National Library of Energy BETA

Sample records for laboratory pnl-7789 prepared

  1. PHYSICAL PROPERTY MEASUREMENTS OF LABORATORY PREPARED SALTSTONE GROUT

    SciTech Connect (OSTI)

    Hansen, E.; Cozzi, A.; Edwards, T.

    2014-05-05

    The Saltstone Production Facility (SPF) built two new Saltstone Disposal Units (SDU), SDU 3 and SDU 5, in 2013. The variable frequency drive (VFD) for the grout transfer hose pump tripped due to high current demand by the motor during the initial radioactive saltstone transfer to SDU 5B on 12/5/2013. This was not observed during clean cap processing on July 5, 2013 to SDU 3A, which is a slightly longer distance from the SPF than is SDU 5B. Saltstone Design Authority (SDA) is evaluating the grout pump performance and capabilities to transfer the grout processed in SPF to SDU 3/5. To assist in this evaluation, grout physical properties are required. At this time, there are no rheological data from the actual SPF so the properties of laboratory prepared samples using simulated salt solution or Tank 50 salt solution will be measured. The physical properties of grout prepared in the laboratory with de-ionized water (DI) and salt solutions were obtained at 0.60 and 0.59 water to premix (W/P) ratios, respectively. The yield stress of the DI grout was greater than any salt grout. The plastic viscosity of the DI grout was lower than all of the salt grouts (including salt grout with admixture). When these physical data were used to determine the pressure drop and fluid horsepower for steady state conditions, the salt grouts without admixture addition required a higher pressure drop and higher fluid horsepower to transport. When 0.00076 g Daratard 17/g premix was added, both the pressure drop and fluid horsepower were below that of the DI grout. Higher concentrations of Daratard 17 further reduced the pressure drop and fluid horsepower. The uncertainty in the single point Bingham Plastic parameters is + 4% of the reported values and is the bounding uncertainty. Two different mechanical agitator mixing protocols were followed for the simulant salt grout, one having a total mixing time of three minutes and the other having a time of 10 minutes. The Bingham Plastic parameters were essentially the same for the salt grout without admixture. When Daratard 17 was added, the Bingham Plastic yield stress increased for the 10 minute mix. The simulant salt used in this task had similar physical properties of the Tank 50 3Q13 salt grout and is recommended for future use, if the salt solution in Tank 50 does not change. The design basis physical properties used to size the pumps and mixers at SPF were obtained from DPST-85-312. The grouts characterized in this report are bounded by the design basis density and Bingham Plastic yield stress. The opposite is true for the plastic viscosity. Steady state pressure drop calculations were performed for the design basis values using the flow rate for the clean cap and salt grouts and they bound the pressure drop of the grouts characterized in this report. A comparison of the lab prepared samples to PI ProcessBook data, specifically average pressure drop, indicate that the lab prepared samples are more viscous in nature than what is processed in the facility. This difference could be due to the applied shear rates which could be lower in the lab as compared to the facility and that fact the SPF added flush water, making this comparison more difficult. A perfunctory review of the PI ProcessBook data was discussed. It may be possible that the frequency that the distributed control system alters the grout pump speed to maintain grout hopper volume can negatively affect the efficiency of the grout pump.

  2. Adjudication of Two Contracts for Building Work on Hall 186 and Laboratory 28 Intended for Preparations for SPS Physics

    E-Print Network [OSTI]

    1974-01-01

    Adjudication of Two Contracts for Building Work on Hall 186 and Laboratory 28 Intended for Preparations for SPS Physics

  3. Biology Chemistry & Material Science Laboratory 2 | Sample Preparation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAudits & InspectionsBeryllium andSamplerBiological ImagingLaboratories

  4. Laboratory Glass Columns "Next Generation" technology for high-performance preparative chromatography

    E-Print Network [OSTI]

    Lebendiker, Mario

    SNAP ® Laboratory Glass Columns "Next Generation" technology for high-performance preparative lesiones graves o la muerte! WARNING Glass SNAP® columns are intended for use in a liquid environment disassembly or cleaning for scratches, chips or defects, particularly on the glass surfaces. DO NOT use column

  5. Brian Somerday, an SNL researcher, prepares to load a hydrogen pressure vessel into a laboratory furnace.

    E-Print Network [OSTI]

    include hydrogen production, fuel cells, thermophysical properties, hydrogen storage materials, and carbonI2CNER n Brian Somerday, an SNL researcher, prepares to load a hydrogen pressure vessel into a laboratory furnace. Unequivocally Sandia's strong research record and industrial experience on hydrogen

  6. Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory

    E-Print Network [OSTI]

    Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory Calculation of the Vacuum Green's Function Valid even for High Toroidal Mode Number Laboratory This report is posted on the U.S. Department of Energy's Princeton Plasma Physics Laboratory

  7. Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory

    E-Print Network [OSTI]

    .E. Sugiyamac aPrinceton Plasma Physics Laboratory, Princeton, New Jersey 08543 b New York University, New YorkPrepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma.S. Department of Energy's Princeton Plasma Physics Laboratory Publications and Reports web site in Fiscal Year

  8. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mexican pueblo preserves cultural history through collaborative tours with Los Alamos National Laboratory August 24, 2015 Students gain new insights into their ancestry LOS ALAMOS,...

  9. Environmental Health and Safety Laboratory Preparation for Tropical Storms or Hurricanes

    E-Print Network [OSTI]

    Natelson, Douglas

    be followed prior to landfall. 1. Check the accuracy of emergency contacts and telephone numbers on the lab isotopes, and DEA regulated drugs. Make sure all inventories of these materials are up to date. 6. Shut down all laboratory equipment which is not essential. Ovens, solvent stills, stir plates, biohazard

  10. The Sample Preparation Laboratories | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDidDevelopment TopMetathesisSediments and RelatedProjectResearch

  11. LCLS Sample Preparation Laboratory | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse Bergkamp Graduate student Subtask22 LANSCE Topical UserLAPACKNewLCLSLCLS

  12. Simulated Waste for Leaching and Filtration Studies--Laboratory Preparation Procedure

    SciTech Connect (OSTI)

    Smith, Harry D.; Russell, Renee L.; Peterson, Reid A.

    2009-10-27

    This report discusses the simulant preparation procedure for producing multi-component simulants for leaching and filtration studies, including development and comparison activities in accordance with the test plan( ) prepared and approved in response to the Test Specification 24590-WTP-TSP-RT-06-006, Rev 0 (Smith 2006). A fundamental premise is that this approach would allow blending of the different components to simulate a wide variety of feeds to be treated in the Hanford Tank Waste Treatment and Immobilization Plant (WTP). For example, a given feed from the planned feed vector could be selected, and the appropriate components would then be blended to achieve a representation of that particular feed. Using the blending of component simulants allows the representation of a much broader spectrum of potential feeds to the Pretreatment Engineering Platform (PEP).

  13. PREPARATIONS FOR ASSEMBLY OF THE INTERNATIONAL ERL CRYOMODULE AT DARESBURY LABORATORY

    SciTech Connect (OSTI)

    McIntosh, P. A.; Bate, R.; Beard, C. D.; Cordwell, M. A.; Dykes, D. M.; Pattalwar, S. M.; Strachan, J.; Belomestnykh, S.; Liepe, M.; Padamsee, H.; Quigley, P.; Sears, J.; Shemelin, V.; Veshcherevich, V.; Proch, D.; Sekutowicz, J.; Buchner, A.; Gabriel, F.; Michel, P.; Corlett, J. N.; Li, D.; Lidia, S.; Kimura, T.; Smith, T. I.

    2009-04-29

    The collaborative development of an optimised cavity/cryomodule solution for application on ERL facilities has now progressed to final assembly and testing of the cavity string components and their subsequent cryomodule integration. This paper outlines the verification of the various cryomodule sub-components and details the processes utilised forfinal cavity string integration. The paper also describes the modifications needed to facilitate this new cryomodule installation and ultimate operation on the ALICE facility at Daresbury Laboratory.

  14. Geoscience Laboratory | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFESOpportunities NuclearlongGeneralGeorge T.

  15. Laboratory Access | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse Bergkamp Graduate student Subtask22BackgroundLabSanta'sNewNaturalAccess

  16. Laboratory Waste | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse Bergkamp Graduate studentScience (SC)Planning Process Combined

  17. Preparing Los Alamos National Laboratory's Waste Management Program for the Future - 12175

    SciTech Connect (OSTI)

    Jones, Scotty W.; Dorries, Alison M.; Singledecker, Steven [Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM 87545 (United States); Henckel, George [Los Alamos Site Office, MS-A316, Los Alamos, NM 87544 (United States)

    2012-07-01

    The waste management program at Los Alamos National Laboratory (LANL) is undergoing significant transition to establish a lean highly functioning waste management program that will succeed the large environmental cleanup waste management program. In the coming years, the environmental cleanup activities will be mostly completed and the effort will change to long-term stewardship. What will remain in waste management is a smaller program focused on direct off-site shipping to cost-effectively enable the enduring mission of the laboratory in support of the national nuclear weapons program and fundamental science and research. It is essential that LANL implement a highly functioning efficient waste management program in support of the core missions of the national weapons program and fundamental science and research - and LANL is well on the way to that goal. As LANL continues the transition process, the following concepts have been validated: - Business drivers including the loss of onsite disposal access and completion of major environmental cleanup activities will drive large changes in waste management strategies and program. - A well conceived organizational structure; formal management systems; a customer service attitude; and enthusiastic managers are core to a successful waste management program. - During times of organizational transition, a project management approach to managing change in a complex work place with numerous complex deliverables is successful strategy. - Early and effective engagement with waste generators, especially Project Managers, is critical to successful waste planning. - A well-trained flexible waste management work force is vital. Training plans should include continuous training as a strategy. - A shared fate approach to managing institutional waste decisions, such as the LANL Waste Management Recharge Board is effective. - An efficient WM program benefits greatly from modern technology and innovation in managing waste data and reports. - Use of six-sigma tools can help improve the quality and efficiency of waste management processes. - A fair, easy to understand, transparent, and well-overseen process for distributing the cost of waste disposal and waste program oversight is essential. (authors)

  18. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResource andfirstDeviceLabLabor ComplianceLaboratories

  19. Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory

    E-Print Network [OSTI]

    Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory Efficient Coupling of Thermal Electron Bernstein Waves to the Ordinary Electromagnetic by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its

  20. Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory

    E-Print Network [OSTI]

    , California 92186 3 Columbia University, New York, New York 10027 Abstract Plasma shape control using realPrepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma is posted on the U.S. Department of Energy's Princeton Plasma Physics Laboratory Publications and Reports

  1. Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory

    E-Print Network [OSTI]

    , Princeton, NJ 08543, U.S.A. 2) New York University, New York, NY e-mail: fu@pppl.gov Abstract Global hybridPrepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma is posted on the U.S. Department of Energy's Princeton Plasma Physics Laboratory Publications and Reports

  2. Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory

    E-Print Network [OSTI]

    Energy Res. Inst., Naka, JAPAN 13 Max-Planck Institut fur Plasmaphysik, Garching, GERMANY 14 A.F. IoffePrepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma This report is posted on the U.S. Department of Energy's Princeton Plasma Physics Laboratory Publications

  3. Report on Department of Homeland Security Sponsored Research Project at Lawrence Livermore National Laboratory on Preparation for an Improvised Nuclear Device Event

    SciTech Connect (OSTI)

    A., B

    2008-07-31

    Following the events of September 11th, a litany of imaginable horribles was trotted out before an anxious and concerned public. To date, government agencies and academics are still grappling with how to best respond to such catastrophes, and as Senator Lieberman's quote says above, now is the time to plan and prepare for such events. One of the nation's worst fears is that terrorists might detonate an improvised nuclear device (IND) in an American city. With 9/11 serving as the catalyst, the government and many NGOs have invested money into research and development of response capabilities throughout the country. Yet, there is still much to learn about how to best respond to an IND event. My summer 2008 internship at Lawrence Livermore National Laboratory afforded me the opportunity to look in depth at the preparedness process and the research that has been conducted on this issue. While at the laboratory I was tasked to collect, combine, and process research on how cities and the federal government can best prepare for the horrific prospect of an IND event. Specific projects that I was involved with were meeting reports, research reviews, and a full project report. Working directly with Brooke Buddemeier and his support team at the National Atmospheric Release Advisory Center, I was able to witness first hand, preparation for meetings with response planners to inform them of the challenges that an IND event would pose to the affected communities. In addition, I supported the Homeland Security Institute team (HSI), which was looking at IND preparation and preparing a Congressional report. I participated in meetings at which local responders expressed their concerns and contributed valuable information to the response plan. I specialized in the psycho-social aspects of an IND event and served as a technical advisor to some of the research groups. Alongside attending and supporting these meetings, I worked on an independent research project which collected information from across disciplines to outline where the state of knowledge on IND response is. In addition, the report looked at meetings that were held over the summer in various cities. The meetings were attended by both federal responders and local responders. The meetings explored issues regarding IND preparation and how to mitigate the effects of an IND detonation. Looking at the research and current preparation activity the report found that the state of knowledge in responding and communicating is a mixed bag. Some aspects of an IND attack are well understood, some are not, but much is left to synthesize. The effects of an IND would be devastating, yet much can be done to mitigate those effects through education, preparation, and research. A major gap in current knowledge is how to effectively communicate with the public before an attack. Little research on the effectiveness of public education has been done, but it is likely that educating the public about the effects of an IND and how to best protect oneself could save many lives.

  4. Laboratory Equipment & Supplies | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse Bergkamp Graduate studentScience (SC) DirectedEquipment & Supplies

  5. Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory

    E-Print Network [OSTI]

    Physics Laboratory, Princeton, NJ 08543, USA W. Dorland Institute for Plasma Research, U. MD, College Park

  6. CERTS Microgrid Laboratory Test Bed - PIER Final Project Report

    E-Print Network [OSTI]

    Eto, Joseph H.

    2008-01-01

    Energy Research Program Prepared By: Lawrence Berkeley National LaboratoryEnergy Research Program Prepared By: Lawrence Berkeley National LaboratoryEnergy Research Program Prepared By: Lawrence Berkeley National Laboratory

  7. Chemical Inventory | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D BGene NetworkNuclear SecurityChattan ooga Eag le ForChemCamChemical

  8. Chemical Resources | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAudits &BradburyMayARM-0501 Marine StratusChemCamChemical Resources

  9. Equipment Inventory | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansasCommunitiesof Energy ServicesEnergy4th Quarter 2012 for

  10. Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory

    E-Print Network [OSTI]

    Information (OSTI): Available electronically at: http://www.osti.gov/bridge. Available for a processing fee) 576-5728 E-mail: reports@adonis.osti.gov #12;Preparing K-12 students for the new interdisciplinary

  11. Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory

    E-Print Network [OSTI]

    /16/05 Plasma Research Laboratory, Australian National University, Australia Professor I.R. Jones, Flinders for Plasma Research, India Ms. P.J. Pathak, Librarian, Institute for Plasma Research, India Dr. Pandji

  12. Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory

    E-Print Network [OSTI]

    of the observed FRC equilibrium and stability proper- ties presents significant challenges due to the high plasma numerical simulations are generally required to describe and understand the detailed behavior of FRC plasmasPrepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma

  13. Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory

    E-Print Network [OSTI]

    are observed. It is found that during regular oscillations the energy of the thermal ions can reach magnitudesPrepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does

  14. Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory

    E-Print Network [OSTI]

    . Super-thermal fast ions provide a source of free energy to excite instabilities, which in turn can particles from the D-T fusion reaction. These fast ions provide a potential source of free energy to excitePrepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma

  15. Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory

    E-Print Network [OSTI]

    in the discharge voltage range of 200-700 V. The arcing between the floating velvet electrodes and the plasmaPrepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma. Raitses, D. Staack, A. Dunaevsky, and N.J. Fisch December 2005 PPPL-4136 PPPL-4136 #12;Princeton Plasma

  16. Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory

    E-Print Network [OSTI]

    Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma, Charles Gentile, Craig Priniski, and John Sethian February 2006 PPPL-4147 PPPL-4147 #12;Princeton Plasma agency thereof or its contractors or subcontractors. PPPL Report Availability Princeton Plasma Physics

  17. Prepared for the U.S. Department of Energy under Contract DE-AC02-09CH11466. Princeton Plasma Physics Laboratory

    E-Print Network [OSTI]

    Biewer, Theodore

    .......................................................................................................... 23 3.2 Energy Efficient "Green" BuildingsPrepared for the U.S. Department of Energy under Contract DE-AC02-09CH11466. Princeton Plasma ............................................... 17 2.6.2 PPPL Participates in the EnergyEfficient Building (EEB) Hub Program Mentoring

  18. Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory

    E-Print Network [OSTI]

    Laboratory: http://www.pppl.gov/pub_report/ Office of Scientific and Technical Information (OSTI): http://www.osti P.O. Box 62 Oak Ridge, TN 37831-0062 Telephone: (865) 576-8401 Fax: (865) 576-5728 E-mail: reports@adonis.osti

  19. Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory

    E-Print Network [OSTI]

    @adonis.osti.gov #12;#12;#12;#12;#12;#12;#12;External Distribution 05/16/05 Plasma Research Laboratory, Australian Research Institute for Physics, Hungary Dr. P. Kaw, Institute for Plasma Research, India Ms. P.J. Pathak, Librarian, Institute for Plasma Research, India Dr. Pandji Triadyaksa, Fakultas MIPA Universitas Diponegoro

  20. Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory

    E-Print Network [OSTI]

    Physics Laboratory A Solar Cycle Dependence of Nonlinearity in Magnetospheric Activity Jay R. Johnson in J. Geophys. Res.. Copyright 2004 American Geophsyical Union. A Solar Cycle Dependence in the discriminating statistics a few years prior to solar minima, while no differences are apparent at the time

  1. Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory

    E-Print Network [OSTI]

    Physics Laboratory RF Sources for the ITER Ion Cyclotron Heating and Current Drive System J. Hosea, C Ridge, TN 37831, USA Abstract--The RF source requirements for the ITER ion cyclotron (IC) heating and Reports web site in Fiscal Year 2006. The home page for PPPL Reports and Publications is: http

  2. Prepared for the U.S. Department of Energy under Contract DE-AC02-09CH11466. Princeton Plasma Physics Laboratory

    E-Print Network [OSTI]

    Mazzucato, Ernesto

    the conceptual design of a midsize tokamak as fast track to the investigation of burning plasmas. It is shown the scaling that was used for designing the International Thermonuclear Experimental Reactor (ITER). This can Physics Laboratory PPPL- 4535PPPL-4535 A Midsize Tokamak As Fast Track To Burning Plasmas July, 2010

  3. Decommissioning of Active Ventilation Systems in a Nuclear R and D Facility to Prepare for Building Demolition (Whiteshell Laboratories Decommissioning Project, Canada) - 13073

    SciTech Connect (OSTI)

    Wilcox, Brian; May, Doug; Howlett, Don; Bilinsky, Dennis [Atomic Energy of Canada Limited, Ara Mooradian Way, Pinawa, Manitoba (Canada)] [Atomic Energy of Canada Limited, Ara Mooradian Way, Pinawa, Manitoba (Canada)

    2013-07-01

    Whiteshell Laboratories (WL) is a nuclear research establishment owned by the Canadian government and operated by Atomic Energy of Canada Limited (AECL) since the early 1960's. WL is currently under a decommissioning license and the mandate is to remediate the nuclear legacy liabilities in a safe and cost effective manner. The WL Project is the first major nuclear decommissioning project in Canada. A major initiative underway is to decommission and demolish the main R and D Laboratory complex. The Building 300 R and D complex was constructed to accommodate laboratories and offices which were mainly used for research and development associated with organic-cooled reactors, nuclear fuel waste management, reactor safety, advanced fuel cycles and other applications of nuclear energy. Building 300 is a three storey structure of approximately 16,000 m{sup 2}. In order to proceed with building demolition, the contaminated systems inside the building have to be characterized, removed, and the waste managed. There is a significant focus on volume reduction of radioactive waste for the WL project. The active ventilation system is one of the significant contaminated systems in Building 300 that requires decommissioning and removal. The active ventilation system was designed to manage hazardous fumes and radioactivity from ventilation devices (e.g., fume hoods, snorkels and glove boxes) and to prevent the escape of airborne hazardous material outside of the laboratory boundary in the event of an upset condition. The system includes over 200 ventilation devices and 32 active exhaust fan units and high efficiency particulate air (HEPA) filters. The strategy to remove the ventilation system was to work from the laboratory end back to the fan/filter system. Each ventilation duct was radiologically characterized. Fogging was used to minimize loose contamination. Sections of the duct were removed by various cutting methods and bagged for temporary storage prior to disposition. Maintenance of building heating, ventilation and air conditioning (HVAC) balancing was critical to ensure proper airflow and worker safety. Approximately 103 m{sup 3} of equipment and materials were recovered or generated by the project. Low level waste accounted for approximately 37.4 m{sup 3}. Where possible, ducting was free released for metal recycling. Contaminated ducts were compacted into B-1000 containers and stored in a Shielded Modular Above-Ground Storage Facility (SMAGS) on the WL site awaiting final disposition. The project is divided into three significant phases, with Phases 1 and 2 completed. Lessons learned during the execution of Phases 1 and 2 have been incorporated into the current ventilation removal. (authors)

  4. Laboratory Activities

    SciTech Connect (OSTI)

    Brown, Christopher F.; Serne, R. Jeffrey

    2008-01-17

    This chapter summarizes the laboratory activities performed by PNNL’s Vadose Zone Characterization Project in support of the Tank Farm Vadose Zone Program, led by CH2M HILL Hanford Group, Inc. The results of these studies are contained in numerous reports (Lindenmeier et al. 2002; Serne et al. 2002a, 2002b, 2002c, 2002d, 2002e; Lindenmeier et al. 2003; Serne et al. 2004a, 2004b; Brown et al. 2005, 2006a, 2007; Serne et al. 2007) and have generated much of the data reported in Chapter 22 (Geochemistry-Contaminant Movement), Appendix G (Geochemistry-Contaminant Movement), and Cantrell et al. (2007, SST WMA Geochemistry Data Package – in preparation). Sediment samples and characterization results from PNNL’s Vadose Zone Characterization Project are also shared with other science and technology (S&T) research projects, such as those summarized in Chapter 12 (Associated Science Activities).

  5. Introduction Preparation

    E-Print Network [OSTI]

    Introduction Motivation Preparation Notos' Components Results Conclusions and Future Work Building Problem Description and Motivation Preparation Notation, Passive DNS trends and Anchor Classes Notos Reputation Results Conclusions and Future Work Special thanks to: Damballa Passive DNS data, Malware and BL

  6. Sample Preparation Laboratory Training - Course 204 | Sample Preparation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis of

  7. 7 SAMPLING AND PREPARATION FOR LABORATORY MEASUREMENTS

    E-Print Network [OSTI]

    . Scanning is an evaluation technique performed by moving a portable radiation detection instrument at a constant speed and distance above the surface to semi-quantitatively detect elevated areas of radiation time. Commonly used radiation detection and measuring equipment for radiological survey field

  8. BCM 1 Equipment Inventory | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O DBiomass andAtomsVehicles and FuelsjBBEE Public1 Equipment

  9. BCM 2 Equipment Inventory | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O DBiomass andAtomsVehicles and FuelsjBBEE Public1 Equipment2

  10. Preparing for Your Visit | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This documentScience (SC) and Submitting a Phase I

  11. LANSCE | Lujan Center | Biology Preparation Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResource and Job Event InLANLRecovery Act0Venture7Biology

  12. LCLS Equipment Inventory | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResource and Job

  13. LCLS Prep Lab Images | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResource and JobLCLS Operating Schedule August

  14. Geoscience Equipment Inventory | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journalvivo Low-Dose Low LET IonizingGeorge B.Thousand CubicGeoscience

  15. Geoscience Prep Lab Slideshow | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journalvivo Low-Dose Low LET IonizingGeorge B.Thousand

  16. Use of the Oak Ridge National Laboratory tungsten-188/rhenium-188 generator for preparation of the rhenium-188 HDD/lipiodol complex for trans-arterial liver cancer therapy

    SciTech Connect (OSTI)

    Jeong, J M [Seoul National University; Knapp Jr, Russ F [ORNL

    2008-01-01

    This work describes the installation, use, and quality control (QC) of the alumina-based tungsten-188 ({sup 188}W)/rhenium-188 ({sup 188}Re) generators provided by the Oak Ridge National Laboratory (ORNL). In addition, methods used for concentration of the {sup 188}Re-perrhenate bolus and preparation of {sup 188}Re-labeled HDD (4-hexadecyl-2,2,9,9-tetramethyl-4,7-diaza-1,10-decanethiol) for trans-arterial administration for therapy of nonresectable liver cancer also are described. The {sup 188}W/{sup 188}Re generator has a long useful shelf-life of several months and is a convenient on-site {sup 188}Re production system. {sup 188}Re has excellent therapeutic and imaging properties (T{sub 1/2} 16.9 hours; E{sub {beta}max} 2.12 MeV; 155-keV gamma ray, 15%) and is cost effectively obtained on demand by saline elution of the generator. The clinical efficacy of a variety of {sup 188}Re-labeled agents has been demonstrated for several therapeutic applications. Because of the favorable physical properties of {sup 188}Re, several {sup 188}Re-labeled agents are being developed and evaluated for the treatment of nonresectable/refractory liver cancer. {sup 188}Re-labeled HDD has been the most widely studied of these agents for this application and has been introduced into clinical trials at a number of institutions. The trans-arterial administration of {sup 188}Re-labeled agents for treatment of inoperable liver cancer requires use of high-level (1-2 Ci) {sup 188}W/{sup 188}Re generators. The handling of such high levels of {sup 188}Re imposes radiological precautions normally not encountered in a radiopharmacy and adequate care and ALARA (i.e., 'As Low As Reasonably Achievable') principles must be followed. The ORNL generator provides consistently high {sup 188}Re yields (>75%) and low {sup 188}W parent breakthrough (<10{sup -3}%) over an extended shelf-life of several months. However, the high elution volumes (20-40 mL for 1-2 Ci generators) can require concentration of the {sup 188}Re bolus by postelution passage through silver cation chloride trapping columns used in the cost-effective tandem cation/anion column system. The silver column removes the high levels of chloride anion as insoluble AgCl, thus allowing subsequent specific trapping of the perrhenate anion on the small (QMA SeaPak) anion column. This method permits subsequent elution of {sup 188}Re-perrhenate with a small volume of saline, providing a very high activity-concentration solution. Because the {sup 188}Re-specific volume-activity concentration continually decreases with time, the tandem system is especially effective method for extending the useful generator shelf-life. Low elution flow rates (<1 mL/min) minimize any high back pressure which may be encountered during generator/tandem column elution when using tightly packed, small-particle-size commercial columns. In-house preparation of silver cation columns is recommended since the chloride trapping capacity is essentially unlimited, it is inexpensive and not limited in availability to any one supplier, and back pressure can be eliminated by the use of larger particles. Methods for the preparation of {sup 188}Re-HDD have been optimized and this agent can be obtained in high yield (80%).

  17. LABORATORY SAFETY CHECKLIST LABORATORY: DATE

    E-Print Network [OSTI]

    Fleming, Andrew J.

