Sample records for laboratory qualifiers chromatography

  1. Standard guide for evaluating and qualifying oilfield and refinery corrosion inhibitors in the laboratory

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2006-01-01T23:59:59.000Z

    1.1 This guide covers some generally accepted laboratory methodologies that are used for evaluating corrosion inhibitors for oilfield and refinery applications in well defined flow conditions. 1.2 This guide does not cover detailed calculations and methods, but rather covers a range of approaches which have found application in inhibitor evaluation. 1.3 Only those methodologies that have found wide acceptance in inhibitor evaluation are considered in this guide. 1.4 This guide is intended to assist in the selection of methodologies that can be used for evaluating corrosion inhibitors. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory requirements prior to use.

  2. Laboratory robotics -- An automated tool for preparing ion chromatography calibration standards

    SciTech Connect (OSTI)

    Chadwick, J.L.

    1995-04-01T23:59:59.000Z

    This paper describes the use of a laboratory robot as an automated tool for preparing multi-level calibration standards for On-Line Ion Chromatography (IC) Systems. The robot is designed for preparation of up to six levels of standards, with each level containing up to eleven ionic species in aqueous solution. The robot is required to add the standards` constituents as both a liquid and solid additions and to keep a record of exactly what goes into making up every standard. Utilizing a laboratory robot to prepare calibration standards provides significant benefits to the testing environment. These benefits include: accurate and precise calibration standards in individually capped containers with preparation traceability; automated and unattended multi-specie preparation for both anion and cation analytical channels; the ability to free up a test operator from a repetitive routine and re-apply those efforts to test operations; The robot uses a single channel IC to analyze each prepared standard for specie content and concentration. Those results are later used as a measure of quality control. System requirements and configurations, robotic operations, manpower requirements, analytical verification, accuracy and precision of prepared solutions, and robotic downtime are discussed in detail.

  3. Qualified Energy Conservation Bond (QECB) Update: New Guidance...

    Broader source: Energy.gov (indexed) [DOE]

    Lawrence Berkeley National Laboratory Qualified Energy Conservation Bond (QECB) Update: New Guidance from the U.S. Department of Treasury and the Internal Revenue Service...

  4. Laboratory Glass Columns "Next Generation" technology for high-performance preparative chromatography

    E-Print Network [OSTI]

    Lebendiker, Mario

    SNAP ® Laboratory Glass Columns "Next Generation" technology for high-performance preparative lesiones graves o la muerte! WARNING Glass SNAP® columns are intended for use in a liquid environment disassembly or cleaning for scratches, chips or defects, particularly on the glass surfaces. DO NOT use column

  5. Tax Deduction Qualified Software

    Broader source: Energy.gov [DOE]

    On this page you'll find information about the EnergyGauge Summit version 3.20 (incorporating DOE-2.1E (v120)) qualified computer software (buildings.energy.gov/qualified_software.html), which calculates energy and power cost savings that meet federal tax incentive requirements for commercial buildings.

  6. Tax Deduction Qualified Software

    Broader source: Energy.gov [DOE]

    On this page you'll find information about the EnergyGauge Summit version 3.22 (incorporating DOE-2.1E (v120)) qualified computer software (buildings.energy.gov/qualified_software.html), which calculates energy and power cost savings that meet federal tax incentive requirements for commercial buildings.

  7. Tax Deduction Qualified Software

    Broader source: Energy.gov [DOE]

    On this page you'll find information about the EnergyGauge Summit version 3.21 (incorporating DOE-2.1E (v120)) qualified computer software (buildings.energy.gov/qualified_software.html), which calculates energy and power cost savings that meet federal tax incentive requirements for commercial buildings.

  8. Qualified Energy Conservation Bonds (Ohio)

    Broader source: Energy.gov [DOE]

    The Ohio Air Quality Development Authority (OAQDA) administers the Qualified Energy Conservation Bonds (QECB) program in Ohio. QECBs have been used by local governments and public universities to...

  9. TQP Qualifying Official Training Approaches - Livermore Site...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TQP Qualifying Official Training Approaches - Livermore Site Office TQP Qualifying Official Training Approaches - Livermore Site Office A QO is an individual who has the technical...

  10. Qualified Energy Conservation Bonds (QECBs)

    Broader source: Energy.gov [DOE]

    The ''Energy Improvement and Extension Act of 2008'', enacted in October 2008, authorized the issuance of Qualified Energy Conservation Bonds (QECBs) that may be used by state, local and tribal...

  11. Algebra Qualifying Exam August 2010

    E-Print Network [OSTI]

    Passman, Donald S.

    Algebra Qualifying Exam August 2010 Do all 5 problems. 1. Let G be a finite group and let N be a minimal normal subgroup of G. Suppose N = S1 × S2 × · · · × Sr, where each Si is a simple subgroup and where S1 is not abelian. (a) Show that Z(N) = 1, where Z(N) is the center of N, and deduce that each Si

  12. Qualified Energy Conservation Bonds | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    description of qualified energy conservation bonds, including process and mechanics, case studies, utilization trends, barriers, and regulatory and legal issues. Author:...

  13. QUALIFYING EXAMINATION JANUARY 2004 MATH 571 - Prof ...

    E-Print Network [OSTI]

    1910-31-22T23:59:59.000Z

    QUALIFYING EXAMINATION. JANUARY 2004. MATH 571 - Prof. Smith. 1. A space is second countable if it has a countable basis. Let X = R n be the product of ...

  14. QUALIFYING EXAMINATION JANUARY 2001 MATH 571 - Prof ...

    E-Print Network [OSTI]

    1910-10-22T23:59:59.000Z

    QUALIFYING EXAMINATION. JANUARY 2001. MATH 571 - Prof. Smith. I. a) Give the definition of a normal topology. b) Let M be a metric space. Show that the ...

  15. QUALIFYING EXAMINATION JANUARY 2002 MATH 571 - Prof ...

    E-Print Network [OSTI]

    1910-20-40T23:59:59.000Z

    QUALIFYING EXAMINATION. JANUARY 2002. MATH 571 - Prof. Smith. I. Let f : E ? B be a covering of a compact Hausdorff space B. Prove that E is compact if ...

  16. Federal Register / Vol. 59, No. 2 / Tuesday, January 4, 1994 / Notices and operated federal laboratories,

    E-Print Network [OSTI]

    laboratories, including NIST, to enter into cooperative research and development, agreements (CRADAs) with qualified parties. Under the law, a CRADA may provide for contributions from the federal laboratory

  17. Qualified Energy Conservation Bond Webinars | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    listing of past qualified energy conservation bond webinars and associated files. Author: U.S. Department of Energy Qualified Energy Conservation Webinars Website More Documents &...

  18. Breakthrough in Bioenergy: American Process Sells First RIN-qualified...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Breakthrough in Bioenergy: American Process Sells First RIN-qualified Cellulosic Ethanol Shipment Breakthrough in Bioenergy: American Process Sells First RIN-qualified Cellulosic...

  19. Negotiating Rates and Contracts for Qualifying Facilities

    E-Print Network [OSTI]

    Collier, S. E.

    The implementation of a cogeneration project or other qualifying facility (QF) requires the development of contractual relationships with one or more electric utilities. The relationships may involve the application of existing rates and contracts...

  20. Qualified Target Industry Tax Refund (Florida)

    Broader source: Energy.gov [DOE]

    The Qualified Target Industry Tax Refund incentive is available for companies that create high wage jobs in targeted high value-added industries. The incentive refunds up to $3,000 per new full...

  1. Qualifying Advanced Energy Manufacturing Investment Tax Credit

    Broader source: Energy.gov [DOE]

    2013 Update: Phase II of the Qualifying Advanced Energy Project is open. Required concept papers are due to the U.S. Department of Energy (DOE) by April 9, 2013. The U.S. DOE will review concept...

  2. Qualified Energy Conservation Bond State-by-State Summary Tables

    Broader source: Energy.gov [DOE]

    Provides a list of qualified energy conservation bond state summary tables. Author: Energy Programs Consortium

  3. Graduate Study in Mathematics: Qualifying Exams & Exam Archive

    E-Print Network [OSTI]

    Academic Programs Undergraduate Graduate Applied Math Actuarial. > Home > Academic Programs > Graduate. Qualifying Exams. The Department of ...

  4. MA Ph.D. Qualifying Exam Directions

    E-Print Network [OSTI]

    Liblit, Ben

    MA Ph.D. Qualifying Exam Fall 2010 Directions: Use careful reasoning to develop the answers to each numerical answers. You may use the LZGS text for reference for this exam. 1. Explain in detail why the mean with the system. Each query type i also generates a small amount of further processing time, with average Si

  5. DOE Qualified List of ESCO Application Cover Letter

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    April 1, 2015 Thank you for your firm's interest in the Department of Energy's (DOE's) Qualified List of Energy Service Companies. Firms on the qualified list may perform energy...

  6. Chromatography resin support

    DOE Patents [OSTI]

    Dobos, James G. (North Augusta, SC)

    2002-01-01T23:59:59.000Z

    An apparatus and method of using an improved chromatography resin support is disclosed. The chromatography support platform is provided by a stainless steel hollow cylinder adapted for being inserted into a chromatography column. An exterior wall of the stainless steel cylinder defines a groove for carrying therein an "O"-ring. The upper surface of the stainless steel column is covered by a fine stainless steel mesh welded to the edges of the stainless steel cylinder. When placed upon a receiving ledge defined within a chromatography column, the "O"-ring provides a fluid tight seal with the inner edge wall of the chromatography cylinder. The stainless steel mesh supports the chromatography matrix and provides a back flushable support which is economical and simple to construct.

  7. Tax Deduction Qualified Software Tas version 9.3.1

    Broader source: Energy.gov [DOE]

    Information about the Tas version 9.3.1 qualified computer software and federal tax incentive requirements for commercial buildings.

  8. July 18, 2012 Using Qualified Energy Conservation Bonds for Public

    E-Print Network [OSTI]

    July 18, 2012 Using Qualified Energy Conservation Bonds for Public Building Upgrades: Reducing Energy Bills in the City of Philadelphia Qualified Energy Conservation Bonds (QECBs) are federally Energy Conservation Bond (QECB) is a bond that enables qualified state, tribal and local government

  9. Air Force Research Laboratory Placement: Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson

    E-Print Network [OSTI]

    Alpay, S. Pamir

    Air Force Research Laboratory Placement: Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Dayton OH Discipline(s): Materials science/engineering, chemical. Description: We are looking for a qualified candidate to join our team at the Air Force Research Laboratory

  10. Qualified Energy Conservation Bonds | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptember 2010In addition to analysis3 News7:ThomasA Qualified

  11. Qualified Energy Conservation Bond (QECB) Update: New

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18, 2012 Qualified Energy Conservation Bond (QECB) Update: New

  12. Making it Easier to Complete Clean Energy Projects with Qualified...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    are dedicated to trying to make these Qualified Energy Conservation Bonds available to finance clean energy and energy efficiency projects at local levels across the country, but...

  13. Using Qualified Energy Conservation Bonds for Public Building...

    Broader source: Energy.gov (indexed) [DOE]

    Summarizes how the City of Philadelphia leveraged 6.25 million in qualified energy conservation bonds to upgrade the energy efficiency of city buildings. Author: Lawrence Berkeley...

  14. Qualified Energy Conservation Bonds (QECBs) APPENDIX A: QECB...

    Broader source: Energy.gov (indexed) [DOE]

    Qualified energy conservation bonds appendices. Author: U. S. Department of Energy Appendix A: QECB Counsel, Underwriters, Banks and Trustees More Documents & Publications...

  15. Qualified Energy Conservation Bonds (QECBs) & New Clean Renewable...

    Broader source: Energy.gov (indexed) [DOE]

    presentation overview of qualified energy conservation bond and new clean renewable energy bonds, including characteristics, mechanics, allocated volume, and other information....

  16. Qualified Energy Conservation Bonds (QECBs?) & New Clean Renewable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Qualified Energy Conservation Bonds ("QECBs") & New Clean Renewable Energy Bonds ("New CREBs") Slide 1 DISCLAIMER: The information in this presentation is for informational...

  17. July 18, 2012 Qualified Energy Conservation Bond (QECB) Update: New

    E-Print Network [OSTI]

    July 18, 2012 Qualified Energy Conservation Bond (QECB) Update: New Guidance from the U.S. Department of Treasury and the Internal Revenue Service Qualified Energy Conservation Bonds (QECBs a range of energy conservation projects at very attractive borrowing rates over long contract terms

  18. Automated Immobilized Metal Affinity Chromatography System for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Immobilized Metal Affinity Chromatography System for Enrichment of Escherichia coli Phosphoproteome. Automated Immobilized Metal Affinity Chromatography System for Enrichment of...

  19. Guidance on the Elements Necessary to Qualify as an Energy Conservatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Elements Necessary to Qualify as an Energy Conservation Measure Under an ESPC Guidance on the Elements Necessary to Qualify as an Energy Conservation Measure Under an ESPC...

  20. QUALIFYING EXAMINATION AUGUST 2001 MATH 571 - PROF. J ...

    E-Print Network [OSTI]

    1910-10-82T23:59:59.000Z

    QUALIFYING EXAMINATION. AUGUST 2001. MATH 571 - PROF. J. SMITH. 1.(10 pts) Let X be a compact space and let. A1 ? A2 ?···? Ak ··· be a descending ...

  1. The minimum information for a qualified BioBrick

    E-Print Network [OSTI]

    Zhou, Mubing

    2012-10-11T23:59:59.000Z

    Since the information of many existing BioBricks is incomplete, thus the usage of the BioBricks will be affected. It is necessary to standardize the minimum information required for a qualified BioBrick. Furthermore this ...

  2. DOE Qualified List of ESCO Application Cover Letter

    Broader source: Energy.gov [DOE]

    Document displays the U.S. Department of Energy's (DOE) application cover letter, which thanks a firm for its interest in the DOE Qualified List of Energy Service Companies (ESCOs) and describes the application documents and application review process. Firms on the DOE Qualified List may perform energy savings performance contracting (ESPC) in accordance with the Energy Policy Act of 1992 and 10 CFR 436. Also see the Standard Form 129 and Supplemental Questionnaire.

  3. Dielectrokinetic chromatography devices

    DOE Patents [OSTI]

    Chirica, Gabriela S; Fiechtner, Gregory J; Singh, Anup K

    2014-12-16T23:59:59.000Z

    Disclosed herein are methods and devices for dielectrokinetic chromatography. As disclosed, the devices comprise microchannels having at least one perturber which produces a non-uniformity in a field spanning the width of the microchannel. The interaction of the field non-uniformity with a perturber produces a secondary flow which competes with a primary flow. By decreasing the size of the perturber the secondary flow becomes significant for particles/analytes in the nanometer-size range. Depending on the nature of a particle/analyte present in the fluid and its interaction with the primary flow and the secondary flow, the analyte may be retained or redirected. The composition of the primary flow can be varied to affect the magnitude of primary and/or secondary flows on the particles/analytes and thereby separate and concentrate it from other particles/analytes.

  4. CHEMISTRY 324W ORGANIC LABORATORY

    E-Print Network [OSTI]

    Wagner, Diane

    including crystallization, distillation, extraction, column chromatography. 4. You should be able to obtain description: A laboratory designed to illustrate modern techniques of isolation, purification, analysis analyses (primarily gc, column, HPLC, and tlc) 3. Standard work-up procedures 4. Purification techniques

  5. Qualifying geospatial workflow models for adaptive controlled validity and accuracy

    E-Print Network [OSTI]

    Stock, Kristin

    Qualifying geospatial workflow models for adaptive controlled validity and accuracy Didier Leibovici, Gobe Hobona, Kristin Stock and Mike Jackson Centre for Geospatial Sciences, University.leibovici@nottingham.ac.uk Abstract--Sharing geospatial data and geoprocessing models within a system like GEOSS (Global Earth

  6. Advanced Analysis Qualifying Examination Department of Mathematics and Statistics

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    be a continuous increasing invertible function. Let µF and µF be the Lebesgue-Stieljes measures associated to FNAME: Advanced Analysis Qualifying Examination Department of Mathematics and Statistics University function or characteristic function of A. 2. If a measure is not specified, use Lebesgue measure on R

  7. FREQUENTLY ASKED QUESTIONS ABOUT THE TTP PHD QUALIFYING EXAMINATION (QE)

    E-Print Network [OSTI]

    California at Davis, University of

    FREQUENTLY ASKED QUESTIONS ABOUT THE TTP PHD QUALIFYING EXAMINATION (QE) Pat Mokhtarian, TTP Chair this document helpful. What is the QE and what is its purpose? The QE is the last big hurdle to finishing the PhD dissertation research, and by implication to eventually receive a PhD. We interpret "preparation" to mean two

  8. Using Qualified Energy Conservation Bonds (QECBs) to Fund a Residential Energy Efficiency Loan Program: Case Study on Saint Louis County, MO

    E-Print Network [OSTI]

    Zimring, Mark

    2012-01-01T23:59:59.000Z

    2011 Using Qualified Energy Conservation Bonds (QECBs) toCounty, MO Qualified Energy Conservation Bonds (QECBs) arerange of qualified energy conservation projects. QECBs offer

  9. Tax Deduction Qualified Software DesignBuilder version 4.2.0.054

    Broader source: Energy.gov [DOE]

    Information about the DesignBuilder version 4.2.0.054 qualified computer software (www.buildings.energy.gov/qualified_software.html), which calculates energy and power cost savings that meet federal tax incentive requirements for commercial buildings.

  10. Request for Proposals for Final Energy Service Company Selection from Pre-Qualified Pool Documents

    Broader source: Energy.gov [DOE]

    Information and documents about the Request for Proposals to select an Energy Service Company from a pre-qualified pool.

  11. Qualified Specialists in Industrial Assessment Tools | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18, 2012 Qualified Energy Conservation Bond (QECB)

  12. Extraction chromatography: Progress and opportunities

    SciTech Connect (OSTI)

    Dietz, M.L.; Horwitz, E.P.; Bond, A.H. [Argonne National Lab., IL (United States). Chemistry Div.

    1997-10-01T23:59:59.000Z

    Extraction chromatography provides a simple and effective method for the analytical and preparative-scale separation of a variety of metal ions. Recent advances in extractant design, particularly the development of extractants capable of metal ion recognition or of strong complex formation in highly acidic media, have significantly improved the utility of the technique. Advances in support design, most notably the introduction of functionalized supports to enhance metal ion retention, promise to yield further improvements. Column instability remains a significant obstacle, however, to the process-scale application of extraction chromatography. 79 refs.

  13. The PhD Qualifying Exam All PhD seeking students are required to attempt the PhD Written Qualifying Exam after their

    E-Print Network [OSTI]

    New Mexico, University of

    The PhD Qualifying Exam All PhD seeking students are required to attempt the PhD Written Qualifying before the beginning of the fall semester. The "Common Exam" that all PhD students must take consists of in August of each year. The "Concentration Exam" tests the PhD student in the specific 2 courses of his

  14. DOE Qualified List of Energy Service Companies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractions and Policy (2009)|PublishesDOE Qualified List of

  15. DOE Qualifying Official Training Approaches | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractions and Policy (2009)|PublishesDOE Qualified List

  16. Qualified Software for Calculating Commercial Building Tax Deductions |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18, 2012 Qualified Energy Conservation Bond (QECB) Update:Department

  17. Statistically qualified neuro-analytic failure detection method and system

    DOE Patents [OSTI]

    Vilim, Richard B. (Aurora, IL); Garcia, Humberto E. (Idaho Falls, ID); Chen, Frederick W. (Naperville, IL)

    2002-03-02T23:59:59.000Z

    An apparatus and method for monitoring a process involve development and application of a statistically qualified neuro-analytic (SQNA) model to accurately and reliably identify process change. The development of the SQNA model is accomplished in two stages: deterministic model adaption and stochastic model modification of the deterministic model adaptation. Deterministic model adaption involves formulating an analytic model of the process representing known process characteristics, augmenting the analytic model with a neural network that captures unknown process characteristics, and training the resulting neuro-analytic model by adjusting the neural network weights according to a unique scaled equation error minimization technique. Stochastic model modification involves qualifying any remaining uncertainty in the trained neuro-analytic model by formulating a likelihood function, given an error propagation equation, for computing the probability that the neuro-analytic model generates measured process output. Preferably, the developed SQNA model is validated using known sequential probability ratio tests and applied to the process as an on-line monitoring system. Illustrative of the method and apparatus, the method is applied to a peristaltic pump system.

  18. Tax Deduction Qualified Software Tas version 9.2.1.5

    Broader source: Energy.gov [DOE]

    information about the Tas version 9.2.1.5 qualified computer software and federal tax incentive requirements for commercial buildings

  19. Tax Deduction Qualified Software Tas version 9.2.1.7

    Broader source: Energy.gov [DOE]

    Information about the Tas version 9.2.1.7 qualified computer software and federal tax incentive requirements for commercial buildings.

  20. Tax Deduction Qualified Software Tas version 9.2.1.4

    Broader source: Energy.gov [DOE]

    information about the Tas version 9.2.1.4 qualified computer software and federal tax incentive requirements for commercial buildings

  1. Department of Energys Qualified List of Energy Service Companies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DEPARTMENT OF ENERGY'S QUALIFIED LIST OF ENERGY SERVICE COMPANIES June 2015 1 Abengoa Solar, Inc. Amparo Pazos Division Director 1250 Simms Street Unit 101 Lakewood, CO 80401 P:...

  2. Making it Easier to Complete Clean Energy Projects with Qualified Energy Conservation Bonds (QECBs)

    Broader source: Energy.gov [DOE]

    This presentation, given through the DOE's Technical Assitance Program (TAP), provides information on How to to Complete Clean Energy Projects with Qualified Energy Conservation Bonds (QECBs)

  3. Tax Deduction Qualified Software- EnerSim version 9.02

    Broader source: Energy.gov [DOE]

    On this page you'll find information about the EnerSim version 9.02 qualified computer software (buildings.energy.gov/qualified_software.html), which calculates energy and power cost savings that meet federal tax incentive requirements for commercial buildings.

  4. Tax Deduction Qualified Software DesignBuilder version 3.0.0.105

    Broader source: Energy.gov [DOE]

    On this page you'll find information about the DesignBuilder version 3.0.0.105 qualified computer software (www.buildings.energy.gov/qualified_software.html), which calculates energy and power cost savings that meet federal tax incentive requirements for commercial buildings.

  5. Questions for PhD Qualifying Exam in Algorithms Spring 2014

    E-Print Network [OSTI]

    Madden, Patrick H.

    1 Questions for PhD Qualifying Exam in Algorithms Spring 2014 DIRECTIONS: Please make sure to write with PhD qualifying exam students and the professor who will be administering the exam. The professor will meet with only a single student at a time, and each student i can only meet from start time si to end

  6. Mandatory Disclosure Requirements and Rating Agency Catering: A Study of the Rule Changes for Qualified Special Purpose Entities

    E-Print Network [OSTI]

    van den Berg, Jur

    for Qualified Special Purpose Entities Kevin Koharki The Pennsylvania State University kjk199@psu.edu December

  7. Space qualified nanosatellite electronics platform for photon pair experiments

    E-Print Network [OSTI]

    Cheng, Cliff; Tan, Yue Chuan; Ling, Alexander

    2015-01-01T23:59:59.000Z

    We report the design and implementation of a complete electronics platform for conducting a quantum optics experiment that will be operated on board a 1U CubeSat (a 10 x 10 x 10 cm satellite). The quantum optics experiment is designed to produce polarization-entangled photon pairs using non-linear optical crystals and requires opto-electronic components such as a pump laser, single photon detectors and liquid crystal based polarization rotators in addition to passive optical elements. The platform provides mechanical support for the optical assembly. It also communicates autonomously with the host satellite to provide experiment data for transmission to a ground station. A limited number of commands can be transmitted from ground to the platform enabling it to switch experimental modes. This platform requires less than 1.5W for all operations, and is space qualified. The implementation of this electronics platform is a major step on the road to operating quantum communication experiments using nanosatellites.

  8. Space qualified nanosatellite electronics platform for photon pair experiments

    E-Print Network [OSTI]

    Cliff Cheng; Rakhitha Chandrasekara; Yue Chuan Tan; Alexander Ling

    2015-05-25T23:59:59.000Z

    We report the design and implementation of a complete electronics platform for conducting a quantum optics experiment that will be operated on board a 1U CubeSat (a 10 x 10 x 10 cm satellite). The quantum optics experiment is designed to produce polarization-entangled photon pairs using non-linear optical crystals and requires opto-electronic components such as a pump laser, single photon detectors and liquid crystal based polarization rotators in addition to passive optical elements. The platform provides mechanical support for the optical assembly. It also communicates autonomously with the host satellite to provide experiment data for transmission to a ground station. A limited number of commands can be transmitted from ground to the platform enabling it to switch experimental modes. This platform requires less than 1.5W for all operations, and is space qualified. The implementation of this electronics platform is a major step on the road to operating quantum communication experiments using nanosatellites.

