Powered by Deep Web Technologies
Note: This page contains sample records for the topic "laboratory livermore ca" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

J.G. Tobin and S.-W. Yu Lawrence Livermore National Laboratory, Livermore, CA, USA  

National Nuclear Security Administration (NNSA)

Differentiation of 5f and 6d Components Differentiation of 5f and 6d Components in the Unoccupied Electronic Structure of UO 2 J.G. Tobin and S.-W. Yu Lawrence Livermore National Laboratory, Livermore, CA, USA Summary: One of the crucial questions of all actinide electronic structure determinations is the issue of 5f versus 6d character and the distribution of these components across the density of states. Here, two break-though experiments will be discussed, which have allowed the direct determination of the U5f and U6d contributions to the unoccupied density of states (UDOS) in Uranium Dioxide (UO 2 ). [1] First, a combined soft X-ray Absorption and Bremstrahlung Isochromat Spectroscopy (XAS and BIS, respectively) study of UO 2 will be discussed. [2] Second, a novel Resonant Inverse Photoelectron and X-ray Emission Spectroscopy (RIPES and

2

Lawrence Livermore National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Lawrence Livermore National Laboratory Lawrence Livermore National Laboratorys (LLNL) primary mission is research and development in support of national security. As a...

3

Lawrence Livermore National Laboratory Lawrence Livermore National...  

National Nuclear Security Administration (NNSA)

racks "Green" supercomputer reduces energy footprint by 75% "Green" supercomputer reduces energy footprint by 75% Lawrence Livermore National Laboratory Lawrence Livermore National...

4

Lawrence Livermore National Laboratory: Phonebook  

NLE Websites -- All DOE Office Websites (Extended Search)

Phonebook Phonebook Address and Phone Numbers Lawrence Livermore National Laboratory 7000 East Ave., Livermore, CA 94550-9234( For deliveries, enter off of Greenville Road) P.O. Box 808, Livermore, CA 94551-0808 (Mail) Main Operator (925) 422-1100 Fax (925) 422-1370, Fax verification (925) 422-1100 Employment Verification Hot Line (925) 422-9348 Public Affairs (925) 422-4599 Search for individuals by last name or full name. Use * for a wildcard. Phonebook: Warning: This Electronic Phonebook is provided solely for official use by the Lawrence Livermore National Laboratory community. Using information obtained from this Phonebook to contact individuals for purposes other than official Laboratory business is forbidden. If you have any questions, please contact Public Affairs at (925) 422-4599.

5

Print - Lawrence Livermore National Laboratory  

Industrial Partnerships Office P.O. Box 808, L-795 Livermore, CA 94551 Phone: (925) 422-6416 Fax: (925) 423-8988 Operated by Lawrence Livermore ...

6

Search - Lawrence Livermore National Laboratory  

Industrial Partnerships Office P.O. Box 808, L-795 Livermore, CA 94551 Phone: (925) 422-6416 Fax: (925) 423-8988 Operated by Lawrence Livermore ...

7

Lawrence Livermore National Laboratory - Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Review Reports 2013 Independent Oversight Review of the Fire Protection Program at Lawrence Livermore National Laboratory, September 2013 Independent Oversight Review of Preparedness for Severe Natural Phenomena Events at the Lawrence Livermore National Laboratory, July 2013 Activity Reports 2013 Lawrence Livermore National Laboratory Operational Drill at the B332 Plutonium Facility, February 2013 Activity Reports 2012 Lawrence Livermore National Laboratory Site Lead Planning Activities, October 2012 Review Reports 2011 Review of Integrated Safety Management System Effectiveness at the Livermore Site Office, October 2011 Review of Integrated Safety Management System Effectiveness at Lawrence Livermore National Laboratory, September 2011

8

Application - Lawrence Livermore National Laboratory  

Search & Browse Software: Licensing Instructions: Patents: Application. Industrial Partnerships Office P.O. Box 808, L-795 Livermore, CA 94551 ...

9

Print - Lawrence Livermore National Laboratory  

Industrial Partnerships Office P.O. Box 808, L-795 Livermore, CA 94551 Phone: (925) 422-6416 Fax: (925) 423-8988 Operated by Lawrence Livermore National Security, LLC ...

10

Technologies - Lawrence Livermore National Laboratory  

Industrial Partnerships Office P.O. Box 808, L-795 Livermore, CA 94551 Phone: (925) 422-6416 Fax: (925) 423-8988 Operated by Lawrence Livermore National Security, LLC ...

11

Search - Lawrence Livermore National Laboratory  

Industrial Partnerships Office P.O. Box 808, L-795 Livermore, CA 94551 Phone: (925) 422-6416 Fax: (925) 423-8988 Operated by Lawrence Livermore National Security, LLC ...

12

Lawrence Livermore National Laboratory (LLNL):  

NLE Websites -- All DOE Office Websites (Extended Search)

IPO Fact Sheet Strategic Diversity Program Lawrence Livermore National Laboratory (LLNL) works with other national laboratories to coordinate and integrate programmatic...

13

Technologies - Lawrence Livermore National Laboratory  

Information & Communication. Industrial Partnerships Office P.O. Box 808, L-795 Livermore, CA 94551 Phone: (925) 422-6416 Fax: (925) 423-8988

14

Environmental Assessment for The Proposed Construction and Operation of a Biosafety Level 3 Facility at Lawrence Livermore National Laboratory, Livermore, CA (DOE/EA-1442) (12/02)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Assessment for The Proposed Construction and Operation of a Biosafety Level 3 Facility at Lawrence Livermore National Laboratory, Livermore, California December 2002 Department of Energy National Nuclear Security Administration Oakland Operations Office EA for the Proposed Construction and Operation of a Biosafety Level 3 Facility at LLNL ii EXECUTIVE SUMMARY The Department of Energy (DOE), National Nuclear Security Administration (NNSA), has responsibility for national programs to reduce and counter threats from weapons of mass destruction including nuclear, chemical, and biological weapons (bioweapons). NNSA's bioscience work at Lawrence Livermore National Laboratory (LLNL) in support of these missions requires work with infectious agents, including those historically used for bioweapons.

15

Lawrence Livermore National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

March/April 2008 March/April 2008 4 Lawrence Livermore National Laboratory Extending the Search for Extending the Search for A new imager will allow astrophysicists to study the atmospheres of distant planets. T HE discovery of other solar systems beyond ours has been the stuff of science fiction for decades. Great excitement greeted the positive identification of the first planet outside our solar system in 1995. Since then, scientists have identified approximately 250 extrasolar planets (exoplanets), but they have had no way to study the majority of these planets or their

16

Independent Activity Report, Lawrence Livermore National Laboratory...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Livermore National Laboratory Operational Drill at the B332 Plutonium Facility HIAR LLNL-2013-02-27 The Livermore Site Office (LSO) and Lawrence Livermore National Security,...

17

Lab Spotlight: Lawrence Livermore National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Lawrence Livermore National Laboratory Designing Biocompatible Microelectronics Pioneering work with polymer-based microfabrication methods at Lawrence Livermore National...

18

Lawrence Livermore National Laboratory  

LLNL Home. Latest News Headlines. ... Operated by Lawrence Livermore National Security, LLC, for the Department of Energy's National Nuclear Security Administration

19

Lawrence Livermore National Laboratory  

LLNL Home. Latest News Headlines. LLNL, Intel, Cray produce big data machine. November 4, 2013. ... Operated by Lawrence Livermore National Security, LLC, ...

20

Lawrence Livermore National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Livermore researchers have pioneered the formulation and application of silica aerogels, an extremely lightweight glassy material with ideal mechanical characteristics for...

Note: This page contains sample records for the topic "laboratory livermore ca" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Technologies - Lawrence Livermore National Laboratory  

Harmonic Air Motor; Two Stage Engine Technology; Industrial Partnerships Office P.O. Box 808, L-795 Livermore, CA 94551 Phone: (925) 422-6416 Fax: (925) 423-8988

22

Lawrence Livermore National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

team are using Livermore's 6.2-meter-long, two-stage, light-gas gun to conduct their shock experiments on organic liquids. They are focusing initially on cometary impacts. For...

23

Independent Activity Report, Lawrence Livermore National Laboratory...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

February 2013 Independent Activity Report, Lawrence Livermore National Laboratory - February 2013 February 2013 Lawrence Livermore National Laboratory Operational Drill at the B332...

24

Independent Oversight Review, Lawrence Livermore National Laboratory -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lawrence Livermore National Lawrence Livermore National Laboratory - September 2011 Independent Oversight Review, Lawrence Livermore National Laboratory - September 2011 September 2011 Review of Integrated Safety Management System Effectiveness at Lawrence Livermore National Laboratory The purpose of this review was to assess the effectiveness of the integrated safety management system (ISMS) established and implemented by Lawrence Livermore National Laboratory (LLNL). Independent Oversight Review, Lawrence Livermore National Laboratory - September 2011 More Documents & Publications Independent Oversight Inspection of Environment, Safety, and Health Management at the Lawrence Livermore National Laboratory, Technical Appendices, Volume II, December 2004 Independent Oversight Inspection, Lawrence Livermore National Laboratory,

25

Lawrence Livermore National Laboratory | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory | July 2011 Aerial View Lawrence Livermore National Laboratory | July 2011 Aerial View Lawrence Livermore National Laboratory's (LLNL) primary mission is research and development in support of national security. As a nuclear weapons design laboratory, LLNL has responsibilities in nuclear stockpile stewardship. LLNL also applies its expertise to prevent the spread and use of weapons of mass destruction and strengthen homeland security. Other areas include advanced defense technologies, energy, environment, biosciences, and basic science. Enforcement July 22, 2013 Enforcement Letter, NEL-2013-03 Issued to Lawrence Livermore National Security, LLC related to Programmatic

26

Enforcement Documents - Lawrence Livermore National Laboratory | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Enforcement Documents - Lawrence Livermore National Laboratory July 22, 2013 Enforcement Letter, NEL-2013-03 Issued to Lawrence Livermore National Security, LLC related to Programmatic Deficiencies in the Software Quality Assurance Program at the Lawrence Livermore National Laboratory February 23, 2006 Preliminary Notice of Violation, University of California - EA-2006-01 Preliminary Notice of Violation issued to the University of California related to Radiological Uptakes, a Radioactive Material Spill, and Radiological Protection Program, Quality Assurance, and Safety Basis Deficiencies at the Lawrence Livermore National Laboratory June 2, 2005 Enforcement Letter, Lawrence Livermore National Laboratory - June 2, 2005

27

Lawrence Livermore National Laboratory, Former Production Workers...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory, Former Production Workers Screening Projects Lawrence Livermore National Laboratory, Former Production Workers Screening Projects Project Name: Worker Health Protection...

28

Independent Activity Report, Lawrence Livermore National Laboratory -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Activity Report, Lawrence Livermore National Laboratory Activity Report, Lawrence Livermore National Laboratory - October 2012 Independent Activity Report, Lawrence Livermore National Laboratory - October 2012 October 2012 Lawrence Livermore National Laboratory Site Lead Planning Activities [HIAR LLNL-2012-10-23] The purpose of this Office of Health, Safety and Security (HSS) Independent Oversight activity was to maintain site operational awareness of key nuclear safety performance areas, monitor ongoing site oversight and planning activities for Lawrence Livermore National Laboratory (LLNL) nuclear facilities, and identify and initiate coordination of future HSS oversight activities at the site, including planned HSS targeted reviews planned for Fiscal Year (FY) 2013. Independent Activity Report, Lawrence Livermore National Laboratory -

29

Independent Oversight Inspection, Lawrence Livermore National Laboratory- February 2009  

Energy.gov (U.S. Department of Energy (DOE))

Inspection of Emergency Management at the Livermore Site Office and Lawrence Livermore National Laboratory

30

Independent Oversight Inspection, Lawrence Livermore National Laboratory -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Inspection, Lawrence Livermore National Inspection, Lawrence Livermore National Laboratory - May 2007 Independent Oversight Inspection, Lawrence Livermore National Laboratory - May 2007 May 2007 Inspection of Environment, Safety, and Health Programs at the Lawrence Livermore National Laboratory The U.S. Department of Energy (DOE) Office of Independent Oversight, within the Office of Health, Safety and Security (HSS), conducted an inspection of environment, safety, and health (ES&H) programs at the DOE Lawrence Livermore National Laboratory (LLNL) during January and February 2007. The inspection was performed by Independent Oversight's Office of Environment, Safety and Health Evaluations. LSO's oversight has matured, and operational awareness and assessments have improved in gathering data and identifying deficiencies. LSO

31

Lawrence Livermore National Laboratory Livermore, California  

E-Print Network (OSTI)

the Secretaries of Energy and Defense, a personal assessment of the health of the nuclear weapons stockpile with the Directors of Los Alamos and Sandia National Laboratories, is to annually provide the U.S. President, through, and facility resources, including a workforce of approximately 7300 employees and an annual operating budget

Wechsler, Risa H.

32

Oversight Reports - Lawrence Livermore National Laboratory | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Oversight Reports - Lawrence Livermore National Laboratory October 2, 2013 Independent Oversight Review, Lawrence Livermore National Laboratory - September 2013 Review of the Fire Protection Program at Lawrence Livermore National Laboratory July 19, 2013 Independent Oversight Review, Lawrence Livermore National Laboratory - July 2013 Review of Preparedness for Severe Natural Phenomena Events at the Lawrence Livermore National Laboratory April 12, 2013 Independent Activity Report, Lawrence Livermore National Laboratory - February 2013 Lawrence Livermore National Laboratory Operational Drill at the B332 Plutonium Facility [HIAR LLNL-2013-02-27] December 18, 2012 Independent Activity Report, Lawrence Livermore National Laboratory -

33

Lawrence Livermore National Laboratory | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Home > About Us > Our Operations > Acquisition and Project Management > M & O Support Department > Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory DE-AC52-07NA27344 Operated by Lawrence Livermore National Security, LLC BASIC Contract (Official) Modifications (Official) Funding Mods Available Upon Request Conformed Contract (Unofficial) LLNL Sec A (SF33) (pdf, 91KB) See Modifications Section under Conformed Contract Link LLNS Conformed Contract (weblink) LLNL Sec B-H (pdf, 306KB) LLNL Sec I pdf 687KB LLNL Sec J Appx A (pdf, 67KB) LLNL Sec J Appx B (pdf, 191KB) LLNL Sec J Appx C (pdf, 11KB) LLNL Sec J Appx D (pdf, 18KB)

34

Independent Activity Report, Lawrence Livermore National Laboratory -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

October 2012 October 2012 Independent Activity Report, Lawrence Livermore National Laboratory - October 2012 October 2012 Lawrence Livermore National Laboratory Site Lead Planning Activities [HIAR LLNL-2012-10-23] The purpose of this Office of Health, Safety and Security (HSS) Independent Oversight activity was to maintain site operational awareness of key nuclear safety performance areas, monitor ongoing site oversight and planning activities for Lawrence Livermore National Laboratory (LLNL) nuclear facilities, and identify and initiate coordination of future HSS oversight activities at the site, including planned HSS targeted reviews planned for Fiscal Year (FY) 2013. Independent Activity Report, Lawrence Livermore National Laboratory - October 2012 More Documents & Publications

35

Lawrence Livermore National Laboratory opens High Performance...  

NLE Websites -- All DOE Office Websites (Extended Search)

06302011 | NR-11-06-08 Lawrence Livermore National Laboratory opens High Performance Computing Innovation Center for collaboration with industry Donald B Johnston, LLNL,...

36

Independent Activity Report, Lawrence Livermore National Laboratory...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

October 2012 Lawrence Livermore National Laboratory Site Lead Planning Activities HIAR LLNL-2012-10-23 The purpose of this Office of Health, Safety and Security (HSS) Independent...

37

Lawrence Livermore National Laboratory (LLNL): Business Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

IPO Fact Sheet Strategic Diversity Program Lawrence Livermore National Laboratory (LLNL) spends approximately 650,000,000 annually through procurements to a diverse group of...

38

Independent Oversight Review, Lawrence Livermore National Laboratory...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

a review of nuclear safety programs at the DOE Lawrence Livermore National Laboratory (LLNL) from October through November 2009. The review was performed by the HSS Office of...

