National Library of Energy BETA

Sample records for laboratory operations small-scale

  1. Laboratory Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Operations /newsroom/_assets/images/operations-icon.png Laboratory Operations Latest announcements from the Lab on its operations. Community, Events Laboratory Operations Environmental Stewardship Melissa Blueflower-Sanchez and Robert Sanchez, owners of R and M Construction, LLC, of Santa Clara Pueblo. Four regional businesses receive Native American Venture Acceleration Fund grants The grants are designed to help the recipients create jobs, increase their revenue base and help

  2. Project Title: Small Scale Electrical Power Generation from Heat Co-Produced in Geothermal Fluids: Mining Operation

    SciTech Connect (OSTI)

    Clark, Thomas M; Erlach, Celeste

    2014-12-30

    Demonstrate the technical and economic feasibility of small scale power generation from low temperature co-produced fluids. Phase I is to Develop, Design and Test an economically feasible low temperature ORC solution to generate power from lower temperature co-produced geothermal fluids. Phase II &III are to fabricate, test and site a fully operational demonstrator unit on a gold mine working site and operate, remotely monitor and collect data per the DOE recommended data package for one year.

  3. Chinese biogas digester: a potential model for small-scale, rural applications (a manual for construction and operation)

    SciTech Connect (OSTI)

    Nakagawa, C.H.; Honquilada, Q.L.

    1985-07-01

    This report gives a thorough description of a Philippine biogas project. It provides basic knowledge and guidance for the construction and operation of a small-scale family-size biogas unit. The report includes benefits of installation and a general overview of the construction process: structural features/considerations, planning/preparation, site consideration and operation and maintenance provisions. Contains numerous sketches, design diagrams, appendices and a reference bibliography.

  4. A BRIEF DESCRIPTION OF THE SMALL-SCALE SAFETY TESTING SYSTEMS AT LAWRENCE LIVERMORE NATIONAL LABORATORY

    SciTech Connect (OSTI)

    HSU, P C

    2008-07-31

    Small-scale sensitivity testing is important for determining material response to various stimuli including impact, friction, and static spark. These tests, briefly described below, provide parameters for safety in handling. ERL Type 12 drop hammer equipment at LLNL, shown in Figure 1, was used to determine the impact sensitivity. The equipment includes a 2.5-kg drop weight, a striker (upper anvil, 2.5 kg for solid samples and 1.0 kg for liquid samples), a bottom anvil, a microphone sensor, and a peakmeter. For each drop, sample (35 mg for solid or 45 microliter for liquid) is placed on the bottom anvil surface and impacted by the drop weight from different heights. Signs of reactions upon impact are observed and recorded. These signs include noises, flashes or sparks, smoke, pressure, gas emissions, temperature rise due to exothermic reaction, color change of the sample, and changes to the anvil surface (noted by inspection). For solid samples, a 'GO' was defined as a microphone sensor (for noise detection) response of {ge} 1.3 V as measured by a peakmeter. The higher the DH{sub 50} values, the lower the impact sensitivity. The method used to calculate DH{sub 50} values is the 'up and down' or Bruceton method. PETN and RDX have impact sensitivities of 15 and 35 cm, respectively. TATB has impact sensitivity more than 177 cm. For liquid samples, a 'GO' was determined by the noise levels as measured by the peakmeter, appearance of flashes, temperature rise of the anvil, and visual inspection of the anvil surface. Two liquid samples TMETN and FEFO have impact sensitivities of 14 and 32 cm, respectively. Figure 2 shows a 'GO' event observed during the impact sensitivity test; flashes appeared as the drop weight impacted the sample. A BAM friction sensitivity test machine, as shown in Figure 3, was used to determine the frictional sensitivity. The system uses a fixed porcelain pin and a movable porcelain plate that executes a reciprocating motion. Weight affixed to a torsion arm allows for a variation in applied force between 0.5 kg to 36.0 kg. The relative measure of the frictional sensitivity of a material is based upon the smallest load (kg) at which reaction occurs for a 1-in-10 series of attempts. The lower the load values, the higher the frictional sensitivity. PETN has a frictional sensitivity of 6.4 kg. The static spark machine at LLNL is used to evaluate the electrostatic discharge hazards (human ESD) associated with the handling of explosives. The machine was custom-built almost 30 years ago and consists of a capacitor bank (up to 20,000 pF), a voltage meter, and a discharge circuit, as shown in Figure 4. An adjustable resistor up to 510 ohms (chosen to simulate human body) is wired to the discharge circuit. A 5-mg sample is placed in a Teflon washer sealed to a steel disc and covered with a Mylar tape. High static voltage (up to 10 kv) is applied and discharged to the sample. Evidence of reaction is judged from the condition of Mylar tape, smokes, and color change of the sample. Voltage, capacitance, and resistance can be adjusted to achieve the desired static energy. The results obtained are expressed as a zero in 10 or one-in-ten at a specific voltage and joules. One reaction in ten trials at {le} 0.25 joules is considered spark-sensitive. Primary explosives show reaction at 0.1 joule.

  5. Analysis of environmental issues related to small-scale hydroelectric development. VI. Dissolved oxygen concentrations below operating dams

    SciTech Connect (OSTI)

    Cada, G.F.; Kumar, K.D.; Solomon, J.A.; Hildebrand, S.G.

    1982-01-01

    Results are presented of an effort aimed at determining whether or not water quality degradation, as exemplified by dissolved oxygen concentrations, is a potentially significant issue affecting small-scale hydropower development in the US. The approach was to pair operating hydroelectric sites of all sizes with dissolved oxygen measurements from nearby downstream US Geological Survey water quality stations (acquired from the WATSTORE data base). The USGS data were used to calculate probabilities of non-compliance (PNCs), i.e., the probabilities that dissolved oxygen concentrations in the discharge waters of operating hydroelectric dams will drop below 5 mg/l. PNCs were estimated for each site, season (summer vs remaining months), and capacity category (less than or equal to 30 MW vs >30 MW). Because of the low numbers of usable sites in many states, much of the subsequent analysis was conducted on a regional basis. During the winter months (November through June) all regions had low mean PNCs regardless of capacity. Most regions had higher mean PNCs in summer than in winter, and summer PNCs were greater for large-scale than for small-scale sites. Among regions, the highest mean summer PNCs were found in the Great Basin, the Southeast, and the Ohio Valley. To obtain a more comprehensive picture of the effects of season and capacity on potential dissolved oxygen problems, cumulative probability distributions of PNC were developed for selected regions. This analysis indicates that low dissolved oxygen concentrations in the tailwaters below operating hydroelectric projects are a problem largely confined to large-scale facilities.

  6. SMALL-SCALE MELTER TESTING WITH LAW SIMULANTS TO ASSESS THE IMPACT OF HIGHER TEMPERATURE MELTER OPERATIONS - Final Report, VSL-04R49801-1, Rev. 0, 2/13/03, Vitreous State Laboratory, The Catholic University of America, Washington, D.C.

    SciTech Connect (OSTI)

    KRUGER AA; MATLACK KS

    2012-02-07

    About 50 million gallons of high-level mixed waste is currently in storage in underground tanks at The United States Department of Energy's (DOE's) Hanford site in the State of Washington. The Hanford Tank Waste Treatment and Immobilization Plant (WTP) will provide DOE's Office of River Protection (ORP) with a means of treating this waste by vitrification for subsequent disposal. The tank waste will be separated into low- and high-activity fractions, which will then be vitrified respectively into Immobilized Low Activity Waste (ILAW) and Immobilized High Level Waste (IHLW) products. The ILAW product will be disposed of in an engineered facility on the Hanford site while the IHL W product will be directed to the national deep geological disposal facility for high-level nuclear waste. The ILAW and IHLW products must meet a variety of requirements with respect to protection of the environment before they can be accepted for disposal. The Office of River Protection is currently examining options to optimize the Low Activity Waste (LAW) facility and the LAW glass waste form. One option under evaluation is to enhance the waste processing rate of the vitrification plant currently under construction. It is likely that the capacity of the LAW vitrification plant can be increased incrementally by implementation of a variety of low-risk, high-probability changes, either separately or in combination. These changes include: (1) Operating at the higher processing rates demonstrated at the LAW Pilot Melter; (2) Increasing the glass pool surface area within the existing external melter envelope; (3) Increasing plant availability; (4) Increasing the glass waste loading; (5) Removing sulfate from the LAW stream; (6) Operating the melter at slightly higher temperature; (7) Installing the third LAW melter into the WTP plant; and (8) Other smaller impact changes. The tests describes in this report utilized blended feed (glass formers plus waste simulant) prepared by Optima Chemicals according to VSL specifications. Sufficient feed was prepared to produce nearly two metric tons of glass. Sugar was added (at VSL) to the feed at a ratio of 0.5 (1 mole sucrose per 16 mole NOx). The DM100-WV melter was used in order to provide a direct comparison with the LAW tests previously conducted on the same melter. Two 75-hour melter tests were conducted at two elevated temperatures, 1175 and 1225 C. These tests were preceded by the production of sufficient glass to turn over the melt pool to the target composition. Key operating parameters were held constant to investigate the effects of the operating temperature on processing characteristics, particularly melting rate. At each operating temperature, the feed rate was adjusted to provide a near-complete cold cap 99-100% of melt surface covered with feed. Quantitative measurements of glass production rates, melter operating conditions (temperatures, pressures, power, flows, etc.), and off-gas characteristics (NOx, SO{sub 2}, CO, particulate load and composition, and acid gases) were made for each test.

  7. Operations | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operations Welcome to the Ames Laboratory and the operations pages of our website. Our website has recently been revised starting with the front page, the science division pages and a few pages needed for public interface. If you find that the pages you need are not available please contact the Manager in charge (i.e., Purchasing, Sponsored Programs, etc.) and we will get you the information you need.

  8. Sandia National Laboratories is a multi-program laboratory operated...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, ... laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed ...

  9. Operations | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operations Achieving Diversity and Inclusion: An Evidence-based Approach Shuttle service will be provided beginning at 9:15 a.m. with stops at Buildings 201, 212, 202, 240, 222, 203, 208, 200, 205 and 362. Return trips will follow the talk. Read more about Achieving Diversity and Inclusion: An Evidence-based Approach Jerome LinMay 10, 2016 Postdoctoral Appointee Read more about Jerome Lin Anne BoronMay 6, 2016 Safety Systems Engineering Specialist Read more about Anne Boron First Friday Forum:

  10. Small-scale irradiated fuel electrorefining

    SciTech Connect (OSTI)

    Benedict, R.W.; Krsul, J.R.; Mariani, R.D.; Park, K.; Teske, G.M.

    1993-09-01

    In support of the metallic fuel cycle development for the Integral Fast Reactor (IFR), a small scale electrorefiner was built and operated in the Hot Fuel Examination Facility (HFEF) at Argonne National Laboratory-West. The initial purpose of this apparatus was to test the single segment dissolution of irradiated metallic fuel via either direct dissolution in cadmium or anodic dissolution. These tests showed that 99.95% of the uranium and 99.99% of the plutonium was dissolved and separated from the fuel cladding material. The fate of various fission products was also measured. After the dissolution experiments, the apparatus was upgraded to stady fission product behavior during uranium electrotransport. Preliminary decontamination factors were estimated for different fission products under different processing conditions. Later modifications have added the following capabilities: Dissolution of multiple fuel segments simultaneously, electrotransport to a solid cathode or liquid cathode and actinide recovery with a chemical reduction crucible. These capabilities have been tested with unirradiated uranium-zirconium fuel and will support the Fuel Cycle Demonstration program.

  11. Joint Operations - Laboratory for Laser Energetics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operations - Laboratory for Laser Energetics Laboratory for Laser Energetics Logo Search Home Around the Lab Past Issues Past Quick Shots About Office of the Director Map to LLE ...

  12. Design report: small-scale fuel alcohol plant

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    The objectives of the report are to (a) provide potential alcohol producers with a reference design and (b) provide a complete, demonstrated design of a small-scale fuel alcohol plant. This report describes a small-scale fuel alcohol plant designed and constructed for the DOE by EG and G Idaho, Inc., an operating contractor at the Idaho National Engineering Laboratory. The plant is reasonably complete, having the capability for feedstock preparation, cooking, saccharification, fermentation, distillation, by-product dewatering, and process steam generation. An interesting feature is an instrumentation and control system designed to allow the plant to run 24 hours per day with only four hours of operator attention. Where possible, this document follows the design requirements established in the DOE publication Fuel From Farms, which was published in February 1980. For instance, critical requirements such as using corn as the primary feedstock, production of 25 gallons of 190 proof ethanol per hour, and using batch fermentation were taken from Fuel From Farms. One significant deviation is alcohol dehydration. Fuel From Farms recommends the use of a molecular sieve for dehydration, but a preliminary design raised significant questions about the cost effectiveness of this approach. A cost trade-off study is currently under way to establish the best alcohol dehydration method and will be the subject of a later report. Volume one contains background information and a general description of the plant and process.

  13. Summary Report on FY12 Small-Scale Test Activities High Temperature Electrolysis Program

    SciTech Connect (OSTI)

    James O'Brien

    2012-09-01

    This report provides a description of the apparatus and the single cell testing results performed at Idaho National Laboratory during January–August 2012. It is an addendum to the Small-Scale Test Report issued in January 2012. The primary program objectives during this time period were associated with design, assembly, and operation of two large experiments: a pressurized test, and a 4 kW test. Consequently, the activities described in this report represent a much smaller effort.

  14. Enterprise Assessments Operational Awareness Record, Argonne National Laboratory and New Brunswick Laboratory- March 2015

    Broader source: Energy.gov [DOE]

    Operational Awareness Record for Oversight of Argonne National Laboratory and New Brunswick Laboratory

  15. Small-Scale Renewable Energy Incentive Program

    Broader source: Energy.gov [DOE]

    Vermont's Small Scale Renewable Energy Incentive Program (SSREIP), initiated in June 2003, currently provides funding for new solar water heating and advanced wood pellet heating installations. T...

  16. Transportable Xenon Laboratory (TXL-1) Operations Manual

    SciTech Connect (OSTI)

    Thompson, Robert C.; Stewart, Timothy L.; Willett, Jesse A.; Woods, Vincent T.

    2011-03-07

    The Transportable Xenon Laboratory Operations Manual is a guide to set up and shut down TXL, a fully contained laboratory made up of instruments to identify and measure concentrations of the radioactive isotopes of xenon by taking air samples and analyzing them. The TXL is housed in a standard-sized shipping container. TXL can be shipped to and function in any country in the world.

  17. Small-scale fuel alcohol production. Technical report

    SciTech Connect (OSTI)

    Not Available

    1980-03-01

    This report describes in substantial detail technical and economic aspects of small-scale ethanol production from on-farm units producing up to 360,000 gallons per year and community plants producing up to 2 million gallons per year. The description of feedstock materials is limited to those containing starches and sugars, not cellulosic materials. Factors influencing the introduction of small-scale ethanol production are evaluated, including the availability and technical capabilities of production equipment. Also discussed are the types and sizes of farms and community operations for which ethanol production is appropriate. The report describes the characteristics of ethanol and its use as a motor fuel, the production and use of co-products, and problems typically encountered by small-scale producers. Information on investment, operation, maintenance and feedstock costs is estimated and analyzed. A sensitivity analysis describes changes in the cost of ethanol production resulting from changes in the major cost elements.

  18. Design for a small-scale fuel alcohol plant

    SciTech Connect (OSTI)

    Berglund, G.R.; Richardson, J.G.

    1982-08-01

    The paper describes the small-scale fuel alcohol plant (SSFAT) which was designed as a small-scale chemical processing plant. The DOE publication, Fuel from Farms, set forth the basic design requirements. To lower operating costs, it was important that all the processes required to produce alcohol were integrated. Automated control was also an important consideration in the design to reduce the number of operators and operator time, thus reducing operating costs. Automated control also provides better quality control of the final product. The plant is presently operating in a test mode to evaluate operating characteristics. The discussion covers the following topics - design requirements; plan operations; fermentation; distillation; microprocessor control; automatic control; operating experience. 1 ref.

  19. Small-scale biogas applications

    SciTech Connect (OSTI)

    Not Available

    1981-08-01

    Guidance is given through the exercise of determining whether a biogas system is worthwhile for a farm owner. After a brief description of anaerobic digestion and characteristics and economics of biogas, basic features of anaerobic digesters are discussed. The use of biogas is discussed, starting with gas collection at the digester and ending with waste heat recovery in cogeneration systems. Direct heating with biogas is also covered briefly. The parts of a working biogas system are discussed. Three different case studies are reviewed. Directions are offered for collecting site data and a method for performing a preliminary economic analysis of a given operation. Firms and consultants with experience in the design and construction of biogas systems are listed. (LEW)

  20. Method and system for small scale pumping

    DOE Patents [OSTI]

    Insepov, Zeke; Hassanein, Ahmed

    2010-01-26

    The present invention relates generally to the field of small scale pumping and, more specifically, to a method and system for very small scale pumping media through microtubes. One preferred embodiment of the invention generally comprises: method for small scale pumping, comprising the following steps: providing one or more media; providing one or more microtubes, the one or more tubes having a first end and a second end, wherein said first end of one or more tubes is in contact with the media; and creating surface waves on the tubes, wherein at least a portion of the media is pumped through the tube.

  1. Argonne National Laboratory Employee Arrested for Operating Illegal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Argonne National Laboratory Employee Arrested for Operating Illegal Steroid Lab Argonne National Laboratory Employee Arrested for Operating Illegal Steroid Lab PDF icon Argonne ...

  2. Hoopa Valley Small Scale Hydroelectric Feasibility Project

    SciTech Connect (OSTI)

    Curtis Miller

    2009-03-22

    This study considered assessing the feasibility of developing small scale hydro-electric power from seven major tributaries within the Hoopa Valley Indian Reservation of Northern California (http://www.hoopa-nsn.gov/). This study pursued the assessment of seven major tributaries of the Reservation that flow into the Trinity River. The feasibility of hydropower on the Hoopa Valley Indian Reservation has real potential for development and many alternative options for project locations, designs, operations and financing. In order to realize this opportunity further will require at least 2-3 years of intense data collection focusing on stream flow measurements at multiple locations in order to quantify real power potential. This also includes on the ground stream gradient surveys, road access planning and grid connectivity to PG&E for sale of electricity. Imperative to this effort is the need for negotiations between the Hoopa Tribal Council and PG&E to take place in order to finalize the power rate the Tribe will receive through any wholesale agreement that utilizes the alternative energy generated on the Reservation.

  3. COHERENCE AND INTERMITTENCY OF ELECTRON DENSITY IN SMALL-SCALE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    COHERENCE AND INTERMITTENCY OF ELECTRON DENSITY IN SMALL-SCALE INTERSTELLAR TURBULENCE P. W. Terry and K. W. Smith Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas and Department of Physics, University of WisconsinYMadison, Madison, WI 53706; pwterry@wisc.edu Received 2006 December 14; accepted 2007 April 19 ABSTRACT Spatial intermittency in decaying kinetic Alfve ÂŽn wave turbulence is investigated to determine if it produces non- Gaussian density fluctuations in

  4. Los Alamos National Laboratory to begin DARHT 2 operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DARHT 2 operations begin Los Alamos National Laboratory to begin DARHT 2 operations The Dual Axis Radiographic Hydrodynamic Test facility has officially become "dual" with...

  5. DOE small scale fuel alcohol plant design

    SciTech Connect (OSTI)

    LaRue, D.M.; Richardson, J.G.

    1980-01-01

    The Department of Energy, in an effort to facilitate the deployment of rural-based ethanol production capability, has undertaken this effort to develop a basic small-scale plant design capable of producing anhydrous ethanol. The design, when completed, will contain all necessary specifications and diagrams sufficient for the construction of a plant. The design concept is modular; that is, sections of the plant can stand alone or be integrated into other designs with comparable throughput rates. The plant design will be easily scaled up or down from the designed flow rate of 25 gallons of ethanol per hour. Conversion factors will be provided with the final design package to explain scale-up and scale-down procedures. The intent of this program is to provide potential small-scale producers with sound information about the size, engineering requirements, costs and level of effort in building such a system.

  6. Design report small-scale fuel alcohol palnt. Volume III. Drawings

    SciTech Connect (OSTI)

    Not Available

    1980-12-01

    The objectives of the report are to (a) provide potential alcohol producers with a reference design and (b) provide a complete, demonstrated design of small-scale fuel alcohol plant. This report describes a small-scale fuel alcohol plant designed and constructed for the DOE by EG and G Idaho, Inc., an operating contractor at the Idaho National Engineering Laboratory. The plant is reasonably complete, having the capability for feedstock preparation, cooking, saccharification, fermentation, distillation, by-product dewatering, and process steam generation. An interesting feature is an instrumentation and control system designed to allow the plant to run 24 hours per day with only four hours of operator attention. Where possible, this document follows the design requirements established in the DOE publication Fuel From Farms, which was published in February 1980. For instance, critical requirements such as using corn as the primary feedstock, production of 25 gallons of 190 proof ethanol per hour, and using batch fermentation were taken from Fuel From Farms. One significant deviation is alcohol dehydration. Fuel From Farms recommends the use of a molecular sieve for dehydration, but a preliminary design raised significant questions about the cost effectiveness of this approach. A cost trade-off study is currently under way to establish the best alcohol dehydration method and will be the subject of a later report. This volume contains the equipment and construction drawings used to build the small-scale ethanol plant. The design in this volume represents the design at completion of construction and before continuous production began.

  7. Small-Scale Hydroelectric Power Demonstration Project

    SciTech Connect (OSTI)

    Gleeson, L.

    1991-12-01

    The US Department of Energy Field Office, Idaho, Small-Scale Hydroelectric Power Program was initiated in conjunction with the restoration of three power generating plants in Idaho Falls, Idaho, following damage caused by the Teton Dam failure on June 5, 1976. There were many parties interested in this project, including the state and environmental groups, with different concerns. This report was prepared by the developer and describes the design alternatives the applicant provided in an attempt to secure the Federal Energy Regulatory Commission license. Also included are correspondence between the related parties concerning the project, major design alternatives/project plan diagrams, the license, and energy and project economics.

  8. Philippines: Small-scale renewable energy update

    SciTech Connect (OSTI)

    1997-12-01

    This paper gives an overview of the application of small scale renewable energy sources in the Philippines. Sources looked at include solar, biomass, micro-hydroelectric, mini-hydroelectric, wind, mini-geothermal, and hybrid. A small power utilities group is being spun off the major utility, to provide a structure for developing rural electrification programs. In some instances, private companies have stepped forward, avoiding what is perceived as overwhelming beaurocracy, and installed systems with private financing. The paper provides information on survey work which has been done on resources, and the status of cooperative programs to develop renewable systems in the nation.

  9. Operations Strategic Planning Committee | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operations Strategic Planning Committee The Operations Strategic Planning Committee has come up with an initial list of new opportunities and opportunities for improvement over the...

  10. Design report small-scale fuel alcohol plant. Volume II. Detailed construction information

    SciTech Connect (OSTI)

    Not Available

    1980-12-01

    The objectives of the report are to (a) provide potential alcohol producers with a reference design and (b) provide a complete, demonstrated design of a small-scale fuel alcohol plant. This report describes a small-scale fuel alcohol plant designed and constructed for the DOE by EG and G Idaho, Inc., an operating contractor at the Idaho National Engineering Laboratory. The plant is reasonably complete, having the capability for feedstock preparation, cooking, saccharification, fermentation, distillation, by-product dewatering, and process steam generation. An interesting feature is an instrumentation and control system designed to allow the plant to run 24 hours per day with only four hours of operator attention. Where possible, this document follows the design requirements established in the DOE publication Fuel From Farms, which was published in February 1980. For instance, critical requirements such as using corn as the primary feedstock, production of 25 gallons of 190 proof ethanol per hour, and using batch fermentation were taken from Fuel From Farms. One significant deviation is alcohol dehydration. Fuel From Farms recommends the use of a molecular sieve for dehydration, but a preliminary design raised significant questions about the cost effectiveness of this approach. A cost trade-off study is currently under way to establish the best alcohol dehydration method and will be the subject of a later report. Volume two includes equipment and instrumentation data sheets, instrument loop wiring diagrams, and vendor lists.

  11. Argonne National Laboratory Employee Arrested for Operating Illegal Steroid

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lab | Department of Energy Argonne National Laboratory Employee Arrested for Operating Illegal Steroid Lab Argonne National Laboratory Employee Arrested for Operating Illegal Steroid Lab PDF icon Argonne National Laboratory Employee Arrested for Operating Illegal Steroid Lab More Documents & Publications PSH-14-0109 - In the Matter of Personnel Security Hearing Scientists Sentenced To Prison For Defrauding The Small Business Innovation Research Program Semiannual Report to Congress:

  12. RFP: Management and Operation of the National Renewable Energy Laboratory |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy RFP: Management and Operation of the National Renewable Energy Laboratory RFP: Management and Operation of the National Renewable Energy Laboratory Request for Proposals (RFP) Number DE-RP36-07GO97036: Management and Operation of the National Renewable Energy Laboratory. PDF icon Solicitation, Offer and Award (SF-33) PDF icon Section B: Supplies, Services and Costs PDF icon Section C: Description, Specifications and Work Statements PDF icon Section D - G: Section D,

  13. Economic analysis of small-scale fuel alcohol plants

    SciTech Connect (OSTI)

    Schafer, J.J. Jr.

    1980-01-01

    To plan Department of Energy support programs, it is essential to understand the fundamental economics of both the large industrial size plants and the small on-farm size alcohol plants. EG and G Idaho, Inc., has designed a 25 gallon per hour anhydrous ethanol plant for the Department of Energy's Alcohol Fuels Office. This is a state-of-the-art reference plant, which will demonstrate the cost and performance of currently available equipment. The objective of this report is to examine the economics of the EG and G small-scale alcohol plant design and to determine the conditions under which a farm plant is a financially sound investment. The reference EG and G Small-Scale Plant is estimated to cost $400,000. Given the baseline conditions defined in this report, it is calculated that this plant will provide an annual after-tax of return on equity of 15%, with alcohol selling at $1.62 per gallon. It is concluded that this plant is an excellent investment in today's market, where 200 proof ethanol sells for between $1.80 and $2.00 per gallon. The baseline conditions which have a significant effect on the economics include plant design parameters, cost estimates, financial assumptions and economic forecasts. Uncertainty associated with operational variables will be eliminated when EG and G's reference plant begins operation in the fall of 1980. Plant operation will verify alcohol yield per bushel of corn, labor costs, maintenance costs, plant availability and by-product value.

  14. Deputy Director, Laboratory Operations & Chief Operating Officer, Nat'l Energy Technology Laboratory

    Broader source: Energy.gov [DOE]

    The National Energy Technology Laboratory (NETL) produces technological solutions to Americas energy challenges. For more than 100 years, the laboratory has developed tools and processes to provide...

  15. Long-term inverter operation demonstration at Sandia National Laboratories.

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Long-term inverter operation demonstration at Sandia National Laboratories. Citation Details In-Document Search Title: Long-term inverter operation demonstration at Sandia National Laboratories. No abstract prepared. Authors: Ellis, Abraham ; Kuszmaul, Scott S. ; Gonzalez, Sigifredo Publication Date: 2009-06-01 OSTI Identifier: 966623 Report Number(s): SAND2009-3488C TRN: US200921%%513 DOE Contract Number: AC04-94AL85000 Resource Type: Conference Resource

  16. Small-scale self-excited-rotor electrostatic generator

    SciTech Connect (OSTI)

    Kalganov, A.F.

    1985-04-15

    Electrostatic generators, as sources of high direct-current voltage, are being used more and more extensively in science and technology. Rotor electrostatic generators with conductor-carriers occupy a significant place among these generators; rotor electrostatic generators develop a voltage in the hundreds of kV and have the advantage that they can be made self-exciting. This considerably simplifies servicing and operation of the generators and is especially important in a small-scale design. Theoretical and experimental works on electrostatic generators with conductor-carriers in the last 20 years have led to the development of various types of such generators. Soviet scientists have made a great contribution to these works. However, the procedure for engineering calculation of certain types of generators still has not been adequately developed. In particular, the Zan calculation does not take into account the effect of parasitic capacitances in generators of disc and cylinder types.

  17. Fuel chip harvesting: small-scale experience in New Brunswick

    SciTech Connect (OSTI)

    Schneider, M.H.

    1987-02-01

    This paper reports results of several years' experience using small-scale fuel chip production from forest thinnings and residues. The work was undertaken to demonstrate and monitor this method of woody biomass utilization. Biomass recovered from small-scale harvesting ranged from 50% to 80% of that estimated to be available. Productivity of the small-scale chip production systems was in the tenths of an ovendried (OD) ton (a few cubic meters) per hour range. This productivity is similar to Swedish small-scale experience. The ratio of the energy in the fuel to that expended in chip production averaged 38:1. 6 references.

  18. Introduction to Small-Scale Photovoltaic Systems (Including RETScreen...

    Open Energy Info (EERE)

    Photovoltaic Systems (Including RETScreen Case Study) (Webinar) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Introduction to Small-Scale Photovoltaic Systems...

  19. Introduction to Small-Scale Wind Energy Systems (Including RETScreen...

    Open Energy Info (EERE)

    Case Study) (Webinar) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Introduction to Small-Scale Wind Energy Systems (Including RETScreen Case Study) (Webinar) Focus...

  20. EA-0856: Construction and Operation of a Human Genome Laboratory at Lawrence Berkeley Laboratory Berkeley, California

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to construct and operate a new laboratory for consolidation of current and future activities of the Human Genome Center at the U.S....

  1. Small-Scale Spray Releases: Additional Aerosol Test Results

    SciTech Connect (OSTI)

    Schonewill, Philip P.; Gauglitz, Phillip A.; Kimura, Marcia L.; Brown, G. N.; Mahoney, Lenna A.; Tran, Diana N.; Burns, Carolyn A.; Kurath, Dean E.

    2013-08-01

    One of the events postulated in the hazard analysis at the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak involves extrapolating from correlations reported in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids with Newtonian fluid behavior. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials that will be processed in the WTP and across processing facilities in the DOE complex. To expand the data set upon which the WTP accident and safety analyses were based, an aerosol spray leak testing program was conducted by Pacific Northwest National Laboratory (PNNL). PNNL’s test program addressed two key technical areas to improve the WTP methodology (Larson and Allen 2010). The first technical area was to quantify the role of slurry particles in small breaches where slurry particles may plug the hole and prevent high-pressure sprays. The results from an effort to address this first technical area can be found in Mahoney et al. (2012a). The second technical area was to determine aerosol droplet size distribution and total droplet volume from prototypic breaches and fluids, including sprays from larger breaches and sprays of slurries for which literature data are largely absent. To address the second technical area, the testing program collected aerosol generation data at two scales, commonly referred to as small-scale and large-scale. The small-scale testing and resultant data are described in Mahoney et al. (2012b) and the large-scale testing and resultant data are presented in Schonewill et al. (2012). In tests at both scales, simulants were used to mimic the relevant physical properties projected for actual WTP process streams.

  2. Sandia National Laboratories is a multi-program laboratory managed and operated

    National Nuclear Security Administration (NNSA)

    National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2015-2392 R Ten-Year Site Plan Fiscal Year 2016 FY 2016 Ten-Year Site Plan Page | iii Table of Contents 1.0 Executive Summary

  3. Small Scale Mixing Demonstration Batch Transfer and Sampling Performance of Simulated HLW - 12307

    SciTech Connect (OSTI)

    Jensen, Jesse; Townson, Paul; Vanatta, Matt

    2012-07-01

    The ability to effectively mix, sample, certify, and deliver consistent batches of High Level Waste (HLW) feed from the Hanford Double Shell Tanks (DST) to the Waste treatment Plant (WTP) has been recognized as a significant mission risk with potential to impact mission length and the quantity of HLW glass produced. At the end of 2009 DOE's Tank Operations Contractor, Washington River Protection Solutions (WRPS), awarded a contract to EnergySolutions to design, fabricate and operate a demonstration platform called the Small Scale Mixing Demonstration (SSMD) to establish pre-transfer sampling capacity, and batch transfer performance data at two different scales. This data will be used to examine the baseline capacity for a tank mixed via rotational jet mixers to transfer consistent or bounding batches, and provide scale up information to predict full scale operational performance. This information will then in turn be used to define the baseline capacity of such a system to transfer and sample batches sent to WTP. The Small Scale Mixing Demonstration (SSMD) platform consists of 43'' and 120'' diameter clear acrylic test vessels, each equipped with two scaled jet mixer pump assemblies, and all supporting vessels, controls, services, and simulant make up facilities. All tank internals have been modeled including the air lift circulators (ALCs), the steam heating coil, and the radius between the wall and floor. The test vessels are set up to simulate the transfer of HLW out of a mixed tank, and collect a pre-transfer sample in a manner similar to the proposed baseline configuration. The collected material is submitted to an NQA-1 laboratory for chemical analysis. Previous work has been done to assess tank mixing performance at both scales. This work involved a combination of unique instruments to understand the three dimensional distribution of solids using a combination of Coriolis meter measurements, in situ chord length distribution measurements, and electro-resistive tomography. This current work utilized the same instruments to monitor simulated waste transfers. This paper will discuss some of the scaling compromises when it came to the scaled sampling system design, handling of large quantities of material for sampling, and present data for the discuss of likely behavior of the full scale DST based on scaling correlations using a scale ratio exponent (SRE) from 0.25 to 0.45 and the behavior observed in the SSMD platform. This does not establish a scaling factor for DST mixing using paired jet mixers but is an attempt to envelope the likely performance ranges in terms of certification sampling bias, certification sample root-mean-square-deviation, and bath to batch relative standard deviation. (authors)

  4. Sandia National Laboratories is a multi-program laboratory managed and operated

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2007-6815P 10/2007 S AN DI A N AT I ON AL L AB O R AT O RIES Microsystems & Engineering Sciences Applications (MES A) MESA combines silicon processing, packaging and integration, and fabrication of compound- semiconductor devices under one roof. MESA

  5. Propulsion engineering study for small-scale Mars missions

    SciTech Connect (OSTI)

    Whitehead, J.

    1995-09-12

    Rocket propulsion options for small-scale Mars missions are presented and compared, particularly for the terminal landing maneuver and for sample return. Mars landing has a low propulsive {Delta}v requirement on a {approximately}1-minute time scale, but at a high acceleration. High thrust/weight liquid rocket technologies, or advanced pulse-capable solids, developed during the past decade for missile defense, are therefore more appropriate for small Mars landers than are conventional space propulsion technologies. The advanced liquid systems are characterize by compact lightweight thrusters having high chamber pressures and short lifetimes. Blowdown or regulated pressure-fed operation can satisfy the Mars landing requirement, but hardware mass can be reduced by using pumps. Aggressive terminal landing propulsion designs can enable post-landing hop maneuvers for some surface mobility. The Mars sample return mission requires a small high performance launcher having either solid motors or miniature pump-fed engines. Terminal propulsion for 100 kg Mars landers is within the realm of flight-proven thruster designs, but custom tankage is desirable. Landers on a 10 kg scale also are feasible, using technology that has been demonstrated but not previously flown in space. The number of sources and the selection of components are extremely limited on this smallest scale, so some customized hardware is required. A key characteristic of kilogram-scale propulsion is that gas jets are much lighter than liquid thrusters for reaction control. The mass and volume of tanks for inert gas can be eliminated by systems which generate gas as needed from a liquid or a solid, but these have virtually no space flight history. Mars return propulsion is a major engineering challenge; earth launch is the only previously-solved propulsion problem requiring similar or greater performance.

  6. Tritium Laboratory Karlsruhe: administrative and technical framework for isotope laboratory operation

    SciTech Connect (OSTI)

    Welte, S.; Besserer, U.; Osenberg, D.; Wendel, J.

    2015-03-15

    Originally licensed in 1993 the Tritium Laboratory Karlsruhe (TLK) is a unique pilot scale isotope laboratory focused on tritium handling and processing to conduct a variety of scientific experiments and development tasks in view of future fusion power plants. TLK currently operates 15 glove boxes of 125 m{sup 3} total volume in an experimental hall measuring nearly 1500 m{sup 2}. The tritium infrastructure, comprising of the tritium storage system, the tritium transfer system and the isotope separation system, is integrated into TLK as a closed loop system to supply tritium to the experiments. Having a license for handling of up to 40 g of tritium and a closed tritium processing loop, TLK is a unique institute in non-military tritium research. In order to fulfil all requirements regarding the license, a framework of regulations is applied as a basis for the operation of TLK, as well as the setup of new experiments and the design of components. This paper will give an overview on the framework of operation in view of licensing issues, as well as administrative and technical regulations mandatory to legally and reliably operate an isotope laboratory of this scale.

  7. Small-Scale Spray Releases: Orifice Plugging Test Results

    SciTech Connect (OSTI)

    Mahoney, Lenna A.; Gauglitz, Phillip A.; Blanchard, Jeremy; Kimura, Marcia L.; Kurath, Dean E.

    2012-09-01

    One of the events postulated in the hazard analysis at the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities, is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak involves extrapolating from correlations published in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids with Newtonian fluid behavior. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials present in the WTP and across processing facilities in the DOE complex. Two key technical areas were identified where testing results were needed to improve the technical basis by reducing the uncertainty introduced by extrapolating existing literature results. The first technical need was to quantify the role of slurry particles in small breaches in which the slurry particles may plug and result in substantially reduced, or even negligible, respirable fraction formed by high pressure sprays. The second technical need was to determine the aerosol droplet size distribution and volume from prototypic breaches and fluids, specifically including sprays from larger breaches with slurries where data from the literature are largely absent. To address these technical areas, small- and large-scale test stands were constructed and operated with simulants to determine the aerosol release fractions and aerosol generation rates from a range of breach sizes and geometries. The properties of the simulants represented the range of properties expected in the WTP process streams and included water, sodium salt solutions, slurries containing boehmite or gibbsite, and a hazardous chemical simulant. The effect of anti-foam agents (AFA) was assessed with most of the simulants. Orifices included round holes and rectangular slots. Much of the testing was conducted at pressures of 200 and 380 psi, but some tests were conducted at 100 psi. Testing the largest postulated breaches was deemed impractical because of the large size of some of the WTP equipment. The purpose of the study described in this report is to provide experimental data for the first key technical area, potential plugging of small breaches, by performing small-scale tests with a range of orifice sizes and orientations representative of the WTP conditions. The simulants used were chosen to represent the range of process stream properties in the WTP. Testing conducted after the plugging tests in the small- and large-scale test stands addresses the second key technical area, aerosol generation. The results of the small-scale aerosol generation tests are included in Mahoney et al. 2012. The area of spray generation from large breaches is covered by large-scale testing in Schonewill et al. 2012.

