Systems, principal of which are the O2 Sensor/Calibration System, Feed System, Transfer System, Off- Gas System, Purge and Evacuation System, Oxygen Sensor and Control System, Data Acquisition and Control System, and the Safety Systems. Parallel and/or independent corrosion studies and convective heat transfer experiments for cylindrical and annular geometries will support investigation of heat transfer phenomena into the secondary side. In addition, molten metal pumping concepts and power requirements will be measured for future design use.

  13. Status of Recommendations from the Nuclear Energy Research Advisory Committee 2004 World Class LaboratoryŽ Report

    Energy Savers [EERE]

    Follow-up on 2004 Nuclear Energy Research Advisory Committee (NERAC) World Class Laboratory Report John Kotek Office of Nuclear Energy Principal Deputy Assistant Secretary U.S. Department of Energy July 26, 2015 2 Overview Background and Context Highlights of Idaho National Laboratory (INL) Major Accomplishments DOE's Request to NEAC on Suggestions and Recommendations 3 Background and Context  In 2003 Department of Energy (DOE) decided to consolidate ANL-West/INEEL and split NE

  14. NREL Evaluates Performance of Heat Pump Water Heaters (Fact Sheet), NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    evaluates energy savings potential of heat pump water heaters in homes throughout all U.S. climate zones. Heat pump water heaters (HPWHs) have the potential to significantly reduce energy use in homes compared to traditional electric resistance water heaters. Researchers at the National Renewable Energy Laboratory (NREL) completed thorough laboratory testing of five integrated HPWHs-all available in the U.S. market-to evaluate the cost of saved energy as a function of climate. The performance of

  15. Enhancements in Glovebox Design Resulting from Laboratory-Conducted FIre Tests

    SciTech Connect (OSTI)

    Brooks, Kriston P.; Wunderlich, Gregory M.; Mcentire, James R.; Richmond, William G.

    2013-06-14

    The primary mission of the Pit Disassembly and Conversion Facility (PDCF) Project was to disassemble nuclear weapons pits and convert the resulting special nuclear materials to a form suitable for further disposition. Because of the nature of materials involved, the fundamental system which allowed PDCF to perform its mission was a series of integrated and interconnected gloveboxes which provided confinement and containment of the radioactive materials being processed. The high throughput planned for PDCF and the relatively high neutron and gamma radiation levels of the pits required that gloveboxes be shielded to meet worker dose limits. The glovebox shielding material was required to contain high hydrogen concentrations which typically result in these materials being combustible. High combustible loadings created design challenges for the facility fire suppression and ventilation system design. Combustible loading estimates for the PDCF Plutonium (Pu) Processing Building increased significantly due to these shielding requirements. As a result, the estimates of combustible loading substantially exceeded values used to support fire and facility safety analyses. To ensure a valid basis for combustible loading contributed by the glovebox system, the PDCF Project funded a series of fire tests conducted by the Southwest Research Institute on door panels and a representative glovebox containing Water Extended Polyester (WEP) radiological shielding to observe their behavior during a fire event. Improvements to PDCF glovebox designs were implemented based on lessons learned during the fire test. In particular, methods were developed to provide high levels of neutron shielding while maintaining combustible loading in the glovebox shells at low levels. Additionally, the fire test results led to design modifications to mitigate pressure increases observed during the fire test in order to maintain the integrity of the WEP cladding. These changes resulted in significantly reducing the credited combustible loading of the facility. These advances in glovebox design should be considered for application in nuclear facilities within the Department of Energy complex in the future.

  16. Savannah River Ecology Laboratory, annual technical progress report of ecological research for the year ending June 30, 1997

    SciTech Connect (OSTI)

    Wein, G.; Rosier, B.

    1997-12-31

    This report provides an overview of the research programs and program components carried out by the Savannah River Ecology Laboratory. Research focused on the following: advanced analytical and spectroscopic techniques for developing novel waste isolation and stabilization technologies as well as cost-effective remediation strategies; ecologically sound management of damaged and remediation of ecological systems; ecotoxicology, remediation, and risk assessment; radioecology, including dose assessments for plants and animals exposed to environmental radiation; and other research support programs.

  17. Savannah River Ecology Laboratory annual technical progress report of ecological research for the year ending July 31, 1995

    SciTech Connect (OSTI)

    Smith, M.H.