39

Technologies - Lawrence Livermore National Laboratory  

Nuclear & Radiological. ... Operated by Lawrence Livermore National Security, LLC, for the Department of Energy's National Nuclear Security Administration

40

Independent Oversight Inspection, Lawrence Livermore National Laboratory -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lawrence Livermore National Lawrence Livermore National Laboratory - February 2009 Independent Oversight Inspection, Lawrence Livermore National Laboratory - February 2009 February 2009 Inspection of Emergency Management at the Livermore Site Office and Lawrence Livermore National Laboratory The U.S. Department of Energy (DOE) Office of Independent Oversight inspected the emergency management program at DOE's Lawrence Livermore National Laboratory (LLNL) in October/November 2008. The inspection was performed by Independent Oversight's Office of Emergency Management Oversight. This 2008 inspection found that overall, the LLNL emergency management program is, with a few exceptions, well defined and better implemented in most areas than observed during previous inspections, but some implementation weaknesses remain that diminish the ability of the program

Note: This page contains sample records for the topic "laboratory livermore ca" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Independent Oversight Inspection, Lawrence Livermore National Laboratory -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lawrence Livermore National Lawrence Livermore National Laboratory - June 2005 Independent Oversight Inspection, Lawrence Livermore National Laboratory - June 2005 June 2005 Inspection of Emergency Management at the Livermore Site Office and Lawrence Livermore National Laboratory The Secretary of Energy's Office of Independent Oversight and Performance Assurance (OA), within the Office of Security and Safety Performance Assurance, conducted an inspection of the emergency management program at the U.S. Department of Energy (DOE) Lawrence Livermore National Laboratory (LLNL) site in June 2005. The inspection was performed by the OA Office of Emergency Management Oversight. This 2005 OA inspection determined that LLNL has completed program development work or has established an appropriate framework for nearly all

42

Lawrence Livermore National Laboratory | Open Energy Information  

Open Energy Info (EERE)

Livermore National Laboratory Livermore National Laboratory (Redirected from Lawrence Livermore National Lab) Jump to: navigation, search Logo: Lawrence Livermore National Laboratory Name Lawrence Livermore National Laboratory Address 7000 East Ave. Place Livermore, California Zip 94550-9234 Number of employees 5001-10,000 Year founded 1952 Notes LLNL-WEB-422768 Coordinates 37.6798282°, -121.7107786° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.6798282,"lon":-121.7107786,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

43

Technologies - Lawrence Livermore National Laboratory  

LLNL Home. Latest News Headlines. ... Operated by Lawrence Livermore National Security, LLC, for the Department of Energy's National Nuclear Security Administration

44

Search - Lawrence Livermore National Laboratory  

Giving animals in need a HOME. November 14, 2013. LLNL, Intel, Cray produce big data machine. ... Operated by Lawrence Livermore National Security, LLC, ...

45

Print - Lawrence Livermore National Laboratory  

... or in home healthcare settings. ... Operated by Lawrence Livermore National Security, LLC, for the Department of Energy's National Nuclear Security Administration

46

Lawrence Livermore National Laboratory (LLNL):Livermore Lab Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Livermore Lab Report News Center Around the Lab Contacts For Reporters Livermore Lab Report News Archive News Releases Social Media & Multi Media Livermore Lab Report A weekly...

47

Independent Oversight Inspection, Lawrence Livermore National Laboratory,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Inspection, Lawrence Livermore National Inspection, Lawrence Livermore National Laboratory, Volume I - December 2004 Independent Oversight Inspection, Lawrence Livermore National Laboratory, Volume I - December 2004 December 2004 Inspection of Environment, Safety, and Health Management at the Lawrence Livermore National Laboratory The U.S. Department of Energy (DOE) Office of Independent Oversight and Performance Assurance (OA), within the Office of Security and Safety Performance Assurance (SSA), conducted an inspection of environment, safety, and health (ES&H) at the DOE Lawrence Livermore National Laboratory (LLNL) during October and November 2004. The inspection was performed by the OA Office of Environment, Safety and Health Evaluations. LSO and LLNL have established ISM systems that are conceptually sound but

48

Independent Oversight Review, Lawrence Livermore National Laboratory -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lawrence Livermore National Lawrence Livermore National Laboratory - September 2013 Independent Oversight Review, Lawrence Livermore National Laboratory - September 2013 September 2013 Review of the Fire Protection Program at Lawrence Livermore National Laboratory This report documents the results of an independent oversight review of the fire protection program at the Lawrence Livermore National Laboratory. The review was performed June 10-21, 2013, by the U.S. Department of Energy's (DOE) Office of Safety and Emergency Management Evaluations, which is within the DOE Office of Health, Safety and Security. The review was one part of a targeted assessment of fire protection at nuclear facilities across the DOE complex, including National Nuclear Security Administration sites. The purpose of the Independent Oversight targeted assessment was to

49

Independent Oversight Review, Lawrence Livermore National Laboratory -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lawrence Livermore National Lawrence Livermore National Laboratory - September 2013 Independent Oversight Review, Lawrence Livermore National Laboratory - September 2013 September 2013 Review of the Fire Protection Program at Lawrence Livermore National Laboratory This report documents the results of an independent oversight review of the fire protection program at the Lawrence Livermore National Laboratory. The review was performed June 10-21, 2013, by the U.S. Department of Energy's (DOE) Office of Safety and Emergency Management Evaluations, which is within the DOE Office of Health, Safety and Security. The review was one part of a targeted assessment of fire protection at nuclear facilities across the DOE complex, including National Nuclear Security Administration sites. The purpose of the Independent Oversight targeted assessment was to

50

Independent Oversight Review, Lawrence Livermore National Laboratory -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Review, Lawrence Livermore National Review, Lawrence Livermore National Laboratory - December 2009 Independent Oversight Review, Lawrence Livermore National Laboratory - December 2009 December 2009 Review of Nuclear Safety at the Lawrence Livermore National Laboratory The U.S. Department of Energy (DOE), Office of Health, Safety and Security (HSS), performed a review of nuclear safety programs at the DOE Lawrence Livermore National Laboratory (LLNL) from October through November 2009. The review was performed by the HSS Office of Independent Oversight's Office of Environment, Safety and Health (ES&H) Evaluations. LLNL has made significant progress in establishing and implementing comprehensive programs to effectively manage nuclear safety. LLNL has devoted considerable management attention and resources to enhance nuclear

51

Independent Oversight Review, Lawrence Livermore National Laboratory- July 2013  

Energy.gov (U.S. Department of Energy (DOE))

Review of Preparedness for Severe Natural Phenomena Events at the Lawrence Livermore National Laboratory

52

Independent Oversight Inspection, Lawrence Livermore National Laboratory- May 2007  

Energy.gov (U.S. Department of Energy (DOE))

Inspection of Environment, Safety, and Health Programs at the Lawrence Livermore National Laboratory

53

Independent Activity Report, Lawrence Livermore National Laboratory -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

February 2013 February 2013 Independent Activity Report, Lawrence Livermore National Laboratory - February 2013 February 2013 Lawrence Livermore National Laboratory Operational Drill at the B332 Plutonium Facility [HIAR LLNL-2013-02-27] The Livermore Site Office (LSO) and Lawrence Livermore National Security, LLC (LLNS) requested personnel from the U.S. Department of Energy (DOE) Office of Safety and Emergency Management Evaluations (HS-45) to observe an operational drill at the Plutonium Facility in Building 332 (B332). LSO and LLNS desired HS-45's participation to help determine the maturity of the operational drill program by providing independent expertise in the matter at a time when HS-45 personnel were already on site conducting an emergency management review. LLNS administered this operational drill using the DOE guidance for

54

Preliminary Notice of Violation, Lawrence Livermore National Laboratory -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lawrence Livermore National Lawrence Livermore National Laboratory - EA-2000-12 Preliminary Notice of Violation, Lawrence Livermore National Laboratory - EA-2000-12 September 27, 2000 Preliminary Notice of Violation issued to the University of California related to Authorization Basis Issues at the Lawrence Livermore National Laboratory, (EA-2000-12) This letter refers to the Department of Energy's (DOE) investigation of the facts and circumstances concerning Lawrence Livermore National Laboratory (LLNL) maintenance and adherence to documents, which form the Authorization Basis (AB) for the Laboratory's nuclear facilities. Preliminary Notice of Violation, Lawrence Livermore National Laboratory - EA-2000-12 More Documents & Publications Enforcement Letter, Lawrence Livermore National Laboratory - November 5,

55

Lawrence Livermore National Laboratory | Open Energy Information  

Open Energy Info (EERE)

National Laboratory National Laboratory Jump to: navigation, search Logo: Lawrence Livermore National Laboratory Name Lawrence Livermore National Laboratory Address 7000 East Ave. Place Livermore, California Zip 94550-9234 Number of employees 5001-10,000 Year founded 1952 Notes LLNL-WEB-422768 Coordinates 37.6798282°, -121.7107786° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.6798282,"lon":-121.7107786,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

56

Researcher, Lawrence Livermore National Laboratory | National Nuclear  

National Nuclear Security Administration (NNSA)

Bruce Macintosh Bruce Macintosh Researcher, Lawrence Livermore National Laboratory Bruce Macintosh Bruce Macintosh Role: Researcher, Lawrence Livermore National Laboratory Award: AAAS Newcomb Cleveland Prize Profile: A Lawrence Livermore National Laboratory researcher's paper published in November 2008 is co-winner of this year's American Association for the Advancement of Science (AAAS) Newcomb Cleveland Prize. The Paper is one of two outstanding papers published in Science from June 1, 2008 through May 31, 2009. Bruce Macintosh of the Physics and Life Science Directorate was one of the lead authors of the paper titled, "Direct Imaging of Multiple Planets orbiting the Star HR 8799," which appeared in the Nov. 28, 2008 edition of Science. Christian Marois, a former LLNL postdoc now at NRC Herzberg

57

Lawrence Livermore National Laboratory Kimberly S. Budil  

E-Print Network (OSTI)

. Steven E. Koonin Under Secretary for Nuclear Security/NNSA Administrator Thomas P. D'Agostino Asst Livermore National Laboratory Historically, most HEDS research has been sponsored by NNSA NNSA's HEDP) Motivated and encouraged by National Academy/workshop reports: Federal response SC/NNSA: Joint Program

Shyy, Wei

58

Lawrence Livermore National Laboratory December 13, 2004  

E-Print Network (OSTI)

John Lindl Lawrence Livermore National Laboratory December 13, 2004 The NIF Ignition Program Presentation to Fusion Power Associates Meeting #12;NIF-0202-0XXXXppt 15/GHM/tr Outline · Ignition Introduction 104 105 500 50 5 0.5 Capsule energy (KJ) NIF Relaxed pressure and stability requirements

59

Sandia National Laboratories: Locations: Livermore, California  

NLE Websites -- All DOE Office Websites (Extended Search)

Livermore, California Livermore, California Livermore, California administration building For more than 50 years, the California campus of Sandia National Laboratories has delivered essential science and technology to resolve the nation's most challenging security issues. Many of these challenges - like energy resources, transportation, immigration, ports, and more - surfaced early in the state of California, providing Sandia/California with a special opportunity to participate in the first wave of solutions to important national problems. For example, Sandia's scientists are breaking new ground in energy research and are helping to accelerate the development of next-generation biofuels so that we can reduce our nation's dependence on foreign oil and mitigate the effects of global climate change.

60

Preliminary Notice of Violation, Lawrence Livermore National Laboratory -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lawrence Livermore National Lawrence Livermore National Laboratory - EA-2003-04 Preliminary Notice of Violation, Lawrence Livermore National Laboratory - EA-2003-04 September 3, 2003 Preliminary Notice of Violation issued to the University of California related to an Extremity Radiological Overexposure at the Lawrence Livermore National Laboratory, (EA-2003-04) This letter refers to the recent investigation by the Department of Energy's Office of Price-Anderson Enforcement (OE) of the June 2002 extremity radiological overexposure event. Preliminary Notice of Violation, Lawrence Livermore National Laboratory - EA-2003-04 More Documents & Publications Preliminary Notice of Violation, University of California - EA-2006-01 Preliminary Notice of Violation, Lawrence Livermore National Laboratory -

Note: This page contains sample records for the topic "laboratory livermore ca" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Environmental Survey preliminary report, Lawrence Livermore National Laboratory, Livermore, California  

SciTech Connect

This report presents the preliminary findings from the first phase of the Environmental Survey of the Department of Energy (DOE) Lawrence Livermore National Laboratory (LLNL), conducted December 1 through 19, 1986. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with LLNL. The Survey covers all environmental media all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations performed at LLNL, and interviews with site personnel. A Sampling and Analysis Plan was developed to assist in further assessing certain of the environmental problems identified during performance of on-site activities. The Sampling and Analysis Plan will be executed by a DOE National Laboratory. When completed, the results will be incorporated into the LLNL Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the LLNL Survey. 70 refs., 58 figs., 52 tabs.,

Not Available

1987-12-01T23:59:59.000Z

62

Independent Oversight Review, Lawrence Livermore National Laboratory - July  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Independent Oversight Review, Lawrence Livermore National Independent Oversight Review, Lawrence Livermore National Laboratory - July 2013 Independent Oversight Review, Lawrence Livermore National Laboratory - July 2013 July 2013 Review of Preparedness for Severe Natural Phenomena Events at the Lawrence Livermore National Laboratory The Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security (HSS), conducted an independent review of the National Nuclear Security Administration (NNSA) Livermore Field Office (LFO) and Lawrence Livermore National Laboratory (LLNL) Site 200 preparedness for severe natural phenomena events (NPEs). The HSS Office of Safety and Emergency Management Evaluations performed this review to evaluate the processes for identifying emergency response capabilities and

63

Enforcement Letter, Lawrence Livermore National Laboratory- June 2, 2005  

Energy.gov (U.S. Department of Energy (DOE))

Enforcement Letter Issued to Lawrence Livermore National Laboratory for Quality Assurance Deficiencies related to Weapon Activities, June 2, 2005

64

Independent Activity Report, Lawrence Livermore National Laboratory- March 2011  

Energy.gov (U.S. Department of Energy (DOE))

Lawrence Livermore National Laboratory Chronic Beryllium Disease Prevention Program Effectiveness Review [HIAR-LLNL-2011-03-25

65

Geothermal programs at Lawrence Livermore National Laboratory  

DOE Green Energy (OSTI)

Lawrence Livermore National Laboratory has a number of geothermal programs supported through two offices in the Department of Energy: the Office of Renewable Technologies, Geothermal Technologies Division, and the Office of Basic Energy Sciences, Division of Engineering, Mathematics and Geosciences. Within these programs, we are carrying out research in injection monitoring, optical instrumentation for geothermal wells, seismic imaging methods, geophysical and drilling investigations of young volcanic systems in California, and fundamental studies of the rock and mineral properties.

Kasameyer, P.W.; Younker, L.W.

1987-07-10T23:59:59.000Z

66

Lawrence Livermore National Laboratory 2007 Annual Report  

SciTech Connect

Lawrence Livermore National Laboratory's many outstanding accomplishments in 2007 are a tribute to a dedicated staff, which is shaping the Laboratory's future as we go through a period of transition and transformation. The achievements highlighted in this annual report illustrate our focus on the important problems that affect our nation's security and global stability, our application of breakthrough science and technology to tackle those problems, and our commitment to safe, secure, and efficient operations. In May 2007, the Department of Energy (DOE) awarded Lawrence Livermore National Security, LLC (LLNS), a new public-private partnership, the contract to manage and operate the Laboratory starting in October. Since its inception in 1952, the Laboratory had been managed by the University of California (UC) for the DOE's National Nuclear Security Administration (NNSA) and predecessor organizations. UC is one of the parent organizations that make up LLNS, and UC's presence in the new management entity will help us carry forward our strong tradition of multidisciplinary science and technology. 'Team science' applied to big problems was pioneered by the Laboratory's co-founder and namesake, Ernest O. Lawrence, and has been our hallmark ever since. Transition began fully a year before DOE's announcement. More than 1,600 activities had to be carried out to transition the Laboratory from management by a not-for-profit to a private entity. People, property, and procedures as well as contracts, formal agreements, and liabilities had to be transferred to LLNS. The pre-transition and transition teams did a superb job, and I thank them for their hard work. Transformation is an ongoing process at Livermore. We continually reinvent ourselves as we seek breakthroughs that impact emerging national needs. An example is our development in the late 1990s of a portable instrument that could rapidly detect DNA signatures, research that started with a view toward the potential threat of terrorist use of biological weapons. As featured in our annual report, activities in this area have grown to many important projects contributing to homeland security and disease prevention and control. At times transformation happens in large steps. Such was the case when nuclear testing stopped in the early 1990s. As one of the nation's nuclear weapon design laboratories, Livermore embarked on the Stockpile Stewardship Program. The objectives are to ensure the safety, security, and reliability of the nation's nuclear weapons stockpile and to develop a science-based, thorough understanding of the performance of nuclear weapons. The ultimate goal is to sustain confidence in an aging stockpile without nuclear testing. Now is another time of major change for the Laboratory as the nation is resizing its nuclear deterrent and NNSA begins taking steps to transform the nuclear weapons complex to meet 21st-century national security needs. As you will notice in the opening commentary to each section of this report, the Laboratory's senior management team is a mixture of new and familiar faces. LLNS drew the best talent from its parent organizations--Bechtel National, UC, Babcock & Wilcox, the Washington Group Division of URS, and Battelle--to lead the Laboratory. We are honored to take on the responsibility and see a future with great opportunities for Livermore to apply its exceptional science and technology to important national problems. We will work with NNSA to build on the successful Stockpile Stewardship Program and transform the nation's nuclear weapons complex to become smaller, safer, more secure, and more cost effective. Our annual report highlights progress in many relevant areas. Laboratory scientists are using astonishing computational capabilities--including BlueGene/L, the world's fastest supercomputer with a revolutionary architecture and over 200,000 processors--to gain key insights about performance of aging nuclear weapons. What we learn will help us sustain the stockpile without nuclear testing. Preparations are underway to start experiments at

Chrzanowski, P; Walter, K

2008-04-25T23:59:59.000Z

67

Preliminary Notice of Violation, Lawrence Livermore National Laboratory -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0-12 0-12 Preliminary Notice of Violation, Lawrence Livermore National Laboratory - EA-2000-12 September 27, 2000 Preliminary Notice of Violation issued to the University of California related to Authorization Basis Issues at the Lawrence Livermore National Laboratory, (EA-2000-12) This letter refers to the Department of Energy's (DOE) investigation of the facts and circumstances concerning Lawrence Livermore National Laboratory (LLNL) maintenance and adherence to documents, which form the Authorization Basis (AB) for the Laboratory's nuclear facilities. Preliminary Notice of Violation, Lawrence Livermore National Laboratory - EA-2000-12 More Documents & Publications Enforcement Letter, Lawrence Livermore National Laboratory - November 5, 1999 Enforcement Letter, Lawrence Livermore National Laboratory - August 22,