  9. Use of graphitized carbon beads for gas liquid chromatography

    DOE Patents [OSTI]

    Talmi, Yair (Oak Ridge, TN); Pollock, Charles B. (Oak Ridge, TN)

    1976-01-01T23:59:59.000Z

    Carbonized resin microspheroids are used as a column packing in gas-solid chromatography and as a support in gas-liquid chromatography.

  10. Self-regenerating column chromatography

    DOE Patents [OSTI]

    Park, W.K.

    1995-05-30T23:59:59.000Z

    The present invention provides a process for treating both cations and anions by using a self-regenerating, multi-ionic exchange resin column system which requires no separate regeneration steps. The process involves alternating ion-exchange chromatography for cations and anions in a multi-ionic exchange column packed with a mixture of cation and anion exchange resins. The multi-ionic mixed-charge resin column works as a multi-function column, capable of independently processing either cationic or anionic exchange, or simultaneously processing both cationic and anionic exchanges. The major advantage offered by the alternating multi-function ion exchange process is the self-regeneration of the resins.

  11. Tax Deduction Qualified Software- Green Building Studio Web Service version 3.4

    Broader source: Energy.gov [DOE]

    Information about the Green Building Studio Web Service version 3.4 qualified computer software, which calculates energy and power cost savings that meet federal tax incentive requirements for commercial buildings.

  12. Tax Deduction Qualified Software DesignBuilder version 3.0.0...

    Office of Environmental Management (EM)

    this page you'll find information about the DesignBuilder version 3.0.0.105 qualified computer software, which calculates energy and power cost savings that meet federal tax...

  13. Building Technologies Program: Tax Deduction Qualified Software- DOE-2.2 version 47d

    Broader source: Energy.gov [DOE]

    On this page you'll find information about the DOE-2.2 version 47d qualified computer software, which calculates energy and power cost savings that meet federal tax incentive requirements for commercial buildings.

  14. Tax Deduction Qualified Software DesignBuilder version 3.0.0.097

    Broader source: Energy.gov [DOE]

    On this page you'll find information about the DesignBuilder version 3.0.0.097 qualified computer software, which calculates energy and power cost savings that meet federal tax incentive requirements for commercial buildings.

  15. Qualified Energy Property Tax Exemption for Projects over 250 kW (Payment in Lieu)

    Broader source: Energy.gov [DOE]

    Ohio's Renewable and Advanced Energy Project Property Tax Exemption, enacted with the passage of Ohio S.B. 232 in the summer of 2010, exempts qualified energy projects in Ohio from public utility...

  16. Qualified Energy Property Tax Exemption for Projects 250 kW or Less

    Broader source: Energy.gov [DOE]

    Ohio's Renewable and Advanced Energy Project Property Tax Exemption, enacted with the passage of Ohio S.B. 232 in the summer of 2010, exempts qualified energy projects in Ohio from public utility...

  17. Tax Deduction Qualified Software - EnergyPlus version 3.1.0.027...

    Broader source: Energy.gov (indexed) [DOE]

    On this page you'll find information about the EnergyPlus version 3.1.0.027 qualified computer software which calculates energy and power cost savings that meet federal tax...

  18. Tax Deduction Qualified Software - EnergyPlus version 3.0.0.028...

    Broader source: Energy.gov (indexed) [DOE]

    On this page you'll find information about the EnergyPlus version 3.0.0.028 qualified computer software which calculates energy and power cost savings that meet federal tax...

  19. Tax Deduction Qualified Software: EnergyPlus version 5.0.0.031...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tax Deduction Qualified Software: EnergyPlus version 5.0.0.031 Provides required documentation that EnergyPlus version 5.0.0.031 meets Internal Revenue Code 179D, Notice...

  20. Tax Deduction Qualified Software: EnergyPlus version 6.0.0.023...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tax Deduction Qualified Software: EnergyPlus version 6.0.0.023 Provides required documentation that EnergyPlus version 6.0.0.023 meets Internal Revenue Code 179D, Notice...

  1. Sandia National Laboratories: Geomechanics Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    including studies of coupled effects Extrapolation of laboratory measurements to field conditions In situ stress measurements and evaluation of in situ boundary conditions...

  2. Liquid-phase chromatography detector

    DOE Patents [OSTI]

    Voigtman, E.G.; Winefordner, J.D.; Jurgensen, A.R.

    1983-11-08T23:59:59.000Z

    A liquid-phase chromatography detector comprises a flow cell having an inlet tubular conduit for receiving a liquid chromatographic effluent and discharging it as a flowing columnar stream onto a vertically adjustable receiving surface spaced apart from and located vertically below and in close proximity to the discharge end of the tubular conduit; a receiver adapted to receive liquid overflowing from the receiving surface; an exit conduit for continuously removing liquid from the receiver; a light source for focusing fluorescence-producing light pulses on the flowing columnar stream as it passes from the outlet of the conduit to the receiving surface and a fluorescence detector to detect the produced fluorescence; a source of light pulse for producing acoustic waves in the columnar stream as it passes from the conduit outlet to the receiving surface; and a piezoelectric transducer adapted to detect those waves; and a source of bias voltage applied to the inlet tubular conduit and adapted to produce ionization of the liquid flowing through the flow cell so as to produce photocurrents therein and an electrical system to detect and record the photocurrents. This system is useful in separating and detecting individual chemical compounds from mixtures thereof. 5 figs.

  3. SULI at Ames Laboratory

    SciTech Connect (OSTI)

    None

    2011-01-01T23:59:59.000Z

    A video snapshot of the Science Undergraduate Laboratory Internship (SULI) program at Ames Laboratory.

  4. adsorption gas chromatography: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mobility Spectrometry, Gas ChromatographyMass Spectrometry, and Ion Mobility Spectrometry with Chemometric Analysis. Open Access Theses and Dissertations Summary:...

  5. QUALIFIED FORECAST OF ENSEMBLE POWER PRODUCTION BY SPATIALLY DISPERSED GRID-CONNECTED PV SYSTEMS

    E-Print Network [OSTI]

    Heinemann, Detlev

    QUALIFIED FORECAST OF ENSEMBLE POWER PRODUCTION BY SPATIALLY DISPERSED GRID- CONNECTED PV SYSTEMS: The contribution of power production by Photovoltaic (PV) systems to the electricity supply is constantly of the electricity grids and for energy trading. This paper presents an approach to predict regional PV power output

  6. Ver. CSI-T HB Sept 2012 INSTRUCTIONS FOR QUALIFYING AS A PPD PROVIDER

    E-Print Network [OSTI]

    Ver. CSI-T HB Sept 2012 INSTRUCTIONS FOR QUALIFYING AS A PPD PROVIDER FOR THE CALIFORNIA SOLAR to the requirements set forth in the CSI-Thermal Program Handbook. BACKGROUND AND REQUIREMENTS Customers participating to PAs as requested Provide technical support to PAs as well as customer support Communicate meter

  7. The TECHNICAL QUALIFYING EVALUATION (TQE) Department of Electrical Engineering and Computer Science

    E-Print Network [OSTI]

    Leiserson, Charles E.

    The TECHNICAL QUALIFYING EVALUATION (TQE) Department of Electrical Engineering and Computer Science are required from an approved TQE grid composed of 9 Groups. Two subjects must be selected from a single Group of B must be obtained to pass the TQE outright. The approved TQE grid is found below with the subject

  8. Rev. 9-29-08 Certification of Tax-Qualified Dependents / Domestic Partner Health & Dental Benefits

    E-Print Network [OSTI]

    Rev. 9-29-08 Certification of Tax-Qualified Dependents / Domestic Partner Health & Dental Benefits of the employee with respect to health and dental plan coverage. This form is to enable the employee the domestic partnership. Prior to completing this form, carefully read the handout entitled "Important Tax

  9. Electrical Engineering Ph.D. Qualifying Examination Guidelines for the Graduate Student

    E-Print Network [OSTI]

    O'Toole, Alice J.

    .), narrow band and broadband matching circuits, low noise amplifiers, noise figure, noise parameters references, opamp design, frequency response, stability and compensation, two-stage amplifiers. #12;f in the first three weeks of the semester using the "Application for the Doctoral Qualifying Examination" form

  10. How to Qualify for NIH Small Business Innovation and Technology Transfer Grants

    E-Print Network [OSTI]

    Berdichevsky, Victor

    How to Qualify for NIH Small Business Innovation and Technology Transfer Grants Professional Auditorium BBCetc is an Ann Arbor-based company that provides Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) proposal development services to technology based

  11. The determination of some anions using ion chromatography and ion chromatography-graphite furnace atomic absorption spectrometry 

    E-Print Network [OSTI]

    Hillman, Daniel C

    1981-01-01T23:59:59.000Z

    THE DETERMINATION OF SOME ANIONS USING ION CHROMATOGRAPHY AND ION CHROMATOGRAPHY-GRAPHITE FURNACE ATOMIC ABSORPTION SPECTROMETRY A Thesis by DANIEL C. J. HILLMAN Submitted to the Graduate College of Texas A&M University in partial fulfillment... of the requirement for the degree of MASTER OF SCIENCE August 1981 Major Subject: Chemistry THE DETERMINATION OF SOME ANIONS USING ION CHROMATOGRAPHY AND ION CHROMATOGRAPHY-GRAPHITE FURNACE ATOMIC ABSORPTION SPECTROMETRY A Thesis by DANIEL C. J. HILLMAN...

  12. Towards Chip Scale Liquid Chromatography and High Throughput Immunosensing

    SciTech Connect (OSTI)

    Ni, J.

    2000-09-21T23:59:59.000Z

    This work describes several research projects aimed towards developing new instruments and novel methods for high throughput chemical and biological analysis. Approaches are taken in two directions. The first direction takes advantage of well-established semiconductor fabrication techniques and applies them to miniaturize instruments that are workhorses in analytical laboratories. Specifically, the first part of this work focused on the development of micropumps and microvalves for controlled fluid delivery. The mechanism of these micropumps and microvalves relies on the electrochemically-induced surface tension change at a mercury/electrolyte interface. A miniaturized flow injection analysis device was integrated and flow injection analyses were demonstrated. In the second part of this work, microfluidic chips were also designed, fabricated, and tested. Separations of two fluorescent dyes were demonstrated in microfabricated channels, based on an open-tubular liquid chromatography (OT LC) or an electrochemically-modulated liquid chromatography (EMLC) format. A reduction in instrument size can potentially increase analysis speed, and allow exceedingly small amounts of sample to be analyzed under diverse separation conditions. The second direction explores the surface enhanced Raman spectroscopy (SERS) as a signal transduction method for immunoassay analysis. It takes advantage of the improved detection sensitivity as a result of surface enhancement on colloidal gold, the narrow width of Raman band, and the stability of Raman scattering signals to distinguish several different species simultaneously without exploiting spatially-separated addresses on a biochip. By labeling gold nanoparticles with different Raman reporters in conjunction with different detection antibodies, a simultaneous detection of a dual-analyte immunoassay was demonstrated. Using this scheme for quantitative analysis was also studied and preliminary dose-response curves from an immunoassay of a mo del antigen were obtained. Simultaneous detection of several analytes at the same address can potentially increase the analysis speed, and can further expand the analysis capability of a microarray chip.

  13. Laboratory Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PM toLED Lighting5-15TradeLaboratories

  14. Laboratory Directors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLSLaboratory Directors Laboratory Directors A

  15. Laboratory Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,sand CERN 73-11 Laboratory I |

  16. Flowmeter for pressure-driven chromatography systems

    DOE Patents [OSTI]

    Paul, Phillip H. (Livermore, CA); Arnold, Don W. (Livermore, CA)

    2002-01-01T23:59:59.000Z

    A flowmeter for accurately measuring the flowrate of fluids in high pressure chromatography systems. The flowmeter is a porous bed of a material, the porous bed having a porosity in the range of about 0.1 to 0.6 and a pore size in the range of about 50 nm to 1 .mu.m, disposed between a high pressure pumping means and a chromatography column. The flowmeter is provided with pressure measuring means at both the inlet and outlet of the porous bed for measuring the pressure drop through the porous bed. This flowmeter system provides not only the ability to measure accurately flowrates in the range of .mu.L/min to nL/min but also to provide a signal that can be used for a servo loop or feedback control system for high pressure pumping systems.

  17. Flowmeter for pressure-driven chromatography systems

    DOE Patents [OSTI]

    Paul, Phillip H. (Livermore, CA); Arnold, Don W. (Livermore, CA)

    2003-01-01T23:59:59.000Z

    A flowmeter for accurately measuring the flowrate of fluids in high pressure chromatography systems. The flowmeter is a porous bed of a material, the porous bed having a porosity in the range of about 0.1 to 0.6 and a pore size in the range of about 50 nm to 1 .mu.m, disposed between a high pressure pumping means and a chromatography column. The flowmeter is provided with pressure measuring means at both the inlet and outlet of the porous bed for measuring the pressure drop through the porous bed. This flowmeter system provides not only the ability to measure accurately flowrates in the range of .mu.L/min to nL/min but also to provide a signal that can be used for a servo loop or feedback control system for high pressure pumping systems.

  18. Temperature programmable microfabricated gas chromatography column

    DOE Patents [OSTI]

    Manginell, Ronald P.; Frye-Mason, Gregory C.

    2003-12-23T23:59:59.000Z

    A temperature programmable microfabricated gas chromatography column enables more efficient chemical separation of chemical analytes in a gas mixture by the integration of a resistive heating element and temperature sensing on the microfabricated column. Additionally, means are provided to thermally isolate the heated column from their surroundings. The small heat capacity and thermal isolation of the microfabricated column improves the thermal time response and power consumption, both important factors for portable microanalytical systems.

  19. Laboratory Waste | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLSLaboratory Directors LaboratoryPlanning

  20. Geoscience Laboratory | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental AssessmentsGeoffrey CampbelllongApplyingGeorge T.Geoscience Laboratory

  1. Sandia National Laboratories: Photovoltaics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PV Facilities On November 10, 2010, in Photovoltaic System Evaluation Laboratory Distributed Energy Technologies Laboratory Microsystems and Engineering Sciences Applications...

  2. Sandia National Laboratories: Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory (PSEL) National Supervisory Control and Data Acquisition (SCADA) Test Bed Center for Integrated Nanotechnologies (CINT) Distributed Energy Technologies Laboratory...

  3. Environmental | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environmental Management Program at the Ames Laboratory includes Waste Management, Pollution Prevention, Recycling, Cultural Resources, and the Laboratory's Environmental...

  4. Space-qualified, abuttable packaging for LBNL p-channel CCDs, Part II

    E-Print Network [OSTI]

    California at Berkeley, University of

    Space-qualified, abuttable packaging for LBNL p-channel CCDs, Part II R.W. Besuner1 , C. Baltay2 for 10.5 m pixel, 3.5k x 3.5k p-channel LBNL CCDs. These packages are built around a silicon carbide of 36.8mm square may be packed on a detector pitch as small as 44mm. LBNL-developed Front End

  5. How much can I qualify for? An eligible student may receive a SMART award of up

    E-Print Network [OSTI]

    Rosen, Jay

    How much can I qualify for? An eligible student may receive a SMART award of up to $4,000 for each.260.5700 ACHIEVERS NEW YORK CITY COLLEGE OF TECHNOLOGY CITY TECH O F F I C E O F F I N A N C I A L A I D ACHIEVE. Under the National SMART Grant program, CUNY will identify Pell eligible federal student aid recipients

  6. Use of thermal desorption/gas chromatography as a performance-based screening method for petroleum hydrocarbons

    SciTech Connect (OSTI)

    Slavin, P.J. [GRAM, Inc., Albuquerque, NM (United States)]|[Sandia National Labs., Albuquerque, NM (United States); Crandall, K. [Brown and Root Environmental, Albuquerque, NM (United States); Dawson, L.; Kottenstette, R. [Sandia National Labs., Albuquerque, NM (United States); Wade, M. [INTERA, Inc., Albuquerque, NM (United States)]|[Sandia National Labs., Albuquerque, NM (United States)

    1996-08-01T23:59:59.000Z

    Thermal desorption/gas chromatography (TD/GC) was used to screen soil samples on site for total petroleum hydrocarbon (TPH) content during a RCRA Facility Investigation (RFI). It proved to be a rapid, cost- effective tool for detecting non-aromatic mineral oil in soil. The on- site TD/GC results correlated well with those generated at an off- site laboratory for samples analyzed in accordance with EPA Method 418.1.

  7. Ethanol as Internal Standard for Quantitative Determination of Volatile Compounds in Spirit Drinks by Gas Chromatography

    E-Print Network [OSTI]

    Charapitsa, Siarhei V; Kulevich, Nikita V; Makoed, Nicolai M; Mazanik, Arkadzi L; Sytova, Svetlana N

    2012-01-01T23:59:59.000Z

    The new methodical approach of using ethanol as internal standard in gas chromatographic analysis of volatile compounds in spirit drinks in daily practice of testing laboratories is proposed. This method provides determination of volatile compounds concentrations in spirit drinks directly expressed in milligrams per liter (mg/L) of absolute alcohol according to official methods without measuring of alcohol strength of analyzed sample. The experimental demonstration of this method for determination of volatile compounds in spirit drinks by gas chromatography is described. Its validation was carried out by comparison with experimental results obtained by internal standard method and external standard method.

  8. Long-Term Wisconsin Capital Assets Deferral and Wisconsin-Source Asset Exclusion Qualified Wisconsin Business Certification (Wisconsin)

    Broader source: Energy.gov [DOE]

    WEDC may certify businesses as a “Qualified Wisconsin Business”. The designation allows investors with WI capital gains tax liability to both defer that tax liability and if an investment is...

  9. Tax Deduction Qualified Software TRNSYS version 17.01.0016 TESS Libraries version 17.1.01

    Broader source: Energy.gov [DOE]

    provides information about the TRNSYS version 17.01.0016 and TESS Libraries version 17.1.01 qualified computer software, which calculates energy and power cost savings that meet federal tax incentive requirements for commercial buildings.

  10. PREPARED TESTIMONY OF ROBERT B. WEISENMILLER, PH.D. Qualifying Facilities: Resource Planning and Avoided Costs Methodology ................................ 1

    E-Print Network [OSTI]

    Calculation and Pricing Options for Qualifying Facilities Submitted by Independent Power Corporation on behalf.............................................................................................. 8 Market Power Assessments) for the Independent Energy Producers Association and the Department of General Services and the Solid Waste Management

  11. Freeze drying for gas chromatography stationary phase deposition

    DOE Patents [OSTI]

    Sylwester, Alan P. (Livermore, CA)

    2007-01-02T23:59:59.000Z

    The present disclosure relates to methods for deposition of gas chromatography (GC) stationary phases into chromatography columns, for example gas chromatography columns. A chromatographic medium is dissolved or suspended in a solvent to form a composition. The composition may be inserted into a chromatographic column. Alternatively, portions of the chromatographic column may be exposed or filled with the composition. The composition is permitted to solidify, and at least a portion of the solvent is removed by vacuum sublimation.

  12. adsorption liquid chromatography: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    quadrupole time-of-flight techniques for analysis of complex chromatography (LC), ion mobility spectrometry (IMS) and tandem mass spectrometry is described for the analysis...

  13. Laboratory Directed Research and Development FY 2000

    SciTech Connect (OSTI)

    Hansen, Todd; Levy, Karin

    2001-02-27T23:59:59.000Z

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Annual report on Laboratory Directed Research and Development for FY2000.

  14. Sandia National Laboratories: Nuclear Energy Systems Laboratory...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory (NESL) Transient Nuclear Fuels Testing Radiation Effects Sciences Solar Electric Propulsion Nuclear Energy Safety Technologies Experimental Testing...

  15. Sandia National Laboratories: Nuclear Energy Systems Laboratory...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory (NESL) Transient Nuclear Fuels Testing Radiation Effects Sciences Solar Electric Propulsion Nuclear Energy Safety Technologies Experimental Testing Phenomenological...

  16. Ames Laboratory Ames, Iowa Argonne National Laboratory Argonne...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory Los Alamos, New Mexico National Energy Technology Laboratory Morgantown, West Virginia Pittsburgh, Pennsylvania Albany, Oregon National Renewable Energy Laboratory...

  17. Sandia National Laboratories: IRED

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SMART Grid, Solar Sandia National Laboratories, the Electric Power Research Institute (EPRI) and European Distributed Energies Research Laboratories (DERlab) have organized a...

  18. Two-dimensional liquid chromatography system for online top-down...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    liquid chromatography system for online top-down mass spectrometry. Two-dimensional liquid chromatography system for online top-down mass spectrometry. Abstract: An online...

  19. Hand portable thin-layer chromatography system

    DOE Patents [OSTI]

    Haas, Jeffrey S. (San Ramon, CA); Kelly, Fredrick R. (Modesto, CA); Bushman, John F. (Oakley, CA); Wiefel, Michael H. (La Honda, CA); Jensen, Wayne A. (Livermore, CA)

    2000-01-01T23:59:59.000Z

    A hand portable, field-deployable thin-layer chromatography (TLC) unit and a hand portable, battery-operated unit for development, illumination, and data acquisition of the TLC plates contain many miniaturized features that permit a large number of samples to be processed efficiently. The TLC unit includes a solvent tank, a holder for TLC plates, and a variety of tool chambers for storing TLC plates, solvent, and pipettes. After processing in the TLC unit, a TLC plate is positioned in a collapsible illumination box, where the box and a CCD camera are optically aligned for optimal pixel resolution of the CCD images of the TLC plate. The TLC system includes an improved development chamber for chemical development of TLC plates that prevents solvent overflow.

  20. Formation of iron complexs from trifluoroacetic acid based liquid chromatography mobile phases as interference ions in liquid chromatography/electrospray ionization mass spectrometric analysis

    SciTech Connect (OSTI)

    Shukla, Anil K.; Zhang, Rui; Orton, Daniel J.; Zhao, Rui; Clauss, Therese RW; Moore, Ronald J.; Smith, Richard D.

    2011-05-30T23:59:59.000Z

    Two unexpected singly charged ions at m/z 1103 and 944 have been observed in mass spectra obtained from electrospray ionization-mass spectrometric analysis of liquid chromatography effluents with mobile phases containing trifluoroacetic acid. Accurate mass measurement and tandem mass spectrometry studies revealed that these two ions are not due to any contamination from solvents and chemicals used for mobile and stationary phases or from the laboratory atmospheric environment. Instead these ions are clusters of trifluoroacetic acid formed in association with acetonitrile, water and iron from the stainless steel union used to connect the column with the electrospray tip and to apply high voltage; the molecular formulae are Fe+((OH)(H2O)2)9(CF3COOH)5 and Fe+((OH)(H2O)2)6 (CF3COOH)5.

  1. National Renewable Energy Laboratory

    E-Print Network [OSTI]

    National Renewable Energy Laboratory Innovation for Our Energy Future ponsorship Format Reversed Color:White rtical Format Reversed-A ertical Format Reversed-B National Renewable Energy Laboratory National Renewable Energy Laboratory Innovation for Our Energy Future National Renewable Energy Laboratory

  2. Service Level Agreement for the Analytical Laboratory School of Biological and Chemical Sciences

    E-Print Network [OSTI]

    Chittka, Lars

    .g.scott@qmul.ac.uk Definition of Service The Analytical Laboratory offers facilities for Atomic Absorption Spectrometry, Chromatography, Mass Spectrometry and Radioisotope Measurement. Users of the service are encouraged to actively Provided · The Atomic Absorption Spectrometry facility is able to provide quantitative analysis of a wide

  3. Laboratory Directed Research and Development Program FY 2006

    SciTech Connect (OSTI)

    Hansen (Ed.), Todd

    2007-03-08T23:59:59.000Z

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness.

  4. Pressure safety program Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Borzileri, C.; Traini, M.

    1992-10-01T23:59:59.000Z

    The Lawrence Livermore National Laboratory (LLNL) is a Research and Development facility. Programs include research in: nuclear weapons, energy, environmental, biomedical, and other DOE funded programs. LLNL is managed by the University of California for the Department of Energy. Many research and development programs require the use of pressurized fluid systems. In the early 1960`s, courses were developed to train personnel to safely work with pressurized systems. These courses served as a foundation for the Pressure Safety Program. The Pressure Safety Program is administered by the Pressure Safety Manager through the Hazards Control Department, and responsibilities include: (1) Pressure Safety course development and training, (2) Equipment documentation, tracking and inspections/retests, (3) Formal and informal review of pressure systems. The program uses accepted codes and standards and closely follows the DOE Pressure Safety Guidelines Manual. This manual was developed for DOE by Lawrence Livermore National Laboratory. The DOE Pressure Safety Guidelines Manual defines five (5) basic elements which constitute this Pressure Safety Program. These elements are: (1) A Pressure Safety Manual, (2) A Safety Committee, (3) Personnel who are trained and qualified, (4) Documentation and accountability for each pressure vessel or system, (5) Control of the selection and the use of high pressure hardware.

  5. Sandia National Laboratories: Sandia National Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Hosted by Sandia National Laboratories and the Electric Power Research Institute (EPRI) Inverter reliability drives project life cycle costs and plant performance. This...

  6. Argonne National Laboratory | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory Slip sliding away Graphene and diamonds prove a slippery combination Read More ACT-SO winners Argonne mentors students for the next generation of...