    LABORATORY SAFETY CHECKLIST LABORATORY: DATE: RESPONSIBLE OFFICER: INSPECTION BY: Boxes/A indicates the item does not apply to this laboratory. 1 HAZARD IDENTIFICATION /x/NA Comments 1 in the laboratory? 1.2 Are current copies available of: (a) permits for notifiable or prohibited carcinogens, (b

  18. Analytical laboratory quality audits

    SciTech Connect (OSTI)

    Kelley, William D.

    2001-06-11

    Analytical Laboratory Quality Audits are designed to improve laboratory performance. The success of the audit, as for many activities, is based on adequate preparation, precise performance, well documented and insightful reporting, and productive follow-up. Adequate preparation starts with definition of the purpose, scope, and authority for the audit and the primary standards against which the laboratory quality program will be tested. The scope and technical processes involved lead to determining the needed audit team resources. Contact is made with the auditee and a formal audit plan is developed, approved and sent to the auditee laboratory management. Review of the auditee's quality manual, key procedures and historical information during preparation leads to better checklist development and more efficient and effective use of the limited time for data gathering during the audit itself. The audit begins with the opening meeting that sets the stage for the interactions between the audit team and the laboratory staff. Arrangements are worked out for the necessary interviews and examination of processes and records. The information developed during the audit is recorded on the checklists. Laboratory management is kept informed of issues during the audit so there are no surprises at the closing meeting. The audit report documents whether the management control systems are effective. In addition to findings of nonconformance, positive reinforcement of exemplary practices provides balance and fairness. Audit closure begins with receipt and evaluation of proposed corrective actions from the nonconformances identified in the audit report. After corrective actions are accepted, their implementation is verified. Upon closure of the corrective actions, the audit is officially closed.

  19. National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on the Pajarito Plateau topic of inaugural lecture at Los Alamos National Laboratory January 4, 2013 Lecture series begins yearlong commemoration of 70th anniversary LOS...

  20. Renewable Energy Research Laboratory University of Massachusetts, Amherst

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Renewable Energy Research Laboratory University of Massachusetts, Amherst 160 Governors Drive;January 16, 2007 Renewable Energy Research Laboratory Page 1 University of Massachusetts, Amherst Amherst, MA 01003 NOTICE AND ACKNOWLEDGEMENTS This report was prepared by the Renewable Energy Research

  1. Lawrence Berkeley Laboratory Institutional Plan FY 1993-98

    E-Print Network [OSTI]

    Chartock, Michael

    2009-01-01

    and waste management. ORGANIZATION CHART Information andDirector LBL organization chart. LABORATORY STRATEGIC PLANDirectors (see organization chart, Section 2). Preparation

  2. TAMU Laboratory Safety Manual TEXAS A&M UNIVERSITY

    E-Print Network [OSTI]

    TAMU Laboratory Safety Manual i TEXAS A&M UNIVERSITY LABORATORY SAFETY MANUAL Prepared by ENVIRONMENTAL HEALTH & SAFETY TEXAS A&M UNIVERSITY FEBRUARY 2009 #12;TAMU Laboratory Safety Manual ii TABLE ..............................................................................................1-1 EHS LABORATORY SAFETY - PROGRAMS AND SERVICES ........................................1

  3. Training program to prepare the U.S. DOE laboratories for the entry into force of the protocol additional to the agreement between the United States of America and the International Atomic Energy Agency for the application of safeguards in the United

    SciTech Connect (OSTI)

    Boyer, Brian David; Stevens, Rebecca C; Uribe, Eva C; Sandoval, M Analisa; Valente, John N; Valente, John U; Jo, Jae H; Sellen, Joana

    2009-01-01

    In 2008, a joint team from Brookhaven National Laboratory (BNL) and Los Alamos National Laboratory (LANL) consisting of specialists in training IAEA inspectors in the use of complementary access activities formulated a training program to prepare the U.S DOE laboratories for the entry into force of the U.S. Additional Protocol. Since the U.S. Additional Protocol would allow for IAEA access to the DOE laboratories under the aegis of complementary access activities, the DOE laboratories would need to prepare for such visits. The goal of the training was to ensure that the DOE laboratories would successfully host an IAEA complementary access. In doing so, the labs must be able to provide the IAEA with the information that the IAEA would need to resolve its questions about the U.S. Declaration and declared activities at the lab, and also protect certain equities, as provided under the U.S. Additional Protocol Article 1.b and c. which set forth a 'National Security Exclusion.' This 'NSE' states that the AP provisions apply within the United States 'excluding only instances where its application would result in access by the Agency to activities with direct national security significance to the United States or to location or information associated with such activities.' These activities are referred to collectively as DNSS-direct national security significance. Furthermore, the U.S. has a specific right to employ managed access, without prejudice to the right under Article 1.b, in connection with activities of DNSS. The provisions in Articles 1.b and 1.c are unique to the U.S. AP, and are additional to the more general right, under Article 7, to use managed access to protect from disclosure proprietary and/or proliferation-sensitive information, and to meet safety and security requirements, that is incorporated directly from the Model Additional Protocol. The BNL-LANL team performed training at Lawrence Livermore National Laboratory, Idaho National Laboratory, and Oak Ridge National Laboratory to cover the situations that these labs, which respectively represent nuclear weapons labs, nuclear energy labs, and science labs and environmental management sites, would encounter during a complementary access. Each of the three labs hosted a mock complementary access activity, which included mock inspectors from the BNL-LANL team. In addition to reviewing the draft declarations from each of the host labs, the BNL-LANL team conducted open source research in a manner similar to what IAEA inspectors would do to research the activities at a location and prepare questions for the location to answer and that would be the focus of a complementary access. The host labs and other labs attending the training found the training to be extremely useful and helpful in making sure that each lab's Additional Protocol team had made correct declarations of nuclear activities, had properly trained staff ready to host and answer IAEA inquiries, and would implement managed access during a complementary access that would provide access by the IAEA team to resolve questions or inconsistencies about a particular declaration and still protect the information addressed by Articles 1 and 7 of the U.S. AP.

  4. Preparing Your

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w1.½tankSurfaceSciTechenergyand*Prepare

  5. Visgraf Laboratory IMPA Visgraf Laboratory IMPA

    E-Print Network [OSTI]

    de Figueiredo, Luiz Henrique

    1 Visgraf Laboratory ­ IMPA Visgraf Laboratory ­ IMPA Visgraf Laboratory ­ IMPA CNMAC 99 CNMAC 99 jonas@impa.br @impa.br Visgraf Laboratory ­ IMPA Visgraf Laboratory ­ IMPA Rio de Janeiro Rio de Janeiro www.visgraf.impa.br www.visgraf.impa.br Visgraf Laboratory ­ IMPA Visgraf Laboratory ­ IMPA Visgraf

  6. Ames Laboratory Argonne National Laboratory

    E-Print Network [OSTI]

    that advance knowl- edge and provide the foundation for American innovation. From unlocking atomic energy's electric vehicles, solar panels, and wind turbines, the National Labs have pushed the boundaries Energy Technology Laboratory Morgantown, West Virginia Pittsburgh, Pennsylvania Albany, Oregon National

  7. EE 448 Laboratory Preface Laboratory Introduction

    E-Print Network [OSTI]

    Kumar, Ratnesh

    EE 448 Laboratory Preface Laboratory Introduction -1- EE 448 Preface 2/26/2007 Laboratory Introduction #12;EE 448 Laboratory Preface Laboratory Introduction -2- I. INTRODUCTION The electric machinery laboratory provides students with the opportunity to examine and experiment with different types

  8. Laboratory 12 Control Systems Laboratory ECE3557 Laboratory 12

    E-Print Network [OSTI]

    Laboratory 12 Control Systems Laboratory ECE3557 Laboratory 12 State Feedback Controller for Position Control of a Flexible Link 12.1 Objective The objective of this laboratory is to design a full of the combined system (i.e., servomotor and flexible link) introduced in the Laboratory 9 (refer to [1

  9. Laboratory 10 Control Systems Laboratory ECE3557 Laboratory 10

    E-Print Network [OSTI]

    Laboratory 10 Control Systems Laboratory ECE3557 Laboratory 10 State Feedback Controller for Position Control of a DC Servo 10.1 Objective The objective of this laboratory is to position the gears, we will use the state space model of the DC servo introduced in the laboratory 3 (refer to [1

  10. Argonne National Laboratory 1985 publications

    SciTech Connect (OSTI)

    Kopta, J.A.; Hale, M.R.

    1987-08-01

    This report is a bibliography of scientific and technical 1985 publications of Argonne National Laboratory. Some are ANL contributions to outside organizations' reports published in 1985. This compilation, prepared by the Technical Information Services Technical Publications Section (TPB), lists all nonrestricted 1985 publications submitted to TPS by Laboratory's Divisions. The report is divided into seven parts: Journal Articles - Listed by first author, ANL Reports - Listed by report number, ANL and non-ANL Unnumbered Reports - Listed by report number, Non-ANL Numbered Reports - Listed by report number, Books and Book Chapters - Listed by first author, Conference Papers - Listed by first author, Complete Author Index.

  11. National Renewable Energy Laboratory NREL/TP-580-24190

    E-Print Network [OSTI]

    Laughlin, Robert B.

    National Renewable Energy Laboratory NREL/TP-580-24190 ALookBackatthe U.S.DepartmentofEnergy Prepared by: the National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401. #12;National Renewable Energy Laboratory A Look Back at the Aquatic Species Program--Executive Summary

  12. Renewable Energy Research Laboratory University of Massachusetts, Amherst

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Renewable Energy Research Laboratory University of Massachusetts, Amherst 160 Governors Drive Renewable Energy Research Laboratory Page 1 University of Massachusetts, Amherst Amherst, MA 01003 NOTICE AND ACKNOWLEDGEMENTS This report was prepared by the Renewable Energy Research Laboratory (RERL) at the University

  13. Renewable Energy Research Laboratory University of Massachusetts, Amherst

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Renewable Energy Research Laboratory University of Massachusetts, Amherst 160 Governors Drive April 13, 2006 Report template version 2.0 #12;April 13, 2006 Renewable Energy Research Laboratory Page was prepared by the Renewable Energy Research Laboratory (RERL) at the University of Massachusetts, Amherst

  14. Renewable Energy Research Laboratory University of Massachusetts, Amherst

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Renewable Energy Research Laboratory University of Massachusetts, Amherst 160 Governors Drive. Ray January 5, 2005 #12;Renewable Energy Research Laboratory University of Massachusetts, Amherst 160 AND ACKNOWLEDGMENTS This report was prepared by the Renewable Energy Research Laboratory (RERL) at the University

  15. Renewable Energy Research Laboratory University of Massachusetts, Amherst

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Renewable Energy Research Laboratory University of Massachusetts, Amherst 160 Governors Drive;10/28/2008 Renewable Energy Research Laboratory Page 1 University of Massachusetts, Amherst Amherst, MA 01003 NOTICE AND ACKNOWLEDGEMENTS This report was prepared by the Renewable Energy Research Laboratory (RERL) at the University

  16. Laboratory Director

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse Bergkamp Graduate studentScience (SC) Directed ResearchLaboratory

  17. Donner Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratory |Sector Full reportTown2008Donald Raby Donald_ -

  18. EIS-0291: Withdrawal of Notice of Intent to Prepare an Environmental...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Intent to Prepare an Environmental Impact Statement High Flux Beam Reactor at the Brookhaven National Laboratory, Upton, New York On November 16, 1999, the Secretary of Energy...

  19. EIS-0281: Notice of Intent to Prepare a Site-Wide Environmental...

    Broader source: Energy.gov (indexed) [DOE]

    Laboratories, Albuquerque, New Mexico The Department of Energy (DOE) announces its intent to prepare a Site-Wide Environmental Impact Statement (SWEIS) for its Sandia National...

  20. Guide to preparing SAND Reports and other communication products.

    SciTech Connect (OSTI)

    Not Available

    2009-02-01

    This guide describes the R&A process, Common Look and Feel requirements, and preparation and publishing procedures for communication products at Sandia National Laboratories. Samples of forms and examples of published communications products are provided.

  1. EIS-0402: Advance Notice of Intent to Prepare an Environmental...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Intent to Prepare an Environmental Impact Statement Remediation of Area IV of the Santa Susana Field Laboratory The U.S. Department of Energy (DOE) is providing an Advance Notice...

  2. Preparation and characterization of transparent PZNPLZT ceramics

    E-Print Network [OSTI]

    Cao, Wenwu

    Preparation and characterization of transparent PZN­PLZT ceramics Q.R Yin,a) A.L. Ding, X.S. Zheng, and P.S. Qiu The State Key Laboratory of High Performance Ceramics and Superfire Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Ding Xi Road, 200050, Shanghai, China M

  3. PREPARING THE VIRTUAL CLASSROOM FOR DISTANCE DELIVERY

    E-Print Network [OSTI]

    Dyer, Bill

    of humans and their companion domestic animals and livestock. Students learn that there are certain "at riskPREPARING THE VIRTUAL CLASSROOM FOR DISTANCE DELIVERY: MEDICAL-VETERINARY ENTOMOLOGY CLINICS laboratory," library materials, conventional lectures and the 43 virtual patients in the clinics

  4. Tribology Laboratory | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAbout / TransformingTransuranic SolicitationTribology Laboratory

  5. A qualitative cross-case analysis of postsecondary students' performance in asynchronous mechanical system laboratories 

    E-Print Network [OSTI]

    Hays, Kim Thomas

    2007-04-25

    sufficient instructor time; (e) standardize computer software and applications; and (f) pilot-test and field-test laboratory equipment and activities. Conclusions drawn indicate limited applications of asynchronous laboratories for select prepared individuals...

  6. Laboratory 11 Control Systems Laboratory ECE3557 Laboratory 11

    E-Print Network [OSTI]

    for Position Control of a Flexible Joint 11.1 Objective The objective of this laboratory is to design a full in this laboratory is illustrated. For this laboratory, the servo is used in the high gear ratio configuration (refer = 2.6 · Km: one of the motor torque constants. Km = 0.00767 · Kg: gear ratio of the motor

  7. International perspectives on coal preparation

    SciTech Connect (OSTI)

    1997-12-31

    The report consists of the vugraphs from the presentations which covered the following topics: Summaries of the US Department of Energy`s coal preparation research programs; Preparation trends in Russia; South African coal preparation developments; Trends in hard coal preparation in Germany; Application of coal preparation technology to oil sands extraction; Developments in coal preparation in China; and Coal preparation in Australia.

  8. MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY

    E-Print Network [OSTI]

    Portland State University

    MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY A.I. Memo No. 1293 April, 1991 Intelligence Without Reason Rodney A. BrooksPrepared for Computers and Thought, IJCAI-91 Abstract Computers and Thought are the two categories that together de ne Arti cial Intelligence as a discipline

  9. Emergency Preparedness Plan Horn Point Laboratory

    E-Print Network [OSTI]

    Boynton, Walter R.

    Emergency Preparedness Plan Horn Point Laboratory March 2015 Introduction This plan summarizes the actions which will be taken in preparation for and in response to emergencies impacting the regular technology security and infrastructure, business functions, and academic and research continuity. Emergencies

  10. Bioengineering Laboratory MAEDA, Mizuo (Ph.D)

    E-Print Network [OSTI]

    Fukai, Tomoki

    , biodegradable polymer, semiconductor device technology Outline The principal purpose of our laboratory science and medical engineering. For example, we newly prepared DNA-vinyl polymer conjugates which have is to explore a new frontier of research field which fuses engineering and biological science. On the basis

  11. ASSEMBLY PREPARATIONS FOR THE INTERNATIONAL ERL CRYOMODULE AT DARESBURY LABORATORY

    E-Print Network [OSTI]

    Hoffstaetter, Georg

    Forward Power (kW) 25 SW To date, the international partners who have participated in this collaborative: Cryomodule Design Parameters Parameter Value Frequency (GHz) 1.3 Number of Cavities 2 Number of Cells per the primary cryomodule design parameters, which will be installed on the ALICE ERL accelerator at Daresbury

  12. BCM1 Prep Lab Slideshow | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O DBiomass andAtomsVehicles and FuelsjBBEE Public1

  13. BCM2 Prep Lab Slideshow | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O DBiomass andAtomsVehicles and FuelsjBBEE Public1BCM2 Prep

  14. Biology Chemistry & Material Science Laboratory 1 | Sample Preparation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAudits & InspectionsBeryllium andSamplerBiological Imaging

  15. SHIPBOARD LABORATORY SAFETY PROGRAM

    E-Print Network [OSTI]

    SHIPBOARD LABORATORY SAFETY PROGRAM INTEGRATED OCEAN DRILLING PROGRAM U.S. IMPLEMENTING ORGANIZATION AUGUST 2013 #12;IODP Shipboard Laboratory Safety: Introduction 2 CONTENTS Introduction ................................................................................................................................6 TAMU EHSD: Laboratory Safety Manual

  16. Commercial Fisheries Biological Laboratory

    E-Print Network [OSTI]

    Bureau of Commercial Fisheries Biological Laboratory Oxford, Maryland #12;Chart of the Tred Avon River, showing the location of the BCF Biological Laboratory and the orientation of this area modern laboratories for chem- ical, histological, microbiological, and physiological re- search

  17. LABORATORY SAFETY October 2012

    E-Print Network [OSTI]

    Chan, Hue Sun

    of the program are: 1) the adherence to appropriate design criteria when designing and constructing a laboratoryLABORATORY SAFETY PROGRAM October 2012 #12;OUTLINE 1.0 INTRODUCTION AND SCOPE ...................................................................................................................................6 4.0 LABORATORY DESIGN, CONSTRUCTION, DECOMMISSIONING

  18. Argonne National Laboratory 1986 publications

    SciTech Connect (OSTI)

    Kopta, J.A.; Springer, C.J.

    1987-12-01

    This report is a bibliography of scientific and technical 1986 publications of Argonne National Laboratory. Some are ANL contributions to outside organizations' reports published in 1986. This compilation, prepared by the Technical Information Services Technical Publications Section (TPS), lists all nonrestricted 1986 publications submitted to TPS by the Laboratory's Divisions. Author indexes list ANL authors only. If a first author is not an ANL employee, an asterisk in the bibliographic citation indicates the first ANL author. The report is divided into seven parts: Journal Articles -- Listed by first author; ANL Reports -- Listed by report number; ANL and non-ANL Unnumbered Reports -- Listed by report number; Non-ANL Numbered Reports -- Listed by report number; Books and Book Chapters -- Listed by first author; Conference Papers -- Listed by first author; and Complete Author Index.

  19. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    associate director for Environmental Programs at the Laboratory. This is the fifth master task order agreement the Laboratory has issued in the past two years to support...

  20. Renewable Energy Research Laboratory University of Massachusetts, Amherst

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Renewable Energy Research Laboratory University of Massachusetts, Amherst 160 Governors Drive Anthony F. Ellis April 19, 2006 Report template version 1.3 #12;April 19, 2006 Renewable Energy Research This report was prepared by the Renewable Energy Research Laboratory (RERL) at the University of Massachusetts

  1. Renewable Energy Research Laboratory University of Massachusetts, Amherst

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Renewable Energy Research Laboratory University of Massachusetts, Amherst 160 Governors Drive was prepared by the Renewable Energy Research Laboratory (RERL) at the University of Massachusetts, Amherst contained, described, disclosed, or referred to in this report. July 24, 2009 Renewable Energy Research

  2. Renewable Energy Research Laboratory University of Massachusetts, Amherst

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Renewable Energy Research Laboratory University of Massachusetts, Amherst 160 Governors Drive. Ellis August 21, 2008 Report template version 3.1 #12;August 21, 2008 Renewable Energy Research This report was prepared by the Renewable Energy Research Laboratory (RERL) at the University of Massachusetts

  3. Renewable Energy Research Laboratory University of Massachusetts, Amherst

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Renewable Energy Research Laboratory University of Massachusetts, Amherst 160 Governors Drive Anthony F. Ellis April 10, 2008 Report template version 3.1 #12;April 10, 2008 Renewable Energy Research This report was prepared by the Renewable Energy Research Laboratory (RERL) at the University of Massachusetts

  4. Renewable Energy Research Laboratory University of Massachusetts, Amherst

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Renewable Energy Research Laboratory University of Massachusetts, Amherst 160 Governors Drive Abdulwahid Anthony F. Ellis July 18, 2008 Report template version 3.1 #12;July 18, 2008 Renewable Energy AND ACKNOWLEDGEMENTS This report was prepared by the Renewable Energy Research Laboratory (RERL) at the University

  5. Renewable Energy Research Laboratory University of Massachusetts, Amherst

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Renewable Energy Research Laboratory University of Massachusetts, Amherst 160 Governors Drive AND ACKNOWLEDGEMENTS This report was prepared by the Renewable Energy Research Laboratory (RERL) at the University of Massachusetts, Amherst in the course of performing work sponsored by the Renewable Energy Trust (RET

  6. Renewable Energy Research Laboratory University of Massachusetts, Amherst

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Renewable Energy Research Laboratory University of Massachusetts, Amherst 160 Governors Drive;January 20, 2005 Renewable Energy Research Laboratory Page 1 University of Massachusetts, Amherst Amherst, MA 01003 NOTICE AND ACKNOWLEDGE7MENTS This report was prepared by the Renewable Energy Research

  7. Renewable Energy Research Laboratory University of Massachusetts, Amherst

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Renewable Energy Research Laboratory University of Massachusetts, Amherst 160 Governors Drive F. Ellis July 21, 2008 Report template version 3.1 #12;July 21, 2008 Renewable Energy Research This report was prepared by the Renewable Energy Research Laboratory (RERL) at the University of Massachusetts

  8. Renewable Energy Research Laboratory University of Massachusetts, Amherst

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Renewable Energy Research Laboratory University of Massachusetts, Amherst 160 Governors Drive 20, 2005 #12;January 20, 2005 Renewable Energy Research Laboratory Page 1 University of Massachusetts, Amherst Amherst, MA 01003 NOTICE AND ACKNOWLEDGEMENTS This report was prepared by the Renewable Energy

  9. Renewable Energy Research Laboratory University of Massachusetts, Amherst

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Renewable Energy Research Laboratory University of Massachusetts, Amherst 160 Governors Drive was prepared by the Renewable Energy Research Laboratory (RERL) at the University of Massachusetts, Amherst contained, described, disclosed, or referred to in this report. July 17, 2009 Renewable Energy Research

  10. Arc Casting Intermetallic Alloy (Materials Preparation Center)

    SciTech Connect (OSTI)

    2010-01-01

    Arc casting of intermetallic (La-Ni-Sn) AB5 alloy used for metal hydride hydrogen storage. Upon solidification the Sn is partially rejected and increases in concentration in the remaining liquid. Upon completing solidification there is a great deal of internal stress in the ingot. As the ingot cools further the stress is relieved. This material was cast at the Ames Laboratorys Materials Preparation Center http://www.mpc.ameslab.gov

  11. Preparation of acetaldehyde

    DOE Patents [OSTI]

    Tustin, G.C.; Depew, L.S.

    1997-10-21

    Disclosed is a process for the preparation of acetaldehyde by the hydrogenation of ketene in the presence of a transition metal hydrogenation catalyst.

  12. Laboratory for Atmospheric and

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    Laboratory for Atmospheric and Space Physics Activity Report 2013 University of Colorado at Boulder from the Naval Research Center and the Air Force Cambridge Research Laboratory (now the Phillips Laboratory), the University of Colorado formed a research group called the Upper Air Laboratory (UAL

  13. LABORATORY II MECHANICAL OSCILLATIONS

    E-Print Network [OSTI]

    Minnesota, University of

    Lab II - 1 LABORATORY II MECHANICAL OSCILLATIONS Most of the laboratory problems so far have was constant. In this set of laboratory problems, the total force acting on an object, and thus its's oscillation frequency. OBJECTIVES: After successfully completing this laboratory, you should be able to

  14. Laboratory for Atmospheric and

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    Laboratory for Atmospheric and Space Physics Activity Report 2012 University of Colorado at Boulder from the Naval Research Center and the Air Force Cambridge Research Laboratory (now the Phillips Laboratory), the University of Colorado formed a research group called the Upper Air Laboratory (UAL

  15. Laboratory for Atmospheric and

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    Laboratory for Atmospheric and Space Physics Activity Report 2008 University of Colorado at Boulder, Jet Propulsion Laboratory) LASP: A Brief History In 1946-47, a handful of American universities joined Laboratory (now the Phillips Laboratory), the University of Colorado formed a research group called the Upper

  16. Laboratory for Atmospheric and

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    1 Laboratory for Atmospheric and Space Physics Activity Report 2010 University of Colorado from the Na- val Research Center and the Air Force Cambridge Research Laboratory (now the Phillips Laboratory), the University of Colorado formed a research group called the Upper Air Laboratory (UAL

  17. LABORATORY IV ELECTRIC CIRCUITS

    E-Print Network [OSTI]

    Minnesota, University of

    LABORATORY IV ELECTRIC CIRCUITS Lab IV - 1 In the first laboratory, you studied the behavior of conservation. OBJECTIVES After successfully completing this laboratory, you should be able to: · Apply that you will be doing these laboratory problems before your lecturer addresses this material. The purpose

  18. LABORATORY IV CIRCULAR MOTION

    E-Print Network [OSTI]

    Minnesota, University of

    Lab IV - 1 LABORATORY IV CIRCULAR MOTION The problems in this laboratory will help you investigate. OBJECTIVES: After successfully completing this laboratory, you should be able to: · Determine Laboratories I, II, and III. Before coming to the lab you should be able to: · Determine an object

  19. National Renewable Energy Laboratory

    E-Print Network [OSTI]

    National Renewable Energy Laboratory Innovation for Our Energy Future ponsorship Format Reversed Color:White rtical Format Reversed-A ertical Format Reversed-B National Renewable Energy Laboratory National Renewable Energy Laboratory Innovation for Our Energy Future National Renewable Energy Laboratory

  20. Analytical Chemistry Laboratory | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemistry Laboratory provides a broad range of analytical chemistry support services to the scientific and engineering programs. AnalyticalChemistryLaboratoryfactsheet...

  1. Pacific Northwest Laboratory annual report for 1981 to the DOE Office of Energy Research. Part 4. Physical sciences. [Lead abstract

    SciTech Connect (OSTI)

    Nielsen, J.M.

    1982-02-01

    Separate abstracts were prepared for the 13 reports in this 1981 annual report from Battelle Pacific Northwest Laboratory which deals with the physical sciences. (KRM)

  2. Radiation and Health Technology Laboratory Capabilities

    SciTech Connect (OSTI)

    Goles, Ronald W.; Johnson, Michelle Lynn; Piper, Roman K.; Peters, Jerry D.; Murphy, Mark K.; Mercado, Mike S.; Bihl, Donald E.; Lynch, Timothy P.

    2003-07-15

    The Radiological Standards and Calibrations Laboratory, a part of Pacific Northwest National Laboratory (PNNL)(a) performs calibrations and upholds reference standards necessary to maintain traceability to national standards. The facility supports U.S. Department of Energy (DOE) programs at the Hanford Site, programs sponsored by DOE Headquarters and other federal agencies, radiological protection programs at other DOE and commercial nuclear sites and research and characterization programs sponsored through the commercial sector. The laboratory is located in the 318 Building of the Hanford Site's 300 Area. The facility contains five major exposure rooms and several laboratories used for exposure work preparation, low-activity instrument calibrations, instrument performance evaluations, instrument maintenance, instrument design and fabrication work, thermoluminescent and radiochromic Dosimetry, and calibration of measurement and test equipment (M&TE). The major exposure facilities are a low-scatter room used for neutron and photon exposures, a source well room used for high-volume instrument calibration work, an x-ray facility used for energy response studies, a high-exposure facility used for high-rate photon calibration work, a beta standards laboratory used for beta energy response studies and beta reference calibrations and M&TE laboratories. Calibrations are routinely performed for personnel dosimeters, health physics instrumentation, photon and neutron transfer standards alpha, beta, and gamma field sources used throughout the Hanford Site, and a wide variety of M&TE. This report describes the standards and calibrations laboratory.