  8. Spatial nonlocality of the small-scale solar dynamo

    SciTech Connect (OSTI)

    Lamb, D. A.; Howard, T. A.; DeForest, C. E.

    2014-06-10

    We explore the nature of the small-scale solar dynamo by tracking magnetic features. We investigate two previously explored categories of the small-scale solar dynamo: shallow and deep. Recent modeling work on the shallow dynamo has produced a number of scenarios for how a strong network concentration can influence the formation and polarity of nearby small-scale magnetic features. These scenarios have measurable signatures, for which we test using magnetograms from the Narrowband Filter Imager (NFI) on board Hinode. We find no statistical tendency for newly formed magnetic features to cluster around or away from network concentrations, nor do we find any statistical relationship between their polarities. We conclude that there is no shallow or 'surface' dynamo on the spatial scales observable by Hinode/NFI. In light of these results, we offer a scenario in which the subsurface field in a deep solar dynamo is stretched and distorted via turbulence, allowing the small-scale field to emerge at random locations on the photosphere.

  9. 2010 Thin Film & Small Scale Mechanical Behavior Gordon Research Conference

    SciTech Connect (OSTI)

    Dr. Thomas Balk

    2010-07-30

    Over the past decades, it has been well established that the mechanical behavior of materials changes when they are confined geometrically at least in one dimension to small scale. It is the aim of the 2010 Gordon Conference on 'Thin Film and Small Scale Mechanical Behavior' to discuss cutting-edge research on elastic, plastic and time-dependent deformation as well as degradation mechanisms like fracture, fatigue and wear at small scales. As in the past, the conference will benefit from contributions from fundamental studies of physical mechanisms linked to material science and engineering reaching towards application in modern applications ranging from optical and microelectronic devices and nano- or micro-electrical mechanical systems to devices for energy production and storage. The conference will feature entirely new testing methodologies and in situ measurements as well as recent progress in atomistic and micromechanical modeling. Particularly, emerging topics in the area of energy conversion and storage, such as material for batteries will be highlighted. The study of small-scale mechanical phenomena in systems related to energy production, conversion or storage offer an enticing opportunity to materials scientists, who can provide new insight and investigate these phenomena with methods that have not previously been exploited.

  10. Enabling Small-Scale Biomass Gasification for Liquid Fuel Production

    Broader source: Energy.gov [DOE]

    Breakout Session 2A—Conversion Technologies II: Bio-Oils, Sugar Intermediates, Precursors, Distributed Models, and Refinery Co-Processing Enabling Small-Scale Biomass Gasification for Liquid Fuel Production Santosh Gangwal, Director–Business Development, Energy Technologies, Southern Research Institute

  11. Construction and operation of the Howard T. Ricketts Laboratory.

    SciTech Connect (OSTI)

    Van Lonkhuyzen, R.; Stull, L.; Butler, J.; Chang, Y.; Allison, T.; O'Rourke, D.

    2006-01-01

    The National Institutes of Health (NIH) has proposed to partially fund the construction of the Howard T. Ricketts (HTR) regional biocontainment laboratory (RBL) by the University of Chicago at the U.S. Department of Energy's (DOE's) Argonne National Laboratory in Argonne, Illinois. The HTR Laboratory (HTRL) would be constructed, owned, and operated by the University of Chicago on land leased to it by DOE. The preferred project site is located north of Eastwood Drive and west of Outer Circle Road and is near the biological sciences building. This environmental assessment addresses the potential environmental effects resulting from construction and operation of the proposed facility. The proposed project involves the construction of a research facility with a footprint up to approximately 44,000 ft{sup 2} (4,088 m{sup 2}). The proposed building would house research laboratories, including Biosafety Level 2 and 3 biocontainment space, animal research facilities, administrative offices, and building support areas. The NIH has identified a need for new facilities to support research on potential bioterrorism agents and emerging and re-emerging infectious diseases, to protect the nation from such threats to public health. This research requires specialized laboratory facilities that are designed, managed, and operated to protect laboratory workers and the surrounding community from accidental exposure to agents. The proposed HTRL would provide needed biocontainment space to researchers and promote the advancement of knowledge in the disciplines of biodefense and emerging and re-emerging infectious diseases. Several alternatives were considered for the location of the proposed facility, as well as a no action alternative. The preferred alternative includes the construction of a research facility, up to 44,000 ft{sup 2} (4,088 m{sup 2}), at Argonne National Laboratory, a secure government location. Potential impacts to natural and cultural resources have been evaluated in this document. The proposed activities would result in the conversion of approximately 4 acres (2 ha) of old field and open woodland for the proposed facility and landscaped areas. Impacts of the proposed project on the following resources would be minor or negligible: human health, socioeconomics, air quality, noise levels, water quality, waste management, land use, the visual environment, cultural resources, soils, terrestrial biota, wetlands or aquatic biota, threatened and endangered species, transportation, utilities and services, and environmental justice. This environmental assessment has been completed to satisfy the requirements of the National Environmental Policy Act of 1969 and has been prepared in accordance with NIH guidelines and in coordination with federal, state, and local agency requirements. On the basis of the results of this assessment, impacts to environmental resources from the proposed project would be minor or negligible, provided that the project is implemented in accordance with the impact avoidance and mitigation measures described herein.

  12. LLNL Small-Scale Friction sensitivity (BAM) Test

    SciTech Connect (OSTI)

    Simpson, L.R.; Foltz, M.F.

    1996-06-01

    Small-scale safety testing of explosives, propellants and other energetic materials, is done to determine their sensitivity to various stimuli including friction, static spark, and impact. Testing is done to discover potential handling problems for either newly synthesized materials of unknown behavior, or materials that have been stored for long periods of time. This report describes the existing {open_quotes}BAM{close_quotes} Small-Scale Friction Test, and the methods used to determine the friction sensitivity pertinent to handling energetic materials. The accumulated data for the materials tested is not listed here - that information is in a database. Included is, however, a short list of (1) materials that had an unusual response, and (2), a few {open_quotes}standard{close_quotes} materials representing the range of typical responses usually seen.

  13. Small-scale production of alcohol fuel: not feasible for the farmer

    SciTech Connect (OSTI)

    Miles, J.D.

    1980-10-01

    On-farm alcohol fuel production is not too promising at this time because of the present state of small-scale technology and marketing and some problems with utilization. Small-scale production shows a significant decrease in yield and unacceptable water levels, which makes the cost uncompetitive with large producers. The advantages of on-farm production are that farmers can produce homegrown feedstocks and provide a reliable source of fuel for their own needs as well as an alternative market for surplus grain. Engine modifications must be made, however, in order to use either straight alcohol or combinations of alcohol with gasoline or diesel fuel. Production problems include the need for constant monitoring and temperature control, the high cost of intermittent operation, variations in grain prices, and the difficulty for many farmers of selecting appropriate equipment and complying with regulations. Cooperatives may be the answer to some of these problems. 2 tables. (DCK)

  14. Dislocation dynamics simulations of plasticity at small scales

    SciTech Connect (OSTI)

    Zhou, Caizhi

    2010-12-15

    As metallic structures and devices are being created on a dimension comparable to the length scales of the underlying dislocation microstructures, the mechanical properties of them change drastically. Since such small structures are increasingly common in modern technologies, there is an emergent need to understand the critical roles of elasticity, plasticity, and fracture in small structures. Dislocation dynamics (DD) simulations, in which the dislocations are the simulated entities, offer a way to extend length scales beyond those of atomistic simulations and the results from DD simulations can be directly compared with the micromechanical tests. The primary objective of this research is to use 3-D DD simulations to study the plastic deformation of nano- and micro-scale materials and understand the correlation between dislocation motion, interactions and the mechanical response. Specifically, to identify what critical events (i.e., dislocation multiplication, cross-slip, storage, nucleation, junction and dipole formation, pinning etc.) determine the deformation response and how these change from bulk behavior as the system decreases in size and correlate and improve our current knowledge of bulk plasticity with the knowledge gained from the direct observations of small-scale plasticity. Our simulation results on single crystal micropillars and polycrystalline thin films can march the experiment results well and capture the essential features in small-scale plasticity. Furthermore, several simple and accurate models have been developed following our simulation results and can reasonably predict the plastic behavior of small scale materials.

  15. Small-Scale Spray Releases: Initial Aerosol Test Results

    SciTech Connect (OSTI)

    Mahoney, Lenna A.; Gauglitz, Phillip A.; Kimura, Marcia L.; Brown, Garrett N.; Kurath, Dean E.; Buchmiller, William C.; Smith, Dennese M.; Blanchard, Jeremy; Song, Chen; Daniel, Richard C.; Wells, Beric E.; Tran, Diana N.; Burns, Carolyn A.

    2012-11-01

    One of the events postulated in the hazard analysis at the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak involves extrapolating from correlations reported in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids with Newtonian fluid behavior. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials that will be processed in the WTP and across processing facilities in the DOE complex. Two key technical areas were identified where testing results were needed to improve the technical basis by reducing the uncertainty due to extrapolating existing literature results. The first technical need was to quantify the role of slurry particles in small breaches where the slurry particles may plug and result in substantially reduced, or even negligible, respirable fraction formed by high-pressure sprays. The second technical need was to determine the aerosol droplet size distribution and volume from prototypic breaches and fluids, specifically including sprays from larger breaches with slurries where data from the literature are scarce. To address these technical areas, small- and large-scale test stands were constructed and operated with simulants to determine aerosol release fractions and generation rates from a range of breach sizes and geometries. The properties of the simulants represented the range of properties expected in the WTP process streams and included water, sodium salt solutions, slurries containing boehmite or gibbsite, and a hazardous chemical simulant. The effect of anti-foam agents was assessed with most of the simulants. Orifices included round holes and rectangular slots. The round holes ranged in size from 0.2 to 4.46 mm. The slots ranged from (width × length) 0.3 × 5 to 2.74 × 76.2 mm. Most slots were oriented longitudinally along the pipe, but some were oriented circumferentially. In addition, a limited number of multi-hole test pieces were tested in an attempt to assess the impact of a more complex breach. Much of the testing was conducted at pressures of 200 and 380 psi, but some tests were conducted at 100 psi. Testing the largest postulated breaches was deemed impractical because of the large size of some of the WTP equipment. This report presents the experimental results and analyses for the aerosol measurements obtained in the small-scale test stand. It includes a description of the simulants used and their properties, equipment and operations, data analysis methodologies, and test results. The results of tests investigating the role of slurry particles in plugging small breaches are reported in Mahoney et al. (2012). The results of the aerosol measurements in the large-scale test stand are reported in Schonewill et al. (2012) along with an analysis of the combined results from both test scales.

  16. Small-Scale Spray Releases: Initial Aerosol Test Results

    SciTech Connect (OSTI)

    Mahoney, Lenna A.; Gauglitz, Phillip A.; Kimura, Marcia L.; Brown, Garrett N.; Kurath, Dean E.; Buchmiller, William C.; Smith, Dennese M.; Blanchard, Jeremy; Song, Chen; Daniel, Richard C.; Wells, Beric E.; Tran, Diana N.; Burns, Carolyn A.

    2013-05-29

    One of the events postulated in the hazard analysis at the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak involves extrapolating from correlations reported in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids with Newtonian fluid behavior. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials that will be processed in the WTP and across processing facilities in the DOE complex. Two key technical areas were identified where testing results were needed to improve the technical basis by reducing the uncertainty due to extrapolating existing literature results. The first technical need was to quantify the role of slurry particles in small breaches where the slurry particles may plug and result in substantially reduced, or even negligible, respirable fraction formed by high-pressure sprays. The second technical need was to determine the aerosol droplet size distribution and volume from prototypic breaches and fluids, specifically including sprays from larger breaches with slurries where data from the literature are scarce. To address these technical areas, small- and large-scale test stands were constructed and operated with simulants to determine aerosol release fractions and net generation rates from a range of breach sizes and geometries. The properties of the simulants represented the range of properties expected in the WTP process streams and included water, sodium salt solutions, slurries containing boehmite or gibbsite, and a hazardous chemical simulant. The effect of antifoam agents was assessed with most of the simulants. Orifices included round holes and rectangular slots. For the combination of both test stands, the round holes ranged in size from 0.2 to 4.46 mm. The slots ranged from (width × length) 0.3 × 5 to 2.74 × 76.2 mm. Most slots were oriented longitudinally along the pipe, but some were oriented circumferentially. In addition, a limited number of multi-hole test pieces were tested in an attempt to assess the impact of a more complex breach. Much of the testing was conducted at pressures of 200 and 380 psi, but some tests were conducted at 100 psi. Testing the largest postulated breaches was deemed impractical because of the much larger flow rates and equipment that would be required. This report presents the experimental results and analyses for the aerosol measurements obtained in the small-scale test stand. It includes a description of the simulants used and their properties, equipment and operations, data analysis methodologies, and test results. The results of tests investigating the role of slurry particles in plugging small breaches are reported in Mahoney et al. (2012). The results of the aerosol measurements in the large-scale test stand are reported in Schonewill et al. (2012) along with an analysis of the combined results from both test scales.

  17. U.S. Department of Energy Small-Scale Biorefineries Project Overview |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Small-Scale Biorefineries Project Overview U.S. Department of Energy Small-Scale Biorefineries Project Overview A chart indicating round one and round two selections for the U.S. Department of Energy Small-Scale Biorefineries Project Overview. PDF icon U.S. Department of Energy Small-Scale Biorefineries Project Overview More Documents & Publications U.S. Department of Energy Small-Scale Biorefineries: Project Overview

  18. U.S. Department of Energy Small-Scale Biorefineries: Project Overview |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Small-Scale Biorefineries: Project Overview U.S. Department of Energy Small-Scale Biorefineries: Project Overview Chart that shows which small-scale biorefineries were approved to receive DOE funding in 2008, a summary of their fields of focus, their cost share, and how much DOE is investing in them. PDF icon small_scale_biorefinery_overview.pdf More Documents & Publications U.S. Department of Energy Small-Scale Biorefineries Project Overview

  19. A small scale biomass fueled gas turbine engine

    SciTech Connect (OSTI)

    Craig, J.D.; Purvis, C.R.

    1999-01-01

    A new generation of small scale (less than 20 MWd) biomass fueled, power plants are being developed based on a gas turbine (Brayton cycle) prime mover. These power plants are expected to increase the efficiency and lower the cost of generating power from fuels such as wood. The new power plants are also expected to economically utilize annual plant growth materials (such as rice hulls, cotton gin trash, nut shells, and various straws, grasses, and animal manures) that are not normally considered as fuel for power plants. This paper summarizes the new power generation concept with emphasis on the engineering challenges presented by the gas turbine component.

  20. Preliminary Scaling Estimate for Select Small Scale Mixing Demonstration Tests

    SciTech Connect (OSTI)

    Wells, Beric E.; Fort, James A.; Gauglitz, Phillip A.; Rector, David R.; Schonewill, Philip P.

    2013-09-12

    The Hanford Site double-shell tank (DST) system provides the staging location for waste that will be transferred to the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Specific WTP acceptance criteria for waste feed delivery describe the physical and chemical characteristics of the waste that must be met before the waste is transferred from the DSTs to the WTP. One of the more challenging requirements relates to the sampling and characterization of the undissolved solids (UDS) in a waste feed DST because the waste contains solid particles that settle and their concentration and relative proportion can change during the transfer of the waste in individual batches. A key uncertainty in the waste feed delivery system is the potential variation in UDS transferred in individual batches in comparison to an initial sample used for evaluating the acceptance criteria. To address this uncertainty, a number of small-scale mixing tests have been conducted as part of Washington River Protection Solutions’ Small Scale Mixing Demonstration (SSMD) project to determine the performance of the DST mixing and sampling systems.

  1. Summary of the Midwest conference on small-scale hydropower in the Midwest: an old technology whose time has come

    SciTech Connect (OSTI)

    1980-05-01

    A variety of decision makers convened to examine and discuss certain significant problems associated with small-scale hydroelectric development in the Midwestern region, comprised of Illinois, Indiana, Kentucky, Michigan, Ohio, West Virginia, and Wisconsin. The conference opened with an introductory panel of resource persons who outlined the objectives of the conference, presented information on small-scale hydro, and described the materials available to conference participants. A series of workshop sessions followed. Two of the workshop sessions discussed problems and policy responses raised by state and Federal regulation. The remaining two workshops dealt with economic issues confronting small-scale hydro development and the operation and usefulness of the systems dynamics model developed by the Thayer School of Engineering at Dartmouth College. A plenary session and recommendations completed the workshop.

  2. A Sustainable Focus for Laboratory Design, Engineering, and Operation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    International Institute for Sustainable Laboratories (I2SL), partnership changes, initiatives, energy efficiency ... More Documents & Publications Top ECMs for Labs and Data ...

  3. Fuel from farms: a guide to small-scale ethanol production

    SciTech Connect (OSTI)

    1980-02-01

    A guide on fermentation processes with emphasis on small-scale production of ethanol using farm crops as a source of raw material is published. The current status of on-farm ethanol production as well as an overview of some of the technical and economic factors is presented. Decision and planning worksheets and a sample business plan for use in decision making are included. Specifics in production including information on the raw materials, system components, and operational requirements are also provided. Diagrams of fermentors and distilling apparatus are included. (DC)

  4. Energy Department Awards New Contract to Manage and Operate Brookhaven National Laboratory

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) has awarded a new five-year, $3.2 billion contract to Brookhaven Science Associates (BSA) to manage and operate Brookhaven National Laboratory. The award was the result of a DOE competition for the management and operations (M&O) contract for the laboratory, which has been operated by BSA for the Department since 1998.

  5. Design and modeling of small scale multiple fracturing experiments

    SciTech Connect (OSTI)

    Cuderman, J F

    1981-12-01

    Recent experiments at the Nevada Test Site (NTS) have demonstrated the existence of three distinct fracture regimes. Depending on the pressure rise time in a borehole, one can obtain hydraulic, multiple, or explosive fracturing behavior. The use of propellants rather than explosives in tamped boreholes permits tailoring of the pressure risetime over a wide range since propellants having a wide range of burn rates are available. This technique of using the combustion gases from a full bore propellant charge to produce controlled borehole pressurization is termed High Energy Gas Fracturing (HEGF). Several series of HEGF, in 0.15 m and 0.2 m diameter boreholes at 12 m depths, have been completed in a tunnel complex at NTS where mineback permitted direct observation of fracturing obtained. Because such large experiments are costly and time consuming, smaller scale experiments are desirable, provided results from small experiments can be used to predict fracture behavior in larger boreholes. In order to design small scale gas fracture experiments, the available data from previous HEGF experiments were carefully reviewed, analytical elastic wave modeling was initiated, and semi-empirical modeling was conducted which combined predictions for statically pressurized boreholes with experimental data. The results of these efforts include (1) the definition of what constitutes small scale experiments for emplacement in a tunnel complex at the Nevada Test Site, (2) prediction of average crack radius, in ash fall tuff, as a function of borehole size and energy input per unit length, (3) definition of multiple-hydraulic and multiple-explosive fracture boundaries as a function of boreholes size and surface wave velocity, (4) semi-empirical criteria for estimating stress and acceleration, and (5) a proposal that multiple fracture orientations may be governed by in situ stresses.

  6. WASTE HEAT-TO-POWER IN SMALL-SCALE INDUSTRY USING SCROLL EXPANDER...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    WASTE HEAT-TO-POWER IN SMALL-SCALE INDUSTRY USING SCROLL EXPANDER FOR ORGANIC RANKINE BOTTOMING CYCLE WASTE HEAT-TO-POWER IN SMALL-SCALE INDUSTRY USING SCROLL EXPANDER FOR ORGANIC ...

  7. Sandia National Laboratories: Careers: Business Support & Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Business Support & Operations Photo of Sandia staff Solving the world's most challenging technical problems requires the support of business and operations professionals. Sandia is rich in opportunities for business support and operations professionals to use their education and experience to build flexible solutions in a dynamic research-and-development environment. Our support and operations personnel partner with internationally recognized scientists and engineers to solve the most

  8. Handbook for Small-Scale Densified Biomass Fuel (Pellets) Manufacturing for Local Markets.

    SciTech Connect (OSTI)

    Folk, Richard L.; Govett, Robert L.

    1992-07-01

    Wood pellet manufacturing in the Intermountain West is a recently founded and rapidly expanding energy industry for small-scale producers. Within a three-year period, the total number of manufacturers in the region has increased from seven to twelve (Folk et al., 1988). Small-scale industry development is evolving because a supply of raw materials from small and some medium-sized primary and secondary wood processors that has been largely unused. For the residue producer considering pellet fuel manufacturing, the wastewood generated from primary products often carries a cost associated with residue disposal when methods at-e stockpiling, landfilling or incinerating. Regional processors use these methods for a variety of reasons, including the relatively small amounts of residue produced, residue form, mixed residue types, high transportation costs and lack of a local market, convenience and absence of regulation. Direct costs associated with residue disposal include the expenses required to own and operate residue handling equipment, costs for operating and maintaining a combustor and tipping fees charged to accept wood waste at public landfills. Economic and social costs related to environmental concerns may also be incurred to include local air and water quality degradation from open-air combustion and leachate movement into streams and drinking water.

  9. EIS-0157: Site-wide for Continued Operation of Lawrence Livermore/Sandia National Laboratory, Livermore

    Broader source: Energy.gov [DOE]

    The Department of Energy prepared this environmental impact statement to analyze the potential environmental impacts of the continued operation of Lawrence Livermore National Laboratory and Sandia National Laboratory - Livermore, including programmatic enhancements and facility modifications to occur over the subsequent 10-year term that are pursuant to research and development missions established for the Laboratories by Congress and the President.

  10. SCALING PROPERTIES OF SMALL-SCALE FLUCTUATIONS IN MAGNETOHYDRODYNAMIC TURBULENCE

    SciTech Connect (OSTI)

    Perez, Jean Carlos; Mason, Joanne; Boldyrev, Stanislav; Cattaneo, Fausto E-mail: j.mason@exeter.ac.uk E-mail: cattaneo@flash.uchicago.edu

    2014-09-20

    Magnetohydrodynamic (MHD) turbulence in the majority of natural systems, including the interstellar medium, the solar corona, and the solar wind, has Reynolds numbers far exceeding the Reynolds numbers achievable in numerical experiments. Much attention is therefore drawn to the universal scaling properties of small-scale fluctuations, which can be reliably measured in the simulations and then extrapolated to astrophysical scales. However, in contrast with hydrodynamic turbulence, where the universal structure of the inertial and dissipation intervals is described by the Kolmogorov self-similarity, the scaling for MHD turbulence cannot be established based solely on dimensional arguments due to the presence of an intrinsic velocity scale—the Alfvén velocity. In this Letter, we demonstrate that the Kolmogorov first self-similarity hypothesis cannot be formulated for MHD turbulence in the same way it is formulated for the hydrodynamic case. Besides profound consequences for the analytical consideration, this also imposes stringent conditions on numerical studies of MHD turbulence. In contrast with the hydrodynamic case, the discretization scale in numerical simulations of MHD turbulence should decrease faster than the dissipation scale, in order for the simulations to remain resolved as the Reynolds number increases.

  11. STUDYING LARGE- AND SMALL-SCALE ENVIRONMENTS OF ULTRAVIOLET LUMINOUS

    Office of Scientific and Technical Information (OSTI)

    CA 91101 (United States); Neff, Susan G. Laboratory for Astronomy and Solar Physics, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States), E-mail:...

  12. Idaho National Engineering Laboratory Waste Management Operations Roadmap Document

    SciTech Connect (OSTI)

    Bullock, M.

    1992-04-01

    At the direction of the Department of Energy-Headquarters (DOE-HQ), the DOE Idaho Field Office (DOE-ID) is developing roadmaps for Environmental Restoration and Waste Management (ER&WM) activities at Idaho National Engineering Laboratory (INEL). DOE-ID has convened a select group of contractor personnel from EG&G Idaho, Inc. to assist DOE-ID personnel with the roadmapping project. This document is a report on the initial stages of the first phase of the INEL`s roadmapping efforts.

  13. OAK RIDGE NATIONAL LABORATORY OPERATED BY MARTIN MARIETTA ENERGY...

    Office of Legacy Management (LM)

    OPERATED BY MARTIN MARIETTA ENERGY SYSTEMS, INC. POST OFFICE BOX X OAK RIOGE. TENNSS 3780I 0ctober 8, 1984 M r . A r t h u r J . W h l t m a n D i v i s l o n o f R e m e ...

  14. Supplement analysis for continued operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore. Volume 2: Comment response document

    SciTech Connect (OSTI)

    1999-03-01

    The US Department of Energy (DOE), prepared a draft Supplement Analysis (SA) for Continued Operation of Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories, Livermore (SNL-L), in accordance with DOE`s requirements for implementation of the National Environmental Policy Act of 1969 (NEPA) (10 Code of Federal Regulations [CFR] Part 1021.314). It considers whether the Final Environmental Impact Statement and Environmental Impact Report for Continued Operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore (1992 EIS/EIR) should be supplement3ed, whether a new environmental impact statement (EIS) should be prepared, or no further NEPA documentation is required. The SA examines the current project and program plans and proposals for LLNL and SNL-L, operations to identify new or modified projects or operations or new information for the period from 1998 to 2002 that was not considered in the 1992 EIS/EIR. When such changes, modifications, and information are identified, they are examined to determine whether they could be considered substantial or significant in reference to the 1992 proposed action and the 1993 Record of Decision (ROD). DOE released the draft SA to the public to obtain stakeholder comments and to consider those comments in the preparation of the final SA. DOE distributed copies of the draft SA to those who were known to have an interest in LLNL or SNL-L activities in addition to those who requested a copy. In response to comments received, DOE prepared this Comment Response Document.

  15. Video: O&M Best Practices for Small-Scale PV Systems Success Story |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy O&M Best Practices for Small-Scale PV Systems Success Story Video: O&M Best Practices for Small-Scale PV Systems Success Story See how the Federal Energy Management Program's eTraining course, O&M Best Practices for Small-Scale PV Systems, helped federal energy and facility management professionals complete successful photovoltaics (PV) projects

  16. U.S. Department of Energy Small-Scale Biorefineries: Project...

    Broader source: Energy.gov (indexed) [DOE]

    of focus, their cost share, and how much DOE is investing in them. smallscalebiorefineryoverview.pdf More Documents & Publications U.S. Department of Energy Small-Scale...

  17. Design for a small-scale fuel alcohol plant

    SciTech Connect (OSTI)

    Berglund, G.R.; Richardson, J.G.

    1982-08-01

    The fuel alcohol plant described in this article was designed, constructed and is being operated for the US DOE by EG and G Idaho. The plant can be operated by a single owner and produces 100 L of ethanol per hour and wet stillage for animal feed using corn as the primary feedstock. Existing technology and off-the-shelf equipment have been used whenever possible. The operation of the plant and microprocessor control of the process are described. (Refs. 1).

  18. EA-1131: Relocation of Neutron Tube Target Loading Operation, Los Alamos Laboratory, Los Alamos, New Mexico

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to relocate the Neutron Tube Target Loading operations at the U.S. Department of Energy Los Alamos National Laboratory in New Mexico from...

  19. EIS-0238: Continued Operation of the Los Alamos National Laboratory, Los Alamos, New Mexico

    Broader source: Energy.gov [DOE]

    This EIS evaluates the potential environmental impacts of a proposal to continue operating the Los Alamos National Laboratory (LANL) located in Los Alamos County, in north-central New Mexico. DOE...

  20. Sandia National Laboratories is a multi-program laboratory managed and operated

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Security Administration under contract DE-AC04- 94AL85000. Sandia Large Rotor Design Scorecard (SNL100-00) Example completed for SNL100-00. Reference: D.T. Griffith and T.D. Ashwill, "The Sandia 100-meter All-glass Baseline Wind Turbine Blade: SNL100-00," Sandia National Laboratories Technical Report, SAND2011-3779. Table 1: Blade Parameters Parameter Value Blade Designation SNL100-00 Wind Speed Class IB Blade Length (m) 100 Blade Weight (kg) 114,172 Span-wise CG location (m) 33.6 #

  1. STATISTICAL EVALUATION OF SMALL SCALE MIXING DEMONSTRATION SAMPLING AND BATCH TRANSFER PERFORMANCE - 12093

    SciTech Connect (OSTI)

    GREER DA; THIEN MG

    2012-01-12

    The ability to effectively mix, sample, certify, and deliver consistent batches of High Level Waste (HLW) feed from the Hanford Double Shell Tanks (DST) to the Waste Treatment and Immobilization Plant (WTP) presents a significant mission risk with potential to impact mission length and the quantity of HLW glass produced. DOE's Tank Operations Contractor, Washington River Protection Solutions (WRPS) has previously presented the results of mixing performance in two different sizes of small scale DSTs to support scale up estimates of full scale DST mixing performance. Currently, sufficient sampling of DSTs is one of the largest programmatic risks that could prevent timely delivery of high level waste to the WTP. WRPS has performed small scale mixing and sampling demonstrations to study the ability to sufficiently sample the tanks. The statistical evaluation of the demonstration results which lead to the conclusion that the two scales of small DST are behaving similarly and that full scale performance is predictable will be presented. This work is essential to reduce the risk of requiring a new dedicated feed sampling facility and will guide future optimization work to ensure the waste feed delivery mission will be accomplished successfully. This paper will focus on the analytical data collected from mixing, sampling, and batch transfer testing from the small scale mixing demonstration tanks and how those data are being interpreted to begin to understand the relationship between samples taken prior to transfer and samples from the subsequent batches transferred. An overview of the types of data collected and examples of typical raw data will be provided. The paper will then discuss the processing and manipulation of the data which is necessary to begin evaluating sampling and batch transfer performance. This discussion will also include the evaluation of the analytical measurement capability with regard to the simulant material used in the demonstration tests. The paper will conclude with a discussion of the analysis results illustrating the relationship between the pre-transfer samples and the batch transfers, which support the recommendation regarding the need for a dedicated feed sampling facility.

  2. EIS-0380: Site-Wide Environmental Impact Statement for Continued Operation of the Los Alamos National Laboratory, New Mexico

    Broader source: Energy.gov [DOE]

    This Site-Wide EIS evaluates the continued operation of the Los Alamos National Laboratory (LANL). NNSA identified and assessed three alternatives for continued operation of LANL: (1) No Action, (2) Reduced Operations, and (3) Expanded Operations.

  3. CRAD, Conduct of Operations- Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February, 2007 assessment of the Conduct of Operations Program portion of an Operational Readiness Review of the Oak Ridge National Laboratory, High Flux Isotope Reactor.

  4. CRAD, Conduct of Operations- Oak Ridge National Laboratory TRU ALPHA LLWT Project

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a November, 2003 assessment of the Conduct of Operations Program portion of an Operational Readiness Review of the Oak Ridge National Laboratory, TRU ALPHA LLWT Project.

  5. CRAD, Conduct of Operations- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Conduct of Operations Program portion of an Operational Readiness Review at the Los Alamos National Laboratory, Waste Characterization, Reduction, and Repackaging Facility.

  6. Initial Operation of the High Temperature Electrolysis Integrated Laboratory Scale Experiment at INL

    SciTech Connect (OSTI)

    C. M. Stoots; J. E. O'Brien; K. G. Condie; J. S. Herring; J. J. Hartvigsen

    2008-06-01

    An integrated laboratory scale, 15 kW high-temperature electrolysis facility has been developed at the Idaho National Laboratory under the U.S. Department of Energy Nuclear Hydrogen Initiative. Initial operation of this facility resulted in over 400 hours of operation with an average hydrogen production rate of approximately 0.9 Nm3/hr. The integrated laboratory scale facility is designed to address larger-scale issues such as thermal management (feed-stock heating, high-temperature gas handling), multiple-stack hot-zone design, multiple-stack electrical configurations, and other “integral” issues. This paper documents the initial operation of the ILS, with experimental details about heat-up, initial stack performance, as well as long-term operation and stack degradation.

  7. Customer adoption of small-scale on-site power generation

    SciTech Connect (OSTI)

    Siddiqui, Afzal S.; Marnay, Chris; Hamachi, Kristina S.; Rubio, F. Javier

    2001-04-01

    The electricity supply system is undergoing major regulatory and technological change with significant implications for the way in which the sector will operate (including its patterns of carbon emissions) and for the policies required to ensure socially and environmentally desirable outcomes. One such change stems from the rapid emergence of viable small-scale (i.e., smaller than 500 kW) generators that are potentially competitive with grid delivered electricity, especially in combined heat and power configurations. Such distributed energy resources (DER) may be grouped together with loads in microgrids. These clusters could operate semi-autonomously from the established power system, or macrogrid, matching power quality and reliability more closely to local end-use requirements. In order to establish a capability for analyzing the effect that microgrids may have on typical commercial customers, such as office buildings, restaurants, shopping malls, and grocery stores, an economic mod el of DER adoption is being developed at Berkeley Lab. This model endeavors to indicate the optimal quantity and type of small on-site generation technologies that customers could employ given their electricity requirements. For various regulatory schemes and general economic conditions, this analysis produces a simple operating schedule for any installed generators. Early results suggest that many commercial customers can benefit economically from on-site generation, even without considering potential combined heat and power and reliability benefits, even though they are unlikely to disconnect from the established power system.

  8. Small-Scale Carbon Sequestration Field Test Yields Significant Lessons

    Energy Savers [EERE]

    Small Space Heater Basics Small Space Heater Basics August 19, 2013 - 10:38am Addthis Small space heaters, also called portable heaters, are typically used when the main heating system is inadequate or when central heating is too costly to install or operate. Space heater capacities generally range between 10,000 Btu to 40,000 Btu per hour. Common fuels used for this purpose are electricity, propane, natural gas, and kerosene. Although most space heaters rely on convection (the circulation of

  9. Small Scale SOFC Demonstration Using Bio-Based and Fossil Fuels

    SciTech Connect (OSTI)

    Michael Petrik; Robert Ruhl

    2012-03-31

    Technology Management, Inc. (TMI) of Cleveland, Ohio, has completed the project entitled ñ€œSmall Scale SOFC Demonstration using Bio-based and Fossil Fuels.ñ€ Under this program, two 1-kW systems were engineered as technology demonstrators of an advanced technology that can operate on either traditional hydrocarbon fuels or renewable biofuels. The systems were demonstrated at Patterson's Fruit Farm of Chesterland, OH and were open to the public during the first quarter of 2012. As a result of the demonstration, TMI received quantitative feedback on operation of the systems as well as qualitative assessments from customers. Based on the test results, TMI believes that > 30% net electrical efficiency at 1 kW on both traditional and renewable fuels with a reasonable entry price is obtainable. The demonstration and analysis provide the confidence that a 1 kW entry-level system offers a viable value proposition, but additional modifications are warranted to reduce sound and increase reliability before full commercial acceptance.

  10. Summary of the Mid-Atlantic conference on small-scale hydropower in the Mid-Atlantic states: resolution of the barriers impeding its development

    SciTech Connect (OSTI)

    Not Available

    1980-05-01

    The workshop was conducted to bring together interested persons to examine and discuss the major problems associated with small-scale hydroelectric dam development in the Mid-Atlantic region. The conference opened with an introductory panel which outlined the objectives and the materials available to conference participants. Two of the workshops discussed problems and policy responses raised by state and Federal regulation. The other two workshops concerned economic issues confronting small-scale hydro development and the operation and usefulness of the systems dynamics model under development by the Thayer School of Engineering at Dartmouth. Various Federal and state programs designed to stimulate small-scale hydro development were discussed. A plenary session completed the workshops.

  11. Environmental assessment related to the operation of Argonne National Laboratory, Argonne, Illinois

    SciTech Connect (OSTI)

    Not Available

    1982-08-01

    In order to evaluate the environmental impacts of Argonne National Laboratory (ANL) operations, this assessment includes a descriptive section which is intended to provide sufficient detail to allow the various impacts to be viewed in proper perspective. In particular, details are provided on site characteristics, current programs, characterization of the existing site environment, and in-place environmental monitoring programs. In addition, specific facilities and operations that could conceivably impact the environment are described at length. 77 refs., 16 figs., 47 tabs.

  12. Small-scale hydroelectric power in the Pacific Northwest: new impetus for an old energy source

    SciTech Connect (OSTI)

    Not Available

    1980-07-01

    Energy supply is one of the most important issues facing Northwestern legislators today. To meet the challenge, state legislatures must address the development of alternative energy sources. The Small-Scale Hydroelectric Power Policy Project of the National Conference of State Legislators (NCSL) was designed to assist state legislators in looking at the benefits of one alternative, small-scale hydro. Because of the need for state legislative support in the development of small-scale hydroelectric, NCSL, as part of its contract with the Department of Energy, conducted the following conference on small-scale hydro in the Pacific Northwest. The conference was designed to identify state obstacles to development and to explore options for change available to policymakers. A summary of the conference proceedings is presented.