68

Lawrence Livermore National Laboratory's Use of Time and Materials Subcontracts  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lawrence Livermore National Lawrence Livermore National Laboratory's Use of Time and Materials Subcontracts OAS-M-13-06 August 2013 Department of Energy Washington, DC 20585 August 8, 2013 MEMORANDUM FOR THE MANAGER, LIVERMORE FIELD OFFICE FROM: George W. Collard Assistant Inspector General for Audits Office of Inspector General SUBJECT: INFORMATION: Audit Report on "Lawrence Livermore National Laboratory's Use of Time and Materials Subcontracts" BACKGROUND The mission of Lawrence Livermore National Laboratory (Livermore) is to strengthen the United States' security through development and application of science and technology to enhance the Nation's defense, reduce the global threat from terrorism and weapons of mass destruction, and respond to scientific issues of national importance. Livermore is operated by Lawrence

69

Site Visit Report, Lawrence Livermore National Laboratory - May 2010 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Site Visit Report, Lawrence Livermore National Laboratory - May Site Visit Report, Lawrence Livermore National Laboratory - May 2010 Site Visit Report, Lawrence Livermore National Laboratory - May 2010 May 2010 Review of Lawrence Livermore National Laboratory Fire Protection Design Review Process This review of the Lawrence Livermore National Laboratory (LLNL) Fire Protection Design Review Process, conducted on March 24 through April 2, 2010, was sponsored by the U.S. Department of Energy (DOE) Livermore Site Office (LSO) and conducted jointly with LSO staff. Overall, the design review process was observed to be effective and the LLNL programs for performing these reviews were being implemented. Many aspects of the process are effective, and the personnel who implement it are knowledgeable and experienced. This review identified only one

70

Independent Activity Report, Lawrence Livermore National Laboratory - March  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Activity Report, Lawrence Livermore National Laboratory Activity Report, Lawrence Livermore National Laboratory - March 2011 Independent Activity Report, Lawrence Livermore National Laboratory - March 2011 March 2011 Lawrence Livermore National Laboratory Chronic Beryllium Disease Prevention Program Effectiveness Review [HIAR-LLNL-2011-03-25] The Lawrence Livermore National Laboratory (LLNL) and the Livermore Site Office (LSO) chartered a team to conduct an effectiveness review of the issues identified with the LLNL Chronic Beryllium Disease Prevention Program (CBDPP). The team included members and observers from LLNL, LSO, the National Nuclear Security Administration (NNSA), and the Office of Health, Safety and Security (HSS). The team's final report documents the results of the effectiveness review and the actions taken by LLNL to resolve and prevent recurrence of 44

71

Site Visit Report, Lawrence Livermore National Laboratory - February 2011 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Site Visit Report, Lawrence Livermore National Laboratory - Site Visit Report, Lawrence Livermore National Laboratory - February 2011 Site Visit Report, Lawrence Livermore National Laboratory - February 2011 February 2011 Lawrence Livermore National Laboratory Safety Basis Assessment This site visit report documents the collective results of the review of Lawrence Livermore National Laboratory (LLNL) safety basis processes and discusses its scope, objective, results and conclusions. Appendix A provides lists of the documents, interviews, and observations and Appendix B includes the plan for the review. This combined assessment was sponsored by the National Nuclear Safety Administration (NNSA) Livermore Site Office (LSO) and conducted jointly by staff from the Office of Health, Safety and Security (HSS) and LSO. The review was conducted in late 2010 and included

72

Site Visit Report, Lawrence Livermore National Laboratory - March 2010 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Site Visit Report, Lawrence Livermore National Laboratory - March Site Visit Report, Lawrence Livermore National Laboratory - March 2010 Site Visit Report, Lawrence Livermore National Laboratory - March 2010 March 2010 Review of the Lawrence Livermore National Laboratory Identified Defective Department of Transportation Hazardous Material Packages This review of the Lawrence Livermore National Laboratory (LLNL) identification, immediate actions, communications, documentation, evaluation, reporting and follow-up to the discovery of defective Department of Transportation (DOT) UN1A2 55- and 30-gallon open head single bolt closure steel drums intended for storage and transportation of hazardous waste and materials, conducted on January 26-29, 2010, was sponsored by the DOE Livermore Site Office (LSO) to support interface with

73

Enforcement Letter, Lawrence Livermore National Laboratory - June 2, 2005 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June June 2, 2005 Enforcement Letter, Lawrence Livermore National Laboratory - June 2, 2005 June 2, 2005 Enforcement Letter Issued to Lawrence Livermore National Laboratory for Quality Assurance Deficiencies related to Weapon Activities, June 2, 2005 This letter is to inform you of the Department of Energy's (DOE) concern regarding several quality assurance-related deficiencies involving actions by Lawrence Livermore National Laboratory (LLNL) personnel. These deficiencies were associated with a cracked explosive event that occurred at the Pantex site in January 2004. The timing of this letter is intended to coincide with a DOE enforcement action stemming from this event. Enforcement Letter, Lawrence Livermore National Laboratory - June 2, 2005 More Documents & Publications

74

Enforcement Letter, Lawrence Livermore National Laboratory - June 2, 2005 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June June 2, 2005 Enforcement Letter, Lawrence Livermore National Laboratory - June 2, 2005 June 2, 2005 Enforcement Letter Issued to Lawrence Livermore National Laboratory for Quality Assurance Deficiencies related to Weapon Activities, June 2, 2005 This letter is to inform you of the Department of Energy's (DOE) concern regarding several quality assurance-related deficiencies involving actions by Lawrence Livermore National Laboratory (LLNL) personnel. These deficiencies were associated with a cracked explosive event that occurred at the Pantex site in January 2004. The timing of this letter is intended to coincide with a DOE enforcement action stemming from this event. Enforcement Letter, Lawrence Livermore National Laboratory - June 2, 2005 More Documents & Publications

75

Review of the Lawrence Livermore National Laboratory Health Services...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Health Administration SQUIRM Super Quality Improvement and Risk Management 1 OFFICE OF OVERSIGHT REVIEW OF THE LAWRENCE LIVERMORE NATIONAL LABORATORIES HEALTH SERVICES...

76

Lawrence Livermore National Laboratory Operational Drill at the...  

NLE Websites -- All DOE Office Websites (Extended Search)

HSS Independent Activity Report - Rev. 0 Report Number: HIAR LLNL-2013-02-27 Site: Lawrence Livermore National Laboratory (LLNL) Subject: Office of Enforcement and Oversight's...

77

Lawrence Livermore National Laboratory Site Lead Planning Activities...  

NLE Websites -- All DOE Office Websites (Extended Search)

Report Number: HIAR LLNL-2012-10-23 Site: Lawrence Livermore National Laboratory Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management...

78

Site Visit Report, Lawrence Livermore National Laboratory - February...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the collective results of the review of Lawrence Livermore National Laboratory (LLNL) safety basis processes and discusses its scope, objective, results and conclusions....

79

Lawrence Livermore National Laboratory (LLNL): News Releases...  

NLE Websites -- All DOE Office Websites (Extended Search)

Trek: Into Darkness" (5162013) Renewable energy demonstration project (5142013) LLNL announces voluntary separation program (582013) RFI released for Livermore Valley...

80

Independent Oversight Review, Lawrence Livermore National Laboratory - July  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lawrence Livermore National Lawrence Livermore National Laboratory - July 2013 Independent Oversight Review, Lawrence Livermore National Laboratory - July 2013 July 2013 Review of Preparedness for Severe Natural Phenomena Events at the Lawrence Livermore National Laboratory The Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security (HSS), conducted an independent review of the National Nuclear Security Administration (NNSA) Livermore Field Office (LFO) and Lawrence Livermore National Laboratory (LLNL) Site 200 preparedness for severe natural phenomena events (NPEs). The HSS Office of Safety and Emergency Management Evaluations performed this review to evaluate the processes for identifying emergency response capabilities and maintaining them in a state of readiness in case of a severe NPE. This

Note: This page contains sample records for the topic "laboratory livermore ca" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Lawrence Livermore National Laboratory: News Center Distribution  

NLE Websites -- All DOE Office Websites (Extended Search)

News > News > News Center > Receive News Releases Receive News Releases Journalists: To receive information about activities at Lawrence Livermore National Laboratory, please complete the form below. The form may also be used to submit changes in your contact information or to remove yourself from the list. If you have any questions, please contact Media Relations at (925) 422-4599 or send an e-mail message to Kirsten Sprott. Type of Request: New Addition to News Media List Change Information Delete Information Your Name Title E-Mail Address Preferred E-Mail Address Direct Business Phone Number (with area code) Business Fax Number (with area code) News Organization Street Address City State Country Zip Code f815eee8931dfda40651bfb5302ac9a7 1389471929 Type of News Services You Use:

82

Lawrence Livermore National Laboratory: Social Media  

NLE Websites -- All DOE Office Websites (Extended Search)

Social Media Social Media By staying on the cutting edge of Web communication, the News Center at LLNL reaches out to the media and the public through a variety of social media and multimedia Websites: Flickr An image- and video-hosting Website. Visit now and view the LLNL photostream in a variety of formats. Twitter A microblogging service. Sign up today and get short, tiimely messages about the Livermore Lab. Facebook A social-networking Website with more than 500 million active users. Enlist now to become a "friend" of LLNL. RSS A Web-feed service that sends content to subscribers automatically. Enroll at once to get the latest LLNL headlines. Utube A video-sharing Website. Navigate here to immediately watch the latest in cutting-edge science and technology at the Laboratory.

83

Lawrence Livermore National Laboratory Environmental Report 2010  

SciTech Connect

The purposes of the Lawrence Livermore National Laboratory Environmental Report 2010 are to record Lawrence Livermore National Laboratory's (LLNL's) compliance with environmental standards and requirements, describe LLNL's environmental protection and remediation programs, and present the results of environmental monitoring at the two LLNL sites - the Livermore site and Site 300. The report is prepared for the U.S. Department of Energy (DOE) by LLNL's Environmental Protection Department. Submittal of the report satisfies requirements under DOE Order 231.1A, Environmental Safety and Health Reporting, and DOE Order 5400.5, Radiation Protection of the Public and Environment. The report is distributed electronically and is available at https://saer.llnl.gov/, the website for the LLNL annual environmental report. Previous LLNL annual environmental reports beginning in 1994 are also on the website. Some references in the electronic report text are underlined, which indicates that they are clickable links. Clicking on one of these links will open the related document, data workbook, or website that it refers to. The report begins with an executive summary, which provides the purpose of the report and an overview of LLNL's compliance and monitoring results. The first three chapters provide background information: Chapter 1 is an overview of the location, meteorology, and hydrogeology of the two LLNL sites; Chapter 2 is a summary of LLNL's compliance with environmental regulations; and Chapter 3 is a description of LLNL's environmental programs with an emphasis on the Environmental Management System including pollution prevention. The majority of the report covers LLNL's environmental monitoring programs and monitoring data for 2010: effluent and ambient air (Chapter 4); waters, including wastewater, storm water runoff, surface water, rain, and groundwater (Chapter 5); and terrestrial, including soil, sediment, vegetation, foodstuff, ambient radiation, and special status wildlife and plants (Chapter 6). Complete monitoring data, which are summarized in the body of the report, are provided in Appendix A. The remaining three chapters discuss the radiological impact on the public from LLNL operations (Chapter 7), LLNL's groundwater remediation program (Chapter 8), and quality assurance for the environmental monitoring programs (Chapter 9). The report uses System International units, consistent with the federal Metric Conversion Act of 1975 and Executive Order 12770, Metric Usage in Federal Government Programs (1991). For ease of comparison to environmental reports issued prior to 1991, dose values and many radiological measurements are given in both metric and U.S. customary units. A conversion table is provided in the glossary.

Jones, H E; Bertoldo, N A; Campbell, C G; Cerruti, S J; Coty, J D; Dibley, V R; Doman, J L; Grayson, A R; MacQueen, D H; Wegrecki, A M; Armstrong, D H; Brigdon, S L; Heidecker, K R; Hollister, R K; Khan, H N; Lee, G S; Nelson, J C; Paterson, L E; Salvo, V J; Schwartz, W W; Terusaki, S H; Wilson, K R; Woods, J M; Yimbo, P O; Gallegos, G M; Terrill, A A; Revelli, M A; Rosene, C A; Blake, R G; Woollett, J S; Kumamoto, G

2011-09-14T23:59:59.000Z

84

Harmonic Air Motor - Lawrence Livermore National Laboratory  

Current Weather. Protocol Office. Where to stay. Tri-Valley Visitors Bureau. City of Livermore. Community. Our Community. Discovery Center. ... such ...

85

Sandia National Laboratories: Locations: Livermore, California...  

NLE Websites -- All DOE Office Websites (Extended Search)

in the cities, on the beaches, and in the mountains. Top 15 hometowns of SandiaCalifornia employees Livermore (34%) Tracy (8%) Pleasanton (5%) Dublin (4%) Oakland (3%)...

86

Preliminary Notice of Violation, Lawrence Livermore National Laboratory -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 1 Preliminary Notice of Violation, Lawrence Livermore National Laboratory - EA-98-01 March 9, 1998 Preliminary Notice of Violation issued to University of California related to the Unplanned Personnel Contaminations and Radioactive Material Intakes at the Hazardous Waste Management Facilities at the Lawrence Livermore National Laboratory, (EA-98-01) This letter refers to the Department of Energy's (DOE) evaluation of the facts and circumstances surrounding the unplanned personnel contaminations/intakes at [a building] of Lawrence Livermore National Laboratory's (LLNL) Hazardous Waste Management Facilities on July 2, 1997. Preliminary Notice of Violation, Lawrence Livermore National Laboratory - EA-98-01 More Documents & Publications Preliminary Notice of Violation, Lawrence Livermore National Laboratory -

87

Independent Oversight Review of the Lawrence Livermore National Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Review of the Lawrence Livermore National Review of the Lawrence Livermore National Laboratory - March 2001 Independent Oversight Review of the Lawrence Livermore National Laboratory - March 2001 March 2001 Review of the Lawrence Livermore National Laboratory Health Services Department The Office of Environment, Safety, and Health (ES&H) Oversight (EH-2) in conjunction with the Accreditation Association of Ambulatory Health Care (AAAHC) reviewed the Lawrence Livermore National Laboratory (LLNL) Health Services Department on March 19-21, 2001. The purpose of the review was twofold. First, EH-2 performed a review of selected activities to identify positive attributes, issues, and opportunities for improvement. Second, the AAAHC surveyed the medical program for accreditation. This report documents

88

Sandia National Laboratories: Locations: Livermore, California...  

NLE Websites -- All DOE Office Websites (Extended Search)

81,000, the city of Livermore maintains a local personality. Whether you are a sports fan, wine connoisseur, or outdoor enthusiast, you will have plenty to see and do. Pavilion...

89

Enforcement Letter, Lawrence Livermore National Laboratory - November 5,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 5, 1999 Enforcement Letter, Lawrence Livermore National Laboratory - November 5, 1999 November 5, 1999 Issued to Lawrence Livermore National Laboratory related to Authorization Basis Issues This letter refers to the Department of Energy's (DOE) evaluation of the facts and circumstances concerning issues related to the maintenance and adherence to documents which form the authorization basis for Lawrence Livermore National Laboratory (LLNL) operated nuclear facilities. Specifically, three Noncompliance Tracking System (NTS) reports were submitted over a four-day period and are summarized below: On July 30, 1999, it was reported that two cabinets contained about [specified amount] of [ ] solvents in violation of the building Safety Analysis Documentation;

90

Enforcement Letter, Lawrence Livermore National Laboratory - November 5,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 5, 1999 Enforcement Letter, Lawrence Livermore National Laboratory - November 5, 1999 November 5, 1999 Issued to Lawrence Livermore National Laboratory related to Authorization Basis Issues This letter refers to the Department of Energy's (DOE) evaluation of the facts and circumstances concerning issues related to the maintenance and adherence to documents which form the authorization basis for Lawrence Livermore National Laboratory (LLNL) operated nuclear facilities. Specifically, three Noncompliance Tracking System (NTS) reports were submitted over a four-day period and are summarized below: On July 30, 1999, it was reported that two cabinets contained about [specified amount] of [ ] solvents in violation of the building Safety Analysis Documentation;

91

Enforcement Letter, Lawrence Livermore National Laboratory - August 22,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August August 22, 1996 Enforcement Letter, Lawrence Livermore National Laboratory - August 22, 1996 August 22, 1996 Issued to the University of California related to Radiological Worker Training Deficiencies at the Lawrence Livermore National Laboratory This letter refers to the Department of Energy's (DOE) evaluation of Lawrence Livermore National Laboratory's (LLNL) report of a potential noncompliance with the requirements of 10 CFR 835 (Occupational Radiation Protection). This potential noncompliance involved the failure to complete required radiological worker retraining for 49 percent of LLNL's approximately 700 radiological workers. The training issue was initially identified on May 6, 1996, by LLNL during a routine review of the Chemistry and Materials Science deficiency

92

Preliminary Notice of Violation, Lawrence Livermore National Laboratory -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3-04 3-04 Preliminary Notice of Violation, Lawrence Livermore National Laboratory - EA-2003-04 September 3, 2003 Preliminary Notice of Violation issued to the University of California related to an Extremity Radiological Overexposure at the Lawrence Livermore National Laboratory, (EA-2003-04) This letter refers to the recent investigation by the Department of Energy's Office of Price-Anderson Enforcement (OE) of the June 2002 extremity radiological overexposure event. Preliminary Notice of Violation, Lawrence Livermore National Laboratory - EA-2003-04 More Documents & Publications Preliminary Notice of Violation, University of California - EA-2006-01 Preliminary Notice of Violation, Lawrence Livermore National Laboratory - EA-98-06 Independent Oversight Inspection of Environment, Safety, and Health

93

Lawrence Livermore Laboratory PERFORMANCE TEST OF A BLADELESS...  

