National Library of Energy BETA

Sample records for laboratory research design

  1. A design guide for energy-efficient research laboratories

    SciTech Connect (OSTI)

    Wishner, N.; Chen, A.; Cook, L.; Bell, G.C.; Mills, E.; Sartor, D.; Avery, D.; Siminovitch, M.; Piette, M.A.

    1996-09-24

    This document--A Design Guide for Energy-Efficient Research Laboratories--provides a detailed and holistic framework to assist designers and energy managers in identifying and applying advanced energy-efficiency features in laboratory-type environments. The Guide fills an important void in the general literature and compliments existing in-depth technical manuals. Considerable information is available pertaining to overall laboratory design issues, but no single document focuses comprehensively on energy issues in these highly specialized environments. Furthermore, practitioners may utilize many antiquated rules of thumb, which often inadvertently cause energy inefficiency. The Guide helps its user to: introduce energy decision-making into the earliest phases of the design process, access the literature of pertinent issues, and become aware of debates and issues on related topics. The Guide does focus on individual technologies, as well as control systems, and important operational factors such as building commissioning. However, most importantly, the Guide is intended to foster a systems perspective (e.g. right sizing) and to present current leading-edge, energy-efficient design practices and principles.

  2. National Renewable Energy Laboratory Report Identifies Research Needed to Address Power Market Design Challenges

    Broader source: Energy.gov [DOE]

    A new report by DOE's National Renewable Energy Laboratory identifies research opportunities to improve the ways in which wholesale electricity markets are designed, with a focus on how the characteristics of variable generation from wind and solar power can affect those markets.

  3. Research | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Research Proteins are the molecular machines of all cells, and as with any machine, it is impossible to understand how a protein works without knowing what it looks like - that is, imaging its three-dimensional structure. The Advanced Protein Characterization Facility (APCF) will help us to "see" proteins more quickly and with higher proficiency than before. The newly designed and optimized space the APCF provides allows researchers to establish a highly specialized laboratory

  4. NREL: Research Facilities - Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In the lab, researchers study plant structures from the tissue scale to the molecular ... Photobiological Laboratory Researchers use this lab for enzyme engineering to block the ...

  5. National Laboratory Photovoltaics Research

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE supports photovoltaic (PV) research and development and facilities at its national laboratories to accelerate progress toward achieving the SunShot Initiative's technological and economic...

  6. Laboratory Graduate Research Appointment | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Graduate Research Program Perform your thesis research among the best and the brightest at Argonne National Laboratory. About the Program Laboratory Graduate Research (Lab Grad) appointments are available to qualified U.S. university graduate students who wish to carry out their thesis research at Argonne National Laboratory under co-sponsorship of an Argonne staff member and a faculty member. The university sets the academic standard and awards the degree. The participation of the

  7. Research | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Delivering environmentally sound solutions to our greatest challenges in energy access and global security Argonne's Energy and Global Security (EGS) directorate is taking on unprecedented challenges as it addresses domestic and global sustainable energy and security. Leveraging collaborations with other researchers at Argonne as well as with experts from industry, academia and other government laboratories, the EGS directorate's scientists and engineers deliver innovative research and

  8. Commissioning a materials research laboratory

    SciTech Connect (OSTI)

    SAVAGE,GERALD A.

    2000-03-28

    This presentation covers the process of commissioning a new 150,000 sq. ft. research facility at Sandia National Laboratories. The laboratory being constructed is a showcase of modern design methods being built at a construction cost of less than $180 per sq. ft. This is possible in part because of the total commissioning activities that are being utilized for this project. The laboratory's unique approach to commissioning will be presented in this paper. The process will be followed through from the conceptual stage on into the actual construction portion of the laboratory. Lessons learned and cost effectiveness will be presented in a manner that will be usable for others making commissioning related decisions. Commissioning activities at every stage of the design will be presented along with the attributed benefits. Attendees will hear answers to the what, when, who, and why questions associated with commissioning of this exciting project.

  9. Contract Research | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Laboratory can enter into contractual agreements with private companies and institutions for research and expertise that cannot be found within the private sector. The Laboratory, ...

  10. Laboratory Directed Research and Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Phone Book Jobs Laboratory Directorate - Strategic Planning Office Laboratory Directed Research and Development (LDRD) LBNL LDRD Program Guidelines LDRD FY 2017 Call for...

  11. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-04-30

    To establish Department of Energy (DOE) requirements for laboratory directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation

  12. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    To establish Department of Energy (DOE) requirements for laboratory directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation.

  13. Sandia National Laboratories: Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Bioscience Investigating cellular and biomolecular processes for bioenergy and biodefense. Computing and information science Developing essential tools for solving the world's most difficult problems. Engineering science Applying predictive simulation to engineering design and decision-making. Materials science Leading the nation in the knowledge of materials engineering, processing, and aging. Nanodevices and microsystems Developing and delivering custom microsystems and national

  14. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers: Advanced Power Sources Laboratory Technology Deployment Centers Technology Deployment Centers Ion Beam Lab Advanced Power Sources Laboratory Engineering Sciences Experimental Facilities (ESEF) Explosive Components Facility Materials Science and Engineering Center Pulsed Power and Systems Validation Facility Radiation Detection Materials Characterization Laboratory Shock Thermodynamic Applied Research Facility (STAR) Weapon and Force Protection Center Design, Evaluation and Test

  15. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers: Design, Evaluation and Test Technology Facility Technology Deployment Centers Technology Deployment Centers Ion Beam Lab Advanced Power Sources Laboratory Engineering Sciences Experimental Facilities (ESEF) Explosive Components Facility Materials Science and Engineering Center Pulsed Power and Systems Validation Facility Radiation Detection Materials Characterization Laboratory Shock Thermodynamic Applied Research Facility (STAR) Weapon and Force Protection Center Design, Evaluation

  16. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-01-08

    To establish the Department's, including the NNSA's, requirements for laboratory-directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation. Cancels DOE O 413.2. Canceled by DOE O 413.2B.

  17. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-04-19

    The Order establishes DOE requirements and responsibilities for laboratory directed research and development while providing laboratory directors with broad flexibility for program implementation. Cancels DOE O 413.2A. Admin Chg 1, 1-31-11.

  18. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-10-22

    To establish Department of Energy (DOE) requirements for laboratory directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation. Supersedes DOE O 413.2B.

  19. Research | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    combined with the laboratory's state-of-the-art facilities has produced a wide variety of game-changing discoveries and inventions in fields as diverse as energy storage and...

  20. Sandia National Laboratories: Research: Laboratory Directed Research &

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Development Top LDRD Publications Research Laboratory Directed Research & Development Funding for extraordinary R&D Encouraging creative research to innovate solutions for our nation's greatest challenges. National laboratories have been entrusted with the role of serving as incubators for innovation - places where novel solutions to resolve future national security challenges are cultivated, directed, and sustained. To encourage creative research and development in areas of national

  1. Transport Research Laboratory | Open Energy Information

    Open Energy Info (EERE)

    Research Laboratory Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Transport Research Laboratory AgencyCompany Organization: Transport Research Laboratory Focus Area:...

  2. Visual Design Group | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Visual Design Group Ames Laboratory Logos You are here Home Visual Design Group Graphics Services supports the design, printing and production needs of the Ames Laboratory. For...

  3. Research | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Accelerator Technology ATLAS at the LHC Cosmology & Astrophysics Instrumentation Precision Muon Physics Neutrino Physics Theoretical High Energy Physics Research From looking at particle collisions at the ATLAS detector at the Large Hadron Collider to measuring the cosmic microwave background at the South Pole, Argonne researchers explore the elementary constituents of matter and energy, the interactions between them, and the nature of space and time. The division engages in this

  4. Research | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Division of Chemical and Biological Sciences - This Division develops and applies theoretical, computational and experimental methods to the study of surface reaction phenomena, cluster science and nucleation, biological processes and catalysis. World-leading research is conducted at the interface between homogenous and heterogenous catalysis. This research has led to improved processes for biodiesel production. New characterization techniques and theoretical methods to enable improved

  5. Research | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Electronic & Magnetic Materials & Devices NanoBio Interfaces Nanofabrication & Devices Nanophotonics Theory & Modeling X-Ray Microscopy Electron Microscopy Center Related...

  6. Research | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Division focus on research that addresses grand challenges in nanoscience and nanotechnology and advances the division's user mission. Further, we are exploring ways to tailor...

  7. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers: Explosive Components Facility Technology Deployment Centers Technology Deployment Centers Ion Beam Lab Advanced Power Sources Laboratory Engineering Sciences Experimental Facilities (ESEF) Explosive Components Facility Materials Science and Engineering Center Pulsed Power and Systems Validation Facility Radiation Detection Materials Characterization Laboratory Shock Thermodynamic Applied Research Facility (STAR) Weapon and Force Protection Center Design, Evaluation and Test

  8. Electronics Design and Fabrication | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electronics Design and Fabrication Electronics Design and Fabrication The HEP Electronics Support Group provides electronics engineering, design, fabrication, and support services for a wide variety of research projects at the laboratory. Historically, the group has been part of the High Energy Physics (HEP) division, providing electronics support for HEP experiments around the world. Several years ago, we expanded our operations to provide electronics design and support services for the entire

  9. Research | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne in the marketplace: Microchannel plates with ALD Pixelligent Technologies granted innovation research award by Dept. of Energy ARPA-E awards IIT-Argonne team 3.4 million ...

  10. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-04-19

    The order establishes DOE requirements for laboratory directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation. Cancels DOE O 413.3A. Admin Chg 1, dated 1-31-11, cancels DOE O 413.2B. Certified 7-14-2011.

  11. Photobiology Research Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-06-01

    This fact sheet provides information about Photobiology Research Laboratory capabilities and applications at NREL. The photobiology group's research is in four main areas: (1) Comprehensive studies of fuel-producing photosynthetic, fermentative, and chemolithotrophic model microorganisms; (2) Characterization and engineering of redox enzymes and proteins for fuel production; (3) Genetic and pathway engineering of model organisms to improve production of hydrogen and hydrocarbon fuels; and (4) Studies of nanosystems using biological and non-biological materials in hybrid generation. NREL's photobiology research capabilities include: (1) Controlled and automated photobioreactors and fermenters for growing microorganisms under a variety of environmental conditions; (2) High-and medium-throughput screening of H{sub 2}-producing organisms; (3) Homologous and heterologous expression, purification, and biochemical/biophysical characterization of redox enzymes and proteins; (4) Qualitative and quantitative analyses of gases, metabolites, carbohydrates, lipids, and proteins; (5) Genetic and pathway engineering and development of novel genetic toolboxes; and (6) Design and spectroscopic characterization of enzyme-based biofuel cells and energy conversion nanodevices.

  12. New Multijunction Design Leads to Ultra-Efficient Solar Cell; Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-09-01

    NREL has demonstrated a 45.7% conversion efficiency for a four-junction solar cell at 234 suns concentration. This achievement represents one of the highest photovoltaic research cell efficiencies ever achieved across all types of solar cells. NREL's new solar cell, which is designed for operation in a concentrator photovoltaic (CPV) system where it can receive more than 1,000 suns of concentrated sunlight, greatly improves earlier designs by adding an additional high quality absorber layer to achieve an ultra-high efficiency.

  13. Laboratory directed research and development

    SciTech Connect (OSTI)

    Not Available

    1991-11-15

    The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory's R D capabilities, and further the development of its strategic initiatives. Among the aims of the projects supported by the Program are establishment of engineering proof-of-principle''; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these project are closely associated with major strategic thrusts of the Laboratory as described in Argonne's Five Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne. Areas of emphasis are (1) advanced accelerator and detector technology, (2) x-ray techniques in biological and physical sciences, (3) advanced reactor technology, (4) materials science, computational science, biological sciences and environmental sciences. Individual reports summarizing the purpose, approach, and results of projects are presented.

  14. National Laboratory Research and Development Funding Opportunities

    Office of Energy Efficiency and Renewable Energy (EERE)

    Through the National Laboratory Research and Development program, DOE supports research and development and core capabilities at its national laboratories to accelerate progress toward achieving...

  15. Solar Radiation Research Laboratory | Energy Systems Integration...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Radiation Research Laboratory Since 1981, NREL's Solar Radiation Research Laboratory (SRRL) has been collecting continuous measurements of basic solar radiation components, ...

  16. Laboratory Directed Research and Development - DOE Directives...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2C, Laboratory Directed Research and Development by Russell Ames Functional areas: Energy Research & Technology To establish Department of Energy (DOE) requirements for laboratory...

  17. Alden Research Laboratory, Inc | Open Energy Information

    Open Energy Info (EERE)

    Research Laboratory, Inc Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name Alden Research Laboratory, Inc. Address 30 Shrewsbury Street Place Holden,...

  18. National Laboratory Concentrating Solar Power Research | Department...

    Broader source: Energy.gov (indexed) [DOE]

    National Laboratory Concentrating Solar Power Research DOE supports concentrating solar power (CSP) research and development and core capabilities at its national laboratories ...