  7. Materials Design Laboratory | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Design Laboratory, scheduled for completion in FY 2020, is designed to meet U.S. Green Building Council Leadership in Energy and Environmental Design (LEED) Gold...

  8. Development Of Ion Chromatography Methods To Support Testing Of The Glycolic Acid Reductant Flowsheet In The Defense Waste Processing Facility

    SciTech Connect (OSTI)

    Wiedenman, B. J.; White, T. L.; Mahannah, R. N.; Best, D. R.; Stone, M. E.; Click, D. R.; Lambert, D. P.; Coleman, C. J.

    2013-10-01T23:59:59.000Z

    Ion Chromatography (IC) is the principal analytical method used to support studies of Sludge Reciept and Adjustment Tank (SRAT) chemistry at DWPF. A series of prior analytical ''Round Robin'' (RR) studies included both supernate and sludge samples from SRAT simulant, previously reported as memos, are tabulated in this report.2,3 From these studies it was determined to standardize IC column size to 4 mm diameter, eliminating the capillary column from use. As a follow on test, the DWPF laboratory, the PSAL laboratory, and the AD laboratory participated in the current analytical RR to determine a suite of anions in SRAT simulant by IC, results also are tabulated in this report. The particular goal was to confirm the laboratories ability to measure and quantitate glycolate ion. The target was + or - 20% inter-lab agreement of the analyte averages for the RR. Each of the three laboratories analyzed a batch of 12 samples. For each laboratory, the percent relative standard deviation (%RSD) of the averages on nitrate, glycolate, and oxalate, was 10% or less. The three laboratories all met the goal of 20% relative agreement for nitrate and glycolate. For oxalate, the PSAL laboratory reported an average value that was 20% higher than the average values reported by the DWPF laboratory and the AD laboratory. Because of this wider window of agreement, it was concluded to continue the practice of an additional acid digestion for total oxalate measurement. It should also be noted that large amounts of glycolate in the SRAT samples will have an impact on detection limits of near eluting peaks, namely Fluoride and Formate. A suite of scoping experiments are presented in the report to identify and isolate other potential interlaboratory disceprancies. Specific ion chromatography inter-laboratory method conditions and differences are tabulated. Most differences were minor but there are some temperature control equipment differences that are significant leading to a recommendation of a heated jacket for analytical columns that are remoted for use in radiohoods. A suggested method improvement would be to implement column temperture control at a temperature slightly above ambient to avoid peak shifting due to temperature fluctuations. Temperature control in this manner would improve short and longer term peak retention time stability. An unknown peak was observed during the analysis of glycolic acid and SRAT simulant. The unknown peak was determined to best match diglycolic acid. The development of a method for acetate is summaraized, and no significant amount of acetate was observed in the SRAT products tested. In addition, an alternative Gas Chromatograph (GC) method for glycolate is summarized.

  9. Statistical factors to qualify the superconducting magnets for the SSC based on warm/cold correlations

    SciTech Connect (OSTI)

    Kim, K.; Devred, A.; Coles, M.; Tompkins, J.

    1993-05-01T23:59:59.000Z

    All of the SSC production magnets will be measured at room temperature (warm), but only a fraction of these will be measured at liquid helium temperature (cold). The fractional information will then be analyzed to determine warm acceptance criteria for the field quality of the SSC magnets. Regarding predictors of the field quality based on partial information, there are several observations and studies based on the warm/cold correlation. A different facet of the acceptance test is production control, which interprets the warm/cold correlation to adjust the process parameters. For these applications, we are evaluating statistical techniques relying on asymptotic estimators of the systematic errors and random errors, and their respective confidence intervals. The estimators are useful to qualify the population magnets based on a subset of sample magnets. We present the status of our work, including: (i) a recapitulation of analytic formulas, (ii) a justification based on HERA magnet experience, and (iii) a practical interpretation of these estimators.

  10. Thin layer chromatography residue applicator sampler

    DOE Patents [OSTI]

    Nunes, Peter J. (Danville, CA); Kelly, Fredrick R. (Modesto, CA); Haas, Jeffrey S. (San Ramon, CA); Andresen, Brian D. (Livermore, CA)

    2007-07-24T23:59:59.000Z

    A thin layer chromatograph residue applicator sampler. The residue applicator sampler provides for rapid analysis of samples containing high explosives, chemical warfare, and other analyses of interest under field conditions. This satisfied the need for a field-deployable, small, hand-held, all-in-one device for efficient sampling, sample dissolution, and sample application to an analytical technique. The residue applicator sampler includes a sampling sponge that is resistant to most chemicals and is fastened via a plastic handle in a hermetically sealed tube containing a known amount of solvent. Upon use, the wetted sponge is removed from the sealed tube and used as a swiping device across an environmental sample. The sponge is then replaced in the hermetically sealed tube where the sample remains contained and dissolved in the solvent. A small pipette tip is removably contained in the hermetically sealed tube. The sponge is removed and placed into the pipette tip where a squeezing-out of the dissolved sample from the sponge into the pipette tip results in a droplet captured in a vial for later instrumental analysis, or applied directly to a thin layer chromatography plate for immediate analysis.

  11. QUALIFYING EXAM (SPRING 2002) Answer any six of the following eight questions. You must state clearly any general

    E-Print Network [OSTI]

    Hagen, Thomas

    QUALIFYING EXAM (SPRING 2002) ALGEBRA Answer any six of the following eight questions. You must state clearly any general results you use. 1. Prove that if G is a non-trivial p-group then the center of G is non-trivial. Deduce that every p-group is solvable. 2. Prove that if G is a simple group

  12. Archway Education Professional The University of Georgia is seeking a qualified candidate to serve as the Archway Education Professional in

    E-Print Network [OSTI]

    Arnold, Jonathan

    Archway Education Professional The University of Georgia is seeking a qualified candidate to serve as the Archway Education Professional in Dalton-Whitfield County, Georgia. The Archway Partnership was initiated with the University of Georgia. The Archway Education Professional is a UGA Public Service (Public Service Assistant

  13. COMPUTER/NETWORK SUPPORT ASSISTANT The University Wisconsin -Milwaukee School of Continuing Education is seeking a qualified

    E-Print Network [OSTI]

    Saldin, Dilano

    Education is seeking a qualified student to assist with Network Administration and Computer Support Building at 161 W. Wisconsin Ave., in downtown Milwaukee. Job Description Assist Network Administrator and availability to: scetech@uwm.edu Network Administration and Computer Support School of Continuing Education

  14. Pacific Northwest National Laboratory

    E-Print Network [OSTI]

    Pacific Northwest National Laboratory Operated by Battelle for the U.S. Department of Energy Northwest National Laboratory (PNNL) operated by Battelle Memorial Institute. Battelle has a unique contract

  15. Argonne National Laboratory's Nondestructive

    E-Print Network [OSTI]

    Kemner, Ken

    Argonne National Laboratory's Nondestructive Evaluation Technologies NDE #12;Over45yearsexperienceinNondestructiveEvaluation... Argonne National Laboratory's world-renowned researchers have a proven the safe operationof advanced nuclear reactors. Argonne's World-Class Nondestructive Evaluation

  16. Mentoring | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    As one of the largest laboratories in the nation for science and engineering research, Argonne National Laboratory is home to some of the most prolific and well-renowned scientists...

  17. Naval Civil Engineering Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Naval Civil Engineering Laboratory Personnel from the Power Systems Department have participated in numerous distribution equipment research, development, demonstration, testing,...

  18. Employment at National Laboratories

    SciTech Connect (OSTI)

    E. S. Peterson; C. A. Allen

    2007-04-01T23:59:59.000Z

    Scientists enter the National Laboratory System for many different reasons. For some, faculty positions are scarce, so they take staff-scientist position at national laboratories (i.e. Pacific Northwest, Idaho, Los Alamos, and Brookhaven). Many plan to work at the National Laboratory for 5 to 7 years and then seek an academic post. For many (these authors included), before they know it it’s 15 or 20 years later and they never seriously considered leaving the laboratory system.

  19. Sandia National Laboratories: Photovoltaic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Computational Modeling & Simulation, Energy, Facilities, News, News & Events, Photovoltaic, Photovoltaic Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar...

  20. LABORATORY NEW HIRE NOTICE: LABORATORY DELAYED OPENING OR CLOSURE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LABORATORY NEW HIRE NOTICE: LABORATORY DELAYED OPENING OR CLOSURE DUE TO INCLEAMENT WEATHER During the winter months, the Los Alamos National Laboratory (LANL) may at times...

  1. ANION ANALYSES BY ION CHROMATOGRAPHY FOR THE ALTERNATE REDUCTANT DEMONSTRATION FOR THE DEFENSE WASTE PROCESSING FACILITY

    SciTech Connect (OSTI)

    Best, D.

    2010-08-04T23:59:59.000Z

    The Process Science Analytical Laboratory (PSAL) at the Savannah River National Laboratory was requested by the Defense Waste Processing Facility (DWPF) to develop and demonstrate an Ion Chromatography (IC) method for the analysis of glycolate, in addition to eight other anions (fluoride, formate, chloride, nitrite, nitrate, sulfate, oxalate and phosphate) in Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) samples. The method will be used to analyze anions for samples generated from the Alternate Reductant Demonstrations to be performed for the DWPF at the Aiken County Technology Laboratory (ACTL). The method is specific to the characterization of anions in the simulant flowsheet work. Additional work will be needed for the analyses of anions in radiological samples by Analytical Development (AD) and DWPF. The documentation of the development and demonstration of the method fulfills the third requirement in the TTQAP, SRNL-RP-2010-00105, 'Task Technical and Quality Assurance Plan for Glycolic-Formic Acid Flowsheet Development, Definition and Demonstrations Tasks 1-3'.

  2. Gas Phase Chromatography of some Group 4, 5, and 6 Halides

    SciTech Connect (OSTI)

    Sylwester, Eric Robert

    1998-10-01T23:59:59.000Z

    Gas phase chromatography using The Heavy Element Volatility Instrument (HEVI) and the On Line Gas Apparatus (OLGA III) was used to determine volatilities of ZrBr{sub 4}, HfBr{sub 4}, RfBr{sub 4}, NbBr{sub 5}, TaOBr{sub 3}, HaCl{sub 5}, WBr{sub 6}, FrBr, and BiBr{sub 3}. Short-lived isotopes of Zr, Hf, Rf, Nb, Ta, Ha, W, and Bi were produced via compound nucleus reactions at the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory and transported to the experimental apparatus using a He gas transport system. The isotopes were halogenated, separated from the other reaction products, and their volatilities determined by isothermal gas phase chromatography. Adsorption Enthalpy ({Delta}H{sub a}) values for these compounds were calculated using a Monte Carlo simulation program modeling the gas phase chromatography column. All bromides showed lower volatility than molecules of similar molecular structures formed as chlorides, but followed similar trends by central element. Tantalum was observed to form the oxybromide, analogous to the formation of the oxychloride under the same conditions. For the group 4 elements, the following order in volatility and {Delta}H{sub a} was observed: RfBr{sub 4} > ZrBr{sub 4} > HfBr{sub 4}. The {Delta}H{sub a} values determined for the group 4, 5, and 6 halides are in general agreement with other experimental data and theoretical predictions. Preliminary experiments were performed on Me-bromides. A new measurement of the half-life of {sup 261}Rf was performed. {sup 261}Rf was produced via the {sup 248}Cm({sup 18}O, 5n) reaction and observed with a half-life of 74{sub -6}{sup +7} seconds, in excellent agreement with the previous measurement of 78{sub -6}{sup +11} seconds. We recommend a new half-life of 75{+-}7 seconds for {sup 261}Rf based on these two measurements. Preliminary studies in transforming HEVI from an isothermal (constant temperature) gas phase chromatography instrument to a thermochromatographic (variable temperature) instrument have been completed. Thermochromatography is a technique that can be used to study the volatility and {Delta}H{sub a} of longer-lived isotopes off-line, Future work will include a comparison between the two techniques and the use of thermochromatography to study isotopes in a wider range of half-lives and molecular structures.

  3. Nuclear qualified in-containment electrical connectors and method of connecting electrical conductors

    DOE Patents [OSTI]

    Powell, J. G. (Clifton Park, NY)

    1991-01-01T23:59:59.000Z

    A nuclear qualified in-containment electrical connection comprises an insulated, sheathed instrument lead having electrical conductors extending from one end thereof to provide two exposed lead wires, a watertight cable having electrical conducting wires therein and extending from one end of the cable to provide two lead wires therefrom, two butt splice connectors each connecting the ends of respective ones of the lead wires from the instrument lead and cable, a length of heat shrinkable plastic tubing positioned over each butt splice connector and an adjacent portion of a respective lead wire from the cable and heat shrunk into position, a length of heat shrinkable plastic tubing on the end portion of the instrument lead adjacent the lead wires therefrom and heat shrunk thereon and a length of outer heat shrinkable plastic tubing extending over the end portion of the instrument lead and the heat shrinkable tubing thereon and over the butt splice connectors and a portion of the cable adjacent the cable lead lines, the outer heat shrinkable tubing being heat shrunk into sealing position on the instrument lead and cable.

  4. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In this issue's cover story, "Rethinking the Unthinkable," Houston T. Hawkins, a retired Air Force colonel and a Laboratory senior fellow, points out that since Vladimir Putin...

  5. Sandia National Laboratories: AMI

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manufacturing Initiative (AMI) is a multiple-year, 3-way collaboration among TPI Composites, Iowa State University, and Sandia National Laboratories. The goal of this...

  6. Sandia National Laboratories: Photovoltaics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2013 Inverter Reliability Workshop On May 31, 2013, in Hosted by Sandia National Laboratories and the Electric Power Research Institute (EPRI) Inverter reliability drives project...

  7. Sandia National Laboratories: photovoltaic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    photovoltaic Microsystems Enabled Photovoltaics (MEPV) On April 14, 2011, in About MEPV Flexible MEPV MEPV Publications MEPV Awards Researchers at Sandia National Laboratories are...

  8. News | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Researchers from Argonne National Laboratory modeled several scenarios to add more solar power to the electric grid, using real-world data from the southwestern power...

  9. Sandia National Laboratories: SPI

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conference, the Department of Energy (DOE), the Electric Power Research Instisute (EPRI), Sandia National Laboratories, ... Last Updated: September 10, 2012 Go To Top ...

  10. Sandia National Laboratories: Workshops

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geoscience, Climate and Consequence Effect at Sandia National Laboratories presented on "Hydraulic Fracturing: Role of Government-Sponsored R&D." Marianne's presentation was part...

  11. nfang | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Laboratory Research Projects: Chemical Analysis of Nanodomains Education: Ph.D., the University of British Columbia, Canada, 2006 B.S. from Xiamen University, China, 1998...

  12. Sandia National Laboratories: Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories on a new concentrated solar power (CSP) installation with thermal energy storage. The CSP storage project combines Areva's modular Compact Linear Fresnel...

  13. Sandia National Laboratories: publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories, August 2010. 2009 Adrian R. Chavez, Position Paper: Protecting Process Control Systems against Lifecycle Attacks Using Trust Anchors Sandia National ... Page 1...

  14. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the first results of joint work by scientists from Lawrence Berkeley, Pacific Northwest, Savannah River, and Los Alamos national laboratories at the Savannah River Site to model...

  15. Sandia National Laboratories: Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Center for SCADA Security Assets On August 25, 2011, in Sandia established its SCADA Security Development Laboratory in 1998. Its purpose was to analyze vulnerabilities in...

  16. Sandia National Laboratories: solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interactive Tour Operated by Sandia National Laboratories for the U.S. Department of Energy (DOE), the National Solar Thermal Test Facility (NSTTF) is the only test facility...

  17. National Laboratory Photovoltaics Research

    Broader source: Energy.gov [DOE]

    DOE supports photovoltaic (PV) research and development and facilities at its national laboratories to accelerate progress toward achieving the SunShot Initiative's technological and economic...

  18. Sandia National Laboratories: Geothermal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geothermal Sandia Wins DOE Geothermal Technologies Office Funding Award On December 15, 2014, in Advanced Materials Laboratory, Capabilities, Energy, Facilities, Geothermal,...

  19. Sandia National Laboratories: PV

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2014 Sandia Corporation | Questions & Comments | Privacy & Security U.S. Department of Energy National Nuclear Security Administration Sandia National Laboratories is a...

  20. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    23, 2013-Nearly 400 Los Alamos National Laboratory employees on 47 teams received Pollution Prevention awards for protecting the environment and saving taxpayers more than 8...

  1. Sandia National Laboratories: HRSAM

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and the National Renewable Energy Laboratory (NREL) announce the publication of two new Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) reports on...

  2. Sandia National Laboratories: Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Testing Center (PV RTC), Photovoltaic Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar Newsletter, SunShot, Systems Analysis A research team that included...

  3. Sandia National Laboratories: NASA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratories (partnering with Northrup Grumman Aerospace Systems and the University of Michigan) has developed a solar electric propulsion concept capable of a wide...

  4. Facilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Some of the nation's most powerful and sophisticated facilities for energy research Argonne National Laboratory is home to some of the nation's most powerful and sophisticated...

  5. ARGONNE NATIONAL LABORATORY May

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARGONNE NATIONAL LABORATORY May 9, 1994 Light Source Note: LS234 Comparison of the APS and UGIMAG Helmholtz Coil Systems David W. Carnegie Accelerator Systems Division Advanced...

  6. Licensing | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (TDC) Division negotiates and manages license agreements on behalf of UChicago Argonne, LLC, which operates Argonne National Laboratory for the U.S. Department of Energy....

  7. Procurement | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Procurement More than 150 attend second joint Argonne-Fermilab small business fairSeptember 2, 2014 On Thursday, Aug. 28, Illinois' two national laboratories - Argonne and Fermi...

  8. Exercise Design Laboratory

    Broader source: Energy.gov [DOE]

    The Emergency Operations Training Academy (EOTA), NA 40.2, Readiness and Training, Albuquerque, NM is pleased to announce the EXR231, Exercise Design Laboratory course

  9. Sandia National Laboratories: Partnership

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Armstrong using deep level optical spectroscopy to investigate defects in the m-plane GaN. Jim is a professor ... Vermont and Sandia National Laboratories Announce Energy...

  10. 1MIT Lincoln Laboratory MIT Lincoln Laboratory

    E-Print Network [OSTI]

    Clancy, Ted

    · About the Laboratory ­ Overview ­ Research Areas ­ Demographics · The MQP program ­ Logistics Primary Field Sites White Sands Missile Range Socorro, New Mexico Reagan Test Site Kwajalein, Marshall ­ Demographics · The MQP program ­ Logistics ­ Admission ­ Summer & Full-time Employment · Past Projects #12;9MIT

  11. Laboratory Director PRINCETON PLASMA PHYSICS LABORATORY

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    .C. Zarnstorff Deputy Director for Operations A.B. Cohen Laboratory Management Council Research Council Associate Diagnostics D.W. Johnson Electrical Systems C. Neumeyer Lab Astrophysics M. Yamada, H. Ji Projects: MRX, MRI Science Education A. Post-Zwicker Quality Assurance J.A. Malsbury Tech. Transfer Patents & Publications L

  12. Commercial Fisheries Biological Laboratory

    E-Print Network [OSTI]

    , and tidal estuaries with bottom types ranging from soft mud to hard sand and rock. The Laboratory has grown research laboratories, an experimental shell- fish hatchery, administrative offices, a combined library freezer, and quick freezer. The library is limited to publications that have a direct bearing on current

  13. LABORATORY I: GEOMETRIC OPTICS

    E-Print Network [OSTI]

    Minnesota, University of

    Lab I - 1 LABORATORY I: GEOMETRIC OPTICS In this lab, you will solve several problems related to the formation of optical images. Most of us have a great deal of experience with the formation of optical images this laboratory, you should be able to: · Describe features of real optical systems in terms of ray diagrams

  14. Technical Report Computer Laboratory

    E-Print Network [OSTI]

    Haddadi, Hamed

    the opportunity to consider a physical attack, with very little to lose. We thus set out to analyse the deviceTechnical Report Number 592 Computer Laboratory UCAM-CL-TR-592 ISSN 1476-2986 Unwrapping J. Murdoch Technical reports published by the University of Cambridge Computer Laboratory are freely

  15. Reservoir Characterization Research Laboratory

    E-Print Network [OSTI]

    Texas at Austin, University of

    Reservoir Characterization Research Laboratory for Carbonate Studies Executive Summary for 2014 Outcrop and Subsurface Characterization of Carbonate Reservoirs for Improved Recovery of Remaining/Al 0.00 0.02 0.04 Eagle Ford Fm #12;#12; Reservoir Characterization Research Laboratory Research Plans

  16. January 2006 UNL Mathematics Qualifying Exam 852/970 Do seven questions. Of these at least three should be from section A and at least three from

    E-Print Network [OSTI]

    Logan, David

    January 2006 UNL Mathematics Qualifying Exam 852/970 Do seven questions. Of these at least three} such that Pi is a path from si to ti. Question 3. Prove that every planar graph G has (G) 5. Question 4

  17. CHEM333: Lab Experiment 3: Distillation and Gas Chromatography

    E-Print Network [OSTI]

    Taber, Douglass

    CHEM­333: Lab Experiment 3: Distillation and Gas Chromatography: Prelab-Assignment: read Chapters 5 and 6. Distillation is one of the most powerful techniques for purifying volatile organic compounds. Distillation is used to isolate many of life's essentials such as gasoline from oil or brandy from wine

  18. Multicomponent Adsorption and Chromatography with Uneven Saturation Capacities

    E-Print Network [OSTI]

    Gu, Tingyue

    Multicomponent Adsorption and Chromatography with Uneven Saturation Capacities Tingyue Gu, Gow, the extent of size exclusion is not the same for all the components. This often causes uneven adsorption capacity and vice versa. A study of size exclusion coupled with adsorption is a rel- atively new topic

  19. Laboratory directed research and development program FY 1999

    SciTech Connect (OSTI)

    Hansen, Todd; Levy, Karin

    2000-03-08T23:59:59.000Z

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY99.

  20. Laboratory Directed Research and Development Program FY 2001

    SciTech Connect (OSTI)

    Hansen, Todd; Levy, Karin

    2002-03-15T23:59:59.000Z

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY01.

  1. Carbon Characterization Laboratory Report

    SciTech Connect (OSTI)

    David Swank; William Windes; D.C. Haggard; David Rohrbaugh; Karen Moore

    2009-03-01T23:59:59.000Z

    The newly completed Idaho National Laboratory (INL) Carbon Characterization Laboratory (CCL) is located in Lab-C20 of the Idaho National Laboratory Research Center. This laboratory was established under the Next Generation Nuclear Plant (NGNP) Project to support graphite research and development activities. The CCL is designed to characterize and test carbon-based materials such as graphite, carbon-carbon composites, and silicon-carbide composite materials. The laboratory is fully prepared to measure material properties for nonirradiated carbon-based materials. Plans to establish the laboratory as a radiological facility within the next year are definitive. This laboratory will be modified to accommodate irradiated materials, after which it can be used to perform material property measurements on both irradiated and nonirradiated carbon-based material. Instruments, fixtures, and methods are in place for preirradiation measurements of bulk density, thermal diffusivity, coefficient of thermal expansion, elastic modulus, Young’s modulus, Shear modulus, Poisson ratio, and electrical resistivity. The measurement protocol consists of functional validation, calibration, and automated data acquisition.

  2. Studies with a laboratory atmospheric fluidized bed combustor system

    SciTech Connect (OSTI)

    Orndorff, W.W.; Su, Shi; Napier, J. [Western Kentucky Univ., Bowling Green, KY (United States)] [and others

    1996-12-31T23:59:59.000Z

    Growing public concerns over acid rain and municipal solid waste problems have created interest in the development of atmospheric fluidized bed combustion systems. A computer controlled 12-inch laboratory atmospheric fluidized bed combustor (AFBC) system has been developed at Western Kentucky University. On-line analysis by gas chromatography, Fourier-transform infrared (FTIR) spectrometry, and mass spectrometry (MS) allows extensive analysis of the flux gases. Laboratory experiments with a thermogravimetric analyzer (TGA) interfaced with FTIR and MS systems are used to screen fuel blends for runs in the AFBC system. Current experiments being conducted include co-firing blends of refuse derived fuels with coal and extended burns with coals containing different levels of chlorine.

  3. Sonication standard laboratory module

    DOE Patents [OSTI]

    Beugelsdijk, Tony (Los Alamos, NM); Hollen, Robert M. (Los Alamos, NM); Erkkila, Tracy H. (Los Alamos, NM); Bronisz, Lawrence E. (Los Alamos, NM); Roybal, Jeffrey E. (Santa Fe, NM); Clark, Michael Leon (Menan, ID)

    1999-01-01T23:59:59.000Z

    A standard laboratory module for automatically producing a solution of cominants from a soil sample. A sonication tip agitates a solution containing the soil sample in a beaker while a stepper motor rotates the sample. An aspirator tube, connected to a vacuum, draws the upper layer of solution from the beaker through a filter and into another beaker. This beaker can thereafter be removed for analysis of the solution. The standard laboratory module encloses an embedded controller providing process control, status feedback information and maintenance procedures for the equipment and operations within the standard laboratory module.