    1995-07-01

    The Savannah River Ecology Laboratory (SREL) is a research unit of the University of Georgia (UGA). The overall mission of the Laboratory is to acquire and communicate knowledge of ecological processes and principles. SREL conducts basic and applied ecological research, as well as education and outreach programs, under a contract with the US Department of Energy (DOE) at the Savannah River Site near Aiken, South Carolina. Significant accomplishments were made during the past year in the areas of research, education and service. Major additions to SREL Facilities were completed that will enhance the Laboratory`s work in the future. Following several years of planning, opening ceremonies were held for the 5000 ft{sup 2} multi-purpose conference center that was funded by the University of Georgia Research Foundation (UGARF). The center is located on 68 acres of land that was provided by the US Department of Energy. This joint effort between DOE and UGARF supports DOE`s new initiative to develop partnerships with the private sector and universities. The facility is being used for scientific meetings and environmental education programs for students, teachers and the general public. A 6000 ft{sup 2} office and library addition to S@s main building officially opened this year, and construction plans are underway on a new animal care facility, laboratory addition, and receiving building.

  18. Proceedings of the Flat-Plate Solar Array Project Research Forum on the design of flat-plate photovoltaic arrays for central stations

    SciTech Connect (OSTI)

    1983-01-01

    The Flat-Plate Solar Array Project, managed by the Jet Propulsion Laboratory for the US Department of Energy, has focused on advancing technologies relevant to the design and construction of megawatt-level central-station systems. Photovoltaic modules and arrays for flat-plate central-station or other large-scale electric power production facilities require the establishment of a technical base that resolves design issues and results in practical and cost-effective configurations. The Central Station Research Forum addressed design, qualification and maintenance issues related to central-station arrays derived from the engineering and operating experiences of early applications and parallel laboratory research activities. Technical issues were examined from the viewpoint of the utility engineer, architect-engineer and laboratory researcher. The forum included presentations on optimum source-circuit designs, module insulation design for high system voltages, array safety, structural interface design, measurements and array operation and maintenance. The Research Forum focused on current capabilities as well as design difficulties requiring additional technological thrusts and/or continued research emphasis. Session topic summaries highlighting major points during group discussions, identifying promising technical approaches or areas of future research, are presented.

  19. EA-1422: Sandia National Laboratories Site-Wide Environmental Assessment/California

    Broader source: Energy.gov [DOE]

    Sandia National Laboratories (SNL) is one of three national laboratories that support the DOEs statutory responsibilities for nuclear weapons research and design, development of energy...

  20. Conceptual Site Treatment Plan Laboratory for Energy-Related Health Research Environmental Restoration Project

    SciTech Connect (OSTI)

    Chapman, T.E.

    1993-10-01

    The Federal Facilities Compliance Act (the Act) of 1992 waives sovereign immunity for federal facilities for fines and penalties under the provisions of the Resource Recovery and Conservation Act, state, interstate, and local hazardous and solid waste management requirements. However, for three years the Act delays the waiver for violations involving US Department of Energy (DOE) facilities. The Act, however, requires that the DOE prepare a Conceptual Site Treatment Plan (CSTP) for each of its sites that generate or store mixed wastes (MWs). The purpose of the CSTP is to present DOE`s preliminary evaluations of the development of treatment capacities and technologies for treating a site`s MW. This CSTP presents the preliminary capacity and technology evaluation for the Laboratory for Energy-Related Health Research (LEHR). The five identified MW streams at LEHR are evaluated to the extent possible given available information. Only one MW stream is sufficiently well defined to permit a technology evaluation to be performed. Two other MW streams are in the process of being characterized so that an evaluation can be performed. The other two MW streams will be generated by the decommissioning of inactive facilities onsite within the next five years.

  1. Plasma source ion implantation research and applications at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Munson, C.P.; Faehl, R.J.; Henins, I.

    1996-12-31

    Plasma Source Ion Implantation research at Los Alamos Laboratory includes direct investigation of the plasma and materials science involved in target surface modification, numerical simulations of the implantation process, and supporting hardware engineering. Target materials of Al, Cr, Cu-Zn, Mg, Ni, Si, Ti, W, and various Fe alloys have been processed using plasmas produced from Ar, NH{sub 3}, N{sub 2}, CH{sub 4}, and C{sub 2}H{sub 2} gases. Individual targets with surface areas as large as {approximately}4 m{sup 2}, or weighing up to 1200 kg, have been treated in the large LANL facility. In collaboration with General Motors and the University of Wisconsin, a process has been developed for application of hard, low friction, diamond-like-carbon layers on assemblies of automotive pistons. Numerical simulations have been performed using a 2{1/2}-D particle- in-cell code, which yields time-dependent implantation energy, dose, and angle of arrival for ions at the target surface for realistic geometries. Plasma source development activities include the investigation of pulsed, inductively coupled sources capable of generating highly dissociated N{sup +} with ion densities n{sub i} {approximately} 10{sup 11}/cm{sup 3}, at {approximately}100 W average input power. Cathodic arc sources have also been used to produce filtered metallic and C plasmas for implantation and deposition either in vacuum, or in conjunction with a background gas for production of highly adherent ceramic coatings.