  19. Sandia National Laboratories' MHK research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MHK research leverages decades of experience in engineering, design, and analysis of wind power technologies, and its vast research complex, including high performance computing, advanced materials and coatings, nondestructive inspection, complex systems simulation, and large-scale testing. Research projects often involve highly collaborative partnerships between Sandia, industry, and academia to respond quickly to technical challenges with impactful results. MHK technology developments include

  20. DOE - Office of Legacy Management -- Ames Laboratory Research Reactor

    Office of Legacy Management (LM)

    Facility - IA 03 Ames Laboratory Research Reactor Facility - IA 03 FUSRAP Considered Sites Site: Ames Laboratory Research Reactor Facility (IA.03) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see http://www.ameslab.gov/ Documents Related to Ames Laboratory Research Reactor Facility

  1. Los Alamos National Laboratory to work on nuclear design, plutonium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    research and development, and supercomputing Lab to work on nuclear design, plutonium research Los Alamos National Laboratory to work on nuclear design, plutonium research and development, and supercomputing LANL selected as preferred alternative site for plutonium research, development, and limited manufacturing, along with nuclear weapons design and engineering, and supercomputing. December 18, 2007 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico

  2. NREL: Solar Radiation Research - Solar Radiation Research Laboratory...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Radiation Research Laboratory Photographs The Solar Radiation Research Laboratory (SRRL) houses more than 70 instruments to analyze and record solar radiation and surface ...

  3. Reclassification of the Tritium Research Laboratory

    SciTech Connect (OSTI)

    Johnson, A.J.

    1997-01-01

    This document is a collection of the required actions that were taken to reclassify Building 968, the Tritium Research Laboratory, at Sandia National Laboratories/California.

  4. Researcher, Sandia National Laboratories | National Nuclear Security...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories Award: Fellow of the Institute of Electrical & Electronics Engineers (IEEE) Profile: Paul Dodd, a Sandia National Laboratories researcher, has been named a Fellow...

  5. Naval Research Laboratory Technology Marketing Summaries - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Naval Research Laboratory 8 Technology Marketing Summaries Category Title and Abstract Laboratories Date Solar Photovoltaic Find More Like This Sputtered Thin Film Photovoltaics ...

  6. Design of the Target Fabrication Tritium Laboratory

    SciTech Connect (OSTI)

    Sherohman, J.W.; Roberts, D.H.; Levine, B.H.

    1982-05-05

    The design of the Target Fabrication Tritium Laboratory for deuterium-tritium fuel processing for laser fusion targets has been accomplished with the intent of providing redundant safeguard systems. The design of the tritium laboratory is based on a combination of tritium handling techniques that are currently used by experienced laboratories. A description of the laboratory in terms of its interrelated processing systems is presented to provide an understanding of the design features for safe operation.

  7. LDRD - Laboratory Directed Research and Development | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LDRD - Laboratory Directed Research and Development LDRD Calls Current LDRD Call FY2017 Previous Calls (FY2016, FY2015, FY2014, FY2013) LDRD Frequently Asked Questions Funded LDRD Projects (FY2016, FY2015, FY2014, FY2013) Annual LDRD Report (FY2015, FY2014, FY2013) Ames Laboratory LDRD Plan Laboratory Directed Research and Development (LDRD) funds enable creative and innovative R&D projects at Ames Laboratory (AMES) that directly support our mission. Selection of projects is the

  8. Stirling engine research at Argonne National Laboratory

    SciTech Connect (OSTI)

    Holtz, R.E.; Daley, J.G.; Roach, P.D.

    1986-06-01

    Stirling engine research at Argonne National Laboratory has been focused at (1) development of mathematical models and analytical tools for predicting component and engine performance, and (2) experimental research into fundamental heat transfer and fluid flow phenomena occurring in Stirling cycle devices. A result of the analytical effort has been the formation of a computer library specifically for Stirling engine researchers and developers. The library contains properties of structural materials commonly used, thermophysical properties of several working fluids, correlations for heat transfer calculations and general specifications of mechanical arrangements (including various drive mechanisms) that can be utilized to model a particular engine. The library also contains alternative modules to perform analysis at different levels of sophistication, including design optimization. A reversing flow heat transfer facility is operating at Argonne to provide data at prototypic Stirling engine operating conditions under controlled laboratory conditions. This information is needed to validate analytical models.

  9. National Laboratory Research and Development Funding Opportunities |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy National Laboratory Research and Development Funding Opportunities National Laboratory Research and Development Funding Opportunities Through the National Laboratory Research and Development program, DOE supports research and development and core capabilities at its national laboratories to accelerate progress toward achieving SunShot Initiative's Systems Integration targets. These multi-year projects are funded based on a competitive proposal process and address the

  10. Algal Biofuels Research Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01

    This fact sheet provides information about Algal Biofuels Research Laboratory capabilities and applications at NREL's National Bioenergy Center.

  11. Radiological Contamination Control Training for Laboratory Research

    Energy Savers [EERE]

    researchers. Course Description: This course illustrates and reinforces the skills and knowledge needed to assist personnel with radiological controls for laboratory research...

  12. Princeton Plasma Physics Laboratory Honors Three Researchers...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Laboratory Honors Three Researchers March 12, 2012 Tweet Widget ... received the Kaul Prize for Excellence in Plasma Physics Research and Technology ...

  13. Lawrence Livermore National Laboratory's Laboratory Directed Research and Development Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory Directed Research and Development Program OAS-L-15-04 November 2014 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 November 24, 2014 MEMORANDUM FOR THE MANAGER, LIVERMORE FIELD OFFICE FROM: David Sedillo, Director Western Audits Division Office of Inspector General SUBJECT: INFORMATION: Audit Report on "Lawrence Livermore National Laboratory's Laboratory Directed Research and Development

  14. Sandia National Laboratories: Research: Materials Science: Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Bioscience Computing and Information Science Electromagnetics Engineering Science Geoscience Materials Science About Materials Science Research Image Gallery Video Gallery Facilities Nanodevices and Microsystems Radiation Effects and High Energy Density Science Research Facilities Center for Integrated Nanotechnologies (CINT) CINT Ion Beam Laboratory Ion Beam Laboratory MESA High Performance Computing Processing and Environmental Technology Laboratory Processing and Environmental

  15. DOE - Office of Legacy Management -- Naval Research Laboratory - DC 02

    Office of Legacy Management (LM)

    Research Laboratory - DC 02 FUSRAP Considered Sites Site: NAVAL RESEARCH LABORATORY (DC.02 ) Eliminated from consideration under FUSRAP - Referred to DOD Designated Name: Not Designated Alternate Name: None Location: Washington , D.C. DC.02-4 Evaluation Year: 1987 DC.02-4 Site Operations: Research and development on thermal diffusion. DC.02-4 Site Disposition: Eliminated - No Authority - AEC licensed - Military facility DC.02-4 DC.02-1 Radioactive Materials Handled: Yes Primary Radioactive

  16. Research Highlights, Recent Developments at Elettra Laboratory...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Trieste Monday, January 9, 2012 - 2:30pm SSRL Conference Room 137-322 Maya Kiskinova Ph.D. Sc.D., Coordinator of Research Projects Elettra Laboratory Elettra laboratory...

  17. Researcher, Los Alamos National Laboratory - Applied Physics Division |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration | (NNSA) Researcher, Los Alamos National Laboratory - Applied Physics Division Stephen Becker Stephen Becker 2009 Los Alamos National Laboratory Fellow Six Los Alamos scientists have been designated 2009 Los Alamos National Laboratory Fellows in recognition of sustained, outstanding scientific contributions and exceptional promise for continued professional achievement. The title of Fellow is bestowed on only about 2 percent of the Laboratory's

  18. Laboratory Directed Research and Development Plan | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Directed Research and Development Plan Version Number: 0.1 Document Number: Plan 30000.001 Effective Date: 01/2014 File (public): PDF icon plan_30000.001_rev0.1.pdf

  19. Photobiology Research Laboratory (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photobiology Research Laboratory Understanding fundamental biological processes for the production of fuels and chemicals, and understanding electron transport for hybrid generation of solar fuels NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. The photobiology group's research is in four main areas: * Comprehensive studies of fuel-producing photosynthetic, fermentative, and

  20. Laboratory Directed Research and Development FY 1992

    SciTech Connect (OSTI)

    Struble, G.L.; Middleton, C.; Anderson, S.E.; Baldwin, G.; Cherniak, J.C.; Corey, C.W.; Kirvel, R.D.; McElroy, L.A.

    1992-12-31

    The Laboratory Directed Research and Development (LDRD) Program at Lawrence Livermore National Laboratory (LLNL) funds projects that nurture and enrich the core competencies of the Laboratory. The scientific and technical output from the FY 1992 RD Program has been significant. Highlights include (1) Creating the first laser guide star to be coupled with adaptive optics, thus permitting ground-based telescopes to obtain the same resolution as smaller space-based instruments but with more light-gathering power. (2) Significantly improving the limit on the mass of the electron antineutrino so that neutrinos now become a useful tool in diagnosing supernovas and we disproved the existence of a 17-keV neutrino. (3) Developing a new class of organic aerogels that have robust mechanical properties and that have significantly lower thermal conductivity than inorganic aerogels. (4) Developing a new heavy-ion accelerator concept, which may enable us to design heavy-ion experimental systems and use a heavy-ion driver for inertial fusion. (5) Designing and demonstrating a high-power, diode-pumped, solid-state laser concept that will allow us to pursue a variety of research projects, including laser material processing. (6) Demonstrating that high-performance semiconductor arrays can be fabricated more efficiently, which will make this technology available to a broad range of applications such as inertial confinement fusion for civilian power. (7) Developing a new type of fiber channel switch and new fiber channel standards for use in local- and wide-area networks, which will allow scientists and engineers to transfer data at gigabit rates. (8) Developing the nation`s only numerical model for high-technology air filtration systems. Filter designs that use this model will provide safer and cleaner environments in work areas where contamination with particulate hazardous materials is possible.

  1. Sandia Energy » Cyber Engineering Research Laboratory (CERL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wins-funding-for-programming-in-situ-data-analysisvisualizationfeed 0 Sandia Cyber Engineering Research Laboratory (CERL) Formally Opens http:energy.sandia.gov...

  2. Research and Development | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    requires collaborations with crime laboratories, both to ensure that research problems emerge from forensic science practice and to increase the likelihood that successful projects...

  3. NREL: Concentrating Solar Power Research - Laboratory Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    To research, develop, and test a variety of concentrating solar power technologies, NREL features the following laboratory capabilities: Concentrated Solar Radiation Facility Large ...

  4. Sandia Energy - Air Force Research Laboratory Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from the Air Force Research Laboratory in Albuquerque utilized the site at the National Solar Thermal Test Facility to evaluate seismic and optical activity from explosives set...

  5. Sandia Energy - Air Force Research Laboratory Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Air Force Research Laboratory (AFRL) in Albuquerque utilized the site at the National Solar Thermal Test Facility (NSTTF) to evaluate seismic and optical activity from...

  6. Sandia Energy - Cybersecurity Technologies Research Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cybersecurity Technologies Research Laboratory Home Cyber Permalink Gallery Sandia Builds Android-Based Network to Study Cyber Disruptions Cyber, Cybersecurity Technologies...

  7. Sandia National Laboratories: Research: Research Foundations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Foundations Bioscience Computing and Information Science Engineering Science Geoscience Materials Science Nanodevices and Microsystems Radiation Effects and High Energy Density Science Research Research Foundations Leadership in innovation Integrating unique resources and technical excellence to benefit our nation. Certain research areas are considered key to the success of Sandia's national security programs. These areas - known as research foundations - underpin Sandia's innovations

  8. Video: Charles McC. Mathias Laboratory Smithsonian Environmental Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Center Success Story | Department of Energy Charles McC. Mathias Laboratory Smithsonian Environmental Research Center Success Story Video: Charles McC. Mathias Laboratory Smithsonian Environmental Research Center Success Story Video covers integrated design and operation of sustainable energy, water, and material systems. Technologies and systems include constructed wetlands, rainwater capture and reuse, natural wastewater treatment facilities, passive solar design strategies, daylighting,

  9. Materials Engineering Research Facility | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Engineering Research Facility Materials Engineering Research Facility exterior 1 of 11 Materials Engineering Research Facility exterior With the Materials Engineering Research Facility's state-of-the-art labs and equipment, Argonne researchers can safely scale up materials from the research bench for commercial testing. Photo courtesy Argonne National Laboratory. Materials Engineering Research Facility exterior 1 of 11 Materials Engineering Research Facility exterior With the Materials

  10. Lawrence Livermore National Laboratory (LLNL): Hydrogen Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    63725 This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC Hydrogen Research at Lawrence Livermore National Laboratory Advanced Science and Technology for Carbonless transportation Salvador M. Aceves Lawrence Livermore National Laboratory LLNL-PRES-663725 2  Founded: 1952 as a Defense Technologies Laboratory  Location: Livermore, CA  Core

  11. Research Highlights | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Highlights All Highlights Division of Chemical and Biological Sciences Highlights Division of Materials Science and Engineering Highlights

  12. Sustainability Research | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to some of America's greatest sustainability challenges in energy, environment, ... Examples of our sustainability research include the following, Image Magnetic ...

  13. Research Projects | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Projects Bioinspired Materials Complex Hydrides - A new Frontier of Future Energy Applications Complex States, Emergent Phenomena, & Superconductivity in Intermetallic &...