  3. Laboratory supervisors are responsible for protecting their own equipment and research.

    E-Print Network [OSTI]

    Meyers, Steven D.

    Laboratory supervisors are responsible for protecting their own equipment and research the USF Hurricane Guide at http://usfweb2.usf.edu/Adminsvc/publicsafety/ HURRICANE SAFETY FOR LABORATORIES How to prepare your laboratory for a hurricane CHEMICAL SAFETY Label and cap all chemical containers

  4. EXPORT CONTROLS PREPARED BY

    E-Print Network [OSTI]

    Sorin, Eric J.

    EXPORT CONTROLS MANUAL PREPARED BY: Office of General Counsel The California State University SEPTEMBER 2012 #12; Export Controls Manual Table of Contents I. INTRODUCTION ......................................................................................................... 1 II. HISTORY OF EXPORT CONTROLS

  5. Princeton Plasma Physics Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Physics Laboratory P.O. Box 451 Princeton, NJ 08543-0451 GPS: 100 Stellarator Road Princeton, NJ 08540 www.pppl.gov 2015 Princeton Plasma Physics Laboratory. A...

  6. Pacific Northwest Laboratory Institutional Plan FY 1995-2000

    SciTech Connect (OSTI)

    Not Available

    1994-12-01

    This report serves as a document to describe the role PNL is positioned to take in the Department of Energy`s plans for its national centers in the period 1995-2000. It highlights the strengths of the facilities and personnel present at the laboratory, touches on the accomplishments and projects they have contributed to, and the direction being taken to prepare for the demands to be placed on DOE facilities in the near and far term. It consists of sections titled: director`s statement; laboratory mission and core competencies; laboratory strategic plan; laboratory initiatives; core business areas; critical success factors.

  7. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    focused, interdisciplinary research effort to better understand human disease at the cellular level," said Laboratory Director Michael Anastasio. "Integrating measurements,...

  8. LABORATORY VI ROTATIONAL DYNAMICS

    E-Print Network [OSTI]

    Minnesota, University of

    Lab VI - 1 LABORATORY VI ROTATIONAL DYNAMICS So far this semester, you have been asked to think kinematics. OBJECTIVES: Successfully completing this laboratory should enable you to: · Use linear kinematics in a laboratory on earth, before launching the satellite. EQUIPMENT You will use an apparatus that spins

  9. LABORATORY V ELECTRIC CIRCUITS

    E-Print Network [OSTI]

    Minnesota, University of

    Lab V -1 LABORATORY V ELECTRIC CIRCUITS Electrical devices are the cornerstones of our modern world understanding of them. In the previous laboratory, you studied the behavior of electric fields and their effect successfully completing this laboratory, you should be able to: · apply the concept of circuit to any

  10. Interpretation Intelligent Systems Laboratory

    E-Print Network [OSTI]

    Ward, Koren

    1 TENS Text Interpretation Intelligent Systems Laboratory University of Wollongong TENS Text and delivering the text data to the user by electrically stimulating the fingers. Intelligent Systems Laboratory ­ University of Wollongong #12;2 The TENS Unit Intelligent Systems Laboratory ­ University of Wollongong

  11. OXFORD UNIVERSITY COMPUTING LABORATORY

    E-Print Network [OSTI]

    OXFORD UNIVERSITY COMPUTING LABORATORY The Expressive Power of Binary Submodular Functions Stanislav Zivn“y, David Cohen, Peter Jeavons Computing Laboratory, University of Oxford Rutgers, 22 January LABORATORY Problem Which submodular polynomials can be expressed by (or decomposed into) quadratic submodular

  12. Division of Laboratory Sciences

    E-Print Network [OSTI]

    #12;#12;Division of Laboratory Sciences U.S. Department of Health and Human Services Centers and Prevention National Center for Environmental Health Division of Laboratory Sciences Atlanta, Georgia 30341 at the Centers for Disease Control and Prevention's (CDC's) Division of Laboratory Sciences have lots

  13. LABORATORY IV OSCILLATIONS

    E-Print Network [OSTI]

    Minnesota, University of

    LABORATORY IV OSCILLATIONS Lab IV ­ 1 You are familiar with many objects that oscillate this laboratory, you should be able to: · Provide a qualitative explanation of the behavior of oscillating systems some of these laboratory problems before your lecturer addresses this material. It is very important

  14. LABORATORY NEW HIRE NOTICE: LABORATORY DELAYED OPENING OR CLOSURE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LABORATORY NEW HIRE NOTICE: LABORATORY DELAYED OPENING OR CLOSURE DUE TO INCLEAMENT WEATHER During the winter months, the Los Alamos National Laboratory (LANL) may at times...

  15. Review: Preparing for Climate Change

    E-Print Network [OSTI]

    Kunnas, Jan

    2013-01-01

    Review: Preparing for Climate Change By Michael D.Stephen, Preparing for Climate Change. A Boston Review Book.alkaline paper. “Climate change is inevitable, but disaster

  16. Going green earns Laboratory gold

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Going green earns Laboratory gold Going green earns Laboratory gold The Laboratory's newest facility is its first to achieve both the Leadership in Energy and Environmental Design...

  17. ECSI 322 Oceanography Laboratory -Manual 1 ESCI 322 -Oceanography Laboratory

    E-Print Network [OSTI]

    Shull, David H.

    ECSI 322 ­ Oceanography Laboratory - Manual 1 ESCI 322 - Oceanography Laboratory Laboratory Manual ­ Oceanography Laboratory - Manual 2 ESCI 322 - Introduction to Oceanography Laboratory Course Syllabus- 78-79 C+ 73-77 C 69-72C- 67-68 D+ 61-66 D 57-60 D- 0-56 F #12;ECSI 322 ­ Oceanography Laboratory

  18. Preparation of ethylenediamine dinitrate

    DOE Patents [OSTI]

    Lee, K.

    1984-05-17

    Method for the preparation of ethylenediamine dinitrate. Ethylenediamine dinitrate, a useful explosive, may readily be prepared by solvent extraction of nitrate ion from an acidic aqueous solution thereof using a high-molecular-weight, water-insoluble amine dissolved in an organic solvent, and reacting the resulting oraganic solution with ethylenediamine. The process of the instant invention avoids the use of concentrated nitric acid, as is currently practiced, resulting in a synthesis which is far less hazardous, especially for large quantities of the explosive, and more efficient.

  19. Preparation of ethylenediamine dinitrate

    DOE Patents [OSTI]

    Lee, Kien-yin (Los Alamos, NM)

    1985-01-01

    Method for the preparation of ethylenediamine dinitrate. Ethylenediamine dinitrate, a useful explosive, may readily be prepared by solvent extraction of nitrate ion from an acidic aqueous solution thereof using a high-molecular-weight, water-insoluble amine dissolved in an organic solvent, and reacting the resulting organic solution with ethylenediamine. The process of the instant invention avoids the use of concentrated nitric acid, as is currently practiced, resulting in a synthesis which is far less hazardous especially for large quantities of the explosive, and more efficient.

  20. Preparation of hydrophobic coatings

    DOE Patents [OSTI]

    Branson, Eric D. (Albuquerque, NM); Shah, Pratik B. (Albuquerque, NM); Singh, Seema (Rio Rancho, NM); Brinker, C. Jeffrey (Albuquerque, NM)

    2009-02-03

    A method for preparing a hydrophobic coating by preparing a precursor sol comprising a metal alkoxide, a solvent, a basic catalyst, a fluoroalkyl compound and water, depositing the precursor sol as a film onto a surface, such as a substrate or a pipe, heating, the film and exposing the film to a hydrophobic silane compound to form a hydrophobic coating with a contact angle greater than approximately 150.degree.. The contact angle of the film can be controlled by exposure to ultraviolet radiation to reduce the contact angle and subsequent exposure to a hydrophobic silane compound to increase the contact angle.

  1. Microfluidic Tools for Biological Sample Preparation

    SciTech Connect (OSTI)

    Visuri, S R; Ness, K; Dzenitis, J; Benett, B; Bettencourt, K; Hamilton, J; Fisher, K; Krulevitch, P

    2002-04-10

    Researchers at Lawrence Livermore National Laboratory are developing means to collect and identify fluid-based biological pathogens in the forms of proteins, viruses, and bacteria. To support detection instruments, we are developing a flexible fluidic sample preparation unit. The overall goal of this Microfluidic Module is to input a fluid sample, containing background particulates and potentially target compounds, and deliver a processed sample for detection. We are developing techniques for sample purification, mixing, and filtration that would be useful to many applications including immunologic and nucleic acid assays. Sample preparation functions are accomplished with acoustic radiation pressure, dielectrophoresis, and solid phase extraction. We are integrating these technologies into packaged systems with pumps and valves to control fluid flow and investigating small-scale detection methods.

  2. GREAT LAKES ENVIRONMENTAL RESEARCH LABORATORY

    E-Print Network [OSTI]

    #12;GREAT LAKES ENVIRONMENTAL RESEARCH LABORATORY ANNUAL REPORT FY 1977 October 1977 Eugene J Research Laboratories Great Lakes Environmental Research Laboratory 2300 Washtenaw Avenue Ann Arbor, Michigan 48104. #12;NOTICE The NOAA Environmental Research Laboratories do not approve, recommend

  3. GREAT LAKES ENVIRONMENTAL RESEARCH LABORATORY

    E-Print Network [OSTI]

    #12;GREAT LAKES ENVIRONMENTAL RESEARCH LABORATORY ANNUAL REPORT FY 1978 October 1978 Eugene J of Research and Development Environmental Research Laboratories Great Lakes Environmental Research Laboratory 2300 Washtenaw Avenue Ann Arbor, Michigan 48104 #12;NOTICE The NOAA Environmental Research Laboratories

  4. Chemistry 2B Laboratory Manual

    E-Print Network [OSTI]

    Guo, Ting

    Chemistry 2B Laboratory Manual Standard Operating Procedures Department of Chemistry University # ____________ Laboratory Information Teaching Assistant's Name _______________________ Laboratory Section Number _______________________ Laboratory Room Number _______________________ Dispensary Room Number 1060 Sciences Lab Building Location

  5. AEROSPACE LABORATORY GENERAL INFORMATION MANUAL

    E-Print Network [OSTI]

    Prodię, Aleksandar

    AEROSPACE LABORATORY GENERAL INFORMATION MANUAL 1. Introduction 2. Laboratory Format 3. Recommended Guidelines for Experiment Reports 4. Laboratory Notebooks 5. Report Marking Procedures 6. Course Mark compared to the systems you will find in the Undergraduate Laboratory. Typically, experimental setups

  6. Chemistry 2A Laboratory Manual

    E-Print Network [OSTI]

    Guo, Ting

    Chemistry 2A Laboratory Manual Standard Operating Procedures Department of Chemistry University # ____________ Laboratory Information Teaching Assistant's Name _______________________ Laboratory Section Number _______________________ Laboratory Room Number _______________________ Dispensary Room Number 1060 Sciences Lab Building Location

  7. Atlantic Oceanographic and Meteorological Laboratory

    E-Print Network [OSTI]

    Atlantic Oceanographic and Meteorological Laboratory AOML is an environmental research laboratory Laboratory conducts research that seeks to understand the physical, chemical, and biological characteristics;Organizational Structure The Atlantic Oceanographic and Meteorological Laboratory (AOML) fits within

  8. Chemistry 2C Laboratory Manual

    E-Print Network [OSTI]

    Guo, Ting

    Chemistry 2C Laboratory Manual Standard Operating Procedures Department of Chemistry University # ____________ Laboratory Information Teaching Assistant's Name _______________________ Laboratory Section Number _______________________ Laboratory Room Number _______________________ Dispensary Room Number 1060 Sciences Lab Building Location

  9. ARTICULATION AGREEMENT Teacher Preparation

    E-Print Network [OSTI]

    Hammack, Richard

    ARTICULATION AGREEMENT For Teacher Preparation Between J. Sargeant Reynolds Community College of Interdisciplinary Studies degree in Liberal Studies for Early and Elementary Education (LSEE) and Master of Teaching degree in Elementary Education; · Bachelor of Arts degree in English or History and the Master

  10. Experiments: Preparation and Measurement

    E-Print Network [OSTI]

    Neumaier, Arnold

    the experimental set­up und the results of performing the experiment. Again, this is part of human cultureExperiments: Preparation and Measurement by Arnold Neumaier, Vienna March 1996 Abstract Introduction Experiments, properly arranged, provide information about a physical system by suitable

  11. Preparation of graphitic articles

    DOE Patents [OSTI]

    Phillips, Jonathan; Nemer, Martin; Weigle, John C.

    2010-05-11

    Graphitic structures have been prepared by exposing templates (metal, metal-coated ceramic, graphite, for example) to a gaseous mixture that includes hydrocarbons and oxygen. When the template is metal, subsequent acid treatment removes the metal to yield monoliths, hollow graphitic structures, and other products. The shapes of the coated and hollow graphitic structures mimic the shapes of the templates.

  12. Preparation of vinyl acetate

    DOE Patents [OSTI]

    Tustin, G.C.; Zoeller, J.R.; Depew, L.S.

    1998-03-24

    This invention pertains to the preparation of vinyl acetate by contacting a mixture of hydrogen and ketene with a heterogeneous catalyst containing a transition metal to produce acetaldehyde, which is then reacted with ketene in the presence of an acid catalyst to produce vinyl acetate.

  13. Prepared for Outlook 2020

    E-Print Network [OSTI]

    Northern British Columbia, University of

    Northern British Columbia: A Vision for Prosperity Prepared for Outlook 2020: Shaping BC Trust #12;2 Northern British Columbia's Vision for Prosperity Outlook 2020: Shaping BC's Economic and the emerging bio-energy industry..................................... 15 2.2 Mining, oil and gas

  14. Stakeholder Interview Prepared for

    E-Print Network [OSTI]

    Interviews By GE Global Research For University of Hawaii Hawaii Natural Energy Institute 1680 East-West RoadStakeholder Interview Report Prepared for U.S. Department of Energy Office of Electricity Delivery and Energy Reliability Under Award No. DE-FC-06NT42847 Task 1. Deliverable #1 ­ Results of Stakeholder

  15. Los Alamos National Laboratory ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    guy" and "a very hard worker." Fanelli began his college education in his native Argentina. By 2005, he was stationed at the National High Magnetic Field Laboratory...

  16. morhaley | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    morhaley Ames Laboratory Profile Haley Morris Office Assistant-X Human Resources Office Environmental, Safety, Health, and Assuarance 105 TASF Phone Number: 515-294-2153 Email...

  17. mmorris | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mmorris Ames Laboratory Profile Max Morris Associate Environmental & Protective Sciences 304A Snedecor Phone Number: 515-294-2775 Email Address: mmorris...

  18. National Laboratory Geothermal Publications

    Broader source: Energy.gov [DOE]

    You can find publications, including technical papers and reports, about geothermal technologies, research, and development at the following U.S. Department of Energy national laboratories.

  19. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for the Laboratory's Environmental Programs directorate and includes work such as environmental engineering design, regulatory support, risk assessment and reporting. - 2 -...

  20. shrotriy | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    shrotriy Ames Laboratory Profile Pranav Shrotriya Associate Environmental & Protective Sciences 2026 Black Engineering Phone Number: 515-294-9719 Email Address: shrotriy...

  1. olafsson | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    olafsson Ames Laboratory Profile Sigurdur Olafsson Associate Environmental & Protective Sciences 3004 Black Engineering Phone Number: 515-294-8908 Email Address: olafsson...

  2. matheneyl | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    matheneyl Ames Laboratory Profile Lindsey Matheney Associate Environmental & Protective Sciences 1095 Black Engineering Phone Number: 515-294-2069 Email Address: matheneyl...

  3. nastaran | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nastaran Ames Laboratory Profile Nastaran Hashemi Associate Environmental & Protective Sciences 2028 Black Engineering Phone Number: 515-294-2877 Email Address: nastaran...

  4. bkl | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bkl Ames Laboratory Profile Barbara Lograsso Associate Environmental & Protective Sciences 2064 Black Engineering Phone Number: 515-294-0380 Email Address: bklogras@iastate.edu...

  5. paytong | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    paytong Ames Laboratory Profile Payton Goodrich Associate Environmental & Protective Sciences 1095 Black Engineering Phone Number: 515-294-2069 Email Address: paytong...

  6. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lawrence Livermore National Laboratory's weapon-physicist Greg Spriggs, leader of the Film Scanning and Reanalysis Project, the work has become a search-and-rescue mission. He...

  7. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3, 2015 Projects save taxpayer dollars, promote environmental stewardship, sustainability LOS ALAMOS, N.M., April 22, 2015-Nearly 400 Los Alamos National Laboratory employees on 32...

  8. Northwest National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    senior author and Laboratory Fellow. The feat is the bacterial equivalent of removing lungs and coaxing the disembodied tissue to breathe. Bio-cells use enzymes to oxidize...

  9. National Laboratory Photovoltaics Research

    Broader source: Energy.gov [DOE]

    DOE supports photovoltaic (PV) research and development and facilities at its national laboratories to accelerate progress toward achieving the SunShot Initiative's technological and economic...

  10. marit | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Honors & Awards: AAAS Fellow, 2007 Regents Award for Faculty Excellence, 2003 Inventor Incentive Award, Ames Laboratory, 2002 Iowa Regents Faculty Citation Award, 2000...

  11. Cold War Context Statement: Sandia National Laboratories, California Site

    SciTech Connect (OSTI)

    ULLRICH, REBECCA A.

    2003-01-01

    This document was prepared to support the Department of Energy's compliance with Sections 106 and 110 of the National Historic Preservation Act. It provides an overview of the historic context in which Sandia National Laboratories/California was created and developed. Establishing such a context allows for a reasonable and reasoned historical assessment of Sandia National Laboratories/California properties. The Cold War arms race provides the primary historical context for the SNL/CA built environment.

  12. APPALACHIAN LABORATORY CHESAPEAKE BIOLOGICAL LABORATORY HORN POINT LABORATORY AN INSTITUTION OF THE UNIVERSITY SYSTEM OF MARYLAND

    E-Print Network [OSTI]

    Boynton, Walter R.

    APPALACHIAN LABORATORY CHESAPEAKE BIOLOGICAL LABORATORY HORN POINT LABORATORY AN INSTITUTION. of Budget and Management Please fax this form to: 410-333-7122 UMCES Agency #12;APPALACHIAN LABORATORY CHESAPEAKE BIOLOGICAL LABORATORY HORN POINT LABORATORY AN INSTITUTION OF THE UNIVERSITY SYSTEM OF MARYLAND

  13. Guide to preparing SAND reports and other communication products : quick reference guide.

    SciTech Connect (OSTI)

    Not Available

    2007-03-01

    This 'Quick Reference Guide' supplements the more complete 'Guide to Preparing SAND Reports and Other Communication Products'. It provides limited guidance on how to prepare SAND Reports at Sandia National Laboratories. Users are directed to the in-depth guide for explanations of processes.

  14. Guide to Preparing SAND Reports and other communication products : quick reference guide.

    SciTech Connect (OSTI)

    Not Available

    2009-10-01

    This Quick Reference Guide supplements the more complete Guide to Preparing SAND Reports and Other Communication Products. It provides limited guidance on how to prepare SAND Reports at Sandia National Laboratories. Users are directed to the in-depth guide for explanations of processes.

  15. PREPARED FORTHE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DEAC0276CH03073

    E-Print Network [OSTI]

    PREPARED FORTHE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE­AC02­76CH03073 PRINCETON PLASMA.K. Ram, Bers, R.W. Harvey, C.B. Forest May 2001 #12; PPPL Reports Disclaimer report prepared account work Department Energy's Princeton Plasma Physics Laboratory Publications Reports web site Calendar Year 2001

  16. Reservoir Characterization Research Laboratory

    E-Print Network [OSTI]

    Texas at Austin, University of

    Reservoir Characterization Research Laboratory for Carbonate Studies Executive Summary for 2014 Outcrop and Subsurface Characterization of Carbonate Reservoirs for Improved Recovery of Remaining/Al 0.00 0.02 0.04 Eagle Ford Fm #12;#12; Reservoir Characterization Research Laboratory Research Plans

  17. LABORATORY I: GEOMETRIC OPTICS

    E-Print Network [OSTI]

    Minnesota, University of

    Lab I - 1 LABORATORY I: GEOMETRIC OPTICS In this lab, you will solve several problems related to the formation of optical images. Most of us have a great deal of experience with the formation of optical images this laboratory, you should be able to: Ā· Describe features of real optical systems in terms of ray diagrams

  18. Commercial Fisheries Biological Laboratory

    E-Print Network [OSTI]

    , and tidal estuaries with bottom types ranging from soft mud to hard sand and rock. The Laboratory has grown research laboratories, an experimental shell- fish hatchery, administrative offices, a combined library freezer, and quick freezer. The library is limited to publications that have a direct bearing on current

  19. Porous electrode preparation method

    DOE Patents [OSTI]

    Arons, R.M.; Dusek, J.T.

    1983-10-18

    A porous sintered plaque is provided with a bimodal porosity that is especially well suited for use as an electrode within a molten carbonate fuel cell. The coarse porosity is sufficient for admitting gases into contact with the reaction surfaces while the fine porosity is wetted with and retains molten electrolyte on the reaction sites. The electrode structure is prepared by providing a very fine powder of such as nickel oxide and blending the powder with a suitable decomposable binder to form a solid mass. The mass is comminuted into agglomerate size particles substantially larger than the fine oxide particles and formed into a cohesive compact for subsequent sintering. Sintering is carried out at sufficient conditions to bind the agglomerates together into a porous structure having both coarse and fine porosity. Where lithiated nickel oxide cathodes are prepared, the sintering conditions can be moderate enough to retain substantial quantities of lithium within the electrode for adequate conductivity. 2 figs.

  20. Porous electrode preparation method

    DOE Patents [OSTI]

    Arons, Richard M. (Wheaton, IL); Dusek, Joseph T. (Downers Grove, IL)

    1983-01-01

    A porous sintered plaque is provided with a bimodal porosity that is especially well suited for use as an electrode within a molten carbonate fuel cell. The coarse porosity is sufficient for admitting gases into contact with the reaction surfaces while the fine porosity is wetted with and retains molten electrolyte on the reaction sites. The electrode structure is prepared by providing a very fine powder of such as nickel oxide and blending the powder with a suitable decomposable binder to form a solid mass. The mass is comminuted into agglomerate size particles substantially larger than the fine oxide particles and formed into a cohesive compact for subsequent sintering. Sintering is carried out at sufficient conditions to bind the agglomerates together into a porous structure having both coarse and fine porosity. Where lithiated nickel oxide cathodes are prepared, the sintering conditions can be moderate enough to retain substantial quantities of lithium within the electrode for adequate conductivity.

  1. Preparation of fibrous palladium

    SciTech Connect (OSTI)

    Silver, G.L.; Seabaugh, P.W.; Leahy, B.T.; Werkmeister, D.W.; Martin, F.S.; Friedlander, H.N.

    1988-06-15

    Acrylic fibers (pan fibers) absorb palladium from a hot solution of palladium nitrate in nitric acid. When palladium-loaded acrylic fibers are burned, fibers consisting of palladium and palladium oxide are formed. Reduction of this mixture with hydrogen produces fibers of palladium metal. The fibers may be compressed into pellets which offer less resistance to flowing hydrogen than similar pellets prepared by compressing commercial palladium powder. 9 refs., 12 figs., 5 tabs.

  2. TORIS Data Preparation Guidelines

    SciTech Connect (OSTI)

    Guinn, H.; Remson, D.

    1999-03-11

    The objective of this manual is to present guidelines and procedures for the preparation of new data for the Tertiary Oil Recovery Information System (TORIS) data base. TORIS is an analytical system currently maintained by the Department of Energy's (DOE) Bartlesville Project Office. It uses an extensive field- and reservoir-level data base to evaluate the technical and economic recovery potential of specific crude oil reservoirs.

  3. EIS-0018: Continued Operation of Los Alamos Scientific Laboratory Site, Los Alamos, New Mexico

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy prepared this statement to assesses the potential cumulative environmental impacts associated with current, known future, and continuing activities at the Los Alamos Scientific Laboratory site.

  4. Paci c Marine Environmental Laboratory Pacific Marine Environmental Laboratory (PMEL)

    E-Print Network [OSTI]

    Paci c Marine Environmental Laboratory #12;#12;Pacific Marine Environmental Laboratory (PMEL Laboratory #12;Contents Overview of PMEL's Strategy 1 Laboratory Structure 5 PMEL Themes 7 Climate Research 8 Contents iv #12;The Pacific Marine environMenTal laboraTory (PMEL) is one of seven federal research

  5. Site environmental report for 2004 Sandia National Laboratories, California.

    SciTech Connect (OSTI)

    Larsen, Barbara L. (Sandia National Laboratories, Livermore, CA)

    2005-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's (DOE) National Nuclear Security Administration. The DOE Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2004 was prepared in accordance with DOE Order 231.1A. The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2004. General site and environmental program information is also included.

  6. Site environmental report for 2006 Sandia National Laboratories, California.

    SciTech Connect (OSTI)

    Larsen, Barbara L.

    2007-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2006 was prepared in accordance with DOE Order 231.1A (DOE 2004a). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2006. General site and environmental program information is also included.

  7. Site environmental report for 2003 Sandia National Laboratories, California.

    SciTech Connect (OSTI)

    Larsen, Barbara L.

    2004-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's (DOE) National Nuclear Security Administration. The DOE Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2003 was prepared in accordance with DOE Order 231.1A. The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2003. General site and environmental program information is also included.

  8. Site environmental report for 2005 Sandia National Laboratories, California.

    SciTech Connect (OSTI)

    Larsen, Barbara L.

    2006-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's (DOE) National Nuclear Security Administration (NNSA). The DOE/NNSA Sandia Site Office (SSO) oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2005 was prepared in accordance with DOE Order 231.1A. The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2005. General site and environmental program information is also included.

  9. Portable air monitoring laboratories

    SciTech Connect (OSTI)

    Ehntholt, D.J.; Beltis, K.J.; McCullough, J.E.; Valentine, J.R. [Arthur D. Little, Inc., Cambridge, MA (United States)

    1995-12-31

    Arthur D. Little, Inc. was contracted by the US Army to design, fabricate, test and deliver a series of portable air monitoring laboratories which could be used to detect trace levels of toxic chemicals on board cargo ships. The labs were designed to be completely self-sufficient, containing all supplies necessary for a 75-day mission, and to operate under rugged conditions. They were used to monitor for parts-per-billion concentrations of chemical agents in air and to provide information equivalent to high quality fixed laboratory analyses. The mission was successfully completed; independent design awards were received for the laboratories, and they were subsequently diverted to other uses.