  4. Reservoir CharacterizationReservoir Characterization Research LaboratoryResearch Laboratory

    E-Print Network [OSTI]

    Texas at Austin, University of

    Reservoir CharacterizationReservoir Characterization Research LaboratoryResearch Laboratory at Austin Austin, Texas 78713Austin, Texas 78713--89248924 #12;Reservoir Characterization Research Laboratory for Carbonate Studies Research Plans for 2012 Outcrop and Subsurface Characterization of Carbonate

  5. Sandia National Laboratories: EFRC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    region where sunlight is most concentrated and to which ... Overview On November 11, 2010, in Sandia National Laboratories is home to one of the 46 multi-million dollar Energy...

  6. Sandia National Laboratories: Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, Wind Energy ALBUQUERQUE, N.M. - Sandia National Laboratories and Kirtland Air Force Base may soon share a wind farm that will provide as much as one-third of the...

  7. Brookhaven National Laboratory

    Broader source: Energy.gov [DOE]

    Site OverviewThe Brookhaven National Laboratory (BNL) was established in 1947 by the Atomic Energy Commission (AEC) (predecessor to U.S. Department of Energy [DOE]). Formerly Camp Upton, a U.S....

  8. Sandia National Laboratories: Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10, 2012, in Images Videos Energy Storage Image Gallery Energy Storage B-Roll Videos Battery Abuse Testing Laboratory (BATLab) Abuse Testing B-Roll BatLab 894 B-Roll Cell...

  9. Biosafety | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Biosafety Biosafety Links Biosafety Contacts Biosafety Office Argonne National Laboratory 9700 S. Cass Ave. Bldg. 202, Room B333 Argonne, IL 60439 USA 630-252-5191 Committee...

  10. Safety | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Argonne National Laboratory and the U.S. Department of Energy (DOE) are very concerned about the well-being of all employees. Students at the undergraduate and graduate...

  11. Idaho National Laboratory

    ScienceCinema (OSTI)

    McCarthy, Kathy

    2013-05-28T23:59:59.000Z

    INL is the leading laboratory for nuclear R&D. Nuclear engineer Dr. Kathy McCarthy talks aobut the work there and the long-term benefits it will provide.

  12. Argonne National Laboratory

    Broader source: Energy.gov [DOE]

    HISTORYThe Argonne National Laboratory (ANL) site is approximately 27 miles southwest of downtown Chicago in DuPage County, Illinois.  The 1,500 acre ANL site is completely surrounded by the 2,240...

  13. Laboratory Equipment & Supplies | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLSLaboratory Directors Laboratory Directors

  14. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-04-30T23:59:59.000Z

    To establish Department of Energy (DOE) requirements for laboratory directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation

  15. Los Alamos National Laboratory Institutes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    research interests are important to the Laboratory. Sponsoring, partnering with, and funding university professors and students in areas that are important to meet Laboratory...

  16. HD gas analysis with Gas Chromatography and Quadrupole Mass Spectrometer

    E-Print Network [OSTI]

    Ohta, T; Didelez, J -P; Fujiwara, M; Fukuda, K; Kohri, H; Kunimatsu, T; Morisaki, C; Ono, S; Rouille, G; Tanaka, M; Ueda, K; Uraki, M; Utsuro, M; Wang, S Y; Yosoi, M

    2011-01-01T23:59:59.000Z

    A gas analyzer system has been developed to analyze Hydrogen-Deuteride (HD) gas for producing frozen-spin polarized HD targets, which are used for hadron photoproduction experiments at SPring-8. Small amounts of ortho-H$_{2}$ and para-D$_{2}$ gas mixtures ($\\sim$0.01%) in the purified HD gas are a key to realize a frozen-spin polarized target. In order to obtain reliable concentrations of these gas mixtures in the HD gas, we produced a new gas analyzer system combining two independent measurements with the gas chromatography and the QMS. The para-H$_{2}$, ortho-H$_{2}$, HD, and D$_{2}$ are separated using the retention time of the gas chromatography and the mass/charge. It is found that the new gas analyzer system can measure small concentrations of $\\sim$0.01% for the otho-H$_2$ and D$_2$ with good S/N ratios.

  17. HD gas analysis with Gas Chromatography and Quadrupole Mass Spectrometer

    E-Print Network [OSTI]

    T. Ohta; S. Bouchigny; J. -P. Didelez; M. Fujiwara; K. Fukuda; H. Kohri; T. Kunimatsu; C. Morisaki; S. Ono; G. Rouille; M. Tanaka; K. Ueda; M. Uraki; M. Utsuro; S. Y. Wang; M. Yosoi

    2011-01-28T23:59:59.000Z

    A gas analyzer system has been developed to analyze Hydrogen-Deuteride (HD) gas for producing frozen-spin polarized HD targets, which are used for hadron photoproduction experiments at SPring-8. Small amounts of ortho-H$_{2}$ and para-D$_{2}$ gas mixtures ($\\sim$0.01%) in the purified HD gas are a key to realize a frozen-spin polarized target. In order to obtain reliable concentrations of these gas mixtures in the HD gas, we produced a new gas analyzer system combining two independent measurements with the gas chromatography and the QMS. The para-H$_{2}$, ortho-H$_{2}$, HD, and D$_{2}$ are separated using the retention time of the gas chromatography and the mass/charge. It is found that the new gas analyzer system can measure small concentrations of $\\sim$0.01% for the otho-H$_2$ and D$_2$ with good S/N ratios.

  18. Materials Characterization Laboratory (Fact Sheet), NREL (National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Characterization Laboratory may include: * PEMFC industry * Certification laboratories * Universities * Other National laboratories Contact Us If you are interested in...

  19. Advanced Hydride Laboratory

    SciTech Connect (OSTI)

    Motyka, T.

    1989-01-01T23:59:59.000Z

    Metal hydrides have been used at the Savannah River Tritium Facilities since 1984. However, the most extensive application of metal hydride technology at the Savannah River Site is being planned for the Replacement Tritium Facility, a $140 million facility schedules for completion in 1990 and startup in 1991. In the new facility, metal hydride technology will be used to store, separate, isotopically purify, pump, and compress hydrogen isotopes. In support of the Replacement Tritium Facility, a $3.2 million, cold,'' process demonstration facility, the Advanced Hydride Laboratory began operation in November of 1987. The purpose of the Advanced Hydride Laboratory is to demonstrate the Replacement Tritium Facility's metal hydride technology by integrating the various unit operations into an overall process. This paper will describe the Advanced Hydride Laboratory, its role and its impact on the application of metal hydride technology to tritium handling.

  20. Advanced Hydride Laboratory

    SciTech Connect (OSTI)

    Motyka, T.

    1989-12-31T23:59:59.000Z

    Metal hydrides have been used at the Savannah River Tritium Facilities since 1984. However, the most extensive application of metal hydride technology at the Savannah River Site is being planned for the Replacement Tritium Facility, a $140 million facility schedules for completion in 1990 and startup in 1991. In the new facility, metal hydride technology will be used to store, separate, isotopically purify, pump, and compress hydrogen isotopes. In support of the Replacement Tritium Facility, a $3.2 million, ``cold,`` process demonstration facility, the Advanced Hydride Laboratory began operation in November of 1987. The purpose of the Advanced Hydride Laboratory is to demonstrate the Replacement Tritium Facility`s metal hydride technology by integrating the various unit operations into an overall process. This paper will describe the Advanced Hydride Laboratory, its role and its impact on the application of metal hydride technology to tritium handling.

  1. The determination of some anions using ion chromatography and ion chromatography-graphite furnace atomic absorption spectrometry

    E-Print Network [OSTI]

    Hillman, Daniel C

    1981-01-01T23:59:59.000Z

    Spectrometry. (August 1981) Daniel C. J. Hillman, B. S. , San Diego State University Chairman of Advisory Committee: Dr. Ralph A. Zingaro Fluorine in NBS coal standards 1632 and 1632a and in a Texas lignite core sample was determined using ion... with a fluoride ion selective electrode. The fluorine concentration in the Texas lignite core sample ranged from 50 to 95 ppm F. Ion chromatography alone was shown not to be useful in the deter- mination of selenite and selenate in natural water...

  2. Digital Technology Group Computer Laboratory

    E-Print Network [OSTI]

    Cambridge, University of

    Digital Technology Group 1/20 Computer Laboratory Digital Technology Group Computer Laboratory William R Carson Building on the presentation by Francisco Monteiro Matlab #12;Digital Technology Group 2/20 Computer Laboratory Digital Technology Group Computer Laboratory The product: MATLAB® - The Language

  3. National Voluntary Laboratory Accreditation Program

    E-Print Network [OSTI]

    procedure lists all the items Handbook 150 requires be covered in a management review. The records do and Management Reviews #12;National Voluntary Laboratory Accreditation Program Pre-assessment... · A laboratory;National Voluntary Laboratory Accreditation Program Pre-assessment... · A laboratory's management review

  4. Laboratory, Valles Caldera sponsor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,sand CERN 73-11 LaboratoryLaboratory,

  5. LABORATORY III POTENTIAL ENERGY

    E-Print Network [OSTI]

    Minnesota, University of

    LABORATORY III POTENTIAL ENERGY Lab III - 1 In previous problems, you have been introduced to the concepts of kinetic energy, which is associated with the motion of an object, and internal energy, which is associated with the internal structure of a system. In this section, you work with another form of energy

  6. Pacific Northwest National Laboratory

    E-Print Network [OSTI]

    Science. Technology. Innovation. PNNL-SA-34741 Pacific Northwest National Laboratory (PNNL) is addressing cognition and learning to the development of student- centered, scenario-based training. PNNL's Pachelbel (PNNL) has developed a cognitive-based, student-centered approach to training that is being applied

  7. Technical Report Computer Laboratory

    E-Print Network [OSTI]

    Haddadi, Hamed

    for criminal activity. One general attack route to breach the security is to carry out physical attack afterTechnical Report Number 829 Computer Laboratory UCAM-CL-TR-829 ISSN 1476-2986 Microelectronic report is based on a dissertation submitted January 2009 by the author for the degree of Doctor

  8. Radiochemical Radiochemical Processing Laboratory

    E-Print Network [OSTI]

    in development, scale- up and deployment of first-of-a-kind processes to solve environmental problems in the fundamental chemistry of 4 RPL: RadiochemicalProcessingLaboratory Researchers design, build and operate small-scale-liquid suspensions. Developing Radiochemical Processes at All Scales Among the key features of the RPL are extensive

  9. Energy Systems Laboratory Groundbreaking

    ScienceCinema (OSTI)

    Hill, David; Otter, C.L.; Simpson, Mike; Rogers, J.W.;

    2013-05-28T23:59:59.000Z

    INL recently broke ground for a research facility that will house research programs for bioenergy, advanced battery systems, and new hybrid energy systems that integrate renewable, fossil and nuclear energy sources. Here's video from the groundbreaking ceremony for INL's new Energy Systems Laboratory. You can learn more about CAES research at http://www.facebook.com/idahonationallaboratory.

  10. National Laboratory Contacts

    Broader source: Energy.gov [DOE]

    Several of the U.S. Department of Energy (DOE) national laboratories host multidisciplinary transportation research centers. A wide-range of cutting-edge transportation research occurs at these facilities, funded by both DOE and cooperative research and development agreements (CRADAs) with industry

  11. LABORATORY IV OSCILLATIONS

    E-Print Network [OSTI]

    Minnesota, University of

    some of these laboratory problems before your lecturer addresses this material. It is very important, a stopwatch, a balance, a set of weights, and a computer with a video analysis application written in Lab with basic physics principles, show how you get an equation that gives the solution to the problem for each

  12. Nevis Laboratories Columbia University

    E-Print Network [OSTI]

    Detector 27 4 Data Selection 40 5 Majorana Neutrino Search Results 75 6 General Neutrino Search Results 79#12; Nevis Laboratories Columbia University Physics Department Irvington­on­Hudson, New York Search for an O(100 GeV ) Mass Right­Handed Electron Neutrino at the HERA Electron­Proton Collider Using the ZEUS

  13. ECOLOGY LABORATORY BIOLOGY 341

    E-Print Network [OSTI]

    Vonessen, Nikolaus

    Page 1 ECOLOGY LABORATORY BIOLOGY 341 Fall Semester 2008 Bighorn Sheep Rams at Bison Range National ecological data; and 3) oral and written communication skills. Thus, these ecology labs, and statistical analyses appropriate for ecological data. A major goal of this class will be for you to gain

  14. Laboratory for Atmospheric and

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    . Along with this growth came a new building on campus and a new name: the Laboratory for Atmospheric of the Sun to the outermost fringes of the solar system. With LASP's continuing operations role in the planet traditional and stable approach based on federal agency funding of research grant

  15. FUTURE LOGISTICS LIVING LABORATORY

    E-Print Network [OSTI]

    Heiser, Gernot

    FUTURE LOGISTICS LIVING LABORATORY Delivering Innovation The Future Logistics Living Lab that will provide logistics solutions for the future. The Living Lab is a demonstration, exhibition and work space by a group of logistics companies, research organisations, universities, and IT providers that includes NICTA

  16. Radiochemical Radiochemical Processing Laboratory

    E-Print Network [OSTI]

    -cycle applications. These proficiencies include extensive experience with U.S. Department of Energy tank waste.S. Department of Energy Hanford Site in south-central Washington State, the Radiochemical Processing Laboratory) thermogravimetric and calorimetric analysis microscopy (visible light, SEM, TEM, AFM) gas and thermal ionization

  17. Comprehensive online Atomic Database Management System (DBMS) with Highly Qualified Computing Capabilities

    E-Print Network [OSTI]

    Tahat, Amani

    2011-01-01T23:59:59.000Z

    The intensive need of atomic data is expanding continuously in a wide variety of applications (e.g. fusion energy and astrophysics, laser-produced, plasma researches, and plasma processing).This paper will introduce our ongoing research work to build a comprehensive, complete, up-to-date, user friendly and online atomic Database Management System (DBMS) namely called AIMS by using SQLite (http://www.sqlite.org/about.html)(8). Programming language tools and techniques will not be covered here. The system allows the generation of various atomic data based on professional online atomic calculators. The ongoing work is a step forward to bring detailed atomic model accessible to a wide community of laboratory and astrophysical plasma diagnostics. AIMS is a professional worldwide tool for supporting several educational purposes and can be considered as a complementary database of IAEA atomic databases. Moreover, it will be an exceptional strategy of incorporating the output data of several atomic codes to external ...

  18. Using Qualified Energy Conservation Bonds (QECBs) to Fund a Residential Energy Efficiency Loan Program: Case Study on Saint Louis County, MO

    SciTech Connect (OSTI)

    Zimring, Mark

    2011-06-23T23:59:59.000Z

    Qualified Energy Conservation Bonds (QECBs) are federally-subsidized debt instruments that enable state, tribal, and local government issuers to borrow money to fund a range of qualified energy conservation projects. QECBs offer issuers very attractive borrowing rates and long terms, and can fund low-interest energy efficiency loans for home and commercial property owners. Saint Louis County, MO recently issued over $10 million of QECBs to finance the Saint Louis County SAVES residential energy efficiency loan program. The county's experience negotiating QECB regulations and restrictions can inform future issuers.

  19. andliquid chromatography-tandem mass: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    using isotope dilution high performance liquid chromatography-tandem mass spectrometry. Open Access Theses and Dissertations Summary: ??A method has been developed for...

  20. Remote Sensing Laboratory - RSL

    ScienceCinema (OSTI)

    None

    2015-01-09T23:59:59.000Z

    One of the primary resources supporting homeland security is the Remote Sensing Laboratory, or RSL. The Laboratory creates advanced technologies for emergency response operations, radiological incident response, and other remote sensing activities. RSL emergency response teams are on call 24-hours a day, and maintain the capability to deploy domestically and internationally in response to threats involving the loss, theft, or release of nuclear or radioactive material. Such incidents might include Nuclear Power Plant accidents, terrorist incidents involving nuclear or radiological materials, NASA launches, and transportation accidents involving nuclear materials. Working with the US Department of Homeland Security, RSL personnel equip, maintain, and conduct training on the mobile detection deployment unit, to provide nuclear radiological security at major national events such as the super bowl, the Indianapolis 500, New Year's Eve celebrations, presidential inaugurations, international meetings and conferences, just about any event where large numbers of people will gather.

  1. Remote Sensing Laboratory - RSL

    SciTech Connect (OSTI)

    None

    2014-11-06T23:59:59.000Z

    One of the primary resources supporting homeland security is the Remote Sensing Laboratory, or RSL. The Laboratory creates advanced technologies for emergency response operations, radiological incident response, and other remote sensing activities. RSL emergency response teams are on call 24-hours a day, and maintain the capability to deploy domestically and internationally in response to threats involving the loss, theft, or release of nuclear or radioactive material. Such incidents might include Nuclear Power Plant accidents, terrorist incidents involving nuclear or radiological materials, NASA launches, and transportation accidents involving nuclear materials. Working with the US Department of Homeland Security, RSL personnel equip, maintain, and conduct training on the mobile detection deployment unit, to provide nuclear radiological security at major national events such as the super bowl, the Indianapolis 500, New Year's Eve celebrations, presidential inaugurations, international meetings and conferences, just about any event where large numbers of people will gather.

  2. Princeton Plasma Physics Laboratory:

    SciTech Connect (OSTI)

    Phillips, C.A. (ed.)

    1986-01-01T23:59:59.000Z

    This paper discusses progress on experiments at the Princeton Plasma Physics Laboratory. The projects and areas discussed are: Principal Parameters Achieved in Experimental Devices, Tokamak Fusion Test Reactor, Princeton Large Torus, Princeton Beta Experiment, S-1 Spheromak, Current-Drive Experiment, X-ray Laser Studies, Theoretical Division, Tokamak Modeling, Spacecraft Glow Experiment, Compact Ignition Tokamak, Engineering Department, Project Planning and Safety Office, Quality Assurance and Reliability, and Administrative Operations.

  3. Multivariate analysis of progressive thermal desorption coupled gas chromatography-mass spectrometry.

    SciTech Connect (OSTI)

    Van Benthem, Mark Hilary; Mowry, Curtis Dale; Kotula, Paul Gabriel; Borek, Theodore Thaddeus, III

    2010-09-01T23:59:59.000Z

    Thermal decomposition of poly dimethyl siloxane compounds, Sylgard{reg_sign} 184 and 186, were examined using thermal desorption coupled gas chromatography-mass spectrometry (TD/GC-MS) and multivariate analysis. This work describes a method of producing multiway data using a stepped thermal desorption. The technique involves sequentially heating a sample of the material of interest with subsequent analysis in a commercial GC/MS system. The decomposition chromatograms were analyzed using multivariate analysis tools including principal component analysis (PCA), factor rotation employing the varimax criterion, and multivariate curve resolution. The results of the analysis show seven components related to offgassing of various fractions of siloxanes that vary as a function of temperature. Thermal desorption coupled with gas chromatography-mass spectrometry (TD/GC-MS) is a powerful analytical technique for analyzing chemical mixtures. It has great potential in numerous analytic areas including materials analysis, sports medicine, in the detection of designer drugs; and biological research for metabolomics. Data analysis is complicated, far from automated and can result in high false positive or false negative rates. We have demonstrated a step-wise TD/GC-MS technique that removes more volatile compounds from a sample before extracting the less volatile compounds. This creates an additional dimension of separation before the GC column, while simultaneously generating three-way data. Sandia's proven multivariate analysis methods, when applied to these data, have several advantages over current commercial options. It also has demonstrated potential for success in finding and enabling identification of trace compounds. Several challenges remain, however, including understanding the sources of noise in the data, outlier detection, improving the data pretreatment and analysis methods, developing a software tool for ease of use by the chemist, and demonstrating our belief that this multivariate analysis will enable superior differentiation capabilities. In addition, noise and system artifacts challenge the analysis of GC-MS data collected on lower cost equipment, ubiquitous in commercial laboratories. This research has the potential to affect many areas of analytical chemistry including materials analysis, medical testing, and environmental surveillance. It could also provide a method to measure adsorption parameters for chemical interactions on various surfaces by measuring desorption as a function of temperature for mixtures. We have presented results of a novel method for examining offgas products of a common PDMS material. Our method involves utilizing a stepped TD/GC-MS data acquisition scheme that may be almost totally automated, coupled with multivariate analysis schemes. This method of data generation and analysis can be applied to a number of materials aging and thermal degradation studies.

  4. Smart Grid Integration Laboratory

    SciTech Connect (OSTI)

    Wade Troxell

    2011-09-30T23:59:59.000Z

    The initial federal funding for the Colorado State University Smart Grid Integration Laboratory is through a Congressionally Directed Project (CDP), DE-OE0000070 Smart Grid Integration Laboratory. The original program requested in three one-year increments for staff acquisition, curriculum development, and instrumentation â?? all which will benefit the Laboratory. This report focuses on the initial phase of staff acquisition which was directed and administered by DOE NETL/ West Virginia under Project Officer Tom George. Using this CDP funding, we have developed the leadership and intellectual capacity for the SGIC. This was accomplished by investing (hiring) a core team of Smart Grid Systems engineering faculty focused on education, research, and innovation of a secure and smart grid infrastructure. The Smart Grid Integration Laboratory will be housed with the separately funded Integrid Laboratory as part of CSUâ??s overall Smart Grid Integration Center (SGIC). The period of performance of this grant was 10/1/2009 to 9/30/2011 which included one no cost extension due to time delays in faculty hiring. The Smart Grid Integration Laboratoryâ??s focus is to build foundations to help graduate and undergraduates acquire systems engineering knowledge; conduct innovative research; and team externally with grid smart organizations. Using the results of the separately funded Smart Grid Workforce Education Workshop (May 2009) sponsored by the City of Fort Collins, Northern Colorado Clean Energy Cluster, Colorado State University Continuing Education, Spirae, and Siemens has been used to guide the hiring of faculty, program curriculum and education plan. This project develops faculty leaders with the intellectual capacity to inspire its students to become leaders that substantially contribute to the development and maintenance of Smart Grid infrastructure through topics such as: (1) Distributed energy systems modeling and control; (2) Energy and power conversion; (3) Simulation of electrical power distribution system that integrates significant quantities of renewable and distributed energy resources; (4) System dynamic modeling that considers end-user behavior, economics, security and regulatory frameworks; (5) Best practices for energy management IT control solutions for effective distributed energy integration (including security with the underlying physical power systems); (6) Experimental verification of effects of various arrangements of renewable generation, distributed generation and user load types along with conventional generation and transmission. Understanding the core technologies for enabling them to be used in an integrated fashion within a distribution network remains is a benefit to the future energy paradigm and future and present energy engineers.

  5. Ultratrace detector for hand-held gas chromatography

    DOE Patents [OSTI]

    Andresen, Brian D. (Livermore, CA); Miller, Fred S. (Bethal Island, CA)

    1999-01-01T23:59:59.000Z

    An ultratrace detector system for hand-held gas chromatography having high sensitivity, for example, to emissions generated during production of weapons, biological compounds, drugs, etc. The detector system is insensitive to water, air, helium, argon, oxygen, and C0.sub.2. The detector system is basically composed of a hand-held capillary gas chromatography (GC), an insulated heated redox-chamber, a detection chamber, and a vapor trap. For example, the detector system may use gas phase redox reactions and spectral absorption of mercury vapor. The gas chromatograph initially separates compounds that percolate through a bed of heated mercuric oxide (HgO) in a silica--or other metal--aerogel material which acts as an insulator. Compounds easily oxidized by HgO liberate atomic mercury that subsequently pass through a detection chamber which includes a detector cell, such as quartz, that is illuminated with a 254 nm ultra-violet (UV) mercury discharge lamp which generates the exact mercury absorption bands that are used to detect the liberated mercury atoms. Atomic mercury strongly absorbs 254 nm energy is therefore a specific signal for reducing compounds eluting from the capillary GC, whereafter the atomic mercury is trapped for example, in a silicon-aerogel trap.

  6. Laboratories to Explore, Explain VLBACHANDRA

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory Sandia National Laboratory Stone and Webster The Boeing Company on FIRE and fusion science accessible and up to date. A steady stream of about 150 visitors per week log

  7. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-01-08T23:59:59.000Z

    To establish the Department's, including the NNSA's, requirements for laboratory-directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation. Cancels DOE O 413.2. Canceled by DOE O 413.2B.

  8. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-04-19T23:59:59.000Z

    The Order establishes DOE requirements and responsibilities for laboratory directed research and development while providing laboratory directors with broad flexibility for program implementation. Cancels DOE O 413.2A. Admin Chg 1, 1-31-11.

  9. Laboratory compaction of cohesionless sands

    E-Print Network [OSTI]

    Delphia, John Girard

    1998-01-01T23:59:59.000Z

    on the maximum dry unit weight during compaction. Three different laboratory compaction methods were used: 1) Standard Proctor', 2) Modified Proctor; and 3) Vibrating hammer. The effects of the grain size distribution, particle shape and laboratory compaction...

  10. Laboratory Directed Research and Development Program FY2004

    SciTech Connect (OSTI)

    Hansen, Todd C.