  14. Laboratory Directed Research and Development Program FY 2007

    SciTech Connect (OSTI)

    Hansen, Todd C; editor, Todd C Hansen,

    2008-03-12

    Report on Ernest Orlando Lawrence Berkeley National Laboratory Laboratory Directed Research and Development Program FY 2007

  15. Sandia National Laboratories: Research: Research Foundations: Geoscience

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geoscience Bioscience Computing and Information Science Electromagnetics Engineering Science Geoscience Materials Science Nanodevices and Microsystems Radiation Effects and High Energy Density Science Research Geoscience Geoscience photo The Geoscience Research Foundation performs recognized world-class earth and atmospheric sciences research and development to support Sandia's national security missions. Why our work matters Knowledge of the Earth's subsurface properties, structure and

  16. Laboratory Directed Research and Development Mission | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Administration | (NNSA) Laboratory Directed Research & Development The U.S. Department of Energy (DOE) is charged with a large and complex mission: to ensure America's security and prosperity by addressing its energy, environmental, and nuclear challenges through transformative science and technology solutions. The DOE executes this mission to a large extent at its 17 national laboratories, a group of institutions which were created and are supported by the federal government to perform

  17. Sandia National Laboratories: Cybersecurity Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facebook Twitter YouTube Flickr RSS Top Defense Systems About Defense Systems & Assessments Program Areas Accomplishments Cybersecurity Programs Cybersecurity Research Sandia is focused on building science and engineering foundations for cybersecurity. Research and development is focused on making today's systems more secure while planning for tomorrow's technology. Because of Sandia's unique set of capabilities, we focus our cybersecurity research in three areas: 1. Trusted hardware,

  18. Research Divisions | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Analysis Computing Center, Intermediate Voltage Electron Microscopy- Tandem Facility and the National Security Facility. The Energy Systems (ES) division conducts...

  19. Research Initiatives | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Having reliable, clean, and affordable energy sources is a matter of urgent national importance. Argonne is committed to focused research and development on a broad portfolio...

  20. Sponsored Research | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wide range of collaborative work with industry, small business, universities, and state, local, and federal government agencies. The Sponsored Research Office within the...

  1. Research Projects | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Projects Nuclear Computational Low Energy Initiative (NUCLEI) Kinetic Theory of Turbulent Multiphase Flow Chemical Analysis of Nanodomains Chemical Physics Homogeneous and...

  2. Research Projects | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Projects Chemical and Biological Sciences Kinetic Theory of Turbulent Multiphase Flow Chemical Analysis of Nanodomains Chemical Physics Homogeneous and Interfacial...

  3. Research Projects | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Projects Analysis of Gas Turbine Thermal Performances Development of Virtual Power Plants High Density Sensor Network Development Virtual Advanced Power Training ...

  4. Sandia National Laboratories: Research: Research Foundations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Effects and High Energy Density Science Rings of Saturn, Sandia's workhorse pulsed-power machine. The Radiation Effects and High Energy Density Science Research ...

  5. Research Facilities | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Facilities In keeping with its integrated approach to environmental research, SREL has a wide range of analytical and experimental capabilities, from biogeochemical, radiological, and genetic analyses to plant, animal, and microbial facilities, two unique experimental facilities, and standard tools for an array of field research. Radioecology Microbiology Experimental Facilities Biogeochemistry DNA Laboratory Field Research RADIOECOLOGY Scintillation spec. Gamma counter Animal body

  6. Materials Engineering Research Facility | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Engineering Research Facility Argonne's new Materials Engineering Research Facility (MERF) supports the laboratory's Advanced Battery Materials Synthesis and Manufacturing R&D Program. The MERF is enabling the development of manufacturing processes for producing advanced battery materials in sufficient quantity for industrial testing. The research conducted in this program is known as process scale-up. Scale-up R&D involves taking a laboratory-developed material and developing

  7. Researcher, Los Alamos National Laboratory - Methods and Algorithms Group |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration | (NNSA) Researcher, Los Alamos National Laboratory - Methods and Algorithms Group Lowell Brown Lowell Brown November 2009 Los Alamos National Laboratory Fellow Six Los Alamos scientists have been designated 2009 Los Alamos National Laboratory Fellows in recognition of sustained, outstanding scientific contributions and exceptional promise for continued professional achievement. The title of Fellow is bestowed on only about 2 percent of the

  8. Researcher, Los Alamos National Laboratory - Space Science and Applications

    National Nuclear Security Administration (NNSA)

    Group | National Nuclear Security Administration | (NNSA) Researcher, Los Alamos National Laboratory - Space Science and Applications Group Joaquin Birn Joaquin Birn November 2009 Los Alamos National Laboratory Fellow Six Los Alamos scientists have been designated 2009 Los Alamos National Laboratory Fellows in recognition of sustained, outstanding scientific contributions and exceptional promise for continued professional achievement. The title of Fellow is bestowed on only about 2 percent

  9. Sandia National Laboratories: Research: Biodefense

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biodefense Creating novel tools for detecting and fighting disease Raptor Infectious diseases and bioterrorism events may seem like very different phenomena-but both share enormous potential to threaten human health and economic stability. To protect the nation and world from these dangers, Sandia researchers conduct basic and applied research in host-pathogen interactions and countermeasures, including medical diagnostics, therapeutics, and vaccines. Biology of Pathogens and Host-Pathogen

  10. Basic Research Needs for High Energy Density Laboratory Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory. Basic Research Needs for High Energy Density Laboratory Physics Report of the Workshop on High Energy Density Laboratory Physics Research Needs November ...

  11. Talk explores Laboratory's 50 years of space research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Talk explores Laboratory's 50 years of space research Talk explores Laboratory's 50 years of space research The talk, titled "Los Alamos National Laboratory's 50 Years in Space," ...

  12. Research | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Gene Odum forest sampling marked tortoise geochemical sampling quantifying radionuclide absorption collcting microbes microsatellite development R E S E A R C H A R E A S * Aquatic and terrestrial ecology * Biogeochemistry & soil science * Environmental microbiology * Herpetology * Hydrology * Molecular genetics * Physiological ecology * Conservation biology * Radiation ecology * Ecotoxicology and risk assessment * Remediation and restoration SREL scientists pursue a wide variety of

  13. Sandia National Laboratories: Research: Bioscience

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bioscience Bioscience Biofuels Biodefense Enabling Capabilities Partnership Opportunities Bioscience Leadership Computing and Information Science Engineering Science Geoscience Materials Science Nanodevices and Microsystems Radiation Effects and High Energy Density Science Research Bioscience Overcoming challenges to make advanced "drop-in" biofuels a reality Aries Biothreat detection Hongyou Fan Novel medical diagnostics and therapeutics Biological solutions to critical energy and

  14. Sandia National Laboratories: Research: Biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuels Overcoming challenges to make advanced "drop-in" biofuels a reality Sandia researchers are developing clean and renewable sources of energy to help minimize climate change and reduce U.S. dependence on foreign oil. To this end, we are creating thermochemical, chemical, and biochemical conversion technologies to efficiently generate renewable biofuels that can displace gasoline, diesel, and jet fuel with no loss of performance or engine efficiency. Sandia is focused on two

  15. Sandia National Laboratories: Research: Research Foundations: Nanodevices

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Microsystems Nanodevices and Microsystems Microsystems-enabled photovoltaics, also known as solar glitter To enable new and increasingly powerful macrosystem capabilities for critical national systems, the Nanodevices and Microsystems Research Foundation works to increase understanding of physical phenomena across the quantum- to microscale continuum, create novel nano- and microscale devices, achieve new methods of integration, and realize novel microsystems-based complex systems. Why

  16. Sandia National Laboratories: Research: Research Foundations: Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Effects and High Energy Density Science Radiation Effects and High Energy Density Science Rings of Saturn, Sandia's workhorse pulsed-power machine. The Radiation Effects and High Energy Density Science Research Foundation seeks to advance science and engineering in the areas of radiation effects sciences, high energy density science, and pulsed-power science and technology to address critical national security issues. Why our work matters We address several issues key to nuclear security and

  17. Researcher, Lawrence Livermore National Laboratory | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Researcher, Lawrence Livermore National Laboratory Placeholder for Bruce Macintosh image Bruce Macintosh February 2010 AAAS Newcomb Cleveland Prize A Lawrence Livermore National Laboratory researcher's paper published in November 2008 is co-winner of this year's American Association for the Advancement of Science (AAAS) Newcomb Cleveland Prize. The Paper is one of two outstanding papers published in Science from June 1, 2008 through May 31, 2009. Bruce

  18. Researcher, Lawrence Livermore National Laboratory | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Researcher, Lawrence Livermore National Laboratory Placeholder for Mike Fitzgerald image Mike Fitzgerald February 2010 AAAS Newcomb Cleveland Prize A Lawrence Livermore National Laboratory researcher's paper published in November 2008 is co-winner of this year's American Association for the Advancement of Science (AAAS) Newcomb Cleveland Prize. The Paper is one of two outstanding papers published in Science from June 1, 2008 through May 31, 2009. Another

  19. Ames Laboratory Research Reactor Facility Ames, Iowa

    Office of Legacy Management (LM)

    ,, *' ; . Final Radiological Condition of the Ames Laboratory Research Reactor Facility Ames, Iowa _, . AGENCY: Office of Operational Safety, Department of Energy ' ACTION: Notice of Availability of Archival Information Package SUMMARY: The'Office of Operational Safety of the Department O i Energy (DOE) has reviewed documentation relating to the decontamination and decommissioning operations conducted at the Ames Laboratory Research Reactor Facility, Ames, Iowa and has prepared an archival

  20. Department of Energy Designates the Idaho National Laboratory...

    Office of Environmental Management (EM)

    Designates the Idaho National Laboratory Advanced Test Reactor as a National Scientific User Facility Department of Energy Designates the Idaho National Laboratory Advanced Test ...

  1. NREL: Transportation Research - Fuel Combustion Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Combustion Laboratory NREL's Fuel Combustion Laboratory focuses on characterizing fuels at the molecular level. This information can then be used to understand and predict a fuel's effect on engine performance and emissions. By understanding the effects of fuel chemistry on ignition, as well as the potential emissions impacts, we can develop fuels that enable more efficient engine designs, using both today's technology and future advanced combustion concepts. This lab supports the Renewable

  2. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers: Materials Science and Engineering Designated Technology Deployment Center Materials Science and Engineering Center The Materials Science and Engineering (MSE) Center at Sandia provides knowledge of materials structure, properties, and performance and the processes to produce, transform, and analyze materials to ensure mission success for our customers and partners, both internal and external to the laboratories. The MSE is comprised of several laboratories, each providing unique

  3. Laboratory Directed Research & Development (LDRD)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LDRD Laboratory Directed Research & Development National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Gang Wu, left, and Piotr Zelenay examine a new non-precious-metal catalyst that can significantly reduce the cost of hydrogen fuel cells while maintaining performance. Gang Wu, left, and Piotr Zelenay examine a new non-precious-metal

  4. SRNL Laboratory Directed Research & Development (LDRD)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6/2014 SEARCH SRNL GO About LDRD Initiatives & Research Priorities Current Projects LDRD Technologies LDRD Contacts LDRD Home SRNL Home SRNL Laboratory Directed Research & Development (LDRD) Resources LDRD Annual Reports * 2013 * 2012 * 2011 * 2010 DOE LDRD Homepage DOE Order FY13 SRNL LDRD Annual Report The FY13 SRNL LDRD Annual Report has been released This important program displays both the breadth of SRNL's research efforts and the depth of our commitment to expand the capability

  5. 1999 LDRD Laboratory Directed Research and Development

    SciTech Connect (OSTI)

    Rita Spencer; Kyle Wheeler

    2000-06-01

    This is the FY 1999 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  6. Idaho National Laboratory Research & Development Impacts

    SciTech Connect (OSTI)

    Stricker, Nicole

    2015-01-01

    Technological advances that drive economic growth require both public and private investment. The U.S. Department of Energy’s national laboratories play a crucial role by conducting the type of research, testing and evaluation that is beyond the scope of regulators, academia or industry. Examples of such work from the past year can be found in these pages. Idaho National Laboratory’s engineering and applied science expertise helps deploy new technologies for nuclear energy, national security and new energy resources. Unique infrastructure, nuclear material inventory and vast expertise converge at INL, the nation’s nuclear energy laboratory. Productive partnerships with academia, industry and government agencies deliver high-impact outcomes. This edition of INL’s Impacts magazine highlights national and regional leadership efforts, growing capabilities, notable collaborations, and technology innovations. Please take a few minutes to learn more about the critical resources and transformative research at one of the nation’s premier applied science laboratories.

  7. Laboratory for Energy-Related Health Research, California, Site...

    Office of Legacy Management (LM)

    Fact Sheet Laboratory for Energy-Related Health Research, California, Site This fact sheet provides information about the Laboratory for Energy-Related Health Research, California, ...

  8. PPPL Launches Expanded New Laboratory for Research on the use...

    Office of Environmental Management (EM)

    PPPL Launches Expanded New Laboratory for Research on the use of Plasma to Synthesize Nanoparticles PPPL Launches Expanded New Laboratory for Research on the use of Plasma to ...

  9. UMass Amherst - Renewable Energy Research Laboratory | Open Energy...

    Open Energy Info (EERE)

    UMass Amherst - Renewable Energy Research Laboratory Jump to: navigation, search Logo: UMass Amherst - Renewable Energy Research Laboratory Name: UMass Amherst - Renewable Energy...