  10. Sonication standard laboratory module

    DOE Patents [OSTI]

    Beugelsdijk, Tony (Los Alamos, NM); Hollen, Robert M. (Los Alamos, NM); Erkkila, Tracy H. (Los Alamos, NM); Bronisz, Lawrence E. (Los Alamos, NM); Roybal, Jeffrey E. (Santa Fe, NM); Clark, Michael Leon (Menan, ID)

    1999-01-01

    A standard laboratory module for automatically producing a solution of cominants from a soil sample. A sonication tip agitates a solution containing the soil sample in a beaker while a stepper motor rotates the sample. An aspirator tube, connected to a vacuum, draws the upper layer of solution from the beaker through a filter and into another beaker. This beaker can thereafter be removed for analysis of the solution. The standard laboratory module encloses an embedded controller providing process control, status feedback information and maintenance procedures for the equipment and operations within the standard laboratory module.

  11. Reservoir CharacterizationReservoir Characterization Research LaboratoryResearch Laboratory

    E-Print Network [OSTI]

    Texas at Austin, University of

    Reservoir CharacterizationReservoir Characterization Research LaboratoryResearch Laboratory at Austin Austin, Texas 78713Austin, Texas 78713--89248924 #12;Reservoir Characterization Research Laboratory for Carbonate Studies Research Plans for 2012 Outcrop and Subsurface Characterization of Carbonate

  12. CRAD, Management- Oak Ridge National Laboratory High Flux Isotope Reactor

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Management in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  13. Brookhaven National Laboratory 2008 Site Environment Report Volume 1

    SciTech Connect (OSTI)

    Brookhaven National Laboratory

    2009-10-01

    Brookhaven National Laboratory (BNL) prepares an annual Site Environmental Report (SER) in accordance with DOE Order 231.1A, Environment, Safety and Health Reporting of the U.S. Department of Energy. The report is written to inform the public, regulators, employees, and other stakeholders of the Laboratory's environmental performance during the calendar year in review. Volume I of the SER summarizes environmental data; environmental management performance; compliance with applicable DOE, federal, state, and local regulations; and performance in restoration and surveillance monitoring programs. BNL has prepared annual SERs since 1971 and has documented nearly all of its environmental history since the Laboratory's inception in 1947. Volume II of the SER, the Groundwater Status Report, also is prepared annually to report on the status of and evaluate the performance of groundwater treatment systems at the Laboratory. Volume II includes detailed technical summaries of groundwater data and its interpretation, and is intended for internal BNL users, regulators, and other technically oriented stakeholders. A brief summary of the information contained in Volume II is included in this volume in Chapter 7, Groundwater Protection. Both reports are available in print and as downloadable files on the BNL web page at http://www.bnl.gov/ewms/ser/. An electronic version on compact disc is distributed with each printed report. In addition, a summary of Volume I is prepared each year to provide a general overview of the report, and is distributed with a compact disc containing the full report.

  14. CRAD, Engineering- Oak Ridge National Laboratory High Flux Isotope Reactor

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Engineering Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  15. CRAD, Training- Oak Ridge National Laboratory High Flux Isotope Reactor

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Training Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  16. CRAD, Maintenance- Oak Ridge National Laboratory High Flux Isotope Reactor

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Maintenance Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  17. Renewable Energy Research Laboratory University of Massachusetts, Amherst

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Renewable Energy Research Laboratory University of Massachusetts, Amherst 160 Governors Drive. Ellis July 14, 2008 #12;NOTICE AND ACKNOWLEDGEMENTS This report was prepared by the Renewable Energy sponsored by the Renewable Energy Trust (RET), as administered by the Massachusetts Technology Collaborative

  18. Renewable Energy Research Laboratory University of Massachusetts, Amherst

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Renewable Energy Research Laboratory University of Massachusetts, Amherst 160 Governors Drive template version 3.1.2 #12;NOTICE AND ACKNOWLEDGEMENTS This report was prepared by the Renewable Energy sponsored by the Renewable Energy Trust (RET), as administered by the Massachusetts Technology Collaborative

  19. Renewable Energy Research Laboratory University of Massachusetts, Amherst

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Renewable Energy Research Laboratory University of Massachusetts, Amherst 160 Governors Drive. Ellis April 14, 2008 #12;NOTICE AND ACKNOWLEDGEMENTS This report was prepared by the Renewable Energy sponsored by the Renewable Energy Trust (RET), as administered by the Massachusetts Technology Collaborative

  20. Idaho National Laboratory

    ScienceCinema (OSTI)

    McCarthy, Kathy

    2013-05-28

    INL is the leading laboratory for nuclear R&D. Nuclear engineer Dr. Kathy McCarthy talks aobut the work there and the long-term benefits it will provide.

  1. Brookhaven National Laboratory

    Broader source: Energy.gov [DOE]

    Site OverviewThe Brookhaven National Laboratory (BNL) was established in 1947 by the Atomic Energy Commission (AEC) (predecessor to U.S. Department of Energy [DOE]). Formerly Camp Upton, a U.S....

  2. LABORATORY VII: WAVE OPTICS

    E-Print Network [OSTI]

    Minnesota, University of

    LABORATORY VII: WAVE OPTICS Lab VII - 1 In this lab, you will solve problems in ways that take-like behavior. These conditions may be less familiar to you than the conditions for which geometrical optics

  3. Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    measurement LOS ALAMOS, New Mexico, July 10, 2012-Using a one-of-a-kind laser system at Los Alamos National Laboratory, scientists have created the largest neutron beam...

  4. Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hazardous devices teams showcase skills at Robot Rodeo June 24-27 June 18, 2014 Bomb squads compete in timed scenarios at Los Alamos National Laboratory LOS ALAMOS, N.M., June 19,...

  5. Preparation of tungsten oxide

    DOE Patents [OSTI]

    Bulian, Christopher J. (Yankton, SD); Dye, Robert C. (Los Alamos, NM); Son, Steven F. (Los Alamos, NM); Jorgensen, Betty S. (Jemez Springs, NM); Perry, W. Lee (Jemez Springs, NM)

    2009-09-22

    Tungsten trioxide hydrate (WO.sub.3.H.sub.2O) was prepared from a precursor solution of ammonium paratungstate in concentrated aqueous hydrochloric acid. The precursor solution was rapidly added to water, resulting in the crash precipitation of a yellow white powder identified as WO.sub.3.H.sub.2O nanosized platelets by x-ray diffraction and scanning electron microscopy. Annealing of the powder at 200.degree. C. provided cubic phase WO.sub.3 nanopowder, and at 400.degree. C. provided WO.sub.3 nanopowder as a mixture of monoclinic and orthorhombic phases.

  6. Supplement analysis for continued operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore. Volume 2: Comment response document

    SciTech Connect (OSTI)

    1999-03-01

    The US Department of Energy (DOE), prepared a draft Supplement Analysis (SA) for Continued Operation of Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories, Livermore (SNL-L), in accordance with DOE`s requirements for implementation of the National Environmental Policy Act of 1969 (NEPA) (10 Code of Federal Regulations [CFR] Part 1021.314). It considers whether the Final Environmental Impact Statement and Environmental Impact Report for Continued Operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore (1992 EIS/EIR) should be supplement3ed, whether a new environmental impact statement (EIS) should be prepared, or no further NEPA documentation is required. The SA examines the current project and program plans and proposals for LLNL and SNL-L, operations to identify new or modified projects or operations or new information for the period from 1998 to 2002 that was not considered in the 1992 EIS/EIR. When such changes, modifications, and information are identified, they are examined to determine whether they could be considered substantial or significant in reference to the 1992 proposed action and the 1993 Record of Decision (ROD). DOE released the draft SA to the public to obtain stakeholder comments and to consider those comments in the preparation of the final SA. DOE distributed copies of the draft SA to those who were known to have an interest in LLNL or SNL-L activities in addition to those who requested a copy. In response to comments received, DOE prepared this Comment Response Document.

  7. Ames Laboratory Logos | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TAPropaneand Los AlamosAuthorizationAmes Laboratory

  8. Ames Laboratory Hot Canyon | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWith PropaneNaturalTest YourProgramAmes Laboratory Hot Canyon

  9. Status of Laboratory Goals | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effect Photovoltaics -7541C.3X-rays IlluminateStateIntentchange.Status of Laboratory

  10. Sandia National Laboratories: About Sandia: Laboratories' Foundation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcoming Release of the University of2013NationalNewLaboratories

  11. Laboratory Graduate Research Appointment | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse Bergkamp Graduate studentScience (SC) DirectedEquipmentLaboratory

  12. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-04-30

    To establish Department of Energy (DOE) requirements for laboratory directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation

  13. Mark Peters | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory, where he managed the science and engineering testing program at the Yucca Mountain Project. Before joining Los Alamos National Laboratory, Dr. Peters was a...

  14. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    To establish Department of Energy (DOE) requirements for laboratory directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation.

  15. Daresbury Laboratory STFC Daresbury Laboratory is renowned for its

    E-Print Network [OSTI]

    Daresbury Laboratory STFC Daresbury Laboratory is renowned for its world leading scientific computing. T he Laboratory is part of the Sci ­Tech Daresbury Campus near Warrington in Cheshire to perform cutting-edge research. Key activities Daresbury Laboratory is a hub for pioneering scientific

  16. Laboratory QualityLaboratory Quality ControlControl

    E-Print Network [OSTI]

    Laboratory QualityLaboratory Quality ControlControl Nabil A. NIMER Dept . Biotechnology & Genetic thatQA is defined as the overall program that ensures that the final results reported by the laboratory areensures that the final results reported by the laboratory are correct.correct. ""The aim of quality

  17. Method to prepare Semtex

    SciTech Connect (OSTI)

    Alcaraz, A; Dougan, A

    2006-11-26

    This procedure requires the binder and uncoated RDX be prepared in separate steps, see Figure 1: (1) The binder and dye are mixed by agitation with a water-insoluble organic solvent (e.g., toluene), I; (2) The RDX/PETN is agitated thoroughly with water, II; (3) The binder solution I is added to the RDX/water mixture at II with thorough mixing to form a slurry III; (4) In the next step the solvent is distilled off at IV leaving resulting granules; (5) The next step is followed by filtration at V, which may be done by vacuum; (6) The composition is then dried at VI to a dough-like consistency.

  18. Laboratory Heat Recovery System 

    E-Print Network [OSTI]

    Burrows, D. B.; Mendez, F. J.

    1981-01-01

    that they will be considerable. The system has been in successful operation since October 1979. 724 ESL-IE-81-04-123 Proceedings from the Third Industrial Energy Technology Conference Houston, TX, April 26-29, 1981 Conoco R&D West The award-winning laboratory heat-recovery... stream_source_info ESL-IE-81-04-123.pdf.txt stream_content_type text/plain stream_size 11112 Content-Encoding ISO-8859-1 stream_name ESL-IE-81-04-123.pdf.txt Content-Type text/plain; charset=ISO-8859-1 LABORATORY HEAT...

  19. Environmental Programs Procedure Preparation, Revision, Review...

    Energy Savers [EERE]

    Environmental Programs Procedure Preparation, Revision, Review, Approval, and Use Environmental Programs Procedure Preparation, Revision, Review, Approval, and Use The documents...

  20. GREAT LAKES ENVIRONMENTAL RESEARCH LABORATORY

    E-Print Network [OSTI]

    GREAT LAKES ENVIRONMENTAL RESEARCH LABORATORY ANNUAL REPORT FY 1981 December 1981 Eugene J . Aubert and Development Environmental Research Laboratories Great Lakes Environmental Research Laboratory 2300 Washtenaw Avenue Ann Arbor, Michigan 48104 #12;NOTICE The NOAA Environmental Research Laboratories do not approve

  1. Lab VIII 1 LABORATORY VIII

    E-Print Network [OSTI]

    Minnesota, University of

    Lab VIII ­ 1 LABORATORY VIII MECHANICAL OSCILLATIONS In most of the laboratory problems constant. In this set of laboratory problems the force on an object, and thus its acceleration, will change this laboratory, you should be able to: · provide a qualitative explanation of the behavior of oscillating systems

  2. Lab VIII -1 LABORATORY VIII

    E-Print Network [OSTI]

    Minnesota, University of

    Lab VIII - 1 LABORATORY VIII MECHANICAL OSCILLATIONS Most of the laboratory problems so far have was constant. In this set of laboratory problems, the total force acting on an object, and thus its's oscillation frequency. OBJECTIVES: After successfully completing this laboratory, you should be able to

  3. GREAT LAKES ENVIRONMENTAL RESEARCH LABORATORY

    E-Print Network [OSTI]

    #12;GREAT LAKES ENVIRONMENTAL RESEARCH LABORATORY ANNUAL REPORT FY 1980 December I980 Eugene J of Research and Development Environmental Research Laboratories Great Lakes Environmental Research Laboratory 2300 Washtenaw Avenue Ann Arbor, Michigan 48104 #12;NOTICE The NOAA Environmental Research Laboratories

  4. Lawrence Berkeley National Laboratory Overview

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation about the history, structure, and projects of the Lawrence Berkeley National Laboratory.

  5. LABORATORY VIII NUCLEAR PHENOMENA

    E-Print Network [OSTI]

    Minnesota, University of

    's repair mechanisms or to cause a mutation. Some food products are treated with radiation to kill existing microorganisms without altering the molecular structure of the food as would happen with heating or chemical with data with an non-linear functional dependence. PREPARATION: Before you come to lab, read Sections 3

  6. Process for preparing liquid wastes

    DOE Patents [OSTI]

    Oden, Laurance L. (Albany, OR); Turner, Paul C. (Albany, OR); O'Connor, William K. (Lebanon, OR); Hansen, Jeffrey S. (Corvallis, OR)

    1997-01-01

    A process for preparing radioactive and other hazardous liquid wastes for treatment by the method of vitrification or melting is provided for.

  7. Visgraf Laboratory -IMPAVisgraf Laboratory -IMPAVisgraf Laboratory -IMPA CNMAC 99CNMAC 99CNMAC 99 Frontiers ofFrontiers of

    E-Print Network [OSTI]

    de Figueiredo, Luiz Henrique

    1 Visgraf Laboratory - IMPAVisgraf Laboratory - IMPAVisgraf Laboratory - IMPA CNMAC 99CNMAC 99CNMAC@impa.br@impa.br Visgraf Laboratory - IMPAVisgraf Laboratory - IMPA Rio de JaneiroRio de Janeiro www.visgraf.impa.brwww.visgraf.impa.br Visgraf Laboratory - IMPAVisgraf Laboratory - IMPAVisgraf Laboratory - IMPA CNMAC 99CNMAC 99CNMAC 99

  8. EARTHQUAKE PREPAREDNESS FOR LABORATORIES

    E-Print Network [OSTI]

    Polly, David

    EARTHQUAKE PREPAREDNESS FOR LABORATORIES By: Christopher E. Kohler (Environmental Health and Safety, principal investigators, lab supervisors, and lab personnel assess their areas of responsibility to determine safety procedures and use this information to mitigate situations that may pose a problem in case

  9. LABORATORY VII ROTATIONAL DYNAMICS

    E-Print Network [OSTI]

    Minnesota, University of

    OF A COMPLEX SYSTEM While examining the engine of your friend's snow blower you notice that the starter cord wraps around a cylindrical ring. This ring is fastened to the top of a heavy, solid disk, "a flywheel of the system. To test this idea you decide to build a laboratory model described below to determine the moment

  10. Energy Systems Laboratory Groundbreaking

    ScienceCinema (OSTI)

    Hill, David; Otter, C.L.; Simpson, Mike; Rogers, J.W.;

    2013-05-28

    INL recently broke ground for a research facility that will house research programs for bioenergy, advanced battery systems, and new hybrid energy systems that integrate renewable, fossil and nuclear energy sources. Here's video from the groundbreaking ceremony for INL's new Energy Systems Laboratory. You can learn more about CAES research at http://www.facebook.com/idahonationallaboratory.

  11. PHYSICAL GEOLOGY LABORATORY MANUAL

    E-Print Network [OSTI]

    Merguerian, Charles

    PHYSICAL GEOLOGY LABORATORY MANUAL Geology 001 Eleventh Edition by Professors Charles Merguerian and J Bret Bennington Department of Geology Hofstra University © 2010 #12;ii Table of Contents Lab and Find Out More about Geology at Hofstra Email: Geology professors can be contacted via Email: Full

  12. PENNSYLVANIA APPALACHIAN LABORATORY

    E-Print Network [OSTI]

    Boynton, Walter R.

    , coordinates, and catalyzes environmental research and graduate education within the University System. UMCES), in which UMCES has a leading role. UMCES also delivers its services through environmental science education LABORATORY INSTITUTE OF MARINE AND ENVIRONMENTAL TECHNOLOGY MARYLAND SEA GRANT ANNAPOLIS CHESAPEAKE

  13. LABORATORY III POTENTIAL ENERGY

    E-Print Network [OSTI]

    Minnesota, University of

    LABORATORY III POTENTIAL ENERGY Lab III - 1 In previous problems, you have been introduced to the concepts of kinetic energy, which is associated with the motion of an object, and internal energy, which is associated with the internal structure of a system. In this section, you work with another form of energy

  14. National Laboratory Contacts

    Broader source: Energy.gov [DOE]

    Several of the U.S. Department of Energy (DOE) national laboratories host multidisciplinary transportation research centers. A wide-range of cutting-edge transportation research occurs at these facilities, funded by both DOE and cooperative research and development agreements (CRADAs) with industry

  15. Laboratory Density Functionals

    E-Print Network [OSTI]

    B. G. Giraud

    2007-07-26

    We compare several definitions of the density of a self-bound system, such as a nucleus, in relation with its center-of-mass zero-point motion. A trivial deconvolution relates the internal density to the density defined in the laboratory frame. This result is useful for the practical definition of density functionals.

  16. FUTURE LOGISTICS LIVING LABORATORY

    E-Print Network [OSTI]

    Heiser, Gernot

    FUTURE LOGISTICS LIVING LABORATORY Delivering Innovation The Future Logistics Living Lab that will provide logistics solutions for the future. The Living Lab is a demonstration, exhibition and work space by a group of logistics companies, research organisations, universities, and IT providers that includes NICTA

  17. Los Alamos National Laboratory support to IAEA environmental safeguards

    SciTech Connect (OSTI)

    Steiner, Robert E [Los Alamos National Laboratory; Dry, Don E [Los Alamos National Laboratory; Roensch, Fred R [Los Alamos National Laboratory; Kinman, Will S [Los Alamos National Laboratory; Roach, Jeff L [Los Alamos National Laboratory; La Mont, Stephen P [Los Alamos National Laboratory

    2010-12-01

    The nuclear and radiochemistry group provides sample preparation and analysis support to the International Atomic Energy Agency (IAEA) Network of Analytical Laboratories (NWAL). These analyses include both non-destructive (alpha and gamma-ray spectrometry) and destructive (thermal ionization mass spectrometry and inductively coupled plasma mass spectrometry) methods. On a bi-annual basis the NWAL laboratories are invited to meet to discuss program evolution and issues. During this meeting each participating laboratory summarizes their efforts over the previous two years. This presentation will present Los Alamos National Laboratories efforts in support of this program. Data showing results from sample and blank analysis will be presented along with capability enhancement and issues that arose over the previous two years.

  18. Preparation and properties of polyvinyl alcohol microspheres

    SciTech Connect (OSTI)

    Campbell, J.H.; Grens, J.Z.; Poco, J.F.; Ives, B.H.

    1986-06-01

    Polyvinyl alcohol (PVA) microspheres, having a size range of approx.150- to 250-..mu..m diameter with 1- to 5-..mu..m wall thickness, have been fabricated using a solution droplet technique. The spheres were developed for possible use on the Lawrence Livermore National Laboratory (LLNL) Inertial Confinement Fusion (ICF) Program. PVA, a polymer chosen based on earlier survey work carried out at KMS Fusion, Inc., has good strength, low hydrogen permeability, is optically transparent, and water soluble. The latter property makes it safe and easy to use in our droplet generator system. A unique dual-orifice droplet generator was used to prepare the spheres. The droplet generator operating conditions and the column processing parameters were chosen using results from our 1-D model calculations as a guide. The polymer microsphere model is an extension of the model we developed to support the glass sphere production. After preparation, the spheres were physically characterized for surface quality, sphericity, wall thickness (and uniformity), and size. We also determined the buckling pressure for both uncoated and CH-coated spheres. Radiation stability to beta decay (from tritium) was evaluated by exposing the spheres to a 7-keV electron beam. The results from these and other physical property measurements are presented in this report.

  19. CITIZENSHIP NOW! EXAM PREPARATION HANDBOOK

    E-Print Network [OSTI]

    Qiu, Weigang

    CITIZENSHIP NOW! EXAM PREPARATION HANDBOOK #12;washington oregon nevada idaho montananorthdakota to offer targeted programs--Si Se Puede!, a joint education initiative between CUNY and the Consulate NOW! EXAM PREPARATION HANDBOOK #12;T he City University of New York is the nation's largest urban

  20. Laboratory Safety Manual Table of Contents

    E-Print Network [OSTI]

    Natelson, Douglas

    Laboratory Safety Manual Table of Contents I. Emergency Procedures a. Laboratory Contact Information b. Location of Laboratory Emergency Equipment c. Laboratory Hazard and Evacuation Maps d. University Emergency Procedures II. University Policies and Procedures a. Rice University Laboratory Safety

  1. National Renewable Energy Laboratory Solar Radiation Research Laboratory

    E-Print Network [OSTI]

    National Renewable Energy Laboratory Solar Radiation Research Laboratory (SRRL) Instrument of Energy (DoE). Objectives · Provide Improved Methods for Radiometer Calibrations · Develop a Solar Energy Resources · Offer Unique Training Methods for Solar Monitoring Network Design, Operation

  2. EA-1148: Electrometallurgical Treatment Research and Demonstration Project in the Fuel Conditioning Facility at Argonne National Laboratory- West

    Broader source: Energy.gov [DOE]

    DOE prepared an EA that evaluated the potential environmental impacts associated with the research and demonstration of electrometallurgical technology for treating Experimental Breeder Reactor-II Spent Nuclear Fuel in the Fuel Conditioning Facility at Argonne National Laboratory-West.

  3. Remote Sensing Laboratory - RSL

    SciTech Connect (OSTI)

    2014-11-06

    One of the primary resources supporting homeland security is the Remote Sensing Laboratory, or RSL. The Laboratory creates advanced technologies for emergency response operations, radiological incident response, and other remote sensing activities. RSL emergency response teams are on call 24-hours a day, and maintain the capability to deploy domestically and internationally in response to threats involving the loss, theft, or release of nuclear or radioactive material. Such incidents might include Nuclear Power Plant accidents, terrorist incidents involving nuclear or radiological materials, NASA launches, and transportation accidents involving nuclear materials. Working with the US Department of Homeland Security, RSL personnel equip, maintain, and conduct training on the mobile detection deployment unit, to provide nuclear radiological security at major national events such as the super bowl, the Indianapolis 500, New Year's Eve celebrations, presidential inaugurations, international meetings and conferences, just about any event where large numbers of people will gather.

  4. Remote Sensing Laboratory - RSL

    ScienceCinema (OSTI)

    None

    2015-01-09

    One of the primary resources supporting homeland security is the Remote Sensing Laboratory, or RSL. The Laboratory creates advanced technologies for emergency response operations, radiological incident response, and other remote sensing activities. RSL emergency response teams are on call 24-hours a day, and maintain the capability to deploy domestically and internationally in response to threats involving the loss, theft, or release of nuclear or radioactive material. Such incidents might include Nuclear Power Plant accidents, terrorist incidents involving nuclear or radiological materials, NASA launches, and transportation accidents involving nuclear materials. Working with the US Department of Homeland Security, RSL personnel equip, maintain, and conduct training on the mobile detection deployment unit, to provide nuclear radiological security at major national events such as the super bowl, the Indianapolis 500, New Year's Eve celebrations, presidential inaugurations, international meetings and conferences, just about any event where large numbers of people will gather.

  5. Princeton Plasma Physics Laboratory:

    SciTech Connect (OSTI)

    Phillips, C.A.

    1986-01-01

    This paper discusses progress on experiments at the Princeton Plasma Physics Laboratory. The projects and areas discussed are: Principal Parameters Achieved in Experimental Devices, Tokamak Fusion Test Reactor, Princeton Large Torus, Princeton Beta Experiment, S-1 Spheromak, Current-Drive Experiment, X-ray Laser Studies, Theoretical Division, Tokamak Modeling, Spacecraft Glow Experiment, Compact Ignition Tokamak, Engineering Department, Project Planning and Safety Office, Quality Assurance and Reliability, and Administrative Operations.

  6. Oak Ridge National Laboratory Institutional Plan, FY 1991--FY 1996

    SciTech Connect (OSTI)

    Not Available

    1991-02-01

    The Oak Ridge National Laboratory -- one of DOE's major multiprogram laboratories -- focuses its resources on energy research and development (R D). To be able to meet these R D challenges, the Laboratory must achieve excellence in its operations relative to environmental, safety, and health (ES H) protection and to restore its aging facility infrastructure. ORNL's missions are carried out in compliance with all applicable ES H regulations. The Laboratory conducts applied R D in energy technologies -- in conservation; fission; magnetic fusion; health and environmental protection; waste management; renewable resources; and fossil energy. Experimental and theoretical research is undertaken to investigate fundamental problems in physical, chemical, materials, computational, biomedical, earth, and environmental sciences; to advance scientific knowledge; and to support energy technology R D. ORNL designs, builds, and operates unique research facilities for the benefit of university, industrial, and national laboratory researchers. The Laboratory serves as a catalyst in bringing national and international research elements together for important scientific and technical collaborations. ORNL helps to prepare the scientific and technical work force of the future by offering innovative and varied learning and R D experiences at the Laboratory for students and faculty from preschool level through postdoctoral candidates. The transfer of science and technology to US industries and universities is an integral component of ORNL's R D missions. ORNL also undertakes research and development for non-DOE sponsors when such work is synergistic with DOE mission. 66 figs., 55 tabs.

  7. Laboratory microfusion capability study

    SciTech Connect (OSTI)

    Not Available

    1993-05-01

    The purpose of this study is to elucidate the issues involved in developing a Laboratory Microfusion Capability (LMC) which is the major objective of the Inertial Confinement Fusion (ICF) program within the purview of the Department of Energy's Defense Programs. The study was initiated to support a number of DOE management needs: to provide insight for the evolution of the ICF program; to afford guidance to the ICF laboratories in planning their research and development programs; to inform Congress and others of the details and implications of the LMC; to identify criteria for selection of a concept for the Laboratory Microfusion Facility and to develop a coordinated plan for the realization of an LMC. As originally proposed, the LMC study was divided into two phases. The first phase identifies the purpose and potential utility of the LMC, the regime of its performance parameters, driver independent design issues and requirements, its development goals and requirements, and associated technical, management, staffing, environmental, and other developmental and operational issues. The second phase addresses driver-dependent issues such as specific design, range of performance capabilities, and cost. The study includes four driver options; the neodymium-glass solid state laser, the krypton fluoride excimer gas laser, the light-ion accelerator, and the heavy-ion induction linear accelerator. The results of the Phase II study are described in the present report.