  13. DOE Selects 3 Small-Scale Biorefinery Projects for up to $86 Million of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Funding in Maine, Tennessee and Kentucky | Department of Energy 3 Small-Scale Biorefinery Projects for up to $86 Million of Federal Funding in Maine, Tennessee and Kentucky DOE Selects 3 Small-Scale Biorefinery Projects for up to $86 Million of Federal Funding in Maine, Tennessee and Kentucky April 18, 2008 - 10:49am Addthis Projects Demonstrate Continued Commitment to Advancing Development of Sustainable, Cost-Competitive Cellulosic Ethanol ALEXANDRIA, VA. - U.S. Department of

  14. CRAD, Conduct of Operations- Los Alamos National Laboratory TA 55 SST Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Conduct of Operations program at the Los Alamos National Laboratory, TA 55 SST Facility.

  15. Enterprise Assessments Targeted Review of Nuclear Reactor Facility Operations at Sandia National Laboratories … March 2016

    Energy Savers [EERE]

    Targeted Review of Nuclear Reactor Facility Operations at Sandia National Laboratories March 2016 Office of Nuclear Safety and Environmental Assessments Office of Environment, Safety and Health Assessments Office of Enterprise Assessments U.S. Department of Energy i Table of Contents Acronyms ...................................................................................................................................................... ii Executive Summary

  16. CRAD, Conduct of Operations- Oak Ridge National Laboratory High Flux Isotope Reactor

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February, 2007 assessment of the Conduct of Operations Program in preparation for restart of the Oak Ridge National Laboratory, High Flux Isotope Reactor.

  17. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories and Facilities Laboratories and Facilities Laboratories and Facilities National Energy Technology Laboratory - The National Energy Technology Laboratory (NETL) is the lead field center for the Office of Fossil Energy's research and development program. Scientists at its Pittsburgh, Pa., and Morgantown, W. Va., campuses conduct onsite research while contract administrators oversee nearly 700 federally-sponsored projects conducted by private sector research partners. The Houston,

  18. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    performance computer system installed at Los Alamos National Laboratory June 17, 2014 Unclassified 'Wolf' system to advance many fields of science LOS ALAMOS, N.M., June 17, 2014-Los Alamos National Laboratory recently installed a new high-performance computer system, called Wolf, which will be used for unclassified research. "This machine modernizes our mid-tier resources available to Laboratory scientists," said Bob Tomlinson, of the Laboratory's High Performance Computing group.

  19. U.S. Department of Energy Selects First Round of Small-Scale Biorefinery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Projects for Up to $114 Million in Federal Funding | Department of Energy First Round of Small-Scale Biorefinery Projects for Up to $114 Million in Federal Funding U.S. Department of Energy Selects First Round of Small-Scale Biorefinery Projects for Up to $114 Million in Federal Funding January 29, 2008 - 10:53am Addthis Ten percent commercial-scale biorefineries will help the nation meet new Renewable Fuels Standard WASHINGTON, DC - U.S. Department of Energy (DOE) Secretary Samuel W. Bodman

  20. WASTE HEAT-TO-POWER IN SMALL-SCALE INDUSTRY USING SCROLL EXPANDER FOR

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ORGANIC RANKINE BOTTOMING CYCLE | Department of Energy WASTE HEAT-TO-POWER IN SMALL-SCALE INDUSTRY USING SCROLL EXPANDER FOR ORGANIC RANKINE BOTTOMING CYCLE WASTE HEAT-TO-POWER IN SMALL-SCALE INDUSTRY USING SCROLL EXPANDER FOR ORGANIC RANKINE BOTTOMING CYCLE TIAX LLC - Lexington, MA Medium-grade waste heat can be converted to electric power using a novel, scalable scroll expander having an isentropic expansion efficiency of 75% to 80% for a broad range of organic Rankine cycle boiler

  1. Fabrication of small-scale structures with non-planar features

    DOE Patents [OSTI]

    Burckel, David B.; Ten Eyck, Gregory A.

    2015-11-19

    The fabrication of small-scale structures is disclosed. A unit-cell of a small-scale structure with non-planar features is fabricated by forming a membrane on a suitable material. A pattern is formed in the membrane and a portion of the substrate underneath the membrane is removed to form a cavity. Resonators are then directionally deposited on the wall or sides of the cavity. The cavity may be rotated during deposition to form closed-loop resonators. The resonators may be non-planar. The unit-cells can be formed in a layer that includes an array of unit-cells.

  2. Environmental analysis of the operation of Oak Ridge National Laboratory (X-10 site)

    SciTech Connect (OSTI)

    Boyle, J.W.; Blumberg, R.; Cotter, S.J.

    1982-11-01

    An environmental analysis of the operation of the Oak Ridge National Laboratory (ORNL) facilities in Bethel Valley and Melton Valley was conducted to present to the public information concerning the extent to which recognizable effects, or potential effects, on the environment may occur. The analysis addresses current operations of the ORNL X-10 site and completed operations that may continue to have residual effects. Solid wastes from ORNL operations at the Y-12 site which are transported to the X-10 site for burial (e.g., Biology Division animal wastes) are included as part of X-10 site operation. Socioeconomic effects are associated primarily with the communities where employees live and with the Knoxville Bureau of Economic Analysis economic area as a whole. Therefore, ORNL employees at both Y-12 and X-10 sites are included in the ORNL socioeconomic impact analysis. An extensive base of environmental data was accumulated for this report. Over 80 reports related to ORNL facilities and/or operations are cited as well as many open-literature citations. Environmental effects of the operation of ORNL result from operational discharges from the onsite facilities; construction and/or modification of facilities, transportation to and from the site of persons, goods and services; socioeconomic impacts to the local, regional, and general population; and accidental discharges if they should occur. Operational discharges to the environnment are constrained by federal, state, and local regulations and by criteria established by the US Department of Energy to minimize adverse impacts. It is the purpose of this document to evaluate the operation of the ORNL insofar as impacts beyond the site boundary may occur or have the potential for occurrence.

  3. The impact of small-scale turbulence on laminar magnetic reconnection

    SciTech Connect (OSTI)

    Watson, P. G.; Oughton, S.; Craig, I. J. D. [School of Physics, University of Sydney, NSW 2006 (Australia); Department of Mathematics, University of Waikato, Private Bag 3105, Hamilton (New Zealand)

    2007-03-15

    Initial states in incompressible two-dimensional magnetohydrodynamics that are known to lead to strong current sheets and (laminar) magnetic reconnection are modified by the addition of small-scale turbulent perturbations of various energies. The evolution of these states is computed with the aim of ascertaining the influence of the turbulence on the underlying laminar solution. Two main questions are addressed here: (1) What effect does small-scale turbulence have on the energy dissipation rate of the underlying solution? (2) What is the threshold turbulent perturbation level above which the original laminar reconnective dynamics is no longer recognizable. The simulations show that while the laminar dynamics persist the dissipation rates are largely unaffected by the turbulence, other than modest increases attributable to the additional small length scales present in the new initial condition. The solutions themselves are also remarkably insensitive to small-scale turbulent perturbations unless the perturbations are large enough to undermine the integrity of the underlying cellular flow pattern. Indeed, even initial states that lead to the evolution of small-scale microscopic sheets can survive the addition of modest turbulence. The role of a large-scale organizing background magnetic field is also addressed.

  4. Atomistic modeling of nanowires, small-scale fatigue damage in cast magnesium, and materials for MEMS.

    SciTech Connect (OSTI)

    Dunn, Martin L.; Talmage, Mellisa J.; McDowell, David L., 1956- (,-Georgia Institute of Technology, Atlanta, GA); West, Neil (University of Colorado, Boulder, CO); Gullett, Philip Michael (Mississippi State University , MS); Miller, David C. (University of Colorado, Boulder, CO); Spark, Kevin (University of Colorado, Boulder, CO); Diao, Jiankuai (University of Colorado, Boulder, CO); Horstemeyer, Mark F. (Mississippi State University , MS); Zimmerman, Jonathan A.; Gall, K

    2006-10-01

    Lightweight and miniaturized weapon systems are driving the use of new materials in design such as microscale materials and ultra low-density metallic materials. Reliable design of future weapon components and systems demands a thorough understanding of the deformation modes in these materials that comprise the components and a robust methodology to predict their performance during service or storage. Traditional continuum models of material deformation and failure are not easily extended to these new materials unless microstructural characteristics are included in the formulation. For example, in LIGA Ni and Al-Si thin films, the physical size is on the order of microns, a scale approaching key microstructural features. For a new potential structural material, cast Mg offers a high stiffness-to-weight ratio, but the microstructural heterogeneity at various scales requires a structure-property continuum model. Processes occurring at the nanoscale and microscale develop certain structures that drive material behavior. The objective of the work presented in this report was to understand material characteristics in relation to mechanical properties at the nanoscale and microscale in these promising new material systems. Research was conducted primarily at the University of Colorado at Boulder to employ tightly coupled experimentation and simulation to study damage at various material size scales under monotonic and cyclic loading conditions. Experimental characterization of nano/micro damage will be accomplished by novel techniques such as in-situ environmental scanning electron microscopy (ESEM), 1 MeV transmission electron microscopy (TEM), and atomic force microscopy (AFM). New simulations to support experimental efforts will include modified embedded atom method (MEAM) atomistic simulations at the nanoscale and single crystal micromechanical finite element simulations. This report summarizes the major research and development accomplishments for the LDRD project titled 'Atomistic Modeling of Nanowires, Small-scale Fatigue Damage in Cast Magnesium, and Materials for MEMS'. This project supported a strategic partnership between Sandia National Laboratories and the University of Colorado at Boulder by providing funding for the lead author, Ken Gall, and his students, while he was a member of the University of Colorado faculty.

  5. OAK RIDGE NATIONAL LABORATORY OPERATED BY MARTIN MARIETTA ENERGY SYSTEMS, INC.

    Office of Legacy Management (LM)

    ' ! ,' c;. I' , . ad OAK RIDGE NATIONAL LABORATORY OPERATED BY MARTIN MARIETTA ENERGY SYSTEMS, INC. FOR THE UNITE0 STATES DEPARTMENT OF ENERGY 0 1; , : 3 ., q (-g.lis oRNL/TM-11182 Results of the Preliminary Radiological Survey at the Former Diamond Magnesium Company Site, Luckey, Ohio (DMLOOI) R. D. Foley J. W. Crutcher b-1 ORNLKM-11182 HEALTH AND SAFEIY RESEARCH DIVISION Nuclear and Chemical Waste Programs (Activity No. AT3 10 05 00 0; ONLWCOl) RESULTS OFTHE PRELIMIN ARY RADIOLOGICAL SURVEY AT

  6. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forest fire near Los Alamos National Laboratory June 26, 2011 Los Alamos, New Mexico, June 26, 2011, 6:07pm-The Las Conchas fire burning in the Jemez Mountains approximately 12...

  7. U.S. Department of Energy Awards Contract for Management and Operation of Ames Laboratory to Iowa State University

    Broader source: Energy.gov [DOE]

    WASHINGTON, DC - The U.S. Department of Energy (DOE) has awarded a new $150 million, five-year contract for management and operation of Ames Laboratory to Iowa State University (ISU).

  8. DOE/EIS-0238, Site-Wide Environmental Impact Statement for Continued Operation of the Los Alamos National Laboratory (1999)

    Broader source: Energy.gov [DOE]

    DOE proposes to continue operating the Los Alamos National Laboratory (LANL) located in Los Alamos County, in north-central New Mexico. DOE has identified and assessed four alternatives for the...

  9. Use of Management and Operating Contractor and National Laboratory Employees for Services in the D.C. Area

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-05

    This Notice provides requirements for Headquarters use of employees from Management and Operating (M&O) contractors and National Laboratories and establishes limitations on payments to those employees whose assignments to Headquarters exceed 365 days.

  10. Energy Department Awards Contract to the University of California to Manage and Operate Lawrence Berkeley National Laboratory

    Broader source: Energy.gov [DOE]

    WASHINGTON, DC -- The Department of Energy (DOE) has awarded a new five-year contract to the University of California to manage and operate its Lawrence Berkeley National Laboratory (LBNL).  The...

  11. Proceedings of a Topical Meeting On Small Scale Geothermal Power Plants and Geothermal Power Plant Projects

    SciTech Connect (OSTI)

    1986-02-12

    These proceedings describe the workshop of the Topical Meeting on Small Scale Geothermal Power Plants and Geothermal Power Plant Projects. The projects covered include binary power plants, rotary separator, screw expander power plants, modular wellhead power plants, inflow turbines, and the EPRI hybrid power system. Active projects versus geothermal power projects were described. In addition, a simple approach to estimating effects of fluid deliverability on geothermal power cost is described starting on page 119. (DJE-2005)

  12. UCRL-ID-124563 LLNL Small-scale Friction Sensitivity (BAM) Test

    Office of Scientific and Technical Information (OSTI)

    4563 LLNL Small-scale Friction Sensitivity (BAM) Test . * - L. Richard Simpson M. Frances Foltz June 1996 DISCLAIMER This document was prepared as an account of work sponsored by an agency of the United States Government Neither the United States Government nor the University of California nor any o f their employes, makes any warranty, express or implied, or assumes any legal liability or responsibifity for the accuracy, completeness, or usefulness o f any information, apparatus, product, or

  13. 2012 THIN FILM AND SMALL SCALE MECHANICAL BEHAVIOR GRS/GRC, JULY 21-27, 2012

    SciTech Connect (OSTI)

    Balk, Thomas

    2012-07-27

    The mechanical behavior of materials with small dimension(s) is of both fundamental scientific interest and technological relevance. The size effects and novel properties that arise from changes in deformation mechanism have important implications for modern technologies such as thin films for microelectronics and MEMS devices, thermal and tribological coatings, materials for energy production and advanced batteries, etc. The overarching goal of the 2012 Gordon Research Conference on "Thin Film and Small Scale Mechanical Behavior" is to discuss recent studies and future opportunities regarding elastic, plastic and time-dependent deformation, as well as degradation and failure mechanisms such as fatigue, fracture and wear. Specific topics of interest include, but are not limited to: fundamental studies of physical mechanisms governing small-scale mechanical behavior; advances in test techniques for materials at small length scales, such as nanotribology and high-temperature nanoindentation; in-situ mechanical testing and characterization; nanomechanics of battery materials, such as swelling-induced phenomena and chemomechanical behavior; flexible electronics; mechanical properties of graphene and carbon-based materials; mechanical behavior of small-scale biological structures and biomimetic materials. Both experimental and computational work will be included in the oral and poster presentations at this Conference.

  14. Laboratory Investigations of low-swirl injectors operating with syngases - article no. 011502

    SciTech Connect (OSTI)

    Littlejohn, D.; Cheng, R.K.; Noble, D.R.; Lieuwen, T.

    2010-01-15

    The low-swirl injector (LSI) is a lean premixed combustion technology that has the potential for adaptation to fuel-flexible gas turbines operating on a variety of fuels. The objective of this study is to gain a fundamental understanding of the effect of syngas on the LSI flame behavior, the emissions, and the flowfield characteristics for adaptation to the combustion turbines in integrated gasification combined cycle clean coal power plants. The experiments were conducted in two facilities. Open atmospheric laboratory flames generated by a full size (6.35 cm) LSI were used to investigate the lean blow-off limits, emissions, and the flowfield characteristics. Verification of syngas operation at elevated temperatures and pressures were performed with a reduced scale (2.54 cm) LSI in a small pressurized combustion channel. The results show that the basic LSI design is amenable to burning syngases with up to 60% H{sub 2}. Syngases with high H{sub 2} concentration have lower lean blow-off limits. From particle image velocimetry measurements, the flowfield similarity behavior and the turbulent flame speeds of syngases flames are consistent with those observed in hydrocarbon and pure or diluted hydrogen flames. The NOx emissions from syngas flames show log-linear dependency on the adiabatic flame temperature and are comparable to those reported for the gaseous fuels reported previously. Successful firing of the reduced-scale LSI at 450 K operability of this concept at gas turbine conditions.

  15. Construction and operation of replacement hazardous waste handling facility at Lawrence Berkeley Laboratory. Environmental Assessment

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    The US Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0423, for the construction and operation of a replacement hazardous waste handling facility (HWHF) and decontamination of the existing HWHF at Lawrence Berkeley Laboratory (LBL), Berkeley, California. The proposed facility would replace several older buildings and cargo containers currently being used for waste handling activities and consolidate the LBL`s existing waste handling activities in one location. The nature of the waste handling activities and the waste volume and characteristics would not change as a result of construction of the new facility. Based on the analysis in the EA, DOE has determined that the proposed action would not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969, 42 USC. 4321 et seq. Therefore, an environmental impact statement is not required.

  16. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mexican pueblo preserves cultural history through collaborative tours with Los Alamos National Laboratory August 24, 2015 Students gain new insights into their ancestry LOS ALAMOS, N.M., Aug. 24, 2015-San Ildefonso Pueblo's Summer Education Enhancement Program brought together academic and cultural learning in the form of a recent tour of Cave Kiva Trail in Mortandad Canyon."Opening up this archaeological site and sharing it with the descendants of its first inhabitants is a

  17. Selection and Characterization of Carbon Black and Surfactants for Development of Small Scale Uranium Oxicarbide Kernels

    SciTech Connect (OSTI)

    Contescu, Cristian I

    2006-01-01

    This report supports the effort for development of small scale fabrication of UCO (a mixture of UO{sub 2} and UC{sub 2}) fuel kernels for the generation IV high temperature gas reactor program. In particular, it is focused on optimization of dispersion conditions of carbon black in the broths from which carbon-containing (UO{sub 2} {center_dot} H{sub 2}O + C) gel spheres are prepared by internal gelation. The broth results from mixing a hexamethylenetetramine (HMTA) and urea solution with an acid-deficient uranyl nitrate (ADUN) solution. Carbon black, which is previously added to one or other of the components, must stay dispersed during gelation. The report provides a detailed description of characterization efforts and results, aimed at identification and testing carbon black and surfactant combinations that would produce stable dispersions, with carbon particle sizes below 1 {micro}m, in aqueous HMTA/urea and ADUN solutions. A battery of characterization methods was used to identify the properties affecting the water dispersability of carbon blacks, such as surface area, aggregate morphology, volatile content, and, most importantly, surface chemistry. The report introduces the basic principles for each physical or chemical method of carbon black characterization, lists the results obtained, and underlines cross-correlations between methods. Particular attention is given to a newly developed method for characterization of surface chemical groups on carbons in terms of their acid-base properties (pK{sub a} spectra) based on potentiometric titration. Fourier-transform infrared (FTIR) spectroscopy was used to confirm the identity of surfactants, both ionic and non-ionic. In addition, background information on carbon black properties and the mechanism by which surfactants disperse carbon black in water is also provided. A list of main physical and chemical properties characterized, samples analyzed, and results obtained, as well as information on the desired trend or range of values generally associated with better dispersability, is provided in the Appendix. Special attention was given to characterization of several surface-modified carbon blacks produced by Cabot Corporation through proprietary diazonium salts chemistry. As demonstrated in the report, these advanced carbons offer many advantages over traditional dispersions. They disperse very easily, do not require intensive mechanical shearing or sonication, and the particle size of the dispersed carbon black aggregates is in the target range of 0.15-0.20 {micro}m. The dispersions in water and HMTA/urea solutions are stable for at least 30 days; in conditions of simulated broth, the dispersions are stable for at least 6 hours. It is proposed that the optimization of the carbon black dispersing process is possible by replacing traditional carbon blacks and surfactants with surface-modified carbon blacks having suitable chemical groups attached on their surface. It is recognized that the method advanced in this report for optimizing the carbon black dispersion process is based on a limited number of tests made in aqueous and simulated broth conditions. The findings were corroborated by a limited number of tests carried out with ADUN solutions by the Nuclear Science and Technology Division at Oak Ridge National Laboratory (ORNL). More work is necessary, however, to confirm the overall recommendation based on the findings discussed in this report: namely, that the use of surface-modified carbon blacks in the uranium-containing broth will not adversely impact the chemistry of the gelation process, and that high quality uranium oxicarbide (UCO) kernels will be produced after calcination.

  18. EIS-0466: Site-wide Environmental Impact Statement for the Continued Operation of Sandia National Laboratories/New Mexico

    Broader source: Energy.gov [DOE]

    This Site-Wide EIS evaluates the continued operation of the DOE/NNSA activities at Sandia National Laboratories. The SWEIS will consider a No Action Alternative, which is to continue current operations through implementation of the 1999 Record of Decision and subsequent NEPA decisions, and three action alternatives proposed for consideration.

  19. EIS-0466: Site-wide Environmental Impact Statement for Ongoing Operations at Sandia National Laboratories, Albuquerque, New Mexico

    Broader source: Energy.gov [DOE]

    This Site-Wide EIS evaluates the continued operation of the DOE/NNSA activities at Sandia National Laboratories. The SWEIS will consider a No Action Alternative, which is to continue current operations through implementation of the 1999 Record of Decision and subsequent NEPA decisions, and three action alternatives proposed for consideration.

  20. BINARY QUASARS IN THE SLOAN DIGITAL SKY SURVEY: EVIDENCE FOR EXCESS CLUSTERING ON SMALL SCALES

    SciTech Connect (OSTI)

    Hennawi, J F; Strauss, M A; Oguri, M; Inada, N; Richards, G T; Pindor, B; Schneider, D P; Becker, R H; Gregg, M D; Hall, P B; Johnston, D E; Fan, X; Burles, S; Schlegel, D J; Gunn, J E; Lupton, R; Bahcall, N A; Brunner, R J; Brinkman, J

    2005-11-10

    We present a sample of 218 new quasar pairs with proper transverse separations R{sub prop} < 1 h{sup -1} Mpc over the redshift range 0.5 < z < 3.0, discovered from an extensive follow up campaign to find companions around the Sloan Digital Sky Survey and 2dF Quasar Redshift Survey quasars. This sample includes 26 new binary quasars with separations R{sub prop} < 50 h{sup -1} kpc ({theta} < 10''), more than doubling the number of such systems known. We define a statistical sample of binaries selected with homogeneous criteria and compute its selection function, taking into account sources of incompleteness. The first measurement of the quasar correlation function on scales 10 h{sup -1} kpc < R{sub prop} < 400 h{sup -1} kpc is presented. For R{sub prop} {approx}< 40 h{sup -1} kpc, we detect an order of magnitude excess clustering over the expectation from the large scale (R{sub prop} {approx}> 3 h{sup -1} Mpc) quasar correlation function, extrapolated down as a power law to the separations probed by our binaries. The excess grows to {approx}30 at R{sub prop} {approx} 10 h{sup -1} kpc, and provides compelling evidence that the quasar autocorrelation function gets progressively steeper on sub-Mpc scales. This small scale excess can likely be attributed to dissipative interaction events which trigger quasar activity in rich environments. Recent small scale measurements of galaxy clustering and quasar-galaxy clustering are reviewed and discussed in relation to our measurement of small scale quasar clustering.

  1. SMALL-SCALE STRUCTURING OF ELLERMAN BOMBS AT THE SOLAR LIMB

    SciTech Connect (OSTI)

    Nelson, C. J.; Doyle, J. G. [Armagh Observatory, College Hill, Armagh BT61 9DG (United Kingdom); Scullion, E. M. [Institute of Theoretical Astrophysics, University of Oslo, NO-0371 Oslo (Norway); Freij, N.; Erdélyi, R. [Solar Physics and Space Plasma Research Centre, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom)

    2015-01-01

    Ellerman bombs (EBs) have been widely studied in recent years due to their dynamic, explosive nature and apparent links to the underlying photospheric magnetic field implying that they may be formed by magnetic reconnection in the photosphere. Despite a plethora of researches discussing the morphologies of EBs, there has been a limited investigation of how these events appear at the limb, specifically, whether they manifest as vertical extensions away from the disk. In this article, we make use of high-resolution, high-cadence observations of an Active Region at the solar limb, collected by the CRisp Imaging SpectroPolarimeter (CRISP) instrument, to identify EBs and infer their physical properties. The upper atmosphere is also probed using the Solar Dynamic Observatory's Atmospheric Imaging Assembly (SDO/AIA). We analyze 22 EB events evident within these data, finding that 20 appear to follow a parabolic path away from the solar surface at an average speed of 9 km s{sup –1}, extending away from their source by 580 km, before retreating back at a similar speed. These results show strong evidence of vertical motions associated with EBs, possibly explaining the dynamical ''flaring'' (changing in area and intensity) observed in on-disk events. Two in-depth case studies are also presented that highlight the unique dynamical nature of EBs within the lower solar atmosphere. The viewing angle of these observations allows for a direct linkage between these EBs and other small-scale events in the H? line wings, including a potential flux emergence scenario. The findings presented here suggest that EBs could have a wider-reaching influence on the solar atmosphere than previously thought, as we reveal a direct linkage between EBs and an emerging small-scale loop, and other near-by small-scale explosive events. However, as previous research found, these extensions do not appear to impact upon the H? line core, and are not observed by the SDO/AIA EUV filters.

  2. Legal obstacles and incentives to the development of small scale hydroelectric potential in Michigan

    SciTech Connect (OSTI)

    None,

    1980-05-01

    The legal and institutional obstacles to the development of small-scale hydroelectric energy at the state level is described. The Federal government also exercises extensive regulatory authority in the area. The first obstacle which any developer must confront in Michigan is obtaining the authority to utilize the river bed, banks, and flowing water at a proposed dam site. This involves a determination of ownership of the stream banks and bed, and the manner of obtaining either their title or use; and existing constraints with regard to the use of the water. Michigan follows the riparian theory of water law. The direct regulation; indirect regulation; public utilities regulation; financing; and taxation are discussed.

  3. Small scale biomass fueled gas turbine power plant. Report for February 1992--October 1997

    SciTech Connect (OSTI)

    Purvis, C.R.; Craig, J.D.

    1998-01-01

    The paper discusses a new-generation, small-scale (<20 MWe) biomass-fueled power plant that is being developed based on a gas turbine (Brayton cycle) prime mover. Such power plants are expected to increase the efficiency and lower the cost of generating power from fuels such as wood. The new power plants are also expected to economically utilize annual plant growth material (e.g., straw, grass, rice hulls, animal manure, cotton gin trash, and nut shells) that are not normally considered as fuel for power plants. The paper summarizes the new power generation concept with emphasis on the engineering challenges presented by the gas turbine component.

  4. Legal obstacles and incentives to the development of small scale hydroelectric power in West Virginia

    SciTech Connect (OSTI)

    None,

    1980-05-01

    The legal and institutional obstacles to the development of small-scale hydroelectric in West Virginia at the state level are described. The Federal government also exercises extensive regulatory authority in the area. The introductory section examines the dual regulatory system from the standpoint of the appropriate legal doctrine, the law of pre-emption, application of the law to the case of hydroelectric development, and concludes with an inquiry into the practical use of the doctrine by FERC. The development of small-scale hydroelectric energy depends on the selection of a site which will produce sufficient water power capacity to make the project economically attractive to a developer. In West Virginia, the right to use the flowing waters of a stream, creek, or river is appurtenant to the ownership of the lands bordering the watercourse. The lands are known as riparian lands. The water rights are known as riparian rights. Thus, the first obstacle a developer faces involves the acquisition of riparian lands and the subsequent right to the use of the water. The water law in West Virginia is discussed in detail followed by discussions on direct and indirect regulations; continuing obligations; financial considerations; and interstate organizations.

  5. A unified solution to the small scale problems of the ?CDM model

    SciTech Connect (OSTI)

    Popolo, A. Del; Lima, J.A.S.; Fabris, Júlio C.; Rodrigues, Davi C. E-mail: limajas@astro.iag.usp.br E-mail: davi.rodrigues@cosmo-ufes.org

    2014-04-01

    We study, by means of the model proposed in Del Popolo (2009), the effect of baryon physics on the small scale problems of the CDM model. We show that, using this model, the cusp/core problem, the missing satellite problem (MSP), the Too Big to Fail (TBTF) problem, and the angular momentum catastrophe can be reconciled with observations. Concerning the cusp/core problem, the interaction among dark matter (DM) and baryonic clumps of 1% the mass of the halo, through dynamical friction (DF), is able to flatten the inner cusp of the density profiles. We moreover assume that haloes form primarily through quiescent accretion, in agreement with the spherical collapse model (SCM)-secondary infall model (SIM) prescriptions. The results of this paper follow from the two assumptions above. Concerning the MSP and TBTF problem, applying to the Via Lactea II (VL2) subhaloes a series of corrections similar to those of Brooks et al. (2013), namely applying a Zolotov et al. (2012)-like correction obtained with our model, and further correcting for the UV heating and tidal stripping, we obtain that the number of massive, luminous satellites is in agreement with the number observed in the MW. The model also produces an angular momentum distribution in agreement with observations, that is with the distribution of the angular spin parameter and angular momentum of the dwarfs studied by van den Bosch, Burkert, and Swaters (2001). In conclusion, the small scale problems of the CDM model can all be solved by introducing baryon physics.

  6. Legal obstacles and incentives to the development of small scale hydroelectric power in New York

    SciTech Connect (OSTI)

    None,

    1980-05-01

    The legal and institutional obstacles to the development of small-scale hydroelectric energy at the state level are discussed. The Federal government also exercises extensive regulatory authority in the area, and the dual regulatory system from the standpoint of the appropriate legal doctrine, the law of pre-emption, application of the law to the case of hydroelectric development, and an inquiry into the practical use of the doctrine by the FERC is examined. The first step the small scale hydroelectric developer must take is that of acquiring title to the real property comprising the development site. The real estate parcel must include the requisite interest in the land adjacent to the watercourse, access to the underlying streambed and where needed, the land necessary for an upstream impoundment area. Land acquisition may be effectuated by purchase, lease, or grant by the state. In addition to these methods, New York permits the use of the eminent domain power of the state for public utilities under certain circumstances.

  7. Dynamic simulation of a solar-driven carbon dioxide transcritical power system for small scale combined heat and power production

    SciTech Connect (OSTI)

    Chen, Y.; Lundqvist, Per; Pridasawas, Wimolsiri

    2010-07-15

    Carbon dioxide is an environmental benign natural working fluid and has been proposed as a working media for a solar-driven power system. In the current work, the dynamic performance of a small scale solar-driven carbon dioxide power system is analyzed by dynamic simulation tool TRNSYS 16 and Engineering Equation Solver (EES) using co-solving technique. Both daily performance and yearly performance of the proposed system have been simulated. Different system operating parameters, which will influence the system performance, have been discussed. Under the Swedish climatic condition, the maximum daily power production is about 12 kW h and the maximum monthly power production is about 215 kW h with the proposed system working conditions. Besides the power being produced, the system can also produce about 10 times much thermal energy, which can be used for space heating, domestic hot water supply or driving absorption chillers. The simulation results show that the proposed system is a promising and environmental benign alternative for conventional low-grade heat source utilization system. (author)

  8. Legal obstacles and incentives to the development of small scale hydroelectric potential in Wisconsin

    SciTech Connect (OSTI)

    None,

    1980-05-01

    The legal and institutional obstacles to the development of small-scale hydroelectric energy at the state level are discussed. The Federal government also exercises extensive regulatory in the area, and the dual regulatory system from the standpoint of the appropriate legal doctrine, the law of pre-emption, application of the law to the case of hydroelectric development, and an inquiry into the practical use of the doctrine by the FERC is examined. The initial obstacle that all developers confront in Wisconsin is obtaining the authority to utilize the bed, banks, and flowing water at a proposed dam site. This involves a determination of ownership of the stream banks and bed and the manner of obtaining either their title or use; and existing constraints with regard to the use of the water. Wisconsin follows the riparian theory of water law.

  9. Small scale thermal violence experiments for combined insensitive high explosive and booster materials

    SciTech Connect (OSTI)

    Rae, Philip J; Bauer, Clare L; Stennett, C; Flower, H M

    2010-01-01

    A small scale cook-off experiment has been designed to provide a violence metric for both booster and IHE materials, singly and in combination. The experiment has a simple, axisymmetric geometry provided by a 10 mm internal diameter cylindrical steel confinement up to 80 mm in length. Heating is applied from one end of the sample length creating pseudo 1-D heating profile and a thermal gradient across the sample(s). At the opposite end of the confinement to the heating block, a machined groove provides a point of rupture that generates a cylindrical fragment. The displacement of the external face of the fragment is detected by Heterodyne Velocimetry. Proof of concept experiments are reported focusing on HMX and TATB formulations, and are described in relation to confinement, ullage and heating profile. The development of a violence metric, based upon fragment velocity records is discussed.

  10. EIS-0388: Operation of a Biosafety Level 3 Facility at the Los Alamos National Laboratory, New Mexico

    Broader source: Energy.gov [DOE]

    This EIS evaluates the operation of a Biosafety Level 3 Facility (BSL–3 Facility) at the Los Alamos National Laboratory (LANL). A BSL-2 Alternative, an existing BSL-2 permitted facility, and a No Action Alternative will be analyzed. The EIS is currently on hold.

  11. Preshot Calculations for a Small-Scale HE Experiment. Overview and Results for Symmetric Configurations

    SciTech Connect (OSTI)

    Holmes, Richard L.

    2015-05-27

    Explosively-driven magnetic flux compression generators create substantial currents (10’s of mega-amps) by compressing magnetic fields initially created by injected seed currents. In a Ranchero generator it is the field between two cylinders of aluminum that is compressed when the inner cylinder (armature) is driven across the magnetized gap toward the second cylinder (stator) [1]. All Rancheros to date have used the explosive PBXN-110, but future devices are expected to use PBX-9501 because of several advantages of the latter over the former. For Ranchero applications, though, a potentially important disadvantage stems from the requirement that the large PBX-9501 charges (15 to 50 kg) must built up from smaller machined pieces rather than cast into the appropriate shape as with PBXN-110. Calculations [2] and related experiments [3] raise the possibility that jetting may occur at gaps between machined pieces of PBX-9501 and lead to localized failure of the soft aluminum armature causing premature contact of the armature with the stator or, in the most extreme case, a severing of the armature into separate pieces and a subsequent loss of current. A set of small-scale experiments has been designed to provide Ranchero designers and users insight into the effects of gaps and also to provide useful data for the validation of Ranchero calculations. These experiments should be executed in early May 2015. The code Rage [4] was used to model the small-scale experiment and this paper presents the results. The emphasis here is on the calculations and the experimental details are limited, so the interested reader is referred to reference 5 for a fuller description of the experimental configuration and diagnostics. Less-interested readers may be interested in only a summary of results and are directed to the “Summary of key results” section later in this paper.

  12. Comparison of Waste Feed Delivery Small Scale Mixing Demonstration Simulant to Hanford Waste

    SciTech Connect (OSTI)

    Wells, Beric E.; Gauglitz, Phillip A.; Rector, David R.

    2012-07-10

    The Hanford double-shell tank (DST) system provides the staging location for waste that will be transferred to the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Specific WTP acceptance criteria for waste feed delivery describe the physical and chemical characteristics of the waste that must be met before the waste is transferred from the DSTs to the WTP. One of the more challenging requirements relates to the sampling and characterization of the undissolved solids (UDS) in a waste feed DST because the waste contains solid particles that settle and their concentration and relative proportion can change during the transfer of the waste in individual batches. A key uncertainty in the waste feed delivery system is the potential variation in UDS transferred in individual batches in comparison to an initial sample used for evaluating the acceptance criteria. To address this uncertainty, a number of small-scale mixing tests have been conducted as part of Washington River Protection Solutions' Small Scale Mixing Demonstration (SSMD) project to determine the performance of the DST mixing and sampling systems. A series of these tests have used a five-part simulant composed of particles of different size and density and designed to be equal or more challenging than AY-102 waste. This five-part simulant, however, has not been compared with the broad range of Hanford waste, and thus there is an additional uncertainty that this simulant may not be as challenging as the most difficult Hanford waste. The purpose of this study is to quantify how the current five-part simulant compares to all of the Hanford sludge waste, and to suggest alternate simulants that could be tested to reduce the uncertainty in applying the current testing results to potentially more challenging wastes.

  13. Comparison of Waste Feed Delivery Small Scale Mixing Demonstration Simulant to Hanford Waste

    SciTech Connect (OSTI)

    Wells, Beric E.; Gauglitz, Phillip A.; Rector, David R.

    2011-08-15

    'The Hanford double-shell tank (DST) system provides the staging location for waste feed delivery to the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Hall (2008) includes WTP acceptance criteria that describe physical and chemical characteristics of the waste that must be certified as acceptable before the waste is transferred from the DSTs to the WTP. One of the more challenging requirements relates to the sampling and characterization of the undissolved solids (UDS) in a waste feed DST. The objectives of Washington River Protection Solutions' (WRPS) Small Scale Mixing Demonstration (SSMD) project are to understand and demonstrate the DST sampling and batch transfer performance at multiple scales using slurry simulants comprised of UDS particles and liquid (Townson 2009). The SSMD project utilizes geometrically scaled DST feed tanks to generate mixing, sampling, and transfer test data. In Phase 2 of the testing, RPP-49740, the 5-part simulant defined in RPP-48358 was used as the waste slurry simulant. The Phase 2 test data are being used to estimate the expected performance of the prototypic systems in the full-scale DSTs. As such, understanding of the how the small-scale systems as well as the simulant relate to the full-scale DSTs and actual waste is required. The focus of this report is comparison of the size and density of the 5-part SSMD simulant to that of the Hanford waste. This is accomplished by computing metrics for particle mobilization, suspension, settling, transfer line intake, and pipeline transfer from the characterization of the 5-part SSMD simulant and characterizations of the Hanford waste. In addition, the effects of the suspending fluid characteristics on the test results are considered, and a computational fluid dynamics tool useful to quantify uncertainties from simulant selections is discussed.'

  14. Comparison of Waste Feed Delivery Small Scale Mixing Demonstration Simulant to Hanford Waste

    SciTech Connect (OSTI)

    Wells, Beric E.; Gauglitz, Phillip A.; Rector, David R.