    2005-03-22T23:59:59.000Z

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Goals that are codified in DOE's September 2003 Strategic Plan, with a primary focus on Advancing Scientific Understanding. For that goal, the Fiscal Year (FY) 2004 LDRD projects support every one of the eight strategies described in the plan. In addition, LDRD efforts support the goals of Investing in America's Energy Future (six of the fourteen strategies), Resolving the Environmental Legacy (four of the eight strategies), and Meeting National Security Challenges (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD supports Office of Science strategic plans, including the 20 year Scientific Facilities Plan and the draft Office of Science Strategic Plan. The research also supports the strategic directions periodically under review by the Office of Science Program Offices, such as strategic LDRD projects germane to new research facility concepts and new fundamental science directions.

  11. Internship Opportunities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Undergraduate Laboratory Internship Community College Internships Cooperative Education Student Research Participation Program Lee Teng Fellowship Temporary Employment...

  12. CERTS Microgrid Laboratory Test Bed

    E-Print Network [OSTI]

    Lasseter, R. H.

    2010-01-01T23:59:59.000Z

    Roy, Nancy Jo Lewis, “CERTS Microgrid Laboratory Test Bed Report:Appendix K,” http://certs.lbl.gov/CERTS_P_

  13. Sandia National Laboratories: Systems Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic, Photovoltaic Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar Newsletter, Systems Analysis The PV Performance Modeling Collaborative (PVPMC)...

  14. Sandia National Laboratories: Phenomenological Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory (NESL) Transient Nuclear Fuels Testing Radiation Effects Sciences Solar Electric Propulsion Nuclear Energy Safety Technologies Experimental Testing...

  15. Sandia National Laboratories: photovoltaic analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Computational Modeling & Simulation, Energy, Facilities, News, News & Events, Photovoltaic, Photovoltaic Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar...

  16. Created: July, 2014 Laboratory Safety Design Guide Section 3 Laboratory Ventilation

    E-Print Network [OSTI]

    Queitsch, Christine

    Created: July, 2014 Laboratory Safety Design Guide Section 3 ­ Laboratory Ventilation 3-1 Section 3 LABORATORY VENTILATION Contents A. Scope .................................................................................................................3-2 B. General Laboratory Ventilation

  17. Coordinator of Operations The University of Georgia is seeking a qualified candidate to serve as the Coordinator of Operations with the

    E-Print Network [OSTI]

    Arnold, Jonathan

    with the University of Georgia. The Archway Partnership has received funding from the Board of Regents to continueCoordinator of Operations The University of Georgia is seeking a qualified candidate to serve to bring the University of Georgia's expertise to communities and to facilitate community interaction

  18. Guidelines on Employment References Effective July 1, 1991, Florida Statute 768.095 provides qualified immunity from civil liability for employers who

    E-Print Network [OSTI]

    Wu, Shin-Tson

    Guidelines on Employment References Effective July 1, 1991, Florida Statute 768.095 provides qualified immunity from civil liability for employers who disclose information relating to the job performance of former employees to the former employees' prospective employers. The statute reads in full: 768

  19. Humidity requirements in WSCF Laboratories

    SciTech Connect (OSTI)

    Evans, R.A.

    1994-10-01T23:59:59.000Z

    The purpose of this paper is to develop and document a position on Relative Humidity (RH) requirements in the WSCF Laboratories. A current survey of equipment vendors for Organic, Inorganic and Radiochemical laboratories indicate that 25% - 80% relative humidity may meet the environmental requirements for safe operation and protection of all the laboratory equipment.

  20. Journal of Chromatography A, 1125 (2006) 7688 Separation and quantitation of water soluble cellular metabolites by

    E-Print Network [OSTI]

    Rabinowitz, Joshua D.

    2006-01-01T23:59:59.000Z

    using standard reversed-phase chromatography. MS/MS detection is achieved by scanning through numerous chromatography (LC) with detection based on absorption or emission of light [13], nuclear magnetic resonance offers the opportunity to confirm the molecu- lar formulas of the specific compounds being measured

  1. Lipase hydration state in the gas phase: Sorption isotherm measurements and inverse gas chromatography.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Lipase hydration state in the gas phase: Sorption isotherm measurements and inverse gas Rochelle, Cedex 01, France. Keywords: Water, Lipase, Adsorption, Inverse Gas Chromatography, Solid/Gas@univ-lr.fr Fax : +33 5 46 45 82 65 Abbreviations: IGC, Inverse Gas Chromatography aW, water thermodynamic

  2. Manufacturing Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Manufacturing Laboratory at the Energy Systems Integration Facility. The Manufacturing Laboratory at NREL's Energy Systems Integration Facility (ESIF) focuses on developing methods and technologies that will assist manufacturers of hydrogen and fuel cell technologies, as well as other renewable energy technologies, to scale up their manufacturing capabilities to volumes that meet DOE and industry targets. Specifically, the manufacturing activity is currently focused on developing and validating quality control techniques to assist manufacturers of low temperature and high temperature fuel cells in the transition from low to high volume production methods for cells and stacks. Capabilities include initial proof-of-concept studies through prototype system development and in-line validation. Existing diagnostic capabilities address a wide range of materials, including polymer films, carbon and catalyst coatings, carbon fiber papers and wovens, and multi-layer assemblies of these materials, as well as ceramic-based materials in pre- or post-fired forms. Work leading to the development of non-contact, non-destructive techniques to measure critical dimensional and functional properties of fuel cell and other materials, and validation of those techniques on the continuous processing line. This work will be supported by materials provided by our partners. Looking forward, the equipment in the laboratory is set up to be modified and extended to provide processing capabilities such as coating, casting, and deposition of functional layers, as well as associated processes such as drying or curing. In addition, continuous processes are used for components of organic and thin film photovoltaics (PV) as well as battery technologies, so synergies with these important areas will be explored.

  3. Purdue Hydrogen Systems Laboratory

    SciTech Connect (OSTI)

    Jay P Gore; Robert Kramer; Timothee L Pourpoint; P. V. Ramachandran; Arvind Varma; Yuan Zheng

    2011-12-28T23:59:59.000Z

    The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up. Efforts continued to explore existing catalytic methods involving nano catalysts for capture of CO2 from the fermentation process.

  4. Princeton Plasma Physics Laboratory

    SciTech Connect (OSTI)

    Not Available

    1990-01-01T23:59:59.000Z

    This report discusses the following topics: principal parameters achieved in experimental devices fiscal year 1990; tokamak fusion test reactor; compact ignition tokamak; Princeton beta experiment- modification; current drive experiment-upgrade; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma processing: deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for fiscal year 1990; graduate education; plasma physics; graduate education: plasma science and technology; science education program; and Princeton Plasma Physics Laboratory reports fiscal year 1990.

  5. gangh | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., Decembergangh Ames Laboratory Profile Gang Han

  6. garberc | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., Decembergangh Ames Laboratory Profile Gang

  7. jbobbitt | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , (Energy Informationjbobbitt Ames Laboratory Profile

  8. jboschen | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , (Energy Informationjbobbitt Ames Laboratory

  9. kmbryden | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , (Energy9 Evaluation of thekmbryden Ames Laboratory

  10. nalms | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , (Energy97 UpperJointmoveLINQnalms Ames Laboratory

  11. rluyendi | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, ,Development ofrluyendi Ames Laboratory Profile Rudi

  12. rmalmq | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, ,Development ofrluyendi Ames Laboratory Profile

  13. rodgers | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, ,Development ofrluyendi Ames Laboratory

  14. rofox | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, ,Development ofrluyendi Ames LaboratoryComparisons

  15. seliger | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, ,Development1 Comparison ofseliger Ames Laboratory

  16. FY 2008 Laboratory Table

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Department of.pdf6-OPAMDepartment ofAppropriationBudgetLaboratory Table

  17. FY 2011 Laboratory Table

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Department of.pdf6-OPAMDepartment6 FY 2007 FY 2008State71Laboratory

  18. Laboratory Organization Chart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLSLaboratory Directors Laboratory

  19. Laboratory announces 2008 Fellows

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLSLaboratory Directors LaboratoryPlanningR&DLab

  20. Laboratory Shuttle Bus Routes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,sand CERN 73-11 Laboratory IRear bike

  1. Laboratory disputes citizens' lawsuit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,sand CERN 73-11 Laboratory IRearLab

  2. Sandia National Laboratories: Agreements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratorySoftware100 ResilientHistory ViewAgreements

  3. Sandia National Laboratories: Careers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratorySoftware100 ResilientHistory

  4. Sandia National Laboratories: Locations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratorySoftware100LifeAnnouncementsLocations

  5. Lawrence Livermore National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu,IntelligenceYou are hereNews item slideshowLaboratory

  6. amdavis | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhatY-12Zero Energyamdavis Ames Laboratory Profile

  7. andresg | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhatY-12Zero Energyamdavis Amesandresg Ames Laboratory

  8. cbenetti | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., ..., ,+ . :, ,. .,3cbenetti Ames Laboratory

  9. constant | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., ..., ,+ . :,2013constant Ames Laboratory Profile

  10. Independent Oversight Review, Los Alamos National Laboratory...

    Energy Savers [EERE]

    National Laboratory - November 2013 Independent Oversight Review, Los Alamos National Laboratory - November 2013 November 2013 Review of the Los Alamos National Laboratory...

  11. National Laboratory Liaisons | Department of Energy

    Office of Environmental Management (EM)

    Laboratory Liaisons National Laboratory Liaisons The following U.S. Department of Energy national laboratory liaisons serve as primary contacts for the Federal Energy...

  12. Independent Oversight Review, Argonne National Laboratory - November...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Argonne National Laboratory - November 2011 Independent Oversight Review, Argonne National Laboratory - November 2011 November 2011 Review of the Argonne National Laboratory...

  13. ASSESSMENT OF MARKER PROTEINS IDENTIFIED IN WHOLE CELL EXTRACTS FOR BACTERIAL SPECIATION USING LIQUID CHROMATOGRAPHY ELECTROSPRAY IONIZATION TANDEM MASS SPECTROMETRY

    SciTech Connect (OSTI)

    Kooken, Jennifer M.; Fox, Karen F.; Fox, Alvin; Wunschel, David S.

    2014-02-02T23:59:59.000Z

    ASSESSMENT OF MARKER PROTEINS IDENTIFIED IN WHOLE CELL EXTRACTS FOR BACTERIAL SPECIATION USING LIQUID CHROMATOGRAPHY ELECTROSPRAY IONIZATION TANDEM MASS SPECTROMETRY

  14. Creating the laboratory`s future; A strategy for Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    NONE

    1997-09-01T23:59:59.000Z

    ``Creating The Laboratory`s Future`` describes Livermore`s roles and responsibilities as a Department of Energy (DOE) national laboratory and sets the foundation for decisions about the Laboratory`s programs and operations. It summarizes Livermore`s near-term strategy, which builds on recent Lab achievements and world events affecting their future. It also discusses their programmatic and operational emphases and highlights program areas that the authors believe can grow through application of Lab science and technology. Creating the Laboratory`s Future reflects their very strong focus on national security, important changes in the character of their national security work, major efforts are under way to overhaul their administrative and operational systems, and the continuing challenge of achieving national consensus on the role of the government in energy, environment, and the biosciences.

  15. Sandia National Laboratories: Sandia Battery Abuse Testing Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Battery Abuse Testing Laboratory Sandia Transportation-Energy Research Project Funded as a Part of DOE's "EV Everywhere" Funding Program On January 21, 2014, in...

  16. Sandia National Laboratories: Grand Challenge Laboratory-Directed...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grand Challenge Laboratory-Directed Research and Development project Recent Sandia Secure, Scalable Microgrid Advanced Controls Research Accomplishments On March 3, 2015, in...

  17. Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Dogliani, Harold O [Los Alamos National Laboratory

    2011-01-19T23:59:59.000Z

    The purpose of the briefing is to describe general laboratory technical capabilities to be used for various groups such as military cadets or university faculty/students and post docs to recruit into a variety of Los Alamos programs. Discussed are: (1) development and application of high leverage science to enable effeictive, predictable and reliability outcomes; (2) deter, detect, characterize, reverse and prevent the proliferation of weapons of mass destruction and their use by adversaries and terrorists; (3) modeling and simulation to define complex processes, predict outcomes, and develop effective prevention, response, and remediation strategies; (4) energetic materials and hydrodynamic testing to develop materials for precise delivery of focused energy; (5) materials cience focused on fundamental understanding of materials behaviors, their quantum-molecular properties, and their dynamic responses, and (6) bio-science to rapidly detect and characterize pathogens, to develop vaccines and prophylactic remedies, and to develop attribution forensics.

  18. National Renewable Energy Laboratory's Energy Systems Integration...

    Energy Savers [EERE]

    National Renewable Energy Laboratory's Energy Systems Integration Facility Overview National Renewable Energy Laboratory's Energy Systems Integration Facility Overview This...

  19. Argonne National Laboratory Scientists Invent Breakthrough Technique...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Argonne National Laboratory Scientists Invent Breakthrough Technique in Nanotechnology Argonne National Laboratory Scientists Invent Breakthrough Technique in Nanotechnology March...

  20. Sandia National Laboratories: wind manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at the Wind Energy Manufacturing Laboratory-a joint effort of researchers from TPI Composites, a Scottsdale, Arizona-based company that operates a turbine blade factory in...

  1. Two Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    event in Albuquerque LOS ALAMOS, N.M., March 26, 2015-Los Alamos National Laboratory's Nuclear Material Control and Accountability Group and the Quality and Performance...

  2. Sandia National Laboratories: Sandia partnerships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, News, Partnership, Renewable Energy, Wind Energy Researchers at the Wind Energy Manufacturing Laboratory-a joint effort of researchers from TPI Composites, a Scottsdale,...

  3. GUIDELINES FOR SAFE LABORATORY PRACTICES

    E-Print Network [OSTI]

    Haller, Gary L.

    University's Chemical Hygiene Plan (CHP). The CHP was written to comply with the Occupational Safety in Laboratories (29 CFR 1910.1450)). The CHP is the most detailed

  4. Sandia National Laboratories: Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10, 2012, in Concentrating Solar Power, EC, National Solar Thermal Test Facility, Renewable Energy Dr. David Danielson visited Sandia National Laboratories and toured the National...

  5. Smart Grid | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Researchers from Argonne National Laboratory modeled several scenarios to add more solar power to the electric grid, using real-world data from the southwestern power...

  6. Sandia National Laboratories: System Impacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Hosted by Sandia National Laboratories and the Electric Power Research Institute (EPRI) Inverter reliability drives project life cycle costs and plant performance. This...

  7. Sandia National Laboratories: Inverter Reliability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Hosted by Sandia National Laboratories and the Electric Power Research Institute (EPRI) Inverter reliability drives project life cycle costs and plant performance. This...

  8. Sandia National Laboratories: Component Reliability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Hosted by Sandia National Laboratories and the Electric Power Research Institute (EPRI) Inverter reliability drives project life cycle costs and plant performance. This...

  9. Sandia National Laboratories: Carbon Capture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from improved climate models to performance models for underground waste storage to 3D printing and digital rock physics. Marianne Walck (Director ... Federal Laboratory...

  10. Paul Kearns | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at the Golden Field Office, Golden, Colorado, and manager of the National Renewable and Environmental Laboratory and Solar Energy Research Institute (SERI) Area Office. Closer to...

  11. Sandia National Laboratories: Solar Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, Solar, Solar Newsletter A team from Sandia National Laboratories' (SNL) National Solar Thermal Test Facility (NSTTF) recently won a first place Excellence Award in the...

  12. Sandia National Laboratories: Energy Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    States. I&C systems monitor the safe, reliable and secure generation and delivery of electricity and could have potential cyber vulnerabilities. At Sandia National Laboratories,...

  13. Sandia National Laboratories: solar power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interactive Tour Operated by Sandia National Laboratories for the U.S. Department of Energy (DOE), the National Solar Thermal Test Facility (NSTTF) is the only test facility...

  14. Thomas Wallner | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Omnivorous Engine Argonne National Laboratory's Omnivorous Engine Browse by Topic Energy Energy efficiency Vehicles Alternative fuels Automotive engineering Biofuels Diesel Fuel...

  15. Aymeric Rousseau | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    School in La Rochelle, France in 1997. After working for PSA Peugeot Citroen in the Hybrid Electric Vehicle research department, he joined Argonne National Laboratory in 1999...

  16. Sandia National Laboratories: Solar Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Concentrating Solar Power, Customers & Partners, Energy, News, Partnership, Renewable Energy, Solar Areva Solar is collaborating with Sandia National Laboratories on a new...

  17. Sandia National Laboratories: Solar Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interactive Tour Operated by Sandia National Laboratories for the U.S. Department of Energy (DOE), the National Solar Thermal Test Facility (NSTTF) is the only test facility...

  18. Sandia National Laboratories: Solar Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air Force Research Laboratory Testing On August 17, 2012, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, Renewable Energy, Solar...

  19. Sandia National Laboratories: Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News, News & Events, Photovoltaic, Photovoltaic Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar Newsletter, SunShot Sandia's Kenneth Armijo (in the...

  20. Sandia National Laboratories: Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2014, in Computational Modeling & Simulation, Energy, News, News & Events, Partnership, Renewable Energy, Water Power Sandia and the National Renewable Energy Laboratory (NREL)...

  1. Sandia National Laboratories: Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sales On February 25, 2015, in Energy, News, News & Events, Partnership, Photovoltaic, Renewable Energy, Solar, Systems Analysis A Lawrence Berkeley National Laboratory (LBNL)...

  2. Sandia National Laboratories: Solar Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2014 Sandia Corporation | Questions & Comments | Privacy & Security U.S. Department of Energy National Nuclear Security Administration Sandia National Laboratories is a...

  3. Sandia National Laboratories: Semiconductor Revolution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratories and Chief Scientist of the Energy Frontier Research Center for Solid-State Lighting Science Date: March 31, 2010 Event: Lecture at Albuquerque Academy...

  4. Beyond Laboratories, Beyond Being Green

    Broader source: Energy.gov (indexed) [DOE]

    and Construction of High Performance, Low Energy Laboratories What is Labs21? * Genesis: Ann Arbor, Michigan ESPC * A joint EPADOE partnership program to improve the energy and...

  5. Sandia National Laboratories: thermal management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    management 2013 Inverter Reliability Workshop On May 31, 2013, in Hosted by Sandia National Laboratories and the Electric Power Research Institute (EPRI) Inverter reliability...

  6. Sandia National Laboratories: Solar Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Testing Center (PV RTC), Photovoltaic Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar Newsletter, SunShot, Systems Analysis A research team that included...

  7. Sandia National Laboratories: Solar Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News & Events, Photovoltaic, Photovoltaic Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar Newsletter, SunShot Sandia's Kenneth Armijo (in the Photovoltaic &...

  8. News Room | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Room Argonne Associate Laboratory Director for Energy and Global Security Mark Peters, left, signs a memorandum of understanding with Nadya Bliss, director of the Global...

  9. Media Contacts | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Media Contacts Christopher J. Kramer Argonne National Laboratory Christopher J. Kramer is the manager of media relations and external affairs for Argonne. Contact him at...

  10. Internal Applicants | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory Argonne Login Service Please log in to continue Username * Enter your ANL domain account username. Password * Enter the password that accompanies your...

  11. Ray Bair | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    science, computational and laboratory research Large scale applications of high performance computing and communications News FLC awards researchers for transfer of engine...

  12. Sandia National Laboratories: Carbon Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (SO2), nitrous oxides (NOx), mercury, and fine particulate matter. Carbon dioxide (CO2) is always a byproduct of combustion. ... Geomechanics Laboratory On April 7, 2011,...

  13. Sandia National Laboratories: advanced materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory, Concentrating Solar Power, Energy, Energy Storage, Facilities, National Solar Thermal Test Facility, News, News & Events, Renewable Energy, Solar, Systems Engineering...

  14. Sandia National Laboratories: Solar Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MEPV Publications MEPV Awards Researchers at Sandia National Laboratories are pioneering solar photovoltaic (PV) technologies that are cheaper to produce and easier to install...

  15. Sandia National Laboratories: News & Events

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic, Photovoltaic Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar Newsletter, SunShot The state of the art in PV system monitoring is relatively...

  16. Sandia National Laboratories: materials technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Researchers Win CSP:ELEMENTS Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy Storage, Facilities, National...

  17. Laboratory directed research and development program FY 2003

    SciTech Connect (OSTI)

    Hansen, Todd

    2004-03-27T23:59:59.000Z

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. In FY03, Berkeley Lab was authorized by DOE to establish a funding ceiling for the LDRD program of $15.0 M, which equates to about 3.2% of Berkeley Lab's FY03 projected operating and capital equipment budgets. This funding level was provided to develop new scientific ideas and opportunities and allow the Berkeley Lab Director an opportunity to initiate new directions. Budget constraints limited available resources, however, so only $10.1 M was expended for operating and $0.6 M for capital equipment (2.4% of actual Berkeley Lab FY03 costs). In FY03, scientists submitted 168 proposals, requesting over $24.2 M in operating funding. Eighty-two projects were funded, with awards ranging from $45 K to $500 K. These projects are summarized in Table 1.

  18. Preventing Laboratory FiresPreventing Laboratory Fires AgendaAgenda

    E-Print Network [OSTI]

    Farritor, Shane

    June 2006fire June 2006 #12;Hamilton HallHamilton Hall September 1992September 1992 Explosion Rm. 619Behlen Explosion 2002Explosion 2002 Explosion in ventilationExplosion in ventilation hood, no fire orhood, no firePreventing Laboratory FiresPreventing Laboratory Fires #12;AgendaAgenda Flash over VideoFlash over

  19. Vacuum Systems Consensus Guideline for Department of Energy Accelerator Laboratories

    SciTech Connect (OSTI)

    Casey,R.; Haas, E.; Hseuh, H-C.; Kane, S.; Lessard, E.; Sharma, S.; Collins, J.; Toter, W. F.; Olis, D. R.; Pushka, D. R.; Ladd, P.; Jobe, R. K.

    2008-09-09T23:59:59.000Z

    Vacuum vessels, including evacuated chambers and insulated jacketed dewars, can pose a potential hazard to equipment and personnel from collapse, rupture due to back-fill pressurization, or implosion due to vacuum window failure. It is therefore important to design and operate vacuum systems in accordance with applicable and sound engineering principles. 10 CFR 851 defines requirements for pressure systems that also apply to vacuum vessels subject to back-fill pressurization. Such vacuum vessels are potentially subject to the requirements of the American Society of Mechanical Engineers (ASME) Pressure Vessel Code Section VIII (hereafter referred to as the 'Code'). However, the scope of the Code excludes vessels with internal or external operating pressure that do not exceed 15 pounds per square inch gauge (psig). Therefore, the requirements of the Code do not apply to vacuum systems provided that adequate pressure relief assures that the maximum internal pressure within the vacuum vessel is limited to less than 15 psig from all credible pressure sources, including failure scenarios. Vacuum vessels that cannot be protected from pressurization exceeding 15 psig are subject to the requirements of the Code. 10 CFR 851, Appendix A, Part 4, Pressure Safety, Section C addresses vacuum system requirements for such cases as follows: (c) When national consensus codes are not applicable (because of pressure range, vessel geometry, use of special materials, etc.), contractors must implement measures to provide equivalent protection and ensure a level of safety greater than or equal to the level of protection afforded by the ASME or applicable state or local code. Measures must include the following: (1) Design drawings, sketches, and calculations must be reviewed and approved by a qualified independent design professional (i.e., professional engineer). Documented organizational peer review is acceptable. (2) Qualified personnel must be used to perform examinations and inspections of materials, in-process fabrications, non-destructive tests, and acceptance test. (3) Documentation, traceability, and accountability must be maintained for each unique pressure vessel or system, including descriptions of design, pressure conditions, testing, inspection, operation, repair, and maintenance. The purpose of this guideline is to establish a set of expectations and recommendations which will satisfy the requirements for vacuum vessels in general and particularly when an equivalent level of safety as required by 10 CFR 851 must be provided. It should be noted that these guidelines are not binding on DOE Accelerator Laboratories and that other approaches may be equally acceptable in addressing the Part 851 requirements.

  20. COMPARATIVE MEDICINE LABORATORY ANIMAL FACILITIES

    E-Print Network [OSTI]

    Krovi, Venkat

    5.A.6 COMPARATIVE MEDICINE LABORATORY ANIMAL FACILITIES STANDARD OPERATING PROCEDURE for REPORTING PHYSICAL PLANT AND ENVIRONMENTAL CONDITIONS ABNORMALITIES AT THE COMPARATIVE MEDICINE LABORATORY ANIMAL investigator to keep her/him informed of the progress or resolution of the problem. #12;

  1. User Manual Frick Chemistry Laboratory

    E-Print Network [OSTI]

    Torquato, Salvatore

    the atrium connects the laboratory wing with the administrative offices. This provides a light-filled space to make the new Frick Chemistry Laboratory (and the surrounding natural sciences neighborhood) one technologies that reduce energy demand and con- serve water. The design and construction teams have implemented

  2. Hybrid & Hydrogen Vehicle Research Laboratory

    E-Print Network [OSTI]

    Lee, Dongwon

    Hybrid & Hydrogen Vehicle Research Laboratory www.vss.psu.edu/hhvrl Joel R. Anstrom, Director 201 The Pennsylvania Transportation Institute Hybrid and Hydrogen Vehicle Research Laboratory will contribute to the advancement of hybrid and hydrogen vehicle technology to promote the emerging hydrogen economy by providing

  3. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-04-19T23:59:59.000Z

    The order establishes DOE requirements for laboratory directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation. Cancels DOE O 413.3A. Admin Chg 1, dated 1-31-11, cancels DOE O 413.3B. Certified 7-14-2011.