  8. Laboratory Information Management Systems for Forensic Laboratories: A White Paper for Directors and Decision Makers

    SciTech Connect (OSTI)

    Anthony Hendrickson; Brian Mennecke; Kevin Scheibe; Anthony Townsend; ,

    2005-10-01

    Modern, forensics laboratories need Laboratory Information Management Systems (LIMS) implementations that allow the lab to track evidentiary items through their examination lifecycle and also serve all pertinent laboratory personnel. The research presented here presents LIMS core requirements as viewed by respondents serving in different forensic laboratory capacities as well as different forensic laboratory environments. A product-development methodology was employed to evaluate the relative value of the key features that constitute a LIMS, in order to develop a set of relative values for these features and the specifics of their implementation. In addition to the results of the product development analysis, this paper also provides an extensive review of LIMS and provides an overview of the preparation and planning process for the successful upgrade or implementation of a LIMS. Analysis of the data indicate that the relative value of LIMS components are viewed differently depending upon respondents' job roles (i.e., evidence technicians, scientists, and lab management), as well as by laboratory size. Specifically, the data show that: (1) Evidence technicians place the most value on chain of evidence capabilities and on chain of custody tracking; (2) Scientists generally place greatest value on report writing and generation, and on tracking daughter evidence that develops during their analyses; (3) Lab. Managers place the greatest value on chain of custody, daughter evidence, and not surprisingly, management reporting capabilities; and (4) Lab size affects LIMS preference in that, while all labs place daughter evidence tracking, chain of custody, and management and analyst report generation as their top three priorities, the order of this prioritization is size dependent.

  9. Lawrence Livermore National Laboratory Annual Report 2006

    SciTech Connect (OSTI)

    Chrzanowski, P; Walter, K

    2007-05-24

    For the Laboratory and staff, 2006 was a year of outstanding achievements. As our many accomplishments in this annual report illustrate, the Laboratory's focus on important problems that affect our nation's security and our researchers breakthroughs in science and technology have led to major successes. As a national laboratory that is part of the Department of Energy's National Nuclear Security Administration (DOE/NNSA), Livermore is a key contributor to the Stockpile Stewardship Program for maintaining the safety, security, and reliability of the nation's nuclear weapons stockpile. The program has been highly successful, and our annual report features some of the Laboratory's significant stockpile stewardship accomplishments in 2006. A notable example is a long-term study with Los Alamos National Laboratory, which found that weapon pit performance will not sharply degrade from the aging effects on plutonium. The conclusion was based on a wide range of nonnuclear experiments, detailed simulations, theoretical advances, and thorough analyses of the results of past nuclear tests. The study was a superb scientific effort. The continuing success of stockpile stewardship enabled NNSA in 2006 to lay out Complex 2030, a vision for a transformed nuclear weapons complex that is more responsive, cost efficient, and highly secure. One of the ways our Laboratory will help lead this transformation is through the design and development of reliable replacement warheads (RRWs). Compared to current designs, these warheads would have enhanced performance margins and security features and would be less costly to manufacture and maintain in a smaller, modernized production complex. In early 2007, NNSA selected Lawrence Livermore and Sandia National Laboratories-California to develop ''RRW-1'' for the U.S. Navy. Design efforts for the RRW, the plutonium aging work, and many other stockpile stewardship accomplishments rely on computer simulations performed on NNSA's Advanced Simulation and Computing (ASC) Program supercomputers at Livermore. ASC Purple and BlueGene/L, the world's fastest computer, together provide nearly a half petaflop (500 trillion operations per second) of computer power for use by the three NNSA national laboratories. Livermore-led teams were awarded the Gordon Bell Prize for Peak Performance in both 2005 and 2006. The winning simulations, run on BlueGene/L, investigated the properties of materials at the length and time scales of atomic interactions. The computing power that makes possible such detailed simulations provides unprecedented opportunities for scientific discovery. Laboratory scientists are meeting the extraordinary challenge of creating experimental capabilities to match the resolution of supercomputer simulations. Working with a wide range of collaborators, we are developing experimental tools that gather better data at the nanometer and subnanosecond scales. Applications range from imaging biomolecules to studying matter at extreme conditions of pressure and temperature. The premier high-energy-density experimental physics facility in the world will be the National Ignition Facility (NIF) when construction is completed in 2009. We are leading the national effort to perform the first fusion ignition experiments using NIF's 192-beam laser and prepare to explore some of the remaining important issues in weapons physics. With scientific colleagues from throughout the nation, we are also designing revolutionary experiments on NIF to advance the fields of astrophysics, planetary physics, and materials science. Mission-directed, multidisciplinary science and technology at Livermore is also focused on reducing the threat posed by the proliferation of weapons of mass destruction as well as their acquisition and use by terrorists. The Laboratory helps this important national effort by providing its unique expertise, integration analyses, and operational support to the Department of Homeland Security. For this vital facet of the Laboratory's national security mission, we are developing advanced technologies, such as

  10. Lawrence Livermore National Laboratory 2007 Annual Report

    SciTech Connect (OSTI)

    Chrzanowski, P; Walter, K

    2008-04-25

    Lawrence Livermore National Laboratory's many outstanding accomplishments in 2007 are a tribute to a dedicated staff, which is shaping the Laboratory's future as we go through a period of transition and transformation. The achievements highlighted in this annual report illustrate our focus on the important problems that affect our nation's security and global stability, our application of breakthrough science and technology to tackle those problems, and our commitment to safe, secure, and efficient operations. In May 2007, the Department of Energy (DOE) awarded Lawrence Livermore National Security, LLC (LLNS), a new public-private partnership, the contract to manage and operate the Laboratory starting in October. Since its inception in 1952, the Laboratory had been managed by the University of California (UC) for the DOE's National Nuclear Security Administration (NNSA) and predecessor organizations. UC is one of the parent organizations that make up LLNS, and UC's presence in the new management entity will help us carry forward our strong tradition of multidisciplinary science and technology. 'Team science' applied to big problems was pioneered by the Laboratory's co-founder and namesake, Ernest O. Lawrence, and has been our hallmark ever since. Transition began fully a year before DOE's announcement. More than 1,600 activities had to be carried out to transition the Laboratory from management by a not-for-profit to a private entity. People, property, and procedures as well as contracts, formal agreements, and liabilities had to be transferred to LLNS. The pre-transition and transition teams did a superb job, and I thank them for their hard work. Transformation is an ongoing process at Livermore. We continually reinvent ourselves as we seek breakthroughs that impact emerging national needs. An example is our development in the late 1990s of a portable instrument that could rapidly detect DNA signatures, research that started with a view toward the potential threat of terrorist use of biological weapons. As featured in our annual report, activities in this area have grown to many important projects contributing to homeland security and disease prevention and control. At times transformation happens in large steps. Such was the case when nuclear testing stopped in the early 1990s. As one of the nation's nuclear weapon design laboratories, Livermore embarked on the Stockpile Stewardship Program. The objectives are to ensure the safety, security, and reliability of the nation's nuclear weapons stockpile and to develop a science-based, thorough understanding of the performance of nuclear weapons. The ultimate goal is to sustain confidence in an aging stockpile without nuclear testing. Now is another time of major change for the Laboratory as the nation is resizing its nuclear deterrent and NNSA begins taking steps to transform the nuclear weapons complex to meet 21st-century national security needs. As you will notice in the opening commentary to each section of this report, the Laboratory's senior management team is a mixture of new and familiar faces. LLNS drew the best talent from its parent organizations--Bechtel National, UC, Babcock & Wilcox, the Washington Group Division of URS, and Battelle--to lead the Laboratory. We are honored to take on the responsibility and see a future with great opportunities for Livermore to apply its exceptional science and technology to important national problems. We will work with NNSA to build on the successful Stockpile Stewardship Program and transform the nation's nuclear weapons complex to become smaller, safer, more secure, and more cost effective. Our annual report highlights progress in many relevant areas. Laboratory scientists are using astonishing computational capabilities--including BlueGene/L, the world's fastest supercomputer with a revolutionary architecture and over 200,000 processors--to gain key insights about performance of aging nuclear weapons. What we learn will help us sustain the stockpile without nuclear testing. Preparations are underway to start experiments at

  11. Smart Grid Integration Laboratory

    SciTech Connect (OSTI)

    Wade Troxell

    2011-09-30

    The initial federal funding for the Colorado State University Smart Grid Integration Laboratory is through a Congressionally Directed Project (CDP), DE-OE0000070 Smart Grid Integration Laboratory. The original program requested in three one-year increments for staff acquisition, curriculum development, and instrumentation ā?? all which will benefit the Laboratory. This report focuses on the initial phase of staff acquisition which was directed and administered by DOE NETL/ West Virginia under Project Officer Tom George. Using this CDP funding, we have developed the leadership and intellectual capacity for the SGIC. This was accomplished by investing (hiring) a core team of Smart Grid Systems engineering faculty focused on education, research, and innovation of a secure and smart grid infrastructure. The Smart Grid Integration Laboratory will be housed with the separately funded Integrid Laboratory as part of CSUā??s overall Smart Grid Integration Center (SGIC). The period of performance of this grant was 10/1/2009 to 9/30/2011 which included one no cost extension due to time delays in faculty hiring. The Smart Grid Integration Laboratoryā??s focus is to build foundations to help graduate and undergraduates acquire systems engineering knowledge; conduct innovative research; and team externally with grid smart organizations. Using the results of the separately funded Smart Grid Workforce Education Workshop (May 2009) sponsored by the City of Fort Collins, Northern Colorado Clean Energy Cluster, Colorado State University Continuing Education, Spirae, and Siemens has been used to guide the hiring of faculty, program curriculum and education plan. This project develops faculty leaders with the intellectual capacity to inspire its students to become leaders that substantially contribute to the development and maintenance of Smart Grid infrastructure through topics such as: (1) Distributed energy systems modeling and control; (2) Energy and power conversion; (3) Simulation of electrical power distribution system that integrates significant quantities of renewable and distributed energy resources; (4) System dynamic modeling that considers end-user behavior, economics, security and regulatory frameworks; (5) Best practices for energy management IT control solutions for effective distributed energy integration (including security with the underlying physical power systems); (6) Experimental verification of effects of various arrangements of renewable generation, distributed generation and user load types along with conventional generation and transmission. Understanding the core technologies for enabling them to be used in an integrated fashion within a distribution network remains is a benefit to the future energy paradigm and future and present energy engineers.

  12. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-10-22

    To establish Department of Energy (DOE) requirements for laboratory directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation. Supersedes DOE O 413.2B.

  13. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-01-08

    To establish the Department's, including the NNSA's, requirements for laboratory-directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation. Cancels DOE O 413.2. Canceled by DOE O 413.2B.

  14. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-04-19

    The Order establishes DOE requirements and responsibilities for laboratory directed research and development while providing laboratory directors with broad flexibility for program implementation. Cancels DOE O 413.2A. Admin Chg 1, 1-31-11.

  15. LABORATORY III ENERGY AND CAPACITORS

    E-Print Network [OSTI]

    Minnesota, University of

    LABORATORY III ENERGY AND CAPACITORS Lab III -1 All biological systems rely on the ability to store and transfer energy. In this laboratory you will investigate the storage and transfer of energy in capacitors successfully completing this laboratory, you should be able to: · Apply the concept of conservation of energy

  16. Laboratory Biosafety Manual 1. Introduction

    E-Print Network [OSTI]

    Natelson, Douglas

    Laboratory Biosafety Manual 1. Introduction This Manual is intended to be a resource in the laboratory environment to work safely and reduce or eliminate the potential for exposure to biological and Biomedical Laboratories (U.S. Health and Human Services Publication No. CDC99-8395, Public Health Service

  17. Atlantic Oceanographic and Meteorological Laboratory

    E-Print Network [OSTI]

    Atlantic Oceanographic and Meteorological Laboratory Science Research Review March 18-20, 2008. Quality: Assess the quality of the laboratory's research and development. Assess whether appropriate." · How does the quality of the laboratory's research and development rank among Research and Development

  18. LABORATORY I FORCES AND EQUILIBRIUM

    E-Print Network [OSTI]

    Minnesota, University of

    LABORATORY I FORCES AND EQUILIBRIUM Lab I -1 In biological systems, most objects of interest system. OBJECTIVES: After successfully completing this laboratory, you should be able to: · Determine and 6), and chapter 15 (section 4). It is likely that you will be doing some of these laboratory

  19. Laboratories to Explore, Explain VLBACHANDRA

    E-Print Network [OSTI]

    Colloquium at Princeton Plasma Physics Laboratory March 8, 2000 http://fire.pppl.gov A Next Step Option Institute of Technology Oak Ridge National Laboratory Princeton Plasma Physics Laboratory Sandia National: SOFT/Fr Sep 98 IAEA/Ja Oct 98 APS-DPP Nov 98 FPA Jan 99 APEX/UCLA Feb 99 APS Cent Mar 99 IGNITOR May 99

  20. Laboratories to Explore, Explain VLBACHANDRA

    E-Print Network [OSTI]

    Physics Workshop Princeton Plasma Physics Laboratory May 1, 2000 http://fire.pppl.gov A Next Step Option Institute of Technology Oak Ridge National Laboratory Princeton Plasma Physics Laboratory Sandia National: SOFT/Fr Sep 98 IAEA/Ja Oct 98 APS-DPP Nov 98 FPA Jan 99 APEX/UCLA Feb 99 APS Cent Mar 99 IGNITOR May 99

  1. Preparing for Transfer Biological Engineering

    E-Print Network [OSTI]

    Walter, M.Todd

    Preparing for Transfer Majors: Biological Engineering Chemical Engineering Civil Engineering Computer Science Electrical & Computer Engineering Engineering Physics Environmental Engineering Information Science, Systems, & Technology Materials Science & Engineering Mechanical Engineering Operations

  2. Preparing for Transfer Biological Engineering

    E-Print Network [OSTI]

    Walter, M.Todd

    Preparing for Transfer Majors: Biological Engineering Biomedical Engineering* Chemical Engineering Civil Engineering Computer Science Electrical & Computer Engineering Engineering Physics Environmental Engineering Information Science, Systems, & Technology Materials Science & Engineering Mechanical Engineering

  3. Method for preparation of polysilanes

    DOE Patents [OSTI]

    Zeigler, John M. (2208 Lester Dr., NE, Albuquerque, NM 87112)

    1991-01-01

    High molecular weight polysilanes are prepared using highly non-chain-transferring solvents. Certain alloys of sodium can also be used to advantage with such solvents. The high molecular weights are achievable even in the commercially preferred "normal" addition procedure.

  4. Purdue Hydrogen Systems Laboratory

    SciTech Connect (OSTI)

    Jay P Gore; Robert Kramer; Timothee L Pourpoint; P. V. Ramachandran; Arvind Varma; Yuan Zheng

    2011-12-28

    The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up. Efforts continued to explore existing catalytic methods involving nano catalysts for capture of CO2 from the fermentation process.

  5. Princeton Plasma Physics Laboratory

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    This report discusses the following topics: principal parameters achieved in experimental devices fiscal year 1990; tokamak fusion test reactor; compact ignition tokamak; Princeton beta experiment- modification; current drive experiment-upgrade; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma processing: deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for fiscal year 1990; graduate education; plasma physics; graduate education: plasma science and technology; science education program; and Princeton Plasma Physics Laboratory reports fiscal year 1990.

  6. Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D SFederal8823 Revision 02AugustLaboratory Standard

  7. Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagnetic Argonne National Laboratory | 9700 South A

  8. Muncrief | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on77 PAGEMissionStressMoveMuncrief Ames Laboratory Profile Diane

  9. Sandia National Laboratories:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygenLaboratoryInnovation Portal SNL Site Map Printable

  10. Sandia National Laboratories: Agreements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygenLaboratoryInnovation Portal SNLLeadershipAgreements

  11. Sandia National Laboratories: Careers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygenLaboratoryInnovation Portal SNLLeadershipAgreementsCareers

  12. Sandia National Laboratories: Locations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygenLaboratoryInnovationEmployee &

  13. Sandia National Laboratories: News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygenLaboratoryInnovationEmployeeNews Detecting biothreat agents

  14. Sandia National Laboratories: Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygenLaboratoryInnovationEmployeeNewsPublications

  15. Sandia National Laboratories Problem

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis ofSample SULI Program StudentSandia National Laboratories

  16. Sandia National Laboratories Problem

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis ofSample SULI Program StudentSandia National LaboratoriesSandia

  17. aboesenb | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largestnamedGroup! !aboesenb Ames Laboratory

  18. andersoi | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifiesValidation of MFRSR Dataandersoi Ames Laboratory

  19. bastaw | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifiesValidation ofUV-RSSSummary5bastaw Ames Laboratory

  20. cbertoni | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifiesValidationENCOALĀ®April 8,9cbertoni Ames Laboratory

  1. dscomito | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos AlamosSimulationdetonation detectionDouglasdscomito Ames Laboratory

  2. haaland | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26th Annual ConferenceFall 2001,haaland Ames Laboratory Profile

  3. jiahao | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26th AnnualHistoryM aterials S cience a ndjiahao Ames Laboratory

  4. jwang | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26th AnnualHistoryM aterials S cience ajwang Ames Laboratory

  5. nalms | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26th AnnualHistoryMIII: TheJointCoupling, ,nalms Ames Laboratory

  6. nbarbee | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26th AnnualHistoryMIII:National Laboratory Research

  7. ndesilva | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26th AnnualHistoryMIII:National Laboratory

  8. rberrett | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26thI D- 6 0 4 2 r m m m m port mrberrett Ames Laboratory

  9. rfry | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26thI D- 6 0 4 2 r m m m m portrespondingrfry Ames Laboratory

  10. rofox | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26thI D- 6 0 4 2 r m m m mrofox Ames Laboratory Profile Rodney

  11. szhou | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26thI D- 6 0 4 2 r m m mDiurnalCarbonU C Lszhou Ames Laboratory

  12. witt | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26thI D- 6 0 4 2 r mReducingwhistleblower |witt Ames Laboratory

  13. xinyufu | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26thI D- 6 0 4 2 r mReducingwhistleblowerxinyufu Ames Laboratory

  14. Idaho National Laboratory April

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenry Bellamy, Ph.D.FoodHydropower,PrincipalIdaho National Laboratory

  15. Laboratory Policy Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse Bergkamp Graduate studentScience (SC)Planning Process Laboratory

  16. Diversity | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratory |Sector Full reportTown Hall Program BookDiversity

  17. Downloads | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratory |Sector FullDOE Office10 Jan 2005 toDownloads Topic

  18. Downloads | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratory |Sector FullDOE Office10 Jan 2005 toDownloads

  19. Downloads | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratory |Sector FullDOE Office10 Jan 2005 toDownloads Press

  20. Downloads | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratory |Sector FullDOE Office10 Jan 2005 toDownloads

  1. Downloads | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratory |Sector FullDOE Office10 Jan 2005

  2. Downloads | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratory |Sector FullDOE Office10 Jan 2005Downloads Topic -

  3. Downloads | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratory |Sector FullDOE Office10 Jan 2005Downloads Topic

  4. Downloads | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratory |Sector FullDOE Office10 Jan 2005Downloads

  5. PIA - Environmental Molecular Sciences Laboratory (EMSL) User...

    Energy Savers [EERE]

    Molecular Sciences Laboratory (EMSL) User System (ESU) PIA - Environmental Molecular Sciences Laboratory (EMSL) User System (ESU) PIA - Environmental Molecular Sciences Laboratory...

  6. Independent Oversight Review, Argonne National Laboratory - November...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Argonne National Laboratory - November 2011 Independent Oversight Review, Argonne National Laboratory - November 2011 November 2011 Review of the Argonne National Laboratory...

  7. GRADUATE AERONAUTICAL LABORATORIES CALIFORNIA INSTITUTE OF TECHNOLOGY

    E-Print Network [OSTI]

    Barr, Al

    Firestone Flight Sciences Laboratory Guggenheim Aeronautical Laboratory Karman Laboratory of Fluid Mechanics and Jet Propulsion Pasadena #12;Experiments and modeling of impinging laminar jets at moderate separation

  8. Argonne National Laboratory is managed by The University of Chicago for the U.S.Department of Energy

    E-Print Network [OSTI]

    Harilal, S. S.

    Argonne National Laboratory is managed by The University of Chicago for the U.S.Department of Energy Calculation ofTin Atomic Data and Plasma Properties ANL-ET-04/24 prepared by Energy Argonne National Laboratory Argonne is managed by The University of Chicago for the U.S. Department

  9. HYDRAULIC CEMENT PREPARATION FROM LURGI SPENT SHALE

    E-Print Network [OSTI]

    Mehta, P.K.

    2013-01-01

    P. , "Investigations on hydraulic cement from spent oilCO, April 16-18, 1980 HYDRAULIC CEMENT PREPARATION FROMUniversity of California. HYDRAULIC CEMENT PREPARATION FROM

  10. Advanced Manufacturing Processes Laboratory Building 878 hazards assessment document

    SciTech Connect (OSTI)

    Wood, C.; Thornton, W.; Swihart, A.; Gilman, T.

    1994-07-01

    The introduction of the hazards assessment process is to document the impact of the release of hazards at the Advanced Manufacturing Processes Laboratory (AMPL) that are significant enough to warrant consideration in Sandia National Laboratories` operational emergency management program. This hazards assessment is prepared in accordance with the Department of Energy Order 5500.3A requirement that facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment provides an analysis of the potential airborne release of chemicals associated with the operations and processes at the AMPL. This research and development laboratory develops advanced manufacturing technologies, practices, and unique equipment and provides the fabrication of prototype hardware to meet the needs of Sandia National Laboratories, Albuquerque, New Mexico (SNL/NM). The focus of the hazards assessment is the airborne release of materials because this requires the most rapid, coordinated emergency response on the part of the AMPL, SNL/NM, collocated facilities, and surrounding jurisdiction to protect workers, the public, and the environment.

  11. Ergonomic assessments of three Idaho National Engineering Laboratory cafeterias

    SciTech Connect (OSTI)

    Ostrom, L.T.; Romero, H.A.; Gilbert, B.G.; Wilhelmsen, C.A.

    1993-05-01

    The Idaho National Engineering Laboratory is a Department of Energy facility that performs a variety of engineering and research projects. EG&G Idaho is the prime contractor for the laboratory and, as such, performs the support functions in addition to technical, research, and development functions. As a part of the EG&G Idaho Industrial Hygiene Initiative, ergonomic assessments were conducted at three Idaho National Engineering Laboratory Cafeterias. The purposes of the assessments were to determine whether ergonomic problems existed in the work places and, if so, to make recommendations to improve the work place and task designs. The study showed there were ergonomic problems in all three cafeterias assessed. The primary ergonomic stresses observed included wrist and shoulder stress in the dish washing task, postural stress in the dish washing and food preparation tasks, and back stress in the food handling tasks.

  12. 1994 Site Environmental Report Sandia National Laboratories Albuquerque, New Mexico

    SciTech Connect (OSTI)

    Shyr, L.J.; Wiggins, T.; White, B.B.

    1995-09-01

    This 1994 report contains data from routine radiological and nonradiological environmental monitoring activities. Summaries of significant environmental compliance programs in progress, such as National Environmental Policy Act documentation, environmental permits, environmental restoration, and various waste management programs for Sandia National Laboratories in Albuquerque, New Mexico, are included. The maximum off-site dose impact from air emissions was calculated to be 1.5 x 10{sup -4} millirem. The total population within a 50-mile radius of Sandia National Laboratories/New Mexico received an estimated collective dose of 0.012 person-rem during 1994 from the laboratories` operations. This report is prepared for the U.S. Department of Energy in compliance with DOE Order 5400.1.

  13. National Laboratory]; Kim, Young Jin [Los Alamos National Laboratory...

    Office of Scientific and Technical Information (OSTI)

    EDM Abstract Not Provided Los Alamos National Laboratory (LANL) DOELANL United States 2014-11-05 English Conference Conference: Challenges of the worldwide experimental search...

  14. Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Dogliani, Harold O [Los Alamos National Laboratory

    2011-01-19

    The purpose of the briefing is to describe general laboratory technical capabilities to be used for various groups such as military cadets or university faculty/students and post docs to recruit into a variety of Los Alamos programs. Discussed are: (1) development and application of high leverage science to enable effeictive, predictable and reliability outcomes; (2) deter, detect, characterize, reverse and prevent the proliferation of weapons of mass destruction and their use by adversaries and terrorists; (3) modeling and simulation to define complex processes, predict outcomes, and develop effective prevention, response, and remediation strategies; (4) energetic materials and hydrodynamic testing to develop materials for precise delivery of focused energy; (5) materials cience focused on fundamental understanding of materials behaviors, their quantum-molecular properties, and their dynamic responses, and (6) bio-science to rapidly detect and characterize pathogens, to develop vaccines and prophylactic remedies, and to develop attribution forensics.

  15. ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY

    E-Print Network [OSTI]

    LBNL 58752 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Laboratory Evaluation of California. Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer. 3 #12;Abstract A testing program was undertaken at Lawrence Berkeley National Laboratory and an electric utility

  16. Challenges and Opportunities To Achieve 50% Energy Savings in Homes: National Laboratory White Papers

    SciTech Connect (OSTI)

    Bianchi, M. V. A.

    2011-07-01

    In 2010, researchers from four of the national laboratories involved in residential research (Lawrence Berkeley National Laboratory, National Renewable Energy Laboratory, Oak Ridge National Laboratory, and Pacific Northwest National Laboratory) were asked to prepare papers focusing on the key longer term research challenges, market barriers, and technology gaps that must be addressed to achieve the longer term 50% saving goal for Building America to ensure coordination with the Building America industry teams who are focusing their research on systems to achieve the near-term 30% savings goal. Although new construction was included, the focus of the effort was on deep energy retrofits of existing homes. This report summarizes the key opportunities, gaps, and barriers identified in the national laboratory white papers.

  17. Postirradiation Testing Laboratory (327 Building)

    SciTech Connect (OSTI)

    Kammenzind, D.E.

    1997-05-28

    A Standards/Requirements Identification Document (S/RID) is the total list of the Environment, Safety and Health (ES and H) requirements to be implemented by a site, facility, or activity. These requirements are appropriate to the life cycle phase to achieve an adequate level of protection for worker and public health and safety, and the environment during design, construction, operation, decontamination and decommissioning, and environmental restoration. S/RlDs are living documents, to be revised appropriately based on change in the site`s or facility`s mission or configuration, a change in the facility`s life cycle phase, or a change to the applicable standards/requirements. S/RIDs encompass health and safety, environmental, and safety related safeguards and security (S and S) standards/requirements related to the functional areas listed in the US Department of Energy (DOE) Environment, Safety and Health Configuration Guide. The Fluor Daniel Hanford (FDH) Contract S/RID contains standards/requirements, applicable to FDH and FDH subcontractors, necessary for safe operation of Project Hanford Management Contract (PHMC) facilities, that are not the direct responsibility of the facility manager (e.g., a site-wide fire department). Facility S/RIDs contain standards/requirements applicable to a specific facility that are the direct responsibility of the facility manager. S/RlDs are prepared by those responsible for managing the operation of facilities or the conduct of activities that present a potential threat to the health and safety of workers, public, or the environment, including: Hazard Category 1 and 2 nuclear facilities and activities, as defined in DOE 5480.23. Selected Hazard Category 3 nuclear, and Low Hazard non-nuclear facilities and activities, as agreed upon by RL. The Postirradiation Testing Laboratory (PTL) S/RID contains standards/ requirements that are necessary for safe operation of the PTL facility, and other building/areas that are the direct responsibility of the specific facility manager. The specific DOE Orders, regulations, industry codes/standards, guidance documents and good industry practices that serve as the basis for each element/subelement are identified and aligned with each subelement.

  18. National Renewable Energy Laboratory's Energy Systems Integration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Renewable Energy Laboratory's Energy Systems Integration Facility Overview National Renewable Energy Laboratory's Energy Systems Integration Facility Overview This...