    2011-09-01

    The Hanford double-shell tank (DST) system provides the staging location for waste that will be transferred to the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Specific WTP acceptance criteria for waste feed delivery describe the physical and chemical characteristics of the waste that must be met before the waste is transferred from the DSTs to the WTP. One of the more challenging requirements relates to the sampling and characterization of the undissolved solids (UDS) in a waste feed DST because the waste contains solid particles that settle and their concentration and relative proportion can change during the transfer of the waste in individual batches. A key uncertainty in the waste feed delivery system is the potential variation in UDS transferred in individual batches in comparison to an initial sample used for evaluating the acceptance criteria. To address this uncertainty, a number of small-scale mixing tests have been conducted as part of Washington River Protection Solutions' Small Scale Mixing Demonstration (SSMD) project to determine the performance of the DST mixing and sampling systems. A series of these tests have used a five-part simulant composed of particles of different size and density and designed to be equal or more challenging than AY-102 waste. This five-part simulant, however, has not been compared with the broad range of Hanford waste, and thus there is an additional uncertainty that this simulant may not be as challenging as the most difficult Hanford waste. The purpose of this study is to quantify how the current five-part simulant compares to all of the Hanford sludge waste, and to suggest alternate simulants that could be tested to reduce the uncertainty in applying the current testing results to potentially more challenging wastes.

  15. EA-1376: Proposed Construction and Operation of a New Interagency Emergency Operations Center at Los Alamos National Laboratory, Los Alamos, NM

    Broader source: Energy.gov [DOE]

    Proposed Construction and Operation of a New Interagency Emergency Operations Center at Los Alamos National Laboratory, Los Alamos, NMThe Proposed Action is the construction and operation of a new Interagency Emergency Operations Center (Center) at Technical Area 69. The new Center would include a 30,000-square-foot (2,700-square-meter) facility, a garage, a 130-car parking lot, and a 150-foot (45-meter) tall fire suppression water storage tank with antenna attachments on about a 5-acre (2-hectare) site. The new Center would be designed as a state-of-the-art multi-use facility housing about 30 fulltime University of California and Los Alamos County (or their contractor) staff.

  16. EIS-0018: Continued Operation of Los Alamos Scientific Laboratory Site, Los Alamos, New Mexico

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy prepared this statement to assesses the potential cumulative environmental impacts associated with current, known future, and continuing activities at the Los Alamos Scientific Laboratory site.

  17. Department of Energy Small-Scale Hydropower Program: Feasibility assessment and technology development summary report

    SciTech Connect (OSTI)

    Rinehart, B.N.

    1991-06-01

    This report summarizes two subprograms under the US Department of Energy's Small-Scale Hydroelectric Power Program. These subprograms were part of the financial assistance activities and included the Program Research and Development Announcement (PRDA) feasibility assessments and the technology development projects. The other major subprograms included engineering research and development, legal and institutional aspects, and technology transfer. These other subprograms are covered in their respective summary reports. The problems of energy availability and increasing costs of energy led to a national effort to develop economical and environmental attractive alternative energy resources. One such alternative involved the utilization of existing dams with hydraulic heads of <65 ft and the capacity to generate hydroelectric power of 15 MW or less. Thus, the PRDA program was initiated along with the Technology Development program. The purpose of the PRDA feasibility studies was to encourage development of renewable hydroelectric resources by providing engineering, economic, environmental, safety, and institutional information. Fifty-five feasibility studies were completed under the PRDA. This report briefly summarizes each of those projects. Many of the PRDA projects went on to become technology development projects. 56 refs., 1 fig., 2 tabs.

  18. Legal obstacles and incentives to the development of small scale hydroelectric power in Maryland

    SciTech Connect (OSTI)

    None,

    1980-05-01

    The legal and institutional obstacles to the development of small-scale hydroelectric energy at the state level in Maryland are described. The Federal government also exercises extensive regulatory authority in the area. The dual regulatory system is examined with the aim of creating a more orderly understanding of the vagaries of the system, focusing on the appropriate legal doctrine, the law of pre-emption, application of the law to the case of hydroelectric development, and an inquiry into the practical use of the doctrine by the FERC. In Maryland, by common law rule, title to all navigable waters and to the soil below the high-water mark of those waters is vested in the state as successor to the Lord Proprietary who had received it by grant from the Crown. Rights to non-navigable water, public trust doctrine, and eminent domain are also discussed. Direct and indirect regulations, continuing obligations, loan programs, and regional organizations are described in additional sections.

  19. Analysis of environmental issues related to small scale hydroelectric development. II. Design considerations for passing fish upstream around dams. Environmental Sciences Division Publication No. 1567

    SciTech Connect (OSTI)

    Hildebrand, S.G.

    1980-08-01

    The possible requirement of facilities to move migrating fish upstream around dams may be a factor in determining the feasibility of retrofitting small dams for hydroelectric generation. Basic design considerations are reported that should be evaluated on a site-specific basis if upstream fish passage facilities are being considered for a small scale hydroelectric project (defined as an existing dam that can be retrofitted to generate 25 MW or less). Information on general life history and geographic distribution of fish species that may require passage is presented. Biological factors important in the design of upstream passage facilities are discussed: gas bubble disease, fish swimming speed, oxygen consumption by fish, and diel and photo behavior. Three general types of facilities (fishways, fish locks, and fish lifts) appropriate for upstream fish passage at small scale hydroelectric projects are described, and size dimensions are presented. General design criteria for these facilities (including fish swimming ability and behavior) and general location of facilities at a site are discussed. Basic cost considerations for each type of passage facility, including unit cost, operation and maintenance costs, and costs for supplying attraction water, are indicated.

  20. Quality Assurance Baseline Assessment Report to Los Alamos National Laboratory Analytical Chemistry Operations

    SciTech Connect (OSTI)

    Jordan, R. A.

    1998-09-01

    This report summarizes observations that were made during a Quality Assurance (QA) Baseline Assessment of the Nuclear Materials Technology Analytical Chemistry Group (NMT-1). The Quality and Planning personnel, for NMT-1, are spending a significant amount of time transitioning out of their roles of environmental oversight into production oversight. A team from the Idaho National Engineering and Environmental Laboratory Defense Program Environmental Surety Program performed an assessment of the current status of the QA Program. Several Los Alamos National Laboratory Analytical Chemistry procedures were reviewed, as well as Transuranic Waste Characterization Program (TWCP) QA documents. Checklists were developed and the assessment was performed according to an Implementation Work Plan, INEEL/EXT-98-00740.

  1. DOE to Compete Contract for Management and Operation of Pacific Northwest National Laboratory

    Broader source: Energy.gov [DOE]

    WASHINGTON, D.C. -- The U.S. Department of Energy (DOE) announced today that it intends to seek competitive bids for the management and operations contract for the Pacific Northwest National...

  2. Analysis of Environmental Issues Related to Small-Scale Hydroelectric Development II: Design Consideration for Passing Fish Upstream Around Dams

    SciTech Connect (OSTI)

    Hildebrandt, S. G.; Bell, M. C.; Anderson, J. J.; Richey, E. P.; Parkhurst, Z. E.

    1980-08-01

    The purpose of this report is to provide general information for use by potential developers of small scale hydroelectric projects that will include facilities to pass migrating fish upstream around dams. The document is not intended to be a textbook on design of fish passage facilities, but rather to be a general guide to some factors that are important when designing such facilities.

  3. Energy Department Launches H2 Refuel H-Prize Competition for Small-Scale Hydrogen Refueling Systems

    Broader source: Energy.gov [DOE]

    The Energy Department today announced the launch of the $1 million H2 Refuel H-Prize, a two-year competition that challenges America's engineers and entrepreneurs to develop affordable systems for small-scale, non-commercial hydrogen fueling.

  4. Investigations of the small-scale thermal behavior of sol-gel thermites.

    SciTech Connect (OSTI)

    Warren, Mial E.; Farrow, Matthew; Tappan, Alexander Smith

    2009-02-01

    Sol-gel thermites, formulated from nanoporous oxides and dispersed fuel particles, may provide materials useful for small-scale, intense thermal sources, but understanding the factors affecting performance is critical prior to use. Work was conducted on understanding the synthesis conditions, thermal treatments, and additives that lead to different performance characteristics in iron oxide sol-gel thermites. Additionally, the safety properties of sol-gel thermites were investigated, especially those related to air sensitivity. Sol-gel thermites were synthesized using a variety of different techniques and there appear to be many viable routes to relatively equivalent thermites. These thermites were subjected to several different thermal treatments under argon in a differential scanning calorimeter, and it was shown that a 65 C hold for up to 200 minutes was effective for the removal of residual solvent, thus preventing boiling during the final thermal activation step. Vacuum-drying prior to this heating was shown to be even more effective at removing residual solvent. The addition of aluminum and molybdenum trioxide (MoO{sub 3}) reduced the total heat release per unit mass upon exposure to air, probably due to a decrease in the amount of reduced iron oxide species in the thermite. For the thermal activation step of heat treatment, three different temperatures were investigated. Thermal activation at 200 C resulted in increased ignition sensitivity over thermal activation at 232 C, and thermal activation at 300 C resulted in non-ignitable material. Non-sol-gel iron oxide did not exhibit any of the air-sensitivity observed in sol-gel iron oxide. In the DSC experiments, no bulk ignition of sol-gel thermites was observed upon exposure to air after thermal activation in argon; however ignition did occur when the material was heated in air after thermal treatment. In larger-scale experiments, up to a few hundred milligrams, no ignition was observed upon exposure to air after thermal activation in vacuum; however ignition by resistively-heated tungsten wire was possible. Thin films of thermite were fabricated using a dispersed mixture of aluminum and iron oxide particles, but ignition and propagation of these films was difficult. The only ignition and propagation observed was in a preheated sample.

  5. Site Environmental Report For Calendar Year 2012. DOE Operations at The Boeing Company Santa Susana Field Laboratory, Area IV

    SciTech Connect (OSTI)

    Liu, Ning; Rutherford, Phil; Dassler, David

    2013-09-01

    This Annual Site Environmental Report (ASER) for 2012 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). The Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, operation and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder reactor components. All nuclear work was terminated in 1988, and all subsequent radiological work has been directed toward environmental restoration and decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Liquid metal research and development ended in 2002. Since May 2007, the D&D operations in Area IV have been suspended by the DOE, but the environmental monitoring and characterization programs have continued. Results of the radiological monitoring program for the calendar year 2012 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.

  6. Site Environmental Report for Calendar Year 2011. DOE Operations at The Boeing Company Santa Susana Field Laboratory, Area IV

    SciTech Connect (OSTI)

    Liu, Ning; Rutherford, Phil; Dassler, David

    2012-09-01

    This Annual Site Environmental Report (ASER) for 2011 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). The Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, operation and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder reactor components. All nuclear work was terminated in 1988, and all subsequent radiological work has been directed toward environmental restoration and decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Liquid metal research and development ended in 2002. Since May 2007, the D&D operations in Area IV have been suspended by the DOE, but the environmental monitoring and characterization programs have continued. Results of the radiological monitoring program for the calendar year 2011 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.

  7. Investigation of ISIS and Brookhaven National Laboratory ion source electrodes after extended operation

    SciTech Connect (OSTI)

    Lettry J.; Alessi J.; Faircloth, D.; Gerardin, A.; Kalvas, T.; Pereira, H.; Sgobba, S.

    2012-02-23

    Linac4 accelerator of Centre Europeen de Recherches Nucleaires is under construction and a RF-driven H{sup -} ion source is being developed. The beam current requirement for Linac4 is very challenging: 80 mA must be provided. Cesiated plasma discharge ion sources such as Penning or magnetron sources are also potential candidates. Accelerator ion sources must achieve typical reliability figures of 95% and above. Investigating and understanding the underlying mechanisms involved with source failure or ageing is critical when selecting the ion source technology. Plasma discharge driven surface ion sources rely on molybdenum cathodes. Deformation of the cathode surfaces is visible after extended operation periods. A metallurgical investigation of an ISIS ion source is presented. The origin of the deformation is twofold: Molybdenum sputtering by cesium ions digs few tenths of mm cavities while a growth of molybdenum is observed in the immediate vicinity. The molybdenum growth under hydrogen atmosphere is hard and loosely bound to the bulk. It is, therefore, likely to peel off and be transported within the plasma volume. The observation of the cathode, anode, and extraction electrodes of the magnetron source operated at BNL for two years are presented. A beam simulation of H{sup -}, electrons, and Cs{sup -} ions was performed with the IBSimu code package to qualitatively explain the observations. This paper describes the operation conditions of the ion sources and discusses the metallurgical analysis and beam simulation results.

  8. Investigation of ISIS and Brookhaven National Laboratory ion source electrodes after extended operation

    SciTech Connect (OSTI)

    Lettry, J.; Gerardin, A.; Pereira, H.; Sgobba, S.; Alessi, J.; Faircloth, D.; Kalvas, T.

    2012-02-15

    Linac4 accelerator of Centre Europeen de Recherches Nucleaires is under construction and a RF-driven H{sup -} ion source is being developed. The beam current requirement for Linac4 is very challenging: 80 mA must be provided. Cesiated plasma discharge ion sources such as Penning or magnetron sources are also potential candidates. Accelerator ion sources must achieve typical reliability figures of 95% and above. Investigating and understanding the underlying mechanisms involved with source failure or ageing is critical when selecting the ion source technology. Plasma discharge driven surface ion sources rely on molybdenum cathodes. Deformation of the cathode surfaces is visible after extended operation periods. A metallurgical investigation of an ISIS ion source is presented. The origin of the deformation is twofold: Molybdenum sputtering by cesium ions digs few tenths of mm cavities while a growth of molybdenum is observed in the immediate vicinity. The molybdenum growth under hydrogen atmosphere is hard and loosely bound to the bulk. It is, therefore, likely to peel off and be transported within the plasma volume. The observation of the cathode, anode, and extraction electrodes of the magnetron source operated at BNL for two years are presented. A beam simulation of H{sup -}, electrons, and Cs{sup -} ions was performed with the IBSimu code package to qualitatively explain the observations. This paper describes the operation conditions of the ion sources and discusses the metallurgical analysis and beam simulation results.

  9. EIS-0348 and EIS-0236-S3: Continued Operation of Lawrence Livermore National Laboratory and Supplement Stockpile Stewardship and Management

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's decision to continue operation of Lawrence Livermore National Laboratory (LLNL), which is critical to the National Nuclear Security Administration’s Stockpile Stewardship Program and to preventing the spread and use of nuclear weapons worldwide. This document is also Supplement 3 to the Final Programmatic Environmental Impact Statement for Stockpile Stewardship and Management (EIS-0236) for use of proposed materials at the National Ignition Facility (NIF). This combination ensures timely analysis of the reasonably foreseeable environmental impact of NIF experiments using the proposed materials concurrent with the environmental analyses being conducted for the site-wide activities.

  10. Avian community composition in response to high explosive testing operations at Los Alamos National Laboratory in Northern New Mexico

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Keller, David C.; Fresquez, Philip R.; Hansen, Leslie A.; Kaschube, Danielle R.

    2015-12-28

    Breeding bird abundance, species richness, evenness, diversity, composition, productivity, and survivorship were determined near a high-explosive detonation site at Los Alamos National Laboratory, New Mexico, USA, during pre-operation (1997-1999) and operation (2000-2014) periods. The operation periods consisted of detonations (<23 kg in yield and <3 per breeding season) in open air (2000-2002), within foam containment (2003-2006) and within steel vessel containment (2007-2014) systems; the latter two were employed to reduce noise and dispersal of high-explosives residues. A total of 2952 bird captures, representing 80 species, was recorded during 18 years of mist net operations using the Monitoring Avian Productivity andmore » Survivorship protocol. Individuals captured were identified to species, aged, sexed, and banded during May through August of each year. There were no significant differences (p > 0.05) in mean avian abundance and species evenness in any of the operation periods as compared with the pre-operation period. Species richness and diversity were significantly higher (p < 0.05) during the vessel containment period (2007-2014) than the pre-operation period. The time period of this study coincided with a wildfire (2000), a bark beetle infestation (2002), and two periods of drought (Nov 1999-Mar 2004 and Dec 2005-Dec 2014) that affected the study area. Furthermore, analysis of aerial photos determined that the average percent canopy cover of mature ponderosa pines (Pinus ponderosa) within 100 feet of mist net sites declined from 12% to 3% between 1991 and 2014 and the percent cover of shrubs slightly increased.« less

  11. Avian community composition in response to high explosive testing operations at Los Alamos National Laboratory in Northern New Mexico

    SciTech Connect (OSTI)

    Keller, David C.; Fresquez, Philip R.; Hansen, Leslie A.; Kaschube, Danielle R.

    2015-12-28

    Breeding bird abundance, species richness, evenness, diversity, composition, productivity, and survivorship were determined near a high-explosive detonation site at Los Alamos National Laboratory, New Mexico, USA, during pre-operation (1997-1999) and operation (2000-2014) periods. The operation periods consisted of detonations (<23 kg in yield and <3 per breeding season) in open air (2000-2002), within foam containment (2003-2006) and within steel vessel containment (2007-2014) systems; the latter two were employed to reduce noise and dispersal of high-explosives residues. A total of 2952 bird captures, representing 80 species, was recorded during 18 years of mist net operations using the Monitoring Avian Productivity and Survivorship protocol. Individuals captured were identified to species, aged, sexed, and banded during May through August of each year. There were no significant differences (p > 0.05) in mean avian abundance and species evenness in any of the operation periods as compared with the pre-operation period. Species richness and diversity were significantly higher (p < 0.05) during the vessel containment period (2007-2014) than the pre-operation period. The time period of this study coincided with a wildfire (2000), a bark beetle infestation (2002), and two periods of drought (Nov 1999-Mar 2004 and Dec 2005-Dec 2014) that affected the study area. Furthermore, analysis of aerial photos determined that the average percent canopy cover of mature ponderosa pines (Pinus ponderosa) within 100 feet of mist net sites declined from 12% to 3% between 1991 and 2014 and the percent cover of shrubs slightly increased.

  12. OAK RIDGE NATIONAL LABORATORY OPERATED BY MARTIN MARIETTA ENERGY SYSTEMS. INC.

    Office of Legacy Management (LM)

    OPERATED BY MARTIN MARIETTA ENERGY SYSTEMS. INC. FOR THE UNITED STATES DEPARTMENT OF ENERGY RESULTS OF THE RADIOLOGICAL SURVEY OFTHE CARPENTER STEEL FACILITY READING, PENNSYLVANIA W. D. Cottrell R. F. Carrier : This report has be& reprohucad directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientiiic and Technical Information. P.O. Box 62, Oak Ridge. TN 37831; prices available hcm(615)57&8401,FTS626-8401. Available to the public from the

  13. UCRL-ID-119665 LLNL Small-Scale Drop-Hammer Impact Sensitivity...

    Office of Scientific and Technical Information (OSTI)

    ... release control, the control for the vacuum system solenoid and a manual height control. ... A large industrial vacuum cleaner provides continuous air flow during operation. A water ...

  14. Site Environmental Report for Calendar Year 2010. DOE Operations at The Boeing Company Santa Susana Field Laboratory, Area IV

    SciTech Connect (OSTI)

    Liu, Ning; Rutherford, Phil; Amar, Ravnesh

    2011-09-01

    This Annual Site Environmental Report (ASER) for 2010 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). The Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder reactor components. All nuclear work was terminated in 1988, and all subsequent radiological work has been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Liquid metal research and development ended in 2002. Since May 2007, the D&D operations in Area IV have been suspended by the DOE, but the environmental monitoring and characterization programs have continued. Results of the radiological monitoring program for the calendar year 2010 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.

  15. Site Environmental Report for Calendar Year 2009. DOE Operations at The Boeing Company Santa Susana Field Laboratory, Area IV

    SciTech Connect (OSTI)

    Liu, Ning; Rutherford, Phil; Amar, Ravnesh

    2010-09-01

    This Annual Site Environmental Report (ASER) for 2009 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). The Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder reactor components. All nuclear work was terminated in 1988, and all subsequent radiological work has been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Liquid metal research and development ended in 2002. Since May 2007, the D&D operations in Area IV have been suspended by the DOE, but the environmental monitoring and characterization programs have continued. Results of the radiological monitoring program for the calendar year 2009 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.

  16. Site Environmental Report for Calendar Year 2008. DOE Operations at The Boeing Company Santa Susana Field Laboratory, Area IV

    SciTech Connect (OSTI)

    Liu, Ning; Rutherford, Phil; Amar, Ravnesh

    2009-09-01

    This Annual Site Environmental Report (ASER) for 2008 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). The Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder reactor components. All nuclear work was terminated in 1988; all subsequent radiological work has been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. In May 2007, the D&D operations in Area IV were suspended by the DOE. The environmental monitoring programs were continued throughout the year. Results of the radiological monitoring program for the calendar year 2008 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.

  17. An analysis of markets for small-scale, advanced coal-combustion technology in Spain, Italy, and Turkey

    SciTech Connect (OSTI)

    Not Available

    1989-09-01

    This report describes the results of an in-depth analysis of markets for US-developed, advanced coal-combustion technology (ACT) in the residential, commercial, and industrial sectors of three countries -- Spain, Italy, and Turkey. These countries were chosen in a previous study, in which member countries of the Organization for Economic Cooperation and Development (OECD) were rated on eight factors influencing their propensity to use small-scale, US-developed ACT. 76 refs., 16 figs., 14 tabs.

  18. EIS-0238-S1: Supplemental Environmental Impact Statement to the Final Site-Wide Environmental Impact Statement for Continued Operation of the Los Alamos National Laboratory, New Mexico

    Broader source: Energy.gov [DOE]

    The Department of Energy (DOE), Albuquerque Operations Office, has prepared a Supplemental Analysis (SA) to determine if the Site-Wide Environmental Impact Statement for Continued Operations of Los Alamos National Laboratory (SWEIS) adequately addresses the environmental effects of a proposal for modifying current methods utilized to receive and manage certain offsite unwanted radioactive sealed sources at Los Alamos National Laboratory or if additional documentation under the National Environmental Policy Act (NEPA) is needed.

  19. Site Environmental Report for Calendar Year 2013. DOE Operations at The Boeing Company, Santa Susana Field Laboratory, Area IV

    SciTech Connect (OSTI)

    2014-06-30

    This Annual Site Environmental Report (ASER) for 2013 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of the Santa Susana Field Laboratory (SSFL). The Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, operation and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder reactor components. All nuclear work was terminated in 1988, and all subsequent radiological work has been directed toward environmental restoration and decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Liquid metal research and development ended in 2002. Since May 2007, the D&D operations in Area IV have been suspended by the DOE, but the environmental monitoring and characterization programs have continued. Results of the radiological monitoring program for the calendar year 2013 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling. Due to the suspension of D&D activities in Area IV, no effluents were released into the atmosphere during 2013. Therefore, the potential radiation dose to the general public through airborne release was zero. Similarly, the radiation dose to an offsite member of the public (maximally exposed individual) due to direct radiation from SSFL is indistinguishable from background. All radioactive wastes are processed for disposal at DOE disposal sites and/or other licensed sites approved by DOE for radioactive waste disposal. No liquid radioactive wastes were released into the environment in 2013.

  20. Site Environmental Report for Calendar Year 2006. DOE Operations at The Boeing Company Santa Susana Field Laboratory, Area IV

    SciTech Connect (OSTI)

    Liu, Ning; Rutherford, Phil

    2007-09-01

    This Annual Site Environmental Report (ASER) for 2006 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). In the past, the Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder components. All nuclear work was terminated in 1988; all subsequent radiological work has been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Closure of the liquid metal test facilities began in 1996. Results of the radiological monitoring program for the calendar year 2006 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.

  1. Site Environmental Report for Calendar Year 2004. DOE Operations at The Boeing Company Santa Susana Field Laboratory

    SciTech Connect (OSTI)

    Liu, Ning; Rutherford, Phil; Lee, Majelle

    2005-09-01

    This Annual Site Environmental Report (ASER) for 2004 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). In the past, the Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder components. All nuclear work was terminated in 1988; all subsequent radiological work has been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Closure of the liquid metal test facilities began in 1996. Results of the radiological monitoring program for the calendar year 2004 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.

  2. Small-Scale Low Cost Solid Oxide Fuel Cell Power Systems

    SciTech Connect (OSTI)

    S.D. Vora

    2005-09-30

    Tasks carried out during the reporting period March 2005-August 2005 are summarized. During this reporting period, the primary focus was on tasks leading to the fabrication of a proof-of-concept (POC) unit with HPD5R1 cells. Assembly of the POC unit was completed and the initial operation was started. Optimization of HPD cell design, investigation of scandia doped zirconia and low temperature operation of YSZ electrolyte based cells continued. Development of seal to be used in a ''once-thru'' design or an ''up-down'' design was started. Attachment 1 describes the progress in cell development and Attachments 2 and 3 deal with status of generator and BOP design. Operation of POC is summarized in Attachment 4. Plans for future work are summarized in Attachment 5.

  3. Site Environmental Report for Calendar Year 2005. DOE Operations at The Boeing Company, Santa Susana Field Laboratory, Area IV

    SciTech Connect (OSTI)

    2006-09-30

    This annual report describes the environmental monitoring programs related to the Department of Energy’s (DOE) activities at the Santa Susana Field Laboratory (SSFL) facility located in Ventura County, California during 2005. Part of the SSFL facility, known as Area IV, had been used for DOE’s activities since the 1950s. A broad range of energy related research and development (R&D) projects, including nuclear technologies projects, was conducted at the site. All the nuclear R&D operations in Area IV ceased in 1988. Current efforts are directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and closure of facilities used for liquid metal research.

  4. Supplement Analysis for the Site-Wide Environmental Impact Statement for Continued Operations of Los Alamos National Laboratory

    SciTech Connect (OSTI)

    N /A

    2000-09-20

    This Supplement Analysis (SA) has been prepared to determine if the ''Site-Wide Environmental Impact Statement for Continued Operations of Los Alamos National Laboratory'' (SWEIS) adequately addresses the environmental effects of a proposal for modifying current methods utilized to receive and manage certain offsite unwanted radioactive sealed sources at Los Alamos National Laboratory or if additional documentation under the National Environmental Policy Act (NEPA) is needed. The need for a SA to an existing environmental impact statement (EIS) is initiated by subsequent changes in the basis upon which the original EIS was prepared and the need to evaluate whether or not the EIS is adequate in light of those changes. It is submitted according to the requirements for determining the need for supplemental environmental impact statements (10 CFR 1021.314) in the Department of Energy's regulation for implementing NEPA. This SA specifically compares key impact assessment parameters of a program evaluated in the SWEIS with those of a proposal that would change the approach of this management. It also provides an explanation of any differences between the proposed action and activities described in earlier NEPA analysis.

  5. Environmental Assessment for Enhanced Operations of the Advanced Photon Source at Argonne National Laboratory-East, Argonne, Illinois

    SciTech Connect (OSTI)

    N /A

    2003-06-27

    This environmental assessment (EA) has been prepared by the U.S. Department of Energy (DOE) in compliance with the National Environmental Policy Act of 1969 (NEPA) to evaluate the potential environmental impacts associated with continued and enhanced operation of the Advanced Photon Source (APS), including modifications, upgrades, and new facilities, at Argonne National Laboratory-East (ANL-E) in DuPage County, Illinois. This proposed action is needed to meet DOE's mission of sponsoring cutting-edge science and technology. Continued operation would include existing research activities. In 2002, 23 user teams had beamlines in use in 28 sectors of the experiment hall, and approximately 2,000 individual users visited annually (see Section 3.1.1). Enhanced scientific capabilities would include research on Biosafety Level-3 (BSL-3) materials in an existing area originally constructed for such work, and would not require new construction or workforce (see Section 3.1.2). A new experimental unit, the Center for Nanoscale Materials (CNM), would be constructed along the west side of the APS facility and would be used for bench-scale research in nanoscience (see Section 3.1.3). Under the No Action Alternative, current APS operations would continue. However, initiation of BSL-3 research would not occur, and the proposed CNM research facility would not be constructed. The environmental consequences of the Proposed Action are minor. Potential effects to the environment are primarily related to ecological effects during construction and operation of the proposed CNM and human health effects during BSL-3 activities. The potential ecological effects of construction and operation of the CNM would be impacts of stormwater runoff into a restored wetland to the north of the CNM. DOE would minimize stormwater impacts during construction of the CNM by ensuring adequate erosion control before and during construction. Stormwater impacts would be minimized during operation of the CNM by collecting and pumping to the south, away from the restored wetland, most of the runoff from the CNM parking lot and by providing adequate detention and treatment for roof runoff and overflow runoff from the parking lot. Adverse ecological impacts are not expected to result from implementing the Proposed Action.

  6. SWEIS Yearbook-2012 Comparison of 2012 Data to Projections of the 2008 Site-Wide Environmental Impact Statement for Continued Operation of Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Mahowald, Hallie B.; Wright, Marjorie Alys

    2014-01-16

    Los Alamos National Laboratory (LANL or the Laboratory) operations data for Calendar Year (CY) 2012 mostly fell within the 2008 Site-Wide Environmental Impact Statement (SWEIS) projections. Operation levels for one LANL facility exceeded the 2008 SWEIS capability projections—Radiochemistry Facility; however, none of the capability increases caused exceedances in radioactive air emissions, waste generation, or National Pollutant Discharge Elimination System (NPDES) discharge. Several facilities exceeded the2008 SWEIS levels for waste generation quantities; however, all were one-time, non-routine events that do not reflect the day-to-day operations of the Laboratory. In addition, total site-wide waste generation quantities were below SWEIS projections for all waste types, reflecting the overall levels of operations at both the Key and Non-Key Facilities. Although gas and electricity consumption have remained within the 2008 SWEIS limits for utilities, water consumption exceeded the 2008 SWEIS projections by 27 million gallons in CY 2012.

  7. Fuel from farms: A guide to small-scale ethanol production: Second edition

    SciTech Connect (OSTI)

    Not Available

    1982-05-01

    This guide presents the current status of on-farm fermentation ethanol production as well as an overview of some of the technical and economic factors. Tools such as decision and planning worksheets and a sample business plan for use in exploring whether or not to go into ethanol production are given. Specifics in production including information on the raw materials, system components, and operational requirements are also provided. Recommendation of any particular process is deliberately avoided because the choice must be tailored to the needs and resources of each individual producer. The emphasis is on providing the facts necessary to make informed judgments. 98 refs., 14 figs., 9 tabs.

  8. Optical emission from a small scale model electric arc furnace in 250-600 nm region

    SciTech Connect (OSTI)

    Maekinen, A.; Tikkala, H.; Aksela, H.; Niskanen, J.

    2013-04-15

    Optical emission spectroscopy has been for long proposed for monitoring and studying industrial steel making processes. Whereas the radiative decay of thermal excitations is always taking place in high temperatures needed in steel production, one of the most promising environment for such studies are electric arc furnaces, creating plasma in excited electronic states that relax with intense characteristic emission in the optical regime. Unfortunately, large industrial scale electric arc furnaces also present a challenging environment for optical emission studies and application of the method is not straightforward. To study the usability of optical emission spectroscopy in real electric arc furnaces, we have developed a laboratory scale DC electric arc furnace presented in this paper. With the setup, optical emission spectra of Fe, Cr, Cr{sub 2}O{sub 3}, Ni, SiO{sub 2}, Al{sub 2}O{sub 3}, CaO, and MgO were recorded in the wavelength range 250-600 nm and the results were analyzed with the help of reference data. The work demonstrates that using characteristic optical emission, obtaining in situ chemical information from oscillating plasma of electric arc furnaces is indeed possible. In spite of complications, the method could possibly be applied to industrial scale steel making process in order to improve its efficiency.

  9. Small-scale biomass fueled cogeneration systems - A guidebook for general audiences

    SciTech Connect (OSTI)

    Wiltsee, G.

    1993-12-01

    What is cogeneration and how does it reduce costs? Cogeneration is the production of power -- and useful heat -- from the same fuel. In a typical biomass-fueled cogeneration plant, a steam turbine drives a generator, producing electricity. The plant uses steam from the turbine for heating, drying, or other uses. The benefits of cogeneration can mostly easily be seen through actual samples. For example, cogeneration fits well with the operation of sawmills. Sawmills can produce more steam from their waste wood than they need for drying lumber. Wood waste is a disposal problem unless the sawmill converts it to energy. The case studies in Section 8 illustrate some pluses and minuses of cogeneration. The electricity from the cogeneration plant can do more than meet the in-house requirements of the mill or manufacturing plant. PURPA -- the Public Utilities Regulatory Policies Act of 1978 -- allows a cogenerator to sell power to a utility and make money on the excess power it produces. It requires the utility to buy the power at a fair price -- the utility`s {open_quotes}avoided cost.{close_quotes} This can help make operation of a cogeneration plant practical.

  10. Small-Scale Coal-Biomass to Liquids Production Using Highly Selective Fischer-Tropsch Synthesis

    SciTech Connect (OSTI)

    Gangwal, Santosh K.; McCabe, Kevin

    2015-04-30

    The research project advanced coal-to-liquids (CTL) and coal-biomass to liquids (CBTL) processes by testing and validating Chevron’s highly selective and active cobalt-zeolite hybrid Fischer-Tropsch (FT) catalyst to convert gasifier syngas predominantly to gasoline, jet fuel and diesel range hydrocarbon liquids, thereby eliminating expensive wax upgrading operations The National Carbon Capture Center (NCCC) operated by Southern Company (SC) at Wilsonville, Alabama served as the host site for the gasifier slip-stream testing/demonstration. Southern Research designed, installed and commissioned a bench scale skid mounted FT reactor system (SR-CBTL test rig) that was fully integrated with a slip stream from SC/NCCC’s transport integrated gasifier (TRIGTM). The test-rig was designed to receive up to 5 lb/h raw syngas augmented with bottled syngas to adjust the H2/CO molar ratio to 2, clean it to cobalt FT catalyst specifications, and produce liquid FT products at the design capacity of 2 to 4 L/day. It employed a 2-inch diameter boiling water jacketed fixed-bed heat-exchange FT reactor incorporating Chevron’s catalyst in Intramicron’s high thermal conductivity micro-fibrous entrapped catalyst (MFEC) packing to efficiently remove heat produced by the highly exothermic FT reaction.

  11. History of the 185-/189-D thermal hydraulics laboratory and its effects on reactor operations at the Hanford Site

    SciTech Connect (OSTI)

    Gerber, M.S.

    1994-09-01

    The 185-D deaeration building and the 189-D refrigeration building were constructed at Hanford during 1943 and 1944. Both buildings were constructed as part of the influent water cooling system for D reactor. The CMS studies eliminated the need for 185-D function. Early gains in knowledge ended the original function of the 189-D building mission. In 1951, 185-D and 189-D were converted to a thermal-hydraulic laboratory. The experiments held in the thermal-hydraulic lab lead to historic changes in Hanford reactor operations. In late 1951, the exponential physics experiments were moved to the 189-D building. In 1958, new production reactor experiments were begun in 185/189-D. In 1959, Plutonium Recycle Test Reactor experiments were added to the 185/189-D facility. By 1960, the 185/189-D thermal hydraulics laboratory was one of the few full service facilities of its type in the nation. During the years 1961--1963 tests continued in the facility in support of existing reactors, new production reactors, and the Plutonium Recycle Test Reactor. In 1969, Fast Flux Test Facility developmental testings began in the facility. Simulations in 185/189-D building aided in the N Reactor repairs in the 1980`s. In 1994 the facility was nominated to the National Register of Historic Places, because of its pioneering role over many years in thermal hydraulics, flow studies, heat transfer, and other reactor coolant support work. During 1994 and 1995 it was demolished in the largest decontamination and decommissioning project thus far in Hanford Site history.

  12. Remedial investigation work plan for the Groundwater Operable Unit at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    This Remedial Investigation (RI) Work Plan has been developed as part of the US Department of Energy`s (DOE`s) investigation of the Groundwater Operable Unit (GWOU) at Oak Ridge National Laboratory (ORNL) located near Oak Ridge, Tennessee. The first iteration of the GWOU RI Work Plan is intended to serve as a strategy document to guide the ORNL GWOU RI. The Work Plan provides a rationale and organization for groundwater data acquisition, monitoring, and remedial actions to be performed during implementation of environmental restoration activities associated with the ORNL GWOU. It Is important to note that the RI Work Plan for the ORNL GWOU is not a prototypical work plan. The RI will be conducted using annual work plans to manage the work activities, and task reports will be used to document the results of the investigations. Sampling and analysis results will be compiled and reported annually with a review of data relative to risk (screening level risk assessment review) for groundwater. This Work Plan outlines the overall strategy for the RI and defines tasks which are to be conducted during the initial phase of investigation. This plan is presented with the understanding that more specific addenda to the plan will follow.

  13. Sustainable Forward Operating Base Nuclear Power Evaluation (Relationship Mapping System) Users’ Manual

    SciTech Connect (OSTI)

    Not Listed

    2012-01-01

    The Sustainable Forward Operating Base (FOB) Nuclear Power Evaluation was developed by the Idaho National Laboratory Systems Engineering Department to support the Defense Advanced Research Projects Agency (DARPA) in assessing and demonstrating the viability of deploying small-scale reactors in support of military operations in theatre. This document provides a brief explanation of how to access and use the Sustainable FOB Nuclear Power Evaluation utility to view assessment results as input into developing and integrating the program elements needed to create a successful demonstration.