NLE Websites -- All DOE Office Websites (Extended Search)

Lawrence Livermore Laboratory PERFORMANCE TEST OF A BLADELESS TURBINE FOR GF.OTHF.RMAT. APPLICATIONS R. Steidel and H. Weiss March 24, 1976 I j UCID-17068 This is an informal...

94

Creating the laboratory`s future; A strategy for Lawrence Livermore National Laboratory  

SciTech Connect

``Creating The Laboratory`s Future`` describes Livermore`s roles and responsibilities as a Department of Energy (DOE) national laboratory and sets the foundation for decisions about the Laboratory`s programs and operations. It summarizes Livermore`s near-term strategy, which builds on recent Lab achievements and world events affecting their future. It also discusses their programmatic and operational emphases and highlights program areas that the authors believe can grow through application of Lab science and technology. Creating the Laboratory`s Future reflects their very strong focus on national security, important changes in the character of their national security work, major efforts are under way to overhaul their administrative and operational systems, and the continuing challenge of achieving national consensus on the role of the government in energy, environment, and the biosciences.

NONE

1997-09-01T23:59:59.000Z

95

Independent Activity Report, Lawrence Livermore National Laboratory - March  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 2011 March 2011 Independent Activity Report, Lawrence Livermore National Laboratory - March 2011 March 2011 Lawrence Livermore National Laboratory Chronic Beryllium Disease Prevention Program Effectiveness Review [HIAR-LLNL-2011-03-25] The Lawrence Livermore National Laboratory (LLNL) and the Livermore Site Office (LSO) chartered a team to conduct an effectiveness review of the issues identified with the LLNL Chronic Beryllium Disease Prevention Program (CBDPP). The team included members and observers from LLNL, LSO, the National Nuclear Security Administration (NNSA), and the Office of Health, Safety and Security (HSS). The team's final report documents the results of the effectiveness review and the actions taken by LLNL to resolve and prevent recurrence of 44

96

Sandia National Laboratories: Locations: Livermore, California: Visiting  

NLE Websites -- All DOE Office Websites (Extended Search)

California California Livermore, California administration building Our location and hours of operation Sandia/California is located at 7011 East Avenue in Livermore, Calif., a suburban community about 45 miles east of San Francisco. Positioned at the eastern edge of the San Francisco Bay Area, Sandia is within easy commuting distance of many affordable housing communities in San Joaquin County and the Central Valley. The official hours of operation at Sandia/California are from 7:30 a.m. to 4 p.m. PST, Monday through Friday. General inquiries can be made by calling (925) 294-3000. See our contacts page for additional information. Getting here All three major airports in the San Francisco Bay Area provide access to Sandia/California. Oakland International Airport is the closest airport to

97

Lawrence Livermore National Laboratory: Site Map  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Map Site Map About LLNL What we do How we do it Our Values Organization Management and Sponsors Publications History Organizations Global Security National Ignition Facility Operations Safety & Security Science & Technology Weapons & Complex Integration Visiting LLNL Maps & Directions Badging Discovery Center Site Tours Current Weather Protocol Office Where to stay Tri-Valley Visitors Bureau City of Livermore News News Center For Reporters Social Media & Multimedia Publication Science and Technology Review Lab Report News Releases Around the Lab Community Discovery Center Site Tours Community giving Corporate giving Environmental information Community Center Contacts Discover LLNL Newsletter Volunteer Opportunities Education Internships Postdocs K - 12 Outreach Site Tours School Tours

98

Lawrence Livermore National Laboratory Site Lead Planning Activities, October 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

Report Number: HIAR LLNL-2012-10-23 Site: Lawrence Livermore National Laboratory Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Site Lead Planning Activities at the Lawrence Livermore National Laboratory Dates of Activity 10/23/2012 - 10/24/2012 Report Preparer: Robert Freeman Activity Description/Purpose: The purpose of this Office of Health, Safety and Security (HSS) Independent Oversight activity was to maintain site operational awareness of key nuclear safety performance areas, monitor ongoing site oversight and planning activities for Lawrence Livermore National Laboratory (LLNL) nuclear facilities, and identify and initiate coordination of future HSS oversight activities at the site, including planned HSS targeted reviews planned for Fiscal Year (FY) 2013.

99

Preliminary Notice of Violation, Lawrence Livermore National Laboratory -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 6 Preliminary Notice of Violation, Lawrence Livermore National Laboratory - EA-98-06 July 28, 1998 Preliminary Notice of Violation issued to the University of California related to Criticality Safety and the Quality Assurance Program at the Lawrence Livermore National Laboratory, July 28, 1998 (EA-98-06) This letter refers to the Department of Energy's (DOE) evaluation of the facts and circumstances surrounding a series of criticality safety infractions occurring between May and December 1997 in [a building] at the Lawrence Livermore National Laboratory (LLNL). [The building] is the central repository used to process and store [radioactive material]. During the period May 20 through July 15, 1997, Certified [Radioactive Material] Handlers violated criticality safety procedures for mass limits and form

100

Lawrence Livermore National Laboratory Site Lead Planning Activities, October 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report Number: HIAR LLNL-2012-10-23 Site: Lawrence Livermore National Laboratory Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Site Lead Planning Activities at the Lawrence Livermore National Laboratory Dates of Activity 10/23/2012 - 10/24/2012 Report Preparer: Robert Freeman Activity Description/Purpose: The purpose of this Office of Health, Safety and Security (HSS) Independent Oversight activity was to maintain site operational awareness of key nuclear safety performance areas, monitor ongoing site oversight and planning activities for Lawrence Livermore National Laboratory (LLNL) nuclear facilities, and identify and initiate coordination of future HSS oversight activities at the site, including planned HSS targeted reviews planned for Fiscal Year (FY) 2013.

Note: This page contains sample records for the topic "laboratory livermore ca" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Environmental Impact Statement and Environmental Impact Report for Continued Operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Summary-1992.html[6/24/2011 3:44:58 PM] Summary-1992.html[6/24/2011 3:44:58 PM] EXECUTIVE SUMMARY The U.S. Department of Energy (DOE) and the Regents of the University of California (UC) propose the continued operation, including near-term (within 5 to 10 years) proposed projects, of the Lawrence Livermore National Laboratory (LLNL). In addition, DOE proposes the continued operation, including near-term proposed projects, of Sandia National Laboratories, Livermore (SNL, Livermore). Continued operation plus proposed projects at the two Laboratories is needed so that the research and development missions established by Congress and the President can continue to be supported. As provided and encouraged by the National Environmental Policy Act (NEPA) and the California Environmental Quality Act (CEQA), DOE and UC have prepared this document as a joint Environmental Impact Statement (EIS) and

102

Review of the Lawrence Livermore National Laboratory Health Services Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environment, Safety, and Health Environment, Safety, and Health Oversight Review of the Lawrence Livermore National Laboratory Health Services Department March 2001 Office of Environment, Safety and Health i TABLE OF CONTENTS Page ACRONYMS................................................................................................................. iii 1.0 INTRODUCTION.................................................................................................. 1 2.0 RESULTS .............................................................................................................. 2 3.0 CONCLUSIONS.................................................................................................... 4 APPENDIX A.................................................................................................................

103

Meet IPO - Lawrence Livermore National Laboratory  

Giving animals in need a HOME. November ... In late 1999 he rejoined the Laboratory as Chief Engineer for the NAI/Homeland Security Directorate having the mission ...

104

Edward Jones, Lawrence Livermore National Laboratory, Outcomes...  

NLE Websites -- All DOE Office Websites (Extended Search)

ssionA8JonesLLNLUSJapanREEOutcomes.ppt More Documents & Publications Tom Lograsso, Ames Laboratory (Iowa State University), Future Directions in Rare Earth Research:...

105

Environmental Impact Statement and Environmental Impact Report for Continued Operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2-1992/01eis0157_a.html[6/27/2011 9:53:34 AM] 2-1992/01eis0157_a.html[6/27/2011 9:53:34 AM] APPENDIX A DESCRIPTION OF MAJOR PROGRAMS AND FACILITIES Appendix A describes the programs, infrastructures, facilities, and future plans of Lawrence Livermore National Laboratory (LLNL) and the Sandia National Laboratories at Livermore (SNL, Livermore). It provides information on existing activities and facilities, as well as information on those activities anticipated to occur or facilities to be constructed over the next 5 to 10 years. The purpose of this appendix is to: present information that can be used to evaluate the proposed action and other EIS/EIR alternatives, identify activities that are part of the proposed action, distinguish proposed action activities from no action alternative activities, and

106

Technical Safety Appraisal of the Lawrence Livermore National Laboratory  

SciTech Connect

This report documents the results of the Technical Safety Appraisal (TSA) of the Lawrence Livermore National Laboratory (LLNL) (including the Site 300 area), Livermore, California, conducted from February 26 to April 5, 1990. The purpose of the assessment was to provide the Secretary of Energy with the status of Environment, Safety and Health (ES H) Programs at LLNL. LLNL is operated by the University of California for the Department of Energy (DOE), and is a multi-program, mission-oriented institution engaged in fundamental and applied research programs that require a multidisciplinary approach. 1 fig.

1990-12-01T23:59:59.000Z

107

Lawrence Livermore Laboratory Earth Sciences Division  

NLE Websites -- All DOE Office Websites (Extended Search)

role in supplying.energy in the future, BORG, I. Y. and O'Connell, L. G. Use of reserveresource estimates by a National ERDA Laboratory, BORG, I. Y. One view of the world's...

108

Supplement analysis for continued operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore. Volume 2: Comment response document  

Science Conference Proceedings (OSTI)

The US Department of Energy (DOE), prepared a draft Supplement Analysis (SA) for Continued Operation of Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories, Livermore (SNL-L), in accordance with DOE`s requirements for implementation of the National Environmental Policy Act of 1969 (NEPA) (10 Code of Federal Regulations [CFR] Part 1021.314). It considers whether the Final Environmental Impact Statement and Environmental Impact Report for Continued Operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore (1992 EIS/EIR) should be supplement3ed, whether a new environmental impact statement (EIS) should be prepared, or no further NEPA documentation is required. The SA examines the current project and program plans and proposals for LLNL and SNL-L, operations to identify new or modified projects or operations or new information for the period from 1998 to 2002 that was not considered in the 1992 EIS/EIR. When such changes, modifications, and information are identified, they are examined to determine whether they could be considered substantial or significant in reference to the 1992 proposed action and the 1993 Record of Decision (ROD). DOE released the draft SA to the public to obtain stakeholder comments and to consider those comments in the preparation of the final SA. DOE distributed copies of the draft SA to those who were known to have an interest in LLNL or SNL-L activities in addition to those who requested a copy. In response to comments received, DOE prepared this Comment Response Document.

NONE

1999-03-01T23:59:59.000Z

109

Industrial ecology at Lawrence Livermore National Laboratory summary statement  

Science Conference Proceedings (OSTI)

This statement summarizes Lawrence Livermore National Laboratory`s committment to making important scientific, technological, and business contributions to global sustainability. The quest has many aspects, some socio-political or economic and some technological, and some in which the soft and hard sciences become indistinguishable, as in visionary national strategies, like Holland`s, and futuristic regional and city development plans, like those of Kagoshima and Chattanooga.

Gilmartin, T.J.

1996-05-21T23:59:59.000Z

110

6th US-Russian Pu Science Workshop Lawrence Livermore National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

US-Russian Pu Science Workshop US-Russian Pu Science Workshop Lawrence Livermore National Laboratory University of California, Livermore, California July 14 and 15, 2006 Local Chairs: Michael Fluss, James Tobin, Adam Schwartz LLNL, Livermore, USA Alexander V. Petrovtsev, RFNC * VNIITF, Snezhinsk, Russia Boris A. Nadykto, RFNC * VNIIEF, Sarov, Russia Lidia F. Timofeeva, VNIINM, Moscow, Russia Siegfried S. Hecker, (Luis Morales POC) LANL, Los Alamos, USA Valentin E. Arkhipov, IMP, Ural Branch of RAS, Yekaterinburg, Russia This is a satellite meeting of the "Pu Futures-The Science 2006 International Conference", 9-13 July 2006, Asilomar Conference, Grounds, Pacific Grove Ca. The workshop is hosted by LLNL, under the aegis of the United States/Russian Federation Scientific and Technical Collaboration pursuant

111

Analysis Activities at Lawrence Livermore National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory / Energy Security and Technology Program Jeffrey Stewart Group Leader: Applied Statistics and Economics DOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program Systems Analysis Workshop July 28-29, 2004 Washington, D.C. 2 Charter * LLNL's mission is to provide research in the areas of national and homeland security and other important areas to DOE such as Energy,Climate and Water * To conduct systems and economic modeling and analysis to determine the technical and economic characteristics of individual technologies within systems to achieve policy objectives * DOE NETL, NE,Policy,HEU; Japanese Govt, CEC, Internal 3 History * LLNL has had a systems analysis group for over 25 years supporting national security, defense, energy and environment programs

112

Secretary of Energy Advisory Board Lawrence Livermore Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lawrence Livermore Laboratory Lawrence Livermore Laboratory October 12, 2011 Agenda Open Plenary Meeting Session 9:30 AM-9:45 AM Welcome and Overview Secretary Steven Chu and Dr. William Perry 9:45 AM-10:00 AM Director's Perspective George Miller, LLNL Director 10:00 AM-10:40 AM LLNL Progress Towards Ignition and Weapons Physics Experiments on NIF Bruce Goodwin and Ed Moses 10:40 AM-11:00 AM LLNL Strategy for Improvements in Cyber Security Jim Brase 11:00 AM-11:20 AM LLNL Computational Advances in Applied Energy Julio Friedman 11:20 AM-12:00 PM DOE in the Innovation Chain Secretary Chu 12:00 PM-1:30 PM Lunch Break 1:30 PM-1:45 PM Subcommittee Updates 1:45 PM-2:30 PM Blue Ribbon Commission Update

113

The Computation Directorate at Lawrence Livermore National Laboratory  

Science Conference Proceedings (OSTI)

The Computation Directorate at Lawrence Livermore National Laboratory has four major areas of work: (1) Programmatic Support -- Programs are areas which receive funding to develop solutions to problems or advance basic science in their areas (Stockpile Stewardship, Homeland Security, the Human Genome project). Computer scientists are 'matrixed' to these programs to provide computer science support. (2) Livermore Computer Center (LCC) -- Development, support and advanced planning for the large, massively parallel computers, networks and storage facilities used throughout the laboratory. (3) Research -- Computer scientists research advanced solutions for programmatic work and for external contracts and research new HPC hardware solutions. (4) Infrastructure -- Support for thousands of desktop computers and numerous LANs, labwide unclassified networks, computer security, computer-use policy.

Cook, L

2006-09-07T23:59:59.000Z

114

Independent Oversight Inspection of Emergency Management at the Lawrence Livermore National Laboratory - Volume II  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lawrence Livermore Lawrence Livermore National Laboratory Office of Independent Oversight and Performance Assurance Office of the Secretary of Energy July 2002 Volume II INDEPENDENT OVERSIGHT INSPECTION OF EMERGENCY MANAGEMENT AT THE LAWRENCE LIVERMORE NATIONAL LABORATORY Volume II July 2002 i INDEPENDENT OVERSIGHT INSPECTION OF EMERGENCY MANAGEMENT AT THE LAWRENCE LIVERMORE NATIONAL LABORATORY Volume II Table of Contents Acronyms ......................................................................................................................................... iii 1.0 Introduction ................................................................................................................................1 2.0 Results .......................................................................................................................................3

115

Environmental Impact Statement and Environmental Impact Report for Continued Operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1-1992/01eis0157_rg.html[6/24/2011 4:00:49 PM] 1-1992/01eis0157_rg.html[6/24/2011 4:00:49 PM] READER'S GUIDE The Final EIS/EIR is organized to assist the reader's understanding of the complex operations at Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore. Organization of Documents The EIS/EIR is divided into five volumes and two companion reports: Volume I. This volume contains the Final EIS/EIR, which in part relies on the detailed information in the appendices, and comprehensively discusses the proposed action, the alternatives, and the existing conditions and impacts of the proposed action and the alternatives. Volume II. This volume contains the Final EIS/EIR technical appendices which provide technical support for the analyses in Volume I and also provide additional information and references. Appendix E was originally identified in

116

Federal Facility Compliance Act: Conceptual Site Treatment Plan for Lawrence Livermore National Laboratory, Livermore, California  

Science Conference Proceedings (OSTI)

The Department of Energy (DOE) is required by section 3021(b) of the Resource Conservation and Recovery Act (RCRA), as amended by the Federal Facility Compliance Act (the Act), to prepare plans describing the development of treatment capacities and technologies for treating mixed waste. The Act requires site treatment plans (STPs or plans) to be developed for each site at which DOE generates or stores mixed waste and submitted to the State or EPA for approval, approval with modification, or disapproval. The Lawrence Livermore National Laboratory (LLNL) Conceptual Site Treatment Plan (CSTP) is the preliminary version of the plan required by the Act and is being provided to California, the US Environmental Protection Agency (EPA), and others for review. A list of the other DOE sites preparing CSTPs is included in Appendix 1.1 of this document. Please note that Appendix 1.1 appears as Appendix A, pages A-1 and A-2 in this document.