  4. National Voluntary Laboratory Accreditation Program

    E-Print Network [OSTI]

    National Voluntary Laboratory Accreditation Program NVLAP Assessor Training NIST Handbook 150 ISO/IEC ­ September 24, 2013 2 ISO/IEC 17025:2005 #12;National Voluntary Laboratory Accreditation Program General or electronic documentation of facts or events Sources: ISO /IEC Directives, Part 2, 2004 ISO/IEC 17000

  5. Statistical Laboratory & Department of Statistics

    E-Print Network [OSTI]

    by the American Statistical Association. Dean Isaacson and Mark Kaiser were instrumental in garnering a NationalStatistical Laboratory & Department of Statistics Annual Report July 1, 2002 to June 30, 2003 IOWA Chair of the Department of Statistics and Director of the Statistical Laboratory in November, 2002. Dean

  6. Development of Dual-Electrode Amperometric Detectors for Liquid Chromatography and Capillary Electrophoresis

    E-Print Network [OSTI]

    Dorris, Megan

    2013-05-31T23:59:59.000Z

    Abstract The body of this research was focused on the use and development dual-electrode detection schemes for liquid chromatography and capillary electrophoresis. These detection schemes were developed to investigate redox chemistries...

  7. Measuring Deuterium Enrichment of Glucose Hydrogen Atoms by Gas Chromatography/Mass Spectrometry

    E-Print Network [OSTI]

    Antoniewicz, Maciek R.

    We developed a simple and accurate method for determining deuterium enrichment of glucose hydrogen atoms by electron impact gas chromatography mass spectrometry (GC/MS). First, we prepared 18 derivatives of glucose and ...

  8. Liquid chromatography/Fourier transform IR spectrometry interface flow cell

    DOE Patents [OSTI]

    Johnson, Charles C. (Fairfield, OH); Taylor, Larry T. (Blacksburg, VA)

    1986-01-01T23:59:59.000Z

    A zero dead volume (ZDV) microbore high performance liquid chromatography (.mu.HPLC)/Fourier transform infrared (FTIR) interface flow cell includes an IR transparent crystal having a small diameter bore therein through which a sample liquid is passed. The interface flow cell further includes a metal holder in combination with a pair of inner, compressible seals for directly coupling the thus configured spectrometric flow cell to the outlet of a .mu.HPLC column end fitting to minimize the transfer volume of the effluents exiting the .mu.HPLC column which exhibit excellent flow characteristics due to the essentially unencumbered, open-flow design. The IR beam passes transverse to the sample flow through the circular bore within the IR transparent crystal, which is preferably comprised of potassium bromide (KBr) or calcium fluoride (CaF.sub.2), so as to minimize interference patterns and vignetting encountered in conventional parallel-plate IR cells. The long IR beam pathlength and lensing effect of the circular cross-section of the sample volume in combination with the refractive index differences between the solvent and the transparent crystal serve to focus the IR beam in enhancing sample detection sensitivity by an order of magnitude.

  9. Liquid chromatography/Fourier transform IR spectrometry interface flow cell

    DOE Patents [OSTI]

    Johnson, C.C.; Taylor, L.T.

    1985-01-04T23:59:59.000Z

    A zero dead volume (ZDV) microbore high performance liquid chromatography (..mu.. HPLC)/Fourier transform infrared (FTIR) interface flow cell includes an IR transparent crystal having a small diameter bore therein through which a sample liquid is passed. The interface flow cell further includes a metal holder in combination with a pair of inner, compressible seals for directly coupling the thus configured spectrometric flow cell to the outlet of a ..mu.. HPLC column end fitting to minimize the transfer volume of the effluents exiting the ..mu.. HPLC column which exhibit excellent flow characteristics due to the essentially unencumbered, open-flow design. The IR beam passes transverse to the sample flow through the circular bore within the IR transparent crystal, which is preferably comprised of potassium bromide (KBr) or calcium fluoride (CaF/sub 2/), so as to minimize interference patterns and vignetting encountered in conventional parallel-plate IR cells. The long IR beam pathlength and lensing effect of the circular cross-section of the sample volume in combination with the refractive index differences between the solvent and the transparent crystal serve to focus the IR beam in enhancing sample detection sensitivity by an order of magnitude.

  10. Optical Characterization Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Optical Characterization Laboratory at the Energy Systems Integration Facility. The Optical Characterization Laboratory at NREL's Energy Systems Integration Facility (ESIF) conducts optical characterization of large solar concentration devices. Concentration solar power (CSP) mirror panels and concentrating solar systems are tested with an emphasis is on measurement of parabolic trough mirror panels. The Optical Characterization Laboratory provides state-of-the-art characterization and testing capabilities for assessing the optical surface quality and optical performance for various CSP technologies including parabolic troughs, linear Fresnel, dishes, and heliostats.

  11. Qualifying Exams Writers List

    E-Print Network [OSTI]

    2014-10-03T23:59:59.000Z

    Wang. DasGupta Garofalo. Donnelly. Smith. Rice. Aug 2005. Dasin. Banuelos. Lipman. Wilkerson. Davis. Petrosyan. McClure. Jan 2005. Lempert. Neugebauer.

  12. Who qualifies for SAGE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (four preferred). Students with a quantitative background and some introduction to geophysics, though they need not be geophysics majors Math and physics majors, and other...

  13. Qualifying Energy Conservation Bonds

    E-Print Network [OSTI]

    Briggs, J.

    2013-01-01T23:59:59.000Z

    ESL-KT-13-12-39 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 Allocated Utilized Arizona $ 67 mm $ 16 mm Arkansas $ 30 mm $ 0 mm California $381 mm $275 mm Colorado $ 51 mm $ 43 mm Florida $190 mm... $ 0 mm Georgia $100 mm $ 5 mm Illinois $134 mm $ 50 mm Kansas $ 29 mm $ 29 mm Louisiana $ 45 mm $ 30 mm Michigan $104 mm $ 11 mm Mississippi $ 30 mm $ 0 mm Oklahoma $ 38 mm $ 0 mm Washington $ 68 mm $ 40 mm TEXAS $252 mm $ 16...

  14. Statistical Laboratory & Department of Statistics

    E-Print Network [OSTI]

    Statistical Laboratory & Department of Statistics Annual Report July 1, 2005 to December 31, 2006...............................................33 Statistical Computing Section ......................................34 CSSM and statistical methodology in the nutritional sciences. We were also very pleased to secure a permanent lecturer

  15. Laboratory and New Mexico Consortium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    USDA awards 1 million eor e. coli research by Los Alamos National Laboratory and New Mexico Consortium February 29, 2012 LOS ALAMOS, New Mexico, February 29, 2012-Researchers from...

  16. Laboratories to Explore, Explain VLBACHANDRA

    E-Print Network [OSTI]

    National Laboratory Stone and Webster The Boeing Company University of Illinois University of Wisconsin #12 accessible and up to date. A steady stream of about 150 visitors per week log on to the FIRE web site since

  17. Laboratories to Explore, Explain VLBACHANDRA

    E-Print Network [OSTI]

    Laboratory Stone and Webster The Boeing Company University of Illinois University of Wisconsin #12;NSO to date. A steady stream of about 150 visitors per week log on to the FIRE web site since the site

  18. Laboratories to Explore, Explain VLBACHANDRA

    E-Print Network [OSTI]

    Laboratory Stone and Webster The Boeing Company University of Illinois University of Wisconsin #12;NSO visitors per week logs on to the FIRE web site since the site was initiated in early July, 1999. #12

  19. Strategic Technology JET PROPULSION LABORATORY

    E-Print Network [OSTI]

    Waliser, Duane E.

    Strategic Technology Directions JET PROPULSION LABORATORY National Aeronautics and Space Administration 2 0 0 9 #12;© 2009 California Institute of Technology. Government sponsorship acknowledged. #12;Strategic Technology Directions 2009 offers a distillation of technologies, their links to space missions

  20. Welcome to the Ames Laboratory

    ScienceCinema (OSTI)

    King, Alex

    2013-03-01T23:59:59.000Z

    Alex King, director of The Ames Laboratory, discusses the state of the Lab for 2011, the goals of the Lab and the importance of the research taking place here.

  1. Brookhaven National Laboratory Number: Revision

    E-Print Network [OSTI]

    Ohta, Shigemi

    NATIONAL LABORATORY LASER CONTROLLED AREA STANDARD OPERATING PROCEDURE (SOP) This document defines LASER OPERATIONS Operation Maintenance Service Specific Operation Fiber Optics LASER SYSTEM HAZARD the safety management program for the laser system listed below. All American National Standard Institute

  2. 3M Corporation Abbott Laboratories

    E-Print Network [OSTI]

    Napier, Terrence

    . Agilent Technologies, Inc. Air Products Foundation Alaska Airlines Albemarle Corporation Alcoa Foundation Energy Group, Inc. Corning Incorporated Foundation Crayola, LLC Deloitte Foundation Delta Air Lines3M Corporation Abbott Laboratories Adage Capital Management, LP Adams Electric Cooperative, Inc

  3. Laboratory Experiments and their Applicability 

    E-Print Network [OSTI]

    Steinhaus, Thomas; Jahn, Wolfram

    2007-11-14T23:59:59.000Z

    In conjunction with the Dalmarnock Fire Tests a series of laboratory tests have been conducted at the BRE Centre for Fire Safety Engineering at the University of Edinburgh (UoE) in support of the large scale tests. These ...

  4. Contact Us | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Us Address and phone Argonne National Laboratory 9700 S. Cass Avenue Lemont, IL 60439. Phone: 630252-2000 For members of the news media News releases online Argonne media...

  5. Welcome to the Ames Laboratory

    SciTech Connect (OSTI)

    King, Alex

    2012-01-01T23:59:59.000Z

    Alex King, director of The Ames Laboratory, discusses the state of the Lab for 2011, the goals of the Lab and the importance of the research taking place here.

  6. Laboratory directed research and development

    SciTech Connect (OSTI)

    Not Available

    1991-11-15T23:59:59.000Z

    The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory's R D capabilities, and further the development of its strategic initiatives. Among the aims of the projects supported by the Program are establishment of engineering proof-of-principle''; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these project are closely associated with major strategic thrusts of the Laboratory as described in Argonne's Five Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne. Areas of emphasis are (1) advanced accelerator and detector technology, (2) x-ray techniques in biological and physical sciences, (3) advanced reactor technology, (4) materials science, computational science, biological sciences and environmental sciences. Individual reports summarizing the purpose, approach, and results of projects are presented.

  7. PHYSICS 122 LABORATORY (Winter, 2014)

    E-Print Network [OSTI]

    Yoo, S. J. Ben

    - 1 - PHYSICS 122 LABORATORY (Winter, 2014) COURSE GOALS 1. Learn how) 3. W. R. Leo, Techniques for Nuclear and Particle Physics Experiments, Springer Noise (Tyson ­ Mitchell) Continuous-Wave Nuclear Magnetic Resonance (Chiang

  8. PHYSICS 122 LABORATORY (Winter, 2015)

    E-Print Network [OSTI]

    Yoo, S. J. Ben

    - 1 - PHYSICS 122 LABORATORY (Winter, 2015) COURSE GOALS 1. Learn how for Nuclear and Particle Physics Experiments, Springer-Verlag, 2nd edition. (UCD Library call) Continuous-Wave Nuclear Magnetic Resonance (Chiang - Stenger) Pulsed Nuclear Magnetic

  9. with Oak Ridge National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an industry or university through other means-we are committed to outcomes that create win-win opportunities for the external organization as well as the laboratory. We welcome...

  10. Gallium Safety in the Laboratory

    SciTech Connect (OSTI)

    Cadwallader, L.C.

    2003-05-07T23:59:59.000Z

    A university laboratory experiment for the US Department of Energy magnetic fusion research program required a simulant for liquid lithium. The simulant choices were narrowed to liquid gallium and galinstan (Ga-In-Sn) alloy. Safety information on liquid gallium and galinstan were compiled, and the choice was made to use galinstan. A laboratory safety walkthrough was performed in the fall of 2002 to support the galinstan experiment. The experiment has been operating successfully since early 2002.

  11. Laborlandschaft : redesigning the industrial laboratory module

    E-Print Network [OSTI]

    Farley, Alexander H. (Alexander Hamilton)

    2014-01-01T23:59:59.000Z

    This thesis proposes to redesign the industrial pharmaceutical laboratory typology by rethinking the composition of the laboratory module; the smallest functional sub-unit of the laboratory type. The design for this thesis ...

  12. MITSUBISHI ELECTRIC RESEARCH LABORATORIES! Cambridge, Massachusetts!

    E-Print Network [OSTI]

    © MERL MITSUBISHI ELECTRIC RESEARCH LABORATORIES! Cambridge, Massachusetts! Petros Boufounos Fourier Methods in Array Processing 2/18/2013 ... #12;© MERL MITSUBISHI ELECTRIC RESEARCH LABORATORIES of basic models and methods #12;© MERL MITSUBISHI ELECTRIC RESEARCH LABORATORIES! (Linearized) Wave

  13. National Renewable Energy Laboratory Analysis Capabilities

    E-Print Network [OSTI]

    National Renewable Energy Laboratory Analysis Capabilities Overview The National Renewable Energy Laboratory (NREL) is the nation's primary laboratory for renewable energy and energy efficiency research and development (R&D). NREL

  14. Energy Storage Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Energy Storage Laboratory at the Energy Systems Integration Facility. At NREL's Energy Storage Laboratory in the Energy Systems Integration Facility (ESIF), research focuses on the integration of energy storage systems (both stationary and vehicle-mounted) and interconnection with the utility grid. Focusing on battery technologies, but also hosting ultra-capacitors and other electrical energy storage technologies, the laboratory will provide all resources necessary to develop, test, and prove energy storage system performance and compatibility with distributed energy systems. The laboratory will also provide robust vehicle testing capability, including a drive-in environmental chamber, which can accommodate commercial-sized hybrid, electric, biodiesel, ethanol, compressed natural gas, and hydrogen fueled vehicles. The Energy Storage Laboratory is designed to ensure personnel and equipment safety when testing hazardous battery systems or other energy storage technologies. Closely coupled with the research electrical distribution bus at ESIF, the Energy Storage Laboratory will offer megawatt-scale power testing capability as well as advanced hardware-in-the-loop and model-in-the-loop simulation capabilities. Some application scenarios are: The following types of tests - Performance, Efficiency, Safety, Model validation, and Long duration reliability. (2) Performed on the following equipment types - (a) Vehicle batteries (both charging and discharging V2G); (b) Stationary batteries; (c) power conversion equipment for energy storage; (d) ultra- and super-capacitor systems; and (e) DC systems, such as commercial microgrids.

  15. Heat exchanges in fast, high-performance liquid chromatography. A complete thermodynamic study

    SciTech Connect (OSTI)

    Gritti, Fabrice [University of Tennessee, Knoxville (UTK); Guiochon, Georges A [ORNL

    2008-01-01T23:59:59.000Z

    The successive physical transformations of the mobile phase that take place in very high pressure liquid chromatography were studied based on the formalism of classical thermodynamics. The eluent is initially under atmospheric pressure (P{sup 0}) and at ambient temperature (T{sub ext}). In a first step, it is compressed to a high pressure (P{sub max} of the order of 1 kbar) in the pump heads of the chromatograph. In a second step, the pressurized eluent is transferred to the inlet of the chromatographic column, along which, in a third step, it is decompressed to atmospheric pressure. Both the compression and the decompression of the fluid were considered to take place under conditions that can be either adiabatic or nonadiabatic and either reversible or irreversible. Applications of the first and second principles of thermodynamics allow the determination of the heat and energy exchanged between the eluent and the external surroundings during each transformation. Experimental data were acquired using acetonitrile as the mobile phase. The true state equation, {rho}(P, T), of liquid acetonitrile was used in the theoretical calculations. A series of four different flow rates (0.55, 0.85, 1.15, and 1.45 mL/min, corresponding to inlet pressures of 357.2, 559.5, 765.1, and 972.9 bar, respectively), were applied to a 2.1 x 100 mm column packed with 1.7-{micro}m bridged ethane-silicon hybrid particles. Thermocouples were used to measure the eluent temperature before and after its passage through the column. These data provide estimates of the variation of the internal energy of the eluent. The heat lost through the external wall of the column during the eluent decompression was estimated by measuring the surface temperature of the column tube under steady state. Both the compression and the decompression of acetonitrile were found to be nonadiabatic and irreversible transformations. The results showed that, during the eluent decompression, the heat released by the friction forces serves four different purposes: (1) it increases the eluent entropy at constant temperature (for 35%); (2) it increases the temperature of the eluent (for 5%); (3) it provides heat to the laboratory atmosphere (for 5%); and (4) it provides some work inside the column (for 5%). This quantitative heat balance description accounts well for the actual performance of the new, very high pressure liquid chromatographic technique.

  16. Laboratory Ventilation SafetyLaboratory Ventilation Safety J. Scott WardJ. Scott Ward

    E-Print Network [OSTI]

    Farritor, Shane

    Laboratory Ventilation SafetyLaboratory Ventilation Safety J. Scott WardJ. Scott Ward #12;In 1925. Labconco CorporationLabconco Corporation #12;Laboratory VentilationLaboratory Ventilation #12;Laboratory Ventilation ProductsLaboratory Ventilation Products #12;History of Fume HoodsHistory of Fume Hoods Thomas

  17. Biomass Catalyst Characterization Laboratory (Fact Sheet), NREL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characterization Laboratory Enabling fundamental understanding of thermochemical biomass conversion catalysis and performance NREL is a national laboratory of the U.S....

  18. Sandia National Laboratories: high PV penetration levels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SMART Grid, Solar Sandia National Laboratories, the Electric Power Research Institute (EPRI) and European Distributed Energies Research Laboratories (DERlab) have organized a...

  19. Sandia National Laboratories: European Distributed Energies Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SMART Grid, Solar Sandia National Laboratories, the Electric Power Research Institute (EPRI) and European Distributed Energies Research Laboratories (DERlab) have organized a...

  20. Sandia National Laboratories: renewable energy and distributed...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SMART Grid, Solar Sandia National Laboratories, the Electric Power Research Institute (EPRI) and European Distributed Energies Research Laboratories (DERlab) have organized a...

  1. Sandia National Laboratories: Fifth International Conference...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SMART Grid, Solar Sandia National Laboratories, the Electric Power Research Institute (EPRI) and European Distributed Energies Research Laboratories (DERlab) have organized a...

  2. Savannah River National Laboratory (SRNL) Environmental Sciences...

    Office of Environmental Management (EM)

    Savannah River National Laboratory (SRNL) Environmental Sciences and Biotechnology Support of Waste Isolation Pilot Plant (WIPP) Savannah River National Laboratory (SRNL)...

  3. www.yorku.ca/research Ergonomics Laboratory

    E-Print Network [OSTI]

    www.yorku.ca/research Ergonomics Laboratory -- Biomechanics At York School of Kinesiology Salas The Ergonomics Laboratory creates healthier workplaces by reducing individuals' risk of developing

  4. Independent Activity Report, Lawrence Livermore National Laboratory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory - March 2011 March 2011 Lawrence Livermore National Laboratory Chronic Beryllium Disease Prevention Program Effectiveness Review HIAR-LLNL-2011-03-25 This...

  5. Opportunities with Laboratories under the Chicago Office

    Broader source: Energy.gov (indexed) [DOE]

    with Laboratories under the Chicago Office 1 Princeton Plasma Physics Laboratory 1. Mechanical Engineering Services; Larry Dudek; 188,000 2. Phone system; William Bryan; 300,000...

  6. Independent Oversight Review, National Energy Technology Laboratory...

    Energy Savers [EERE]

    National Energy Technology Laboratory - May 2014 Independent Oversight Review, National Energy Technology Laboratory - May 2014 May 2014 Review of the Emergency Management Program...

  7. Enterprise Assessments Targeted Review, Idaho National Laboratory...

    Office of Environmental Management (EM)

    Laboratory Fire Protection Program as Implemented at the Irradiated Materials Characterization Laboratory The Office of Nuclear Safety and Environmental Assessments, within the...

  8. Vehicle-Grid Interoperability | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicle-Grid Interoperability Charging a test vehicle using the laboratory's solar-powered charging station. Charging a test vehicle using the laboratory's solar-powered charging...

  9. Independent Oversight Inspection, Sandia National Laboratories...

    Office of Environmental Management (EM)

    National Laboratories, Summary Report - February 2003 February 2003 Inspection of Environment, Safety, and Health and Emergency Management at the Sandia National Laboratories...

  10. ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue

    E-Print Network [OSTI]

    Munson, Todd S.

    ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue Argonne, Illinois 60439 Optimizing the Quality S. Munson Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439

  11. Independent Oversight Review, Los Alamos National Laboratory...

    Broader source: Energy.gov (indexed) [DOE]

    Review, Los Alamos National Laboratory - September 2011 Independent Oversight Review, Los Alamos National Laboratory Chemistry and Metallurgy Research Facility - January 2012...

  12. Sandia National Laboratories: Combustion Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Behavior On June 13, 2014, in Turbulent Combustion Laboratory The Turbulent Combustion Laboratory (TCL) provides a well-controlled, lab-scale environment for testing...

  13. Federal laboratories for the 21st century

    SciTech Connect (OSTI)

    Gover, J. [Sandia National Labs., Albuquerque, NM (United States); Huray, P.G. [Univ. of South Carolina, Columbia, SC (United States)

    1998-04-01T23:59:59.000Z

    Federal laboratories have successfully filled many roles for the public; however, as the 21st Century nears it is time to rethink and reevaluate how Federal laboratories can better support the public and identify new roles for this class of publicly-owned institutions. The productivity of the Federal laboratory system can be increased by making use of public outcome metrics, by benchmarking laboratories, by deploying innovative new governance models, by partnerships of Federal laboratories with universities and companies, and by accelerating the transition of federal laboratories and the agencies that own them into learning organizations. The authors must learn how government-owned laboratories in other countries serve their public. Taiwan`s government laboratory, Industrial Technology Research Institute, has been particularly successful in promoting economic growth. It is time to stop operating Federal laboratories as monopoly institutions; therefore, competition between Federal laboratories must be promoted. Additionally, Federal laboratories capable of addressing emerging 21st century public problems must be identified and given the challenge of serving the public in innovative new ways. Increased investment in case studies of particular programs at Federal laboratories and research on the public utility of a system of Federal laboratories could lead to increased productivity of laboratories. Elimination of risk-averse Federal laboratory and agency bureaucracies would also have dramatic impact on the productivity of the Federal laboratory system. Appropriately used, the US Federal laboratory system offers the US an innovative advantage over other nations.

  14. Los Alamos National Laboratory A National Science Laboratory

    SciTech Connect (OSTI)

    Chadwick, Mark B. [Los Alamos National Laboratory

    2012-07-20T23:59:59.000Z

    Our mission as a DOE national security science laboratory is to develop and apply science, technology, and engineering solutions that: (1) Ensure the safety, security, and reliability of the US nuclear deterrent; (2) Protect against the nuclear threat; and (3) Solve Energy Security and other emerging national security challenges.

  15. The Suli Experience | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Suli Experience Students and mentors talk about the Science Undergraduate Laboratory Internship (SULI) program...

  16. Appendix C.1 THE LEAD LABORATORY

    E-Print Network [OSTI]

    Appendix C.1 THE LEAD LABORATORY By PATRICK J. PARSONS, Ph.D.1 J. JULIAN CHISOLM, JR., M.D.2 Role of the Laboratory Laboratories measure lead concentrations in either clinical samples between the clinical and environmental lead laboratories and the issues that they face. Often

  17. Biomass Surface Characterization Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01T23:59:59.000Z

    This fact sheet provides information about Biomass Surface Characterization Laboratory capabilities and applications at NREL.

  18. Argonne National Laboratory 1985 publications

    SciTech Connect (OSTI)

    Kopta, J.A. (ED.); Hale, M.R. (comp.)

    1987-08-01T23:59:59.000Z

    This report is a bibliography of scientific and technical 1985 publications of Argonne National Laboratory. Some are ANL contributions to outside organizations' reports published in 1985. This compilation, prepared by the Technical Information Services Technical Publications Section (TPB), lists all nonrestricted 1985 publications submitted to TPS by Laboratory's Divisions. The report is divided into seven parts: Journal Articles - Listed by first author, ANL Reports - Listed by report number, ANL and non-ANL Unnumbered Reports - Listed by report number, Non-ANL Numbered Reports - Listed by report number, Books and Book Chapters - Listed by first author, Conference Papers - Listed by first author, Complete Author Index.