  14. Environmental Assessment for the Installation and Operation of Combustion Turbine Generators at Los Alamos National Laboratory, Los Alamos, New Mexico

    SciTech Connect (OSTI)

    N /A

    2002-12-12

    NEPA requires Federal agency officials to consider the environmental consequences of their proposed actions before decisions are made. In complying with NEPA, the U.S. DOE, NNSA, follows the Council on Environmental Quality regulations (40 Code of Federal Regulations [CFR] 1500-1508) and DOE's NEPA implementing procedures (10 CFR 1021). The purpose of an environmental assessment (EA) is to provide Federal decision makers with sufficient evidence and analysis to determine whether to prepare an environmental impact statement (EIS) or issue a Finding of No Significant Impact (FONSI). At this time, the NNSA must make a decision regarding installing, operating and maintaining two approximately 20 Megawatt (MW) combustion turbine generators (CTGs) within the Technical Area (TA)-3 Co-generation Complex (Building 3-22) at Los Alamos National Laboratory (LANL). LANL is a Federal facility located at Los Alamos, New Mexico, that comprises 43 square miles (111 square kilometers) of buildings, structures, and forested land (Figure 1). LANL is administered by NNSA for the Federal government and managed and operated under contract by the University of California (UC). This EA has been prepared to assess the potential environmental consequences of the Proposed Action--installing and operating two CTGs--and of the No Action Alternative. The objectives of this EA are to (1) describe the underlying purpose and need for DOE action; (2) describe the Proposed Action and identify and describe any reasonable alternatives that satisfy the purpose and need for Agency Action; (3) describe baseline environmental conditions at LANL; (4) analyze the potential indirect, direct, and cumulative effects to the existing environment from implementation of the Proposed Action; and (5) compare the effects of the Proposed Action with the effects of the No Action Alternative and other reasonable alternatives. For the purposes of compliance with NEPA, reasonable alternatives are identified as being those that meet NNSA's purpose and need for action by virtue of timeliness, appropriate technology, and applicability to LANL. The EA process provides NNSA with environmental information that can be used in developing mitigation, if necessary, to minimize or avoid adverse effects to the quality of the human environment and natural ecosystems should NNSA decide to proceed with implementing the Proposed Action at LANL.

  15. Mixing of process heels, process solutions, and recycle streams: Results of the small-scale radioactive tests

    SciTech Connect (OSTI)

    GJ Lumetta; JP Bramson; OT Farmer III; LR Greenwood; FV Hoopes; MA Mann; MJ Steele; RT Steele; RG Swoboda; MW Urie

    2000-05-17

    Various recycle streams will be combined with the low-activity waste (LAW) or the high-level waste (HLW) feed solutions during the processing of the Hanford tank wastes by BNFL, Inc. In addition, the LAW and HLW feed solutions will also be mixed with heels present in the processing equipment. This report describes the results of a test conducted by Battelle to assess the effects of mixing specific process streams. Observations were made regarding adverse reactions (mainly precipitation) and effects on the Tc oxidation state (as indicated by K{sub d} measurements with SuperLig{reg_sign} 639). The work was conducted according to test plan BNFL-TP-29953-023, Rev. 0, Small Scale Mixing of Process Heels, Solutions, and Recycle Streams. The test went according to plan, with only minor deviations from the test plan. The deviations from the test plan are discussed in the experimental section.

  16. Analysis of Environmental Issues Related to Small-Scale Hydroelectric Development V: Instream Flow Needs for Fishery Resources

    SciTech Connect (OSTI)

    Loar, James M.; Sale, Michael J.

    1981-10-01

    The purpose of this document is to provide guidance to developers of small-scale hydroelectric projects on the assessment of instream flow needs. While numerous methods have been developed to assess the effects of stream flow regulation on aquatic biota in coldwater streams in the West, no consensus has been reached regarding their general applicability, especially to streams in the eastern United States. This report presents and reviews these methods (Section 2.0), which is intended to provide the reader with general background information that is the basis for the critical evaluation of the methods (Section 3.0). The strategy for instream flow assessment presented in Section 4.0 is, in turn, based on the implicit assumptions, data needs, costs, and decision-making capabilities of the various methods as discussed in Section 3.0.

  17. EA-1364: Proposed Construction and Operation of a Biosafety Level 3 Facility at Los Alamos National Laboratory, Los Alamos, NM

    Broader source: Energy.gov [DOE]

    This EA evaluates the potential environmental impacts of a proposal to construct an approximately 3,000 square foot, one-story permanent facility which includes two BSL-3 laboratories with adjoining individual mechanical rooms separated by a central support BSL-2 laboratory; clothes-change and shower rooms; and associated office spaces.

  18. Small-scale strength

    SciTech Connect (OSTI)

    Anderson, J.L.

    1995-11-01

    In the world of power project development there is a market for smaller scale cogeneration projects in the range of 1MW to 10MW. In the European Union alone, this range will account for about $25 Billion in value over the next 10 years. By adding the potential that exists in Eastern Europe, the numbers are even more impressive. In Europe, only about 7 percent of needed electrical power is currently produced through cogeneration installations; this is expected to change to around 15 percent by the year 2000. Less than one year ago, two equipment manufacturers formed Dutch Power Partners (DPP) to focus on the market for industrial cogeneration throughout Europe.

  19. EA-1065: Proposed Construction and Operation of a Genome Sequencing Facility in Building 64 at Lawrence Berkeley Laboratory, Berkeley, California

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to modify 14,900 square feet of an existing building (Building 64) at the U.S. Department of Energy's Lawrence Berkeley Laboratory to...

  20. Supplement Analysis for the Site-Wide Environmental Impact Statement for Continued Operation of Los Alamos National Laboratory -- Proposed Horizontal Expansion of the Restricted Airspace up to 5,000 feet at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    N /A

    2004-09-21

    This Supplement Analysis (SA) has been prepared to determine if the Site-Wide Environmental Impact Statement for Continued Operations of Los Alamos National Laboratory (SWEIS) (DOE/EIS-0238) adequately addresses the environmental effects of modifying the horizontal restricted airspace boundaries at the Los Alamos National Laboratory (LANL), to include LANL's Technical Areas (TA)-33 and TA-54, or if the SWEIS needs to be supplemented. Council on Environmental Quality regulations at Title 40, Section 1502.9(c) of the Code of Federal Regulations (40 CFR 1502.9[c]) require federal agencies to prepare a supplement to an EIS when an agency makes substantial changes in the Proposed Action that are relevant to Environmental concerns or when there are new circumstances or information relevant to environmental concerns and bearing on the Proposed Action or its impacts. This SA specifically compares key impact assessment parameters of this proposal to the SWEIS impact analysis, and considers LANL operational accident analyses. The Sa concludes with a finding of fact regarding whether the environmental effects of the Proposed Action are adequately bounded by the analyses of impacts projected by the 1999 Site-Wide Environmental Impact Statement for Continued Operation of the Los Alamos National Laboratory, or whether a Supplemental EIS is required.

  1. An analysis of markets for small-scale, advanced coal-combustion technology in Spain, Italy, and Turkey

    SciTech Connect (OSTI)

    Placet, M.; Gerry, P.A.; Kenski, D.M.; Kern, D.M.; Nehring, J.L.; Szpunar, C.B.

    1989-09-01

    This report discusses the examination of potential overseas markets for using small-scale, US-developed, advanced coal-combustion technologies (ACTs). In previous work, member countries of the Organization for Economic Cooperation and Development (OECD) were rated on their potential for using ACTs through a comprehensive screening methodology. The three most promising OECD markets were found to be Spain, Italy, and Turkey. This report provides in-depth analyses of these three selected countries. First, it addresses changes in the European Community with particular reference to the 1992 restructuring and its potential effect on the energy situation in Europe, specifically in the three subject countries. It presents individual country studies that examine demographics, economics, building infrastructures, and energy-related factors. Potential niches for ACTs are explored for each country through regional analyses. Marketing channels, strategies, and the trading environments in each country are also discussed. The information gathered indicates that Turkey is a most promising market, Spain is a fairly promising market, and Italy appears to be a somewhat limited market for US ACTs. 76 refs., 16 figs., 14 tabs.

  2. Sustainability | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sustainability Ames Laboratory is committed to environmental sustainability in all of its operations as outlined in the Laboratory's Site Sustainability Plan. Executive orders set ...

  3. TECHNICAL EVALUATION OF SOIL REMEDIATION ALTERNATIVES AT THE BUILDING 812 OPERABLE UNIT, LAWRENCE LIVERMORE NATIONAL LABORATORY SITE 300

    SciTech Connect (OSTI)

    Eddy-Dilek, C.; Miles, D.; Abitz, R.

    2009-08-14

    The Department of Energy Livermore Site Office requested a technical review of remedial alternatives proposed for the Building 812 Operable Unit, Site 300 at the Lawrence Livermore National Laboratory. The team visited the site and reviewed the alternatives proposed for soil remediation in the draft RI/FS and made the following observations and recommendations. Based on the current information available for the site, the team did not identify a single technology that would be cost effective and/or ecologically sound to remediate DU contamination at Building 812 to current remedial goals. Soil washing is not a viable alternative and should not be considered at the site unless final remediation levels can be negotiated to significantly higher levels. This recommendation is based on the results of soil washing treatability studies at Fernald and Ashtabula that suggest that the technology would only be effective to address final remediation levels higher than 50 pCi/g. The technical review team identified four areas of technical uncertainty that should be resolved before the final selection of a preferred remedial strategy is made. Areas of significant technical uncertainty that should be addressed include: (1) Better delineation of the spatial distribution of surface contamination and the vertical distribution of subsurface contamination in the area of the firing table and associated alluvial deposits; (2) Chemical and physical characterization of residual depleted uranium (DU) at the site; (3) Determination of actual contaminant concentrations in air particulates to support risk modeling; and (4) More realistic estimation of cost for remedial alternatives, including soil washing, that were derived primarily from vendor estimates. Instead of conducting the planned soil washing treatability study, the team recommends that the site consider a new phased approach that combines additional characterization approaches and technologies to address the technical uncertainty in the remedial decision making. The site should redo the risk calculations as the future use scenario has changed for the site. As a result, the existing model is based on very conservative assumptions that result in calculation of unreasonably low cleanup goals. Specifically, the review team proposes that LLNL consider: (1) Revising the industrial worker scenario to a reasonable maximum exposure (RME) for a site worker that performs a weekly walk down of the area for two hours for 25 years (or an alternative RME if the exposure scenario changes); (2) Revising the ESSI of 2 mg U per kg soil for the deer mouse to account for less than 0.05 of the total ingested uranium being adsorbed by the gut; (3) Revising bioaccumulation factors (BAFs) for vegetation and invertebrates that are based on 100 mg of soluble uranium per kg of soil, as the uranium concentration in the slope soil does not average 100 mg/kg and it is not all in a soluble form; and (4) Measuring actual contaminant concentrations in air particulates at the site and using the actual values to support risk calculations. The team recommends that the site continue a phased approach during remediation. The activities should focus on elimination of the principal threats to groundwater by excavating (1) source material from the firing table and alluvial deposits, and (2) soil hotspots from the surrounding slopes with concentrations of U-235 and U-238 that pose unacceptable risk. This phased approach allows the remediation path to be driven by the results of each phase. This reduces the possibility of costly 'surprises', such as failure of soil treatment, and reduces the impact of remediation on endangered habitat. Treatment of the excavated material with physical separation equipment may result in a decreased volume of soil for disposal if the DU is concentrated in the fine-grained fraction, which can then be disposed of in an offsite facility at a considerable cost savings. Based on existing data and a decision to implement the recommended phased approach, the cost of characterization, excavation and physical

  4. OBSERVATIONS OF THE INTERACTION OF ACOUSTIC WAVES AND SMALL-SCALE MAGNETIC FIELDS IN A QUIET SUN

    SciTech Connect (OSTI)

    Chitta, Lakshmi Pradeep; Kariyappa, R.; Jain, Rekha; Jefferies, Stuart M. E-mail: rkari@iiap.res.in E-mail: stuartj@ifa.hawaii.edu

    2012-01-10

    The effect of the magnetic field on photospheric intensity and velocity oscillations at the sites of small-scale magnetic fields (SMFs) in a quiet Sun near the solar disk center is studied. We use observations made by the G-band filter in the Solar Optical Telescope on board Hinode for intensity oscillations; Doppler velocity, magnetic field, and continuum intensity are derived from an Ni I photospheric absorption line at 6767.8 A using the Michelson Doppler Imager on board the Solar and Heliospheric Observatory. Our analysis shows that both the high-resolution intensity observed in the G band and velocity oscillations are influenced by the presence of a magnetic field. While intensity oscillations are suppressed at all frequencies in strong magnetic field regions compared to weak magnetic field regions, velocity oscillations show an enhancement of power in the frequency band 5.5-7 mHz. We find that there is a drop of 20%-30% in the p-mode power of velocity oscillations within the SMFs when compared to the regions surrounding them. Our findings indicate that the nature of the interaction of acoustic waves with the quiet Sun SMFs is similar to that of large-scale magnetic fields in active regions. We also report the first results of the center-to-limb variation of such effects using the observations of the quiet Sun from the Helioseismic and Magnetic Imager (HMI) aboard the Solar Dynamics Observatory (SDO). The independent verification of these interactions using SDO/HMI suggests that the velocity power drop of 20%-30% in p-modes is fairly constant across the solar disk.

  5. EA-1455: Enhanced Operations of the Advanced Photon Source at Argonne National Laboratory-East, Argonne, Illinois

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal to continue and enhance operation of the Advanced photon Source, including modifications, upgrades, and new facilities, at the U.S....

  6. Operating Experience Level 3, Laboratory Tests Indicate Conditions that Could Potentially Impact Certain Type of HEPA Filter Performance

    Broader source: Energy.gov [DOE]

    OE-3: 2013-02 This Operating Experience Summary provides new information on a potential performance issue associated with certain axial flow high efficiency particulate air (HEPA) filters that do not contain separators in the folded media (separatorless).

  7. EA-1562: Construction and Operation of a Physical Sciences Facility at the Pacific Northwest National Laboratory, Richland, Washington

    Broader source: Energy.gov [DOE]

    This EA evaluates the potential environmental impacts of DOE proposed activities associated with constructing and operating a new Physical Sciences Facility (PSF) complex on DOE property located in...

  8. 35/70 MPa Small-scale Hydrogen Fueling Appliance (SHFA) Phase 2a - Design of the First-Generation (Alpha) device - Final Report and Guide

    SciTech Connect (OSTI)

    Kelly Jezierski, NextEnergy; Ted Barnes, GTI; Stephen Jones, ITM Power

    2011-08-31

    The NextEnergy Center MicroGrid Power Pavilion and Hydrogen Fueling Facility construction was divided into 5 phases, as described in further detail below. Phases 1 through 4 involved build out of the facility and phase 5 included the development of the 35/70 MPa (10,000 psi) Small-scale Hydrogen Fueling Appliance (SHFA).

  9. Federal legal obstacles and incentives to the development of the small-scale hydroelectric potential of the nineteen Northeastern states. Executive summary

    SciTech Connect (OSTI)

    None,

    1980-05-01

    The main report for which this report is the executive summary, DOE/RA--23-216.00.0-01 (see EAPA 5:3929), was published in revised form in March 1979. Also, since that time, Energy Law Institute has produced detailed legal memoranda on obstacles and incentives for each of the 19 states. This executive summary summarizes the findings and observations of the original report. Specific summaries included are: Federal Jurisdiction Over Small-Scale Hydroelectric Facilities; The FERC; The Regulation of Construction in and the Discharge of Dredged, Fill, and Other Materials into the Waters of the US; The Protection of Fish, Wildlife, and Endangered Species; The Preservation of Historic Places, Archaeological Sites, and Natural Areas; Regulation of the Use of Federal Lands; Federal Dam Construction and Power-Distribution Agencies; Additional Federal Agencies Concerned with Small-Scale Hydroelectric Dams; Federal Tax Devices and Business Structures Affecting Small-Scale Hydroelectric Development; and an Outline of Federal-Assistance programs Available for Small-Scale Hydroelectric Development.

  10. Functional and operational requirements document : building 1012, Battery and Energy Storage Device Test Facility, Sandia National Laboratories, New Mexico.

    SciTech Connect (OSTI)

    Johns, William H.

    2013-11-01

    This report provides an overview of information, prior studies, and analyses relevant to the development of functional and operational requirements for electrochemical testing of batteries and energy storage devices carried out by Sandia Organization 2546, Advanced Power Sources R&D. Electrochemical operations for this group are scheduled to transition from Sandia Building 894 to a new Building located in Sandia TA-II referred to as Building 1012. This report also provides background on select design considerations and identifies the Safety Goals, Stakeholder Objectives, and Design Objectives required by the Sandia Design Team to develop the Performance Criteria necessary to the design of Building 1012. This document recognizes the Architecture-Engineering (A-E) Team as the primary design entity. Where safety considerations are identified, suggestions are provided to provide context for the corresponding operational requirement(s).

  11. Hardware Development of a Laboratory-Scale Microgrid Phase 2: Operation and Control of a Two-Inverter Microgrid

    SciTech Connect (OSTI)

    Illindala, M. S.; Piagi, P.; Zhang, H.; Venkataramanan, G.; Lasseter, R. H.

    2004-03-01

    This report summarizes the activities of the second year of a three-year project to develop control software for microsource distributed generation systems. In this phase, a laboratory-scale microgrid was expanded to include: (1) Two emulated distributed resources; (2) Static switchgear to allow rapid disconnection and reconnection; (3) Electronic synchronizing circuitry to enable transient-free grid interconnection; (4) Control software for dynamically varying the frequency and voltage controller structures; and (5) Power measurement instrumentation for capturing transient waveforms at the interconnect during switching events.

  12. Annual Site Environmental Report, Department of Energy Operations at the Energy Technology Engineering Center – Area IV, Santa Susana Field Laboratory

    SciTech Connect (OSTI)

    Frazee, Brad; Hay, Scott; Wondolleck, John; Sorrels, Earl; Rutherford, Phil; Dassler, David; Jones, John

    2015-05-01

    This Annual Site Environmental Report (ASER) for 2014 describes the environmental conditions related to work performed for the DOE at Area IV of the Santa Susana Field Laboratory (SSFL). The ETEC, a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, operation and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder reactor components. All nuclear work was terminated in 1988, and all subsequent radiological work has been directed toward environmental restoration and decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Liquid metal research and development ended in 2002. Since May 2007, the D&D operations in Area IV have been suspended by the DOE, but the environmental monitoring and characterization programs have continued. Results of the radiological monitoring program continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.

  13. Los Alamos National Laboratory * Est. 1943 The Pulse-Newsletter of the Los Alamos Neutron Science Center and Accelerator Operations and Technology Division

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Los Alamos National Laboratory * Est. 1943 The Pulse-Newsletter of the Los Alamos Neutron Science Center and Accelerator Operations and Technology Division I N S I D E 2 From Alex's Desk 3 lujAn Center reseArCh FeAtureD on Cover oF Langmuir 4 FunCtionAl oxiDes unDer extreme ConDi- tions-quest For new mAteriAls 6 heADs uP! By Diana Del Mauro ADEPS Communications Inside the Lujan Neutron Scattering Center, Victor Fanelli is busy preparing a superconducting magnet. In a series of delicate steps,

  14. Management and Operating Contract for the Los Alamos National Laboratory, NNSA contract No. DE-AC52-06NA25396

    National Nuclear Security Administration (NNSA)

    MANAGEMENT AND OPERATING CONTRACT FOR THE LOS ALAMOS NATIONAL LABORATORY NATIONAL NUCLEAR SECURITY ADMINISTRATION CONTRACT No. DE-AC52-06NA25396 DECEMBER 21, 2005 1943 Today Blank Page Blank Page Request for Proposal No. DE-RP52-05NA25396 LANS Contract DE-AC52-06NA25396.doc Section B - H, Page 2 Part I - The Schedule Sections B through H TABLE OF CONTENTS STANDARD FORM 33 SOLICITATION, OFFER AND AWARD....................................... 1 Section B - SUPPLIES OR SERVICES AND PRICES/COSTS

  15. Process Description and Operating History for the CPP-601/-640/-627 Fuel Reprocessing Complex at the Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    E. P. Wagner

    1999-06-01

    The Fuel Reprocessing Complex (FRC) at the Idaho Nuclear Technology and Engineering Center at the Idaho National Engineering and Environmental Laboratory was used for reprocessing spent nuclear fuel from the early 1950's until 1992. The reprocessing facilities are now scheduled to be deactivated. As part of the deactivation process, three Resource Conservation and Recovery Act (RCRA) interim status units located in the complex must be closed. This document gathers the historical information necessary to provide a rational basis for the preparation of a comprehensive closure plan. Included are descriptions of process operations and the operating history of the FRC. A set of detailed tables record the service history and present status of the process vessels and transfer lines.

  16. Sampling and analysis plan for the site characterization of the waste area Grouping 1 groundwater operable unit at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    1994-11-01

    Waste Area Grouping (WAG) 1 at Oak Ridge National Laboratory (ORNL) includes all of the former ORNL radioisotope research, production, and maintenance facilities; former waste management areas; and some former administrative buildings. Site operations have contaminated groundwater, principally with radiological contamination. An extensive network of underground pipelines and utilities have contributed to the dispersal of contaminants to a known extent. In addition, karst geology, numerous spills, and pipeline leaks, together with the long and varied history of activities at specific facilities at ORNL, complicate contaminant migration-pathway analysis and source identification. To evaluate the extent of contamination, site characterization activity will include semiannual and annual groundwater sampling, as well as monthly water level measurements (both manual and continuous) at WAG 1. This sampling and analysis plan provides the methods and procedures to conduct site characterization for the Phase 1 Remedial Investigation of the WAG 1 Groundwater Operable Unit.

  17. The Impact of Distributed Wind on Bulk Power System Operations in ISO-NE (Presentation), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distributed Wind on Bulk Power System Operations in ISO-NE 13 th Wind Integration Workshop Carlo Brancucci Martinez-Anido, Bri-Mathias Hodge, and David Palchak (NREL); and Jari Miettinen (VTT) Berlin, Germany November 11, 2014 NREL/PR-5D00-63083 2 Motivation and Scope * Wind integration is hindered in the U.S. power system o The best wind resources are far from the main load centers o There are difficult regulatory and legal hurdles and substantial investments are required to develop new

  18. Executive summary: legal obstacles and incentives to the development of small scale hydroelectric potential in the seven mid-western states

    SciTech Connect (OSTI)

    None,

    1980-05-01

    The relationship of Federal law and regulation to state law and regulation of small-scale hydroelectric facilities is described. Important features of the constitutional law, statutory law, case law, and regulations of each of the 7 mid-western states (Illinois, Indiana, Kentucky, Michigan, Ohio, West Virginia, and Wisconsin) are highlighted. The introductory section examines the dual regulatory system from the standpoint of the appropriate legal doctrine, i.e., the law of pre-emption, and the application of this law to the case of hydroelectric development and regulation of water resources. A state-by-state synopsis of these important provisions of the laws of the states that have a bearing on small-scale hydroelectric development is presented.

  19. Evaluation of Flygt Mixers for Application in Savannah River Site Tank 19 Test Results from Phase A: Small-Scale Testing at ITT Flygt

    SciTech Connect (OSTI)

    Powell, M.R.; Farmer, J.R.; Gladki, H.; Hatchell, B.K.; Poirier, M.R.; Rodwell, P.O.

    1999-03-30

    The key findings of the small-scale Flygt mixer tests are provided in this section. Some of these findings may not apply in larger tanks, so these data must be applied carefully when making predictions for large tanks. Flygt mixer testing in larger tanks at PNNL and in a full-scale tank at the SRS will be used to determine the applicability of these findings. The principal objectives of the small-scale Flygt mixer tests were to measure the critical fluid velocities required for sludge mobilization and particle suspension, to evaluate the applicability of the Gladki (1997) method for predicting required mixer thrust, and to provide small-scale test results for comparison with larger-scale tests to observe the effects of scale-up. The tank profile and mixer orientation (i.e., stationary, horizontal mixers) were in the same configuration as the prototype system, however, available resources did not allow geometric, kinematic, and dynamic similitude to be achieved. The results of these tests will be used in conjunction with the results from similar tests using larger tanks and mixers (tank diameters of 1.8 and 5.7 m [Powell et al. 1999]) to evaluate the effects of scaling and to aid in developing a methodology for predicting performance at full scale.

  20. Draft Site-wide Environmental Impact Statement for Continued Operation of Lawrence Livermore National Laboratory and Supplemental Stockpile Stewardship and Management Programmatic Environmental Impact Statement

    SciTech Connect (OSTI)

    N /A

    2004-02-27

    This ''Site-wide Environmental Impact Statement for Continued Operation of Lawrence Livermore National Laboratory and Supplemental Stockpile Stewardship and Management Programmatic Environmental Impact Statement'' (LLNL SW/SPEIS) describes the purpose and need for agency action for the continued operation of LLNL and analyzes the environmental impacts of these operations. The primary purpose of continuing operation of LLNL is to provide support for the National Nuclear Security Administration's (NNSA's) nuclear weapons stockpile stewardship missions. LLNL, located about 40 miles east of San Francisco, California, is also needed to support other U.S. Department of Energy (DOE) programs and Federal agencies such as the U.S. Department of Defense, Nuclear Regulatory Commission, U.S. Environmental Protection Agency (EPA), and the newly established U.S. Department of Homeland Security. This LLNL SW/SPEIS analyzes the environmental impacts of reasonable alternatives for ongoing and foreseeable future operations, facilities, and activities at LLNL. The reasonable alternatives include the No Action Alternative, Proposed Action, and the Reduced Operation Alternative. The major decision to be made by DOE/NNSA is to select one of the alternatives for the continued operation of the LLNL. As part of the Proposed Action, DOE/NNSA is considering: using additional materials including plutonium on the National Ignition Facility (NIF); increasing the administrative limit for plutonium in the Superblock, which includes the Plutonium Facility, the Tritium Facility, and the Hardened Engineering Test Building; conducting the Integrated Technology Project, using laser isotope separation to provide material for Stockpile Stewardship experiments, in the Plutonium Facility; increasing the material-at-risk limit for the Plutonium Facility; and increasing the Tritium Facility material-at-risk. A discussion of these issues is presented in Section S.5.2, Proposed Action. The ''National Environmental Policy Act'' (NEPA) establishes environmental policy, sets goals, and provides means for implementing the policy. NEPA contains provisions to ensure that Federal agencies adhere to the letter and spirit of the Act. The key provision requires preparation of an environmental impact statement on ''major Federal actions significantly affecting the quality of the human environment'' (40 ''Code of Federal Regulations'' [CFR] {section}1502.3). NEPA ensures that environmental information is available to public officials and citizens before decisions are made and actions are taken (40 CFR {section}1500.1[b]). DOE has a policy to prepare sitewide environmental impact statements documents for certain large, multiple-facility sites such as LLNL (10 CFR {section}1021.330). In August 1992, DOE released the ''Final Environmental Impact Statement and Environmental Impact Report for Continued Operations of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore'' (LLNL EIS/EIR). A Record of Decision (ROD) (58 ''Federal Register'' [FR] 6268) was issued in January 1993. With the passage of more than 10 years since the publication of the 1992 LLNL EIS/EIR (DOE/EIS-0157) and because of proposed modifications to existing projects and new programs, NNSA determined that it was appropriate to prepare a new LLNL SW/SPEIS.

  1. Environmental Assessment for Leasing Land for the Siting, Construction and Operation of a Commercial AM Radio Antenna at Los Alamos National Laboratory, Los Alamos, NM

    SciTech Connect (OSTI)

    N /A

    2000-02-16

    The United States (U.S.) Department of Energy (DOE) proposes to lease approximately 3 acres of land at the Los Alamos National Laboratory (LANL) on the southeast tip of Technical Area (TA) 54 for the siting, construction and operation of an AM radio broadcasting antenna. This Environmental Assessment (EA) has been developed in order to assess the environmental effects of the Proposed Action and No Action alternative. The Proposed Action includes the lease of land for the siting, construction and operation of an AM radio broadcasting antenna in TA-54, just north of Pajarito Road and State Highway 4. The No Action Alternative was also considered. Under the No Action Alternative, DOE would not lease land on LANL property for the siting and operation of an AM radio broadcasting antenna; the DOE would not have a local station for emergency response use; and the land would continue to be covered in native vegetation and serve as a health and safety buffer zone for TA-54 waste management activities. Other potential sites on LANL property were evaluated but dismissed for reasons such as interference with sensitive laboratory experiments. Potential visual, health, and environmental effects are anticipated to be minimal for the Proposed Action. The radio broadcasting antenna would be visible against the skyline from some public areas, but would be consistent with other man-made objects in the vicinity that partially obstruct viewsheds (e.g. meteorological tower, power lines). Therefore, the net result would be a modest change of the existing view. Electromagnetic field (EMF) emissions from the antenna would be orders or magnitude less than permissible limits. The proposed antenna construction would not affect known cultural sites, but is located in close proximity to two archaeological sites. Construction would be monitored to ensure that the associated road and utility corridor would avoid cultural sites.

  2. FY93 Princeton Plasma Physics Laboratory. Annual report, October 1, 1992--September 30, 1993

    SciTech Connect (OSTI)

    Not Available

    1995-02-01

    This is the annual report from the Princeton Plasma Physics Laboratory for the period October 1, 1992 to September 30, 1993. The report describes work done on TFTR during the year, as well as preparatory to beginning of D-T operations. Design work is ongoing on the Tokamak Physics Experiment (TPX) which is to test very long pulse operations of tokamak type devices. PBX has come back on line with additional ion-Bernstein power and lower-hybrid current drive. The theoretical program is also described, as well as other small scale programs, and the growing effort in collaboration on international design projects on ITER and future collaborations at a larger scale.

  3. Environmental Assessment for the Proposed Construction and Operations of a Biosafety Level 3 Facility at Los Alamos National Laboratory, Los Alamos, New Mexico

    SciTech Connect (OSTI)

    N /A

    2002-02-26

    The ''National Environmental Policy Act of 1969'' (NEPA) requires Federal agency officials to consider the environmental consequences of their proposed actions before decisions are made. In complying with NEPA, the United States (U.S.) Department of Energy (DOE), National Nuclear Security Administration (NNSA) follows the Council on Environmental Quality regulations (40 ''Code of Federal Regulations'' [CFR] 1500-1508) and DOE's own NEPA implementing procedures (10 CFR 1021). The purpose of an environmental assessment (EA) is to provide Federal decision-makers with sufficient evidence and analysis to determine whether to prepare an Environmental impact statement (EIS) or issue a Finding of No Significant Impact. This EA has been prepared to assess environmental consequences resulting from the construction and operation of a Biosafety Level 3 (BSL-3) laboratory facility within the boundaries of the Los Alamos National Laboratory (LANL). LANL is one of the national security laboratories under the authority of the Under Secretary for Nuclear Security of the NNSA who serves as the Administrator for Nuclear Security and Head of the NNSA (50 USC Chapter 41, Section 2402(b)). The objectives of this EA are to (1) describe the underlying purpose and need for NNSA action; (2) describe the Proposed Action and identify and describe any reasonable alternatives that satisfy the purpose and need for NNSA action; (3) describe baseline environmental conditions at LANL; (4) analyze the potential indirect, direct, and cumulative effects to the existing environment from implementation of the Proposed Action and other reasonable alternatives; and (5) compare the effects of the Proposed Action with the No Action Alternative and other reasonable alternatives. For the purposes of compliance with NEPA, reasonable alternatives are identified as being those that meet NNSA's purpose and need for action by virtue of timeliness, appropriate technology, and applicability to LANL. The EA process also provides NNSA with environmental information that can be used in developing mitigative actions, if necessary, to minimize or avoid adverse effects to the quality of the human environment and natural ecosystems should NNSA decide to proceed with implementing the construction and operation of a BSL-3 facility at LANL. Ultimately, the goal of NEPA and this EA is to aid NNSA officials in making decisions based on an understanding of environmental consequences and taking actions that protect, restore, and enhance the environment.

  4. Independent Activity Report, Sandia National Laboratories - September...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    September 2012 Independent Activity Report, Sandia National Laboratories - September 2012 September 2012 Operational Awareness Oversight of Sandia National Laboratories HIAR ...

  5. Environmental assessment for the resiting, construction, and operation of the Environmental and Molecular Sciences Laboratory at the Hanford Site, Richland, Washington

    SciTech Connect (OSTI)

    Not Available

    1994-07-01

    This environmental assessment (EA) presents estimated environmental impacts from the resiting, construction, and operation of the US Department of Energy`s (DOE`s) Environmental and Molecular Sciences Laboratory (EMSL), which is proposed to be constructed and operated on land near the south boundary of the Hanford Site near Richland, Washington. The EMSL, if constructed, would be a modern research facility in which experimental, theoretical, and computational techniques can be focused on environmental restoration problems, such as the chemical and transport behavior of complex mixtures of contaminants in the environment. The EMSL design includes approximately 18,500 square meters (200,000 square feet) of floor space on a 12-hectare (30-acre) site. The proposed new site is located within the city limits of Richland in north Richland, at the south end of DOE`s 300 Area, on land to be deeded to the US by the Battelle Memorial Institute. Approximately 200 persons are expected to be employed in the EMSL and approximately 60 visiting scientists may be working in the EMSL at any given time. State-of-the-art equipment is expected to be installed and used in the EMSL. Small amounts of hazardous substances (chemicals and radionuclides) are expected to be used in experimental work in the EMSL.

  6. Supplement Analysis to the 1999 Site-Wide Environmental Impact Statement for Continued Operation of Los Alamos National Laboratory for the Proposed Disposition of Certain Large Containment Vessels

    SciTech Connect (OSTI)

    N /A

    2004-02-12

    This Supplement Analysis (SA) has been prepared to determine if the Site-Wide Environmental Impact Statement for Continued Operations of Los Alamos National Laboratory (SWEIS) (DOE/EIS-0238) (DOE 1999a) adequately addresses the environmental effects of introducing a proposed project for the clean-out and decontamination (DECON) of certain large containment vessels into the Chemistry and Metallurgy Research (CMR) Building located at Los Alamos National Laboratory (LANL) Technical Area (TA) 3, or if the SWEIS needs to be supplemented. After undergoing the clean-out and DECON steps, the subject containment vessels would be disposed of at LANL's TA-54 low-level waste (LLW) disposal site or, as appropriate, at a DOE or commercial offsite permitted LLW-regulated landfill; after actinides were recovered from the DECON solution within the CMR Building, they would be moved to LANL's TA-55 Plutonium Facility and undergo subsequent processing at that facility for reuse. Council on Environmental Quality regulations at Title 40, Section 1502.9(c) of the Code of Federal Regulations (40 CFR 1502.9[c]) require federal agencies to prepare a supplement to an environmental impact statement (EIS) when an agency makes substantial changes in the proposed action that are relevant to environmental concerns, or there are changed circumstances or new or changed information relevant to concerns and bearing on the proposed action or its impacts. This SA is prepared in accordance with Section 10 CFR 10211.314(c) of the DOE's regulations for National Environmental Policy Act (NEPA) implementation that states: ''When it is unclear whether or not an EIS supplement is required, DOE shall prepare a Supplement Analysis''. This SA specifically compares key impact assessment parameters of the proposed project action with the LANL operations capabilities evaluated in the 1999 SWEIS in support DOE's long-term hydrodynamic testing program at LANL, as well as the waste disposal capabilities evaluated in the SWEIS in support of LANL operations. It also provides an explanation of any differences between the proposed action and activities described in the SWEIS analysis. The SWEIS analyzed the impacts of performing plutonium (Pu) and actinide activities, including hydrodynamic testing support activity, at the Plutonium Facility and at the CMR Building.

  7. Pacific Northwest National Laboratory Operated

    Office of Legacy Management (LM)

    ... To satisfy the requirements of the Biomonitoring Plan of the ... to rapid redox reactions within the natural enviromnent. ... then were shipped to Rich land, WA. There was not enough ...

  8. Operational Excellence

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operational Excellence /about/_assets/images/icon-70th.jpg Operational Excellence The Lab's mission is to develop and apply science and technology to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. aeiral shot of los alamos, new mexico What Los Alamos gets done as a premier national security science laboratory depends on how we do it The Laboratory's operations and business

  9. Operations Committee Report

    Broader source: Energy.gov (indexed) [DOE]

    Presented to the Commission to Review Effectiveness of National Energy Laboratories Jeff Smith Deputy for Operations Oak Ridge National Laboratory February 24, 2015 The Importance ...

  10. CASL - Idaho National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The laboratory has designed and operated 52 test reactors, including EBR-1, the world's first nuclear power plant Key Contributions System safety analysis Multiscale fuel ...

  11. Laboratory Organization Chart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Board Directorate Staff Org Chart Berkeley Lab Organization Chart ESnet Protective Services ETAESDR ETAEAEI ETA Chief Operating Officer Laboratory Council RIIO...

  12. Los Alamos National Laboratory's

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    produced by current operations. LANL and regulatory agencies survey the air, soil, sediment, groundwater, and surface water around the Laboratory to make sure contaminants from...

  13. SMALL-SCALE TESTING OF PLUTONIUM (IV) OXALATE PRECIPITATION AND CALCINATION TO PLUTONIUM OXIDE TO SUPPORT THE MOX FEED MISSION

    SciTech Connect (OSTI)

    Crowder, M.; Pierce, R.; Scogin, J.; Daniel, G.; King, W.