  19. Occupational Medicine - Assistant PIA, Idaho National Laboratory...

    Energy Savers [EERE]

    Occupational Medicine - Assistant PIA, Idaho National Laboratory Occupational Medicine - Assistant PIA, Idaho National Laboratory Occupational Medicine - Assistant PIA, Idaho...

  20. European underground laboratories: An overview

    E-Print Network [OSTI]

    Lino Miramonti

    2005-03-31

    Underground laboratories are complementary to those where the research in fundamental physics is made using accelerators. This report focus on the logistic and on the background features of the most relevant laboratories in Europe, stressing also on the low background facilities available. In particular the report is focus on the laboratories involved in the new Europeean project ILIAS with the aim to support the European large infrastructures operating in the astroparticle physics area.

  1. Lawrence Berkeley Laboratory Institutional Plan, FY 1993--1998

    SciTech Connect (OSTI)

    Chew, Joseph T.; Stroh, Suzanne C.; Maio, Linda R.; Olson, Karl R.; Grether, Donald F.; Clary, Mary M.; Smith, Brian M.; Stevens, David F.; Ross, Loren; Alper, Mark D.; Dairiki, Janis M.; Fong, Pauline L.; Bartholomew, James C.

    1992-10-01

    The FY 1993--1998 Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. The Strategic Plan section identifies long-range conditions that can influence the Laboratory, potential research trends, and several management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory and the resources required for their implementation. The Scientific and Technical Programs section summarizes current programs and potential changes in research program activity. The Environment, Safety, and Health section describes the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation`s scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff composition and development programs. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The plan is an institutional management report for integration with the Department of Energy`s strategic planning activities that is developed through an annual planning process. The plan identifies technical and administrative directions in the context of the National Energy Strategy and the Department of Energy`s program planning initiatives. Preparation of the plan is coordinated by the Office for Planning and Development from information contributed by the Laboratory`s scientific and support divisions.

  2. Argonne National Laboratory annual report of Laboratory Directed Research and Development Program Activities FY 2009.

    SciTech Connect (OSTI)

    Office of the Director

    2010-04-09

    I am pleased to submit Argonne National Laboratory's Annual Report on its Laboratory Directed Research and Development (LDRD) activities for fiscal year 2009. Fiscal year 2009 saw a heightened focus by DOE and the nation on the need to develop new sources of energy. Argonne scientists are investigating many different sources of energy, including nuclear, solar, and biofuels, as well as ways to store, use, and transmit energy more safely, cleanly, and efficiently. DOE selected Argonne as the site for two new Energy Frontier Research Centers (EFRCs) - the Institute for Atom-Efficient Chemical Transformations and the Center for Electrical Energy Storage - and funded two other EFRCs to which Argonne is a major partner. The award of at least two of the EFRCs can be directly linked to early LDRD-funded efforts. LDRD has historically seeded important programs and facilities at the lab. Two of these facilities, the Advanced Photon Source and the Center for Nanoscale Materials, are now vital contributors to today's LDRD Program. New and enhanced capabilities, many of which relied on LDRD in their early stages, now help the laboratory pursue its evolving strategic goals. LDRD has, since its inception, been an invaluable resource for positioning the Laboratory to anticipate, and thus be prepared to contribute to, the future science and technology needs of DOE and the nation. During times of change, LDRD becomes all the more vital for facilitating the necessary adjustments while maintaining and enhancing the capabilities of our staff and facilities. Although I am new to the role of Laboratory Director, my immediate prior service as Deputy Laboratory Director for Programs afforded me continuous involvement in the LDRD program and its management. Therefore, I can attest that Argonne's program adhered closely to the requirements of DOE Order 413.2b and associated guidelines governing LDRD. Our LDRD program management continually strives to be more efficient. In addition to meeting all reporting requirements during fiscal year 2009, our LDRD Office continues to enhance its electronic systems to streamline the LDRD management process. You will see from the following individual project reports that Argonne's researchers have once again done a superb job pursuing projects at the forefront of their respective fields and have contributed significantly to the advancement of Argonne's strategic thrusts. This work has not only attracted follow-on sponsorship in many cases, but is also proving to be a valuable basis upon which to continue realignment of our strategic portfolio to better match the Laboratory's Strategic Plan.

  3. PREPARED FORTHE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DEAC0276CH03073

    E-Print Network [OSTI]

    PREPARED FORTHE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE­AC02­76CH03073 PRINCETON PLASMA Acceleration the Field­reversed Configuration (FRC) Slowly Rotating Odd­parity Magnetic Fields (RMF ) Alan Plasma Physics Laboratory Publications Reports web site Calendar Year 2001. The home PPPL Reports

  4. LANL: Ion Beam Materials Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and materials synthesis through ion implantation technology, and radiation damage stud- ies in gases, liquids, and solids. The laboratory's core is a 3.2 MV tandem ion...

  5. Ray Bair | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    science, computational and laboratory research Large scale applications of high performance computing and communications News DOE creates new Center for Computational Materials...

  6. Training Program | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    To check out our resources on task-based systems, visit the Ames Laboratory Processes Training page. Training Schedule Training Catalog...

  7. US EPA Regional Laboratory Network

    E-Print Network [OSTI]

    LABORATORY NETWORK List of Acronyms AMD ............Acid Mine Drainage BNA..............Base/Neutrals and Acids Extractable Organics BMP.............Best Management Practice BOD .............Biological Oxygen

  8. EA-1984: Disposition of Five Signature Properties at Idaho National Laboratory

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy prepared an environmental assessment of a proposal to tear down four World War II-era historic structures and a portion of one additional World War II-era historic structure at Idaho National Laboratory’s Central Facilities Area where the U.S. Naval Proving Ground was established in 1942. The structures had deteriorated and were no longer used.

  9. Lawrence Berkeley Laboratory FY 1992 Site Development Plan

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    The Lawrence Berkeley Laboratory 1992 Site Development Plan (SDP) provides analysis and policy guidance for the effective use and orderly development of land and facilities at the LBL main site. The SDP directly supports LBL's role as a multiprogram national laboratory operated by the University of California for the DOE. It is a concise policy document, prepared in compliance with DOE Order 4320.1B and based on revisions to the 1991 Technical Site Information (TSI). It also serves as the current DOE framework for the implementation of the 1987 Long Range Development Plan (LRDP) approved by the Regents of the University of California. The SDP is updated annually, with periodic major revisions consistent with DOE policy and approved plans of the Regents. The specific purposed of the SDP are to: Summarize the mission and community setting of the Laboratory; describe program trends and projections and future resource requirements; describe site planning goals and future facilities and land uses; and describe site planning issues and potential solutions. The SDP concisely expresses the policies for future development based on planning concepts, the anticipated needs of research programs, and site potential and constraints. The 1992 TSI document and other planning data provide detailed support for the plans identified in this document. Preparation of the SDP was coordinated by the Office for Planning and Development with technical support and data preparation by the Plant Engineering Department. Programmatic data and information are from program divisions and technical resource divisions, including the Environment, Health Safety Division. The 1992 SDP is consistent with approved university guidelines and future building area, land use, and population projections identified in the 1987 LRDP and the 1987 Site Development Plan Environmental Impact Report prepared under the California Environment Quality Act.

  10. Lawrence Berkeley Laboratory FY 1992 Site Development Plan

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    The Lawrence Berkeley Laboratory 1992 Site Development Plan (SDP) provides analysis and policy guidance for the effective use and orderly development of land and facilities at the LBL main site. The SDP directly supports LBL`s role as a multiprogram national laboratory operated by the University of California for the DOE. It is a concise policy document, prepared in compliance with DOE Order 4320.1B and based on revisions to the 1991 Technical Site Information (TSI). It also serves as the current DOE framework for the implementation of the 1987 Long Range Development Plan (LRDP) approved by the Regents of the University of California. The SDP is updated annually, with periodic major revisions consistent with DOE policy and approved plans of the Regents. The specific purposed of the SDP are to: Summarize the mission and community setting of the Laboratory; describe program trends and projections and future resource requirements; describe site planning goals and future facilities and land uses; and describe site planning issues and potential solutions. The SDP concisely expresses the policies for future development based on planning concepts, the anticipated needs of research programs, and site potential and constraints. The 1992 TSI document and other planning data provide detailed support for the plans identified in this document. Preparation of the SDP was coordinated by the Office for Planning and Development with technical support and data preparation by the Plant Engineering Department. Programmatic data and information are from program divisions and technical resource divisions, including the Environment, Health & Safety Division. The 1992 SDP is consistent with approved university guidelines and future building area, land use, and population projections identified in the 1987 LRDP and the 1987 Site Development Plan Environmental Impact Report prepared under the California Environment Quality Act.

  11. Preparation of RCRA contingency plans

    SciTech Connect (OSTI)

    Not Available

    1992-07-01

    The purpose of this guidance is to assist Department of Energy (DOE) field personnel in the preparation of Resource Conservation and Recovery Act (RCRA) contingency plans as set forth in 40 CFR 264/265 Subpart D and 270.42. The guidance will assist personnel in evaluating and ensuring facility compliance with the contingency plan requirements.

  12. Preparation of gas selective membranes

    DOE Patents [OSTI]

    Kulprathipanja, Santi (Hoffman Estates, IL); Kulkarni, Sudhir S. (Hoffman Estates, IL); Funk, Edward W. (Highland Park, IL)

    1988-01-01

    Gas separation membranes which possess improved characteristics as exemplified by selectivity and flux may be prepared by coating a porous organic polymer support with a solution or emulsion of a plasticizer and an organic polymer, said coating being effected at subatmospheric pressures in order to increase the penetration depth of the coating material.

  13. JOURNAL AUTHORS SURVEY Prepared by

    E-Print Network [OSTI]

    Stevenson, Paul

    JISC/OSI JOURNAL AUTHORS SURVEY Report Prepared by Key Perspectives Ltd 48 Old Coach Road, Playing behind its development 4 2.2 Models and definitions of open access 8 2.2.1 Open access journals 8 2 4.1 Respondent profiles 18 4.2 Awareness of open access journals 18 4.2.1 Extent and longevity

  14. Photochemical preparation of plutonium pentafluoride

    DOE Patents [OSTI]

    Rabideau, Sherman W. (Los Alamos, NM); Campbell, George M. (Los Alamos, NM)

    1987-01-01

    The novel compound plutonium pentafluoride may be prepared by the photodissociation of gaseous plutonium hexafluoride. It is a white solid of low vapor pressure, which consists predominantly of a face-centered cubic structure with a.sub.o =4.2709.+-.0.0005 .ANG..

  15. Preparation of asymmetric porous materials

    DOE Patents [OSTI]

    Coker, Eric N. (Albuquerque, NM)

    2012-08-07

    A method for preparing an asymmetric porous material by depositing a porous material film on a flexible substrate, and applying an anisotropic stress to the porous media on the flexible substrate, where the anisotropic stress results from a stress such as an applied mechanical force, a thermal gradient, and an applied voltage, to form an asymmetric porous material.

  16. Arduino Sustainability Project Prepared for

    E-Print Network [OSTI]

    Kachroo, Pushkin

    Arduino Sustainability Project Prepared for: Dr. Pushkin Kachroo EE 290 UNLV Christian Calvo 2009 by the Arduino microcontroller to satisfy the theme of sustainability. The device I decided to construct is determined by the LDR. The LDR output signal is fed into an analog input of the Arduino. The value is read

  17. Guide to Petrography Specimen Preparation

    E-Print Network [OSTI]

    Henderson, Gideon

    I Microscopic Examination I Image Analysis & Capture #12;In 1849 when Henry Sorby, the father of pet's technologies help deliver the fullest product offering for all applications. Together with our technical in the case of preparing thin sections) · Expose the surface of interest Historically, the sectioning process

  18. Summary of irradiation tests of mixed oxide fuel prepared with weapons-derived plutonium

    SciTech Connect (OSTI)

    Ott, Larry J [ORNL; Spellman, Donald J [ORNL

    2008-01-01

    Mixed oxide (MOX) test capsules prepared with weapons-derived plutonium were irradiated to a burnup of 50 GWd/MT. The MOX fuel was fabricated at Los Alamos National Laboratory by a master-mix process and irradiated in the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL). Previous withdrawals of the same fuel have occurred at 9, 21, 30, and 40 GWd/MT. Oak Ridge National Laboratory managed this test series for the Department of Energy s Fissile Materials Disposition Program (FMDP). This paper describes the preparation of the MOX fuel, the equipment design, and the irradiation history of the test capsules and discussesthe significance of the more important observations of the post-irradiation examinations (PIEs). Fuel performance has been excellent and consistent with code predictions and with existing U.S. and European experience.

  19. Summary of Irradiation Tests of Mixed-Oxide Fuel Prepared with Weapons-Derived Plutonium

    SciTech Connect (OSTI)

    Ott, Larry J [ORNL; Spellman, Donald J [ORNL

    2008-01-01

    Mixed oxide (MOX) test capsules prepared with weapons-derived plutonium have been irradiated to a burnup of 50 GWd/MT. The MOX fuel was fabricated at Los Alamos National Laboratory by a master-mix process and irradiated in the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL). Previous withdrawals of the same fuel have occurred at 9, 21, 30, and 50 GWd/MT. Oak Ridge National Laboratory managed this test series for the Department of Energy's Fissile Materials Disposition Program (FMDP). This paper describes the preparation of the MOX fuel, the equipment desig, and the irradiation history of the test capsules and discusses the significance of the more important observations of the post-irradiation examinations (PIEs). Fuel performance has been excellent and consistent with code predictions and with existing U.S. and Europen experience.

  20. WOOD ANATOMY INSTRUCTIONS FOR LABORATORY

    E-Print Network [OSTI]

    Cufar, Katarina

    WOOD ANATOMY INSTRUCTIONS FOR LABORATORY WORK KATARINA CUFAR, MARTIN ZUPANCIC University of Ljubljana Biotechnical Faculty Department of Wood Science and Technology #12;Publisher Department of Wood The publishing of "Wood Anatomy - Instructions for Laboratory Work", a textbook by Katarina Cufar and Martin

  1. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-04-19

    The order establishes DOE requirements for laboratory directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation. Cancels DOE O 413.3A. Admin Chg 1, dated 1-31-11, cancels DOE O 413.2B. Certified 7-14-2011.

  2. Hybrid & Hydrogen Vehicle Research Laboratory

    E-Print Network [OSTI]

    Lee, Dongwon

    Hybrid & Hydrogen Vehicle Research Laboratory www.vss.psu.edu/hhvrl Joel R. Anstrom, Director 201 The Pennsylvania Transportation Institute Hybrid and Hydrogen Vehicle Research Laboratory will contribute to the advancement of hybrid and hydrogen vehicle technology to promote the emerging hydrogen economy by providing

  3. Prepared

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouthReport for the t-) S/,,5 'a C O M1 the RFSOGorPLEASE RETURN

  4. Facility Effluent Monitoring Plan for the 325 Radiochemical Processing Laboratory

    SciTech Connect (OSTI)

    Shields, K.D.; Ballinger, M.Y.

    1999-04-02

    This Facility Effluent Monitoring Plan (FEMP) has been prepared for the 325 Building Radiochemical Processing Laboratory (RPL) at the Pacific Northwest National Laboratory (PNNL) to meet the requirements in DOE Order 5400.1, ''General Environmental Protection Programs.'' This FEMP has been prepared for the RPL primarily because it has a ''major'' (potential to emit >0.1 mrem/yr) emission point for radionuclide air emissions according to the annual National Emission Standards for Hazardous Air Pollutants (NESHAP) assessment performed. This section summarizes the airborne and liquid effluents and the inventory based NESHAP assessment for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements. The RPL at PNNL houses radiochemistry research, radioanalytical service, radiochemical process development, and hazardous and radioactive mixed waste treatment activities. The laboratories and specialized facilities enable work ranging from that with nonradioactive materials to work with picogram to kilogram quantities of fissionable materials and up to megacurie quantities of other radionuclides. The special facilities within the building include two shielded hot-cell areas that provide for process development or analytical chemistry work with highly radioactive materials and a waste treatment facility for processing hazardous, mixed radioactive, low-level radioactive, and transuranic wastes generated by PNNL activities.

  5. Laboratory Directed Research and Development Program FY 2009 for Lawrence Berkeley National Laboratory

    E-Print Network [OSTI]

    Hansen, Todd C.

    2010-01-01

    Brookhaven national Laboratory, Upton, NY, USA. AFRD-Berkeley National Laboratory,” LBNL Report LBNL 2670-E,performed in the laboratory and in-situ at-wavelength,”

  6. Porous-electrode preparation method

    DOE Patents [OSTI]

    Arons, R.M.; Dusek, J.T.

    1981-09-17

    A porous sintered plaque is provided with a bimodal porosity that is especially well suited for use as an electrode within a molten carbonate fuel cell. The coarse porosity is sufficient for admitting gases into contact with the reaction surfaces while the fine porosity is wetted with and retains molten electrolyte on the reaction sites. The electrode structure is prepared by providing a very fine powder such as nickel oxide and blending the powder with a suitable decomposable binder to form a solid mass. The mass is comminuted into agglomerate size particles substantially larger than the fine oxide particles and formed into a cohesive compact for subsequent sintering. Sintering is carried out at sufficient conditions to bind the agglomerates together into a porous structure having both coarse and fine porosity. Where lithiated nickel oxide cathodes are prepared, the sintering conditions can be moderate enough to retain substantial quantities of lithium within the electrode for adequate conductivity.

  7. Preparation of superconductor precursor powders

    DOE Patents [OSTI]

    Bhattacharya, Raghunath (Littleton, CO)

    1998-01-01

    A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic and/or reduced particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of all metals in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products.

  8. Preparation of energy storage materials

    DOE Patents [OSTI]

    Li, Lin Song (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM)

    2003-01-01

    A process is provided for the preparation of a metallic oxide composite including mixing an aqueous solution of a water-soluble metal compound and colloidal silica, depositing the mixture upon a substrate, heating the mixture-coated substrates at temperatures from about 150.degree. C. to about 300.degree. C. for time sufficient to form a metallic oxide film, and, removing the silica from the metallic oxide film whereby a porous metal oxide structure is formed.

  9. Preparation Of Energy Storage Materials

    DOE Patents [OSTI]

    Li, Lin Song (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM)

    2003-12-02

    A process is provided for the preparation of a metallic oxide composite including mixing an aqueous solution of a water-soluble metal compound and colloidal silica, depositing the mixture upon a substrate, heating the mixture-coated substrates at temperatures from about 150.degree. C. to about 300.degree. C. for time sufficient to form a metallic oxide film, and, removing the silica from the metallic oxide film whereby a porous metal oxide structure is formed.

  10. Method for preparing ceramic composite

    DOE Patents [OSTI]

    Alexander, Kathleen B. (Oak Ridge, TN); Tiegs, Terry N. (Lenoir City, TN); Becher, Paul F. (Oak Ridge, TN); Waters, Shirley B. (Knoxville, TN)

    1996-01-01

    A process for preparing ceramic composite comprising blending TiC particulates, Al.sub.2 O.sub.3 particulates and nickle aluminide and consolidating the mixture at a temperature and pressure sufficient to produce a densified ceramic composite having fracture toughness equal to or greater than 7 MPa m.sup.1/2, a hardness equal to or greater than 18 GPa.

  11. Method for preparing ceramic composite

    DOE Patents [OSTI]

    Alexander, K.B.; Tiegs, T.N.; Becher, P.F.; Waters, S.B.

    1996-01-09

    A process is disclosed for preparing ceramic composite comprising blending TiC particulates, Al{sub 2}O{sub 3} particulates and nickel aluminide and consolidating the mixture at a temperature and pressure sufficient to produce a densified ceramic composite having fracture toughness equal to or greater than 7 MPa m{sup 1/2}, a hardness equal to or greater than 18 GPa. 5 figs.

  12. NIST Laboratory Programs and the National Voluntary Laboratory

    E-Print Network [OSTI]

    a "weighing design." Georgia Harris from this division provided the technical criteria for mass and volume from accredited laboratories to make decisions that affect safety, security, health and the environment

  13. Optical Characterization Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Optical Characterization Laboratory at the Energy Systems Integration Facility. The Optical Characterization Laboratory at NREL's Energy Systems Integration Facility (ESIF) conducts optical characterization of large solar concentration devices. Concentration solar power (CSP) mirror panels and concentrating solar systems are tested with an emphasis is on measurement of parabolic trough mirror panels. The Optical Characterization Laboratory provides state-of-the-art characterization and testing capabilities for assessing the optical surface quality and optical performance for various CSP technologies including parabolic troughs, linear Fresnel, dishes, and heliostats.

  14. CRAD, Nuclear Safety- Oak Ridge National Laboratory High Flux Isotope Reactor

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Nuclear Safety Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  15. Idaho National Engineering Laboratory radioecology and ecology programs. 1983 progress report

    SciTech Connect (OSTI)

    Markham, O. D.

    1983-06-01

    Progress is reported in research on: the baseline ecology of the Idaho National Engineering Laboratory (INEL), the effects of disturbance on animal and plant communities, and the behavior of radionuclides in the environment surrounding radioactive waste sites. Separate abstracts have been prepared for individual reports. (ACR)

  16. CRAD, Environmental Protection- Oak Ridge National Laboratory High Flux Isotope Reactor

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Environmental Compliance Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  17. CRAD, Occupational Safety & Health- Oak Ridge National Laboratory High Flux Isotope Reactor

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Industrial Safety and Hygiene Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  18. CRAD, Conduct of Operations- Oak Ridge National Laboratory High Flux Isotope Reactor

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February, 2007 assessment of the Conduct of Operations Program in preparation for restart of the Oak Ridge National Laboratory, High Flux Isotope Reactor.

  19. CRAD, Quality Assurance- Oak Ridge National Laboratory High Flux Isotope Reactor

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Quality Assurance Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  20. CRAD, Radiological Controls- Oak Ridge National Laboratory High Flux Isotope Reactor

    Office of Energy Efficiency and Renewable Energy (EERE)

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Radiation Protection Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  1. CRAD, Emergency Management- Oak Ridge National Laboratory High Flux Isotope Reactor

    Office of Energy Efficiency and Renewable Energy (EERE)

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Emergency Management Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  2. CRAD, Safety Basis- Oak Ridge National Laboratory High Flux Isotope Reactor

    Office of Energy Efficiency and Renewable Energy (EERE)

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Safety Basis in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  3. CRAD, Configuration Management- Oak Ridge National Laboratory High Flux Isotope Reactor

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Configuration Management Program in preparation for restart of the Oak Ridge National Laboratory, High Flux Isotope Reactor.

  4. Sandia National Laboratories/New Mexico Environmental Baseline update--Revision 1.0

    SciTech Connect (OSTI)

    1996-07-01

    This report provides a baseline update to provide the background information necessary for personnel to prepare clear and consise NEPA documentation. The environment of the Sandia National Laboratories is described in this document, including the ecology, meteorology, climatology, seismology, emissions, cultural resources and land use, visual resources, noise pollution, transportation, and socioeconomics.

  5. Method of surface preparation of niobium

    DOE Patents [OSTI]

    Srinivasan-Rao, Triveni (Shoreham, NY); Schill, John F. (Ridge, NY)

    2003-01-01

    The present invention is for a method of preparing a surface of niobium. The preparation method includes polishing, cleaning, baking and irradiating the niobium surface whereby the resulting niobium surface has a high quantum efficiency.

  6. Preparation for Warmer Temperatures | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Preparation for Warmer Temperatures Preparation for Warmer Temperatures April 2, 2014 - 11:05am Addthis Ceiling fans are a great way to efficiently cool your house in the summer. |...

  7. National Laboratory Impacts and Developments

    Broader source: Energy.gov [DOE]

    The Technology-to-Market program supports U.S. Department of Energy (DOE) initiatives that make access to laboratory-developed technologies and capabilities easier and increase partnerships with the clean energy private sector.

  8. PHYSICS 122 LABORATORY (Winter, 2015)

    E-Print Network [OSTI]

    Yoo, S. J. Ben

    - 1 - PHYSICS 122 LABORATORY (Winter, 2015) COURSE GOALS 1. Learn how Tyson 514 Physics tyson@physics.ucdavis.edu 752-3830 Xiangdong Zhu 235 Physics zhu@physics.ucdavis.edu 752-4689 TEACHING ASSISTANTS: Andrew Bradshaw 518

  9. Laboratory compaction of cohesionless sands 

    E-Print Network [OSTI]

    Delphia, John Girard

    1998-01-01

    A total of 62 cohesiveness sands were tested to rographics. investigate the importance of the water content, grain size distribution, grading of the soil, particle shape, grain crushing during testing and laboratory compaction test method...

  10. Laboratory and New Mexico Consortium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    USDA awards 1 million eor e. coli research by Los Alamos National Laboratory and New Mexico Consortium February 29, 2012 LOS ALAMOS, New Mexico, February 29, 2012-Researchers from...

  11. Welcome to the Ames Laboratory

    SciTech Connect (OSTI)

    King, Alex

    2012-01-01

    Alex King, director of The Ames Laboratory, discusses the state of the Lab for 2011, the goals of the Lab and the importance of the research taking place here.

  12. Welcome to the Ames Laboratory

    ScienceCinema (OSTI)

    King, Alex

    2013-03-01

    Alex King, director of The Ames Laboratory, discusses the state of the Lab for 2011, the goals of the Lab and the importance of the research taking place here.

  13. Laboratory Experiments and their Applicability 

    E-Print Network [OSTI]

    Steinhaus, Thomas; Jahn, Wolfram

    2007-11-14

    In conjunction with the Dalmarnock Fire Tests a series of laboratory tests have been conducted at the BRE Centre for Fire Safety Engineering at the University of Edinburgh (UoE) in support of the large scale tests. These ...

  14. Laboratory directed research and development

    SciTech Connect (OSTI)

    Not Available

    1991-11-15

    The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory's R D capabilities, and further the development of its strategic initiatives. Among the aims of the projects supported by the Program are establishment of engineering proof-of-principle''; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these project are closely associated with major strategic thrusts of the Laboratory as described in Argonne's Five Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne. Areas of emphasis are (1) advanced accelerator and detector technology, (2) x-ray techniques in biological and physical sciences, (3) advanced reactor technology, (4) materials science, computational science, biological sciences and environmental sciences. Individual reports summarizing the purpose, approach, and results of projects are presented.

  15. High Energy Density Laboratory Plasmas

    E-Print Network [OSTI]

    High Energy Density Laboratory Plasmas General Plasma Science Developing founda/ons and advancing fundamental understanding #12;The High Energy Density developing innovative techniques to study the properties of instabilities in magnetized-high-energy-density

  16. Stormwater Pollution Prevention Plan Prepared by

    E-Print Network [OSTI]

    Eisen, Michael

    Stormwater Pollution Prevention Plan Prepared by: Environment, Health, Safety, and Security .....................................................16 3.0 Potential Sources of Pollution

  17. Preparing for the Arrival of Electric Vehicle

    Broader source: Energy.gov [DOE]

    This webinar covers how to prepare for electric vehicles and elements of developing an EV infrastructure plan.