  10. Researcher, Sandia National Laboratories | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Researcher, Sandia National Laboratories David Haaland David Haaland December 2009 Fellows of the American Association for the Advancement of Science Sandia researchers David Haaland and David Myers have been elected Fellows of the American Association for the Advancement of Science. Election as a Fellow is an honor bestowed upon AAAS members by their peers. Haaland was cited for "distinguished contributions in the area of chemometrics and spectral imaging,

  11. Researcher, Sandia National Laboratories | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Researcher, Sandia National Laboratories David Myers David Myers December 2009 Fellow of the American Association for the Advancement of Science Sandia researchers David Haaland and David Myers have been elected Fellows of the American Association for the Advancement of Science. Election as a Fellow is an honor bestowed upon AAAS members by their peers. Myers was cited for "contributions to the science, management, and early application of ion implantation,

  12. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers Technology Deployment Centers CRF Many of Sandia's unique research centers are available for use by U.S. industry, universities, academia, other laboratories, state and local governments, and the scientific community in general. Technology deployment centers are a unique set of scientific research capabilities and resources. The primary function of technology deployment centers is to satisfy Department of Energy programmatic needs, while remaining accessible to outside users. Contact

  13. Sandia National Laboratories: Research: Bioscience Leadership

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering Science Geoscience Materials Science Nanodevices and Microsystems Radiation Effects and High Energy Density Science Research Bioscience Leadership Anup Singh Anup Singh Dr. Anup Singh is the Director of Biological Science and Technology at Sandia National Laboratories and the Senior Director of Analytical Technologies at the Joint BioEnergy Institute (JBEI). He is also the Program Lead for Biodefense and Infectious Disease Research in the Biological Science and Engineering center at

  14. Jefferson Lab - Laboratory Directed Research & Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an LDRD Proposal or LOI View Submitted FY17 LDRD Proposals Proposals from Previous Years Create an LDRD Project Report Mid-year Report Template Mid-year Report Instructions Annual Report Template Annual Report Instructions LDRD Reports LDRD Publications The JLab LDRD program documentation has been modeled on the material developed by SLAC for its LDRD program Laboratory Directed Research & Development LDRD Home Lab Directed Research and Development An important element of Jefferson Lab's

  15. Radiological Contamination Control Training for Laboratory Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 of 3) Radiological Contamination Control Training for Laboratory Research Instructor's Guide Office of Environment, Safety & Health U.S. Department of Energy February 1997 DOE-HDBK-1106-97 ii This page intentionally left blank. DOE-HDBK-1106-97 iii Table of Contents Page DEPARTMENT OF ENERGY - Course/Lesson Plan.............................. 1 Standardized Core Course Materials................................................... 1 Course

  16. Team Based Program Design Management and Research Operations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Team Based Program Design Management and Research Operations Involvement in Nanoscale Materials ES&H August 2009 Presenter: Kevin Sheffield, Pacific Northwest National Laboratory ...

  17. Center for Transportation Research | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center for Transportation Research Argonne's Center for Transportation Research (CTR) provides innovative solutions to challenges involving fuel efficiency, emissions, durability, safety, design and operating efficiency, petroleum dependence, interoperability, compatibility and codes/standards compliance and harmonization. The CTR is home to a well-balanced transportation research program staffed by world-class researchers and engineers, who are well known in the technical community and within

  18. Laboratory Directed Research and Development FY 2000

    SciTech Connect (OSTI)

    Hansen, Todd; Levy, Karin

    2001-02-27

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Annual report on Laboratory Directed Research and Development for FY2000.

  19. Laboratory of Energy-Related Health Research, California, Site

    SciTech Connect (OSTI)

    2015-08-05

    This fact sheet provides information about the Laboratory of Energy-Related Health Research, California, Site

  20. Radiological Contamination Control Training for Laboratory Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reaffirmation August 2002 Change Notice 1 December 2004 DOE HANDBOOK RADIOLOGICAL CONTAMINATION CONTROL TRAINING FOR LABORATORY RESEARCH U.S. Department of Energy FSC 6910 Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE DOE-HDBK-1106-97 ii This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy,

  1. National Renewable Energy Laboratory 2005 Research Review

    SciTech Connect (OSTI)

    Brown, H.; Gwinner, D.; Miller, M.; Pitchford, P.

    2006-06-01

    Science and technology are at the heart of everything we do at the National Renewable Energy Laboratory, as we pursue innovative, robust, and sustainable ways to produce energy--and as we seek to understand and illuminate the physics, chemistry, biology, and engineering behind alternative energy technologies. This year's Research Review highlights the Lab's work in the areas of alternatives fuels and vehicles, high-performing commercial buildings, and high-efficiency inverted, semi-mismatched solar cells.

  2. Jefferson Lab - Laboratory Directed Research & Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Call for FY17 LDRD Proposals An important element of Jefferson Lab's Strategic Plan is the implementation of a Laboratory Directed Research and Development (LDRD) program. The lab began such a program in FY14 and it has already provided a substantial return on the investments made. We are now soliciting proposals for new LDRD projects that would begin in October 2016 (and continuation proposals from projects underway that will not be completed this year). A draft calendar for the FY2017 program,

  3. Jefferson Lab - Laboratory Directed Research & Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an LDRD Proposal or LOI View Submitted FY17 LDRD Proposals Proposals from Previous Years Create an LDRD Project Report Mid-year Report Template Mid-year Report Instructions Annual Report Template Annual Report Instructions LDRD Reports LDRD Publications The JLab LDRD program documentation has been modeled on the material developed by SLAC for its LDRD program Laboratory Directed Research & Development Formal LDRD Plans FT16 Plan FY15 Plan FY14 Plan

  4. Laboratory- Directed Research and Development (LDRD)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory- Directed Research and Development (LDRD) - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste

  5. Laboratory Directed Research and Development Plan - FY2013 | The Ames

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Laboratory Directed Research and Development Plan - FY2013 Document Number: NA Effective Date: 10/2014 File (public): PDF icon plan_ldrd_fy

  6. Audit of Acquisition of Scientific Research at Ames Laboratory...

    Broader source: Energy.gov (indexed) [DOE]

    ... sponsored scientific research at Ames Laboratory since 1947 under a series of contracts. ... Established in 1947 as a result of the Manhattan Project, Ames Laboratory performs basic ...

  7. Design of the cryogenic hydrogen release laboratory

    SciTech Connect (OSTI)

    Hecht, Ethan S.; Zimmerman, Mark D.; LaFleur, Angela Christine; Ciotti, Michael

    2015-09-01

    A cooperative research and development agreement was made between Linde, LLC and Sandia to develop a plan for modifying the Turbulent Combustion Laboratory (TCL) with the necessary infrastructure to produce a cold (near liquid temperature) hydrogen jet. A three-stage heat exchanger will be used to cool gaseous hydrogen using liquid nitrogen, gaseous helium, and liquid helium. A cryogenic line from the heat exchanger into the lab will allow high-fidelity diagnostics already in place in the lab to be applied to cold hydrogen jets. Data from these experiments will be used to develop and validate models that inform codes and standards which specify protection criteria for unintended releases from liquid hydrogen storage, transport, and delivery infrastructure.

  8. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development Program Activities for FY 1994

    SciTech Connect (OSTI)

    1995-02-25

    The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory's R and D capabilities, and further the development of its strategic initiatives. Projects are selected from proposals for creative and innovative R and D studies which are not yet eligible for timely support through normal programmatic channels. Among the aims of the projects supported by the Program are establishment of engineering proof-of-principle; assessment of design feasibility for prospective facilities; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these projects are closely associated with major strategic thrusts of the Laboratory as described in Argonne's Five-Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne as indicated in the Laboratory's LDRD Plan for FY 1994. Project summaries of research in the following areas are included: (1) Advanced Accelerator and Detector Technology; (2) X-ray Techniques for Research in Biological and Physical Science; (3) Nuclear Technology; (4) Materials Science and Technology; (5) Computational Science and Technology; (6) Biological Sciences; (7) Environmental Sciences: (8) Environmental Control and Waste Management Technology; and (9) Novel Concepts in Other Areas.

  9. MFRC Research and Development | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MFRC Research and Development 2013 Research Project Summaries 2012 Research Project Summaries 2011 Research Project Summaries 2010 Research Project Summaries 2009 Research Project Summaries 2008 Research Project Summaries 2007 Research Project Summaries 2006 Research Project Summaries 2005 Research Project Summaries

  10. Sandia National Laboratories: Research: Facilities: Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Detection Materials Characterization Laboratory This facility provides assistance to users from federal laboratories, U.S. industry and academia in the following areas:...

  11. Mass Spectrometer Laboratory | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mass Spectrometer Laboratory Mass Spectrometer Laboratory A look inside the recently updated Mass Spectrometer Facility managed by Staff Scientish Hao Zhang

  12. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers: Pulsed Power and Systems Validation Facility Pulsed Power and Systems Validation Facility The Pulsed Power and System Validation Technology Deployment Center offers access to unique equipment to support specialized research, along with the expertise to address complex problems dealing with radiation effects. User Support
 The knowledgeable staff brings a broad spectrum of experience in the design and setup of experiments. Emphasis is placed on optimizing the operation and results

  13. Laboratory Directed Research and Development Plan - FY2013 |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Directed Research and Development Plan - FY2013 Document Number: NA Effective Date: 102014 File (public): PDF icon planldrdfy...

  14. Laboratory Directed Research & Development (LDRD) Tri-Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Nuclear Security AdministrationLaboratory Directed Research and Development Securing the future of our nation through cutting-edge science and technology Laboratory Directed Research and Development Laboratory Directed Research and Development Menu Performance Metrics Annual Reports Nuclear Security Global Security Scientific Security Energy Security Innovation for our nation The Laboratory Directed Research and Development (LDRD) program was authorized by Congress in 1991 to fund

  15. Argonne National Laboratory: Laboratory Directed Research and Development FY 1993 program activities. Annual report

    SciTech Connect (OSTI)

    1993-12-23

    The purposes of Argonne`s Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory`s R&D capabilities, and further the development of its strategic initiatives. Projects are selected from proposals for creative and innovative R&D studies which are not yet eligible for timely support through normal programmatic channels. Among the aims of the projects supported by the Program are establishment of engineering ``proof-of-principle`` assessment of design feasibility for prospective facilities; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these projects are closely associated with major strategic thrusts of the Laboratory as described in Argonne`s Five Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne as indicated in the Laboratory LDRD Plan for FY 1993.

  16. Audit Implementation Design Plan | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Audit Implementation Design Plan Document Number: NA Effective Date: 08

  17. Research Call to DOE/Federal Laboratories: Technical Support...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research Call to DOEFederal Laboratories: Technical Support for Interconnection-Level Electric Infrastructure Planning RC-BM-2010; Due May 3, 2010. Research Call to DOEFederal...

  18. Research Call to DOE/Federal Laboratories: Technical Support...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research Call to DOEFederal Laboratories: Technical Support for Interconnection-Level Electric Infrastructure Planning RC-BM-2010; Due May 3, 2010. Research Call to DOEFederal ...

  19. Laboratory researcher Joel Rowland to receive DOE Early Career...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rowland to receive DOE Early Career Award Laboratory researcher Joel Rowland to receive DOE Early Career Award Rowland's research was recognized by DOE for incorporating...

  20. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers: Radiation Detection Materials Characterization Laboratory Radiation Detection Materials Characterization Laboratory This facility provides assistance to users from federal laboratories, U.S. industry and academia in the following areas: (1) testing and characterizing radiation detector materials and devices; and (2) determining the relationships between the physical properties of the detector materials and the device response. Systems of interest include scintillators and

  1. Nano Design Works | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nano Design Works Share Speakers Andreas Roelofs Topic Programs Materials science Nanoscience Nano Design Works (NDW) capitalizes on the power of nanotechnology and provides ...

  2. Accelerator Design and Development | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerator Design and Development Accelerator Design and Development Scientists around the world rely on particle accelerators to yield insights on the structure and function of ...

  3. Visual Design Group | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Visual Design Group alternative text alternative text alternative text alternative text alternative text alternative text alternative text alternative text The Visual Design Group ...

  4. Research Call Issued for Design Support Tool for Remote Microgrids |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Research Call Issued for Design Support Tool for Remote Microgrids Research Call Issued for Design Support Tool for Remote Microgrids May 18, 2015 - 1:54pm Addthis DOE's National Energy Technology Laboratory (NETL), on behalf of the Office of Electricity Delivery and Energy Reliability, has issued a research call for proposals for a "Design Support Tool for Remote Off-grid Microgrids" which facilitates the design of microgrids that encompass mixes of generation

  5. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2011.

    SciTech Connect (OSTI)

    2012-04-25

    As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selected from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.

  6. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2010.

    SciTech Connect (OSTI)

    2012-04-25

    As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selected from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.