    2012-06-25

    The H-Canyon facility will be used to dissolve Pu metal for subsequent purification and conversion to plutonium dioxide (PuO{sub 2}) using Phase II of HB-Line. To support the new mission, SRNL conducted a series of experiments to produce calcined plutonium (Pu) oxide and measure the physical properties and water adsorption of that material. This data will help define the process operating conditions and material handling steps for HB-Line. An anion exchange column experiment produced 1.4 L of a purified 52.6 g/L Pu solution. Over the next nine weeks, seven Pu(IV) oxalate precipitations were performed using the same stock Pu solution, with precipitator feed acidities ranging from 0.77 M to 3.0 M nitric acid and digestion times ranging from 5 to 30 minutes. Analysis of precipitator filtrate solutions showed Pu losses below 1% for all precipitations. The four larger precipitation batches matched the target oxalic acid addition time of 44 minutes within 4 minutes. The three smaller precipitation batches focused on evaluation of digestion time and the oxalic acid addition step ranged from 25-34 minutes because of pump limitations in the low flow range. Following the precipitations, 22 calcinations were performed in the range of 610-690 C, with the largest number of samples calcined at either 650 or 635 C. Characterization of the resulting PuO{sub 2} batches showed specific surface areas in the range of 5-14 m{sup 2}/g, with 16 of the 22 samples in the range of 5-10 m2/g. For samples analyzed with typical handling (exposed to ambient air for 15-45 minutes with relative humidities of 20-55%), the moisture content as measured by Mass Spectrometry ranged from 0.15 to 0.45 wt % and the total mass loss at 1000 C, as measured by TGA, ranged from 0.21 to 0.58 wt %. For the samples calcined between 635 and 650 C, the moisture content without extended exposure ranged from 0.20 to 0.38 wt %, and the TGA mass loss ranged from 0.26 to 0.46 wt %. Of these latter samples, the samples calcined at 650 C generally had lower specific surface areas and lower moisture contents than the samples calcined at 635 C, which matches expectations from the literature. Taken together, the TGA-MS results for samples handled at nominally 20-50% RH, without extended exposure, indicate that the Pu(IV) oxalate precipitation process followed by calcination at 635-650 C appears capable of producing PuO{sub 2} with moisture content < 0.5 wt% as required by the 3013 Standard. Exposures of PuO{sub 2} samples to ambient air for 3 or more hours generally showed modest mass gains that were primarily gains in moisture content. These results point to the need for a better understanding of the moisture absorption of PuO{sub 2} and serve as a warning that extended exposure times, particularly above the 50% RH level observed in this study will make the production of PuO{sub 2} with less than 0.5 wt % moisture more challenging. Samples analyzed in this study generally contained approximately 2 monolayer equivalents of moisture. In this study, the bulk of the moisture released from samples below 300 C, as did a significant portion of the CO{sub 2}. Samples in this study consistently released a minor amount of NO in the 40-300 C range, but no samples released CO or SO{sub 2}. TGA-MS results also showed that MS moisture content accounted for 80 {+-} 8% of the total mass loss at 1000 C measured by the TGA. The PuO{sub 2} samples produced had particles sizes that typically ranged from 0.2-88 {micro}m, with the mean particle size ranging from 6.4-9.3 {micro}m. The carbon content of ten different calcination batches ranged from 190-480 {micro}g C/g Pu, with an average value of 290 {micro}g C/g Pu. A statistical review of the calcination conditions and resulting SSA values showed that in both cases tested, calcination temperature had a significant effect on SSA, as expected from literature data. The statistical review also showed that batch size had a significant effect on SSA, but the narrow range of batch sizes tested is a compelling reason to set aside that result until tests

  14. Human Health and Ecological Risk Assessment for the Operation of the Explosives Waste Treatment Facility at Site 300 of the Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Gallegos, G; Daniels, J; Wegrecki, A

    2007-10-01

    This document contains the human health and ecological risk assessment for the Resource Recovery and Conservation Act (RCRA) permit renewal for the Explosives Waste Treatment Facility (EWTF). Volume 1 is the text of the risk assessment, and Volume 2 (provided on a compact disc) is the supporting modeling data. The EWTF is operated by the Lawrence Livermore National Laboratory (LLNL) at Site 300, which is located in the foothills between the cities of Livermore and Tracy, approximately 17 miles east of Livermore and 8 miles southwest of Tracy. Figure 1 is a map of the San Francisco Bay Area, showing the location of Site 300 and other points of reference. One of the principal activities of Site 300 is to test what are known as 'high explosives' for nuclear weapons. These are the highly energetic materials that provide the force to drive fissionable material to criticality. LLNL scientists develop and test the explosives and the integrated non-nuclear components in support of the United States nuclear stockpile stewardship program as well as in support of conventional weapons and the aircraft, mining, oil exploration, and construction industries. Many Site 300 facilities are used in support of high explosives research. Some facilities are used in the chemical formulation of explosives; others are locations where explosive charges are mechanically pressed; others are locations where the materials are inspected radiographically for such defects as cracks and voids. Finally, some facilities are locations where the machined charges are assembled before they are sent to the onsite test firing facilities, and additional facilities are locations where materials are stored. Wastes generated from high-explosives research are treated by open burning (OB) and open detonation (OD). OB and OD treatments are necessary because they are the safest methods for treating explosives wastes generated at these facilities, and they eliminate the requirement for further handling and transportation that would be required if the wastes were treated off site.

  15. The Sample Preparation Laboratories | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cynthia Patty 1 Sam Webb 2 John Bargar 3 Arizona 4 Chemicals 5 Team Work 6 Bottles 7 Glass 8 Plan Ahead! See the tabs above for Laboratory Access and forms you'll need to complete. Equipment and Chemicals tabs detail resources already available on site. Avoid delays! Hazardous materials use may require a written Standard Operating Procedure (SOP) before you work. Check the Chemicals tab for more information. The Sample Preparation Laboratories The Sample Preparation Laboratories provide wet lab

  16. Alamos National Laboratory's 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    $2 million pledged during Los Alamos National Laboratory's 2014 employee giving campaign December 17, 2013 "I Give Because..." theme focuses on unique role Lab plays in local communities LOS ALAMOS, N.M., Dec. 17, 2013-Nearly $2 million has been pledged by Los Alamos National Laboratory employees to United Way and other eligible nonprofit programs during the Laboratory's 2014 Employee Giving Campaign. Los Alamos National Security, LLC, which manages and operates the Laboratory for the

  17. EA-1332: Leasing Land for the Siting, Construction and Operation of a Commercial AM Radio Antenna at Los Alamos National Laboratory, Los Alamos, New Mexico

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal to lease approximately 3 acres of land at the U.S. Department of Energy's Los Alamos National Laboratory on the southeast tip of...

  18. A mathematical framework for multiscale science and engineering : the variational multiscale method and interscale transfer operators.

    SciTech Connect (OSTI)

    Wagner, Gregory John; Collis, Samuel Scott; Templeton, Jeremy Alan; Lehoucq, Richard B.; Parks, Michael L.; Jones, Reese E.; Silling, Stewart Andrew; Scovazzi, Guglielmo; Bochev, Pavel B.

    2007-10-01

    This report is a collection of documents written as part of the Laboratory Directed Research and Development (LDRD) project A Mathematical Framework for Multiscale Science and Engineering: The Variational Multiscale Method and Interscale Transfer Operators. We present developments in two categories of multiscale mathematics and analysis. The first, continuum-to-continuum (CtC) multiscale, includes problems that allow application of the same continuum model at all scales with the primary barrier to simulation being computing resources. The second, atomistic-to-continuum (AtC) multiscale, represents applications where detailed physics at the atomistic or molecular level must be simulated to resolve the small scales, but the effect on and coupling to the continuum level is frequently unclear.

  19. Employment Opportunities | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Employment Opportunities Thank you for your interest in working for Ames Laboratory. Ames Laboratory is a Department of Energy national laboratory operated by Iowa State University. Ames Laboratory employees are Iowa State University employees, and employment opportunities are posted and filled through the Iowa State University recruitment process. Therefore, employment opportunities can be found on the Iowa State University job opportunities page.

  20. Type B Accident Investigation Board Report on the October 15, 2001, Grout Injection Operator Injury at the Cold Test Pit South, Idaho National Engineering and Environmental Laboratory

    Broader source: Energy.gov [DOE]

    This report is an independent product of the Type B Accident Investigation Board appointed by Mark W. Frei, Acting Manager, Idaho Operations Office, U. S. Department of Energy.

  1. Enterprise Assessments Operational Awareness Record, Argonne...

    Office of Environmental Management (EM)

    and New Brunswick Laboratory - March 2015 Enterprise Assessments Operational Awareness Record, Argonne National Laboratory and New Brunswick Laboratory - March 2015 March...

  2. Field Laboratory in the Osage Reservation -- Determination of the Status of Oil and Gas Operations: Task 1. Development of Survey Procedures and Protocols

    SciTech Connect (OSTI)

    Carroll, Herbert B.; Johnson, William I.

    1999-04-27

    Procedures and protocols were developed for the determination of the status of oil, gas, and other mineral operations on the Osage Mineral Reservation Estate. The strategy for surveying Osage County, Oklahoma, was developed and then tested in the field. Two Osage Tribal Council members and two Native American college students (who are members of the Osage Tribe) were trained in the field as a test of the procedures and protocols developed in Task 1. Active and inactive surface mining operations, industrial sites, and hydrocarbon-producing fields were located on maps of the county, which was divided into four more or less equal areas for future investigation. Field testing of the procedures, protocols, and training was successful. No significant damage was found at petroleum production operations in a relatively new production operation and in a mature waterflood operation.

  3. Sandia National Laboratories: Locations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Locations Locations Sandia California CINT photo A national and international presence Sandia operates laboratories, testing facilities, and offices in multiple sites around the United States and participates in research collaborations around the world. Sandia's executive management offices and larger laboratory complex are located in Albuquerque, New Mexico. Our second principal laboratory is located in Livermore, California. Although most of our 9,840 employees work at these two locations,

  4. Savannah River National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Savannah River National Laboratory srnl.doe.gov SRNL is a DOE National Laboratory operated by Savannah River Nuclear Solutions. At a glance 'Tin whiskers' suppression method Researchers at the Savannah River National Laboratory (SRNL) have identified a treatment method that slows or prevents the formation of whiskers in lead-free solder. Tin whiskers spontaneously grow from thin films of tin, often found in microelectronic devices in the form of solders and platings. Background This problem was

  5. Enterprise Assessments, Oak Ridge National Laboratory Irradiated...

    Office of Environmental Management (EM)

    Fuels Examination Laboratory - April 2015 April 2015 Review of the Safety-Significant Ventilation Systems at the Irradiated Fuels Examination Laboratory Operated by UT-Battelle...

  6. Lawrence Livermore National Laboratory | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    About Us Our Operations Acquisition and Project Management M & O Support Department Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence ...

  7. Independent Oversight Targeted Review, Sandia National Laboratories...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enterprise Assessments Targeted Review of Nuclear Reactor Facility Operations at Sandia National Laboratories - March 2016 Independent Activity Report, Sandia National Laboratory - ...

  8. Independent Activity Report, Sandia National Laboratories - March...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    March 2013 Independent Activity Report, Sandia National Laboratories - March 2013 March 2013 Operational Awareness Oversight of Sandia National Laboratories HIAR SNL-2013-03-18 ...

  9. MAR flow mapping of Analytical Chemistry Operations (Preliminary Report)

    SciTech Connect (OSTI)

    Barr, Mary E.; Farish, Thomas J.

    2012-06-13

    The recently released Supplemental Directive, NA-1 SD 1027, updates the radionuclide threshold values in DOE-STD-1027-92 CN1 to reflect the use of modern parameters for dose conversion factors and breathing rates. The directive also corrects several arithmetic errors within the original standard. The result is a roughly four-fold increase in the amount of weapons-grade nuclear material allowed within a designated radiological facility. Radiological laboratory space within the recently constructed Radiological Laboratory Office and Utility Building (RLUOB) is slated to house selected analytical chemistry support activities in addition to small-scale actinide R&D activities. RLUOB is within the same facility operations envelope as TA-55. Consolidation of analytical chemistry activities to RLUOB and PF-4 offers operational efficiency improvements relative to the current pre-CMRR plans of dividing these activities between RLUOB, PF-4, and CMR. RLUOB is considered a Radiological Facility under STD-1027 - 'Facilities that do not meet or exceed Category 3 threshold criteria but still possess some amount of radioactive material may be considered Radiological Facilities.' The supplemental directive essentially increases the allowable material-at-risk (MAR) within radiological facilities from 8.4 g to 38.6 g for {sup 239}Pu. This increase in allowable MAR provides a unique opportunity to establish additional analytical chemistry support functions in RLUOB without negatively impacting either R&D activities or facility operations. Individual radiological facilities are tasked to determine MAR limits (up to the Category 3 thresholds) appropriate to their operational conditions. This study presents parameters that impact establishing MAR limits for RLUOB and an assessment of how various analytical chemistry support functions could operate within the established MAR limits.

  10. Jefferson Lab Contract to be Awarded to Jefferson Science Associates, LLC for Management and Operation of World-Class Office of Science Laboratory

    Broader source: Energy.gov [DOE]

    OAK RIDGE , TN - The U.S. Department of Energy has selected Jefferson Science Associates, LLC, as the contractor for management and operation of the Thomas Jefferson National Accelerator Facility....

  11. Type B Accident Investigation Board Report of the July 2, 1997, Curium Intake by Shredder Operator at Building 513, Lawrence Livermore National Laboratory, Livermore, California

    Broader source: Energy.gov [DOE]

    This report is an independent product of the Type B Accident Investigation Board appointed by James M. Turner, Ph.D., Manager of the U.S. Department of Energy, Oakland Operations Office.

  12. Los Alamos National Laboratory | National Nuclear Security Administrat...

    National Nuclear Security Administration (NNSA)

    Operations Acquisition and Project Management M & O Support Department Los Alamos National Laboratory Los Alamos National Laboratory Los Alamos National Laboratory ...

  13. An Early Analysis Laboratory | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An Early Analysis Laboratory An Early Analysis Laboratory An early analysis laboratory for Y-12's wartime product from the Calutron operations

  14. Old hydrofracture facility tanks contents removal action operations plan at the Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 1: Text. Volume 2: Checklists and work instructions

    SciTech Connect (OSTI)

    1998-05-01

    This Operations Plan summarizes the operating activities for transferring contents of five low-level (radioactive) liquid waste storage tanks associated with the Old Hydrofracture Facility (OHF) to the Melton Valley Storage Tanks (MVST) for secure storage. The transfer will be accomplished through sluicing and pumping operations which are designed to pump the slurry in a closed circuit system using a sluicing nozzle to resuspend the sludge. Once resuspended, the slurry will be transferred to the MVST. The report documenting the material transfer will be prepared after transfer of the tank materials has been completed. The OBF tanks contain approximately 52,600 gal (199,000 L) of low-level radioactive waste consisting of both sludge and supernatant. This material is residual from the now-abandoned grout injection operations conducted from 1964 to 1980. Total curie content is approximately 30,000 Ci. A sluicing and pumping system has been specifically designed for the OHF tanks contents transfer operations. This system is remotely operated and incorporates a sluicing nozzle and arm (Borehole Miner) originally designed for use in the mining industry. The Borehole Miner is an in-tank device designed to deliver a high pressure jet spray via an extendable nozzle. In addition to removing the waste from the tanks, the use of this equipment will demonstrate applicability for additional underground storage tank cleaning throughout the U.S. Department of Energy complex. Additional components of the complete sluicing and pumping system consist of a high pressure pumping system for transfer to the MVST, a low pressure pumping system for transfer to the recycle tank, a ventilation system for providing negative pressure on tanks, and instrumentation and control systems for remote operation and monitoring.

  15. Multi-wavelength high-resolution observations of a small-scale emerging magnetic flux event and the chromospheric and coronal response

    SciTech Connect (OSTI)

    Vargas DomĂ­nguez, Santiago; Kosovichev, Alexander; Yurchyshyn, Vasyl

    2014-10-20

    State-of-the-art solar instrumentation is now revealing magnetic activity of the Sun with unprecedented temporal and spatial resolutions. Observations with the 1.6 m aperture New Solar Telescope (NST) of the Big Bear Solar Observatory are making next steps in our understanding of the solar surface structure. Granular-scale magnetic flux emergence and the response of the solar atmosphere are among the key research topics of high-resolution solar physics. As part of a joint observing program with NASA's Interface Region Imaging Spectrograph (IRIS) mission on 2013 August 7, the NST observed active region NOAA 11,810 in the photospheric TiO 7057 Å band with a resolution of pixel size of 0.''034 and chromospheric He I 10830 Å and Hα 6563 Å wavelengths. Complementary data are provided by the Solar Dynamics Observatory (SDO) and Hinode space-based telescopes. The region displayed a group of solar pores, in the vicinity of which we detect a small-scale buoyant horizontal magnetic flux tube causing granular alignments and interacting with the preexisting ambient field in the upper atmospheric layers. Following the expansion of distorted granules at the emergence site, we observed a sudden appearance of an extended surge in the He I 10830 Å data (bandpass of 0.05 Å). The IRIS transition region imaging caught ejection of a hot plasma jet associated with the He I surge. The SDO/HMI data used to study the evolution of the magnetic and Doppler velocity fields reveal emerging magnetic loop-like structures. Hinode/Ca II H and IRIS filtergrams detail the connectivities of the newly emerged magnetic field in the lower solar chromosphere. From these data, we find that the orientation of the emerging magnetic field lines from a twisted flux tube formed an angle of ∌45° with the overlying ambient field. Nevertheless, the interaction of emerging magnetic field lines with the pre-existing overlying field generates high-temperature emission regions and boosts the surge/jet production. The localized heating is detected before and after the first signs of the surge/jet ejection. We compare the results with previous observations and theoretical models and propose a scenario for the activation of plasma jet/surges and confined heating triggered by buoyant magnetic flux tubes rising up into a magnetized upper environment. Such process may play a significant role in the mass and energy flow from the interior to the corona.

  16. The Impact of Improved Solar Forecasts on Bulk Power System Operations in ISO-NE (Presentation), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improved Solar Forecasts on Bulk Power System Operations in ISO-NE 4 th Solar Integration Workshop Carlo Brancucci Martinez-Anido, Anthony Florita, and Bri-Mathias Hodge Berlin, Germany November 10, 2014 NREL/PR-5000-63082 2 Motivation and Scope * The economic benefits from renewable energy forecasting are largely unquantified in the power community o Current renewable energy penetration levels in the United States are often too low to appreciably quantify the value of improving renewable energy

  17. Enterprise Assessments, Oak Ridge National Laboratory Irradiated Fuels Examination Laboratory – April 2015

    Broader source: Energy.gov [DOE]

    Review of the Safety-Significant Ventilation Systems at the Irradiated Fuels Examination Laboratory Operated by UT-Battelle for the Oak Ridge National Laboratory Office of Science

  18. Savannah River Laboratory monthly report, November 1991

    SciTech Connect (OSTI)

    Ferrell, J.M.

    1991-12-31

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation; tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  19. Savannah River Laboratory monthly report, November 1991

    SciTech Connect (OSTI)

    Ferrell, J.M.

    1991-01-01

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation; tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  20. Savannah River Laboratory monthly report, September 1991

    SciTech Connect (OSTI)

    Ferrell, J.M.

    1991-01-01

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation, tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  1. Savannah River Laboratory monthly report, September 1991

    SciTech Connect (OSTI)

    Ferrell, J.M.

    1991-12-31

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation, tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  2. Savannah River Laboratory monthly report, July 1991

    SciTech Connect (OSTI)

    Ferrell, J.M.

    1991-01-01

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation; tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  3. Savannah River Laboratory monthly report, July 1991

    SciTech Connect (OSTI)

    Ferrell, J.M.

    1991-12-31

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation; tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  4. Savannah River Laboratory monthly report, August 1991

    SciTech Connect (OSTI)

    Ferrell, J.M.

    1991-12-31

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation, tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  5. Savannah River Laboratory monthly report, August 1991

    SciTech Connect (OSTI)

    Ferrell, J.M.

    1991-01-01

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation, tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  6. Savannah River Laboratory monthly report, October 1991

    SciTech Connect (OSTI)

    Ferrell, J.M.

    1991-01-01

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation, tritium facilities and production; separations operations; environmental concerns; and waste management. (FI)

  7. Savannah River Laboratory monthly report, October 1991

    SciTech Connect (OSTI)

    Ferrell, J.M.

    1991-12-31

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation, tritium facilities and production; separations operations; environmental concerns; and waste management. (FI)

  8. Laboratories | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories Our laboratories are available to industry and other organizations for researching, developing, and evaluating energy technologies. We have experienced lab technicians, scientists and engineers ready to design and run tests for you. Some labs are available for conducting your own research. A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z A Accelerated Exposure Testing Laboratory Advanced Optical Materials Laboratory Advanced

  9. EA-1642-S1: Small-Scale Pilot Plant for the Gasification of Coal and Coal-Biomass Blends and Conversion of Derived Syngas to Liquid Fuels via Fischer-Tropsch Synthesis, Lexington, KY

    Broader source: Energy.gov [DOE]

    This draft Supplemental Environmental Assessment (SEA) analyzes the potential environmental impacts of DOE’s proposed action of providing cost-shared funding for the University of Kentucky (UK) Center for Applied Energy Research (CAER) Small-Scale Pilot Plant for the Gasification of Coal and Coal-Biomass Blends and Conversion of Derived Syngas to Liquid Fuels via Fischer-Tropsch Synthesis project and of the No-Action Alternative.

  10. Independent Oversight Assessment, Los Alamos National Laboratory- August 2011

    Broader source: Energy.gov [DOE]

    Facility Centered Assessment of the Los Alamos National Laboratory Science and Technology Operations - Facility Operations Director Managed Facilities

  11. Geoscience Laboratory | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    preparation and other relatively straight-forward laboratory manipulations. These include buffer preparations, solid sample grinding, solution concentration, filtration, and...

  12. Our Organization | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Our Operations Infrastructure and Operations NNSA's missions require a secure production and laboratory infrastructure meeting immediate and long term needs. The Associate Administrator for Infrastructure and Operations develops and executes NNSA's infrastructure investment, maintenance, and operations programs and policies. Administration Programs Management and Budget The organization provides timely, cost-effective, and efficient administrative and financial support for NNSA

  13. Safety | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Careers Education Community Diversity Directory Argonne National Laboratory About Safety News Careers Education Community Diversity Directory Energy Environment Security User Facilities Science Work with Argonne Safety Biosafety Safety Safety is integral to Argonne's scientific research and engineering technology mission. As a leading U.S. Department of Energy multi-program research laboratory, our obligation to the American people demands that we conduct our research and operations safely

  14. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 million to local United Way organizations, other nonprofits November 18, 2010 LOS ALAMOS, New Mexico, November 18, 2010-Los Alamos National Laboratory employees have again demonstrated concern for their communities and those in need by pledging a record $1.5 million to United Way and other eligible nonprofit programs. Los Alamos National Security, LLC, which operates the Laboratory, plans to prorate its $1 million match among the selected nonprofit organizations, bringing the total donation to

  15. Sandia National Laboratories

    National Nuclear Security Administration (NNSA)

    National Laboratories Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Sand 2011-4582 P. ENERGY U.S. DEPARTMENT OF Albuquerque N e w M e x i c o Sandia Mountains Q Q ApproximatelyQ8,800QacresQQ ofQDOE-ownedQandQQ permittedQland Q Q LocatedQwithinQtheQQ KirtlandQAirQForceQQ

  16. Sonication standard laboratory module

    DOE Patents [OSTI]

    Beugelsdijk, Tony; Hollen, Robert M.; Erkkila, Tracy H.; Bronisz, Lawrence E.; Roybal, Jeffrey E.; Clark, Michael Leon

    1999-01-01

    A standard laboratory module for automatically producing a solution of cominants from a soil sample. A sonication tip agitates a solution containing the soil sample in a beaker while a stepper motor rotates the sample. An aspirator tube, connected to a vacuum, draws the upper layer of solution from the beaker through a filter and into another beaker. This beaker can thereafter be removed for analysis of the solution. The standard laboratory module encloses an embedded controller providing process control, status feedback information and maintenance procedures for the equipment and operations within the standard laboratory module.

  17. Remedial investigation/feasibility study Work Plan and addenda for Operable Unit 4-12: Central Facilities Area Landfills II and III at the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Keck, K.N.; Stormberg, G.J.; Porro, I.; Sondrup, A.J.; McCormick, S.H.

    1993-07-01

    This document is divided into two main sections -- the Work Plan and the addenda. The Work Plan describes the regulatory history and physical setting of Operable Unit 4-12, previous sampling activities, and data. It also identifies a preliminary conceptual model, preliminary remedial action alternatives, and preliminary applicable or relevant and appropriate requirements. In addition, the Work Plan discusses data gaps and data quality objectives for proposed remedial investigation activities. Also included are tasks identified for the remedial investigation/feasibility study (RI/FS) and a schedule of RI/FS activities. The addenda include details of the proposed field activities (Field Sampling Plan), anticipated quality assurance activities (Quality Assurance Project Plan), policies and procedures to protect RI/FS workers and the environment during field investigations (Health and Safety Plan), and policies, procedures, and activities that the Department of Energy will use to involve the public in the decision-making process concerning CFA Landfills II and III RI/FS activities (Community Relations Plan).

  18. Laboratory Fellows

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    selected as Los Alamos National Laboratory Fellows November 16, 2010 Scientific disciplines range from fundamental and applied physics to geology LOS ALAMOS, New Mexico, NOVEMBER 16, 2010-Five Los Alamos National Laboratory scientists from diverse fields of research have been named Laboratory Fellows. The five researchers are Brenda Dingus of the Neutron Science and Technology group; William (Bill) Louis of the Subatomic Physics group; John Sarrao, director of Los Alamos's Office of Science

  19. Laboratory Building.

    SciTech Connect (OSTI)

    Herrera, Joshua M.

    2015-03-01

    This report is an analysis of the means of egress and life safety requirements for the laboratory building. The building is located at Sandia National Laboratories (SNL) in Albuquerque, NM. The report includes a prescriptive-based analysis as well as a performance-based analysis. Following the analysis are appendices which contain maps of the laboratory building used throughout the analysis. The top of all the maps is assumed to be north.

  20. Operating plan FY 1998

    SciTech Connect (OSTI)

    1997-10-01

    This document is the first edition of Argonne`s new Operating Plan. The Operating Plan complements the strategic planning in the Laboratory`s Institutional Plan by focusing on activities that are being pursued in the immediate fiscal year, FY 1998. It reflects planning that has been done to date, and it will serve in the future as a resource and a benchmark for understanding the Laboratory`s performance. The heart of the Institutional Plan is the set of major research initiatives that the Laboratory is proposing to implement in future years. In contrast, this Operating Plan focuses on Argonne`s ongoing R&D programs, along with cost-saving measures and other improvements being implemented in Laboratory support operations.

  1. Final environmental impact statement for the construction and operation of an independent spent fuel storage installation to store the Three Mile Island Unit 2 spent fuel at the Idaho National Engineering and Environmental Laboratory. Docket Number 72-20

    SciTech Connect (OSTI)

    1998-03-01

    This Final Environmental Impact Statement (FEIS) contains an assessment of the potential environmental impacts of the construction and operation of an Independent Spent Fuel Storage Installation (ISFSI) for the Three Mile Island Unit 2 (TMI-2) fuel debris at the Idaho National Engineering and Environmental laboratory (INEEL). US Department of Energy-Idaho Operations Office (DOE-ID) is proposing to design, construct, and operate at the Idaho Chemical Processing Plant (ICPP). The TMI-2 fuel debris would be removed from wet storage, transported to the ISFSI, and placed in storage modules on a concrete basemat. As part of its overall spent nuclear fuel (SNF) management program, the US DOE has prepared a final programmatic environmental impact statement (EIS) that provides an overview of the spent fuel management proposed for INEEL, including the construction and operation of the TMI-2 ISFSI. In addition, DOE-ID has prepared an environmental assessment (EA) to describe the environmental impacts associated with the stabilization of the storage pool and the construction/operation of the ISFSI at the ICPP. As provided in NRC`s NEPA procedures, a FEIS of another Federal agency may be adopted in whole or in part in accordance with the procedures outlined in 40 CFR 1506.3 of the regulations of the Council on Environmental Quality (CEQ). Under 40 CFR 1506.3(b), if the actions covered by the original EIS and the proposed action are substantially the same, the agency adopting another agency`s statement is not required to recirculate it except as a final statement. The NRC has determined that its proposed action is substantially the same as actions considered in DOE`s environmental documents referenced above and, therefore, has elected to adopt the DOE documents as the NRC FEIS.

  2. Operation and analysis of a supercritical CO2 Brayton cycle.

    SciTech Connect (OSTI)

    Wright, Steven Alan; Radel, Ross F.; Vernon, Milton E.; Pickard, Paul S.; Rochau, Gary Eugene

    2010-09-01

    Sandia National Laboratories is investigating advanced Brayton cycles using supercritical working fluids for use with solar, nuclear or fossil heat sources. The focus of this work has been on the supercritical CO{sub 2} cycle (S-CO2) which has the potential for high efficiency in the temperature range of interest for these heat sources, and is also very compact, with the potential for lower capital costs. The first step in the development of these advanced cycles was the construction of a small scale Brayton cycle loop, funded by the Laboratory Directed Research & Development program, to study the key issue of compression near the critical point of CO{sub 2}. This document outlines the design of the small scale loop, describes the major components, presents models of system performance, including losses, leakage, windage, compressor performance, and flow map predictions, and finally describes the experimental results that have been generated.

  3. Operating Strategies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operating Strategies and Design Recommendations for Mitigating Local Damage Effects in Offshore Turbine Blades Phillip W. Richards phillip@gatech.edu Graduate Research Assistant Daniel Guggenheim School of Aerospace Engineering Atlanta, Georgia, USA D. Todd Griffith dgriffi@sandia.gov Principal Member of the Technical Staff Sandia National Laboratories Albuquerque, New Mexico, USA Dewey H. Hodges dhodges@gatech.edu Professor Daniel Guggenheim School of Aerospace Engineering Atlanta, Georgia, USA

  4. Operation Schedule

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operation Schedule Daily Hours of Operation

  5. Emergency Information | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Delayed Start or Cancellation of Business Hours Winter Road Closings Winter Weather FAQs Westgate Alternate Routes Reporting Illegal/Unethical Activity Working Remotely Extracurricular Activities Library Alumni Emergency Information Current status: Laboratory Operations are normal. All employees should report to work for their assigned shifts. Employees should check this page for information in the event of an operational emergency or other change in operations at Argonne National Laboratory.

  6. Laboratory Directors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Siegfried S. Hecker (1985-1997) Donald M. Kerr (1979-1985) Harold M. Agnew (1970-1979) Norris Bradbury (1945-1970) J. Robert Oppenheimer (1943-1945) Laboratory Directors Harold M. ...

  7. Energy Programs at the Johns Hopkins University Applied Physics Laboratory, Quarterly Report, January-March 1980

    SciTech Connect (OSTI)

    Entingh, Daniel J.

    1980-03-01

    The Johns Hopkins University Applied Physics Laboratory, under contracts with several agencies of the federal government and an agency of the State of Maryland, is engaged in developing energy resources, utilization concepts, and monitoring and storage methods. This Quarterly Report summarizes the work on the various tasks as of 31 March 1980. The Energy Quarterly Report is divided into four sections. The first, Geothermal Energy Development Planning and Technical Assistance, supported by the Department of Energy/Division of Geothermal Energy (DOE/DGE), contains reports on the progress of geothermal-related tasks on which effort was concentrated during the quarter. The second section, Operational Research, Hydroelectric Power Development, supported by the Department of Energy/Resource Applications (DOE/DGE), contains reports on small-scale hydroelectric investigations in the southeastern states. The third section, Seismotectonic Investigation, supported by the Reactor Safety Research Division of the Nuclear Regulatory Commission, reports on a neotectonic investigation in Connecticut. The fourth section, Energy Conversion and Storage Techniques, contains two articles, the first on OTEC core unit testing supported by the Department of Energy/Division of Central Solar Technology (DOE/CST), and the second on an analysis of the Community Annual Storage Energy System at the U.S. Naval Air Station, Norfolk, Va. This work is supported by the Department of Energy and the Department of Defense, Naval Facilities Engineering Command/Atlantic Division.

  8. Los Alamos National Laboratory's

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos National Laboratory Los Alamos National Laboratory DE-AC52-06NA25396 Operated by Los Alamos National Security, LLC Conformed to Modification 0341 dated 02/29/2016 BASIC Contract (Official) Modifications (Official) Funding Mods Available Upon Request Conformed Contract (Unofficial) LANL Basic Contract dated 12/21/05 (pdf, 5,501KB) LANL A004 (8/11/06) (pdf, 501KB) LANL Conformed Contract (Conformed to to Modification 0341 dated 02/29/2016) LANL A008 (9/29/06) (pdf, 485KB) LANL A009

  9. National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supercomputing Challenge draws more than 200 students to Los Alamos National Laboratory April 16, 2015 NOTE TO EDITORS: Media are welcome to attend the awards ceremony from 9 a.m. to noon a.m., April 21 at the Church of Christ, 2323 Diamond Drive, Los Alamos. Student teams from around New Mexico showcase year-long research projects April 20-21 LOS ALAMOS, N.M., April 16, 2015-More than 200 New Mexico students and their teachers are at Los Alamos National Laboratory April 20-21 for the 25th

  10. Sandia National Laboratories: About Sandia

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Sandia Military Bio Fuel National security is our business. We apply science to help detect, repel, defeat, or mitigate threats. For more than 60 years, Sandia has delivered essential science and technology to resolve the nation's most challenging security issues. Sandia National Laboratories is operated and managed by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation. Sandia Corporation operates Sandia National Laboratories as a contractor for the U.S.

  11. Los Alamos National Laboratory names

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    new leadership for Weapons and Operations Directorates June 19, 2015 LOS ALAMOS, N.M., June 19, 2015-Los Alamos National Laboratory Director Charlie McMillan announced today that after nationwide searches, Robert (Bob) Webster has been selected to be the Laboratory's next Principal Associate Director for Weapons Programs, and Craig Leasure has been selected as the new Principal Associate Director for Operations. Webster to lead Weapons Directorate As the Weapons Program leader, Webster will be

  12. Westinghouse Advanced Reactors Division Plutonium Fuel Laboratories

    Office of Legacy Management (LM)

    Radiological Condition of the Westinghouse Advanced Reactors Division Plutonium Fuel Laboratories Cheswick, Pennsylvania -. -, -- AGENCY: Office of Operational Safety, Department of Energy ACTION: Notice of Availability of Archival Information Package SUMMARY: The Office of Operational Safety of the Department of Energy (DOE) has, reviewed documentation relating to the decontamination and decommissioning operations conducted at the Westinghouse Advanced Reactor Division laboratories (buildings 7

  13. Winter Weather FAQs | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Winter Weather FAQs As Argonne prepares for the winter season, employees should be aware of the laboratory's procedures and policies in severe weather events. Below are some of the questions that have been asked in recent years and their answers. Comments and additional questions are welcome; send them to safety@anl.gov. Q. How does the laboratory decide to delay the start of business operations or suspend laboratory operations due to weather concerns? A. FMS-Grounds keeps laboratory management

  14. Deputy Chief Operating Officer

    Broader source: Energy.gov [DOE]

    This position will be filled at either Morgantown, WV or Pittsburgh, PA. A successful candidate in this position will serve as the Deputy Chief Operating Officer assigned to the Laboratory...

  15. Previous Sandia National Laboratories | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Apply for Our Jobs Our Jobs Working at NNSA Blog Home About Us Our Operations Acquisition and Project Management M & O Support Department Sandia National Laboratories ...

  16. Jefferson Laboratory Findings Excite Theoreticians, Experimentatlists...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    laboratory, in Newport News, VA, is managed and operated for the U.S. Department of Energy by Southeastern Universities Research Association, Inc., a consortium of 44...

  17. Sandia National Laboratories Hazardous Waste (RCRA) Information...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    requirements in the RCRA Facility Operating Permit. Proposed Location of Information Repository for Sandia National Laboratories Date: 01052015 Author: Todd Source: DOESandia...

  18. Sandia National Laboratories: Electrostatic Discharge (ESD) Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrostatic Discharge (ESD) Laboratory We have field and laboratory capabilities to measure electrostatic environment generation, storage, and charge transfer effects....

  19. Idaho National Laboratory April

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Idaho National Laboratory April 24, 2015 CCN 235661 Mr. Jeffrey C. Fogg DOE-ID Contracting Officer U.S. Department of Energy Idaho Operations Office (DOE-ID) 1955 Fremont Avenue Idaho Falls, ID 83415-1221 SUBJECT: Contract No. DE-ACO7-051D14517 - Battelle Energy Alliance, LLC Response to Department of Energy, Idaho Operations Office Request for Information to Support Supplement Analysis of Proposed Commercial Fuel Research and Development Efforts Reference: J. C. Fogg letter to D. M. Storms,

  20. The Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    existing programs in climate change science and infrastructure. The Laboratory has a 15- year history in climate change science. The Climate, Ocean and Sea Ice Modeling (COSIM) project develops and maintains advanced numerical models of the ocean, sea ice, and ice sheets for use in global climate change projections. COSIM models were used extensively in simulations underpinning the recent climate assessment by the Intergovernmental Panel on Climate Change (IPCC) that was awarded the 2007 Nobel

  1. Princeton Plasma Physics Laboratory:

    SciTech Connect (OSTI)

    Phillips, C.A.

    1986-01-01

    This paper discusses progress on experiments at the Princeton Plasma Physics Laboratory. The projects and areas discussed are: Principal Parameters Achieved in Experimental Devices, Tokamak Fusion Test Reactor, Princeton Large Torus, Princeton Beta Experiment, S-1 Spheromak, Current-Drive Experiment, X-ray Laser Studies, Theoretical Division, Tokamak Modeling, Spacecraft Glow Experiment, Compact Ignition Tokamak, Engineering Department, Project Planning and Safety Office, Quality Assurance and Reliability, and Administrative Operations.

  2. Publications | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inquiries Publications Below is a bibliography of publications that cite the MPC (or more generically, the Ames Laboratory) as the source for the pure metals, alloys, or single crystals used in said publication. This list is non-exhaustive. If you have a paper in which such a citation is made please send us the citation. Expectations for citation or acknowledgement: MPC operations are funded by the US DOE Office of Basic Energy Sciences. Acknowledgement of the use MPC facilities/services is

  3. Contract | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne's Prime Contract is the contract between the U.S. Department of Energy and UChicago Argonne, LLC that sets out the terms and conditions for the operation of Argonne National Laboratory. Please direct general comments and questions about the Argonne Prime Contract to William Luck. Navigation Tips Listed below are tips on navigating through the Argonne Prime Contract. The navigation menu contains the currently available options. Select the main Argonne Prime Contract at any time to return

  4. Lab Plan | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab Plan Ames Laboratory

  5. Small-Scale Solar Grants (Commerce RI)

    Broader source: Energy.gov [DOE]

    Commerce RI provides incentives for renewable-energy projects. Incentive programs are funded by the Rhode Island Renewable Energy Fund (REF) and alternative compliance payments (ACPs) from the...

  6. Small Scale Turbine Testing and Development

    SciTech Connect (OSTI)

    Skemp, Susan H.