  18. Clinical Laboratory Scientist, Genetics Hamilton Regional Laboratory Medicine Program and McMaster University

    E-Print Network [OSTI]

    Thompson, Michael

    Clinical Laboratory Scientist, Genetics Hamilton Regional Laboratory Medicine Program and McMaster University Hamilton, Ontario, Canada Applications are invited from laboratory scientists interested in providing professional expertise for a large academic laboratory program serving the Central South region

  19. LABORATORY ASTROPHYSICS WHITE PAPER (BASED ON THE 2010 NASA LABORATORY ASTROPHYSICS WORKSHOP

    E-Print Network [OSTI]

    Savin, Daniel Wolf

    1 LABORATORY ASTROPHYSICS WHITE PAPER (BASED ON THE 2010 NASA LABORATORY ASTROPHYSICS WORKSHOP Federman, University of Toledo Paul Goldsmith, NASA Jet Propulsion Laboratory Caroline Kilbourne, NASA Ridge National Laboratory, LOC Chair Susanna Widicus Weaver, Emory University Additional contributions

  20. Energy Storage Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Energy Storage Laboratory at the Energy Systems Integration Facility. At NREL's Energy Storage Laboratory in the Energy Systems Integration Facility (ESIF), research focuses on the integration of energy storage systems (both stationary and vehicle-mounted) and interconnection with the utility grid. Focusing on battery technologies, but also hosting ultra-capacitors and other electrical energy storage technologies, the laboratory will provide all resources necessary to develop, test, and prove energy storage system performance and compatibility with distributed energy systems. The laboratory will also provide robust vehicle testing capability, including a drive-in environmental chamber, which can accommodate commercial-sized hybrid, electric, biodiesel, ethanol, compressed natural gas, and hydrogen fueled vehicles. The Energy Storage Laboratory is designed to ensure personnel and equipment safety when testing hazardous battery systems or other energy storage technologies. Closely coupled with the research electrical distribution bus at ESIF, the Energy Storage Laboratory will offer megawatt-scale power testing capability as well as advanced hardware-in-the-loop and model-in-the-loop simulation capabilities. Some application scenarios are: The following types of tests - Performance, Efficiency, Safety, Model validation, and Long duration reliability. (2) Performed on the following equipment types - (a) Vehicle batteries (both charging and discharging V2G); (b) Stationary batteries; (c) power conversion equipment for energy storage; (d) ultra- and super-capacitor systems; and (e) DC systems, such as commercial microgrids.

  1. National Renewable Energy Laboratory Analysis Capabilities

    E-Print Network [OSTI]

    National Renewable Energy Laboratory Analysis Capabilities Overview The National Renewable Energy Laboratory (NREL) is the nation's primary laboratory for renewable energy and energy efficiency research and development (R&D). NREL

  2. Laborlandschaft : redesigning the industrial laboratory module

    E-Print Network [OSTI]

    Farley, Alexander H. (Alexander Hamilton)

    2014-01-01

    This thesis proposes to redesign the industrial pharmaceutical laboratory typology by rethinking the composition of the laboratory module; the smallest functional sub-unit of the laboratory type. The design for this thesis ...

  3. MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY

    E-Print Network [OSTI]

    Poggio, Tomaso

    MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY and CENTER FOR BIOLOGICAL and Applications Gideon P. Stein Amnon Shashua Artificial Intelligence Laboratory Institute of Computer Science MIT of Technology, 1995 This report describes research done at the Artificial Intelligence Laboratory

  4. MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY

    E-Print Network [OSTI]

    Poggio, Tomaso

    MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY and CENTER FOR BIOLOGICAL and Computa­ tional Learning, and the Artificial Intelligence Laboratory of the Massachusetts Institute for the laboratory's artificial intelligence research is provided in part by the Advanced Research Projects Agency

  5. THE BUREAU OF COMMERCIAL FISHERIES BIOLOGICAL LABORATORY

    E-Print Network [OSTI]

    THE BUREAU OF COMMERCIAL FISHERIES BIOLOGICAL LABORATORY OXFORD, MARYLAND: PROGRAMS OF COMMERCIAL FISHERIES BIOLOGICAL LABORATORY OXFORD, MARYLAND: PROGRAMS AND PERSPECTIVES Circular 200 Washington, D.C. October 1964 #12;Cover Photo: The Bureau of Commercial Fisheries Biological Laboratory

  6. AERONAUTICS The Guggenheim Aeronautical Laboratory, the Karman

    E-Print Network [OSTI]

    AERONAUTICS The Guggenheim Aeronautical Laboratory, the Karman Laboratory of Fluid Mechanics in fluid dynamics and mechanics of solids and materials. Research at GALCIT has traditionally pio- neered and Jet Propulsion, and the Firestone Flight Sciences Laboratory form the Graduate Aeronautical

  7. AERONAUTICS The Guggenheim Aeronautical Laboratory, the Krmn

    E-Print Network [OSTI]

    AERONAUTICS The Guggenheim Aeronautical Laboratory, the Kįrmįn Laboratory of Fluid Mechanics in fluid dynamics and mechanics of solids and materials. Educational and research thrusts include and Jet Propulsion, and the Firestone Flight Sciences Laboratory form the Graduate Aeronautical

  8. AERONAUTICS The Guggenheim Aeronautical Laboratory, the Krmn

    E-Print Network [OSTI]

    AERONAUTICS The Guggenheim Aeronautical Laboratory, the Kįrmįn Laboratory of Fluid Mechanics and Jet Propulsion, and the Firestone Flight Sciences Laboratory form the Graduate Aeronautical the broad field known as aeronautics and space engineering. Areas of Research Aeronautics has evolved

  9. The 12 GeV Energy Upgrade at Jefferson Laboratory

    SciTech Connect (OSTI)

    Pilat, Fulvia C.

    2012-09-01

    Two new cryomodules and an extensive upgrade of the bending magnets at Jefferson Lab has been recently completed in preparation for the full energy upgrade in about one year. Jefferson Laboratory has undertaken a major upgrade of its flagship facility, the CW re-circulating CEBAF linac, with the goal of doubling the linac energy to 12 GeV. I will discuss here the main scope and timeline of the upgrade and report on recent accomplishments and the present status. I will then discuss in more detail the core of the upgrade, the new additional C100 cryomodules, their production, tests and recent successful performance. I will then conclude by looking at the future plans of Jefferson Laboratory, from the commissioning and operations of the 12 GeV CEBAF to the design of the MEIC electron ion collider.

  10. Lawrence Berkeley Laboratory Institutional Plan, FY 1993--1998

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    The FY 1993--1998 Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. The Strategic Plan section identifies long-range conditions that can influence the Laboratory, potential research trends, and several management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory and the resources required for their implementation. The Scientific and Technical Programs section summarizes current programs and potential changes in research program activity. The Environment, Safety, and Health section describes the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation's scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff composition and development programs. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The Resource Projections are estimates of required budgetary authority for the Laboratory's ongoing research programs. The plan is an institutional management report for integration with the Department of Energy's strategic planning activities that is developed through an annual planning process. The plan identifies technical and administrative directions in the context of the National Energy Strategy and the Department of Energy's program planning initiatives. Preparation of the plan is coordinated by the Office for Planning and Development from information contributed by the Laboratory's scientific and support divisions.

  11. www.yorku.ca/research Ergonomics Laboratory

    E-Print Network [OSTI]

    www.yorku.ca/research Ergonomics Laboratory -- Biomechanics At York School of Kinesiology Salas The Ergonomics Laboratory creates healthier workplaces by reducing individuals' risk of developing

  12. Enterprise Assessments Targeted Review, Idaho National Laboratory...

    Broader source: Energy.gov (indexed) [DOE]

    Laboratory Fire Protection Program as Implemented at the Irradiated Materials Characterization Laboratory The Office of Nuclear Safety and Environmental Assessments, within the...

  13. Independent Oversight Review, Los Alamos National Laboratory...

    Office of Environmental Management (EM)

    Laboratory - December 2013 December 2013 Review of the Technical Area 55 Safety Class Fire Suppression System at Los Alamos National Laboratory This report documents the...

  14. Enforcement Letter, Lawrence Livermore National Laboratory -...

    Energy Savers [EERE]

    National Laboratory - November 5, 1999 Enforcement Letter, EG&G Mound Applied Technologies - August 22, 1996 Enforcement Letter, Brookhaven National Laboratory - December 18, 1996...

  15. Brookhaven National Laboratory Federal Facility Agreement, February...

    Office of Environmental Management (EM)

    Brookhaven National Laboratory Agreement Name Brookhaven National Laboratory Federal Facility Agreement Under CERCLA Section 120, February 28, 1992 State New York Agreement Type...

  16. National Laboratory Research and Development Funding Opportunities

    Broader source: Energy.gov [DOE]

    Through the National Laboratory Research and Development program, DOE supports research and development and core capabilities at its national laboratories to accelerate progress toward achieving...

  17. Sandia National Laboratories: Research: Facilities: Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Detection Materials Characterization Laboratory This facility provides assistance to users from federal laboratories, U.S. industry and academia in the following areas:...

  18. National Renewable Energy Laboratory Report Identifies Research...

    Energy Savers [EERE]

    National Renewable Energy Laboratory Report Identifies Research Needed to Address Power Market Design Challenges National Renewable Energy Laboratory Report Identifies Research...

  19. Laboratories Jared L. Cohon, co-chair

    Energy Savers [EERE]

    Integrated Nanotechnologies (CINT), (400 users with Sandia National Laboratories) Lujan Neutron Scattering Center (LANSCE), (150 users) National High Magnetic Field Laboratory...

  20. MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY

    E-Print Network [OSTI]

    Poggio, Tomaso

    MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY and CENTER FOR BIOLOGICAL and Cognitive Sciences and the Artificial Intelligence Laboratory at the Massachusetts Institute of Technology

  1. MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY

    E-Print Network [OSTI]

    Poggio, Tomaso

    MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY and CENTER FOR BIOLOGICAL and the Artificial Intelligence Laboratory of the Massachusetts Institute of Technology. This research was sponsored

  2. MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY

    E-Print Network [OSTI]

    Poggio, Tomaso

    MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY and CENTER FOR BIOLOGICAL for Biological and Computational Learning and the Artificial Intelligence Laboratory of the Massachusetts

  3. Independent Oversight Review, Los Alamos National Laboratory...

    Energy Savers [EERE]

    Los Alamos National Laboratory - January 2013 Independent Oversight Review, Los Alamos National Laboratory Chemistry and Metallurgy Research Facility - January 2012 Waste...

  4. Enterprise Assessments, Oak Ridge National Laboratory Irradiated...

    Broader source: Energy.gov (indexed) [DOE]

    of the Safety-Significant Ventilation Systems at the Irradiated Fuels Examination Laboratory Operated by UT-Battelle for the Oak Ridge National Laboratory Office of Science The...

  5. ORISE: Beryllium laboratory achieves accreditation from College...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beryllium laboratory achieves accreditation from College of American Pathologists ORISE beryllium laboratory in Oak Ridge accredited for the third time since 2009 FOR IMMEDIATE...

  6. Independent Oversight Inspection, Oak Ridge National Laboratory...

    Energy Savers [EERE]

    Inspection, Oak Ridge National Laboratory - October 2008 Independent Oversight Inspection, Oak Ridge National Laboratory - October 2008 October 2008 Inspection of Nuclear Safety at...

  7. Laboratory Performance Testing of Residential Window Mounted...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory Performance Testing of Residential Window Mounted Air Conditioners Laboratory Performance Testing of Residential Window Mounted Air Conditioners This presentation was...

  8. Enterprise Assessments Targeted Review, Argonne National Laboratory...

    Energy Savers [EERE]

    Targeted Review, Argonne National Laboratory - November 2014 Enterprise Assessments Targeted Review, Argonne National Laboratory - November 2014 November 2014 Review of the...

  9. Independent Oversight Review, Lawrence Livermore National Laboratory...

    Office of Environmental Management (EM)

    Lawrence Livermore National Laboratory - July 2013 Independent Oversight Review, Lawrence Livermore National Laboratory - July 2013 July 2013 Review of Preparedness for Severe...

  10. Independent Oversight Review, Los Alamos National Laboratory...

    Energy Savers [EERE]

    Los Alamos National Laboratory - April 2012 Independent Oversight Review, Los Alamos National Laboratory - April 2012 April 2012 Review of the Consequence Assessment Program at the...

  11. Independent Oversight Review, Oak Ridge National Laboratory ...

    Energy Savers [EERE]

    Review, Oak Ridge National Laboratory - January 2013 Independent Oversight Review, Oak Ridge National Laboratory - January 2013 January 2013 Review of the Oak Ridge National...

  12. Reclassification of the Tritium Research Laboratory

    SciTech Connect (OSTI)

    Johnson, A.J.

    1997-01-01

    This document is a collection of the required actions that were taken to reclassify Building 968, the Tritium Research Laboratory, at Sandia National Laboratories/California.

  13. Independent Oversight Review, Los Alamos National Laboratory...

    Energy Savers [EERE]

    Review, Los Alamos National Laboratory - September 2011 Independent Oversight Review, Los Alamos National Laboratory Chemistry and Metallurgy Research Facility - January 2012...

  14. Independent Activity Report, Lawrence Livermore National Laboratory...

    Office of Environmental Management (EM)

    Laboratory - March 2011 March 2011 Lawrence Livermore National Laboratory Chronic Beryllium Disease Prevention Program Effectiveness Review HIAR-LLNL-2011-03-25 This...

  15. This leaflet has been prepared by Prof.Ken Phillips (CCLRC Rutherford Appleton Laboratory)

    E-Print Network [OSTI]

    , the computer industry or the world of finance,though many also pursue research at universities or government, a graduate from France, is studying visco- elastic gels at Schlumberger Cambridge Research, where oil

  16. Mercury Removal from Aqueous Systems Using Commercial and Laboratory Prepared Metal Oxide Nanoparticles 

    E-Print Network [OSTI]

    Desai, Ishan

    2010-10-12

    Five commercial metal oxide nanoparticles (CuO, SiO2, Fe2O3, TiO2 and Al2O3) have been individually screened for mercury removal in a batch reactor under bicarbonate buffered and non-buffered aqueous solutions (DI water). Copper oxide...

  17. The Laboratory Performance Appraisal Process and Performance Evaluation and Measurement Plan Preparation Guidance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S.Week Day Year(activeInforum LIFT ModelThe IronTheModification

  18. DOE Prepared for Implementation of Fixed-Price Hanford 222-S Laboratory

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electric vehicle10nominate anDepartmentAssThisAprilReserve SiteDocument

  19. Lawrence Berkeley Laboratory, FY 1993 Site Development Plan

    SciTech Connect (OSTI)

    Not Available

    1993-04-01

    The Lawrence Berkeley Laboratory (LBL) 1993 Site Development Plan (SDP) provides analysis and policy guidance for the effective use and orderly development of land and facilities at the LBL main site. The SDP directly supports LBL`s role as a multiprogram national laboratory operated by the University of California (UC) for the Department of Energy (DOE). It is a concise policy document, prepared in compliance with DOE Order 4320.1 B, and is coupled to the 1993 Laboratory Integrated Facilities Plan (LIFP). It also serves as the current DOE framework for the implementation of the 1987 Long Range Development Plan (LRDP) approved by the Regents of the University of California. The SDP is updated annually, with periodic major revisions consistent with DOE policy and approved plans of the Regents. The plan is reviewed and approved by the DOE San Francisco Field Office. The specific purposes of the SDP are to: Summarize the mission and community setting of the Laboratory; Describe program trends and projections and future resource requirements; Describe site planning goals and future facilities and land uses; and Describe site planning issues and potential infrastructure replacement solutions. The SDP concisely expresses the policies for future development based on planning concepts, the anticipated needs of research programs, and site potential and constraints. The 1993 LIFP and other planning data provide detailed support for the plans identified in this document.

  20. Preparation of superconductor precursor powders

    DOE Patents [OSTI]

    Bhattacharya, Raghunath (Littleton, CO); Blaugher, Richard D. (Evergreen, CO)

    1995-01-01

    A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals, such as nitrate salts of thallium, barium, calcium, and copper, which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of thallium in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products.

  1. Preparation of hydrophobic organic aeorgels

    DOE Patents [OSTI]

    Baumann, Theodore F. (Tracy, CA); Satcher, Jr., Joe H. (Patterson, CA); Gash, Alexander E. (Livermore, CA)

    2007-11-06

    Synthetic methods for the preparation of hydrophobic organics aerogels. One method involves the sol-gel polymerization of 1,3-dimethoxybenzene or 1,3,5-trimethoxybenzene with formaldehyde in non-aqueous solvents. Using a procedure analogous to the preparation of resorcinol-formaldehyde (RF) aerogels, this approach generates wet gels that can be dried using either supercritical solvent extraction to generate the new organic aerogels or air dried to produce an xerogel. Other methods involve the sol-gel polymerization of 1,3,5 trihydroxy benzene (phloroglucinol) or 1,3 dihydroxy benzene (resorcinol) and various aldehydes in non-aqueous solvents. These methods use a procedure analogous to the one-step base and two-step base/acid catalyzed polycondensation of phloroglucinol and formaldehyde, but the base catalyst used is triethylamine. These methods can be applied to a variety of other sol-gel precursors and solvent systems. These hydrophobic organics aerogels have numerous application potentials in the field of material absorbers and water-proof insulation.

  2. Preparation of hydrophobic organic aeorgels

    DOE Patents [OSTI]

    Baumann, Theodore F.; Satcher, Jr., Joe H.; Gash, Alexander E.

    2004-10-19

    Synthetic methods for the preparation of hydrophobic organics aerogels. One method involves the sol-gel polymerization of 1,3-dimethoxybenzene or 1,3,5-trimethoxybenzene with formaldehyde in non-aqueous solvents. Using a procedure analogous to the preparation of resorcinol-formaldehyde (RF) aerogels, this approach generates wet gels that can be dried using either supercritical solvent extraction to generate the new organic aerogels or air dried to produce an xerogel. Other methods involve the sol-gel polymerization of 1,3,5 trihydroxy benzene (phloroglucinol) or 1,3 dihydroxy benzene (resorcinol) and various aldehydes in non-aqueous solvents. These methods use a procedure analogous to the one-step base and two-step base/acid catalyzed polycondensation of phloroglucinol and formaldehyde, but the base catalyst used is triethylamine. These methods can be applied to a variety of other sol-gel precursors and solvent systems. These hydrophobic organics aerogels have numerous application potentials in the field of material absorbers and water-proof insulation.

  3. Preparation of superconductor precursor powders

    DOE Patents [OSTI]

    Bhattacharya, R.

    1998-08-04

    A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic and/or reduced particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of all metals in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products. 7 figs.

  4. National Coal Council Presentation/Prepared Remarks | Department...

    Broader source: Energy.gov (indexed) [DOE]

    National Coal Council PresentationPrepared Remarks More Documents & Publications MESQUITE REFF West PresentationPrepared Remarks RETECH PresentationPrepared Remarks...

  5. Cold Spring Harbor Laboratory Cold Spring Harbor Laboratory

    E-Print Network [OSTI]

    and educational institution founded 1890 980 staff members Seven divisions ·Research (cancer, neuroscience, plant, located at Cold Spring Harbor, Plymouth (UK), Tuebingen (Germany) and San Diego. Over 200 books in print ·Finding appropriate authors/editors for new books ·Preparing a proposal for the book ·Outline / Table

  6. Flow Cytometry Laboratory 7703 Floyd Curl Drive

    E-Print Network [OSTI]

    Nicholson, Bruce J.

    Flow Cytometry Laboratory 7703 Floyd Curl Drive San Antonio, Tx. 78229 Customer Satisfaction Survey Dear UTHSCSA Flow Cytometry Laboratory User: As a College of American Pathologist (CAP) accredited Laboratory, the UTHSCSA Flow Cytometry Laboratory is sending this survey to our client as an aid in our

  7. Biomass Surface Characterization Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01

    This fact sheet provides information about Biomass Surface Characterization Laboratory capabilities and applications at NREL.

  8. BUREAU OF COMMERCIAL FISHERIES TECHNOLOGICAL LABORATORY,

    E-Print Network [OSTI]

    ~~ BUREAU OF COMMERCIAL FISHERIES TECHNOLOGICAL LABORATORY, SEATTLE, WASHINGTON, FOR FISCAL YEAR Laboratory, Seattle, Washington, for Fiscal Year Ending June 30, 1967 MAYNARD A. STEINBERG, Laboratory Director JOHN A. DASSOW, As sistant Laboratory Director Circular 326 Washington, D.C. Decem.ber 1969 #12

  9. 205:20130828.1126 Dust Accelerator Laboratory

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    205:20130828.1126 Dust Accelerator Laboratory Through the Dust Accelerator Laboratory, LASP, and laboratory experiments. Our goal is to address basic physical and applied exploration questions, including Laboratory is home to world-class facilities, including the largest dust accelerator in the world

  10. The Woods Hole Laboratory, 1885-1985

    E-Print Network [OSTI]

    The Woods Hole Laboratory, 1885-1985: A Century of Service Woods Hole Laboratory Northeast, Lectures, and Rededication of the Woods Hole Laboratory Contents Foreword and Acknowledgments Committees and Contributions of the Woods Hole Fisheries Laboratory Centennial Lecture II: The MBL and the Fisheries-A Century

  11. Appendix C.1 THE LEAD LABORATORY

    E-Print Network [OSTI]

    Appendix C.1 THE LEAD LABORATORY By PATRICK J. PARSONS, Ph.D.1 J. JULIAN CHISOLM, JR., M.D.2 Role of the Laboratory Laboratories measure lead concentrations in either clinical samples between the clinical and environmental lead laboratories and the issues that they face. Often

  12. Draft Supplement Analysis: Two Proposed Shipments of Commercial Spent Nuclear Fuel to Idaho National Laboratory for Research and Development Purposes

    Broader source: Energy.gov [DOE]

    DOE is proposing to transport, in two separate truck shipments, small quantities of commercial power spent nuclear fuel (SNF) to the Idaho National Laboratory (INL) Site for research purposes consistent with the mission of the DOE Office of Nuclear Energy. DOE is preparing a Supplement Analysis to determine whether an existing environmental impact statement should be supplemented, a new environmental impact statement should be prepared, or that no further NEPA documentation is required for this proposed action.

  13. Aerosol preparation of intact lipoproteins

    DOE Patents [OSTI]

    Benner, W. Henry (Danville, CA); Krauss, Ronald M (Berkeley, CA); Blanche, Patricia J (Berkeley, CA)

    2012-01-17

    A medical diagnostic method and instrumentation system for analyzing noncovalently bonded agglomerated biological particles is described. The method and system comprises: a method of preparation for the biological particles; an electrospray generator; an alpha particle radiation source; a differential mobility analyzer; a particle counter; and data acquisition and analysis means. The medical device is useful for the assessment of human diseases, such as cardiac disease risk and hyperlipidemia, by rapid quantitative analysis of lipoprotein fraction densities. Initially, purification procedures are described to reduce an initial blood sample to an analytical input to the instrument. The measured sizes from the analytical sample are correlated with densities, resulting in a spectrum of lipoprotein densities. The lipoprotein density distribution can then be used to characterize cardiac and other lipid-related health risks.

  14. Ernest Orlando Lawrence Berkeley National Laboratory institutional plan, FY 1996--2001

    SciTech Connect (OSTI)

    NONE

    1995-11-01

    The FY 1996--2001 Institutional Plan provides an overview of the Ernest Orlando Lawrence Berkeley National Laboratory mission, strategic plan, core business areas, critical success factors, and the resource requirements to fulfill its mission in support of national needs in fundamental science and technology, energy resources, and environmental quality. The Laboratory Strategic Plan section identifies long-range conditions that will influence the Laboratory, as well as potential research trends and management implications. The Core Business Areas section identifies those initiatives that are potential new research programs representing major long-term opportunities for the Laboratory, and the resources required for their implementation. It also summarizes current programs and potential changes in research program activity, science and technology partnerships, and university and science education. The Critical Success Factors section reviews human resources; work force diversity; environment, safety, and health programs; management practices; site and facility needs; and communications and trust. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The Institutional Plan is a management report for integration with the Department of Energy`s strategic planning activities, developed through an annual planning process. The plan identifies technical and administrative directions in the context of the national energy policy and research needs and the Department of Energy`s program planning initiatives. Preparation of the plan is coordinated by the Office of Planning and Communications from information contributed by the Laboratory`s scientific and support divisions.

  15. Adiabatic state preparation study of methylene

    SciTech Connect (OSTI)

    Veis, Libor, E-mail: libor.veis@jh-inst.cas.cz; Pittner, Ji?ķ, E-mail: jiri.pittner@jh-inst.cas.cz [J. Heyrovskż Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8 (Czech Republic)

    2014-06-07

    Quantum computers attract much attention as they promise to outperform their classical counterparts in solving certain type of problems. One of them with practical applications in quantum chemistry is simulation of complex quantum systems. An essential ingredient of efficient quantum simulation algorithms are initial guesses of the exact wave functions with high enough fidelity. As was proposed in Aspuru-Guzik et al. [Science 309, 1704 (2005)], the exact ground states can in principle be prepared by the adiabatic state preparation method. Here, we apply this approach to preparation of the lowest lying multireference singlet electronic state of methylene and numerically investigate preparation of this state at different molecular geometries. We then propose modifications that lead to speeding up the preparation process. Finally, we decompose the minimal adiabatic state preparation employing the direct mapping in terms of two-qubit interactions.