  2. NREL Solar Radiation Research Laboratory (SRRL): Baseline Measurement System (BMS); Golden, Colorado (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Stoffel, T.; Andreas, A.

    The SRRL was established at the Solar Energy Research Institute (now NREL) in 1981 to provide continuous measurements of the solar resources, outdoor calibrations of pyranometers and pyrheliometers, and to characterize commercially available instrumentation. The SRRL is an outdoor laboratory located on South Table Mountain, a mesa providing excellent solar access throughout the year, overlooking Denver. Beginning with the basic measurements of global horizontal irradiance, direct normal irradiance and diffuse horizontal irradiance at 5-minute intervals, the SRRL Baseline Measurement System now produces more than 130 data elements at 1-min intervals that are available from the Measurement & Instrumentation Data Center Web site. Data sources include global horizontal, direct normal, diffuse horizontal (from shadowband and tracking disk), global on tilted surfaces, reflected solar irradiance, ultraviolet, infrared (upwelling and downwelling), photometric and spectral radiometers, sky imagery, and surface meteorological conditions (temperature, relative humidity, barometric pressure, precipitation, snow cover, wind speed and direction at multiple levels). Data quality control and assessment include daily instrument maintenance (M-F) with automated data quality control based on real-time examinations of redundant instrumentation and internal consistency checks using NREL's SERI-QC methodology. Operators are notified of equipment problems by automatic e-mail messages generated by the data acquisition and processing system. Radiometers are recalibrated at least annually with reference instruments traceable to the World Radiometric Reference (WRR).

  3. Research on ambient temperature passive magnetic bearings at the Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Post, R.F.; Ryitov, D.D.` Smith, J.R.; Tung, L.S.

    1997-04-01

    Research performed at the Lawrence Livermore National Laboratory on the equilibrium and stability of a new class of ambient-temperature passive bearing systems is described. The basic concepts involved are: (1) Stability of the rotating system is only achieved in the rotating state. That is, disengaging mechanical systems are used to insure stable levitation at rest (when Earnshaw`s theorem applies). (2) Stable levitation by passive magnetic elements can be achieved if the vector sum of the force derivatives of the several elements of the system is net negative (i.e. restoring) for axial, transverse, and tilt-type perturbations from equilibrium. To satisfy the requirements of (2) using only permanent magnet elements we have employed periodic ``Halbach arrays.`` These interact with passive inductive loaded circuits and act as stabilizers, with the primary forces arising from axially symmetric permanent-magnet elements. Stabilizers and other elements needed to create compact passive magnetic bearing systems have been constructed. Novel passive means for stabilizing classes of rotor-dynamic instabilities in such systems have also been investigated.

  4. NREL Solar Radiation Research Laboratory (SRRL): Baseline Measurement System (BMS); Golden, Colorado (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Stoffel, T.; Andreas, A.

    1981-07-15

    The SRRL was established at the Solar Energy Research Institute (now NREL) in 1981 to provide continuous measurements of the solar resources, outdoor calibrations of pyranometers and pyrheliometers, and to characterize commercially available instrumentation. The SRRL is an outdoor laboratory located on South Table Mountain, a mesa providing excellent solar access throughout the year, overlooking Denver. Beginning with the basic measurements of global horizontal irradiance, direct normal irradiance and diffuse horizontal irradiance at 5-minute intervals, the SRRL Baseline Measurement System now produces more than 130 data elements at 1-min intervals that are available from the Measurement & Instrumentation Data Center Web site. Data sources include global horizontal, direct normal, diffuse horizontal (from shadowband and tracking disk), global on tilted surfaces, reflected solar irradiance, ultraviolet, infrared (upwelling and downwelling), photometric and spectral radiometers, sky imagery, and surface meteorological conditions (temperature, relative humidity, barometric pressure, precipitation, snow cover, wind speed and direction at multiple levels). Data quality control and assessment include daily instrument maintenance (M-F) with automated data quality control based on real-time examinations of redundant instrumentation and internal consistency checks using NREL's SERI-QC methodology. Operators are notified of equipment problems by automatic e-mail messages generated by the data acquisition and processing system. Radiometers are recalibrated at least annually with reference instruments traceable to the World Radiometric Reference (WRR).