    2011-09-27

    Presentation from the 2011 Water Peer Review in which the principal investigator discusses project progress in assessing device reliability and monitoring (with integrated environmental measurements), rotor design tools and models, and rotor materials and performance.

  7. Independent Activity Report, Oak Ridge National Laboratory- October 2011

    Broader source: Energy.gov [DOE]

    Operational Awareness Tour of Building 3525 Irradiated Fuels Examination Hot Cell Laboratory [HIAR OR-2011-10-21

  8. Independent Activity Report, Argonne National Laboratory- July 2012

    Broader source: Energy.gov [DOE]

    Operational Awareness Oversight of the Argonne National Laboratory Alpha-Gamma Hot Cell Facility [HIAR ANL-2012-07-20

  9. Enforcement Letter, Sandia National Laboratories- February 27, 1998

    Broader source: Energy.gov [DOE]

    Issued to Sandia Corporation related to Work Control Deficiencies associated with operating Radiation Generating Devices at Sandia National Laboratories.

  10. Jefferson Lab - Laboratory Directed Research & Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    scientific capability, and permits seeding and exploration of exciting new opportunities. ... The projects can be characterized as: Small-scale research and development activities or ...

  11. Federal laboratories for the 21st century

    SciTech Connect (OSTI)

    Gover, J.; Huray, P.G.

    1998-04-01

    Federal laboratories have successfully filled many roles for the public; however, as the 21st Century nears it is time to rethink and reevaluate how Federal laboratories can better support the public and identify new roles for this class of publicly-owned institutions. The productivity of the Federal laboratory system can be increased by making use of public outcome metrics, by benchmarking laboratories, by deploying innovative new governance models, by partnerships of Federal laboratories with universities and companies, and by accelerating the transition of federal laboratories and the agencies that own them into learning organizations. The authors must learn how government-owned laboratories in other countries serve their public. Taiwan`s government laboratory, Industrial Technology Research Institute, has been particularly successful in promoting economic growth. It is time to stop operating Federal laboratories as monopoly institutions; therefore, competition between Federal laboratories must be promoted. Additionally, Federal laboratories capable of addressing emerging 21st century public problems must be identified and given the challenge of serving the public in innovative new ways. Increased investment in case studies of particular programs at Federal laboratories and research on the public utility of a system of Federal laboratories could lead to increased productivity of laboratories. Elimination of risk-averse Federal laboratory and agency bureaucracies would also have dramatic impact on the productivity of the Federal laboratory system. Appropriately used, the US Federal laboratory system offers the US an innovative advantage over other nations.

  12. Laboratory Activities

    SciTech Connect (OSTI)

    Brown, Christopher F.; Serne, R. Jeffrey

    2008-01-17

    This chapter summarizes the laboratory activities performed by PNNL’s Vadose Zone Characterization Project in support of the Tank Farm Vadose Zone Program, led by CH2M HILL Hanford Group, Inc. The results of these studies are contained in numerous reports (Lindenmeier et al. 2002; Serne et al. 2002a, 2002b, 2002c, 2002d, 2002e; Lindenmeier et al. 2003; Serne et al. 2004a, 2004b; Brown et al. 2005, 2006a, 2007; Serne et al. 2007) and have generated much of the data reported in Chapter 22 (Geochemistry-Contaminant Movement), Appendix G (Geochemistry-Contaminant Movement), and Cantrell et al. (2007, SST WMA Geochemistry Data Package – in preparation). Sediment samples and characterization results from PNNL’s Vadose Zone Characterization Project are also shared with other science and technology (S&T) research projects, such as those summarized in Chapter 12 (Associated Science Activities).

  13. Commissioning Ventilated Containment Systems in the Laboratory

    SciTech Connect (OSTI)

    Not Available

    2008-08-01

    This Best Practices Guide focuses on the specialized approaches required for ventilated containment systems, understood to be all components that drive and control ventilated enclosures and local exhaust systems within the laboratory. Geared toward architects, engineers, and facility managers, this guide provides information about technologies and practices to use in designing, constructing, and operating operating safe, sustainable, high-performance laboratories.

  14. Categorical Exclusion Determinations: B3.6 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 Categorical Exclusion Determinations: B3.6 Existing Regulations B3.6: Small-scale research and development, laboratory operations, and pilot projects Siting, construction, ...

  15. Remote Sensing Laboratory - RSL

    SciTech Connect (OSTI)

    2014-11-06

    One of the primary resources supporting homeland security is the Remote Sensing Laboratory, or RSL. The Laboratory creates advanced technologies for emergency response operations, radiological incident response, and other remote sensing activities. RSL emergency response teams are on call 24-hours a day, and maintain the capability to deploy domestically and internationally in response to threats involving the loss, theft, or release of nuclear or radioactive material. Such incidents might include Nuclear Power Plant accidents, terrorist incidents involving nuclear or radiological materials, NASA launches, and transportation accidents involving nuclear materials. Working with the US Department of Homeland Security, RSL personnel equip, maintain, and conduct training on the mobile detection deployment unit, to provide nuclear radiological security at major national events such as the super bowl, the Indianapolis 500, New Year's Eve celebrations, presidential inaugurations, international meetings and conferences, just about any event where large numbers of people will gather.

  16. Remote Sensing Laboratory - RSL

    ScienceCinema (OSTI)

    None

    2015-01-09

    One of the primary resources supporting homeland security is the Remote Sensing Laboratory, or RSL. The Laboratory creates advanced technologies for emergency response operations, radiological incident response, and other remote sensing activities. RSL emergency response teams are on call 24-hours a day, and maintain the capability to deploy domestically and internationally in response to threats involving the loss, theft, or release of nuclear or radioactive material. Such incidents might include Nuclear Power Plant accidents, terrorist incidents involving nuclear or radiological materials, NASA launches, and transportation accidents involving nuclear materials. Working with the US Department of Homeland Security, RSL personnel equip, maintain, and conduct training on the mobile detection deployment unit, to provide nuclear radiological security at major national events such as the super bowl, the Indianapolis 500, New Year's Eve celebrations, presidential inaugurations, international meetings and conferences, just about any event where large numbers of people will gather.

  17. LCLS Sample Preparation Laboratory | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LCLS Sample Preparation Laboratory Kayla Zimmerman | (650) 926-6281 Lisa Hammon, LCLS Lab Coordinator Welcome to the LCLS Sample Preparation Laboratory. This small general use wet...

  18. Heat Transfer Laboratory | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heat Transfer Laboratory Materials in solids or fluid forms play an important role in a ... Argonne's Heat Transfer Laboratory enables researchers to: Synthesize and prepare heat ...

  19. Design of the Target Fabrication Tritium Laboratory

    SciTech Connect (OSTI)

    Sherohman, J.W.; Roberts, D.H.; Levine, B.H.

    1982-05-05

    The design of the Target Fabrication Tritium Laboratory for deuterium-tritium fuel processing for laser fusion targets has been accomplished with the intent of providing redundant safeguard systems. The design of the tritium laboratory is based on a combination of tritium handling techniques that are currently used by experienced laboratories. A description of the laboratory in terms of its interrelated processing systems is presented to provide an understanding of the design features for safe operation.

  20. National Laboratory Impact Initiative

    Broader source: Energy.gov [DOE]

    The National Laboratory Impact Initiative supports the relationship between the Office of Energy Efficiency & Renewable Energy and the national laboratory enterprise.  The national laboratories...

  1. Our Director | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Director Image Adam Schwartz was named director of the U.S. Department of Energy's (DOE) Ames Laboratory operated by Iowa State University on April 14, 2014 Schwartz served as division leader of the Condensed Matter and Materials Division at Lawrence Livermore National Laboratory, and also coordinated LLNL's projects for the Critical Materials Institute, a $120 million DOE Energy Innovation Hub led by the Ames Laboratory. He began his duties in Ames on June 2, 2014. "Ames is a world-class

  2. National Renewable Energy Laboratory: Creating a Sustainable Energy Future (Revised) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-01-01

    This fact sheet about NREL provides general information about the laboratory, its mission, and operations.

  3. Princeton Plasma Physics Laboratory

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    This report discusses the following topics: principal parameters achieved in experimental devices fiscal year 1990; tokamak fusion test reactor; compact ignition tokamak; Princeton beta experiment- modification; current drive experiment-upgrade; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma processing: deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for fiscal year 1990; graduate education; plasma physics; graduate education: plasma science and technology; science education program; and Princeton Plasma Physics Laboratory reports fiscal year 1990.

  4. Renewable Energy Laboratory

    Open Energy Info (EERE)

    Radiation Budget Measurement Networks, National Oceanic and Atmospheric Administration Air Resources Laboratory and Earth System Research Laboratory Global Monitoring Division *...

  5. Savannah River Site's Liquid Waste Operations Adds Multi-Functional

    Office of Environmental Management (EM)

    Laboratory | Department of Energy Liquid Waste Operations Adds Multi-Functional Laboratory Savannah River Site's Liquid Waste Operations Adds Multi-Functional Laboratory January 28, 2015 - 12:00pm Addthis Laboratory technician Tanja Bolt measures chemicals in the new laboratory at SRS. Laboratory technician Tanja Bolt measures chemicals in the new laboratory at SRS. Construction is under way on Salt Disposal Unit 6, which will be approximately 10 times larger than the siteñ€™s current

  6. Documentation - Laboratory for Laser Energetics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    VIII System Shot Operations Manual Volume VIII Index (S-AB-P-157) Shot Director Operating Checklists Laser Sources Power Conditioning Beamlines Experimental Systems Experimental Diagnostics Comments Address document comments, questions and corrections to the OMEGA EP Associate Laser Facility Manager. For additional information contact: Director's Administrator University of Rochester - Laboratory for Laser Energetics, 250 E. River Rd, Rochester, NY 14623-1299 Last updated: November 14

  7. Los Alamos National Laboratory to

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to begin DARHT 2 operations January 29, 2008 Hydrodynamic testing at the frontier of science LOS ALAMOS, New Mexico, January 29, 2008- The Dual Axis Radiographic Hydrodynamic Test (DARHT) facility has officially become "dual" with authorization to begin full power operations of Axis 2, adding both new capability and higher energy to the unique accelerator facility. Los Alamos National Laboratory has received authorization from the National Nuclear Security Administration to begin

  8. FEMP Offers New Training on Photovoltaic Operations and Maintenance Best

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Practices | Department of Energy New Training on Photovoltaic Operations and Maintenance Best Practices FEMP Offers New Training on Photovoltaic Operations and Maintenance Best Practices November 4, 2014 - 2:40pm Addthis The U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP) will present O&M Best Practices for Small Scale PV Systems, a live First Thursday Seminar on December 4, 2014, from 1:30 p.m. to 3 p.m. This new First Thursday Seminar will feature a new

  9. Ames Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Ames Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Work for Others Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5447 F: (202)

  10. Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory

    National Nuclear Security Administration (NNSA)

    Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory The Terascale Simulation Facility is a world-class supercomputing

  11. Introduction to Brookhaven National Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Introduction to Brookhaven National Laboratory Patrick Looney Department Chair Sustainable Energy Technologies (SET) Global and Regional Solutions Directorate (GARS) STEAB Meeting June 26, 2012 Introduction to BNL * Facts, figures, facilities overview * BNL energy strategy - Building Discovery to Deployment pipelines - Tools for a Smarter Grid - Distributed Generation and Renewables Integration * Meeting sustainability goals through research * Discussion 2 FY 2011 Total Lab Operating Costs: $652

  12. Ames Laboratory Logos | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Laboratory Logos The Ames Laboratory Logo comes in several formats. EPS files are vector graphics created in Adobe Illustrator and saved with a tiff preview so they will...

  13. Laboratory Graduate Research Appointment | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Graduate Research Program Perform your thesis research among the best and the brightest at Argonne National Laboratory. About the Program Laboratory Graduate Research (Lab Grad) appointments are available to qualified U.S. university graduate students who wish to carry out their thesis research at Argonne National Laboratory under co-sponsorship of an Argonne staff member and a faculty member. The university sets the academic standard and awards the degree. The participation of the

  14. Ames Laboratory Emergency Plan | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Laboratory Emergency Plan Version Number: 13.0 Document Number: Plan 46300.001 Effective Date: 11/2014

  15. Ames Laboratory Hot Canyon | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Laboratory Hot Canyon This historical film footage, originally produced in the early 1950s as part of a series by WOI-TV, shows atomic research at Ames Laboratory. The work was conducted in a special area of the Laboratory known as the "Hot Canyon."

  16. Idaho Operations Office | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facility Operations » Idaho Operations Office Idaho Operations Office Idaho Operations Office INL combines the expertise of government, industry and academia in a single laboratory under the leadership of Battelle Energy Alliance (BEA), a team comprised of Battelle Memorial Institute, Washington Group International, BWXT Services, Inc., the Electric Power Research Institute and Massachusetts Institute of Technology. BEA manages the laboratory under a Management and Operating contract. This

  17. Development of the ANL plant dynamics code and control strategies for the supercritical carbon dioxide Brayton cycle and code validation with data from the Sandia small-scale supercritical carbon dioxide Brayton cycle test loop.

    SciTech Connect (OSTI)

    Moisseytsev, A.; Sienicki, J. J.

    2011-11-07

    Significant progress has been made in the ongoing development of the Argonne National Laboratory (ANL) Plant Dynamics Code (PDC), the ongoing investigation and development of control strategies, and the analysis of system transient behavior for supercritical carbon dioxide (S-CO{sub 2}) Brayton cycles. Several code modifications have been introduced during FY2011 to extend the range of applicability of the PDC and to improve its calculational stability and speed. A new and innovative approach was developed to couple the Plant Dynamics Code for S-CO{sub 2} cycle calculations with SAS4A/SASSYS-1 Liquid Metal Reactor Code System calculations for the transient system level behavior on the reactor side of a Sodium-Cooled Fast Reactor (SFR) or Lead-Cooled Fast Reactor (LFR). The new code system allows use of the full capabilities of both codes such that whole-plant transients can now be simulated without additional user interaction. Several other code modifications, including the introduction of compressor surge control, a new approach for determining the solution time step for efficient computational speed, an updated treatment of S-CO{sub 2} cycle flow mergers and splits, a modified enthalpy equation to improve the treatment of negative flow, and a revised solution of the reactor heat exchanger (RHX) equations coupling the S-CO{sub 2} cycle to the reactor, were introduced to the PDC in FY2011. All of these modifications have improved the code computational stability and computational speed, while not significantly affecting the results of transient calculations. The improved PDC was used to continue the investigation of S-CO{sub 2} cycle control and transient behavior. The coupled PDC-SAS4A/SASSYS-1 code capability was used to study the dynamic characteristics of a S-CO{sub 2} cycle coupled to a SFR plant. Cycle control was investigated in terms of the ability of the cycle to respond to a linear reduction in the electrical grid demand from 100% to 0% at a rate of 5%/minute. It was determined that utilization of turbine throttling control below 50% load improves the cycle efficiency significantly. Consequently, the cycle control strategy has been updated to include turbine throttle valve control. The new control strategy still relies on inventory control in the 50%-90% load range and turbine bypass for fine and fast generator output adjustments, but it now also includes turbine throttling control in the 0%-50% load range. In an attempt to investigate the feasibility of using the S-CO{sub 2} cycle for normal decay heat removal from the reactor, the cycle control study was extended beyond the investigation of normal load following. It was shown that such operation is possible with the extension of the inventory and the turbine throttling controls. However, the cycle operation in this range is calculated to be so inefficient that energy would need to be supplied from the electrical grid assuming that the generator could be capable of being operated in a motoring mode with an input electrical energy from the grid having a magnitude of about 20% of the nominal plant output electrical power level in order to maintain circulation of the CO{sub 2} in the cycle. The work on investigation of cycle operation at low power level will be continued in the future. In addition to the cycle control study, the coupled PDC-SAS4A/SASSYS-1 code system was also used to simulate thermal transients in the sodium-to-CO{sub 2} heat exchanger. Several possible conditions with the potential to introduce significant changes to the heat exchanger temperatures were identified and simulated. The conditions range from reactor scram and primary sodium pump failure or intermediate sodium pump failure on the reactor side to pipe breaks and valve malfunctions on the S-CO{sub 2} side. It was found that the maximum possible rate of the heat exchanger wall temperature change for the particular heat exchanger design assumed is limited to {+-}7 C/s for less than 10 seconds. Modeling in the Plant Dynamics Code has been compared with available data from the Sandia Natio

  18. Cask fleet operations study

    SciTech Connect (OSTI)

    Not Available

    1988-01-01

    The Nuclear Waste Policy Act of 1982 assigned to the Department of Energy's (DOE) Office of Civilian Waste Management the responsibility for disposing of high-level waste and spent fuel. A significant part of that responsibility involves transporting nuclear waste materials within the federal waste management system; that is, from the waste generator to the repository. The lead responsibility for transportation operations has been assigned to Oak Ridge Operations, with Oak Ridge National Laboratory (ORNL) providing technical support through the Transportation Operations Support Task Group. One of the ORNL support activities involves assessing what facilities, equipment and services are required to assure that an acceptable, cost-effective and safe transportation operations system can be designed, operated and maintained. This study reviews, surveys and assesses the experience of Nuclear Assurance Corporation (NAC) in operating a fleet of spent-fuel shipping casks to aid in developing the spent-fuel transportation system.

  19. Site Operator Program

    SciTech Connect (OSTI)

    Warren, J.F.

    1991-01-01

    Collectively, the organizations participating in the Site Operator Program have over forty years of EV experience and have operated electric vehicles (EVs) for over 600,000 miles, providing the most extensive EV operating and knowledge base in the country. The Site Operator Program is intended to provide financial and technical support and organizational resources to organizations active in the advancement of electric vehicles. Support is provided for the demonstration of vehicles and the test and evaluation of vehicles, components, and batteries. Support is also provided for the management and support of the program for the participating organizations. The Program provides a forum for participants to exchange information among the group, as well as with vehicle and equipment manufacturers and suppliers, and the public. A central data base at the Idaho National Engineering Laboratory provides a repository for-data on the vehicles being operated by the Program participants. Data collection emphasis is in the areas of operations, maintenance, and life cycle costs.

  20. Site Operator Program

    SciTech Connect (OSTI)

    Warren, J.F.

    1991-12-31

    Collectively, the organizations participating in the Site Operator Program have over forty years of EV experience and have operated electric vehicles (EVs) for over 600,000 miles, providing the most extensive EV operating and knowledge base in the country. The Site Operator Program is intended to provide financial and technical support and organizational resources to organizations active in the advancement of electric vehicles. Support is provided for the demonstration of vehicles and the test and evaluation of vehicles, components, and batteries. Support is also provided for the management and support of the program for the participating organizations. The Program provides a forum for participants to exchange information among the group, as well as with vehicle and equipment manufacturers and suppliers, and the public. A central data base at the Idaho National Engineering Laboratory provides a repository for-data on the vehicles being operated by the Program participants. Data collection emphasis is in the areas of operations, maintenance, and life cycle costs.

  1. Sandia National Laboratories: About Sandia: Leadership

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Leadership Leadership with Jill Hruby: President and Laboratories Director Throughout its history, Sandia has been guided by the core principle of - in the words of President Harry Truman - providing "exceptional service in the national interest." Jill Hruby Jill M. Hruby President & Laboratories Director Jill Hruby is the director of Sandia National Laboratories and president of Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, which operates Sandia for

  2. Sandia National Laboratories Distributive Power Initiative (DPI)

    Energy Savers [EERE]

    Large Format Carbon Enhanced VRLA Battery Test Results EESAT 2009 Funded by the Energy Storage Systems Program of the U.S. Department Of Energy (DOE/ESS) through Sandia National Laboratories (SNL) October 4 - 7, 2009 Seattle, Washington Presented by: Tom Hund Sandia National Laboratories Albuquerque, NM (505) 844-8627 tdhund@sandia.gov *Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear

  3. Brookhaven National Laboratory | Open Energy Information

    Open Energy Info (EERE)

    New York, Brookhaven is a multi-program national laboratory operated by Brookhaven Science Associates for the U.S. Department of Energy (DOE). Six Nobel Prizes have been...

  4. LABORATORY EFFORTS TO REVITALIZE FACILITIES AND INFRASTRUCTURE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Jeff Smith, Deputy Director of Operations, Oak Ridge National Laboratory, was unable to attend due to weather-related travel issues. Lanny Bates gave a briefing on his behalf ont ...

  5. The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Hub led by the Ames Laboratory, recovers valuable rare-earth magnetic material from manufacturing waste and creates useful magnets out of it. Ames Laboratory...

  6. mark | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Laboratory Profile Mark Gordon Associate Chemical & Biological Sciences 201 Spedding ... Group Ames Laboratory Research Projects: Chemical Physics TheoreticalComputational Tools ...

  7. Facilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Facility Distributed Energy Research Center Engine Research Facility Heat Transfer Laboratory Tribology Laboratory Transportation Beamline at the Advanced Photon Source...

  8. National Renewable Energy Laboratory

    Office of Environmental Management (EM)

    Renewable Energy Laboratory Innovation for Our Energy Future Renewable Resource Options Geothermal Biomass Solar Hydro Wind National Renewable Energy Laboratory Innovation ...

  9. Cytogenetic Biodosimetry Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cytogenetic Biodosimetry Laboratory Blood samples are shipped at room temperature to the laboratory. White blood cells, lymphocytes, are cultured under sterile conditions in an...

  10. National Laboratory Frontiers in Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mort hwest National Laboratory Operated by Battelle for the U.S. Department of Energy 3 PNNL- 1 18 15 UC-900 . Electric Power Substation Capital Costs J.E. Dagle D.R. Brown December 1997 DISTRIBUTION OF TH\S DOCUMENT IS uwMirii b R Prepared for the U.S. Department of Energy under Contract DE-AC06-76RLO 1830 Pacific Northwest National Laboratory Richland, Washington 993 52 Summary . The displacement or deferral of substation equipment is a key benefit associated with several technologies that are

  11. Independent Activity Report, Lawrence Livermore National Laboratory -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    February 2013 | Department of Energy February 2013 Independent Activity Report, Lawrence Livermore National Laboratory - February 2013 February 2013 Lawrence Livermore National Laboratory Operational Drill at the B332 Plutonium Facility [HIAR LLNL-2013-02-27] The Livermore Site Office (LSO) and Lawrence Livermore National Security, LLC (LLNS) requested personnel from the U.S. Department of Energy (DOE) Office of Safety and Emergency Management Evaluations (HS-45) to observe an operational

  12. DOE Selects ASE to Manage and Operate its National Renewable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ASE to Manage and Operate its National Renewable Energy Laboratory DOE Selects ASE to Manage and Operate its National Renewable Energy Laboratory July 29, 2008 - 2:40pm Addthis ...

  13. Principal Associate Director - Operations and Business

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at Los Alamos National Laboratory. Leasure oversees directorates of Business Innovation Services; Environment, Safety and Health; Nuclear and High Hazard Operations; and...

  14. Nuclear Facility Operations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Facility Operations INL is a science-based, applied engineering national laboratory dedicated to meeting the nation's environmental, energy, nuclear technology, and ...

  15. Sandia National Laboratories: About Sandia: Leadership: Acting Chief

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Financial Officer (CFO) and Vice President, Business Operations: Jennifer Plummer Jennifer Plummer Acting CFO and Vice President, Business Operations Jennifer Plummer Jennifer Plummer is Acting CFO and Vice President of Business Operations for Sandia Corporation. The corporation is a wholly owned subsidiary of Lockheed Martin Corporation, and manages and operates Sandia National Laboratories, a multi-program Department of Energy research and development laboratory. The Business Operations

  16. Employee Job Task Analysis (EJTA) PIA, Richland Operations Office...

    Energy Savers [EERE]

    (EJTA) PIA, Richland Operations Office More Documents & Publications Occupational Medicine - Assistant PIA, Idaho National Laboratory Occupational Injury & Illness System...

  17. Status of Laboratory Goals | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Status of Laboratory Goals Status of Calendar Year 2016 objectives and targets. Item 1 Recommendation: The EMSSC recommends an Open House be held in the Ames Laboratory Storeroom and Warehouse by April 1, 2016. The Open House will provide Ames Laboratory employees the opportunity to discover what supplies are readily available through the storeroom and showcase the Equipment Pool website. This recommendation will increase awareness of the sustainable purchasing requirements by showcasing these

  18. Analytical Chemistry Laboratory | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemistry Laboratory provides a broad range of analytical chemistry support services to the scientific and engineering programs. AnalyticalChemistryLaboratoryfactsheet...

  19. Laboratory Equipment & Supplies | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Most laboratories offer ice machines and cold rooms. Specialty storage areas for samples include a -80 freezer, argon and nitrogen glove boxes, radiation contamination areas, inert ...

  20. Equipment | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Zeiss Axiovert 200 Optical Microscope Spark Cutter Fully Equipped Metallographic Laboratory Electropolisher Dimpler

  1. National Renewable Energy Laboratory (NREL) Documents | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy About Us » Business Operations » Golden Field Office » Golden Field Office Reading Room » National Renewable Energy Laboratory (NREL) Documents National Renewable Energy Laboratory (NREL) Documents The National Renewable Energy Laboratory (NREL), located in Golden, Colorado, is the United States' primary laboratory for renewable energy and energy efficiency research and development. NREL is the only federal laboratory dedicated to the research, development, commercialization, and

  2. Brookhaven National Laboratory site environmental report for calendar year 1994

    SciTech Connect (OSTI)

    Naidu, J.R.; Royce, B.A.

    1995-05-01

    This report documents the results of the Environmental Monitoring Program at Brookhaven National Laboratory and presents summary information about environmental compliance for 1994. To evaluate the effect of Brookhaven National Laboratory`s operations on the local environment, measurements of direct radiation, and a variety of radionuclides and chemical compounds in ambient air, soil, sewage effluent, surface water, groundwater, fauna and vegetation were made at the Brookhaven National Laboratory site and at sites adjacent to the Laboratory.

  3. Accounting Resources | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accounting Resources Ames Laboratory Human Resources Forms Ames Laboratory Travel Forms Ames Laboratory Forms (Select Department) ISU Intramural PO Request

  4. National Laboratory's Weapons Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Us » Strategic Programs » National Laboratory Impact Initiative Team National Laboratory Impact Initiative Team The mission of the Office of Energy Efficiency and Renewable Energy's (EERE's) National Laboratory Impact Initiative is to significantly increase the industrial impact of the Energy Department's national laboratories on the U.S. clean energy sector. The goals of the Initiative are to: Increase and enhance laboratory-private sector relationships Increase and streamline access to

  5. Savannah River Laboratory monthly report

    SciTech Connect (OSTI)

    Not Available

    1985-12-01

    Efforts in the area of nuclear reactors and scientific computations are reported, including: robotics; reactor irradiation of nonend-bonded target slugs; computer link with Los Alamos National Laboratory; L-reactor thermal mitigation; aging of carbon in SRP reactor airborne activity confinement systems; and reactor risk assessment for earthquakes. Activities in chemical processes and environmental technology are reported, including: solids formation in a plutonium product stream; revised safety analysis reporting for F and H-Canyon operations; organic carbon analysis of DWPF samples; applications of Fourier transform infrared spectrometry; water chemistry analyzer for SRP reactors; and study of a biological community in Par Pond. Defense waste and laboratory operations activities include: Pu-238 waste incinerator startup; experimental canister frit blaster; saltstone disposal area design; powder metallurgy core diameter measurement; and a new maintenance shop facility. Nuclear materials planning encompasses decontamination and decommissioning of SRP facilities and a comprehensive compilation of environmental and nuclear safety issues. (LEW)

  6. EIS-0028: Lawrence Livermore National Laboratory and Sandia National Laboratories- Livermore Sites, Livermore, CA

    Broader source: Energy.gov [DOE]

    The statement assesses the potential impacts associated with current operation of the Lawrence Livermore National Laboratory and Sandia National Laboratories , Livermore, adjacent sites. This includes the impacts from postulated accidents associated with the activities. Various effluents including radioactive ones are released to the environment. However, a continuing comprehensive monitoring program is carried out to assist in the control of hazardous effluents. Alternatives considered to current operation of the laboratories include: (1) shutdown and decommissioning, (2) total or partial relocation, (3) scaling down those operations having greatest impact , and (4) wider use of alternate technologies having reduced impact .

  7. DOE - Office of Legacy Management -- Sandia National Laboratories...

    Office of Legacy Management (LM)

    California - 004 FUSRAP Considered Sites Site: Sandia National Laboratories - California (004) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site ...

  8. National Renewable Laboratory: Tribal Energy Program 2010 Annual...

    Office of Environmental Management (EM)

    laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Major DOE National ...

  9. Enterprise Assessments Review of the Los Alamos National Laboratory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2016 Enterprise Assessments Review of the Los Alamos National Laboratory Plutonium ... Review of the Plutonium Facility Restart of Fissile Material Operations at the Los Alamos ...

  10. Enterprise Assessments Review of the Argonne National Laboratory...

    Broader source: Energy.gov (indexed) [DOE]

    Authority Having Jurisdiction ANL Argonne National Laboratory ASO Argonne Site Office BIO Basis for Interim Operation BNA Baseline Needs Assessment CAS Contractor Assurance...

  11. Scientists in Portrait grace Ames Lab hallway | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    scientific modeling around the Ames Laboratory, we're talking about the science: using visual, mathematical, or operational methods to better understand the chemical and physical...

  12. Concurrence' Lawrence Livermore National Laboratory FY2015 Ten...

    National Nuclear Security Administration (NNSA)

    update. Section 6: Real Property Asset Management LLNL is supporting the DOE enterprise strategic infrastructure planning process through the Laboratory Operations Board. The...

  13. Visual Engineering | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Visual Engineering Visual Engineering At the Ames Laboratory we are working with Iowa State Image University to create an interactive visual engineering environment to design new products, better power plants, or any other engineering products. In addition, Mark Bryden and Doug McCorkle, along with collaborators at NETL and Reaction Engineering International have developed open-source software to look at the physics behind power plant operation within this visual environment. Image Their VE-PSI

  14. Issued by Sandia National Laboratories,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation. NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or

  15. Welcoming the Laboratory's summer students

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Administration Home / fieldoffices Welcome to the Livermore Field Office Welcome to the Livermore Field Office The NNSA Livermore Field Office (LFO) is located at the Lawrence Livermore National Laboratory (LLNL) in Livermore, California. Currently, the Lawrence Livermore National Security, LLC is under contract with the Department of Energy for the management and operation of LLNL. The LFO is responsible for administering this contract. Additionally, LFO promotes national nuclear safety,

  16. Development Shop | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Development Shop The Ames Laboratory operates a complete machine shop. Our shop consists of the modern equipment needed to fabricate almost any conceivable device required for research project. If you have a need or any questions about the fabrication of items to support your mission in research please contact us. Our machining equipment includes: Lathes CNC Bridgeport Mills Shears Press Brake (for bending) EDM (Electronic Discharge Machining) Grinders Saws We are capable of welding nearly any

  17. Sandia National Laboratories: Data Analytics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pathfinder Airborne ISR Systems What is SAR? Areas of Expertise Images VideoSAR Publications Facebook Twitter YouTube Flickr RSS Top Areas of Expertise Capabilities Hardware Modes & Frequency Bands of Operation Platforms Missions Tasking, Processing, Exploitation & Dissemination (TPED) Data Analytics Pathfinder Airborne ISR Systems Data Analytics Data Analytics Sandia National Laboratories: Synthetic Apperature Radar (SAR): SAR Hardware PANTHER - Pattern ANalytics To support

  18. Readiness Review | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Readiness Assurance Readiness Assurance NNSA ensures that capabilities are in place to respond to any NNSA and Department of Energy facility emergency. It is also the nation's premier responder to any nuclear or radiological incident within the United States or abroad and provides operational planning and training to counter both

    Readiness Review The Ames Laboratory Readiness Review process provides strong support for Integrated Safety Management. Readiness Review is begun during initial

  19. Submitting Work | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Submitting Work Customers may directly contact the supervisor of the required service area to discuss the technical details of proposed projects. Iowa State University requestors need to bring an Intramural Purchase Order (IPO) with them from their departmental office to request services. After the technical details of the project are known, a cost estimate is prepared. Ames Laboratory operations work less than $1,000 is submitted directly to the shop using the Engineering Services Shop -

  20. Federal Laboratory Consortium | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Federal Laboratory Consortium

  1. Brookhaven National Laboratory | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Brookhaven National Laboratory

  2. Small-scale experiments with an analysis to evaluate the effect of tailored pulse loading on fracture and permeability. Final report for phase I, June 11, 1979-June 11, 1980

    SciTech Connect (OSTI)

    McHugh, S.

    1980-06-01

    To determine the applicability of the tailored pulse-loading technique to full-scale stimulation, a two-year program was conducted to examine the effects of pulse tailoring on fracture. Results of the field, laboratory, and calculational program demonstrate that: (1) the material and fracture properties derived from laboratory measurements can be used successfully in the NAG-FRAG calculational simulations to reproduce the main features of fracturing in the field; and (2) the fracture patterns produced in these experiments show a strong dependence on the borehole pressure pulse shape. The material and fracture properties will have a significant influence on the fracture patterns. Therefore, shale and tuff will have different optimum pulse shapes.

  3. EIS-0281: Sandia National Laboratories/New Mexico

    Broader source: Energy.gov [DOE]

    DOE proposes to continue operating the Sandia National Laboratories/New Mexico (SNL/NM) located in central New Mexico. The DOE has identified and assessed three alternatives for the operation of...

  4. Our Operations | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Operations Infrastructure and Operations NNSA's missions require a secure production and laboratory infrastructure meeting immediate and long term needs. The Associate Administrator for Infrastructure and Operations develops and executes NNSA's infrastructure investment, maintenance, and operations programs and policies. Administration Programs Management and Budget The organization provides timely, cost-effective, and efficient administrative and financial support for NNSA headquarters staff.

  5. Princeton Plasma Physics Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Physics Laboratory P.O. Box 451 Princeton, NJ 08543-0451 GPS: 100 Stellarator Road Princeton, NJ 08540 www.pppl.gov 2015 Princeton Plasma Physics Laboratory. A...

  6. DOE Laboratory Partnerships

    Broader source: Energy.gov [DOE]

    DOE national laboratories were created to support the various missions of the Department, including energy, national security, science and related environmental activities. The laboratories conduct innovative research and development in literally hundreds of technology areas, some available nowhere else.

  7. Enterprise Assessments Review of the Los Alamos National Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plutonium Facility Restart of Fissile Material Operations - January 2016 | Department of Energy Plutonium Facility Restart of Fissile Material Operations - January 2016 Enterprise Assessments Review of the Los Alamos National Laboratory Plutonium Facility Restart of Fissile Material Operations - January 2016 January 2016 Review of the Plutonium Facility Restart of Fissile Material Operations at the Los Alamos National Laboratory The U.S. Department of Energy Office of Nuclear Safety and

  8. Los Alamos National Laboratory names new leadership for Weapons and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operations Directorates New leadership for Weapons and Operations Directorates Los Alamos National Laboratory names new leadership for Weapons and Operations Directorates Robert (Bob) Webster has been selected to be the Lab's next Principal Associate Director for Weapons Programs, and Craig Leasure has been selected as the new Principal Associate Director for Operations. June 19, 2015 Bob Webster and Craig Leasure Bob Webster and Craig Leasure Contact Los Alamos National Laboratory Kevin

  9. Sandia National Laboratories: About Sandia: Sandia's Government

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Owned/Contractor Operated heritage About Government Owned/Contractor Operated Heritage Industrial, academic, and nonprofit organizations have historically managed the U.S. Department of Energy national laboratories and other major government owned/contractor operated (GOCO) facilities. A GOCO partnership allows each partner to perform duties for which it is uniquely suited: the government establishes mission areas, and the private sector implements the missions, using best business

  10. DOE-ID Operations Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    07, 2013 DOE-ID Operations Summary For the Period July 8, 2013 through July 28, 2013 EDITOR'S NOTE: The following is a summary of contractor operations at the Idaho National Laboratory, managed by DOE- Idaho Operations Office. It has been compiled in response to a request from stakeholders for more information on health, safety and environmental incidents at DOE facilities in Idaho. It also includes a brief summary of accomplishments at the Site. POC -Danielle Miller, (208) 526-5709. Advanced

  11. DOE-ID Operations Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6, 2013 DOE-ID Operations Summary For the Period July 29, 2013 through August 12, 2013 EDITOR'S NOTE: The following is a summary of contractor operations at the Idaho National Laboratory, managed by DOE- Idaho Operations Office. It has been compiled in response to a request from stakeholders for more information on health, safety and environmental incidents at DOE facilities in Idaho. It also includes a brief summary of accomplishments at the Site. POC -Danielle Miller, (208) 526-5709. Advanced

  12. DOE-ID Operations Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8, 2013 DOE-ID Operations Summary For the Period September 30, 2013 through October 31, 2013 EDITOR'S NOTE: The following is a summary of contractor operations at the Idaho National Laboratory, managed by DOE- Idaho Operations Office. It has been compiled in response to a request from stakeholders for more information on health, safety and environmental incidents at DOE facilities in Idaho. It also includes a brief summary of accomplishments at the Site. POC -Danielle Miller, (208) 526-5709.

  13. DOE-ID Operations Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6, 2014 DOE-ID Operations Summary For the Period November 01, 2013 through November 30, 2013 EDITOR'S NOTE: The following is a summary of contractor operations at the Idaho National Laboratory, managed by DOE- Idaho Operations Office. It has been compiled in response to a request from stakeholders for more information on health, safety and environmental incidents at DOE facilities in Idaho. It also includes a brief summary of accomplishments at the Site. POC -Danielle Miller, (208) 526-5709.

  14. DOE-ID Operations Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    27, 2014 DOE-ID Operations Summary For the Period December 01, 2013 through January 15, 2014 EDITOR'S NOTE: The following is a summary of contractor operations at the Idaho National Laboratory, managed by DOE- Idaho Operations Office. It has been compiled in response to a request from stakeholders for more information on health, safety and environmental incidents at DOE facilities in Idaho. It also includes a brief summary of accomplishments at the Site. POC -Danielle Miller, (208) 526-5709.