  7. Laboratory Directed Research and Development FY2011 Annual Report

    SciTech Connect (OSTI)

    Craig, W; Sketchley, J; Kotta, P

    2012-03-22

    A premier applied-science laboratory, Lawrence Livermore National Laboratory (LLNL) has earned the reputation as a leader in providing science and technology solutions to the most pressing national and global security problems. The LDRD Program, established by Congress at all DOE national laboratories in 1991, is LLNL's most important single resource for fostering excellent science and technology for today's needs and tomorrow's challenges. The LDRD internally directed research and development funding at LLNL enables high-risk, potentially high-payoff projects at the forefront of science and technology. The LDRD Program at Livermore serves to: (1) Support the Laboratory's missions, strategic plan, and foundational science; (2) Maintain the Laboratory's science and technology vitality; (3) Promote recruiting and retention; (4) Pursue collaborations; (5) Generate intellectual property; and (6) Strengthen the U.S. economy. Myriad LDRD projects over the years have made important contributions to every facet of the Laboratory's mission and strategic plan, including its commitment to nuclear, global, and energy and environmental security, as well as cutting-edge science and technology and engineering in high-energy-density matter, high-performance computing and simulation, materials and chemistry at the extremes, information systems, measurements and experimental science, and energy manipulation. A summary of each project was submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to DOE/NNSA and LLNL mission areas, the technical progress achieved in FY11, and a list of publications that resulted from the research. The projects are: (1) Nuclear Threat Reduction; (2) Biosecurity; (3) High-Performance Computing and Simulation; (4) Intelligence; (5) Cybersecurity; (6) Energy Security; (7) Carbon Capture; (8) Material Properties, Theory, and Design; (9) Radiochemistry; (10) High-Energy-Density Science; (11) Laser Inertial

  8. Research programs at the Department of Energy National Laboratories. Volume 2: Laboratory matrix

    SciTech Connect (OSTI)

    1994-12-01

    For nearly fifty years, the US national laboratories, under the direction of the Department of Energy, have maintained a tradition of outstanding scientific research and innovative technological development. With the end of the Cold War, their roles have undergone profound changes. Although many of their original priorities remain--stewardship of the nation`s nuclear stockpile, for example--pressing budget constraints and new federal mandates have altered their focus. Promotion of energy efficiency, environmental restoration, human health, and technology partnerships with the goal of enhancing US economic and technological competitiveness are key new priorities. The multiprogram national laboratories offer unparalleled expertise in meeting the challenge of changing priorities. This volume aims to demonstrate each laboratory`s uniqueness in applying this expertise. It describes the laboratories` activities in eleven broad areas of research that most or all share in common. Each section of this volume is devoted to a single laboratory. Those included are: Argonne National Laboratory; Brookhaven National Laboratory; Idaho National Engineering Laboratory; Lawrence Berkeley Laboratory; Lawrence Livermore National Laboratory; Los Alamos National Laboratory; National Renewable Energy Laboratory; Oak Ridge National Laboratory; Pacific Northwest Laboratory; and Sandia National Laboratories. The information in this volume was provided by the multiprogram national laboratories and compiled at Lawrence Berkeley Laboratory.

  9. Manhattan Project: Early Bomb Design, Los Alamos: Laboratory...

    Office of Scientific and Technical Information (OSTI)

    1945 EARLY BOMB DESIGN (Los Alamos: Laboratory, 1943-1944) Events > Bringing it All Together, 1942-1945 Establishing Los Alamos, 1942-1943 Early Bomb Design, 1943-1944 Basic ...

  10. Laboratory Directed Research Development (LDRD) Annual Reports

    Broader source: Energy.gov [DOE]

    DOE’s national laboratories annual reports of long-term national missions and unique scientific and technical capabilities beyond the scope of academic and industrial institutions.

  11. Frontiers in Energy Research | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The following CEES members have served as co-editors for the newsletter: 2011-2012 Scott Kirklin, Northwestern University 2012-2013 Lynn Trahey, Argonne National Laboratory...

  12. Radiological Contamination Control Training for Laboratory Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... for Laboratories Using Chemicals and NFPA 432, Code for the Storage of Organic Peroxides. ... Monitoring techniques for release of materials are addressed in DOECH-9401 (1993). ...

  13. Nano Design Works | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Works Nano Design Works (NDW) capitalizes on the power of nanotechnology and provides ... looking to make a big impact with tiny materials. PDF icon ArgonneNanoDesignWorks

  14. Distributed Energy Research Center | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distributed Energy Research Center Argonne's Distributed Energy Research Center (DERC) allows researchers to develop and demonstrate novel technologies to reduce emissions and ...

  15. Exemplary Student Research Program | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Exemplary Student Research Program 2013 Exemplary Student Research Program - Student Poster Presentations 1 of 6 2013 Exemplary Student Research Program - Student Poster...

  16. Frontiers for Laboratory Research of Magnetic Reconnection

    SciTech Connect (OSTI)

    Ji, Hantao; Guo, Fan

    2015-07-16

    Magnetic reconnection occcurs throughout heliophysical and astrophysical plasmas as well as in laboratory fusion plasmas. Two broad categories of reconnection models exist: collisional MHD and collisionless kinetic. Eight major questions with respect to magnetic connection are set down, and past and future devices for studying them in the laboratory are described. Results of some computerized simulations are compared with experiments.

  17. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers: Engineering Sciences Experimental Facilities Engineering Sciences Experimental Facilities (ESEF) Technology Deployment Centers Ion Beam Lab Advanced Power Sources Laboratory Engineering Sciences Experimental Facilities (ESEF) Trisonic Wind Tunnel Hypersonic Wind Tunnel High Altitude Chamber Explosive Components Facility Materials Science and Engineering Center Pulsed Power and Systems Validation Facility Radiation Detection Materials Characterization Laboratory Shock Thermodynamic

  18. Autonomie: Automotive System Design | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Autonomie: Automotive System Design Autonomie: Automotive System Design Argonne's Autonomie is a MATLAB©-based software environment and framework for automotive control system design, simulation and analysis. Autonomie is capable of Model-in-the-Loop (MIL), Software-in-the-Loop (SIL), Hardware-in-the-Loop (HIL) and Rapid-Control-Prototyping (RCP) Integrating math-based engineering activities through all stages of development Mixing and matching models of different levels of abstraction with

  19. Designing future cities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... LakeSim employs the specifications of dozens of building design types supplied by sources ... scientifically rigorous range of potential energy demands in the near and far future ...

  20. Sandia National Laboratory Photovoltaic Design Resources | Open...

    Open Energy Info (EERE)

    access to a computer, instructions and blank worksheets, and 15 specific examples of PV systems designed to meet a wide range of applications. Each example includes sizing,...

  1. Stirling engine research at national and university laboratories in Japan

    SciTech Connect (OSTI)

    Hane, G.J.; Hutchinson, R.A.

    1987-09-01

    Pacific Northwest Laboratory (PNL) reviewed research projects that are related to the development of Stirling engines and that are under way at Japanese national laboratories and universities. The research and development focused on component rather than on whole engine development. PNL obtained the information from a literature review and interviews conducted at the laboratories and universities. The universities have less equipment available and operate with smaller staffs for research than do the laboratories. In particular, the Mechanical Engineering Laboratory and the Aerospace Laboratory conduct high-quality component and fundamental work. Despite having less equipment, some of the researchers at the universities conduct high-quality fundamental research. As is typical in Japan, several of the university professors are very active in consulting and advisory capacities to companies engaged in Stirling engine development, and also with government and association advisory and technical committees. Contacts with these professors and selective examination of their research are good ways to keep abreast of Japanese Stirling developments.

  2. SULI Areas of Research | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Shihuai Zhou) Growth and discovery of novel materials (Paul Canfield) Molecular design of extractants (Theresa Windus) Nanomaterials by Design (Ludovico Cademartiri) ...

  3. Sandia National Laboratories: News: Publications: Research Magazine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Magazine Annual Report Environmental Reports Fact Sheets Labs Accomplishments Lab News Partnerships Annual Report Research Magazine Archive HPC Annual Reports Search Sandia Publications Strategic Plan News Research Magazine Sandia Research is a new quarterly magazine highlighting Sandia's cutting-edge research and technology. February 2016 Sandia Research - February 2016 "This issue of Sandia Research marks an important milestone in the history of Sandia and the other Department of

  4. Sandia National Laboratory Photovoltaic Design Resources | Open...

    Open Energy Info (EERE)

    are included, along with additional sources of information and major U.S. PV system suppliers. References Sandia Photovoltaic Research and Development Retrieved from "http:...

  5. New Field Laboratories and Related Research To Help Promote Environmentally

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Prudent Development of Unconventional Resources | Department of Energy Field Laboratories and Related Research To Help Promote Environmentally Prudent Development of Unconventional Resources New Field Laboratories and Related Research To Help Promote Environmentally Prudent Development of Unconventional Resources November 6, 2014 - 9:00am Addthis WASHINGTON, D.C. - Today, the Department of Energy announced the selection of three multiyear, field laboratories and six other multiyear research

  6. Sandia National Laboratories: Research: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Bioscience Computing and Information Science Electromagnetics Engineering Science Geoscience Materials Science About Materials Science Research Image Gallery Video Gallery Facilities Nanodevices and Microsystems Radiation Effects and High Energy Density Science Research Research Materials Processing Sandia research staff understand, characterize, model, and ultimately control materials fabrication technologies that are critical to component development and production. Plasma Spray

  7. New Concepts in Fish Ladder Design, Volume II of IV, Results of Laboratory and Field Research on New Concepts in Weir and Pool Fishways, 1982-1984 Final Project Report.

    SciTech Connect (OSTI)

    Aaserude, Robert G.; Orsborn, John F.

    1985-08-01

    A comprehensive review of fishway design practice led to new design concepts that had previously been untested. This concept was based on the observation that fish can be stimulated to leap when presented with certain hydraulic conditions. A laboratory test program was conducted to develop this concept into a new fishway configuration. Field testing revealed that components of the new design improved fish passage. Verification of the initial premise that fish can be stimulated to leap needs further study.

  8. Laboratory Directed Research and Development Program: FY 2015...

    Office of Scientific and Technical Information (OSTI)

    Laboratory Directed Research and Development Program: FY 2015 Annual Report Citation ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  9. Ames Laboratory to Lead New Research Effort to Address Shortages...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ames Laboratory to Lead New Research Effort to Address Shortages in Rare Earth and Other ... These critical materials, including many rare earth elements, are essential for ...

  10. Van Andel Research Institute, Los Alamos National Laboratory...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computational model to study lung cancer Van Andel Research Institute, Los Alamos National Laboratory to develop detailed computational model to study lung cancer Scientists are...

  11. National Laboratory Concentrating Solar Power Research and Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The SunShot National Laboratory Concentrating Solar Power Research and Development Fact Sheet provides a synopsis of the 12 projects funded to address the technical barriers toward ...

  12. Laboratory directed research and development. Annual report, fiscal year 1995

    SciTech Connect (OSTI)

    1996-02-01

    This document is a compilation of the several research and development programs having been performed at the Pacific Northwest National Laboratory for the fiscal year 1995.

  13. Agustin Mihi and Paul V. Braun Materials Research Laboratory...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Agustin Mihi and Paul V. Braun Materials Research Laboratory, University of Illinois at Urbana-Champaign Transfer of Preformed 3D Photonic Crystals onto Dye Sensitized Solar Cells...

  14. Sandia National Laboratories: Visiting Research Scholars

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Visiting Research Scholars Visting Research Scholars at Sandia Overview Since 1998 Sandia's Cooperative Monitoring Center has hosted a unique Visiting Research Scholar (VRS) Program that brings together international subject-matter experts to conduct joint research and analyses on policy and technology challenges related to global security concerns of the US government and its international partners. Often, the invited scholars represent opposing views with a goal of their research to include

  15. Transportable Heavy Duty Emissions Testing Laboratory and Research Program

    SciTech Connect (OSTI)

    David Lyons

    2008-03-31

    The objective of this program was to quantify the emissions from heavy-duty vehicles operating on alternative fuels or advanced fuel blends, often with novel engine technology or aftertreatment. In the first year of the program West Virginia University (WVU) researchers determined that a transportable chassis dynamometer emissions measurement approach was required so that fleets of trucks and buses did not need to be ferried across the nation to a fixed facility. A Transportable Heavy-Duty Vehicle Emissions Testing Laboratory (Translab) was designed, constructed and verified. This laboratory consisted of a chassis dynamometer semi-trailer and an analytic trailer housing a full scale exhaust dilution tunnel and sampling system which mimicked closely the system described in the Code of Federal Regulations for engine certification. The Translab was first used to quantify emissions from natural gas and methanol fueled transit buses, and a second Translab unit was constructed to satisfy research demand. Subsequent emissions measurement was performed on trucks and buses using ethanol, Fischer-Tropsch fuel, and biodiesel. A medium-duty chassis dynamometer was also designed and constructed to facilitate research on delivery vehicles in the 10,000 to 20,000lb range. The Translab participated in major programs to evaluate low-sulfur diesel in conjunction with passively regenerating exhaust particulate filtration technology, and substantial reductions in particulate matter were recorded. The researchers also participated in programs to evaluate emissions from advanced natural gas engines with closed loop feedback control. These natural gas engines showed substantially reduced levels of oxides of nitrogen. For all of the trucks and buses characterized, the levels of carbon monoxide, oxides of nitrogen, hydrocarbons, carbon dioxide and particulate matter were quantified, and in many cases non-regulated species such as aldehydes were also sampled. Particle size was also

  16. Federal Laboratory Consortium Highlights Three NREL Research Projects -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Releases | NREL Federal Laboratory Consortium Highlights Three NREL Research Projects McDonough Lauded as Outstanding Laboratory Representative September 16, 2011 The Federal Laboratory Consortium for Technology Transfer's (FLC) Mid-Continent Region recently recognized the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) and its partners with three awards for excellence in technology transfer. It also named NREL Commercialization and Technology Transfer

  17. Ames Laboratory Scientists Leave Their Mark on Future Researchers | The

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Laboratory Ames Laboratory Scientists Leave Their Mark on Future Researchers Eight out of the past 10 years, Ames Laboratory chemist Aaron Sadow has mentored a Science Undergraduate Laboratory Internships (SULI) student. Sometimes the mentorship has been for the 10-week summer program and sometimes for the 16-week semester program. On occasion, he's mentored more than one student at a time. The SULI program, sponsored by the U.S. Department of Energy's (DOE) Office of Science supports

  18. Solar pond research at the Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Jones, G.F.; Meyer, K.A.; Hedstrom, J.C.; Grimmer, D.P.