  5. Lawrence Livermore National Laboratory | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory | July 2011 Aerial View Lawrence Livermore National Laboratory | July 2011 Aerial View Lawrence Livermore National Laboratory's (LLNL) primary mission is research and development in support of national security. As a nuclear weapons design laboratory, LLNL has responsibilities in nuclear stockpile stewardship. LLNL also applies its expertise to prevent the spread and use of

  6. Pacific Northwest Laboratory annual report for 1987 to the DOE office of energy research: Part 2, Environmental sciences

    SciTech Connect (OSTI)

    Not Available

    1988-07-01

    This report summarizes progress in environmental sciences research conducted by Pacific Northwest Laboratory (PNL) for the Office of Health and Environmental Research in FY 1987. Research is directed toward developing a fundamental understanding of processes controlling the long-term fate and biological effects of fugitive chemicals and other stressors resulting from energy development. The research, focused on terrestrial, subsurface, and coastal marine systems, forms the basis for defining and quantifying processes that affect humans and the environment at the regional and global levels. Research is multidisciplinary and multitiered, providing integrated system-level insights into critical environmental processes. Research initiatives in subsurface microbiology and transport, global change, radon, and molecular sciences are building on PNL technical strengths in biogeochemistry, hydrodynamics, molecular biology, and theoretical ecology. Unique PNL facilities are used to probe multiple phenomena complex relationships at increasing levels of complexity. Intermediate-scale experimental systems are used to examine arid land watershed dynamics, aerosol behavior and effects, and multidimensional subsurface transport. In addition, field laboratories (the National Environmental Research Park and Marine Research Laboratory) are used in conjunction with advanced measurement techniques to validate concepts and models, and to extrapolate the results to the system and global levels. Strong university liaisons now in existence are being markedly expanded so that PNL resources and the specialized technical capabilities in the university community can be more efficiently integrated.

  7. Center for Inverse Design: EFRC Researchers in Focus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chief Scientist for Theory in the Center for Inverse Design, explains the background in modern physics that has led to inverse design. Zunger is a professor at the University of...

  8. ADDRESSING POLLUTION PREVENTION ISSUES IN THE DESIGN OF A NEW NUCLEAR RESEARCH FACILITY

    SciTech Connect (OSTI)

    Cournoyer, Michael E.; Corpion, Juan; Nelson, Timothy O.

    2003-02-27

    The Chemistry and Metallurgical Research (CMR) Facility was designed in 1949 and built in 1952 at Los Alamos National Laboratory (LANL) to support analytical chemistry, metallurgical studies, and actinide research and development on samples of plutonium and other nuclear materials for the Atomic Energy Commission's nuclear weapons program. These primary programmatic uses of the CMR Facility have not changed significantly since it was constructed. In 1998, a seismic fault was found to the west of the CMR Facility and projected to extend beneath two wings of the building. As part of the overall Risk Management Strategy for the CMR Facility, the Department of Energy (DOE) proposed to replace it by 2010 with what is called the CMR Facility Replacement (CMRR). In an effort to make this proposed new nuclear research facility environmentally sustainable, several pollution prevention/waste minimization initiatives are being reviewed for potential incorporation during the design phase. A two-phase approach is being adopted; the facility is being designed in a manner that integrates pollution prevention efforts, and programmatic activities are being tailored to minimize waste. Processes and procedures that reduce waste generation compared to current, prevalent processes and procedures are identified. Some of these ''best practices'' include the following: (1) recycling opportunities for spent materials; (2) replacing lithium batteries with alternate current adaptors; (3) using launderable contamination barriers in Radiological Control Areas (RCAs); (4) substituting mercury thermometers and manometers in RCAs with mercury-free devices; (5) puncturing and recycling aerosol cans; (6) using non-hazardous low-mercury fluorescent bulbs where available; (7) characterizing low-level waste as it is being generated; and (8) utilizing lead alternatives for radiological shielding. Each of these pollution prevention initiatives are being assessed for their technical validity, relevancy, and cost effectiveness. These efforts partially fulfill expectations of the DOE, other federal agencies, and the State of New Mexico for waste minimization. If the improvements discussed here are implemented, an estimated 1.8 million dollars in cost savings is expected.

  9. University of Illinois at Urbana-Champaign, Materials Research Laboratory progress report for FY 1993 and research proposal for FY 1994

    SciTech Connect (OSTI)

    Birnbaum, H.K.

    1993-03-01

    The materials research laboratory program is about 30% of total Materials Science and Engineering effort on the Univ. of Illinois campus. Coordinated efforts are being carried out in areas of structural ceramics, grain boundaries, field responsive polymeric and organic materials, molecular structure of solid-liquid interfaces and its relation to corrosion, and x-ray scattering science.