  15. DOE-ID Operations Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3, 2015 Updated on April 28, 2015 DOE-ID Operations Summary For the Period September 30, 2014 through November 1, 2014 EDITOR'S NOTE: The following is a summary of contractor operations at the Idaho National Laboratory, managed by DOE- Idaho Operations Office. It has been compiled in response to a request from stakeholders for more information on health, safety and environmental incidents at DOE facilities in Idaho. It also includes a brief summary of accomplishments at the Site. POC -Danielle

  16. DOE-ID Operations Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7, 2015 DOE-ID Operations Summary For the Period January 1, 2015 - January 31, 2015 EDITOR'S NOTE: The following is a summary of contractor operations at the Idaho National Laboratory Site, managed by the DOE- Idaho Operations Office. It has been compiled in response to a request from stakeholders for more information on health, safety and environmental incidents at DOE facilities in Idaho. It also includes a brief summary of accomplishments at the Site. POC: Danielle Miller, (208) 526-5709.

  17. DOE-ID Operations Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6, 2015 DOE-ID Operations Summary For the Period February 1, 2015 - February 28, 2015 EDITOR'S NOTE: The following is a summary of contractor operations at the Idaho National Laboratory Site, managed by the DOE- Idaho Operations Office. It has been compiled in response to a request from stakeholders for more information on health, safety and environmental incidents at DOE facilities in Idaho. It also includes a brief summary of accomplishments at the Site. POC: Danielle Miller, (208) 526-5709.

  18. DOE-ID Operations Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    23, 2015 DOE-ID Operations Summary For the Period March 1, 2015 -March 31, 2015 EDITOR'S NOTE: The following is a summary of contractor operations at the Idaho National Laboratory Site, managed by the DOE- Idaho Operations Office. It has been compiled in response to a request from stakeholders for more information on health, safety and environmental incidents at DOE facilities in Idaho. It also includes a brief summary of accomplishments at the Site. POC: Danielle Miller, (208) 526-5709.

  19. DOE-ID Operations Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1, 2015 DOE-ID Operations Summary For the Period April 1, 2015 - April 30, 2015 EDITOR'S NOTE: The following is a summary of contractor operations at the Idaho National Laboratory Site, managed by the DOE- Idaho Operations Office. It has been compiled in response to a request from stakeholders for more information about health, safety and environmental incidents at DOE facilities in Idaho. It also includes a brief summary of accomplishments at the Site. POC: Danielle Miller, (208) 526-5709.

  20. DOE-ID Operations Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4, 2015 DOE-ID Operations Summary For the Period May 1, 2015 - May 31, 2015 EDITOR'S NOTE: The following is a summary of contractor operations at the Idaho National Laboratory Site, managed by the DOE- Idaho Operations Office. It has been compiled in response to a request from stakeholders for more information on health, safety and environmental incidents at DOE facilities in Idaho. It also includes a brief summary of accomplishments at the Site. POC: Danielle Miller, (208) 526-5709. Advanced

  1. DOE-ID Operations Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    25, 2015 DOE-ID Operations Summary For the Period June 1, 2015 - June 30, 2015 EDITOR'S NOTE: The following is a summary of contractor operations at the Idaho National Laboratory Site, managed by the DOE- Idaho Operations Office. It has been compiled in response to a request from stakeholders for more information on health, safety and environmental incidents at DOE facilities in Idaho. It also includes a brief summary of accomplishments at the Site. POC: Danielle Miller, (208) 526-5709. Advanced

  2. DOE-ID Operations Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    December 2, 2015 DOE-ID Operations Summary For the Period September 1, 2015 - September 30, 2015 EDITOR'S NOTE: The following is a summary of contractor operations at the Idaho National Laboratory Site, managed by the DOE- Idaho Operations Office. It has been compiled in response to a request from stakeholders for more information on health, safety and environmental incidents at DOE facilities in Idaho. It also includes a brief summary of accomplishments at the Site. POC: Danielle Miller, (208)

  3. DOE-ID Operations Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7, 2015 DOE-ID Operations Summary For the Period August 1, 2015 - August 31, 2015 EDITOR'S NOTE: The following is a summary of contractor operations at the Idaho National Laboratory Site, managed by the DOE- Idaho Operations Office. It has been compiled in response to a request from stakeholders for more information on health, safety and environmental incidents at DOE facilities in Idaho. It also includes a brief summary of accomplishments at the Site. POC: Danielle Miller, (208) 526-5709.

  4. DOE-ID Operations Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 11, 2016 DOE-ID Operations Summary For the Period November 1, 2015 - November 30, 2015 EDITOR'S NOTE: The following is a summary of contractor operations at the Idaho National Laboratory Site, managed by the DOE- Idaho Operations Office. It has been compiled in response to a request from stakeholders for more information on health, safety and environmental incidents at DOE facilities in Idaho. It also includes a brief summary of accomplishments at the Site. POC: Danielle Miller, (208)

  5. DOE-ID Operations Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    December 1, 2015 -December 31, 2015 EDITOR'S NOTE: The following is a summary of contractor operations at the Idaho National Laboratory Site, managed by the DOE- Idaho Operations Office. It has been compiled in response to a request from stakeholders for more information on health, safety and environmental incidents at DOE facilities in Idaho. It also includes a brief summary of accomplishments at the Site. POC: Danielle Miller, (208) 526-5709. Idaho Operations Office (DOE-ID) December 17: The

  6. haberer | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    haberer Ames Laboratory Profile Charles Haberer Facilities Services 158 Metals Development Phone Number: 515-294-3757 Email Address: haberer

  7. islowing | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    islowing Ames Laboratory Profile Igor Slowing Assoc Scientist Chemical & Biological Sciences 2756 Gilman Phone Number: 515-294-1959 Email Address: islowing@iastate.edu Ames Laboratory Associate Ames Laboratory Research Projects: Homogeneous and Interfacial Catalysis in 3D Controlled Environment Nanorefinery Education: Ph.D., Iowa State University, 2003-2008 Licenciate in Chemistry, San Carlos University, Guatemala, 1988-1995 Professional Appointments: Staff Scientist, Ames Laboratory,

  8. levin | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    levin Ames Laboratory Profile Evgenii Levin Scientist I Division of Materials Science & Engineering 107 Spedding Phone Number: 515-294-6093 Email Address: levin@iastate.edu Ames Laboratory Research Projects: Novel Materials Preparation & Processing Methodologies Professional Appointments: Scientist I & Adj. Associate Professor, Ames Laboratory U.S. DOE, and Department of Physics and Astronomy, Iowa State University, 2010- present Associate Scientist & Lecturer, Ames Laboratory

  9. FY 2005 Laboratory Table

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Congressional Budget Request Laboratory Tables Preliminary Department of Energy FY 2005 Congressional Budget Request Office of Management, Budget and Evaluation/CFO February 2004 Laboratory Tables Preliminary Department of Energy Department of Energy FY 2005 Congressional Budget FY 2005 Congressional Budget Request Request Office of Management, Budget and Evaluation/CFO February 2004 Laboratory Tables Laboratory Tables Printed with soy ink on recycled paper Preliminary Preliminary The numbers

  10. Management | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Sciences & Engineering Focus: Understanding & Control of Interfacial Processes Web Site Michael Thackeray Michael Thackeray (Deputy Director) Argonne National Laboratory...

  11. biswasr | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University, 1976 Professional Appointments: Senior Scientist Ames Laboratory and Microelectronics Research Center, 2013- present Adjunct Professor, Dept. of Physics & Astronomy;...

  12. Sandia National Laboratories: Laboratories' Strategic Framework

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Strategic Framework Vision, Mission, and Values Strategic Framework Mission Areas Laboratories Foundation Strategic Objectives and Crosscuts About Strategic Framework strategic framework Sandia continues to be engaged in the significant demands of the nation's nuclear weapons modernization program while conducting a whole range of activities in broader national security. The Laboratories' strategic framework drives strategic decisions about the totality of our work and has positioned our

  13. INL Laboratory Scale Atomizer

    SciTech Connect (OSTI)

    C.R. Clark; G.C. Knighton; R.S. Fielding; N.P. Hallinan

    2010-01-01

    A laboratory scale atomizer has been built at the Idaho National Laboratory. This has proven useful for laboratory scale tests and has been used to fabricate fuel used in the RERTR miniplate experiments. This instrument evolved over time with various improvements being made ‘on the fly’ in a trial and error process.

  14. Hanford Identification (HID) PIA, Richland Operations Office | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Identification (HID) PIA, Richland Operations Office Hanford Identification (HID) PIA, Richland Operations Office Hanford Identification (HID) PIA, Richland Operations Office PDF icon Hanford Identification (HID) PIA, Richland Operations Office More Documents & Publications Integrated Safety Management Workshop Registration, PIA, Idaho National Laboratory Occupational Medicine - Assistant PIA, Idaho National Laboratory Manchester Software 1099 Reporting PIA, Idaho National

  15. Department of Energy to Compete Management and Operating Contracts for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Three Office of Science Laboratories | Department of Energy and Operating Contracts for Three Office of Science Laboratories Department of Energy to Compete Management and Operating Contracts for Three Office of Science Laboratories November 17, 2006 - 9:25am Addthis WASHINGTON, DC -- The U.S. Department of Energy (DOE) announced today that it plans to begin competing the management and operating (M&O) contracts for three of its Office of Science national laboratories over the next 18

  16. DOE - Office of Legacy Management -- Battelle Columbus Laboratories W

    Office of Legacy Management (LM)

    Jefferson Plutonium Facilities - OH 15 Columbus Laboratories W Jefferson Plutonium Facilities - OH 15 FUSRAP Considered Sites Site: Battelle Columbus Laboratories W Jefferson Plutonium Facilities (OH.15) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see Documents Related to Battelle Columbus Laboratories W Jefferson Plutonium

  17. Laboratory quality assurance and its role in the safeguards analytical laboratory evaluation (SALE) program

    SciTech Connect (OSTI)

    Delvin, W. L.; Pietri, C. E.

    1981-07-01

    Since the late 1960's, strong emphasis has been given to quality assurance in the nuclear industry, particularly to that part involved in nuclear reactors. This emphasis has had impact on the analytical chemistry laboratory because of the importance of analytical measurements in the certification and acceptance of materials used in the fabrication and construction of reactor components. Laboratory quality assurance, in which the principles of quality assurance are applied to laboratory operations, has a significant role to play in processing, fabrication, and construction programs of the nuclear industry. That role impacts not only process control and material certification, but also safeguards and nuclear materials accountability. The implementation of laboratory quality assurance is done through a program plan that specifies how the principles of quality assurance are to be applied. Laboratory quality assurance identifies weaknesses and deficiencies in laboratory operations and provides confidence in the reliability of laboratory results. Such confidence in laboratory measurements is essential to the proper evaluation of laboratories participating in the Safeguards Analytical Laboratory Evaluation (SALE) Program.

  18. Innovative technology summary report: Road Transportable Analytical Laboratory (RTAL)

    SciTech Connect (OSTI)

    1998-10-01

    The Road Transportable Analytical Laboratory (RTAL) has been used in support of US Department of Energy (DOE) site and waste characterization and remediation planning at Fernald Environmental Management Project (FEMP) and is being considered for implementation at other DOE sites, including the Paducah Gaseous Diffusion Plant. The RTAL laboratory system consists of a set of individual laboratory modules deployable independently or as an interconnected group to meet each DOE site`s specific analysis needs. The prototype RTAL, deployed at FEMP Operable Unit 1 Waste Pits, has been designed to be synergistic with existing analytical laboratory capabilities, thereby reducing the occurrence of unplanned rush samples that are disruptive to efficient laboratory operations.

  19. Operations Videos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operations Research Analysts The U.S. Energy Information Administration (EIA) within the Department of Energy has forged a world-class information program that stresses quality, teamwork, and employee growth. In support of our program, we offer a variety of profes- sional positions, including the Operations Research Analyst, whose work is associated with the development and main- tenance of energy modeling systems. Responsibilities: Operations Research Analysts perform or participate in one or

  20. SPEAR Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interface 1113 N. Kurita J. Langton Vacuum TSP's 1120 J. Corbett A. Terebilo MATLAB Applications - Basics 1121 F. Rafael Booster Kicker Upgrade, Operation Manual 1121...

  1. operations center

    National Nuclear Security Administration (NNSA)

    servers and other critical Operations Center equipment

  2. Independent air supply system filtered to protect against biological and radiological agents (99.7%).
  3. <...

  4. LABORATORY NEW HIRE NOTICE: LABORATORY DELAYED OPENING OR CLOSURE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LABORATORY NEW HIRE NOTICE: LABORATORY DELAYED OPENING OR CLOSURE DUE TO INCLEAMENT WEATHER During the winter months, the Los Alamos National Laboratory (LANL) may at times...

  5. Sandia National Laboratories | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Sandia National Laboratories NNSA's Sandia National Laboratories are responsible for the development, testing, and production of specialized nonnuclear components and quality assurance and systems engineering for all of the United States' nuclear weapons. Sandia has locations in Albuquerque, NM; Livermore, CA; Kauai, HI; and Tonopah, NV. The labs are operated by Sandia Corporation. Visit our website Z-Machine Related News NNSA hosts international CTBT on-site inspection experts at Nevada

  6. DOE / Contractor Resources | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE / Contractor Resources As a Department of Energy National Laboratory operated under Contract DE-AC02-07CH11358 by Iowa State University, the Ames Laboratory is required to prepare and submit various Planning and Performance documents for review and approval to the DOE. Included herein are some of those documents that are or may be of interest to our constituents. The Lab Plan is an annual document submitted to the DOE that discusses our mission, core capabilities and infrastructure. The

  7. Sandia National Laboratories- West Flank

    Broader source: Energy.gov [DOE]

    The West Flank FORGE team proposes an R&D plan that aims to effectively reduce risks to industry and enable development of the enormous EGS resource potential. The team is working in partnership with the U.S. Department of Defense to reduce our Nation’s dependency on fossil fuels and to safeguard the military readiness for the United States. Drilling in and around the selected FORGE location has indicated remarkably low permeability and very attractive temperatures - key elements for an EGS test site. The West Flank FORGE team is led by Sandia National Laboratories and includes members from: Lawrence Berkeley National Laboratory, U.S. Navy & the U.S. Navy Geothermal Program Office, Coso Operating Company, U.S. Geological Survey (Menlo Park, California), University of Nevada, Reno (UNR), GeothermEx / Schlumberger, and Itasca Consulting Group, Inc.

  8. Brookhaven National Laboratory site environmental report for calendar year 1996

    SciTech Connect (OSTI)

    Schroeder, G.L.; Paquette, D.E.; Naidu, J.R.; Lee, R.J.; Briggs, S.L.K.

    1998-01-01

    This report documents the results of the Environmental Monitoring Program at Brookhaven National Laboratory and summarizes information about environmental compliance for 1996. To evaluate the effect of Brookhaven National Laboratory`s operations on the local environment, measurements of direct radiation, and of a variety of radionuclides and chemical compounds in the ambient air, soil, sewage effluent, surface water, groundwater, fauna, and vegetation were made at the Brookhaven National Laboratory site and at adjacent sites. The report also evaluates the Laboratory`s compliance with all applicable guides, standards, and limits for radiological and non-radiological emissions and effluents to the environment.

  9. Independent Activity Report, Argonne National Laboratory - August 2011 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Argonne National Laboratory - August 2011 Independent Activity Report, Argonne National Laboratory - August 2011 August 2011 Orientation Visit to the Argonne National Laboratory [HIAR-ANL-2011-08-24] This Independent Activity Report documents an operational awareness activity conducted by Office of Health, Safety and Security's (HSS) Office of Safety and Emergency Management Evaluations on August 24, 2011, at the Department of Energy's Argonne National Laboratory. The

  10. Independent Activity Report, Sandia National Laboratories - April 2012 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Sandia National Laboratories - April 2012 Independent Activity Report, Sandia National Laboratories - April 2012 April 2012 Sandia National Laboratories Site Visit [HIAR-SNL-2012-05-02] This Independent Activity Report documents an operational awareness oversight activity conducted by Office of Health, Safety and Security's (HSS) Office of Safety and Emergency Management Evaluations from April 29 to May 2, 2012, at the Sandia National Laboratories. The activity consisted

  11. PRELIMINARY SURVEY OF SYLVANIA-CORNING NUCLEAR CORPORATION METALLURGICAL LABORATORY

    Office of Legacy Management (LM)

    SYLVANIA-CORNING NUCLEAR CORPORATION METALLURGICAL LABORATORY BAYSIDE, NEW YORK Work performed by the Health and Safety Research Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37830 March 1980 OAK RIDGE NATIONAL LABORATORY operated by UNION CARBIDE CORPORATION for the DEPARTMENT OF ENERGY as part of the Formerly Utilized Sites-- Remedial Action Program SYLVANIA-CORNING NUCLEAR CORPORATION METALLURGICAL LABORATORY BAYSIDE, NEW YORK At the request of the Department of Energy (DOE), a

  12. Remediated Nitrate Salt Drums Storage at Los Alamos National Laboratory |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Remediated Nitrate Salt Drums Storage at Los Alamos National Laboratory Remediated Nitrate Salt Drums Storage at Los Alamos National Laboratory As a part of its national security mission, the Laboratory conducts research that generates waste contaminated with radioactive isotopes. During operations, waste is processed, packaged, and shipped to licensed disposal facilities. PDF icon Remediated-Nitrate-Salt-Drums-Storage-at-Los-Alamos-National-Laboratory.pdf More Documents

  13. Pacific Northwest National Laboratory institutional plan: FY 1996--2001

    SciTech Connect (OSTI)

    1996-01-01

    This report contains the operation and direction plan for the Pacific Northwest National Laboratory of the US Department of Energy. The topics of the plan include the laboratory mission and core competencies, the laboratory strategic plan; the laboratory initiatives in molecular sciences, microbial biotechnology, global environmental change, complex modeling of physical systems, advanced processing technology, energy technology development, and medical technologies and systems; core business areas, critical success factors, and resource projections.

  14. Hanford People Core (HCP) PIA, Richland Operations Office | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy People Core (HCP) PIA, Richland Operations Office Hanford People Core (HCP) PIA, Richland Operations Office Hanford People Core (HCP) PIA, Richland Operations Office PDF icon Hanford People Core (HCP) PIA, Richland Operations Office More Documents & Publications E-IDR (Inventory Disclosure Record) PIA, Idaho National Laboratory Occupational Medicine - Assistant PIA, Idaho National Laboratory Integrated Safety Management Workshop Registration, PIA, Idaho National Laboratory

  15. Laboratory program helps small businesses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab helps small businesses Laboratory program helps small businesses The free program, run jointly by Los Alamos and Sandia National Laboratories, leverages the laboratories'...

  16. Going green earns Laboratory gold

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Going green earns Laboratory gold Going green earns Laboratory gold The Laboratory's newest facility is its first to achieve both the Leadership in Energy and Environmental Design...

  17. Budget Office | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that the Laboratory complies with all Department Of Energy cost controls Providing decision-making support to senior Laboratory management Providing support to the Laboratory...

  18. Sandia National Laboratories: Sandia National Laboratories: Tonopah...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tonopah Test Range Tonopah Tonopah Test Range (TTR) is the testing range of choice for all national security missions. Sandia conducts operations at TTR in support of the...

  19. BCM 1 Equipment Inventory | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BC Transit Fuel Cell Bus Project Evaluation Results: Second Report L. Eudy and M. Post National Renewable Energy Laboratory Technical Report NREL/TP-5400-62317 September 2014 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No. DE-AC36-08GO28308 National

  20. Site environmental report for 2004 Sandia National Laboratories, California.

    SciTech Connect (OSTI)

    Larsen, Barbara L. (Sandia National Laboratories, Livermore, CA)

    2005-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's (DOE) National Nuclear Security Administration. The DOE Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2004 was prepared in accordance with DOE Order 231.1A. The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2004. General site and environmental program information is also included.

  21. Site environmental report for 2003 Sandia National Laboratories, California.

    SciTech Connect (OSTI)

    Larsen, Barbara L.

    2004-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's (DOE) National Nuclear Security Administration. The DOE Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2003 was prepared in accordance with DOE Order 231.1A. The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2003. General site and environmental program information is also included.

  22. Site environmental report for 2008 Sandia National Laboratories, California.

    SciTech Connect (OSTI)

    Larsen, Barbara L.

    2009-04-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2008 was prepared in accordance with DOE Order 231.1A (DOE 2004a). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2008. General site and environmental program information is also included.

  1. Site environmental report for 2006 Sandia National Laboratories, California.

    SciTech Connect (OSTI)

    Larsen, Barbara L.

    2007-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2006 was prepared in accordance with DOE Order 231.1A (DOE 2004a). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2006. General site and environmental program information is also included.

  2. Site environmental report for 2005 Sandia National Laboratories, California.

    SciTech Connect (OSTI)

    Larsen, Barbara L.

    2006-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's (DOE) National Nuclear Security Administration (NNSA). The DOE/NNSA Sandia Site Office (SSO) oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2005 was prepared in accordance with DOE Order 231.1A. The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2005. General site and environmental program information is also included.

  3. The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Timothy Hackett and Kathryn White are the SULI students for spring semester 2016. Ames Laboratory's fall Science Undergraduate Laboratory Internship (SULI) students began their program with the start of fall semester Aug. 24. The students are, left to right, Kathryn White, Shannon Goes, Kaiser Aguirre, and Adam Dziulko. Department of Energy Deputy Secretary Elizabeth Sherwood-Randall poses with SULI and CCI students who participated in a roundtable discussion during her visit to Ames Laboratory

  4. jwang | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    jwang Ames Laboratory Profile Jigang Wang Associate Division of Materials Science & Engineering B15 Spedding Phone Number: 515-294-2964 Email Address: jgwang@iastate.edu Ames Laboratory Research Projects: Metamaterials Education: Ph.D. Electrical Engineering, Rice University, Houston, TX, 2005 M.S. Electrical Engineering, Rice University, Houston, TX, 2002 B.S. Physics, Jilin University, Changchun, P. R. China, 2000 Professional Appointments: Associate Scientist, Ames Laboratory, Iowa State

  5. Education | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Education Education The MFRC has established a network of Midwest crime laboratories and university-based forensic science programs. This network has two general goals: help universities become better casework, research, and development partners for crime laboratories; and to engage crime laboratories in university efforts. These efforts can better-prepare the next generation of forensic scientists, advance the state-of-the-art in forensic science research, and influence students whose

  6. National Energy Technology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Design Standards for the NETL Logo Feburary 2016 The Logo Display of the NETL logo is critical because this symbol represents who we are - it's our signature. Consistent application of the logo is crucial to the success of our identity. As the primary identifier of the National Energy Technology Laboratory, it is essential that the logo's appearance is consistent throughout all of the Laboratory's communications. Over time, consistent and repeated use of the logo will establish a

  7. rshouk | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rshouk Ames Laboratory Profile Robert Houk Prof Chemical & Biological Sciences B27 Spedding Phone Number: 515-294-9462 Email Address: rshouk@iastate.edu Ames Laboratory Associate and Professor, Iowa State University Ames Laboratory Research Projects: Chemical Analysis of Nanodomains Education: Postdoctoral Associate, Iowa State University, 1981 Ph.D. Iowa State University, 1980 B.S. Slippery Rock State College, 1974 Professional Appointments: Senior Chemist and Professor of Chemistry, Iowa

  8. Mentoring | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mentoring Why mentoring? As one of the largest laboratories in the nation for science and engineering research, Argonne National Laboratory is home to some of the most prolific and well-renowned scientists and engineers. To maintain an environment that fosters innovative research, we are committed to ensuring the success of our major players on the frontlines of our research-our Postdoctoral Scientists. The Argonne National Laboratory has a long-standing reputation as a place that offers

  9. kabryden | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    kabryden Ames Laboratory Profile Kristy Bryden Associate Simulation, Modeling, & Decision Science 149 Music Phone Number: 515-294-3971 Email Address: kabryden...

  10. angiemcg | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    angiemcg Ames Laboratory Profile Angela Mcguigan Secretary II Simulation, Modeling, & Decision Science 1620 Howe Phone Number: 515-294-8060 Email Address: angiemcg...

  11. antropov | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Laboratory Research Projects: Exploratory Development of Theoretical Methods Education: Ph.D. Condensed Matter Physics, Institute of Physics of Metals, Yekaterinburg,...

  12. OAK RIDGE NATIONAL LABORATORY

    Office of Legacy Management (LM)

    Dr. Williams: Trip Report of ORNL Health Physics Support at the Uniroyal Chemical Company ... Laboratory (ORNL) provided health physics support for the Uniroyal Chemical Company. ...

  13. Purchasing | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in 44 states. Purchased Items and supplier base: Biological Materials Chemicals Computers, Monitors and Printers Furniture Laboratory Supplies Metals Office Supplies...

  14. carter | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carter Ames Laboratory Profile Steven Carter Engr IV Facilities Services 158 Metals Development Phone Number: 515-294-7889 Email Address: carter@ameslab.gov...

  15. cbertoni | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cbertoni Ames Laboratory Profile Colleen Bertoni Grad Asst-RA Chemical & Biological Sciences 201 Spedding Phone Number: 515-294-7568 Email Address: cbertoni...

  16. pmberge | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pmberge Ames Laboratory Profile Paul Berge Industrial Spec Division of Materials Science & Engineering 110 Metals Development Phone Number: 515-294-5972 Email Address:...

  17. abhranil | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    abhranil Ames Laboratory Profile Abhranil Biswas Student Associate Chemical & Biological Sciences 2236 Hach Phone Number: 515-294-7568 Email Address: abiswas

  18. aboesenb | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    aboesenb Ames Laboratory Profile Adam Boesenberg Associate Division of Materials Science & Engineering 110 Metals Development Phone Number: 515-294-5903 Email Address: aboesenb

  19. achatman | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    achatman Ames Laboratory Profile Andrew Chatman Division of Materials Science & Engineering 37 Spedding Phone Number: 515-294-4446 Email Address: achatman

  20. ackerman | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ackerman Ames Laboratory Profile David Ackerman Associate Chemical & Biological Sciences 2025 Black Engineering Phone Number: 515-294-1638 Email Address: ackerman

  1. adabbott | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    adabbott Ames Laboratory Profile Adam Abbott Chemical & Biological Sciences Critical Materials Institute 122 Spedding Phone Number: 515-294-4500 Email Address: adabbott

  2. adaoud | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    adaoud Ames Laboratory Profile Abdelwadood Daoud Simulation, Modeling, & Decision Science 1620 Howe Phone Number: 515-294-8060 Email Address: adaoud

  3. adf | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    adf Ames Laboratory Profile Alex Findlater Student Associate Chemical & Biological Sciences 231 Spedding Phone Number: 515-294-7568 Email Address: adf

  4. ahaupert | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ahaupert Ames Laboratory Profile Alysha Haupert Facilities Services 241C Metals Development Phone Number: 515-294-4360 Email Address: ahaupert

  5. aklekner | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    aklekner Ames Laboratory Profile Alon Klekner Engr Tech I Facilities Services 167C Metals Development Phone Number: 515-294-1589 Email Address: aklekner

  6. andresg | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    andresg Ames Laboratory Profile Andres Garcia Grad Asst-RA Chemical & Biological Sciences 307 Wilhelm Phone Number: 515-294-6027 Email Address: andresg

  7. arbenson | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    arbenson Ames Laboratory Profile Alex Benson Division of Materials Science & Engineering 258 Metals Development Phone Number: 515-294-4446 Email Address: arbenson

  8. ashheath | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ashheath Ames Laboratory Profile Ashley Heath Simulation, Modeling, & Decision Science 1620 Howe Phone Number: 515-294-3891 Email Address: ashheath

  9. bastaw | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bastaw Ames Laboratory Profile Ashraf Bastawros Associate Chemical & Biological Sciences 2347 Howe Phone Number: 515-294-3039 Email Address: bastaw

  10. baugie | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    baugie Ames Laboratory Profile Brent Augustine Student Associate Division of Materials Science & Engineering 206 Wilhelm Phone Number: 309-748-0439 Email Address: baugie

  11. bbergman | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bbergman Ames Laboratory Profile Brian Bergman Facil Mechanic III Facilities Services Maintenance Shop Phone Number: 515-294-4346 Email Address: bbergman@ameslab.gov

  12. bboote | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bboote Ames Laboratory Profile Brett Boote Grad Asst-RA Chemical & Biological Sciences 0712 Gilman Phone Number: 515-294-8586 Email Address: bboote@iastate.edu

  13. bcleland | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bcleland Ames Laboratory Profile Beth Cleland Custodian I Facilities Services 241C Metals Development Phone Number: 515-294-5446 Email Address: bcleland

  14. bender | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bender Ames Laboratory Profile Lee Bendickson Lab Tech III Division of Materials Science & Engineering 3288 Molecular Biology Bldg Phone Number: 515-294-5682 Email Address: bender

  15. bkkuhn | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bkkuhn Ames Laboratory Profile Bridget Kuhn Human Resources Office 118 TASF Phone Number: 515-294-2680 Email Address: bkkuhn@iastate.edu

  16. boehmer | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    boehmer Ames Laboratory Profile Anna Boehmer Postdoc Res Associate Division of Materials Science & Engineering A15 Zaffarano Phone Number: 515-294-3246 Email Address: boehmer

  17. boersma | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    boersma Ames Laboratory Profile Stephanie Boersma Budget Analyst V Budget Office 231 TASF Phone Number: 515-294-8785 Email Address: boersma

  18. bondarenko | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bondarenko Ames Laboratory Profile Volodymyr Bondarenko Division of Materials Science & Engineering A117 Zaffarano Phone Number: 515-294-4072 Email Address: bondarenko

  19. bspire | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bspire Ames Laboratory Profile Bruce Spire Erd Machinist Sr Facilities Services 160 Metals Development Phone Number: 515-294-5428 Email Address: bspire

  20. burghera | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    burghera Ames Laboratory Profile Alexander Burgher Facil Mechanic III Facilities Services 158B Metals Development Phone Number: 515-294-3756 Email Address: burghera

  1. byrd | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    byrd Ames Laboratory Profile David Byrd Asst Scientist I Division of Materials Science & Engineering 109 Metals Development Phone Number: 515-294-5747 Email Address: byrd

  2. carraher | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carraher Ames Laboratory Profile Jack Carraher Postdoc Res Associate Chemical & Biological Sciences 2118 BRL Phone Number: 515-294-5826 Email Address: carraher@iastate.edu

  3. cbenetti | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cbenetti Ames Laboratory Profile Caleb Benetti Student Associate Division of Materials Science & Engineering A204 Zaffarano Phone Number: 515-294-4446 Email Address: cbenetti

  4. ccelania | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ccelania Ames Laboratory Profile Christopher Celania Grad Asst-TA/RA Division of Materials Science & Engineering 325 Spedding Phone Number: 641-226-7542 Email Address: ccelania

  5. ccowan | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ccowan Ames Laboratory Profile Carol Cowan Secretary III Human Resources Office 151 TASF Phone Number: 515-294-2680 Email Address: ccowan

  6. chenx | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    chenx Ames Laboratory Profile Xiang Chen Division of Materials Science & Engineering 249 Spedding Phone Number: 515-294-4446 Email Address: chenx

  7. cmarquardt | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cmarquardt Ames Laboratory Profile Cynthia Marquardt Secretary II Facilities Services 158 Metals Development Phone Number: 515-294-3756 Email Address: cmarquardt

  8. crossm | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    crossm Ames Laboratory Profile Jeanine Crosman Secretary III Facilities Services 158H Metals Development Phone Number: 515-294-3496 Email Address: crossm

  9. dabrice | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dabrice Ames Laboratory Profile David Brice Division of Materials Science & Engineering 150 Metals Development Phone Number: 515-294-4446 Email Address: dabrice

  10. dbaldwin | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dbaldwin Ames Laboratory Profile David Baldwin Director II Chemical & Biological Sciences 130 Spedding Phone Number: 515-294-2069 Email Address: dbaldwin

  11. dballal | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dballal Ames Laboratory Profile Deepti Ballal Division of Materials Science & Engineering 112 Wilhelm Phone Number: 515-294-9636 Email Address: dballal

  12. dboeke | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dboeke Ames Laboratory Profile David Boeke Research Tech Sr Division of Materials Science & Engineering 122 Metals Development Phone Number: 515-294-5816 Email Address: dboeke

  13. deshong | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    deshong Ames Laboratory Profile Rhonda Deshong Program Asst II Human Resources Office 151 TASF Phone Number: 515-294-0931 Email Address: deshong@ameslab.gov

  14. dfreppon | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dfreppon Ames Laboratory Profile Daniel Freppon Grad Asst-RA Chemical & Biological Sciences 0712 Gilman Phone Number: 515-294-8586 Email Address: dfreppon

  15. djbell | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    djbell Ames Laboratory Profile Daniel Bell Grad Asst-RA Simulation, Modeling, & Decision Science 1620 Howe Phone Number: 515-294-3891 Email Address: djbell

  16. djchadde | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    djchadde Ames Laboratory Profile David Chadderdon Grad Asst-RA Division of Materials Science & Engineering 2140 BRL Phone Number: 515-294-4446 Email Address: djchadde

  17. dmeyer | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dmeyer Ames Laboratory Profile Dale Meyer Engr Tech II Facilities Services 158D Metals Development Phone Number: 515-294-3614 Email Address: dmeyer@ameslab.gov

  18. eckels | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    eckels Ames Laboratory Profile David Eckels Associate Chemical & Biological Sciences 105 Spedding Phone Number: 515-294-7943 Email Address: eckels@ameslab.gov

  19. eguidez | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    eguidez Ames Laboratory Profile Emilie Guidez Associate Chemical & Biological Sciences 201 Spedding Phone Number: 515-294-7568 Email Address: eguidez@ameslab.gov

  20. finzell | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    finzell Ames Laboratory Profile Peter Finzell Grad Asst-RA Simulation, Modeling, & Decision Science 1620 Howe Phone Number: 515-294-8060 Email Address: surgeftr

  1. flanders | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    flanders Ames Laboratory Profile Duane Flanders Sheet Metal Mech Facilities Services Maintenance Shop Phone Number: 515-294-1746 Email Address: flanders@ameslab.gov

  2. galvin | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    galvin Ames Laboratory Profile Glen Galvin Mgr Info Tech I Simulation, Modeling, & Decision Science 1620 Howe Phone Number: 515-294-6604 Email Address: galvin

  3. gbjorlnd | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gbjorlnd Ames Laboratory Profile Grace Bjorland Division of Materials Science & Engineering B36 Spedding Phone Number: 515-294-4446 Email Address: gbjorlnd

  4. gharper | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gharper Ames Laboratory Profile Gregory Harper Sys Control Tech Facilities Services Maintenance Shop Phone Number: 515-294-1746 Email Address: gharper

  5. gsbacon | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gsbacon Ames Laboratory Profile Graham Bacon Division of Materials Science & Engineering 129 Wilhelm Phone Number: 515-294-4446 Email Address: gsbacon

  6. guan | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    guan Ames Laboratory Profile Yong Guan Associate Chemical & Biological Sciences 3219 Coover Phone Number: 515-294-8378 Email Address: guan

  7. hanrahanm | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hanrahanm Ames Laboratory Profile Michael Hanrahan Chemical & Biological Sciences 331 Spedding Phone Number: 515-294-7568 Email Address: mph

  8. hauptman | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hauptman Ames Laboratory Profile John Hauptman Associate Facilities Services A411 Zaffarano Phone Number: 515-294-8572 Email Address: hauptman

  9. hcelliott | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hcelliott Ames Laboratory Profile Henrietta Elliott Custodian I Facilities Services 241C Metals Development Phone Number: 515-294-5446 Email Address: hcelliott

  10. herrman | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    herrman Ames Laboratory Profile Terrance Herrman Engr V Facilities Services 167 Metals Development Phone Number: 515-294-7896 Email Address: herrman

  11. hilstromj | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hilstromj Ames Laboratory Profile Jeremy Hilstrom Office Assistant-X Human Resources Office 118 TASF Phone Number: 515-294-2680 Email Address: hilst000

  12. himashir | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    himashir Ames Laboratory Profile Himashi Andaraarachchi Student Associate Chemical & Biological Sciences 209B Wilhelm Phone Number: 515-294-7568 Email Address: himashir

  13. jac | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    jac Ames Laboratory Profile Justin Conrad Student Associate Chemical & Biological Sciences 305 TASF Phone Number: 515-294-4604 Email Address: jac

  14. jbobbitt | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    jbobbitt Ames Laboratory Profile Jonathan Bobbitt Grad Asst-RA Chemical & Biological Sciences 0712 Gilman Phone Number: 515-294-4285 Email Address: jbobbitt

  15. jboschen | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    jboschen Ames Laboratory Profile Jeffery Boschen Grad Asst-RA Chemical & Biological Sciences 124 Spedding Phone Number: 515-294-7568 Email Address: jboschen

  16. jiahao | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    jiahao Ames Laboratory Profile Jiahao Chen Division of Materials Science & Engineering A300 Zaffarano Phone Number: 515-294-0689 Email Address: jiahao@iastate.edu

  17. jrblaum | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    jrblaum Ames Laboratory Profile Jacqueline Blaum Division of Materials Science & Engineering 37 Spedding Phone Number: 515-294-4446 Email Address: jrblaum

  18. kasuni | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    kasuni Ames Laboratory Profile Walikadage Boteju Grad Asst-RA Chemical & Biological Sciences Critical Materials Institute 2306 Hach Phone Number: 515-294-6342 Email Address: kasuni

  19. kbratlie | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    kbratlie Ames Laboratory Profile Kaitlin Bratlie Associate Division of Materials Science & Engineering 2220 Hoover Phone Number: 515-294-7304 Email Address: kbratlie

  20. klclark | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    klclark Ames Laboratory Profile Katie Clark Program Coord II Human Resources Office 151 TASF Phone Number: 515-294-8753 Email Address: klclark@ameslab.gov