    1984-01-01

    A description of solar pond research at Los Alamos National Laboratory is presented. The main issues in the theory of solar ponds are discussed. Among these are the interfacial-boundary-layer model, models for interface motion and pond performance, heat extraction, and ground heat loss. The core of the research effort at Los Alamos was the development of a one-dimensional computer program to accurately predict dynamic performance of a solar pond. The computer model and the experiments that were designed and performed to validate it are described. The experiments include two laboratory tanks wherein temperature, salinity, and flow visualization data were obtained and a 232 m/sup 2/ outdoor solar pond. Results from preliminary validation show good agreement between the pond's predicted dynamic behavior and that which actually occurred in the experiments. More validation using data from full-sized solar ponds is needed. A new correlation for the ratio of interfacial salt-flux to heat-flux is proposed which agrees well with our data. Recommendations for future research are given.

  19. Research Aide FAQ | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Frequently Asked Questions Cooperative Education National School on Neutron and X-ray Scattering Givens Summer Associate Program Summer Strategic Trade Control Program Next Generation Safeguards Initiative Summer Internship Program Faculty Partners News & Events About Us Staff Directory About Us Staff Directory Argonne National Laboratory Educational Programs Developing the Next Generation of Scientists & Engineers Home Learning Center Undergraduates Graduates Faculty Partners News

  20. Laboratory Directed Research and Development FY-10 Annual Report

    SciTech Connect (OSTI)

    Dena Tomchak

    2011-03-01

    The FY 2010 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support the future DOE missions and national research priorities. LDRD is essential to the INL -- it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enhances technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development.

  1. Laboratory and cyclotron requirements for PET research

    SciTech Connect (OSTI)

    Schlyer, D.J.

    1993-06-01

    This report describes four types of PET facilities: Clinical PET with no radionuclide production; clinical PET with a small accelerator; clinical PET with research support; and research PET facilities. General facility considerations are also discussed.

  2. Water Research and Technology | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne OutLoud: The End of Water As We Know It Argonne OutLoud: The End of Water As We Know It (Jan. 28, 2016) Water Research and Technology Water Research and Technology Our ...

  3. Exemplary Student Research Program | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FAQ Video Argonne's Exemplary Student Research Program Featured Story 'The possibilities of science are limitless,' said high school senior Avinash Prakash. 'Science is continually growing. Through research we are part of a continuing process.' New program puts high school students in role of scientists Contact education@anl.gov Exemplary Student Research Program "Research is creating new knowledge." - Neil Armstrong, Astronaut About the Program Using the world-class facilities at

  4. Sandia National Laboratories: Research: High Consequence, Automation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High-Consequence Automation Robotics Homepage About Robotics Research & Development Advanced Controls Advanced Manipulation Cybernetics High-Consequence Automation Demilitarization...

  5. Savannah River Technology Center (SRTC) Designated as a National Laboratory

    Broader source: Energy.gov [DOE]

    In 2004, the Secretary of Energy designated SRTC as a national laboratory based on its contributions and important role it has played in both energy and defense programs of the United States. The lab was also renamed the Savannah River National Laboratory (SRNL).

  6. Researcher, Los Alamos National Laboratory | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Researcher, Los Alamos National Laboratory Turab Lookman Turab Lookman 2009 LANL Fellows Prize for Outstanding Research in Science or Engineering Turab Lookman has received the 2009 LANL Fellows Prize for Outstanding Research in Science or Engineering, which commends individuals for exemplary research performed at the Laboratory within the past 10 years that has had a significant impact on a scientific discipline or program. The committee selected Lookman for

  7. Research Highlights, Recent Developments at Elettra Laboratory in Trieste |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stanford Synchrotron Radiation Lightsource Research Highlights, Recent Developments at Elettra Laboratory in Trieste Monday, January 9, 2012 - 2:30pm SSRL Conference Room 137-322 Maya Kiskinova Ph.D. Sc.D., Coordinator of Research Projects Elettra Laboratory Elettra laboratory operates two light sources: a synchrotron radiation facility (since 1993) and a seeded free electron laser facility under commissioning. Using selected exemplary systems, the talk will address the most recent

  8. NREL: Wind Research - Structural Testing Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and improve new blade designs, analyze blade structural properties, and improve their manufacturing processes. As wind turbines grow in size and their blades become longer and...

  9. Laboratory Technology Research: Abstracts of FY 1996 projects

    SciTech Connect (OSTI)

    1996-12-31

    The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of this country: the world-class basic research capability of the DOE Energy Research (ER) multi-program national laboratories and the unparalleled entrepreneurial spirit of American industry. Projects supported by the LTR program are conducted by the five ER multi-program laboratories: Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge, and Pacific Northwest National Laboratories. These projects explore the applications of basic research advances relevant to Department of Energy`s (DOE) mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials, intelligent processing/manufacturing research, and sustainable environments.

  10. Engine Research Facility | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engine Research Facility Argonne's Engine Research Facility allows scientists and engineers to study in-cylinder combustion and emissions under realistic operating conditions. The facility's engines range in size from automobile- to locomotive-sized, as well as stationary electric power production engines. The facility is used to discover and evaluate new technologies to determine their technical feasibility and commercial viability. In addition, Argonne researchers use the facility's engines to

  11. Advanced Powertrain Research Facility | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Powertrain Research Facility Argonne's Advanced Powertrain Research Facility (APRF) enables researchers to conduct vehicle benchmarking and testing activities that provide data critical to the development and commercialization of next-generation vehicles. APRF engineers use the facility's two-wheel drive (2WD) and four-wheel drive (4WD) dynamometers and state-of-the-art instrumentation to reveal important information on performance, fuel economy, energy consumption and emissions output.

  12. Laboratory Directed Research and Development annual report, fiscal year 1997

    SciTech Connect (OSTI)

    1998-03-01

    The Department of Energy Order 413.2(a) establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 413.2, LDRD is research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this Order. DOE Order 413.2 requires that each laboratory submit an annual report on its LDRD activities to the cognizant Secretarial Officer through the appropriate Operations Office Manager. The report provided in this document represents Pacific Northwest National Laboratory`s LDRD report for FY 1997.

  13. Research Laboratory Experiments with Energy Efficiency Upgrades...

    Office of Environmental Management (EM)

    Center for Applied Energy Research (CAER), the new facility includes energy efficiency upgrades that will reduce energy use and help the building achieve LEED Gold status. ...

  14. Researchers study grapevine microbiota | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ecologist Jack Gilbert wanted to explore these communities. In research that could lead to ways for farmers to encourage healthier plants without pesticides, Gilbert's team,...

  15. Graduate Research Aide Appointments | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program Visiting Graduate Program Thesis Parts Program Business Internship Program Research Aide Appointments Frequently Asked Questions Cooperative Education National School on...

  16. Undergraduate Research Aide Appointment | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Undergraduate Research Aide Appointment "Equipped with his five senses, man explores the universe around him and calls the adventure Science."-Edwin Powell The...

  17. Center for Transportation Research | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Vehicle Technologies Friction, Wear, and Lubrication Technologies Fuel Spray Analysis Multi-Dimensional Modeling Vehicle-Grid Interoperability CTR research occurs in...

  18. Past VFP research projects | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Past VFP research projects Nanostructured Organometal Halide Perovskites (Javier Vela) Nanocasting for a new generation of smart nanodevices (Igor Slowing) Exploration of ...

  19. Water Technology Research | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Technology Research Wastewater treatment plant Wastewater treatment plant Water is an increasingly valuable natural resource. By identifying typical sources and distribution ...

  20. How low can you go? Low pressure drop laboratory design

    SciTech Connect (OSTI)

    Weale, John; Rumsey, Peter; Sartor, Dale; Lock, Lee Eng

    2001-12-01

    Laboratory buildings are characterized by the production of potentially hazardous fumes within the occupied space. The primary objective of a laboratory ventilation system is to isolate and protect the occupants from the fumes, as well as provide minimum outside air at a comfortable temperature. Fume removal results in the need for a large volume of conditioned make-up air, typically a significantly greater volume than required for space temperature conditioning purposes. The high quantity of exhaust naturally results in a once through system, which is also often required by codes that prohibit any recirculation in a laboratory space. The high costs associated with high airflow systems are magnified by the 24 hours a day, 356 days a year ventilation operation often seen in laboratory situations. All too often, the common design approach taken to laboratory mechanical systems results in a traditional office ventilation system upsized to meet a laboratory's requirements. Recognizing the unique aspects of laboratory requirements and operation is essential to optimizing the mechanical system. Figure 1 shows a breakdown of a laboratory building's electricity use, based on a DOE 2 model of a baseline laboratory building design for Montana State University (Bozeman, MT). In laboratory buildings, the largest and easiest target for energy use reduction is usually the ventilation energy. At about 50 percent of the buildings total electricity usage, a 15 percent reduction in the power required by the ventilation system would save more energy than eliminating all lighting energy. As the largest component of a laboratory's energy consumption, the ventilation system is the first target to reduce the energy bill. Significantly improving the standard design efficiency of a ventilation system requires a lower air pressure drop system on both the supply and exhaust system. Implementing low-pressure drop design strategies from the early stages of the design process will result in

  1. Sandia National Laboratories: Careers: Cybersecurity Research Careers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Careers Cybersecurity Research Careers Cybersecurity Research Addressing sophisticated cyber threats demands a multidisciplinary team with a unique mindset. Sandia provides challenging career opportunities for those with a passion to tackle the complexities of protecting critical systems Critical infrastructure, military systems, and other strategically important national security systems are becoming increasingly dependent on vulnerable networked computer systems. Protecting these systems

  2. Sandia National Laboratories: Research: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Science Bioscience Computing and Information Science Electromagnetics Engineering Science Geoscience Materials Science About Materials Science Research Image Gallery Video Gallery Facilities Nanodevices and Microsystems Radiation Effects and High Energy Density Science Research Materials Science Creating materials for energy applications and defense needs Aries Applying innovative characterization and diagnostic techniques Hongyou Fan Development of new materials to support national

  3. Federal Laboratory Consortium Highlights NREL Research - News...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The SkyTrough(tm), an advanced parabolic trough solar concentrator designed by SkyFuel, uses ReflecTech Mirror Film, a glass-free, slide-in mirror that is lightweight and weather ...

  4. Laboratory Directed Research and Development FY2001 Annual Report

    SciTech Connect (OSTI)

    Al-Ayat, R

    2002-06-20

    Established by Congress in 1991, the Laboratory Directed Research and Development (LDRD) Program provides the Department of Energy (DOE)/National Nuclear Security Administration (NNSA) laboratories, like Lawrence Livermore National Laboratory (LLNL or the Laboratory), with the flexibility to invest up to 6% of their budget in long-term, high-risk, and potentially high payoff research and development (R&D) activities to support the DOE/NNSA's national security missions. By funding innovative R&D, the LDRD Program at LLNL develops and extends the Laboratory's intellectual foundations and maintains its vitality as a premier research institution. As proof of the Program's success, many of the research thrusts that started many years ago under LDRD sponsorship are at the core of today's programs. The LDRD Program, which serves as a proving ground for innovative ideas, is the Laboratory's most important single resource for fostering excellent science and technology for today's needs and tomorrow's challenges. Basic and applied research activities funded by LDRD enhance the Laboratory's core strengths, driving its technical vitality to create new capabilities that enable LLNL to meet DOE/NNSA's national security missions. The Program also plays a key role in building a world-class multidisciplinary workforce by engaging the Laboratory's best researchers, recruiting its future scientists and engineers, and promoting collaborations with all sectors of the larger scientific community.