  10. NREL Develops Heat Pump Water Heater Simulation Model (Fact Sheet), NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    simulation model helps researchers evaluate real-world impacts of heat pump water heaters in U.S. homes. Heat pump water heaters (HPWHs) remove heat from the air and use it to heat water, presenting an energy-saving opportunity for homeowners. Researchers at the National Renewable Energy Laboratory (NREL) developed a simulation model to study the inter- actions of HPWHs and space conditioning equipment, related to climate and installa- tion location in the home. This model was created in TRNSYS

  11. Audit Report - Cooperative Research and Development Agreements at National Nuclear Security Administration Laboratories, OAS-M-13-02

    Energy Savers [EERE]

    Cooperative Research and Development Agreements at National Nuclear Security Administration Laboratories OAS-M-13-02 March 2013 Department of Energy Washington, DC 20585 March 15, 2013 MEMO MEMORANDUM FOR THE ACTING ADMINISTRATOR, NATIONAL NUCLEAR SECURITY ADMINISTRATION FROM: Rickey R. Hass Deputy Inspector General for Audits and Inspections Office of Inspector General SUBJECT: INFORMATION: Audit Report on "Cooperative Research and Development Agreements at National Nuclear Security

  12. Pacific Northwest Laboratory Annual Report for 1987 to the DOE Office of Energy Research: Part 4, Physical Sciences

    SciTech Connect (OSTI)

    Toburen, L.H.

    1988-06-01

    This 1987 annual report from Pacific Northwest Laboratory describes research in environment, health, and safety conducted during fiscal year 1987. The report again consists of five parts, each in a separate volume. Part 4 includes those programs funded under the title ''Physical and Technological Research.'' The Field Task Program Studies reports in this document are grouped by budget category and each section is introduced by an abstract that indicates the Field Task Proposal/Agreement reported in that section.

  13. Brookhaven Lab Named an NVIDIA GPU Research Center: Designation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    has been named a 2016 GPU Research Center by NVIDIA, the world leader in visual computing. ... The Office of Science is the single largest supporter of basic research in the physical ...

  14. Facilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Facility Distributed Energy Research Center Engine Research Facility Heat Transfer Laboratory Tribology Laboratory Transportation Beamline at the Advanced Photon Source...

  15. Metering Best Practices Applied in the National Renewable Energy Laboratory's Research Support Facility: A Primer to the 2011 Measured and Modeled Energy Consumption Datasets

    SciTech Connect (OSTI)

    Sheppy, M.; Beach, A.; Pless, S.

    2013-04-01

    Modern buildings are complex energy systems that must be controlled for energy efficiency. The Research Support Facility (RSF) at the National Renewable Energy Laboratory (NREL) has hundreds of controllers -- computers that communicate with the building's various control systems -- to control the building based on tens of thousands of variables and sensor points. These control strategies were designed for the RSF's systems to efficiently support research activities. Many events that affect energy use cannot be reliably predicted, but certain decisions (such as control strategies) must be made ahead of time. NREL researchers modeled the RSF systems to predict how they might perform. They then monitor these systems to understand how they are actually performing and reacting to the dynamic conditions of weather, occupancy, and maintenance.

  16. Leading the Way to Energy Systems Research; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-04-09

    This brochure about NREL is a national version that can be distributed to visitors and any other interested parties. It provides general information about laboratory, its mission, and operations.

  17. Accelerating Ocean Energy to the Marketplace – Environmental Research at the U.S. Department of Energy National Laboratories

    SciTech Connect (OSTI)

    Copping, Andrea E.; Cada, G. F.; Roberts, Jesse; Bevelhimer, Mark

    2010-10-06

    The U.S. Department of Energy (US DOE) has mobilized its National Laboratories to address the broad range of environmental effects of ocean and river energy development. The National Laboratories are using a risk-based approach to set priorities among environmental effects, and to direct research activities. Case studies will be constructed to determine the most significant environmental effects of ocean energy harvest for tidal systems in temperate estuaries, for wave energy installations in temperate coastal areas, wave installations in sub-tropical waters, and riverine energy installations in large rivers. In addition, the National Laboratories are investigating the effects of energy removal from waves, tides and river currents using numerical modeling studies. Laboratory and field research is also underway to understand the effects of electromagnetic fields (EMF), acoustic noise, toxicity from anti-biofouling coatings, effects on benthic habitats, and physical interactions with tidal and wave devices on marine and freshwater organisms and ecosystems. Outreach and interactions with stakeholders allow the National Laboratories to understand and mitigate for use conflicts and to provide useful information for marine spatial planning at the national and regional level.

  18. NREL Photoelectrode Research Advances Hydrogen Production Efforts (Fact Sheet), Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientists have created a high-performing photo- electrode that boosts the ability of solar water-splitting to produce hydrogen. Scientists at the National Renewable Energy Laboratory (NREL) have taken an innovative approach to solving a drawback in the photo- electrochemical (PEC) process, which uses solar energy to split water into hydrogen and oxygen. The standard approach uses precious metals such as platinum, ruthenium, and iridium as catalysts attached to a semiconductor. The downside of

  19. LSU EFRC - Center for Atomic Level Catalyst Design - Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research >> space control Wet Chemical Synthesis of Atomically Precise Nanocatalysts space control Control of Structures on Complex Catalyst Supports space control Electrocatalytic...