Not Available

1993-10-01T23:59:59.000Z

117

Sandia National Laboratories: Visiting the Livermore Valley Open Campus  

NLE Websites -- All DOE Office Websites (Extended Search)

Visiting the LVOC Visiting the LVOC LVOC Home Partnership Opportunities Featured Programs Working at the LVOC Are you a member of the research, business, or academic community who would like to learn more about current and future opportunities at the Livermore Valley Open Campus? We're actively seeking companies, research organizations, universities, and other laboratories with interests in energy, computing, homeland security, and other laboratory mission areas. Request a visit Contact us to explore collaborative opportunities and to discuss a potential visit to the LVOC. We look forward to hearing from you! Map and directions Directions to the LVOC Screen reader users: click here for plain HTML Go to Google Maps Home 37.679620,-121.697112 Loading... Map Sat Ter Did you mean a different:

118

Preliminary Notice of Violation, Lawrence Livermore National Laboratory- EA-2000-12  

Energy.gov (U.S. Department of Energy (DOE))

Preliminary Notice of Violation issued to the University of California related to Authorization Basis Issues at the Lawrence Livermore National Laboratory, (EA-2000-12)

119

Evaluation of HotSpot, Lawerence Livermore National Laboratory...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nasstrom accepting the revised Hotspot More Documents & Publications Excessing of Computers Used for Unclassified Controlled Information at Lawrence Livermore National...

120

Final Clean Closure Report Site 300 Surface Impoundments Closure Lawrence Livermore National Laboratory Livermore, California  

Science Conference Proceedings (OSTI)

Lawrence Livermore National Laboratory operated two Class II surface impoundments that stored wastewater that was discharged from a number of buildings located on the Site 300 Facility (Site 300). The wastewater was the by-product of explosives processing. Reduction in the volume of water discharged from these buildings over the past several years significantly reduced the wastewater storage needs. In addition, the impoundments were constructed in 1984, and the high-density polyethylene (HDPE) geomembrane liners were nearing the end of their service life. The purpose of this project was to clean close the surface impoundments and provide new wastewater storage using above ground storage tanks at six locations. The tanks were installed and put into service prior to closure of the impoundments. This Clean Closure Report (Closure Report) complies with State Water Resources Control Board (SWRCB) Section 21400 of the California Code of Regulations Title 27 (27 CCR section 21400). As required by these regulations and guidance, this Closure Report provides the following information: (1) a brief site description; (2) the regulatory requirements relevant to clean closure of the impoundments; (3) the closure procedures; and (4) the findings and documentation of clean closure.

Haskell, K

2006-02-14T23:59:59.000Z

Note: This page contains sample records for the topic "laboratory livermore ca" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Top 10 Things You Didn't Know About Lawrence Livermore National Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0 Things You Didn't Know About Lawrence Livermore National 0 Things You Didn't Know About Lawrence Livermore National Laboratory Top 10 Things You Didn't Know About Lawrence Livermore National Laboratory December 6, 2013 - 6:18pm Addthis The photo above is of a cryogenically cooled target in the National Ignition Facility as "seen" by the laser through the hohlraum's laser entrance hole. | Photo courtesy of Lawrence Livermore National Laboratory. The photo above is of a cryogenically cooled target in the National Ignition Facility as "seen" by the laser through the hohlraum's laser entrance hole. | Photo courtesy of Lawrence Livermore National Laboratory. Ben Dotson Ben Dotson Project Coordinator for Digital Reform, Office of Public Affairs What are the key facts? Founded in 1952, Lawrence Livermore National Lab is one of the

122

Top 10 Things You Didn't Know About Lawrence Livermore National Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Top 10 Things You Didn't Know About Lawrence Livermore National Top 10 Things You Didn't Know About Lawrence Livermore National Laboratory Top 10 Things You Didn't Know About Lawrence Livermore National Laboratory December 6, 2013 - 6:18pm Addthis The photo above is of a cryogenically cooled target in the National Ignition Facility as "seen" by the laser through the hohlraum's laser entrance hole. | Photo courtesy of Lawrence Livermore National Laboratory. The photo above is of a cryogenically cooled target in the National Ignition Facility as "seen" by the laser through the hohlraum's laser entrance hole. | Photo courtesy of Lawrence Livermore National Laboratory. Ben Dotson Ben Dotson Project Coordinator for Digital Reform, Office of Public Affairs What are the key facts? Founded in 1952, Lawrence Livermore National Lab is one of the

123

Fixed Monthly Living Expense Payments at the Lawrence Livermore National Laboratory, INS-L-11-05  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fixed Monthly Living Expense Fixed Monthly Living Expense Payments at the Lawrence Livermore National Laboratory INS-L-11-05 September 2011 Department of Energy Washington, DC 20585 September 21, 2011 MEMORANDUM FOR MANAGER, LIVERMORE SITE OFFICE FROM: Sandra D. Bruce Assistant Inspector General for Inspections SUBJECT: INFORMATION: Inspection Report on "Fixed Monthly Living Expense Payments at the Lawrence Livermore National Laboratory" BACKGROUND The Lawrence Livermore National Laboratory (Livermore) is a Department of Energy (Department) laboratory managed and operated by Lawrence Livermore National Security, LLC, for the Department's National Nuclear Security Administration (NNSA). Livermore's mission is to ensure the safety and security of the nation through applied science and technology in key

124

Lawrence Livermore National Laboratory Surface Water Protection: A Watershed Approach  

Science Conference Proceedings (OSTI)

This surface water protection plan (plan) provides an overview of the management efforts implemented at Lawrence Livermore National Laboratory (LLNL) that support a watershed approach to protect surface water. This plan fulfills a requirement in the Department of Energy (DOE) Order 450.1A to demonstrate a watershed approach for surface water protection that protects the environment and public health. This plan describes the use of a watershed approach within which the Laboratory's current surface water management and protections efforts have been structured and coordinated. With more than 800 million acres of land in the U.S. under federal management and stewardship, a unified approach across agencies provides enhanced resource protection and cost-effectiveness. The DOE adopted, along with other federal agencies, the Unified Federal Policy for a Watershed Approach to Federal Land and Resource Management (UFP) with a goal to protect water quality and aquatic ecosystems on federal lands. This policy intends to prevent and/or reduce water pollution from federal activities while fostering a cost-effective watershed approach to federal land and resource management. The UFP also intends to enhance the implementation of existing laws (e.g., the Clean Water Act [CWA] and National Environmental Policy Act [NEPA]) and regulations. In addition, this provides an opportunity for the federal government to serve as a model for water quality stewardship using a watershed approach for federal land and resource activities that potentially impact surface water and its uses. As a federal land manager, the Laboratory is responsible for a small but important part of those 800 million acres of land. Diverse land uses are required to support the Laboratory's mission and provide an appropriate work environment for its staff. The Laboratory comprises two sites: its main site in Livermore, California, and the Experimental Test Site (Site 300), near Tracy, California. The main site is largely developed yet its surface water system encompasses two arroyos, an engineered detention basin (Lake Haussmann), storm channels, and wetlands. Conversely, the more rural Site 300 includes approximately 7,000 acres of largely undeveloped land with many natural tributaries, riparian habitats, and wetland areas. These wetlands include vernal pools, perennial seeps, and emergent wetlands. The watersheds within which the Laboratory's sites lie provide local and community ecological functions and services which require protection. These functions and services include water supply, flood attenuation, groundwater recharge, water quality improvement, wildlife and aquatic habitats, erosion control, and (downstream) recreational opportunities. The Laboratory employs a watershed approach to protect these surface water systems. The intent of this approach, presented in this document, is to provide an integrated effort to eliminate or minimize any adverse environmental impacts of the Laboratory's operations and enhance the attributes of these surface water systems, as possible and when reasonable, to protect their value to the community and watershed. The Laboratory's watershed approach to surface water protection will use the U.S. Environmental Protection Agency's Watershed Framework and guiding principles of geographic focus, scientifically based management and partnerships1 as a foundation. While the Laboratory's unique site characteristics result in objectives and priorities that may differ from other industrial sites, these underlying guiding principles provide a structure for surface water protection to ensure the Laboratory's role in environmental stewardship and as a community partner in watershed protection. The approach includes pollution prevention, continual environmental improvement, and supporting, as possible, community objectives (e.g., protection of the San Francisco Bay watershed).

Coty, J

2009-03-16T23:59:59.000Z

125

Research collaboration opportunities at Lawrence Livermore National Laboratory  

Science Conference Proceedings (OSTI)

The Lawrence Livermore National Laboratory (LLNL) is a major research facility within the Department of Energy (DOE) complex. LLNL`s traditional mission is in Defense Programs, including a significant effort in non-proliferation and arms control. In terms of disciplinary areas, over 50% of our present research efforts are in the fields of large-scale computing, high energy-density physics, energy and environmental sciences, engineering, materials research, manufacturing, and biotechnology. The present decade presents new challenges to LLNL. Many factors have influenced us in modifying our research approach. The main driver is the realization that many scientific problems in our mission areas can best be solved by collaborative teams of experts. At LLNL we excel in physical sciences, but we need the expertise of many others, beyond our established areas of expertise. For example, to find an acceptable solution to reduce earthquake damage requires contributions from engineering, soil mechanics, hydrology, materials sciences, Geosciences, computer modeling, economics, law, and political science. In the pursuit of our mission goals, we are soliciting increased research collaborations with university faculty and students. The scientific and national security challenges facing us and our nation today are unprecedented. Pooling talents from universities, other research organizations, and the national laboratories will be an important approach to finding viable solutions.

Budwine, C.M.

1996-09-01T23:59:59.000Z

126

Progress in inertial confinement fusion at Lawrence Livermore National Laboratory  

SciTech Connect

The goals of the Inertial Fusion Program at the Lawrence Livermore National Laboratory are to study matter under extreme conditions of temperature and pressure and to produce fusion energy from inertially confined fusion fuel. With the conclusion of recent multi-kilojoule 0.53 ..mu..m experiments on Novette, we have demonstrated vastly improved plasma conditions compared to those previously obtained at LLNL with similar energies at 1.06 ..mu..m and elsewhere with 10 ..mu..m radiation. The lower preheat environment obtainable with short wavelength light has led to 3X improvements in the compression of targets on Novette compared to similar targets on Shiva with 1.06 ..mu..m. Subsequent experiments on Nova with short wavelength light will begin in 1985. They are expected to demonstrate the necessary compression conditions required for high gain fusion to occur when irradiated with a multi-megajoule driver. These recent results, together with improved calculations, and innovations in driver and reactor technology, indicate that high gain inertial fusion will occur and is a viable candidate for fusion power production in the future.

Holzrichter, J.F.

1984-08-06T23:59:59.000Z

127

Final Revised Environmental Assessment for The Proposed Construction and Operation of a Biosafety Level 3 Facility at Lawrence Livermore National Laboratory, Livermore, California  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

R R Final Revised Environmental Assessment for The Proposed Construction and Operation of a Biosafety Level 3 Facility at Lawrence Livermore National Laboratory, Livermore, California Issued: December 2002 Revised: January 2008 Department of Energy National Nuclear Security Administration Livermore Site Office This page intentionally left blank. FINAL Revised EA for the Proposed Construction and Operation of a Biosafety Level 3 Facility at LLNL ii FORWARD The National Nuclear Security Administration (NNSA) of the Department of Energy (DOE) has responsibility for national programs to reduce and counter threats from weapons of mass destruction including nuclear, chemical, and biological weapons (bioweapons). NNSA's bioscience work at Lawrence Livermore National Laboratory (LLNL) in support of these

128

Lawrence Livermore National Laboratory Emergency Response Capability 2009 Baseline Needs Assessment Performance Assessment  

Science Conference Proceedings (OSTI)

This document was prepared by John A. Sharry, LLNL Fire Marshal and Division Leader for Fire Protection and was reviewed by Sandia/CA Fire Marshal, Martin Gresho. This document is the second of a two-part analysis of Emergency Response Capabilities of Lawrence Livermore National Laboratory. The first part, 2009 Baseline Needs Assessment Requirements Document established the minimum performance criteria necessary to meet mandatory requirements. This second part analyses the performance of Lawrence Livermore Laboratory Emergency Management Department to the contents of the Requirements Document. The document was prepared based on an extensive review of information contained in the 2004 BNA, a review of Emergency Planning Hazards Assessments, a review of building construction, occupancy, fire protection features, dispatch records, LLNL alarm system records, fire department training records, and fire department policies and procedures. On October 1, 2007, LLNL contracted with the Alameda County Fire Department to provide emergency response services. The level of service called for in that contract is the same level of service as was provided by the LLNL Fire Department prior to that date. This Compliance Assessment will evaluate fire department services beginning October 1, 2008 as provided by the Alameda County Fire Department.

Sharry, J A

2009-12-30T23:59:59.000Z

129

Environmental Impact Statement and Environmental Impact Report for Continued Operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laborat... Laborat... file:///I|/Data%20Migration%20Task/EIS-0157-FEIS-03-1992/05eis0157_f.html[6/27/2011 9:57:50 AM] APPENDIX F ECOLOGY AND BIOLOGICAL ASSESSMENT This appendix contains two major sections. Section F.1 is a discussion of the ecological characteristics at the LLNL Livermore site, LLNL Site 300, and SNL, Livermore (referred to collectively as the study sites); and presents information and data on the flora and fauna in the upland areas (see Appendix G for a detailed analysis of wetlands at the study sites). This section focuses on the biological features of LLNL Site 300 because this 7000-acre site is largely undeveloped and represents the most biologically diverse area under study. In contrast, the LLNL Livermore site and SNL, Livermore are developed areas that provide only marginal wildlife habitat because of the high degree of human activity and the few

130

Exploring Viral Genomics at Lawrence Livermore National Laboratory  

Science Conference Proceedings (OSTI)

This summer I had the privilege of working at Lawrence Livermore National Laboratory under the Nonproliferation, Homeland and International Security Directorate in the Chemical and Biological Countermeasures Division. I worked exclusively on the Viral Identification and Characterization Initiative (VICI) project focusing on the development of multiplexed polymerase chain reaction (PCR) assays. The goal of VICI is to combine several disciplines such as molecular biology, microfluidics, and bioinformatics in order to detect viruses and identify them in order to effectively and quickly counter infectious disease, natural or engineered. The difficulty in such a countermeasure is that little is known about viral diversity due to the ever changing nature of these organisms. In response, VICI is developing a new microfluidic bioanalytical platform to detect known and unknown viruses by analyzing every virus in a sample by isolating them into picoliter sized droplets on a microchip and individually analyzing them. The sample will be injected into a channel of oil to form droplets that will contain viral nucleic acids that will be amplified using PCR. The multiplexed PCR assay will produce a series of amplicons for a particular virus genome that provides an identifying signature. A device will then detect whether or not DNA is present in the droplet and will sort the empty droplets from the rest. From this point, the amplified DNA is released from the droplets and analyzed using capillary gel electrophoresis in order to read out the series of amplicons and thereby determine the identity of each virus. The following figure depicts the microfluidic process. For the abovementioned microfluidic process to work, a method for detecting amplification of target viral nucleic acids that does not interfere with the multiplexed biochemical reaction is required for downstream sorting and analysis. In this report, the successful development of a multiplexed PCR assay using SYBR Green I as a fluorescent dye to detect amplification of viral DNA that can later be integrated into microfluidic PCR system for sorting and analysis is shown.

Kilpatrick, K; Hiddessen, A

2007-08-22T23:59:59.000Z

131

Evaluation of HotSpot, Lawerence Livermore National Laboratory - June 11,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Evaluation of HotSpot, Lawerence Livermore National Laboratory - Evaluation of HotSpot, Lawerence Livermore National Laboratory - June 11, 2010 Evaluation of HotSpot, Lawerence Livermore National Laboratory - June 11, 2010 June 11, 2010 Letter from Andy Lawrence to John Nasstrom accepting the revised Hotspot In your letter dated April 16, 2010, you summarized the work done by the Lawerence Livermore National Laboratory (LLNL) to meet the Department of Energy's (DOE) recommendations from the 2007, Software Evaluation of HotSpot, and DOE, Safety Software Toolbox Recommendation, for inclusion of V2.07 in the DOE Safety Software Central Registry. Based on this work, you futher requested that HotSpot be included in the DOE Central Registry. Letter from Andy Lawrence to John Nasstrom accepting the revised Hotspot More Documents & Publications

132

Industrial ecology at Lawrence Livermore National Laboratory summary statement  

SciTech Connect

At Livermore our hope and our intention is to make important contributions to global sustainability by basing both our scientific and technological research and our business practices on the principles of industrial ecology. Current efforts in the following fields are documented: global security, global ecology, energy for transportation, fusion energy, materials sciences, environmental technology, and bioscience.

Gilmartin, T.J.