  19. Laboratory Waste Disposal HAZARDOUS GLASS

    E-Print Network [OSTI]

    Sheridan, Jennifer

    Laboratory Waste Disposal HAZARDOUS GLASS Items that could cut or puncture skin or trash- can without any treatment. Hazardous Glass and Plastic: Items that can puncture, cut or scratch if disposed of in normal trash containers. Pasteur pipettes Other pipettes and tips (glass or plastic) Slides and cover

  20. LABORATORY IV CONSERVATION OF ENERGY

    E-Print Network [OSTI]

    Minnesota, University of

    Lab IV - 1 LABORATORY IV CONSERVATION OF ENERGY In this lab you will begin to use the principle of conservation of energy to determine the motion resulting from interactions that are difficult to analyze using force concepts alone. You will explore how conservation of energy is applied to real interactions. Keep

  1. LABORATORY VI ELECTRICITY FROM MAGNETISM

    E-Print Network [OSTI]

    Minnesota, University of

    LABORATORY VI ELECTRICITY FROM MAGNETISM Lab VI - 1 In the previous problems you explored by electric currents. This lab will carry that investigation one step further, determining how changing magnetic fields can give rise to electric currents. This is the effect that allows the generation

  2. LABORATORY VI ELECTRICITY FROM MAGNETISM

    E-Print Network [OSTI]

    Minnesota, University of

    LABORATORY VI ELECTRICITY FROM MAGNETISM Lab VI - 1 In the previous problems you explored the magnetic field and its effect on moving charges. You also saw how electric currents could create magnetic can give rise to electric currents. This is the effect that allows the generation of electricity

  3. FISHERY RESEARCH BIOLOGICAL LABORATORY, GALVESTON

    E-Print Network [OSTI]

    stations conduct fish ry re - search in the Gulf of Mexico as part of the work of the Bureau's Gulf, St. Pet rsburg Beach, Fla. Biological Res earch Biological Laboratory, Beaufort, N. C hw Gulf of Mexico Abundance of postlarval and juv nil shrimp Pink shrimp life history . Brown

  4. COMPARATIVE MEDICINE LABORATORY ANIMAL FACILITIES

    E-Print Network [OSTI]

    Krovi, Venkat

    4.A.7 COMPARATIVE MEDICINE LABORATORY ANIMAL FACILITIES STANDARD OPERATING PROCEDURES LUNAR PIXIMUS MACHINE 1.0 Purpose This procedure outlines precautions, maintenance and use of the Lunar PIXImus Machine housed in room 310 BEB. 2.0 Scope This procedure applies to all CMLAF and principal investigator staff. 3

  5. Brookhaven National Laboratory Number: Revision

    E-Print Network [OSTI]

    Ohta, Shigemi

    NATIONAL LABORATORY LASER CONTROLLED AREA STANDARD OPERATING PROCEDURE (SOP) This document defines (CWlaser) NA Coupled into 100 micron optical fiber APPLICABLE LASER OPERATIONS Operation Maintenance the safety management program for the laser system(s) listed below. All American National Standard Institute

  6. COMPARATIVE MEDICINE LABORATORY ANIMAL FACILITIES

    E-Print Network [OSTI]

    Krovi, Venkat

    3.E.1 COMPARATIVE MEDICINE LABORATORY ANIMAL FACILITIES STANDARD OPERATING PROCEDURES for ACCESS, and the correct way to leave the facility. 2.0 Scope: This procedure applies to all CMLAF staff, maintenance, ENTRY, AND EXIT PROCEDURES FOR THE ANIMAL BIOSAFETY SUITE ROOM 305 BEB 1.0 Purpose: The Biosafety suite

  7. Brookhaven National Laboratory Number: Revision

    E-Print Network [OSTI]

    Ohta, Shigemi

    LABORATORY LASER CONTROLLED AREA STANDARD OPERATING PROCEDURE (SOP) This document defines the safety 35mW CW NA APPLICABLE LASER OPERATIONS Operation Maintenance Service Specific Operation (specify) #12 management program for the laser system(s) listed below. All American National Standard Institute (ANSI

  8. Brookhaven National Laboratory Number: Revision

    E-Print Network [OSTI]

    Homes, Christopher C.

    LABORATORY LASER CONTROLLED AREA STANDARD OPERATING PROCEDURE (SOP) This document defines the safety elliptical 1.5mm*3.5 mm APPLICABLE LASER OPERATIONS Operation Maintenance Service Specific Operation (specify management program for the laser system(s) listed below. All American National Standard Institute (ANSI

  9. COMPARATIVE MEDICINE LABORATORY ANIMAL FACILITIES

    E-Print Network [OSTI]

    Krovi, Venkat

    5.A.4 COMPARATIVE MEDICINE LABORATORY ANIMAL FACILITIES STANDARD OPERATING PROCEDURE for CRITICAL Plant and maintenance personnel as well as CMLAF personnel that will be notified. 3.0 Procedure ALARM RESPONSE PROCEDURE FOR CHILLED WATER PLANT 1.0 Purpose: This SOP outlines the procedure

  10. Brookhaven National Laboratory Number: Revision

    E-Print Network [OSTI]

    Ohta, Shigemi

    NATIONAL LABORATORY LASER CONTROLLED AREA STANDARD OPERATING PROCEDURE (SOP) This document defines OPERATIONS Operation Maintenance Service Specific Operation (specify) #12;Number: PS-ESH-0083 Revision: 01 the safety management program for the laser system(s) listed below. All American National Standard Institute

  11. COMPARATIVE MEDICINE LABORATORY ANIMAL FACILITIES

    E-Print Network [OSTI]

    Krovi, Venkat

    1.E.1 COMPARATIVE MEDICINE LABORATORY ANIMAL FACILITIES STANDARD OPERATING PROCEDURE for ENTRY RODENT FACILITY 1. I have read, understand, and will follow the Standard Operating Procedures listed: This procedure applies to all CMLAF, principal investigator and maintenance personnel 3.0 Procedure: 3

  12. Brookhaven National Laboratory Number: Revision

    E-Print Network [OSTI]

    Ohta, Shigemi

    /2010) BROOKHAVEN NATIONAL LABORATORY LASER CONTROLLED AREA STANDARD OPERATING PROCEDURE (SOP) This document defines) Beam Diameter (mm) DPSS 532 3B 23 mW CW NA OPERATIONS Operation Maintenance the safety management program for the laser system(s) listed below. All American National Standard Institute

  13. The National Voluntary Laboratory Accreditation

    E-Print Network [OSTI]

    CFR Part 285) · Linked to NIST measurement research · Operates in accordance with ISO/IEC standards · ISO/IEC 17011 (for Accrediting Bodies) · ISO/IEC 17025 (for Laboratories) · Accreditation available competence. · Assessment is based on a Standard (ISO/IEC 17025) · Assessment of specific scope

  14. Brookhaven National Laboratory Number: Revision

    E-Print Network [OSTI]

    Ohta, Shigemi

    Brookhaven National Laboratory Number: Revision: PS-ESH-0057 01 Effective: Page 1 of 9 06 Chris Weilandics Signature on file Department ES&H Approval printed name Signature Date Lori Stiegler Signature on file #12;Number: PS-ESH-0057 Revision: 01 Effective: 06/08/12 Page 2 of 9 The only official

  15. Electrical Characterization Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Electrical Characterization Laboratory at the Energy Systems Integration Facility. Electrical Characterization Laboratory at NREL's Energy Systems Integration Facility (ESIF) focuses on the detailed electrical characterization of components and systems. This laboratory allows researchers to test the ability of equipment to withstand high voltage surges and high current faults, including equipment using standard and advanced fuels such as hydrogen. Equipment that interconnected to the electric power grid is required to meet specific surge withstand capabilities. This type of application tests the ability of electrical equipment to survive a lightning strike on the main grid. These are often specified in IEEE standards such as IEEE Std. 1547. In addition, this lab provides a space for testing new, unproven, or potentially hazardous equipment for robust safety assessment prior to use in other labs at ESIF. The Electric Characterization Laboratory is in a location where new, possibly sensitive or secret equipment can be evaluated behind closed doors.

  16. Laboratory Directed Research and Development Program FY 2007

    SciTech Connect (OSTI)

    Hansen, Todd C; editor, Todd C Hansen,

    2008-03-12T23:59:59.000Z

    Report on Ernest Orlando Lawrence Berkeley National Laboratory Laboratory Directed Research and Development Program FY 2007

  17. Lawrence Berkeley Laboratory Affirmative Action Program. Revised

    SciTech Connect (OSTI)

    NONE

    1995-06-01T23:59:59.000Z

    The Lawrence Berkeley Laboratory`s Affirmative Action Program (AAP) serves as a working document that describes current policies, practices, and results in the area of affirmative action. It represents the Laboratory`s framework for an affirmative approach to increasing the representation of people of color and women in segments of our work force where they have been underrepresented and taking action to increase the employment of persons with disabilities and special disabled and Vietnam era veterans. The AAP describes the hierarchy of responsibility for Laboratory affirmative action, the mechanisms that exist for full Laboratory participation in the AAP, the policies and procedures governing recruitment at all levels, the Laboratory`s plan for monitoring, reporting, and evaluating affirmative action progress, and a description of special affirmative action programs and plans the Laboratory has used and will use in its efforts to increase the representation and retention of groups historically underrepresented in our work force.

  18. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,s -LabgrantsLab teamLaboratoireBuilders

  19. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,s -LabgrantsLab

  20. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,s -LabgrantsLabperformance computer

  1. Method for Characterization of Low Molecular Weight Organic Acids in Atmospheric Aerosols Using Ion Chromatography Mass

    E-Print Network [OSTI]

    Dickerson, Russell R.

    spectrometry (ESI-MS).17-19 ESI has the advantage of being compatible with polar mobile phases, and softMethod for Characterization of Low Molecular Weight Organic Acids in Atmospheric Aerosols Using Ion Chromatography Mass Spectrometry Lacey C. Brent,* Jessica L. Reiner, Russell R. Dickerson, and Lane C. Sander

  2. DIGITAL CHROMATOGRAPHY AND THE FORMA-TION OF HETEROGENEOUS DROPLET LIBRARIES

    E-Print Network [OSTI]

    Basu, Amar S.

    DIGITAL CHROMATOGRAPHY AND THE FORMA- TION OF HETEROGENEOUS DROPLET LIBRARIES USING University, Detroit MI, USA ABSTRACT Generating chemical libraries in droplet form is vital to the adoption in droplets (µFD), a method for generating heterogeneous droplet libraries using standard separation processes

  3. Cell Wall Chemotyping for Functional Applications of PyrolysisGas Chromatography / Mass

    E-Print Network [OSTI]

    Cell Wall Chemotyping for Functional Genomics Applications of Pyrolysis­Gas Chromatography / Mass, Umeå 2012 #12;Cell Wall Chemotyping for Functional Genomics Applications of Pyrolysis.4.1 The Basic Tool-set 27 1.5 Wood Formation and Functional Genomics 31 2 Objectives 33 3 Methodological

  4. Quasi-linear gradients for capillary liquid chromatography with mass and tandem mass

    E-Print Network [OSTI]

    Dabiri, John O.

    Gradient elution, capillary liquid chromatography mass spectrometry was performed with linear, static the use of additional valves, mixers, pumps or software. It took less than 10 minutes to form a gradient-line as static gradients.12­14 The technique of forming static gradients was first proposed by Ishii and co

  5. Laboratory Directed Research and Development Program FY 2008 Annual Report

    SciTech Connect (OSTI)

    editor, Todd C Hansen

    2009-02-23T23:59:59.000Z

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2008 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD program supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the Office of Science Program Offices, such as LDRD projects germane to new research facility concepts and new fundamental science directions. Berkeley Lab LDRD program also play an important role in leveraging DOE capabilities for national needs. The fundamental scientific research and development conducted in the program advances the skills and technologies of importance to our Work For Others (WFO) sponsors. Among many directions, these include a broad range of health-related science and technology of interest to the National Institutes of Health, breast cancer and accelerator research supported by the Department of Defense, detector technologies that should be useful to the Department of Homeland Security, and particle detection that will be valuable to the Environmental Protection Agency. The Berkeley Lab Laboratory Directed Research and Development Program FY2008 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the LDRD program planning and documentation process that includes an annual planning cycle, project selection, implementation, and review.

  6. Argonne National Laboratory 1986 publications

    SciTech Connect (OSTI)

    Kopta, J.A.; Springer, C.J.

    1987-12-01T23:59:59.000Z

    This report is a bibliography of scientific and technical 1986 publications of Argonne National Laboratory. Some are ANL contributions to outside organizations' reports published in 1986. This compilation, prepared by the Technical Information Services Technical Publications Section (TPS), lists all nonrestricted 1986 publications submitted to TPS by the Laboratory's Divisions. Author indexes list ANL authors only. If a first author is not an ANL employee, an asterisk in the bibliographic citation indicates the first ANL author. The report is divided into seven parts: Journal Articles -- Listed by first author; ANL Reports -- Listed by report number; ANL and non-ANL Unnumbered Reports -- Listed by report number; Non-ANL Numbered Reports -- Listed by report number; Books and Book Chapters -- Listed by first author; Conference Papers -- Listed by first author; and Complete Author Index.

  7. Determination of Free Fatty Acids and Triglycerides by Gas Chromatography Using Selective Esterification Reactions

    SciTech Connect (OSTI)

    Kail, Brian W.; Link, Dirk D.; Morreale, Bryan D

    2012-11-01T23:59:59.000Z

    A method for selectively determining both free fatty acids (FFA) and triacylglycerides (TAGs) in biological oils was investigated and optimized using gas chromatography after esterification of the target species to their corresponding fatty acid methyl esters (FAMEs). The method used acid catalyzed esterification in methanolic solutions under conditions of varying severity to achieve complete conversion of more reactive FFAs while preserving the concentration of TAGs. Complete conversion of both free acids and glycerides to corresponding FAMEs was found to require more rigorous reaction conditions involving heating to 120°C for up to 2 h. Method validation was provided using gas chromatography–flame ionization detection, gas chromatography–mass spectrometry, and liquid chromatography–mass spectrometry. The method improves on existing methods because it allows the total esterified lipid to be broken down by FAMEs contributed by FFA compared to FAMEs from both FFA and TAGs. Single and mixed-component solutions of pure fatty acids and triglycerides, as well as a sesame oil sample to simulate a complex biological oil, were used to optimize the methodologies. Key parameters that were investigated included: HCl-to-oil ratio, temperature and reaction time. Pure free fatty acids were found to esterify under reasonably mild conditions (10 min at 50°C with a 2.1:1 HCl to fatty acid ratio) with 97.6 ± 2.3% recovery as FAMEs, while triglycerides were largely unaffected under these reaction conditions. The optimized protocol demonstrated that it is possible to use esterification reactions to selectively determine the free acid content, total lipid content, and hence, glyceride content in biological oils. This protocol also allows gas chromatography analysis of FAMEs as a more ideal analyte than glyceride species in their native state.

  8. Oak Ridge National Laboratory Review

    SciTech Connect (OSTI)

    Krause, C.; Pearce, J.; Zucker, A. (eds.)

    1992-01-01T23:59:59.000Z

    This report presents brief descriptions of the following programs at Oak Ridge National Laboratory: The effects of pollution and climate change on forests; automation to improve the safety and efficiency of rearming battle tanks; new technologies for DNA sequencing; ORNL probes the human genome; ORNL as a supercomputer research center; paving the way to superconcrete made with polystyrene; a new look at supercritical water used in waste treatment; and small mammals as environmental monitors.

  9. Purdue Solar Energy Utilization Laboratory

    SciTech Connect (OSTI)

    Agrawal, Rakesh [Purdue] [Purdue

    2014-01-21T23:59:59.000Z

    The objective of this project is to establish and set-up a laboratory that will facilitate research and development of new low-cost and high-efficiency solar energy utilization technologies at Purdue University. The outcome will help spur the creation of solar energy start-up companies and eventually a solar energy industry in Indiana that can help fulfill the growing national demand for solar energy.

  10. Oversight Board | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomass and BiofuelsOversight Board The Ames Laboratory Oversight

  11. Smart Power Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Smart Power Laboratory at the Energy Systems Integration Facility. Research at NREL's Smart Power Laboratory in the Energy Systems Integration Facility (ESIF) focuses on the development and integration of smart technologies including the integration of distributed and renewable energy resources through power electronics and smart energy management for building applications. The 5,300 sq. ft. laboratory is designed to be highly flexible and configurable, essential for a large variety of smart power applications that range from developing advanced inverters and power converters to testing residential and commercial scale meters and control technologies. Some application scenarios are: (1) Development of power converters for integration of distributed and renewable energy resources; (2) Development of advanced controls for smart power electronics; (3) Testing prototype and commercially available power converters for electrical interconnection and performance, advanced functionality, long duration reliability and safety; and (4) Hardware-in-loop development and testing of power electronics systems in smart distribution grid models.

  12. Research programs at the Department of Energy National Laboratories. Volume 2: Laboratory matrix

    SciTech Connect (OSTI)

    NONE

    1994-12-01T23:59:59.000Z

    For nearly fifty years, the US national laboratories, under the direction of the Department of Energy, have maintained a tradition of outstanding scientific research and innovative technological development. With the end of the Cold War, their roles have undergone profound changes. Although many of their original priorities remain--stewardship of the nation`s nuclear stockpile, for example--pressing budget constraints and new federal mandates have altered their focus. Promotion of energy efficiency, environmental restoration, human health, and technology partnerships with the goal of enhancing US economic and technological competitiveness are key new priorities. The multiprogram national laboratories offer unparalleled expertise in meeting the challenge of changing priorities. This volume aims to demonstrate each laboratory`s uniqueness in applying this expertise. It describes the laboratories` activities in eleven broad areas of research that most or all share in common. Each section of this volume is devoted to a single laboratory. Those included are: Argonne National Laboratory; Brookhaven National Laboratory; Idaho National Engineering Laboratory; Lawrence Berkeley Laboratory; Lawrence Livermore National Laboratory; Los Alamos National Laboratory; National Renewable Energy Laboratory; Oak Ridge National Laboratory; Pacific Northwest Laboratory; and Sandia National Laboratories. The information in this volume was provided by the multiprogram national laboratories and compiled at Lawrence Berkeley Laboratory.

  13. Forces on laboratory model dredge cutterhead

    E-Print Network [OSTI]

    Young, Dustin Ray

    2010-07-14T23:59:59.000Z

    Dredge cutting forces produced by the movement of the cutterhead through the sediment have been measured with the laboratory dredge carriage located at the Haynes Coastal Engineering Laboratory. The sediment bed that was used for the dredging test...

  14. Laboratories are Needed to Explore, Explain VLBACHANDRA

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory Sandia National Laboratory Stone and Webster The Boeing Company stream of about 150 visitors per week log on to the FIRE web site since the site was initiated in early

  15. Laboratories for the 21st Century

    Broader source: Energy.gov [DOE]

    Laboratories for the 21st Century (Labs21) is a voluntary partnership program dedicated to improving the environmental performance of U.S. laboratories. The program is a joint initiative between...

  16. Aerospace, Transportation and Advanced Systems Laboratory (ATAS)

    E-Print Network [OSTI]

    Bennett, Gisele

    . ELSYS employs an "end-to-end" approach to developing electronic warfare and other electronic systems.gtri.gatech.edu/labs CTISLATAS #12;electronic Systems Laboratory (eLSYS) Joe Brooks, Laboratory Director www

  17. Preliminary Notice of Violation, Argonne National Laboratory...

    Office of Environmental Management (EM)

    Argonne National Laboratory-West - EA-2001-01 Preliminary Notice of Violation, Argonne National Laboratory-West - EA-2001-01 February 28, 2001 Issued to the University of Chicago...

  18. ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue

    E-Print Network [OSTI]

    Friedlander, Michael P.

    ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue Argonne, Illinois 60439 A Filter Active and Computer Science Division, Argonne National Laboratory, {leyffer,tmunson}@mcs.anl.gov 1 #12;2 Michael

  19. ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue

    E-Print Network [OSTI]

    McCune, William

    ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue Argonne, IL 60439 ANL/MCS­TM­243 (v4) Single Division Argonne National Laboratory Argonne, Illinois, 60439, U.S.A. http://www.mcs.anl.gov/�mccune June

  20. Seeking Laboratory Accreditation Under ISO 15189

    E-Print Network [OSTI]

    Rodriguez, Carlos

    Seeking Laboratory Accreditation Under ISO 15189 An ISO Revision for 2012 and Beyond Bio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Improving Laboratory Quality with ISO 15189 Preparations and Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Gap Analysis, Quality Policy, Quality Manager and Quality Manual ISO Documentation

  1. Forces on laboratory model dredge cutterhead 

    E-Print Network [OSTI]

    Young, Dustin Ray

    2010-07-14T23:59:59.000Z

    Dredge cutting forces produced by the movement of the cutterhead through the sediment have been measured with the laboratory dredge carriage located at the Haynes Coastal Engineering Laboratory. The sediment bed that was ...

  2. Laboratory Directed Research and Development | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLS ExperimentalFiveVentureFrontiersLaboratory

  3. Ames Laboratory Site Sustainability Plan | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative FuelsSanta FeAuthorization forAmes Laboratory Site

  4. Enterprise Assessments Targeted Review, Sandia National Laboratories...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratories - November 2014 More Documents & Publications Office of Environmental Management Work Planning and Control Oversight Integration of Safety Culture Attributes...

  5. Fuel Synthesis Catalysis Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01T23:59:59.000Z

    This fact sheet provides information about Fuel Synthesis Catalysis Laboratory capabilities and applications at NREL's National Bioenergy Center.

  6. Biomass Catalyst Characterization Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01T23:59:59.000Z

    This fact sheet provides information about Biomass Catalyst Characterization Laboratory (BCCL) capabilities and applications at NREL's National Bioenergy Center.

  7. Fuel Synthesis Catalysis Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-07-01T23:59:59.000Z

    This fact sheet provides information about Fuel Synthesis Catalysis Laboratory capabilities and applications at NREL's National Bioenergy Center.

  8. Bench-Scale Fermentation Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01T23:59:59.000Z

    This fact sheet provides information about Bench-Scale Fermentation Laboratory capabilities and applications at NREL's National Bioenergy Center.

  9. Materials Engineering Research Facility | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Engineering Research Facility Argonne's new Materials Engineering Research Facility (MERF) supports the laboratory's Advanced Battery Materials Synthesis and...

  10. Sandia National Laboratories - Grid Integration Collaborations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Standards Organizations - Underwriters Laboratory - Institute of Electrical and Electronics Engineers - National Institute of Standards and Technology - North American...

  11. Sandia National Laboratories: Global Climate & Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    20, 2013, in Advanced Materials Laboratory, Energy Efficiency, Facilities, Global Climate & Energy, Materials Science, Modeling, Modeling & Analysis, Partnership, Research &...

  12. Sandia National Laboratories: Diffusion Bonding Characterization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory (NESL) Transient Nuclear Fuels Testing Radiation Effects Sciences Solar Electric Propulsion Nuclear Energy Safety Technologies Experimental Testing...

  13. Sandia National Laboratories: Heat Exchanger Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory (NESL) Transient Nuclear Fuels Testing Radiation Effects Sciences Solar Electric Propulsion Nuclear Energy Safety Technologies Experimental Testing...

  14. Sandia National Laboratories: Photovoltaic Systems Evaluation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling & Simulation, Energy, Facilities, News, News & Events, Partnership, Photovoltaic, Photovoltaic Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar...

  15. Algal Biofuels Research Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01T23:59:59.000Z

    This fact sheet provides information about Algal Biofuels Research Laboratory capabilities and applications at NREL's National Bioenergy Center.

  16. Measured Peak Equipment Loads in Laboratories

    SciTech Connect (OSTI)

    Mathew, Paul A.

    2007-09-12T23:59:59.000Z

    This technical bulletin documents measured peak equipment load data from 39 laboratory spaces in nine buildings across five institutions. The purpose of these measurements was to obtain data on the actual peak loads in laboratories, which can be used to rightsize the design of HVAC systems in new laboratories. While any given laboratory may have unique loads and other design considerations, these results may be used as a 'sanity check' for design assumptions.

  17. Sandia National Laboratories: Research: Facilities: Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science and Engineering Center Pulsed Power and Systems Validation Facility Radiation Detection Materials Characterization Laboratory Shock Thermodynamic Applied Research...

  18. Westinghouse Advanced Reactors Division Plutonium Fuel Laboratories

    Office of Legacy Management (LM)

    Radiological Condition of the Westinghouse Advanced Reactors Division Plutonium Fuel Laboratories Cheswick, Pennsylvania -. -, -- AGENCY: Office of Operational Safety, Department...

  19. Sandia National Laboratories: Computational Modeling & Simulation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, Facilities, News, News & Events, Partnership, Photovoltaic, Photovoltaic Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar Newsletter, Systems...

  20. Oak Ridge National Laboratory Science & Technology Highlights

    E-Print Network [OSTI]

    Pennycook, Steve

    & Technology Highlights Oak Ridge National Laboratory ORNL Works to Bring Zero-Energy Housing to the Masses

  1. Biomass Compositional Analysis Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01T23:59:59.000Z

    This fact sheet provides information about Biomass Compositional Analysis Laboratory (BCAL) capabilities and applications at NREL's National Bioenergy Center.