  20. Pacific Northwest Laboratory: Annual report for 1986 to the DOE Office of Energy Research: Part 2, Environmental sciences

    SciTech Connect (OSTI)

    Not Available

    1987-09-01

    This report summarizes progress in environmental sciences research conducted by Pacific Northwest Laboratory (PNL) for the Office of Health and Environmental Research in FY 1986. The program is focused on terrestrial, subsurface, and coastal marine systems, and this research forms the basis, in conjunction with remote sensing, for definition and quantification of processes leading to impacts at the global level. This report is organized into sections devoted to Detection and Management of Change in Terrestrial Systems, Biogeochemical Phenomena, Subsurface Microbiology and Transport, Marine Sciences, and Theoretical (Quantitative) Ecology. Separate abstracts have been prepared for individual projects.

  1. Calculation set for design and optimization of vegetative soil covers Sandia National Laboratories, Albuquerque, New Mexico.

    SciTech Connect (OSTI)

    Peace, Gerald L.; Goering, Timothy James (GRAM, Inc., Albuquerque, NM)

    2005-02-01

    This study demonstrates that containment of municipal and hazardous waste in arid and semiarid environments can be accomplished effectively without traditional, synthetic materials and complex, multi-layer systems. This research demonstrates that closure covers combining layers of natural soil, native plant species, and climatic conditions to form a sustainable, functioning ecosystem will meet the technical equivalency criteria prescribed by the U. S. Environmental Protection Agency. In this study, percolation through a natural analogue and an engineered cover is simulated using the one-dimensional, numerical code UNSAT-H. UNSAT-H is a Richards. equation-based model that simulates soil water infiltration, unsaturated flow, redistribution, evaporation, plant transpiration, and deep percolation. This study incorporates conservative, site-specific soil hydraulic and vegetation parameters. Historical meteorological data are used to simulate percolation through the natural analogue and an engineered cover, with and without vegetation. This study indicates that a 3-foot (ft) cover in arid and semiarid environments is the minimum design thickness necessary to meet the U. S. Environmental Protection Agency-prescribed technical equivalency criteria of 31.5 millimeters/year and 1 x 10{sup -7} centimeters/second for net annual percolation and average flux, respectively. Increasing cover thickness to 4 or 5 ft results in limited additional improvement in cover performance.

  2. Structural Testing at the NWTC Helps Improve Blade Design and Increase System Reliability; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-08-01

    Since 1990, the National Renewable Energy Laboratory’s (NREL's) National Wind Technology Center (NWTC) has tested more than 150 wind turbine blades. NWTC researchers can test full-scale and subcomponent articles, conduct data analyses, and provide engineering expertise on best design practices. Structural testing of wind turbine blades enables designers, manufacturers, and owners to validate designs and assess structural performance to specific load conditions. Rigorous structural testing can reveal design and manufacturing problems at an early stage of development that can lead to overall improvements in design and increase system reliability.

  3. Laboratories for the 21st Century: Best Practices; Modeling Exhaust Dispersion for Specifying Acceptable Exhaust/Intake Design (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-09-01

    This guide provides general information on specifying acceptable exhaust and intake designs. It also provides various quantitative approaches that can be used to determine expected concentration levels resulting from exhaust system emissions. In addition, the guide describes methodologies that can be employed to operate laboratory exhaust systems in a safe and energy efficient manner by using variable air volume (VAV) technology. The guide, one in a series on best practices for laboratories, was produced by Laboratories for the 21st Century (Labs21), a joint program of the U.S. Environmental Protection Agency (EPA) and the U.S. Department of Energy (DOE). Geared toward architects, engineers, and facility managers, the guides contain information about technologies and practices to use in designing, constructing, and operating safe, sustainable, high-performance laboratories. Studies show a direct relationship between indoor air quality and the health and productivity of building occupants. Historically, the study and protection of indoor air quality focused on emission sources emanating from within the building. For example, to ensure that the worker is not exposed to toxic chemicals, 'as manufactured' and 'as installed' containment specifications are required for fume hoods. However, emissions from external sources, which may be re-ingested into the building through closed circuiting between the building's exhaust stacks and air intakes, are an often overlooked aspect of indoor air quality.

  4. Renewable Energy Laboratory

    Open Energy Info (EERE)

    Radiation Budget Measurement Networks, National Oceanic and Atmospheric Administration Air Resources Laboratory and Earth System Research Laboratory Global Monitoring Division *...