  16. PREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073

    E-Print Network [OSTI]

    PREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073 PRINCETON PLASMA. Availability This report is posted on the U.S. Department of Energy's Princeton Plasma Physics Laboratory Publications and Reports web site in Fiscal Year 2003. The home page for PPPL Reports and Publications is: http

  17. PREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073

    E-Print Network [OSTI]

    carried by the plasma. It has been known for some time that a MHD model of the FRC is unstable to manyPREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073 PRINCETON PLASMA on the U.S. Department of Energy's Princeton Plasma Physics Laboratory Publications and Reports web site

  18. PREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073

    E-Print Network [OSTI]

    PREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073 PRINCETON PLASMA PHYSICS LABORATORY PRINCETON UNIVERSITY, PRINCETON, NEW JERSEY PPPL-3698 PPPL-3698 UC-70 Thermal Response by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its

  19. PREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073

    E-Print Network [OSTI]

    PREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073 PRINCETON PLASMA PHYSICS LABORATORY PRINCETON UNIVERSITY, PRINCETON, NEW JERSEY PPPL-3790 PPPL-3790 UC-70 Truncated Thermal commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does

  20. PREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073

    E-Print Network [OSTI]

    elds: di usion | methods: analytical | plasmas 1. Introduction The problem of thermal conductionPREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073 PRINCETON PLASMA on the U.S. Department of Energy's Princeton Plasma Physics Laboratory Publications and Reports web site

  1. PREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073

    E-Print Network [OSTI]

    a practical reality ­ an alternative energy source. The Year 2000 marked the second year of National SphericalPREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073 PRINCETON PLASMA on the U.S. Department of Energy's Princeton Plasma Physics Laboratory Publications and Reports web site

  2. PREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073

    E-Print Network [OSTI]

    alternative for measuring the energy of fast escaping neutrals when the high-energy ion component producedPREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073 PRINCETON PLASMA on the U.S. Department of Energy's Princeton Plasma Physics Laboratory Publications and Reports web site

  3. PREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073

    E-Print Network [OSTI]

    PREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073 PRINCETON PLASMA on the U.S. Department of Energy's Princeton Plasma Physics Laboratory Publications and Reports web site and DOE Contractors can obtain copies of this report from: U.S. Department of Energy Office of Scientific

  4. PREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073

    E-Print Network [OSTI]

    ]) is a data acquisition and storage system used at several fusion facilities world-wide. The majorityPREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073 PRINCETON PLASMA on the U.S. Department of Energy's Princeton Plasma Physics Laboratory Publications and Reports web site

  5. Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830

    E-Print Network [OSTI]

    PNNL-21214 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Numerical.S. Department of Energy under Contract DE-AC05-76RL01830 Pacific Northwest National Laboratory Richland of Germany (FRG). Incomplete estimates of the aqueous chemical composition (no anion data provided

  6. PREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073

    E-Print Network [OSTI]

    ) scaling for the energy confinement time, a density limit of n20 PREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073 PRINCETON PLASMA. Availability This report is posted on the U.S. Department of Energy's Princeton Plasma Physics Laboratory

  7. PREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073

    E-Print Network [OSTI]

    PREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073 PRINCETON PLASMA. Availability This report is posted on the U.S. Department of Energy's Princeton Plasma Physics Laboratory://www.pppl.gov/pub_report/ DOE and DOE Contractors can obtain copies of this report from: U.S. Department of Energy Office

  8. Curriculum Laboratory Careers Teaching Materials

    E-Print Network [OSTI]

    Burg, Theresa

    1 Curriculum Laboratory Careers Teaching Materials For further assistance using any of the resources in the Lab, please ask at the Curriculum Lab Information Services Desk. Visit our site through U RELEVANT CURRICULUM PUBLICATIONS 3) FIND RESOURCES RECOMMENDED BY ALBERTA EDUCATION 4) FIND RELATED

  9. CHEMICAL LABORATORY SAFETY AND METHODOLOGY

    E-Print Network [OSTI]

    Northern British Columbia, University of

    CHEMICAL LABORATORY SAFETY AND METHODOLOGY MANUAL August 2013 #12;ii Emergency Numbers UNBC Prince-Emergency Numbers UNBC Prince George Campus Chemstores 6472 Chemical Safety 6472 Radiation Safety 6472 Biological the safe use, storage, handling, waste and emergency management of chemicals on the University of Northern

  10. Central Clinical Facilities Clinical Laboratory ----------------------------------------------------------------------------------------

    E-Print Network [OSTI]

    Miyashita, Yasushi

    conditions ·Investigation of brain function using magnetoencephalography Laboratory automation system -------------------------------------------------------------------------------------------- http://www.h.u-tokyo.ac.jp/patient/depts/syujutsu.html Operating rooms were centralized as a surgical of operations has been remarkably increasing. Another new central building including new operating rooms

  11. Laboratory Waste Disposal HAZARDOUS GLASS

    E-Print Network [OSTI]

    Sheridan, Jennifer

    Laboratory Waste Disposal HAZARDOUS GLASS Items that could cut or puncture skin or trash- can without any treatment. Hazardous Glass and Plastic: Items that can puncture, cut or scratch if disposed a significant hazard. Bags of misc. plasticware that has been autoclaved to remove bio contamination. Syringe

  12. LABORATORY IV CONSERVATION OF ENERGY

    E-Print Network [OSTI]

    Minnesota, University of

    Lab IV - 1 LABORATORY IV CONSERVATION OF ENERGY In this lab you will begin to use the principle of conservation of energy to determine the motion resulting from interactions that are difficult to analyze using force concepts alone. You will explore how conservation of energy is applied to real interactions. Keep

  13. The National Voluntary Laboratory Accreditation

    E-Print Network [OSTI]

    of products · An operator of a certification program 2An Introduction to NVLAP (rev. 2010-10-29) #12;NVLAP CFR Part 285) · Linked to NIST measurement research · Operates in accordance with ISO/IEC standards · ISO/IEC 17011 (for Accrediting Bodies) · ISO/IEC 17025 (for Laboratories) · Accreditation available

  14. LABORATORY VI ELECTRICITY FROM MAGNETISM

    E-Print Network [OSTI]

    Minnesota, University of

    LABORATORY VI ELECTRICITY FROM MAGNETISM Lab VI - 1 In the previous problems you explored by electric currents. This lab will carry that investigation one step further, determining how changing magnetic fields can give rise to electric currents. This is the effect that allows the generation

  15. LABORATORY VI ELECTRICITY FROM MAGNETISM

    E-Print Network [OSTI]

    Minnesota, University of

    LABORATORY VI ELECTRICITY FROM MAGNETISM Lab VI - 1 In the previous problems you explored the magnetic field and its effect on moving charges. You also saw how electric currents could create magnetic can give rise to electric currents. This is the effect that allows the generation of electricity

  16. Laboratories to Explore, Explain VLBACHANDRA

    E-Print Network [OSTI]

    &D activities on BPX, TPX and ITER. Advanced Energy Systems Argonne National Laboratory Bechtel Technology University of Illinois University of Wisconsin #12;NSO/FIRE Community Involvement (FY-99) A Proactive NSO/FIRE Outreach Program has been undertaken to solicit comments and suggestions from the community on the next

  17. HYDRAULIC CEMENT PREPARATION FROM LURGI SPENT SHALE

    E-Print Network [OSTI]

    Mehta, P.K.

    2013-01-01

    Investigations on hydraulic cement from spent oil shale,"April 16-18, 1980 HYDRAULIC CEMENT PREPARATION FROM LURGIpressi ve b strength, MPa this cement in moist environments.

  18. Preparing A Vita Ready Reference E-13

    E-Print Network [OSTI]

    Preparing A Vita Ready Reference E-13 College of Engineering, Architecture & Technology Career Services Oklahoma State University College of Engineering, Architecture & Technology Career Services Office

  19. Thesis/Dissertation Guide Instructions for Preparation

    E-Print Network [OSTI]

    Frantz, Kyle J.

    Thesis/Dissertation Guide Instructions for Preparation ........................................................................................ 3 1.5 Obtaining Bound Copies of your Thesis or Dissertation .......................................................................................... 8 3 ORGANIZATION OF THE THESIS

  20. Preparing for Project Implementation Assigning Accountability...

    Office of Environmental Management (EM)

    Assigning Accountability for Each Project, April 14, 2010 Preparing for Project Implementation Assigning Accountability for Each Project, April 14, 2010 Assigning Accountability...

  1. Methods for preparation of cyclopentadienyliron (II) arenes

    DOE Patents [OSTI]

    Keipert, S.J.

    1991-10-22

    Two improved methods for preparation of compounds with the structure shown in the equation, [(Cp)--Fe--(Ar)][sup +][sub b]X[sup b[minus

  2. Simple, rapid method for the preparation of isotopically labeled formaldehyde

    DOE Patents [OSTI]

    Hooker, Jacob Matthew (Port Jefferson, NY); Schonberger, Matthias (Mains, DE); Schieferstein, Hanno (Aabergen, DE); Fowler, Joanna S. (Bellport, NY)

    2011-10-04

    Isotopically labeled formaldehyde (*C.sup..sctn.H.sub.2O) is prepared from labeled methyl iodide (*C.sup..sctn.H.sub.3I) by reaction with an oxygen nucleophile having a pendant leaving group. The mild and efficient reaction conditions result in good yields of *C.sup..sctn.H.sub.2O with little or no *C isotopic dilution. The simple, efficient production of .sup.11CH.sub.2O is described. The use of the .sup.11CH.sub.2O for the formation of positron emission tomography tracer compounds is described. The reaction can be incorporated into automated equipment available to radiochemistry laboratories. The isotopically labeled formaldehyde can be used in a variety of reactions to provide radiotracer compounds for imaging studies as well as for scintillation counting and autoradiography.

  3. Laboratory Directed Research and Development Program FY 2007

    SciTech Connect (OSTI)

    Hansen, Todd C; editor, Todd C Hansen,

    2008-03-12

    Report on Ernest Orlando Lawrence Berkeley National Laboratory Laboratory Directed Research and Development Program FY 2007

  4. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResource andfirstDeviceLabLabor

  5. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResource andfirstDeviceLabLaborperformance computer system

  6. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResource andfirstDeviceLabLaborperformance computer

  7. Process for preparing energetic materials

    DOE Patents [OSTI]

    Simpson, Randall L. (Livermore, CA); Lee, Ronald S. (Livermore, CA); Tillotson, Thomas M. (Tracy, CA; , Hrubesh, Lawrence W. (Pleasanton, CA); Swansiger, Rosalind W. (Livermore, CA); Fox, Glenn A. (Livermore, CA)

    2011-12-13

    Sol-gel chemistry is used for the preparation of energetic materials (explosives, propellants and pyrotechnics) with improved homogeneity, and/or which can be cast to near-net shape, and/or made into precision molding powders. The sol-gel method is a synthetic chemical process where reactive monomers are mixed into a solution, polymerization occurs leading to a highly cross-linked three dimensional solid network resulting in a gel. The energetic materials can be incorporated during the formation of the solution or during the gel stage of the process. The composition, pore, and primary particle sizes, gel time, surface areas, and density may be tailored and controlled by the solution chemistry. The gel is then dried using supercritical extraction to produce a highly porous low density aerogel or by controlled slow evaporation to produce a xerogel. Applying stress during the extraction phase can result in high density materials. Thus, the sol-gel method can be used for precision detonator explosive manufacturing as well as producing precision explosives, propellants, and pyrotechnics, along with high power composite energetic materials.

  8. NISACNISAC''s core partners are Sandia National Laboratories and Los Alamoss core partners are Sandia National Laboratories and Los Alamos National Laboratory.National Laboratory. Sandia is aSandia is a multiprogrammultiprogram laboratory operated by Sand

    E-Print Network [OSTI]

    are Sandia National Laboratories and Los Alamos National Laboratory.National Laboratory. Sandia is a, for the United States Department of Energy under contract DEDE--AC04AC04--94AL85000.94AL85000. Los Alamos National Laboratory is operated by the University ofLos Alamos National Laboratory is operated

  9. Lawrence Livermore National Laboratory Environmental Report 2010

    SciTech Connect (OSTI)

    Jones, H E; Bertoldo, N A; Campbell, C G; Cerruti, S J; Coty, J D; Dibley, V R; Doman, J L; Grayson, A R; MacQueen, D H; Wegrecki, A M; Armstrong, D H; Brigdon, S L; Heidecker, K R; Hollister, R K; Khan, H N; Lee, G S; Nelson, J C; Paterson, L E; Salvo, V J; Schwartz, W W; Terusaki, S H; Wilson, K R; Woods, J M; Yimbo, P O; Gallegos, G M; Terrill, A A; Revelli, M A; Rosene, C A; Blake, R G; Woollett, J S; Kumamoto, G

    2011-09-14

    The purposes of the Lawrence Livermore National Laboratory Environmental Report 2010 are to record Lawrence Livermore National Laboratory's (LLNL's) compliance with environmental standards and requirements, describe LLNL's environmental protection and remediation programs, and present the results of environmental monitoring at the two LLNL sites - the Livermore site and Site 300. The report is prepared for the U.S. Department of Energy (DOE) by LLNL's Environmental Protection Department. Submittal of the report satisfies requirements under DOE Order 231.1A, Environmental Safety and Health Reporting, and DOE Order 5400.5, Radiation Protection of the Public and Environment. The report is distributed electronically and is available at https://saer.llnl.gov/, the website for the LLNL annual environmental report. Previous LLNL annual environmental reports beginning in 1994 are also on the website. Some references in the electronic report text are underlined, which indicates that they are clickable links. Clicking on one of these links will open the related document, data workbook, or website that it refers to. The report begins with an executive summary, which provides the purpose of the report and an overview of LLNL's compliance and monitoring results. The first three chapters provide background information: Chapter 1 is an overview of the location, meteorology, and hydrogeology of the two LLNL sites; Chapter 2 is a summary of LLNL's compliance with environmental regulations; and Chapter 3 is a description of LLNL's environmental programs with an emphasis on the Environmental Management System including pollution prevention. The majority of the report covers LLNL's environmental monitoring programs and monitoring data for 2010: effluent and ambient air (Chapter 4); waters, including wastewater, storm water runoff, surface water, rain, and groundwater (Chapter 5); and terrestrial, including soil, sediment, vegetation, foodstuff, ambient radiation, and special status wildlife and plants (Chapter 6). Complete monitoring data, which are summarized in the body of the report, are provided in Appendix A. The remaining three chapters discuss the radiological impact on the public from LLNL operations (Chapter 7), LLNL's groundwater remediation program (Chapter 8), and quality assurance for the environmental monitoring programs (Chapter 9). The report uses System International units, consistent with the federal Metric Conversion Act of 1975 and Executive Order 12770, Metric Usage in Federal Government Programs (1991). For ease of comparison to environmental reports issued prior to 1991, dose values and many radiological measurements are given in both metric and U.S. customary units. A conversion table is provided in the glossary.

  10. Site environmental report for 2009 : Sandia National Laboratories, California.

    SciTech Connect (OSTI)

    Larsen, Barbara L.

    2010-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2009 was prepared in accordance with DOE Order 231.1A (DOE 2004a). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2009. General site and environmental program information is also included. The Site Environmental Report is divided into ten chapters. Chapter 1, the Executive Summary, highlights compliance and monitoring results obtained in 2009. Chapter 2 provides a brief introduction to SNL/CA and the existing environment found on site. Chapter 3 summarizes SNL/CA's compliance activities with the major environmental requirements applicable to site operations. Chapter 4 presents information on environmental management, performance measures, and environmental programs. Chapter 5 presents the results of monitoring and surveillance activities in 2009. Chapter 6 discusses quality assurance. Chapters 7 through 9 provide supporting information for the report and Chapter 10 is the report distribution list.

  11. Site Environmental Report for 2010 Sandia National Laboratories, California.

    SciTech Connect (OSTI)

    Larsen, Barbara L.

    2011-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, manages and operates the laboratory for the Department of Energy's National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office administers the contract and oversees contractor operations at the site. This Site Environmental Report for 2010 was prepared in accordance with DOE Order 231.1A (DOE 2004a). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2010. General site and environmental program information is also included. The Site Environmental Report is divided into ten chapters. Chapter 1, the Executive Summary, highlights compliance and monitoring results obtained in 2010. Chapter 2 provides a brief introduction to SNL/CA and the existing environment found on site. Chapter 3 summarizes SNL/CA's compliance activities with the major environmental requirements applicable to site operations. Chapter 4 presents information on environmental management, performance measures, and environmental programs. Chapter 5 presents the results of monitoring and surveillance activities in 2010. Chapter 6 discusses quality assurance. Chapters 7 through 9 provide supporting information for the report and Chapter 10 is the report distribution list.

  12. Development of the high-level waste high-temperature melter feed preparation flowsheet for vitrification process testing

    SciTech Connect (OSTI)

    Seymour, R.G.

    1995-02-17

    High-level waste (HLW) feed preparation flowsheet development was initiated in fiscal year (FY) 1994 to evaluate alternative flowsheets for preparing melter feed for high-temperature melter (HTM) vitrification testing. Three flowsheets were proposed that might lead to increased processing capacity relative to the Hanford Waste Vitrification Plant (HWVP) and that were flexible enough to use with other HLW melter technologies. This document describes the decision path that led to the selection of flowsheets to be tested in the FY 1994 small-scale HTM tests. Feed preparation flowsheet development for the HLW HTM was based on the feed preparation flowsheet that was developed for the HWVP. This approach allowed the HLW program to build upon the extensive feed preparation flowsheet database developed under the HWVP Project. Primary adjustments to the HWVP flowsheet were to the acid adjustment and glass component additions. Developmental background regarding the individual features of the HLW feed preparation flowsheets is provided. Applicability of the HWVP flowsheet features to the new HLW vitrification mission is discussed. The proposed flowsheets were tested at the laboratory-scale at Pacific Northwest Laboratory. Based on the results of this testing and previously established criteria, a reductant-based flowsheet using glycolic acid and a nitric acid-based flowsheet were selected for the FY 1994 small-scale HTM testing.

  13. Savannah River Laboratory monthly report

    SciTech Connect (OSTI)

    Not Available

    1985-12-01

    Efforts in the area of nuclear reactors and scientific computations are reported, including: robotics; reactor irradiation of nonend-bonded target slugs; computer link with Los Alamos National Laboratory; L-reactor thermal mitigation; aging of carbon in SRP reactor airborne activity confinement systems; and reactor risk assessment for earthquakes. Activities in chemical processes and environmental technology are reported, including: solids formation in a plutonium product stream; revised safety analysis reporting for F and H-Canyon operations; organic carbon analysis of DWPF samples; applications of Fourier transform infrared spectrometry; water chemistry analyzer for SRP reactors; and study of a biological community in Par Pond. Defense waste and laboratory operations activities include: Pu-238 waste incinerator startup; experimental canister frit blaster; saltstone disposal area design; powder metallurgy core diameter measurement; and a new maintenance shop facility. Nuclear materials planning encompasses decontamination and decommissioning of SRP facilities and a comprehensive compilation of environmental and nuclear safety issues. (LEW)

  14. Purdue Solar Energy Utilization Laboratory

    SciTech Connect (OSTI)

    Agrawal, Rakesh

    2014-01-21

    The objective of this project is to establish and set-up a laboratory that will facilitate research and development of new low-cost and high-efficiency solar energy utilization technologies at Purdue University. The outcome will help spur the creation of solar energy start-up companies and eventually a solar energy industry in Indiana that can help fulfill the growing national demand for solar energy.

  15. Oak Ridge National Laboratory Review

    SciTech Connect (OSTI)

    Krause, C.; Pearce, J.; Zucker, A.

    1992-01-01

    This report presents brief descriptions of the following programs at Oak Ridge National Laboratory: The effects of pollution and climate change on forests; automation to improve the safety and efficiency of rearming battle tanks; new technologies for DNA sequencing; ORNL probes the human genome; ORNL as a supercomputer research center; paving the way to superconcrete made with polystyrene; a new look at supercritical water used in waste treatment; and small mammals as environmental monitors.

  16. Laboratory Tests of Chameleon Models

    E-Print Network [OSTI]

    Philippe Brax; Carsten van de Bruck; Anne-Christine Davis; Douglas Shaw

    2009-11-05

    We present a cursory overview of chameleon models of dark energy and their laboratory tests with an emphasis on optical and Casimir experiments. Optical experiments measuring the ellipticity of an initially polarised laser beam are sensitive to the coupling of chameleons to photons. The next generation of Casimir experiments may be able to unravel the nature of the scalar force mediated by the chameleon between parallel plates.

  17. Annotated bibliography National Environmental Policy Act (NEPA) documents for Sandia National Laboratories

    SciTech Connect (OSTI)

    Harris, J.M.

    1995-04-01

    The following annotated bibliography lists documents prepared by the Department of Energy (DOE), and predecessor agencies, to meet the requirements of the National Environmental Policy Act (NEPA) for activities and facilities at Sandia National Laboratories sites. For each NEPA document summary information and a brief discussion of content is provided. This information may be used to reduce the amount of time or cost associated with NEPA compliance for future Sandia National Laboratories projects. This summary may be used to identify model documents, documents to use as sources of information, or documents from which to tier additional NEPA documents.

  18. Guide to preparing SAND reports and other communication products.

    SciTech Connect (OSTI)

    Not Available

    2011-09-01

    This guide describes the R&A process, Common Look and Feel requirements, and preparation and publishing procedures for communication products at Sandia National Laboratories. Samples of forms and examples of published communications products are provided. This guide takes advantage of the wealth of material now available on the Web as a resource. Therefore, it is best viewed as an electronic document. If some of the illustrations are too small to view comfortably, you can enlarge them on the screen as needed. The format of this document is considerably different than that usually expected of a SAND Report. It was selected to permit the large number of illustrations and examples to be placed closer to the text that references them. In the case of forms, covers, and other items that are included as examples, a link to the Web is provided so that you can access the items and download them for use. This guide details the processes for producing a variety of communication products at Sandia National Laboratories. Figure I-1 shows the general publication development process. Because extensive supplemental material is available from Sandia on the internal web or from external sources (Table I-1), the guide has been shortened to make it easy to find information that you need.

  19. Bibliography of marine radiation ecology prepared for the Seabed Program

    SciTech Connect (OSTI)

    Schultz, V.S.

    1980-02-01

    References on the effects of ionizing radiation on aquatic organisms have been obtained from a number of sources. Many were obtained from reviews and other publications. Although the primary purpose of preparing this bibliography was to obtain information related to the nuclear wastes Seabed Disposal Biology Program of Sandia Laboratories, freshwater organisms are included as a matter of convenience and also with the belief that such a bibliography would be of interest to a wider audience than that restricted to the Seabed Program. While compilation of a list in an area broad in scope is often somewhat arbitrary, an attempt was made to reference publications that were related to field or laboratory studies of wild species of plants and animals with respect to radiation effects. Complete information concerning each reference are provided without excessive library search. Since one often finds references listed in the literature that are incompletely cited, it was not always possible to locate the reference for verification or completion of the citation. Such references are included where they appeared to be of possible value. When known, a reference is followed with its Nuclear Science Abstract designation, or rarely other abstract sources. Those desiring additional information should check Nuclear Science Abstracts utilizing the abstract number presented or other abstracting sources. In addition, the language of the article, other than English, is given when it is known to me.

  20. Smart Power Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Smart Power Laboratory at the Energy Systems Integration Facility. Research at NREL's Smart Power Laboratory in the Energy Systems Integration Facility (ESIF) focuses on the development and integration of smart technologies including the integration of distributed and renewable energy resources through power electronics and smart energy management for building applications. The 5,300 sq. ft. laboratory is designed to be highly flexible and configurable, essential for a large variety of smart power applications that range from developing advanced inverters and power converters to testing residential and commercial scale meters and control technologies. Some application scenarios are: (1) Development of power converters for integration of distributed and renewable energy resources; (2) Development of advanced controls for smart power electronics; (3) Testing prototype and commercially available power converters for electrical interconnection and performance, advanced functionality, long duration reliability and safety; and (4) Hardware-in-loop development and testing of power electronics systems in smart distribution grid models.

  1. Research programs at the Department of Energy National Laboratories. Volume 2: Laboratory matrix

    SciTech Connect (OSTI)

    NONE

    1994-12-01

    For nearly fifty years, the US national laboratories, under the direction of the Department of Energy, have maintained a tradition of outstanding scientific research and innovative technological development. With the end of the Cold War, their roles have undergone profound changes. Although many of their original priorities remain--stewardship of the nation`s nuclear stockpile, for example--pressing budget constraints and new federal mandates have altered their focus. Promotion of energy efficiency, environmental restoration, human health, and technology partnerships with the goal of enhancing US economic and technological competitiveness are key new priorities. The multiprogram national laboratories offer unparalleled expertise in meeting the challenge of changing priorities. This volume aims to demonstrate each laboratory`s uniqueness in applying this expertise. It describes the laboratories` activities in eleven broad areas of research that most or all share in common. Each section of this volume is devoted to a single laboratory. Those included are: Argonne National Laboratory; Brookhaven National Laboratory; Idaho National Engineering Laboratory; Lawrence Berkeley Laboratory; Lawrence Livermore National Laboratory; Los Alamos National Laboratory; National Renewable Energy Laboratory; Oak Ridge National Laboratory; Pacific Northwest Laboratory; and Sandia National Laboratories. The information in this volume was provided by the multiprogram national laboratories and compiled at Lawrence Berkeley Laboratory.

  2. CERTS Microgrid Laboratory Test Bed - PIER Final Project Report

    E-Print Network [OSTI]

    Eto, Joseph H.

    2008-01-01

    Energy Research Program Prepared By: Lawrence Berkeley NationalEnergy Research Program Prepared By: Lawrence Berkeley NationalEnergy Research Program Prepared By: Lawrence Berkeley National

  3. Statistical Sciences Group, Los Alamos National Laboratory,

    E-Print Network [OSTI]

    Wolfe, Patrick J.

    Luke Bornn CCS-6, Statistical Sciences Group, Los Alamos National Laboratory, MS F600, Los Alamos Institute, Los Alamos National Laboratory, MS T006, Los Alamos, NM 87545 Structural Health Monitoring

  4. MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY

    E-Print Network [OSTI]

    Poggio, Tomaso

    MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY and CENTER FOR BIOLOGICAL Sciences Massachusetts Institute of Technology Cambridge, MA 02139 y Artificial Intelligence Laboratory Institute of Technology, 1995. This report describes research done partly at the Artificial Intelligence

  5. Dietary Supplement Laboratory Quality Assurance Program

    E-Print Network [OSTI]

    Dietary Supplement Laboratory Quality Assurance Program: Exercise K Final Report Melissa M://dx.doi.org/10.6028/NISTIR.8032 NISTIR 8032 #12;NISTIR 8032 Dietary Supplement Laboratory Quality Assurance

  6. Laboratories for the 21st Century

    Broader source: Energy.gov [DOE]

    Laboratories for the 21st Century (Labs21) is a voluntary partnership program dedicated to improving the environmental performance of U.S. laboratories. The program is a joint initiative between...

  7. MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY

    E-Print Network [OSTI]

    Poggio, Tomaso

    MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY and CENTER FOR BIOLOGICAL parameters could possibly have application to other problems in vision. We investigate one such application and Cognitive Sciences and at the Artificial Intelligence Laboratory at the Massachusetts Institute

  8. MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY

    E-Print Network [OSTI]

    Poggio, Tomaso

    MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY and CENTER FOR BIOLOGICAL vision tasks, including the computation of image correspondence, object verification, image synthesis at the Artificial Intelligence Laboratory and within the Center for Biological and Computational Learning

  9. MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY

    E-Print Network [OSTI]

    Poggio, Tomaso

    MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY and CENTER FOR BIOLOGICAL parameters could possibly have application to other problems in vision. We investigate one such application of Brain and Cognitive Sciences and at the Artificial Intelligence Laboratory at the Massachusetts

  10. Preliminary Notice of Violation, Argonne National Laboratory...

    Energy Savers [EERE]

    Preliminary Notice of Violation, Argonne National Laboratory-West - EA-2001-01 Preliminary Notice of Violation, Argonne National Laboratory-West - EA-2001-01 February 28, 2001...

  11. Renewable & Appropriate Energy Laboratory (RAEL) PRESS RELEASE

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Renewable & Appropriate Energy Laboratory (RAEL) PRESS RELEASE UC BERKELEY GROUP PROPOSES ELECTRIC today, the University of California, Berkeley's Renewable & Appropriate Energy Laboratory (RAEL Consulting Program. RAEL is a unique research, development, project implementation, and community outreach

  12. Ames Laboratory Purchase Card Policy & Procedure | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TAPropaneand LosAmes Laboratory Purchase Card

  13. Ames Laboratory Site Sustainability Plan | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TAPropaneand LosAmes Laboratory Purchase CardSite

  14. Sandia National Laboratories: Research: Laboratory Directed Research &

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDidDevelopment Top LDRD Publications Research Laboratory Directed

  15. Laboratory Directed Research and Development Plan | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse Bergkamp Graduate studentScience (SC) Directed Research andLaboratory

  16. Laboratory Directed Research and Development Mission | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and masthead Berkeley Lab mastheadLaboratory

  17. Biomass Catalyst Characterization Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01

    This fact sheet provides information about Biomass Catalyst Characterization Laboratory (BCCL) capabilities and applications at NREL's National Bioenergy Center.

  18. Sandia National Laboratories: Products and Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Products and Services What Sandia National Laboratories Buys National Security & Pulsed Power Supports... Defense Systems & Assessments Electronic Systems Integrated Military...

  19. Algal Biofuels Research Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01

    This fact sheet provides information about Algal Biofuels Research Laboratory capabilities and applications at NREL's National Bioenergy Center.

  20. Sandia National Laboratories: Research: Facilities: Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Science and Engineering Center Pulsed Power and Systems Validation Facility Radiation Detection Materials Characterization Laboratory Shock Thermodynamic Applied...