1996-06-04T23:59:59.000Z

133

Lawrence Livermore National Laboratory Operational Drill at the B332 Plutonium Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HSS Independent Activity Report - Rev. 0 Report Number: HIAR LLNL-2013-02-27 Site: Lawrence Livermore National Laboratory (LLNL) Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for the Lawrence Livermore National Laboratory Operational Drill at the B332 Plutonium Facility Date of Activity: 02/27/2013 Report Preparer: Thomas Rogers Activity Description/Purpose: The Livermore Site Office (LSO) and Lawrence Livermore National Security, LLC (LLNS) requested personnel from the U.S. Department of Energy (DOE) Office of Safety and Emergency Management Evaluations (HS-45) to observe an operational drill at the Plutonium Facility in Building 332 (B332). LSO and LLNS desired HS-45's participation to help

134

DOE/EIS-0157-SA-01; Supplement Analysis for Continued Operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Analysis Analysis S-1 March 1999 Findings ♦ This supplement analysis evaluated a set of new and modified projects and proposals and other new information and concluded that no supplementation of the 1992 EIS/EIR for Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories (SNL), Livermore, is needed. Either the projected impacts are within the bounds of the 1992 EIS/EIR, the impacts were anticipated by mitigation measures established in the 1992 EIS/EIR, or the incremental differences in impacts are not significant. ♦ While proposed increases in administrative limits for radioactive materials at LLNL might slightly increase radiological releases during accidents, the resulting consequences are expected to remain essentially the same as described in the 1992

135

Lawrence Livermore National Laboratory Federal Facility Compliance Order, February 24, 1997 Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Federal Facility Compliance Act Order for Lawrence Federal Facility Compliance Act Order for Lawrence Livermore National Laboratory Compliance Order HWCA 96/97-5002 State California Agreement Type Federal Facility Agreement Legal Driver(s) FFCAct Scope Summary Require compliance by the DOE with a Site Treatment Plan for the treatment of mixed waste at Lawrence Livermore National Laboratory Parties DOE; State of California Environmental Protection Agency (Department of Toxic Substances Control) Date 2/24/1997 SCOPE * Require compliance by the DOE with a Site Treatment Plan for the treatment of mixed waste at Lawrence Livermore National Laboratory. * Address LDR requirements pertaining to storage and treatment of covered waste at LLNL. ESTABLISHING MILESTONES * The Compliance Plan Volume of the STP provides overall schedules for achieving

136

Lawrence Livermore National Laboratory Main Site FFA Under CERCLA Section 120, November 1, 1988 Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lawrence Livermore National Laboratory (Main Site) Lawrence Livermore National Laboratory (Main Site) Federal Facility Agreement Under CERCLA Section 120, November 1, 1988 State California Agreement Type Federal Facility Agreement Legal Driver(s) CERCLA Scope Summary Establish a procedural framework and schedule for developing, implementing, and monitoring appropriate response actions at the Site Parties DOE; USEPA; California Department of Health Services; California Regional Water Quality Control Board Date 11/1/1988 SCOPE * Establish a procedural framework and schedule for developing, implementing, and monitoring appropriate response actions at the Site. * Establish a basis for a determination that the DOE has completed remedial action and corrective measures to satisfaction. ESTABLISHING MILESTONES

137

Environmental Assessment for the Proposed Environmental Remediation at Lawrence Livermore National Laboratory Site 300 Pit 7 Complex  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9 9 Environmental Assessment for the Proposed Environmental Remediation at Lawrence Livermore National Laboratory Site 300 Pit 7 Complex January 2007 Department of Energy National Nuclear Security Administration Livermore Site Office EA for the Proposed Environmental Remediation at the Lawrence Livermore National Laboratory Site 300 Pit 7 Complex i CONTENTS 1.0 INTRODUCTION..................................................................................................................1 1.1 Background ......................................................................................................................1 1.2 Purpose and Need for the Action .....................................................................................5

138

Review of the Lawrence Livermore Nationa Laboratory Identiified Defective Department of Transportation Hazardous Material Packages  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 5 Site Visit Report - Review of the Lawrence Livermore National Laboratory Identified Defective Department of Transportation Hazardous Material Packages This site visit report documents the results of Office of Health, Safety and Security's review of the Lawrence Livermore National Laboratory (LLNL) identification, immediate actions, communications, documentation, evaluation, reporting and follow-up to the discovery of defective Department of Transportation (DOT) UN1A2 55- and 30-gallon open head single bolt closure steel drums intended for storage and transportation of hazardous waste and materials. This review, conducted on January 26-29, 2010, was sponsored by the DOE Livermore Site Office (LSO) to support interface with the lab and this report is intended to support follow-up

139

Inquiry into the De-Inventory of Special Nuclear Material at Lawrence Livermore National Laboratory, OAS-L-12-11  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Inquiry into the De-Inventory of Special Nuclear Material at Lawrence Livermore National Laboratory OAS-L-12-11 September 2012 Department of Energy Washington, DC 20585 September 21, 2012 MEMORANDUM FOR THE MANAGER, LIVERMORE SITE OFFICE FROM: David Sedillo Director, Western Audits Division Office of Inspector General SUBJECT: INFORMATION: Special Report on "Inquiry into the De-Inventory of Special Nuclear Material at Lawrence Livermore National Laboratory" BACKGROUND The Lawrence Livermore National Laboratory (Livermore) is a Department of Energy facility managed and operated by Lawrence Livermore National Security, LLC (LLNS), for the Department's National Nuclear Security Administration (NNSA). Livermore's mission is to

140

Review of Integrated Safety Management System Effectiveness at Lawrence Livermore National Laboratory, September 2011  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oversight Review of Oversight Review of Integrated Safety Management System Effectiveness at Lawrence Livermore National Laboratory September 2011 Office of Safety and Emergency Management Evaluations Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose ................................................................................................................................... 1 2.0 Introduction ............................................................................................................................ 1 3.0 Scope ...................................................................................................................................... 1 4.0 Summary of Results ............................................................................................................... 1

Note: This page contains sample records for the topic "laboratory livermore ca" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Independent Oversight Review of the Fire Protection Program at Lawrence Livermore National Laboratory, September 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fire Protection Program at Fire Protection Program at Lawrence Livermore National Laboratory May 2011 February 2013 September 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U. S. Department of Energy Table of Contents 1.0 Purpose .................................................................................................................................................... 1 2.0 Background ............................................................................................................................................. 1 3.0 Scope ....................................................................................................................................................... 2

142

Independent Oversight Review of the Fire Protection Program at Lawrence Livermore National Laboratory, September 2013  

NLE Websites -- All DOE Office Websites (Extended Search)

Fire Protection Program at Fire Protection Program at Lawrence Livermore National Laboratory May 2011 February 2013 September 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U. S. Department of Energy Table of Contents 1.0 Purpose .................................................................................................................................................... 1 2.0 Background ............................................................................................................................................. 1 3.0 Scope ....................................................................................................................................................... 2

143

Review of Integrated Safety Management System Effectiveness at Lawrence Livermore National Laboratory, September 2011  

NLE Websites -- All DOE Office Websites (Extended Search)

Oversight Review of Oversight Review of Integrated Safety Management System Effectiveness at Lawrence Livermore National Laboratory September 2011 Office of Safety and Emergency Management Evaluations Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose ................................................................................................................................... 1 2.0 Introduction ............................................................................................................................ 1 3.0 Scope ...................................................................................................................................... 1 4.0 Summary of Results ............................................................................................................... 1

144

Electromechanical battery research and development at the Lawrence Livermore National Laboratory  

DOE Green Energy (OSTI)

The concepts undergirding a funded program to develop a modular electromechanical battery (EMB) at the Lawrence Livermore National Laboratory are described. Example parameters for EMBs for electric and hybrid-electric vehicles are given, and the importance of the high energy recovery efficiency of EMBs in increasing vehicle range in urban driving is shown.

Post, R.F.; Baldwin, D.E.; Bender, D.A.; Fowler, T.K.

1993-06-01T23:59:59.000Z

145

Lawrence Livermore National Laboratory (LLNL): Visiting the Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

for bringing restricted and controlled items onto the site. The public is invited to tour the Discovery Center, located just outside the Laboratory's gates off Greenville Road;...

146

Routine environmental audit of the Sandia National Laboratories, California, Livermore, California  

Science Conference Proceedings (OSTI)

This report documents the results of the Routine Environmental Audit of the Sandia National Laboratories, Livermore, California (SNL/CA). During this audit the activities the Audit Team conducted included reviews of internal documents and reports from preview audits and assessments; interviews with US Department of Energy (DOE), State of California regulators, and contractor personnel; and inspections and observations of selected facilities and operations. The onsite portion of the audit was conducted from February 22 through March 4, 1994, by the DOE Office of Environmental Audit (EH-24), located within the Office of Environment, Safety, and Health (EH). The audit evaluated the status of programs to ensure compliance with Federal, state, and local environmental laws and regulations; compliance with DOE Orders, guidance, and directives; and conformance with accepted industry practices and standards of performance. The audit also evaluated the status and adequacy of the management systems developed to address environmental requirements. The audit`s functional scope was comprehensive and included all areas of environmental management and a programmatic evaluation of NEPA and inactive waste sites.

Not Available

1994-03-01T23:59:59.000Z

147

Audit of Renovation and New Construction Projects at Lawrence Livermore National Laboratory, WR-B-97-06  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

THE SECRETARY THE SECRETARY FROM: John C. Layton Inspector General SUBJECT: INFORMATION: Report on "Audit of Renovation and New Construction Projects at Lawrence Livermore National Laboratory" BACKGROUND: Lawrence Livermore National Laboratory must periodically renovate existing facilities or build new ones to accomplish its missions or to provide infrastructure to support its missions. The objective of the audit was to determine if Livermore's proposed renovation and new construction projects met mission needs while minimizing the cost to the Government. DISCUSSION: In pursuing three projects, estimated to cost over $78 million, Livermore had not demonstrated that it had selected the

148

Image Library of Lawrence Livermore National Laboratory on Flickr  

DOE Data Explorer (OSTI)

Several of DOEs National Laboratories are using Flickr as the vehicle for making their image libraries available to the public. Many of the labs have made it easier to separate scientific images from images of facilities and people by organizing their images into Sets. Tags are also a powerful way to find the scientific images. Click on the Tags link, then click on terms such as physics to find all the images that have been tagged with that keyword.

149

History & Reflections of Engineering at Lawrence Livermore National Laboratory  

SciTech Connect

I thought it was important to relate how this project began. Jens Mahler, Mechanical Engineering Deputy Associate Director, recalls that during a discussion between him and Wally Decker, Wally suggested that he document the significant events and the organization of the Mechanical Engineering Department since 1952, i.e., write a history of Mechanical Engineering. Jens agreed that Wally should begin this effort. Upon learning of this, Dave Pehrson, Deputy Associate Director for Engineering, suggested that the History be expanded to include Electronics Engineering and that it be called A History of Engineering. Dave asked me to join Wally on this effort and, unfortunately, Wally died shortly after I started. In the first part of this History, I have attempted to capture the important contributions that Engineering has made to the Programs, since Engineering's primary mission is to provide ''support to the Laboratory Programs.'' In the later parts you will find views discussing the development and application of Engineering's technology base. While Engineering's direct programmatic support had first priority, Engineering had other responsibilities as well. Some of these were to hire and train a competent technical and leadership staff, to anticipate and develop engineering technologies for future use by the Programs, to provide support to institutional activities, to be the vehicle for internal technology transfer, to provide for the movement of personnel between Programs, to groom individuals to assume programmatic and institutional leadership positions, and to develop, operate, and maintain facilities. Engineering developed the reputation as ''the flywheel of the Laboratory.'' It was also known as willing to provide people for tasks broader than just primarily technical roles, such as membership on salary review committees, and members and chairs of the student policy committees and safety groups. This History is not a compilation of facts only but a reflection by many individuals of what they viewed as important contributions during their careers at the Laboratory. I thank them all for taking the time to write their inputs to this document. Finally, I want to acknowledge all the former and current members of Engineering: engineers, associates, coordinators, drafters and designers, technicians, administrators and clerical, who in their own way made Engineering what it is. For after all is said and done, Engineering's primary assets were and are its people.

Lafranchi, E

2002-04-18T23:59:59.000Z

150

From Pilot to Practice - Streamlining Procurement and Engineering at Lawrence Livermore National Laboratory  

E-Print Network (OSTI)

16.33> BACKGROUND Lawrence Livermore National Laboratory (LLNL, http://www.llnl.gov) is a research and development facility owned by the U.S. Department of Energy and managed by the University of California. It was founded in 1952 as a sister lab of the Los Alamos National Laboratory and is located in Livermore, California. Organization The Lab has about 8,000 employees and an annual budget of $1 billion. Its programs include biology and biotechnology; defense and nuclear technologies; energy programs; environmental programs; laser programs; and non-proliferation, arms control and International security. The programs are supported by more general scientific and engineering directorates chemistry and material science; computation; engineering; and physics, and space technology (Figure 1). Director's Office Research Programs Biology and Biotechnology Research Defense and Nuclear Technologies Energy Programs Laser Programs Non-

Judith Gebauer; Frank Frber

2000-01-01T23:59:59.000Z

151

Electromechanical Battery Program at the Lawrence Livermore National Laboratory  

DOE Green Energy (OSTI)

New materials and new design concepts are being incorporated in a new approach to an old idea -- flywheel energy storage -- to create an important alternative to the electrochemical storage battery for use in electric vehicles or for stationary applications, such as computer back-up power or utility load-leveling. We visualize such EMBs (electromechanical batteries) as being modular in character, with small (1--5 kWh) modules being used for power-conditioning and for vehicular use, and paralleled 25 kWh modules being used for bulk storage, i.e., load-leveling, applications. In a funded program at the Laboratory two fractional kWh, 200 kW (design peak power) modules have been constructed and subjected to shake-down testing. Their design for high peak power was prompted by awareness of a particular commercial need, as a component in a power-line conditioning device. In addition to such stationary applications, the high power capability of our EMB designs makes them attractive for use in hybrid-electric vehicles. Important elements of the LLNL program include the development of passive magnetic bearings and the application of new high-efficiency permanent magnet arrays to an ironless generator/motor. Use of these particular elements, together with a multi-ring design for the flywheel rotor, is particularly conducive to a systemic approach to the design of an EMB module. These particular design developments have been motivated by the economic issues of simplification, lowered cost, and extended maintenance-free service life.

Post, R.F.; Bender, D.A.; Merritt, B.T.

1994-05-31T23:59:59.000Z

152

Development of a Novel Depleted Uranium Treatment Process at Lawrence Livermore National Laboratory  

Science Conference Proceedings (OSTI)

A three-stage process was developed at Lawrence Livermore National Laboratory to treat potentially pyrophoric depleted uranium metal wastes. The three-stage process includes waste sorting/rinsing, acid dissolution of the waste metal with a hydrochloric and phosphoric acid solution, and solidification of the neutralized residuals from the second stage with clay. The final product is a solid waste form that can be transported to and disposed of at a permitted low-level radioactive waste disposal site.

Gates-Anderson, D; Bowers, J; Laue, C; Fitch, T

2007-01-22T23:59:59.000Z

153

Review of Preparedness for Severe Natural Phenomena Events at the Lawrence Livermore National Laboratory, July 2013  

NLE Websites -- All DOE Office Websites (Extended Search)

Independent Oversight Review of Independent Oversight Review of Preparedness for Severe Natural Phenomena Events at the Lawrence Livermore National Laboratory May 2011 July 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose................................................................................................................................................ 1 2.0 Scope................................................................................................................................................... 1 3.0 Background ......................................................................................................................................... 2

154

Sandia National Laboratories: Working with Sandia: Procurement ...  

... Services RFQ for Sandia National Laboratories for Albuquerque (Sandia/NM), Livermore, California (Sandia/CA), and other remote sites. ...

155

Lawrence Livermore National Laboratory Emergency Response Capability Baseline Needs Assessment Requirement Document  

SciTech Connect

This revision of the LLNL Fire Protection Baseline Needs Assessment (BNA) was prepared by John A. Sharry, LLNL Fire Marshal and LLNL Division Leader for Fire Protection and reviewed by Martin Gresho, Sandia/CA Fire Marshal. The document follows and expands upon the format and contents of the DOE Model Fire Protection Baseline Capabilities Assessment document contained on the DOE Fire Protection Web Site, but only address emergency response. The original LLNL BNA was created on April 23, 1997 as a means of collecting all requirements concerning emergency response capabilities at LLNL (including response to emergencies at Sandia/CA) into one BNA document. The original BNA documented the basis for emergency response, emergency personnel staffing, and emergency response equipment over the years. The BNA has been updated and reissued five times since in 1998, 1999, 2000, 2002, and 2004. A significant format change was performed in the 2004 update of the BNA in that it was 'zero based.' Starting with the requirement documents, the 2004 BNA evaluated the requirements, and determined minimum needs without regard to previous evaluations. This 2010 update maintains the same basic format and requirements as the 2004 BNA. In this 2010 BNA, as in the previous BNA, the document has been intentionally divided into two separate documents - the needs assessment (1) and the compliance assessment (2). The needs assessment will be referred to as the BNA and the compliance assessment will be referred to as the BNA Compliance Assessment. The primary driver for separation is that the needs assessment identifies the detailed applicable regulations (primarily NFPA Standards) for emergency response capabilities based on the hazards present at LLNL and Sandia/CA and the geographical location of the facilities. The needs assessment also identifies areas where the modification of the requirements in the applicable NFPA standards is appropriate, due to the improved fire protection provided, the remote location and low population density of some the facilities. As such, the needs assessment contains equivalencies to the applicable requirements. The compliance assessment contains no such equivalencies and simply assesses the existing emergency response resources to the requirements of the BNA and can be updated as compliance changes independent of the BNA update schedule. There are numerous NFPA codes and standards and other requirements and guidance documents that address the subject of emergency response. These requirements documents are not always well coordinated and may contain duplicative or conflicting requirements or even coverage gaps. Left unaddressed, this regulatory situation results in frequent interpretation of requirements documents. Different interpretations can then lead to inconsistent implementation. This BNA addresses this situation by compiling applicable requirements from all identified sources (see Section 5) and analyzing them collectively to address conflict and overlap as applicable to the hazards presented by the LLNL and Sandia/CA sites (see Section 7). The BNA also generates requirements when needed to fill any identified gaps in regulatory coverage. Finally, the BNA produces a customized simple set of requirements, appropriate for the DOE protection goals, such as those defined in DOE O 420.1B, the hazard level, the population density, the topography, and the site layout at LLNL and Sandia/CA that will be used as the baseline requirements set - the 'baseline needs' - for emergency response at LLNL and Sandia/CA. A template approach is utilized to accomplish this evaluation for each of the nine topical areas that comprise the baseline needs for emergency response. The basis for conclusions reached in determining the baseline needs for each of the topical areas is presented in Sections 7.1 through 7.9. This BNA identifies only mandatory requirements and establishes the minimum performance criteria. The minimum performance criteria may not be the level of performance desired Lawrence Livermore National Laboratory or Sandia/CA

Sharry, J A

2009-12-30T23:59:59.000Z

156

Determination of effective acceleration for use in design at the Lawrence Livermore National Laboratory site  

Science Conference Proceedings (OSTI)

An rms-based effective acceleration study has been conducted for the Lawrence Livermore National Laboratory. The study used real time history records with epicentral distances, magnitudes and site conditions deemed appropriate for the LLNL Livermore site. Only those records having strong motion durations, T{sub D}{prime}, >3.0 seconds, and peak ground acceleration {ge} .4g were selected for determining the effective acceleration hazard curve used in design. These parameters are consistent with LLNL's use of broad-band Newmark-Hall Spectra for design, and the high peak instrumental accelerations corresponding to the return intervals of interest. Study results were used to modify the acceleration hazard curve for facility design/evaluation at LLNL.