  5. Innovative Medium-Speed Drivetrain Design Program and Dynamometer Testing; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Keller, Jonathan; Halse, Christopher

    2015-05-19

    Presented at the American Wind Energy Association WINDPOWER 2015 conference. This presentation covers the concept of the next-generation drivetrain, including its impacts, innovations, design and design benefits, instrumentation, assembly, and testing programs.

  6. Design and Manufacture of the Conduction Cooled Torus Coils for The Jefferson Laboratory 12-GeV Upgrade

    SciTech Connect (OSTI)

    Wiseman, M.; Elementi, L.; Elouadhiri, L.; Gabrielli, G.; Gardner, T. J.; Ghoshal, P. K.; Kashy, D.; Kiemschies, O.; Krave, S.; Makarov, A.; Robotham, B.; Szal, J.; Velev, G.

    2015-01-01

    The design of the 12-GeV torus required the construction of six superconducting coils with a unique geometry required for the experimental needs of Jefferson Laboratory Hall B. Each of these coils consists of 234 turns of copper-stabilized superconducting cable conduction cooled by 4.6 K helium gas. The finished coils are each roughly 2 × 4 × 0.05 m and supported in an aluminum coil case. Because of its geometry, new tooling and manufacturing methods had to be developed for each stage of construction. The tooling was designed and developed while producing a practice coil at Fermi National Laboratory. This paper describes the tooling and manufacturing techniques required to produce the six production coils and two spare coils required by the project. Project status and future plans are also presented.

  7. Fish Protection: Cooperative research advances fish-friendly turbine design

    SciTech Connect (OSTI)

    Brown, Richard S.; Ahmann, Martin L.; Trumbo, Bradly A.; Foust, Jason

    2012-12-01

    Renewable hydropower is a tremendous resource within the Pacific Northwest that is managed with considerable cost and consideration for the safe migration of salmon. Recent research conducted in this region has provided results that could lower the impacts of hydro power production and make the technology more fish-friendly. This research is now being applied during a period when a huge emphasis is being made to develop clean, renewable energy sources.

  8. NREL Evaluates Performance of Hydraulic Hybrid Refuse Vehicles (Fact Sheet), Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Renewable Energy Laboratory (NREL) is evaluating the in-service performance of hydraulic hybrid vehicles (HHVs) and comparable conven- tional diesel vehicles operated by Miami- Dade County's Public Works and Waste Management Department in Florida. Launched in March 2015, the study aims to improve understanding of the overall usage and effectiveness of HHVs in refuse operation. The study was designed to help Miami- Dade County determine the ideal routes for maximizing the fuel-saving

  9. NREL-Led Team Improves and Accelerates Battery Design (Fact Sheet), Innovation Impact: Transportation, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FS-6A42-60650 * November 2013 NREL prints on paper that contains recycled content. NREL-Led Team Improves and Accelerates Battery Design The National Renewable Energy Laboratory (NREL) is leading some of the best minds from U.S. auto manufacturers, battery developers, and automotive simulation tool developers in a $20 million project to accelerate the development of battery packs and thus the wider adoption of electric-drive vehicles. The Computer-Aided Engineer- ing for Electric Drive Vehicle

  10. EM’s Laboratory Partners with University for Excellence in Research

    Broader source: Energy.gov [DOE]

    AIKEN, S.C. – EM’s Savannah River National Laboratory (SRNL) and a South Carolina University have entered a unique partnership that provides for an independent peer review program to ensure the laboratory’s continued high scientific and technical standards.

  11. Electromechanical battery research and development at the Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Post, R.F.; Baldwin, D.E.; Bender, D.A.; Fowler, T.K.

    1993-06-01

    The concepts undergirding a funded program to develop a modular electromechanical battery (EMB) at the Lawrence Livermore National Laboratory are described. Example parameters for EMBs for electric and hybrid-electric vehicles are given, and the importance of the high energy recovery efficiency of EMBs in increasing vehicle range in urban driving is shown.

  12. Neural probe design & MEMS technology | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neural probe design accelerated with use of MEMS Technology Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Neural probe design accelerated with use of MEMS Technology Craig Galligan 2015.04.01 In 2014, the bioelectrics team was tasked with exploring the neural probe technical space and identifying paths of interest. A

  13. Importance of energy efficiency in the design of the Process and Environmental Technology Laboratory (PETL) at Sandia National Laboratories, New Mexico (NM)

    SciTech Connect (OSTI)

    Wrons, R.