  5. HYDROGEN TECHNOLOGY RESEARCH AT THE SAVANNAH RIVER NATIONAL LABORATORY

    SciTech Connect (OSTI)

    Danko, E

    2009-03-02

    The Savannah River National Laboratory (SRNL) is a U.S. Department of Energy research and development laboratory located at the Savannah River Site (SRS) near Aiken, South Carolina. SRNL has over 50 years of experience in developing and applying hydrogen technology, both through its national defense activities as well as through its recent activities with the DOE Hydrogen Programs. The hydrogen technical staff at SRNL comprises over 90 scientists, engineers and technologists, and it is believed to be the largest such staff in the U.S. SRNL has ongoing R&D initiatives in a variety of hydrogen storage areas, including metal hydrides, complex hydrides, chemical hydrides and carbon nanotubes. SRNL has over 25 years of experience in metal hydrides and solid-state hydrogen storage research, development and demonstration. As part of its defense mission at SRS, SRNL developed, designed, demonstrated and provides ongoing technical support for the largest hydrogen processing facility in the world based on the integrated use of metal hydrides for hydrogen storage, separation, and compression. The SRNL has been active in teaming with academic and industrial partners to advance hydrogen technology. A primary focus of SRNL's R&D has been hydrogen storage using metal and complex hydrides. SRNL and its Hydrogen Technology Research Laboratory have been very successful in leveraging their defense infrastructure, capabilities and investments to help solve this country's energy problems. SRNL has participated in projects to convert public transit and utility vehicles for operation using hydrogen fuel. Two major projects include the H2Fuel Bus and an Industrial Fuel Cell Vehicle (IFCV) also known as the GATOR{trademark}. Both of these projects were funded by DOE and cost shared by industry. These are discussed further in Section 3.0, Demonstration Projects. In addition to metal hydrides technology, the SRNL Hydrogen group has done extensive R&D in other hydrogen technologies, including

  6. Teachers Conduct Research at Prestigious Department of Energy Laboratory |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab Conduct Research at Prestigious Department of Energy Laboratory Teachers Conduct Research at Prestigious Department of Energy Laboratory Twenty-nine high school and middle school physics, physical science, and engineering/technology teachers from four states are participating in the Continuous Electron Beam Accelerator Facility's Summer Institute for Teacher Enhancement (SITE). The four week Institute enables teachers to conduct practical and essential group research on a

  7. HIV vaccine research focus of Laboratory-sponsored talk

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HIV vaccine research focus of talk HIV vaccine research focus of Laboratory-sponsored talk Ruy Ribeiro talk explores the mechanisms of HIV infection, puts them in the context of vaccine development, and summarizes current efforts to date to create an effective HIV vaccine. November 13, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience,

  8. Novel Materials for Energy Research | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Novel Materials for Energy Research Novel Materials for Energy Research The Ames Laboratory is home to the Materials Preparation Center (MPC). The MPC is a DOE Basic Energy Sciences specialized research center. It is one of the premier materials laboratories in the world for the synthesis and processing of rare earth metals and compounds, metallics alloys, complex intermetallics and inorganic compounds in both single crystalline and polycrystalline form. Established in October 1981, the MPC

  9. Student Research Participation Program | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SRP Fact Sheet Featured Video Student Intern: Science Communications Contact undergrad@anl.gov Student Research Participation Program "I really enjoyed the overall experience and the skills that I have been able to gain from working here." - Summer Intern Overview A student will spend the first week of his/her Argonne experience with an Argonne staff member devising a research strategy and attending mandatory safety classes. For the next few weeks, the supervisor will provide

  10. Undergraduate Research Aide Appointment | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Additional Resources RA Fact Sheet Contact undergrad@anl.gov Undergraduate Research Aide Appointment "Equipped with his five senses, man explores the universe around him and calls the adventure Science."-Edwin Powell The Research Aide program offers temporary employment opportunities to college/university students to provide the opportunity to apply technical knowledge and skills while assisting Argonne scientific and engineering staff on key mission science projects. Overview

  11. Energy Frontier Research Centers | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The above figure depicts an ALD-Modified "Rust" Surface for enhanced electrode activity. Energy Frontier Research Centers Argonne pulls together science and engineering leaders across institutional boundaries, allowing them to take a collaborative approach to specific scientific challenges. In 2009, the U.S. Department of Energy's Office of Science/Office of Basic Energy Sciences established the Energy Frontier Research Centers (EFRCs). These EFRCs are composed of small teams of

  12. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers: Shock Thermodynamic Applied Research Facility (STAR) Shock Thermodynamic Applied Research Facility (STAR) The STAR facility, within Sandia's Solid Dynamic Physics Department, is one of a few institutions in the world with a major shock-physics program. This is the only experimental test facility in the world that can cover the full range of pressure (bars to multi-Mbar) for material property study utilizing gas/propellant launchers, ramp-loading pulsers, and ballistic applications.

  13. Designing the Microbial Research Commons

    SciTech Connect (OSTI)

    Uhlir, Paul F

    2011-10-01

    Recent decades have witnessed an ever-increasing range and volume of digital data. All elements of the pillars of science--whether observation, experiment, or theory and modeling--are being transformed by the continuous cycle of generation, dissemination, and use of factual information. This is even more so in terms of the re-using and re-purposing of digital scientific data beyond the original intent of the data collectors, often with dramatic results. We all know about the potential benefits and impacts of digital data, but we are also aware of the barriers, the challenges in maximizing the access, and use of such data. There is thus a need to think about how a data infrastructure can enhance capabilities for finding, using, and integrating information to accelerate discovery and innovation. How can we best implement an accessible, interoperable digital environment so that the data can be repeatedly used by a wide variety of users in different settings and with different applications? With this objective: to use the microbial communities and microbial data, literature, and the research materials themselves as a test case, the Board on Research Data and Information held an International Symposium on Designing the Microbial Research Commons at the National Academy of Sciences in Washington, DC on 8-9 October 2009. The symposium addressed topics such as models to lower the transaction costs and support access to and use of microbiological materials and digital resources from the perspective of publicly funded research, public-private interactions, and developing country concerns. The overall goal of the symposium was to stimulate more research and implementation of improved legal and institutional models for publicly funded research in microbiology.

  14. Researcher, Los Alamos National Laboratory - Space and Remote Sensing Group

    National Nuclear Security Administration (NNSA)

    | National Nuclear Security Administration | (NNSA) Los Alamos National Laboratory - Space and Remote Sensing Group Patrick Colestock Patrick Colestock November 2009 Los Alamos National Laboratory Fellow Six Los Alamos scientists have been designated 2009 Los Alamos National Laboratory Fellows in recognition of sustained, outstanding scientific contributions and exceptional promise for continued professional achievement. The title of Fellow is bestowed on only about 2 percent of the

  15. Laboratory Directed Research and Development Program FY 2006 Annual Report

    SciTech Connect (OSTI)

    Sjoreen, Terrence P

    2007-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the US Departmental of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2006. The associated FY 2006 ORNL LDRD Self-Assessment (ORNL/PPA-2007/2) provides financial data about the FY 2006 projects and an internal evaluation of the program's management process.

  16. Rebecca Sharitz: Research | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Current Research Dynamics of Wetland Forests Restoration of Depression Wetlands Conservation of Rare Sandhills Plant Species Dynamics of Wetland Forests Photo of a floodplain forest The species composition and structure of wetland forests is closely tied to the environmental conditions occurring at critical times in the species' life histories. Since the 1980s, we have been studying the demography of wetland forest species, including seed production, dispersal and germination, and seedling

  17. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers: Weapon and Force Protection Center Weapon and Force Protection Center Video Cameras Weapon and Force Protection Center The Center for Security Systems is a fully integrated research-to- development-to-application center that provides systems and technologies that understand, identify, and solve the nation's security problems. The Center includes extensive development and testing facilities for all aspects of physical security including the following: sensors video image processing

  18. Sandia National Laboratories: Research: LDRD: Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LDRD Publications Research Publications 2015 LDRD Annual Report 2015 LDRD annual report cover A report providing an overview of LDRD-sponsored projects in 2015. Download report (PDF, 12 MB). 2014 LDRD Annual Report 2014 LDRD annual report cover A report providing an overview of LDRD-sponsored projects in 2014. Download report (PDF, 11 MB). 2013 LDRD Annual Report 2013 LDRD annual report cover A report providing an overview of LDRD-sponsored projects in 2013. Download report (PDF, 10 MB). 2012

  19. Laboratory directed research and development program, FY 1996

    SciTech Connect (OSTI)

    1997-02-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) Laboratory Directed Research and Development Program FY 1996 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Berkeley Lab LDRD program is a critical tool for directing the Laboratory`s forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for Berkeley Lab scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances the Laboratory`s core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. Areas eligible for support include: (1) Work in forefront areas of science and technology that enrich Laboratory research and development capability; (2) Advanced study of new hypotheses, new experiments, and innovative approaches to develop new concepts or knowledge; (3) Experiments directed toward proof of principle for initial hypothesis testing or verification; and (4) Conception and preliminary technical analysis to explore possible instrumentation, experimental facilities, or new devices.

  20. Laboratory Directed Research and Development Program Assessment for FY 2014

    SciTech Connect (OSTI)

    Hatton, D.

    2014-03-01

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy in accordance with DOE Order 413.2B dated April 19, 2006. This report fulfills that requirement.

  1. Argonne National Laboratory Research Highlights 1988

    SciTech Connect (OSTI)

    Not Available

    1988-01-01

    The research and development highlights are summarized. The world's brightest source of X-rays could revolutionize materials research. Test of a prototype insertion device, a key in achieving brilliant X-ray beams, have given the first glimpse of the machine's power. Superconductivity research focuses on the new materials' structure, economics and applications. Other physical science programs advance knowledge of material structures and properties, nuclear physics, molecular structure, and the chemistry and structure of coal. New programming approaches make advanced computers more useful. Innovative approaches to fighting cancer are being developed. More experiments confirm the passive safety of Argonne's Integral Fast Reactor concept. Device simplifies nuclear-waste processing. Advanced fuel cell could provide better mileage, more power than internal combustion engine. New instruments find leaks in underground pipe, measure sodium impurities in molten liquids, detect flaws in ceramics. New antibody findings may explain ability to fight many diseases. Cadmium in cigarettes linked to bone loss in women. Programs fight deforestation in Nepal. New technology could reduce acid rain, mitigate greenhouse effect, enhance oil recovery. Innovative approaches transfer Argonne-developed technology to private industry. Each year Argonne educational programs reach some 1200 students.

  2. Sandia National Laboratories: Research: Facilities: Annular Core Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reactor Facility Annular Core Research Reactor facility Nuclear science photo At the Annular Core Research Reactor (ACRR) facility, Sandia researchers can subject various test objects to a mixed photon and neutron irradiation environment featuring either a very rapid pulse rate or a long-term, steady-state rate. Research and other activities The radiation produced at the ACRR is used for the following research activities: Neutron-scattering experiments Nondestructive testing, including

  3. SRNL Laboratory Directed Research and Development Poster Session

    Broader source: Energy.gov [DOE]

    On October 15, 2014, Savannah River National Lab researchers and scientists met for the Laboratory Directed Research and Development, or LDRD, Program Year End Review and Poster Session. The DOE program provides the Lab’s only discretionary funding to support high-risk, potentially high-value research

  4. Optical Design Capabilities at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Lawson, J K

    2002-12-30

    Optical design capabilities continue to play the same strong role at Lawrence Livermore National Laboratory (LLNL) that they have played in the past. From defense applications to the solid-state laser programs to the Atomic Vapor Laser Isotope Separation (AVLIS), members of the optical design group played critical roles in producing effective system designs and are actively continuing this tradition. This talk will explain the role optical design plays at LLNL, outline current capabilities and summarize a few activities in which the optical design team has been recently participating.

  5. Laboratory directed research and development 2006 annual report.

    SciTech Connect (OSTI)

    Westrich, Henry Roger

    2007-03-01

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 2006. In addition to a programmatic and financial overview, the report includes progress reports from 430 individual R&D projects in 17 categories.

  6. PPPL launches expanded new laboratory for research on the use...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    new laboratory for research on the use of plasma to synthesize nanoparticles By John Greenwald July 12, 2016 Tweet Widget Google Plus One Share on Facebook Inside the new ...

  7. Laboratory directed research and development annual report 2003.

    SciTech Connect (OSTI)

    Not Available

    2004-03-01

    Science historian James Burke is well known for his stories about how technological innovations are intertwined and embedded in the culture of the time, for example, how the steam engine led to safety matches, imitation diamonds, and the landing on the moon.1 A lesson commonly drawn from his stories is that the path of science and technology (S&T) is nonlinear and unpredictable. Viewed another way, the lesson is that the solution to one problem can lead to solutions to other problems that are not obviously linked in advance, i.e., there is a ripple effect. The motto for Sandia's approach to research and development (R&D) is 'Science with the mission in mind.' In our view, our missions contain the problems that inspire our R&D, and the resulting solutions almost always have multiple benefits. As discussed below, Sandia's Laboratory Directed Research and Development (LDRD) Program is structured to bring problems relevant to our missions to the attention of researchers. LDRD projects are then selected on the basis of their programmatic merit as well as their technical merit. Considerable effort is made to communicate between investment areas to create the ripple effect. In recent years, attention to the ripple effect and to the performance of the LDRD Program, in general, has increased. Inside Sandia, as it is the sole source of discretionary research funding, LDRD funding is recognized as being the most precious of research dollars. Hence, there is great interest in maximizing its impact, especially through the ripple effect. Outside Sandia, there is increased scrutiny of the program's performance to be sure that it is not a 'sandbox' in which researchers play without relevance to national security needs. Let us therefore address the performance of the LDRD Program in fiscal year 2003 and then show how it is designed to maximize impact.