  2. DATA RECOVERY EFFORTS AT IDAHO NATIONAL LABORATORY, OAK RIDGE NATIONAL LABORATORY, AND SAVANNAH RIVER NATIONAL LABORATORY

    SciTech Connect (OSTI)

    Richard Metcalf; Saleem Salaymeh; Michael Ehinger

    2010-07-01T23:59:59.000Z

    Abstract was already submitted. Could not find the previous number. Would be fine with attaching/update of old number. Abstract Below: Modern nuclear facilities will have significant process monitoring capability for their operators. These systems will also be used for domestic safeguards applications, which has led to research over new diversion-detection algorithms. Curiously missing from these efforts are verification and validation data sets. A tri-laboratory project to locate the existing data sets and recover their data has yielded three major potential sources of data. The first is recovery of the process monitoring data of the Idaho Chemical Processing Plant, which now has a distributable package for algorithm developers. The second data set is extensive sampling and process data from Savannah River National Laboratory’s F- and H-canyon sites. Finally, high fidelity data from the start-up tests at the Barnwell Reprocessing Facility is in recovery. This paper details the data sets and compares their relative attributes.

  3. Laboratory Ventilation Management Ralph Stuart, CHO

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Laboratory Ventilation Management Program Ralph Stuart, CHO Ellen Sweet, Laboratory Ventilation Specialist Cornell Department of Environmental Health and Safety 3/29/2013 #12;Laboratory Ventilation.1.2 Design and Construction Standards 10 7.1.3 Carbon Dioxide Ventilation Effectiveness Protocol 10 7.2 Job

  4. Naval Research Laboratory Stennis Space Center

    E-Print Network [OSTI]

    Naval Research Laboratory Stennis Space Center Mississippi 39529 www7320.nrlssc.navy.mil/ Ocean Ocean prediction technology The Naval Research Laboratory (NRL) is the US Navy corporate laboratory, dedicated to addressing Navy unique problems and enabling the Navy to operate efficiently and safely. Unique

  5. Small Business Manager Oak Ridge National Laboratory

    E-Print Network [OSTI]

    Keith Joy Small Business Manager Oak Ridge National Laboratory: Past, Present, and Future #12;2 OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY Overview_0604 ORNL in 1943 The Clinton Pile the Manhattan Project 2 OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY Overview_0604 #12;3 OAK RIDGE

  6. Remote Laboratory Towards an integrated training system

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Remote Laboratory Towards an integrated training system Arnaud LELEVE, Hcene BENMOHAMED, Patrick.Meyer@ictt.ec-lyon.fr Abstract ­ Remote laboratories are essential to e-learning platforms in scientific and technical with the aim of giving means to instructors to build generic remote laboratory environments, homogeneously melt

  7. Argonne National Laboratory 9700 South Cass Avenue

    E-Print Network [OSTI]

    McCune, William

    Argonne National Laboratory 9700 South Cass Avenue Argonne, IL 60439 ANL/MCS-TM-265 Short;Argonne National Laboratory, with facilities in the states of Illinois and Idaho, is owned by the United thereof, Argonne National Laboratory, or The University of Chicago. ii #12;Contents Abstract 1 1

  8. Delivered by Ingenta to: Argonne National Laboratory

    E-Print Network [OSTI]

    Haskel, Daniel

    Delivered by Ingenta to: Argonne National Laboratory IP : 164.54.84.139 Wed, 02 Sep 2009 22, 35 56126 Pisa, Italy 4 Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA 5 Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA 6 Center

  9. Laboratory program helps small businesses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLSLaboratory DirectorsRecoveryassessmentLaboratory

  10. Laboratory I | Nuclear Physics Division

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,sand CERN 73-11 Laboratory I | Nuclear

  11. Laboratory and New Mexico Consortium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,sand CERN 73-11 Laboratory IRear

  12. Sandia National Laboratories: About Sandia

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratorySoftware100 Resilient Cities - SandiaAbout

  13. Sandia National Laboratories: Contact Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratorySoftware100Life atCareers

  14. Remote Access | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 c/) ReleaseRemote Access Ames Laboratory

  15. Golden Laboratories and Offices | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental AssessmentsGeoffrey(SC) GettingGit GitGlobalGolden Laboratories and

  16. Laboratories for the 21st Century Best Practices: Onsite Distributed Generation Systems For Laboratories

    Broader source: Energy.gov [DOE]

    Guide describes general information on implementing onsite distributed generation systems in laboratory environments.

  17. Laboratories for the 21st Century Case Studies: National Renewable...

    Office of Environmental Management (EM)

    Case Studies: National Renewable Energy Laboratory, Science and Technology Facility Laboratories for the 21st Century Case Studies: National Renewable Energy Laboratory, Science...

  18. Beyond Laboratories, Beyond Being Green | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Beyond Laboratories, Beyond Being Green Beyond Laboratories, Beyond Being Green Presentation covers sustainable laboratories and the Labs21 program given at the Federal Utility...

  19. Laboratory Demonstration of a New American Low-Head Hydropower...

    Broader source: Energy.gov (indexed) [DOE]

    Laboratory Demonstration of a New American Low-Head Hydropower Turbine Laboratory Demonstration of a New American Low-Head Hydropower Turbine Laboratory Demonstration of a New...

  20. Quantitative Analysis of Tetramethylenedisulfotetramine ("Tetramine") Spiked into Beverages by Liquid Chromatography Tandem Mass Spectrometry with Validation by Gas Chromatography Mass Spectrometry

    SciTech Connect (OSTI)

    Owens, J; Hok, S; Alcaraz, A; Koester, C

    2008-11-13T23:59:59.000Z

    Tetramethylenedisulfotetramine, commonly known as tetramine, is a highly neurotoxic rodenticide (human oral LD{sub 50} = 0.1 mg/kg) used in hundreds of deliberate food poisoning events in China. Here we describe a method for quantitation of tetramine spiked into beverages, including milk, juice, tea, cola, and water and cleaned up by C8 solid phase extraction and liquid-liquid extraction. Quantitation by high performance liquid chromatography tandem mass spectrometry (LC/MS/MS) was based upon fragmentation of m/z 347 to m/z 268. The method was validated by gas chromatography mass spectrometry (GC/MS) operated in SIM mode for ions m/z 212, 240, and 360. The limit of quantitation was 0.10 {micro}g/mL by LC/MS/MS versus 0.15 {micro}g/mL for GC/MS. Fortifications of the beverages at 2.5 {micro}g/mL and 0.25 {micro}g/mL were recovered ranging from 73-128% by liquid-liquid extraction for GC/MS analysis, 13-96% by SPE and 10-101% by liquid-liquid extraction for LC/MS/MS analysis.

  1. Energy efficient laboratory fume hood

    DOE Patents [OSTI]

    Feustel, Helmut E. (Albany, CA)

    2000-01-01T23:59:59.000Z

    The present invention provides a low energy consumption fume hood that provides an adequate level of safety while reducing the amount of air exhausted from the hood. A low-flow fume hood in accordance with the present invention works on the principal of providing an air supply, preferably with low turbulence intensity, in the face of the hood. The air flow supplied displaces the volume currently present in the hood's face without significant mixing between the two volumes and with minimum injection of air from either side of the flow. This air flow provides a protective layer of clean air between the contaminated low-flow fume hood work chamber and the laboratory room. Because this protective layer of air will be free of contaminants, even temporary mixing between the air in the face of the fume hood and room air, which may result from short term pressure fluctuations or turbulence in the laboratory, will keep contaminants contained within the hood. Protection of the face of the hood by an air flow with low turbulence intensity in accordance with a preferred embodiment of the present invention largely reduces the need to exhaust large amounts of air from the hood. It has been shown that exhaust air flow reductions of up to 75% are possible without a decrease in the hood's containment performance.

  2. Thin-layer chromatography and colorimetric analysis of multi-component explosive mixtures

    DOE Patents [OSTI]

    Pagoria, Philip F.; Mitchell, Alexander R.; Whipple, Richard E.; Carman, M. Leslie

    2014-08-26T23:59:59.000Z

    A thin-layer chromatography method for detection and identification of common military and peroxide explosives in samples includes the steps of provide a reverse-phase thin-layer chromatography plate; prepare the plate by marking spots on which to deposit the samples by touching the plate with a marker; spot one micro liter of a first standard onto one of the spots, spot one micro liter of a second standard onto another of the spots, and spot samples onto other of spots producing a spotted plate; add eluent to a developing chamber; add the spotted plate to the developing chamber; remove the spotted plate from the developing chamber producing a developed plate; place the developed plate in an ultraviolet light box; add a visualization agent to a dip tank; dip the developed plate in the dip tank and remove the developed plate quickly; and detect explosives by viewing said developed plate.

  3. Separation of Highly Complex Mixtures by Two-Dimension Liquid Chromatography

    SciTech Connect (OSTI)

    Georges Guiochon

    2009-12-11T23:59:59.000Z

    This report summarizes the progress made on the title project during the grant period. We developed a new classification of two-dimensional separations based on the observation that separations can be made in time or in space. Thus, two-dimensional separations can be made in time×time, space×space, space×time, or time×space. The two successive separations must use two different modes of chromatography that afford uncorrelated or weakly correlated patterns of retention factors for the components of the samples analyzed. Our attention was mainly focused on the separation of protein digests, particularly, on those of the digests of myoglobin and bovine serum albumin as model systems and extremely efficient temporal separations were developed. We also designed and constructed new instruments to carry out space×space separations (True Bidimensional Chromatography, HPLC2 or spacial separations) and time×space separations (a new hybrid combination of a temporal and a spacial separation that we designed).

  4. Headspace profiles of modified atmosphere packaged fresh red snapper (Lutjanus campechanus) by gas liquid chromatography

    E-Print Network [OSTI]

    Scorah, Craig Darrell Allen

    1988-01-01T23:59:59.000Z

    fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1988 Major Subject: Food Science and Technology HEADSPACE PROFILES OF MODIFIED ATMOSPHERE PACKAGED FRESH RED SNAPPER (LUJANUS CAMPECHANUS) BY GAS LIQUID CHROMATOGRAPHY A Thesis... of this research indicate that headspace analysis can potentially be very useful in determining the microbial activity in fresh seafoods and other raw proteinaceous foods packaged in vacuum or modified atmospheres. This technique could find its place...

  5. External Authorities and Peers Laboratory Ventilation Management Program

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    External Authorities and Peers Laboratory Ventilation Management Program Guidance Document External Authorities and Peers This group encompasses external groups who do not manage laboratory ventilation systems to laboratory ventilation management. Roles Responsibilities Tracking Indicator Laboratory science peers

  6. Fujita LaboratoryTokyo Instituteof Technology Tokyo Instituteof Technology

    E-Print Network [OSTI]

    Fujita LaboratoryTokyo Instituteof Technology Tokyo Instituteof Technology Fujita LaboratoryTokyo Institute of Technology Tokyo Institute of Technology 231 #12;Fujita LaboratoryTokyo Instituteof Technology Tokyo Instituteof Technology 2 IT #12;Fujita LaboratoryTokyo Instituteof

  7. Galactic Neighborhood and Laboratory Astrophysics

    E-Print Network [OSTI]

    Wang, Q Daniel

    2011-01-01T23:59:59.000Z

    The galactic neighborhood, extending from the Milky Way to redshifts of about 0.1, is our unique local laboratory for detailed study of galaxies and their interplay with the environment. Such study provides a foundation of knowledge for interpreting observations of more distant galaxies and their environment. The Astro 2010 Science Frontier Galactic Neighborhood Panel identified four key scientific questions: 1) What are the flows of matter and energy in the circumgalactic medium? 2) What controls the mass-energy-chemical cycles within galaxies? 3) What is the fossil record of galaxy assembly from first stars to present? 4) What are the connections between dark and luminous matter? These questions, essential to the understanding of galaxies as interconnected complexes, can be addressed most effectively and/or uniquely in the galactic neighborhood. The panel also highlighted the discovery potential of time-domain astronomy and astrometry with powerful new techniques and facilities to greatly advance our unders...

  8. Building an internet-based workflow system - the case of Lawrence Livermore National Laboratories` Zephyr project

    SciTech Connect (OSTI)

    Jordan, C. W., LLNL

    1998-04-01T23:59:59.000Z

    Lawrence Livermore National Laboratories` Zephyr System provides a showcase for the ways in which emerging technologies can help streamline procurement processes and improve the coordination between participants in engineering projects by allowing collaboration in ways that have not been possible before. The project also shows the success of a highly pragmatic approach that was initiated by the end user community, and that intentionally covered standard situations, rather than aiming at also automating the exceptions. By helping push purchasing responsibilities down to the end user, thereby greatly reducing the involvement of the purchasing department in operational activities, it was possible to streamline the process significantly resulting in time savings of up to 90%, major cost reductions, and improved quality. Left with less day-to- day purchasing operations, the purchasing department has more time for strategic tasks such as selecting and pre-qualifying new suppliers, negotiating blanket orders, or implementing new procurement systems. The case shows once more that the use of information technologies can result in major benefits when aligned with organizational adjustments.

  9. Idaho National Laboratory’s Greenhouse Gas FY08 Baseline

    SciTech Connect (OSTI)

    Jennifer D. Morton

    2011-06-01T23:59:59.000Z

    A greenhouse gas (GHG) inventory is a systematic attempt to account for the production and release of certain gasses generated by an institution from various emission sources. The gasses of interest are those which have become identified by climate science as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during fiscal year (FY) 2008 by Idaho National Laboratory (INL), a Department of Energy (DOE)-sponsored entity, located in southeastern Idaho. Concern about the environmental impact of GHGs has grown in recent years. This, together with a desire to decrease harmful environmental impacts, would be enough to encourage the calculation of a baseline estimate of total GHGs generated at INL. Additionally, INL has a desire to see how its emissions compare with similar institutions, including other DOE national laboratories. Executive Order 13514 requires that federal agencies and institutions document reductions in GHG emissions in the future, and such documentation will require knowledge of a baseline against which reductions can be measured. INL's FY08 GHG inventory was calculated according to methodologies identified in federal GHG guidance documents using operational control boundaries. It measures emissions generated in three Scopes: (1) INL emissions produced directly by stationary or mobile combustion and by fugitive emissions, (2) the share of emissions generated by entities from which INL purchased electrical power, and (3) indirect or shared emissions generated by outsourced activities that benefit INL (occur outside INL's organizational boundaries but are a consequence of INL's activities). This inventory found that INL generated a total of 113,049 MT of CO2-equivalent emissions during FY08. The following conclusions were made from looking at the results of the individual contributors to INL's baseline GHG inventory: (1) Electricity (including the associated transmission and distribution losses) is the largest contributor to INL's GHG inventory, with over 50% of the CO2e emissions; (2) Other sources with high emissions were stationary combustion (facility fuels), waste disposal (including fugitive emissions from the onsite landfill and contracted disposal), mobile combustion (fleet fuels), employee commuting, and business air travel; and (3) Sources with low emissions were wastewater treatment (onsite and contracted), fugitive emissions from refrigerants, and business ground travel (in personal and rental vehicles). This report details the methods behind quantifying INL's GHG inventory and discusses lessons learned on better practices by which information important to tracking GHGs can be tracked and recorded. It is important to note that because this report differentiates between those portions of INL that are managed and operated by the Battelle Energy Alliance (BEA) and those managed by other contractors, it includes only that large proportion of Laboratory activities overseen by BEA. It is assumed that other contractors will provide similar reporting for those activities they manage, where appropriate.

  10. Idaho National Laboratory’s Greenhouse Gas FY08 Baseline

    SciTech Connect (OSTI)

    Jennifer D. Morton

    2010-09-01T23:59:59.000Z

    A greenhouse gas (GHG) inventory is a systematic attempt to account for the production and release of certain gasses generated by an institution from various emission sources. The gasses of interest are those which have become identified by climate science as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during fiscal year (FY) 2008 by Idaho National Laboratory (INL), a Department of Energy (DOE)-sponsored entity, located in southeastern Idaho. Concern about the environmental impact of GHGs has grown in recent years. This, together with a desire to decrease harmful environmental impacts, would be enough to encourage the calculation of a baseline estimate of total GHGs generated at the INL. Additionally, the INL has a desire to see how its emissions compare with similar institutions, including other DOE-sponsored national laboratories. Executive Order 13514 requires that federally-sponsored agencies and institutions document reductions in GHG emissions in the future, and such documentation will require knowledge of a baseline against which reductions can be measured. INL’s FY08 GHG inventory was calculated according to methodologies identified in Federal recommendations and an as-yet-unpublished Technical and Support Document (TSD) using operational control boundary. It measures emissions generated in three Scopes: (1) INL emissions produced directly by stationary or mobile combustion and by fugitive emissions, (2) the share of emissions generated by entities from which INL purchased electrical power, and (3) indirect or shared emissions generated by outsourced activities that benefit INL (occur outside INL’s organizational boundaries but are a consequence of INL’s activities). This inventory found that INL generated a total of 114,256 MT of CO2-equivalent emissions during fiscal year 2008 (FY08). The following conclusions were made from looking at the results of the individual contributors to INL’s baseline GHG inventory: • Electricity is the largest contributor to INL’s GHG inventory, with over 50% of the net anthropogenic CO2e emissions • Other sources with high emissions were stationary combustion, fugitive emissions from the onsite landfill, mobile combustion (fleet fuels) and the employee commute • Sources with low emissions were contracted waste disposal, wastewater treatment (onsite and contracted) and fugitive emissions from refrigerants. This report details the methods behind quantifying INL’s GHG inventory and discusses lessons learned on better practices by which information important to tracking GHGs can be tracked and recorded. It is important to stress that the methodology behind this inventory followed guidelines that have not yet been formally adopted. Thus, some modification of the conclusions may be necessary as additional guidance is received. Further, because this report differentiates between those portions of the INL that are managed and operated by the Battelle Energy Alliance (BEA) and those managed by other contractors, it includes only that large proportion of Laboratory activities overseen by BEA. It is assumed that other contractors will provide similar reporting for those activities they manage, where appropriate.

  11. CRAD, Maintenance - Los Alamos National Laboratory Waste Characterizat...

    Office of Environmental Management (EM)

    Maintenance - Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility CRAD, Maintenance - Los Alamos National Laboratory Waste Characterization,...

  12. CRAD, Training - Los Alamos National Laboratory Waste Characterization...

    Office of Environmental Management (EM)

    Training - Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility CRAD, Training - Los Alamos National Laboratory Waste Characterization,...

  13. CRAD, Engineering - Los Alamos National Laboratory Waste Characterizat...

    Broader source: Energy.gov (indexed) [DOE]

    Laboratory Waste Characterization, Reduction, and Repackaging Facility CRAD, Engineering - Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging...

  14. CRAD, Safety Basis - Los Alamos National Laboratory Waste Characteriza...

    Office of Environmental Management (EM)

    Safety Basis - Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility CRAD, Safety Basis - Los Alamos National Laboratory Waste...

  15. Dynamic leakage from laboratory safety hoods

    E-Print Network [OSTI]

    Park, Ju-Myon

    2002-01-01T23:59:59.000Z

    Standard Institute) Z 9. 5 Clarification of ANSI/AIHA Z9. 5 Standard "Laboratory Ventilation ". 1999. Page 13, Section 5. 7 80 ? 120 (0. 41 ? 0. 61) NFPA (National Fire Protection Association) NFPA 45 Fire Protection for Laboratories Using... 1910. 1450. Safety and Health Administration) 60- 100 (0. 31 ? 0. 51) SEFA (Scientific Equipment & Furniture Association) Laboratory Fume Hoods Recommended Practices. SEFA 1. 2, 1996. Page 7 75 ? 125 (0. 3 8 ? 0. 64) 2. Turbulence J. O...

  16. Sandia National Laboratories: BASF latent curing epoxy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manufacturing Initiative (AMI) is a multiple-year, 3-way collaboration among TPI Composites, Iowa State University, and Sandia National Laboratories. The goal of this...

  17. Sandia National Laboratories: Advanced Manufacturing Initiative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manufacturing Initiative (AMI) is a multiple-year, 3-way collaboration among TPI Composites, Iowa State University, and Sandia National Laboratories. The goal of this...

  18. Sandia National Laboratories: organic field effect transistor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    organic field effect transistor ECIS and Compass Metals: Platinum Nanostructures for Enhanced Catalysis On March 29, 2013, in Advanced Materials Laboratory, Capabilities, Energy,...

  19. Sandia National Laboratories: energy storage materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy Storage, Facilities, National Solar Thermal Test Facility, News, News & Events,...

  20. Sandia National Laboratories: Energy Storage Multimedia Gallery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    StorageEnergy Storage Multimedia Gallery Energy Storage Multimedia Gallery Images Videos Energy Storage Image Gallery Energy Storage B-Roll Videos Battery Abuse Testing Laboratory...

  1. National Renewable Energy Laboratory Report Identifies Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory (NREL) identifies research opportunities to improve the ways in which wholesale electricity markets are designed, with a focus on how the characteristics of...

  2. Sandia National Laboratories: fuel cell catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fuel cell catalyst ECIS and Compass Metals: Platinum Nanostructures for Enhanced Catalysis On March 29, 2013, in Advanced Materials Laboratory, Capabilities, Energy, Energy...

  3. Sandia National Laboratories: hydrogen powered fuel cell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    powered fuel cell ECIS and Compass Metals: Platinum Nanostructures for Enhanced Catalysis On March 29, 2013, in Advanced Materials Laboratory, Capabilities, Energy, Energy...

  4. Sandia National Laboratories: Fuel Cell Technologies Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cell Technologies Office Federal Laboratory Consortium Regional Technology-Transfer Awards Salute Innovation, Commercialization at Sandia On September 23, 2014, in...

  5. Sandia National Laboratories: Research: Research Foundations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Austin Funding source U.S. Department of Energy, Office of Science Key facilities Geomechanics Laboratory, DOE Technology Deployment Center High-pressure, multiphase-flow...

  6. Sandia National Laboratories: Operations and Maintenance Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Hosted by Sandia National Laboratories and the Electric Power Research Institute (EPRI) The 2013 PV Operations and Maintenance Workshop, hosted by Sandia National...

  7. Sandia National Laboratories: Module-Scale Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Hosted by Sandia National Laboratories and the Electric Power Research Institute (EPRI) Inverter reliability drives project life cycle costs and plant performance. This...

  8. Sandia National Laboratories: Achieving High Pernetrations of...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conference, the Department of Energy (DOE), the Electric Power Research Instisute (EPRI), Sandia National Laboratories, ... Last Updated: September 10, 2012 Go To Top ...

  9. Sandia National Laboratories: Operations and Maintenance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Hosted by Sandia National Laboratories and the Electric Power Research Institute (EPRI) Inverter reliability drives project life cycle costs and plant performance. This...

  10. Sandia National Laboratories: automatically collect data from...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, Facilities, News, News & Events, Photovoltaic, Photovoltaic Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar Newsletter, SunShot The state of...

  11. Independent Activity Report, Pacific Northwest National Laboratory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    January 2012 January 2012 Pacific Northwest National Laboratory Orientation Visit HIAR-PNNL-2012-01-11 This Independent Activity Report documents an operational awareness...

  12. Science Undergraduate Laboratory Internship Program | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SULI FACT SHEET Contact undergrad@anl.gov Science Undergraduate Laboratory Internship "My perspective on how the research environment was broadened. I am more aware of the...

  13. Sandia National Laboratories: Carbon Capture & Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from improved climate models to performance models for underground waste storage to 3D printing and digital rock physics. Marianne Walck (Director ... Federal Laboratory...

  14. Lawrence Livermore National Laboratory Proposal to Participate...

    Broader source: Energy.gov (indexed) [DOE]

    EXAFS, ESR) to elucidate chemical structures We are the premier laboratory in carbon aerogels and have explored their use for hydrogen storage and gas separation Other materials...

  15. Sandia National Laboratories: PMTF Computer System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia National Laboratories The PMTF computer system can perform theoretical modeling and analysis, experimental control and data acquisition, and post-test data...

  16. NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer Novel...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for "Outstanding Commercialization Success" from the Federal Laboratory Consortium for Technology Transfer. On October 4, 2012, the NETL team who developed this alloy received...

  17. Oversight Reports - Los Alamos National Laboratory | Department...

    Broader source: Energy.gov (indexed) [DOE]

    May 2011 Safety System Oversight Assessment of the Los Alamos National Laboratory Weapons Engineering Tritium Facility Tritium Gas Handling System February 8, 2011 Independent...

  18. United States National Energy Technology Laboratory's (NETL)...

    Open Energy Info (EERE)

    National Energy Technology Laboratory's (NETL) Smart Grid Implementation Strategy Reference Library Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: United States...

  19. Sandia National Laboratories: materials science and engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    science and engineering Joint Hire Increases Materials Science Collaboration for Sandia, UNM On September 16, 2014, in Advanced Materials Laboratory, Capabilities, Energy, Energy...

  20. DOE National Laboratory Releases Annual Accomplishments Report

    Broader source: Energy.gov [DOE]

    The National Energy Technology Laboratory has released its annual accomplishments report, highlighting breakthroughs in research and technology development to address the nation's energy, economic, and environmental challenges.