Coats, D.W. Jr.

1991-09-01T23:59:59.000Z

157

Assessment of Eligibility to National Register of Historic Places Building 431 Lawrence Livermore National Laboratory  

SciTech Connect

Lawrence Livermore National Laboratory (LLNL) proposes to demolish the original sections of Building 431 at its main site in Livermore, California. As this action will constitute an undertaking within the regulatory constraints of the National Historic Preservation Act, LLNL arranged for an assessment of the building's historic significance. This report provides a brief history of the magnetic fusion energy research activities housed in Building 431 and a historic assessment of the building. The final recommendation of the report is that, although Building 431 housed some significant breakthroughs in accelerator technology and magnetic mirror plasma confinement, it lacks integrity for the periods of significance of those developments. It is, therefore, not eligible to the National Register of Historic Places.

Sullivan, M A; Ullrich, R A

2003-05-07T23:59:59.000Z

158

Sandia National Laboratory (CA) Former Workers, Construction...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Former Workers, Construction Worker Screening Projects Sandia National Laboratory (CA) Former Workers, Construction Worker Screening Projects Project Name: Worker Health...

159

Lawrence Livermore National Laboratory Federal Facility Agreement, June 29, 1992 Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Site 300) Site 300) Agreement Name Lawrence Livermore National Laboratory Federal Facility Agreement Under CERCLA Section 120, June 29, 1992 State California Agreement Type Federal Facility Agreement Legal Driver(s) CERCLA Scope Summary Establish a procedural framework and schedule for developing, implementing, and monitoring appropriate response actions at the Site Parties DOE; USEPA; California Department of Toxic Substances Control; Central Valley Regional Water Quality Control Board Date 6/29/1992 SCOPE * Establish a procedural framework and schedule for developing, implementing, and monitoring appropriate response actions at the Site. * Identify operable units (OUs) which are appropriate at the Site prior to the implementation of final remedial action(s).

160

14 MeV neutron work at the Lawrence Livermore National Laboratory  

SciTech Connect

The 14 MeV neutron work at Lawrence Livermore National Laboratory (LLNL) covers two main areas of interest to this Symposium: (1) measurements and calculations of differential cross sections; and (2) integral measurements of the neutron and gamma emission spectra. In both areas a large number of materials have been studied, spanning a wide mass range (6 < A < 239), of interest to fusion and hybrid reactors. In this presentation a brief description of the experimental techniques and calculational analysis is given for each of the above areas and the measured and calculated cross sections are discussed. 28 refs., 7 figs., 3 tabs.

Hansen, L.F.

1985-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "laboratory livermore ca" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Reservoir related research at Idaho National Engineering Laboratory, Lawrence Livermore National Laboratory, and Oak Ridge National Laboratory  

DOE Green Energy (OSTI)

Idaho National Engineering Laboratory (INEL), Lawrence Livermore National Laboratory (LLNL), and Oak Ridge National Laboratory (ORNL) conduct research in reservoir engineering, geophysics, and geochemistry, respectively, in support of the DOE Reservoir Technology Research Program. INEL's research has centered on the development of a reservoir simulation code to predict heat and solute transfer in fractured, porous media. In support of the initiatives for research at the The Geysers, INEL will initiate in cooperation with Lawrence Berkeley Laboratory, studies of injection and related interference effects at The Geysers. Work at LLNL is centered on analysis of the seismicity associated with production and injection at geothermal systems and effects of geothermal systems on seismic signals. LLNL is continuing studies of seismic attenuation related to the presence of steam at The Geysers. ORNL conducts research to obtain the thermodynamic and kinetic data needed as input into geochemical models such as those being developed by John Weare of the University of California, San Diego that predict the phase behavior and corrosion characteristics of geothermal brines. The current program at ORNL addresses the ion interaction parameters of bisulfate ion (HSO{sup {minus}}) with H{sup +} and Na{sup +}, the dissociation constant of HSO{sub 4}{sup {minus}}, OH{sup {minus}}, and the solubility and specification of aluminum in the system H{sup +}-Na{sup +}-K{sup +}-Cl{sup {minus}}-OH{sup {minus}}. ORNL is initiating studies of the distribution of HCl in steam in support of the expanded research program at The Geysers. 3 refs.

Renner, J.L. (EG and G Idaho, Inc., Idaho Falls, ID (USA)); Kasameyer, P.W. (Lawrence Livermore National Lab., CA (USA)); Mesmer, R.E. (Oak Ridge National Lab., TN (USA))

1990-01-01T23:59:59.000Z

162

LVOC - Livermore Valley Open Campus  

NLE Websites -- All DOE Office Websites (Extended Search)

Livermore Livermore National Laboratory researchers used meteorological observations and wind farm data in conjunction with high-performance computing to help industry partners...

163

Systems Studies Department FY 78 activity report. Volume 2. Systems analysis. [Sandia Laboratories, Livermore  

DOE Green Energy (OSTI)

The Systems Studies Department at Sandia Laboratories Livermore (SLL) has two primary responsibilities: to provide computational and mathematical services and to perform systems analysis studies. This document (Volume 2) describes the FY Systems Analysis highlights. The description is an unclassified overview of activities and is not complete or exhaustive. The objective of the systems analysis activities is to evaluate the relative value of alternative concepts and systems. SLL systems analysis activities reflect Sandia Laboratory programs and in 1978 consisted of study efforts in three areas: national security: evaluations of strategic, theater, and navy nuclear weapons issues; energy technology: particularly in support of Sandia's solar thermal programs; and nuclear fuel cycle physical security: a special project conducted for the Nuclear Regulatory Commission. Highlights of these activities are described in the following sections. 7 figures. (RWR)

Gold, T.S.

1979-02-01T23:59:59.000Z

164

Correlation between predicted and observed levels of airborne tritium at Lawrence Livermore Laboratory site boundary  

Science Conference Proceedings (OSTI)

At the Lawrence Livermore Laboratory, a computer code based on the Gaussian plume model is used to estimate radiation doses from routine or accidental release of airborne radioactive material. Routine releases of tritium have been used as a test of the overall uncertainty associated with these estimates. The ration of concentration to release rate at distances from the two principal release points to each of six site boundary sampling locations has been calcuated using local meteorological data. The concentration of airborne tritiated water vapor is continuously measured at the six sampling stations as part of the Laboratory's environmental monitoring program. Comparison of predicted with observed annual tritiated water concentrations in 1978 showed an average ratio of 2.6 with a range of from 0.97 to 5.8.

Lindeken, C.L.; Silver, W.J.; Toy, A.J.; White, J.H.

1980-02-19T23:59:59.000Z

165

GAO-04-986R Lawrence Livermore National Laboratory: Further Improvements Needed to Strengthen Controls Over the Purchase Card Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6R LLNL Purchase Card Controls 6R LLNL Purchase Card Controls United States Government Accountability Office Washington, DC 20548 August 6, 2004 Congressional Requesters Subject: Lawrence Livermore National Laboratory: Further Improvements Needed to Strengthen Controls Over the Purchase Card Program The Lawrence Livermore National Laboratory (LLNL) located in Livermore, California is a government-owned, contractor-operated national laboratory of the Department of Energy's (DOE) National Nuclear Security Administration (NNSA). 1 The University of California manages the lab under a cost-reimbursable contract with NNSA. The university is paid a management fee to operate the lab and is reimbursed for all allowable costs charged to the contract. During the fall of 2002, the Federal Bureau of Investigation began investigating two

166

Site safety plan for Lawrence Livermore National Laboratory CERCLA investigations at site 300. Revision 2  

SciTech Connect

Various Department of Energy Orders incorporate by reference, health and safety regulations promulgated by the Occupational Safety and Health Administration (OSHA). One of the OSHA regulations, 29 CFR 1910.120, Hazardous Waste Operations and Emergency Response, requires that site safety plans are written for activities such as those covered by work plans for Site 300 environmental investigations. Based upon available data, this Site Safety Plan (Plan) for environmental restoration has been prepared specifically for the Lawrence Livermore National Laboratory Site 300, located approximately 15 miles east of Livermore, California. As additional facts, monitoring data, or analytical data on hazards are provided, this Plan may need to be modified. It is the responsibility of the Environmental Restoration Program and Division (ERD) Site Safety Officer (SSO), with the assistance of Hazards Control, to evaluate data which may impact health and safety during these activities and to modify the Plan as appropriate. This Plan is not `cast-in-concrete.` The SSO shall have the authority, with the concurrence of Hazards Control, to institute any change to maintain health and safety protection for workers at Site 300.

Kilmer, J.

1997-08-01T23:59:59.000Z

167

2013 Annual Planning Summary for the Lawrence Livermore National...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lawrence Livermore National Laboratory 2013 Annual Planning Summary for the Lawrence Livermore National Laboratory 2013 Annual Planning Summary for the Lawrence Livermore National...

168

Remedial investigation of the High-Explosives (HE) Process Area, Lawrence Livermore National Laboratory Site 300  

Science Conference Proceedings (OSTI)

This report presents the results of a Remedial Investigation (RI) to define the extent of high explosives (HE) compounds and volatile organic compounds (VOCs) found in the soil, rocks, and ground water of the HE Process Area of Lawrence Livermore National Laboratory's (LLNL) Site 300 Facility. The report evaluates potential public health environmental risks associated with these compounds. Hydrogeologic information available before February 15, 1990, is included; however, chemical analyses and water-level data are reported through March 1990. This report is intended to assist the California Regional Water Quality Control Board (RWQCB)--Central Valley Region and the US Environmental Protection Agency (EPA) in evaluating the extent of environmental contamination of the LLNL HE Process Area and ultimately in designing remedial actions. 90 refs., 20 figs., 7 tabs.

Crow, N.B.; Lamarre, A.L.

1990-08-01T23:59:59.000Z

169

Title I conceptual design for Pit 6 landfill closure at Lawrence Livermore National Laboratory Site 300  

Science Conference Proceedings (OSTI)

The objective of this design project is to evaluate and prepare design and construction documents for a closure cover cap for the Pit 6 Landfill located at Lawrence Livermore National Laboratory Site 300. This submittal constitutes the Title I Design (Conceptual Design) for the closure cover of the Pit 6 Landfill. A Title I Design is generally 30 percent of the design effort. Title H Design takes the design to 100 percent complete. Comments and edits to this Title I Design will be addressed in the Title II design submittal. Contents of this report are as follows: project background; design issues and engineering approach; design drawings; calculation packages; construction specifications outline; and construction quality assurance plan outline.

MacDonnell, B.A.; Obenauf, K.S. [Golder Associates, Inc., Alameda, CA (United States)

1996-08-01T23:59:59.000Z

170

Reducing the solid waste stream: reuse and recycling at Lawrence Livermore National Laboratory  

Science Conference Proceedings (OSTI)

In Fiscal Year (FY) 1996 Lawrence Livermore National Laboratory (LLNL) increased its solid waste diversion by 365 percent over FY 1992 in five solid waste categories - paper, cardboard, wood, metals, and miscellaneous. (LLNL`s fiscal year is from October 1 to September 30.) LLNL reused/ recycled 6,387 tons of waste, including 340 tons of paper, 455 tons of scrap wood, 1,509 tons of metals, and 3,830 tons of asphalt and concrete (Table1). An additional 63 tons was diverted from landfills by donating excess food, selling toner cartridges for reconditioning, using rechargeable batteries, redirecting surplus equipment to other government agencies and schools, and comporting plant clippings. LLNL also successfully expanded its demonstration program to recycle and reuse construction and demolition debris as part of its facility-wide, comprehensive solid waste reduction programs.

Wilson, K. L.

1997-08-01T23:59:59.000Z

171

Impact of Recent Constraints on Intellectual Freedom on Science and Technology at Lawrence Livermore National Laboratory  

SciTech Connect

The Lawrence Livermore National Laboratory (LLNL) was created in 1952 to meet the nation's need for an expanded nuclear weapons research and development (R&D) capability. LLNL quickly grew to become a full-fledged nuclear weapons design laboratory with a broad range of technical capabilities similar to those of our sister laboratory--Los Alamos--with which we shared mission responsibilities. By its very nature, nuclear weapons R&D requires some of the most advanced science and technology (S&T). Accordingly, there is an obvious need for careful attention to ensure that appropriate security measures exist to deal with the sensitive aspects of nuclear weapons development. The trade-off between advancing S&T at the Laboratory and the need for security is a complex issue that has always been with us, As Edward Teller noted in a recent commentary in a May, 1999 editorial in the New York Times: ''The reaction of President Harry Truman to the leaking of information is well known. He imposed no additional measures for security. Instead, we have clear knowledge that the disclosures by (Klaus) Fuchs caused Truman to call for accelerated work on all aspects of nuclear weapons. The right prescription for safety is not reaction to dangers that are arising, but rather action leading to more knowledge and, one hopes, toward positive interaction between nations.'' To explore the issue of intellectual freedom at a national security laboratory such as LLNL, one must understand the type of activities we pursue and how our research portfolio has evolved since the Laboratory was established. Our mission affects the workforce skills, capabilities, and security measures that the Laboratory requires. The national security needs of the US have evolved, along with the S&T community in which the Laboratory resides and to which it contributes. These factors give rise to a greater need for the Laboratory to interact with universities, industry, and other national laboratories. Intellectual freedom at the Laboratory and constraints on it can be understood only within the context of our mission, our necessary interactions with other entities; and our need for an exceptional multidisciplinary workforce.

Wadsworth, J

2000-11-12T23:59:59.000Z

172

Evaluation of Cavity Collapse and Surface Crater Formation for Selected Lawrence Livermore National Laboratory Tests - 2011  

SciTech Connect

This report evaluates collapse evolution for selected Lawrence Livermore National Laboratory (LLNL) underground nuclear tests at the Nevada National Security Site (NNSS, formerly called the Nevada Test Site). The work is being done at the request of National Security Technologies, LLC (NSTec) and supports the Department of Energy, National Nuclear Security Administration for the Nevada Site Office Borehole Management Program (BMP). The primary objective of this program is to close (plug) weapons program legacy boreholes that are deemed no longer useful. Safety decisions must be made before a crater area, or potential crater area, can be reentered for any work. Our statements on cavity collapse and crater formation are input into their safety decisions. The BMP is an on-going program to address hundreds of boreholes at the NTS. Each year NSTec establishes a list of holes to be addressed. They request the assistance of the Lawrence Livermore National Laboratory and Los Alamos National Laboratory Containment Programs to provide information related to the evolution of collapse history and make statements on completeness of collapse as relates to surface crater stability. These statements do not include the effects of erosion that may modify the collapse craters over time. They also do not address possible radiation dangers that may be present. Subject matter experts from the LLNL Containment Program who had been active in weapons testing activities performed these evaluations. Information used included drilling and hole construction, emplacement and stemming, timing and sequence of the selected test and nearby tests, geology, yield, depth of burial, collapse times, surface crater sizes, cavity and crater volume estimations, ground motion, and radiological release information. Both classified and unclassified data were reviewed. Various amounts of information are available for these tests, depending on their age and other associated activities. Lack of data can hamper evaluations and introduce uncertainty. We make no attempt to quantify this uncertainty. The following unclassified summary statements describe collapse evolution and crater stability in response to a recent request to review 3 LLNL test locations in areas 2 and 12: Kennebec in U2af, Cumberland in U2e, and Yuba in U12b.10.