  8. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    performance computer system installed at Los Alamos National Laboratory June 17, 2014 Unclassified 'Wolf' system to advance many fields of science LOS ALAMOS, N.M., June 17, 2014-Los Alamos National Laboratory recently installed a new high-performance computer system, called Wolf, which will be used for unclassified research. "This machine modernizes our mid-tier resources available to Laboratory scientists," said Bob Tomlinson, of the Laboratory's High Performance Computing group.

  9. Research Call to DOE/Federal Laboratories: Technical Support for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Interconnection-Level Electric Infrastructure Planning RC-BM-2010; Due May 3, 2010. | Department of Energy Research Call to DOE/Federal Laboratories: Technical Support for Interconnection-Level Electric Infrastructure Planning RC-BM-2010; Due May 3, 2010. Research Call to DOE/Federal Laboratories: Technical Support for Interconnection-Level Electric Infrastructure Planning RC-BM-2010; Due May 3, 2010. The entities that DOE has selected under the American Recovery and Reinvestment Act to

  10. EM's Laboratory Partners with University for Excellence in Research |

    Office of Environmental Management (EM)

    Department of Energy Partners with University for Excellence in Research EM's Laboratory Partners with University for Excellence in Research January 27, 2016 - 12:10pm Addthis Pictured left to right, Fluor Government Group President Bruce Stanski, SRNL Deputy Director Sharon Marra, Clemson President Dr. James P. Clements, Clemson Provost Dr. Bob Jones, and SRNL Laboratory Director Dr. Terry Michalske. Pictured left to right, Fluor Government Group President Bruce Stanski, SRNL Deputy

  11. Researcher, Los Alamos National Laboratory | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Los Alamos National Laboratory David S. Moore David Moore 2009 LANL Fellows Prize for Outstanding Leadership in Science or Engineering David S. Moore has received the 2009 LANL Fellows Prize for Outstanding Leadership in Science or Engineering, which commends individuals who stimulate the research interests of talented younger Laboratory staff members and who encourage junior researchers to make the personal sacrifices necessary to become effective leaders. The

  12. Laboratory researcher Joel Rowland to receive DOE Early Career Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rowland to receive DOE Early Career Award Laboratory researcher Joel Rowland to receive DOE Early Career Award Rowland's research was recognized by DOE for incorporating hydrological controls on carbon cycling in flood plain ecosystems into Earth System Models. May 8, 2014 Joel Rowland Joel Rowland Contact Steve Sandoval Communications Office (505) 665-9206 Email "Joel contributed to the vitality of our Laboratory as a postdoc and continues to provide an innovative and intellectual spark as

  13. Algal Biofuels Research Laboratory (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Algal Biofuels Research Laboratory Enabling fundamental understanding of algal biology and composition of algal biomass to help develop superior bioenergy strains NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. NREL's algal biofuels research capabilities include: * Growth platforms from 0.2 mL to 270 L scale in multi- well plates, shake flasks, photobioreactors, and open ponds

  14. Design of the Laboratory-Scale Plutonium Oxide Processing Unit in the Radiochemical Processing Laboratory

    SciTech Connect (OSTI)

    Lumetta, Gregg J.; Meier, David E.; Tingey, Joel M.; Casella, Amanda J.; Delegard, Calvin H.; Edwards, Matthew K.; Orton, Robert D.; Rapko, Brian M.; Smart, John E.

    2015-05-01

    This report describes a design for a laboratory-scale capability to produce plutonium oxide (PuO2) for use in identifying and validating nuclear forensics signatures associated with plutonium production, as well as for use as exercise and reference materials. This capability will be located in the Radiochemical Processing Laboratory at the Pacific Northwest National Laboratory. The key unit operations are described, including PuO2 dissolution, purification of the Pu by ion exchange, precipitation, and re-conversion to PuO2 by calcination.

  15. 1995 Laboratory-Directed Research and Development Annual report

    SciTech Connect (OSTI)

    Cauffman, D.P.; Shoaf, D.L.; Hill, D.A.; Denison, A.B.

    1995-12-31

    The Laboratory-Directed Research and Development Program (LDRD) is a key component of the discretionary research conducted by Lockheed Idaho Technologies Company (Lockheed Idaho) at the Idaho National Engineering Laboratory (INEL). The threefold purpose and goal of the LDRD program is to maintain the scientific and technical vitality of the INEL, respond to and support new technical opportunities, and enhance the agility and flexibility of the national laboratory and Lockheed Idaho to address the current and future missions of the Department of Energy.

  16. Laboratory Directed Research and Development Program Assessment for FY 2008

    SciTech Connect (OSTI)

    Looney, J P; Fox, K J

    2008-03-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary Laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal Year 2008 spending was $531.6 million. There are approximately 2,800 employees, and another 4,300 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development,' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. To be a premier scientific Laboratory, BNL must continuously foster groundbreaking scientific research and renew its research agenda. The competition for LDRD funds stimulates Laboratory scientists to think in new and creative ways, which becomes a major factor in achieving and maintaining research excellence and a means to address National needs within the overall mission of the DOE and BNL. By fostering high-risk, exploratory research, the LDRD program helps BNL to respond new scientific opportunities within

  17. Laboratory directed research and development annual report: Fiscal year 1992

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The Department of Energy Order DOE 5000.4A establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is ``research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this order. Consistent with the Mission Statement and Strategic Plan provided in PNL`s Institutional Plan, the LDRD investments are focused on developing new and innovative approaches to research related to our ``core competencies.`` Currently, PNL`s core competencies have been identified as: integrated environmental research; process science and engineering; energy distribution and utilization. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these corecompetencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. The projects described in this report represent PNL`s investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. The report provides an overview of PNL`s LDRD program and the management process used for the program and project summaries for each LDRD project.

  18. Laboratory directed research and development annual report: Fiscal year 1992

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The Department of Energy Order DOE 5000.4A establishes DOE's policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this order. Consistent with the Mission Statement and Strategic Plan provided in PNL's Institutional Plan, the LDRD investments are focused on developing new and innovative approaches to research related to our core competencies.'' Currently, PNL's core competencies have been identified as: integrated environmental research; process science and engineering; energy distribution and utilization. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these corecompetencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. The projects described in this report represent PNL's investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. The report provides an overview of PNL's LDRD program and the management process used for the program and project summaries for each LDRD project.

  19. Sandia National Laboratories: Advanced Simulation Computing: Research &

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Collaboration Research & Collaboration Partnerships among the national laboratories, industry, and academia leverage a broad spectrum of talent and multiply the effectiveness of our research efforts. These collaborations help solve the challenges of developing computing platforms and simulation tools across a number of disciplines. Computer Science Research Institute The Computer Science Research Institute brings university faculty and students to Sandia for focused collaborative

  20. Opportunities for Field Research | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Opportunities for field research The SRS offers: * Landscape scale: 803 km2 * Diversity of ecosystems * Natural and impacted areas * Well-characterized habitats * Long history of research * Protected access * 30 Research Set-Aside Areas Since 1951 the Savannah River Site (SRS) has served as an invaluable outdoor laboratory for SREL scientists and colleagues. The geographic diversity of the SRS offers visiting researchers many opportunities to study human influences on ecosystems, or natural

  1. Laboratory Directed Research and Development annual report, Fiscal year 1993

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    The Department of Energy Order DOE 5000.4A establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is ``research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this Order. LDRD includes activities previously defined as ER&D, as well as other discretionary research and development activities not provided for in a DOE program.`` Consistent with the Mission Statement and Strategic Plan provided in PNL`s Institutional Plan, the LDRD investments are focused on developing new and innovative approaches in research related to our ``core competencies.`` Currently, PNL`s core competencies have been identified as integrated environmental research; process technology; energy systems research. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these core competencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. A significant proportion of PNL`s LDRD funds are also allocated to projects within the various research centers that are proposed by individual researchers or small research teams. The projects are described in Section 2.0. The projects described in this report represent PNL`s investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. In accordance with DOE guidelines, the report provides an overview of PNL`s LDRD program and the management process used for the program and project summaries for each LDRD project.

  2. Laboratory Directed Research and Development Program Activities for FY 2007.

    SciTech Connect (OSTI)

    Newman,L.

    2007-12-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal year 2007 budget was $515 million. There are about 2,600 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development', April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. In accordance this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2007. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. We explicitly indicate that research conducted under the LDRD Program should be highly innovative, and an element of high risk as to success is acceptable. In the solicitation for new proposals for Fiscal Year 2007 we especially requested innovative new projects in support of RHIC and the Light Source and any of

  3. A guide to research facilities at the National Renewable Energy Laboratory

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    The guide is divided into two parts. Topping the pages are descriptions of laboratories at NREL that provide sophisticated experimental equipment, testing capabilities, or processes that may not be available in the private sector. Scientific categories are designated at the top of the pages in blue; individual laboratory descriptions follow alphabetically, along with the names and phone numbers of the laboratory managers. In blue boxes at the bottom of the pages are articles about NREL, our technology transfer program, and our facilities, as well as guidelines for students, researchers, and industrial collaborators who wish to use them. A list of key contacts and a map of the campus follows the laboratory descriptions.

  4. Laboratory technology research - abstracts of FY 1997 projects

    SciTech Connect (OSTI)

    1997-11-01

    The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of this country: the world-class basic research capability of the DOE Energy Research (ER) multi-program national laboratories and the unparalleled entrepreneurial spirit of American industry. A distinguishing feature of the ER multi-program national laboratories is their ability to integrate broad areas of science and engineering in support of national research and development goals. The LTR program leverages this strength for the Nation`s benefit by fostering partnerships with US industry. The partners jointly bring technology research to a point where industry or the Department`s technology development programs can pursue final development and commercialization. Projects supported by the LTR program are conducted by the five ER multi-program laboratories. These projects explore the applications of basic research advances relevant to DOE`s mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials; intelligent processing/manufacturing research; and sustainable environments.

  5. Sandia National Laboratories: Research: Research Foundations: Computing and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Information Science Research Foundations Bioscience Computing and Information Science Engineering Science Geoscience Materials Science Nanodevices and Microsystems Radiation Effects and High Energy Density Science Research Computing and Information Science Red Storm photo Our approach Vertically integrated, scalable supercomputing Goal Increase capability while reducing the space and power requirements of future computing systems by changing the nature of computing devices, computer

  6. Laboratory technology research: Abstracts of FY 1998 projects

    SciTech Connect (OSTI)

    1998-11-01

    The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of the country: the world-class basic research capability of the DOE Office of Science (SC) national laboratories and the unparalleled entrepreneurial spirit of American industry. Projects supported by the LTR program in FY 1998 explore the applications of basic research advances relevant to DOE`s mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials, intelligent processing and manufacturing research, and environmental and biomedical research. Abstracts for 85 projects are contained in this report.

  7. Laboratory Directed Research and Development Program Assessment for FY 2007

    SciTech Connect (OSTI)

    Newman,L.; Fox, K.J.

    2007-12-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal Year 2007 spending was $515 million. There are approximately 2,600 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development', April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and maintaining

  8. An Account of Oak Ridge National Laboratory's Thirteen Research Reactors

    SciTech Connect (OSTI)

    Rosenthal, Murray Wilford

    2009-08-01

    The Oak Ridge National Laboratory has built and operated 13 nuclear reactors in its 66-year history. The first was the graphite reactor, the world's first operational nuclear reactor, which served as a plutonium production pilot plant during World War II. It was followed by two aqueous-homogeneous reactors and two red-hot molten-salt reactors that were parts of power-reactor development programs and by eight others designed for research and radioisotope production. One of the eight was an all-metal fast burst reactor used for health physics studies. All of the others were light-water cooled and moderated, including the famous swimming-pool reactor that was copied dozens of times around the world. Two of the reactors were hoisted 200 feet into the air to study the shielding needs of proposed nuclear-powered aircraft. The final reactor, and the only one still operating today, is the High Flux Isotope Reactor (HFIR) that was built particularly for the production of californium and other heavy elements. With the world's highest flux and recent upgrades that include the addition of a cold neutron source, the 44-year-old HFIR continues to be a valuable tool for research and isotope production, attracting some 500 scientific visitors and guests to Oak Ridge each year. This report describes all of the reactors and their histories.

  9. Laboratory directed research and development. FY 1995 progress report

    SciTech Connect (OSTI)

    Vigil, J.; Prono, J.

    1996-03-01

    This document presents an overview of Laboratory Directed Research and Development Programs at Los Alamos. The nine technical disciplines in which research is described include materials, engineering and base technologies, plasma, fluids, and particle beams, chemistry, mathematics and computational science, atmic and molecular physics, geoscience, space science, and astrophysics, nuclear and particle physics, and biosciences. Brief descriptions are provided in the above programs.

  10. A Virtual Visit to Bioenergy Research at the National Laboratories

    Broader source: Energy.gov [DOE]

    For National Bioenergy Day on October 22, bioenergy facilities across the country are holding open houses to increase public awareness of bioenergy and its role in the clean energy landscape. By the same token, the Bioenergy Technologies Office (BETO) is offering this virtual open house of its national laboratories—the facilities at the core of BETO’s research and development. If you want to know how Energy Department bioenergy funding is making an impact, be sure to take a look at our national labs—47% of BETO funding this past year went to the national laboratories. Of that funding, about half went to the National Renewable Energy Laboratory. Pacific Northwest National Laboratory, Idaho National Laboratory, and Oak Ridge National Laboratory also received a large share.