    1998-06-01

    As part of the design of the Process and Environmental Technology Laboratory (PETL) in FY97, an energy conservation report (ECR) was completed. The original energy baseline for the building, established in Title 1 design, was 595,000 BTU/sq. ft./yr, site energy use. Following the input of several reviewers and the incorporation of the various recommendations into the Title 2 design, the projected energy consumption was reduced to 341,000 BTU/sq. ft./yr. Of this reduction, it is estimated that about 150,000 BTU/sq. ft./yr resulted from inclusion of more energy efficient options into the design. The remaining reductions resulted from better accounting of energy consumption between Title 1 ECR and the final ECR. The energy efficient features selected by the outcome of the ECR were: (1) Energy Recovery system, with evaporative cooling assist, for the Exhaust/Make-up Air System; (2) Chilled Water Thermal Storage system; (3) Premium efficiency motors for large, year-round applications; (4) Variable frequency drives for all air handling fan motors; (4) Premium efficiency multiple boiler system; and (5) Lighting control system. The annual energy cost savings due to these measures will be about $165,000. The estimated annual energy savings are two million kWhrs electric, and 168,000 therms natural gas, the total of which is equivalent to 23,000 million BTUs per year. Put into the perspective of a typical office/light lab at SNL/NM, the annual energy savings is equal the consumption of a 125,000 square foot building. The reduced air emissions are approximately 2,500 tons annually.

  14. Sandia National Laboratories: Sandia National Laboratories: Missions:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Weapons: About About Nuclear Weapons at Sandia Weapons Researcher World-class scientists and engineers come to Sandia to conduct breakthrough research in nuclear weapons. Sandia designs more than 6,300 parts of a modern nuclear weapon's 6,500 components. Our state-of-the-art laboratories facilitate large-scale testing and computer simulation. Sandia's work is of the highest consequence and those doing the work face awesome responsibilities. Unlike other national labs, which focus on

  15. NREL Collaborates with SWAY on Offshore Wind Demonstration (Fact Sheet), Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. 15013 Denver West Parkway Golden, CO 80401 303-275-3000 | www.nrel.gov Printed with a renewable-source ink on paper containing at least 50% wastepaper, including 10% post consumer waste. NWTC researchers gain valuable data from one of the first floating offshore wind prototypes. The National Renewable Energy Laboratory (NREL) is collaborating with SWAY, a renewable energy company from Norway,

  16. NREL Software Models Performance of Wind Plants (Fact Sheet), NREL Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Simulator fOr Wind Farm Applications helps optimize layouts and controls of wind plant arrays. In 2014, researchers from the National Renewable Energy Laboratory (NREL) launched the Simulator fOr Wind Farm Applications (SOWFA), a coupled open-source software package and framework that allows users to inves- tigate effects of weather patterns, turbulence, and complex terrain on the performance of wind turbines and plants. SOWFA simulates fluid dynam- ics on scales from regional weather to turbine

  17. Improving Building Energy Simulation Programs Through Diagnostic Testing (Fact Sheet), NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    test procedure evaluates quality and accuracy of energy analysis tools for the residential building retrofit market. Reducing the energy use of existing homes in the United States offers significant energy-saving opportunities, which can be identified through building simulation software tools that calculate optimal packages of efficiency measures. To improve the accuracy of energy analysis for residential buildings, the National Renewable Energy Laboratory's (NREL) Buildings Research team

  18. Draft Supplement Analysis: Two Proposed Shipments of Commercial Spent Nuclear Fuel to Idaho National Laboratory for Research and Development Purposes

    Broader source: Energy.gov [DOE]

    DOE is proposing to transport, in two separate truck shipments, small quantities of commercial power spent nuclear fuel (SNF) to the Idaho National Laboratory (INL) Site for research purposes consistent with the mission of the DOE Office of Nuclear Energy. DOE is preparing a Supplement Analysis to determine whether an existing environmental impact statement should be supplemented, a new environmental impact statement should be prepared, or that no further NEPA documentation is required for this proposed action.

  19. Wind Turbine Condition Monitoring, Reliability Database, and O&M Research Update (Presentation), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Turbine Gearbox Reliability Database, Condition Monitoring, and O&M Research Update Shawn Sheng GRC Annual Meeting 2015 February 17-18, 2015 Golden, Colorado Photo by Dennis Schroeder, NREL 21883 NREL/PR-5000-63868 NATIONAL RENEWABLE ENERGY LABORATORY Reliability Database 2 * Partners: - More than 20 partners, including turbine and gearbox original equipment manufacturers (OEMs), gearbox rebuild shops, wind plant owner/operators, and consulting companies - Assets represented by

  20. NREL Improves Window Heat Transfer Calculations (Fact Sheet), Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis of algorithm discrepancies helps to promote market confidence in EnergyPlus and DOE-2. Heat loss through windows represents a significant amount of the overall energy use in homes. To address discrepancies in building simulation software-and market barriers impeding building energy use analysis-researchers at the National Renewable Energy Laboratory (NREL) identified and resolved window-related energy predictions of EnergyPlus and DOE-2, thereby improving the accuracy of both simulation