Pawloski, G A

2011-02-28T23:59:59.000Z

173

Screening Program Reduced Melanoma Mortality at the Lawrence Livermore National Laboratory, 1984-1996  

SciTech Connect

Worldwide incidence of cutaneous malignant melanoma has increased substantially, and no screening program has yet demonstrated reduction in mortality. We evaluated the education, self examination and targeted screening campaign at the Lawrence Livermore National Laboratory (LLNL) from its beginning in July 1984 through 1996. The thickness and crude incidence of melanoma from the years before the campaign were compared to those obtained during the 13 years of screening. Melanoma mortality during the 13-year period was based on a National Death Index search. Expected yearly deaths from melanoma among LLNL employees were calculated by using California mortality data matched by age, sex, and race/ethnicity and adjusted to exclude deaths from melanoma diagnosed before the program began or before employment at LLNL. After the program began, crude incidence of melanoma thicker than 0.75 mm decreased from 18 to 4 cases per 100,000 person-years (p = 0.02), while melanoma less than 0.75mm remained stable and in situ melanoma increased substantially. No eligible melanoma deaths occurred among LLNL employees during the screening period compared with a calculated 3.39 expected deaths (p = 0.034). Education, self examination and selective screening for melanoma at LLNL significantly decreased incidence of melanoma thicker than 0.75 mm and reduced the melanoma-related mortality rate to zero. This significant decrease in mortality rate persisted for at least 3 yr after employees retired or otherwise left the laboratory.

Schneider, MD, J S; II, PhD, D; MD, PhD, M

2006-10-12T23:59:59.000Z

174

Serving the Nation for Fifty Years: 1952 - 2002 Lawrence Livermore National Laboratory [LLNL], Fifty Years of Accomplishments  

DOE R&D Accomplishments (OSTI)

For 50 years, Lawrence Livermore National Laboratory has been making history and making a difference. The outstanding efforts by a dedicated work force have led to many remarkable accomplishments. Creative individuals and interdisciplinary teams at the Laboratory have sought breakthrough advances to strengthen national security and to help meet other enduring national needs. The Laboratory's rich history includes many interwoven stories -- from the first nuclear test failure to accomplishments meeting today's challenges. Many stories are tied to Livermore's national security mission, which has evolved to include ensuring the safety, security, and reliability of the nation's nuclear weapons without conducting nuclear tests and preventing the proliferation and use of weapons of mass destruction. Throughout its history and in its wide range of research activities, Livermore has achieved breakthroughs in applied and basic science, remarkable feats of engineering, and extraordinary advances in experimental and computational capabilities. From the many stories to tell, one has been selected for each year of the Laboratory's history. Together, these stories give a sense of the Laboratory -- its lasting focus on important missions, dedication to scientific and technical excellence, and drive to made the world more secure and a better place to live.

2002-00-00T23:59:59.000Z

175

Institute of Geophysics and Planetary Physics, Lawrence Livermore National Laboratory, 1996 Annual Report  

Science Conference Proceedings (OSTI)

The Institute of Geophysics and Planetary Physics (IGPP) is a Multicampus Research Unit of the University of California (UC). IGPP was founded in 1946 at UC Los Angeles with a charter to further research in the earth and planetary sciences and in related fields. The Institute now has branches at UC campuses in Los Angeles, San Diego, and Riverside, and at Los Alamos and Lawrence Livermore national laboratories. The University-wide IGPP has played an important role in establishing interdisciplinary research in the earth and planetary sciences. For example, IGPP was instrumental in founding the fields of physical oceanography and space physics, which at the time fell between the cracks of established university departments. Because of its multicampus orientation, IGPP has sponsored important interinstitutional consortia in the earth and planetary sciences. Each of the five branches has a somewhat different intellectual emphasis as a result of the interplay between strengths of campus departments and Laboratory programs. The IGPP branch at Lawrence Livermore National Laboratory (LLNL) was approved by the Regents of the University of California in 1982. IGPP-LLNL emphasizes research in seismology, geochemistry, cosmochemistry, and astrophysics. It provides a venue for studying the fundamental aspects of these fields, thereby complementing LLNL programs that pursue applications of these disciplines in national security and energy research. IGPP-LLNL is directed by Charles Alcock and was originally organized into three centers: Geosciences, stressing seismology; High-Pressure Physics, stressing experiments using the two-stage light-gas gun at LLNL; and Astrophysics, stressing theoretical and computational astrophysics. In 1994, the activities of the Center for High-Pressure Physics were merged with those of the Center for Geosciences. The Center for Geosciences, headed by Frederick Ryerson, focuses on research in geophysics and geochemistry. The Astrophysics Research Center, headed by Charles Alcock, provides a home for theoretical and observational astrophysics and serves as an interface with the Physics and Space Technology Department's Laboratory for Experimental Astrophysics and with other astrophysics efforts at LLNL. The IGPP branch at LLNL (as well as the branch at Los Alamos) also facilitates scientific collaborations between researchers at the UC campuses and those at the national laboratories in areas related to earth science, planetary science, and astrophysics. It does this by sponsoring the University Collaborative Research Program (UCRP), which provides funds to UC campus scientists for joint research projects with LLNL. The goals of the UCRP are to enrich research opportunities for UC campus scientists by making available to them some of LLNL's unique facilities and expertise, and to broaden the scientific program at LLNL through collaborative or interdisciplinary work with UC campus researchers. UCRP funds (provided jointly by the Regents of the University of California and by the Director of LLNL) are awarded annually on the basis of brief proposals, which are reviewed by a committee of scientists from UC campuses, LLNL programs, and external universities and research organizations. Typical annual funding for a collaborative research project ranges from $5,000 to $25,000. Funds are used for a variety of purposes, including salary support for visiting graduate students, postdoctoral fellows, and faculty; released-time salaries for LLNL scientists; and costs for experimental facilities. Although the permanent LLNL staff assigned to IGPP is relatively small (presently about five full-time equivalents), IGPP's research centers have become vital research organizations. This growth has been possible because of IGPP support for a substantial group of resident postdoctoral fellows; because of the 20 or more UCRP projects funded each year; and because IGPP hosts a variety of visitors, guests, and faculty members (from both UC and other institutions) on sabbatical leave. To focus attention on areas of topical interest i

Ryerson, F. J., Institute of Geophysics and Planetary Physics

1998-03-23T23:59:59.000Z

176

Allocation of Direct and Indirect Costs … Cost Accounting Standard 418 … at Lawrence Livermore National Laboratory, OAS-L-13-07  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Allocation of Direct and Indirect Allocation of Direct and Indirect Costs - Cost Accounting Standard 418 - at Lawrence Livermore National Laboratory OAS-L-13-07 April 2013 Department of Energy Washington, DC 20585 April 11, 2013 MEMORANDUM FOR THE MANAGER, LIVERMORE SITE OFFICE FROM: Rickey R. Hass Deputy Inspector General for Audits and Inspections Office of Inspector General SUBJECT: INFORMATION: Audit Report on the "Allocation of Direct and Indirect Costs - Cost Accounting Standard 418 - at Lawrence Livermore National Laboratory" BACKGROUND The attached report presents the results of the audit of Lawrence Livermore National Laboratory's (Livermore) Allocation of Direct and Indirect Costs - Cost Accounting Standard 418, conducted to address the performance audit objective described below. The Office of

177

Summary Report of Summer 2009 NGSI Human Capital Development Efforts at Lawrence Livermore National Laboratory  

SciTech Connect

In 2009, Lawrence Livermore National Laboratory (LLNL) engaged in several activities to support NA-24's Next Generation Safeguards Initiative (NGSI). This report outlines LLNL's efforts to support Human Capital Development (HCD), one of five key components of NGSI managed by Dunbar Lockwood in the Office of International Regimes and Agreements (NA-243). There were five main LLNL summer safeguards HCD efforts sponsored by NGSI: (1) A joint Monterey Institute of International Studies/Center for Nonproliferation Studies-LLNL International Safeguards Policy and Information Analysis Course; (2) A Summer Safeguards Policy Internship Program at LLNL; (3) A Training in Environmental Sample Analysis for IAEA Safeguards Internship; (4) Safeguards Technology Internships; and (5) A joint LLNL-INL Summer Safeguards Lecture Series. In this report, we provide an overview of these five initiatives, an analysis of lessons learned, an update on the NGSI FY09 post-doc, and an update on students who participated in previous NGSI-sponsored LLNL safeguards HCD efforts.

Dougan, A; Dreicer, M; Essner, J; Gaffney, A; Reed, J; Williams, R

2009-11-16T23:59:59.000Z

178

Physical and chemical sensor technologies developed at Lawrence Livermore National Laboratory  

Science Conference Proceedings (OSTI)

The increasing emphasis on envirorunental issues, waste reduction, and improved efficiency for industrial processes has mandated the development of new chemical and physical sensors for field or in-plant use. The Lawrence Livermore National Laboratory (LLNL) has developed a number of technologies for sensing physical and chemical properties. Table 1 gives some examples of several sensors. that have been developed recently for environmental, industrial, commercial or government applications. Physical sensors of pressure, temperature, acceleration, acoustic vibration spectra, and ionizing radiation have been developed. Sensors developed at LLNL for chemical species include inorganic solvents, heavy metal ions`, and gaseous atoms and compounds. Primary sensing technologies we have employed have been based on optical fibers, semiconductor optical or radiation detectors, electrochemical activity, micromachined electromechanical (MEMs) structures, or chemical separation technologies. The complexities of these sensor systems range from single detectors to more advanced micro-instruments on-a-chip. For many of the sensors we have developed the necessary intelligent electronic support systems for both local and remote sensing applications. Each of these sensor technologies are briefly described in the remaining sections of this paper.

Balch, J.W.; Ciarlo, D.; Folta, J.; Glass, R.; Hagans, K.; Milanovich, F.; Sheem, S.

1993-08-10T23:59:59.000Z

179

Initial ultraviolet-B intensity data at Lawrence Livermore National Laboratory  

SciTech Connect

A measurement of UV-B reaching the ground has been established at the Lawrence Livermore National Laboratory. The instrument is the same as those operated by the National Institute for Water and Atmospheric Research in their network in New Zealand. The wavelength response of the radiometer is similar to the response of human skin to UV-B. Intensity data are collected by averaging meter readings over 10 minutes from 6:00 am to 6:00 pm Pacific Standard Time, then converting to effective UV-B intensity normalized at 310 nm. This report checks the intensities obtained at LLNL from November 1992 to July 1993 against the expected results: Increased solar zenith angle, whether from the daily cycle or from the yearly cycle in solar position, should decrease UV-B intensity at the ground due to increased optical path; and, intervening cloud cover should decrease ground UV-B intensity. Three additional findings are reported here: Maximum UV-B intensity on cloudless days does not always follow a smooth curve, but instead varies either high or low to some extent; Morning UV-B intensities are less than those in the afternoon at comparable solar zenith angles at certain times of year; LLNL wintertime daily-averaged UV-B intensities are somewhat higher than those observed at Auckland, New Zealand in their winter of 1992.

Patten, K.O. Jr.; Wuebbles, D.J. [Lawrence Livermore National Lab., CA (United States); Smith, G.J. [New Zealand Inst. for Industrial Research and Development, Lower Hutt (New Zealand)

1993-10-01T23:59:59.000Z

180

Lawrence Livermore National Laboratory underground coal gasification data base. [US DOE-supported field tests; data  

SciTech Connect

The Department of Energy has sponsored a number of field projects to determine the feasibility of converting the nation's vast coal reserves into a clean efficient energy source via underground coal gasification (UCG). Due to these tests, a significant data base of process information has developed covering a range of coal seams (flat subbituminous, deep flat bituminous and steeply dipping subbituminous) and processing techniques. A summary of all DOE-sponsored tests to data is shown. The development of UCG on a commercial scale requires involvement from both the public and private sectors. However, without detailed process information, accurate assessments of the commercial viability of UCG cannot be determined. To help overcome this problem the DOE has directed the Lawrence Livermore National Laboratory (LLNL) to develop a UCG data base containing raw and reduced process data from all DOE-sponsored field tests. It is our intent to make the data base available upon request to interested parties, to help them assess the true potential of UCG.

Cena, R. J.; Thorsness, C. B.

1981-08-21T23:59:59.000Z

Note: This page contains sample records for the topic "laboratory livermore ca" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Estimating The Reliability of the Lawrence Livermore National Laboratory (LLNL) Flash X-ray (FXR) Machine  

Science Conference Proceedings (OSTI)

At Lawrence Livermore National Laboratory (LLNL), our flash X-ray accelerator (FXR) is used on multi-million dollar hydrodynamic experiments. Because of the importance of the radiographs, FXR must be ultra-reliable. Flash linear accelerators that can generate a 3 kA beam at 18 MeV are very complex. They have thousands, if not millions, of critical components that could prevent the machine from performing correctly. For the last five years, we have quantified and are tracking component failures. From this data, we have determined that the reliability of the high-voltage gas-switches that initiate the pulses, which drive the accelerator cells, dominates the statistics. The failure mode is a single-switch pre-fire that reduces the energy of the beam and degrades the X-ray spot-size. The unfortunate result is a lower resolution radiograph. FXR is a production machine that allows only a modest number of pulses for testing. Therefore, reliability switch testing that requires thousands of shots is performed on our test stand. Study of representative switches has produced pre-fire statistical information and probability distribution curves. This information is applied to FXR to develop test procedures and determine individual switch reliability using a minimal number of accelerator pulses.

Ong, M M; Kihara, R; Zentler, J M; Kreitzer, B R; DeHope, W J

2007-06-27T23:59:59.000Z

182

Recent laser-plasma interaction experiments at the Lawrence Livermore National Laboratory  

Science Conference Proceedings (OSTI)

Recent Livermore experiments are aimed at investigating laser-plasma interaction issues which are relevant to ablatively driven fusion processes. We report the data obtained from using longer pulses and shorter laser wavelengths.

Lee, P.H.Y.

1980-01-01T23:59:59.000Z

183

Low-Level Plutonium Bioassay Measurements at the Lawrence Livermore National Laboratory  

Science Conference Proceedings (OSTI)

Plutonium-239 ({sup 239}Pu) and plutonium-240 ({sup 240}Pu) are important alpha emitting radionuclides contained in radioactive debris from nuclear weapons testing. {sup 239}Pu and {sup 240}Pu are long-lived radionuclides with half-lives of 24,400 years and 6580 years, respectively. Concerns over human exposure to plutonium stem from knowledge about the persistence of plutonium isotopes in the environment and the high relative effectiveness of alpha-radiation to cause potential harm to cells once incorporated into the human body. In vitro bioassay tests have been developed to assess uptakes of plutonium based on measured urinary excretion patterns and modeled metabolic behaviors of the absorbed radionuclides. Systemic plutonium absorbed by the deep lung or from the gastrointestinal tract after ingestion is either excreted or distributed to other organs, primarily to the liver and skeleton, where it is retained for biological half-times of around 20 and 50 years, respectively. Dose assessment and atoll rehabilitation programs in the Marshall Islands have historically given special consideration to residual concentrations of plutonium in the environment even though the predicted dose from inhalation and/or ingestion of plutonium accounts for less than 5% of the annual effective dose from exposure to fallout contamination. Scientists from the Lawrence Livermore National Laboratory (LLNL) have developed a state-of-the-art bioassay test to assess urinary excretion rates of plutonium from Marshallese populations. This new heavy-isotope measurement system is based on Accelerator Mass Spectrometry (AMS). The AMS system at LLNL far exceeds the standard measurement requirements established under the latest United States Department of Energy (DOE) regulation, 10CFR 835, for occupational monitoring of plutonium, and offers several advantages over classical as well as competing new technologies for low-level detection and measurement of plutonium isotopes. The United States National Institute of Standards and Technology (NIST) has independently verified the accuracy and precision of the AMS detection system for low-level bioassay measurements of plutonium isotopes through participation in an intercomparison exercise whereby performance evaluation samples were prepared in a synthetic urine matrix and submitted to participating laboratories for blind analysis. The results of the analyses were then sent to the NIST to independently evaluate the performance of laboratory participants. At LLNL, the AMS measurements of {sup 239}Pu and {sup 240}Pu met ANSI 13.30 criteria for both precision and accuracy at all sample test levels. Livermore scientists continue to test the performance of the Marshall Islands Plutonium Urinalysis Program by routine blind analysis of externally prepared quality control test samples, and through the rigorous implementation of standardized methods and procedures. Although not addressed directly in the report, AMS measurements show that the urinary excretion of plutonium by selected Marshallese populations fall into a low and reproducible range. Moreover, there appears to be no evidence of small incremental intakes of plutonium associated with resettlement activities - past or present. The improved quality, reliability and detection sensitivity of AMS for low-level plutonium isotope measurements will enable DOE to develop high-quality, baseline urinary excretion data for Marshallese populations, and accurately assess and track potential uptakes of plutonium. associated with resettlement activities and/or from long-term changes in plutonium exposure conditions in the Marshall Islands.

Hamilton, T; Brown, T; Hickman, D; Marchetti, A; Williams, R; Kehl, S

2007-06-18T23:59:59.000Z

184

Institute of Geophysics and Planetary Physics (IGPP), Lawrence Livermore National Laboratory (LLNL): Quinquennial report, November 14-15, 1996  

Science Conference Proceedings (OSTI)

This Quinquennial Review Report of the Lawrence Livermore National Laboratory (LLNL) branch of the Institute for Geophysics and Planetary Physics (IGPP) provides an overview of IGPP-LLNL, its mission, and research highlights of current scientific activities. This report also presents an overview of the University Collaborative Research Program (UCRP), a summary of the UCRP Fiscal Year 1997 proposal process and the project selection list, a funding summary for 1993-1996, seminars presented, and scientific publications. 2 figs., 3 tabs.

Tweed, J.

1996-10-01T23:59:59.000Z

185

Sandia National Laboratories, Livermore Environmental Protection Implementation Plan for the period November 9, 1991--November 9, 1992  

SciTech Connect

Sandia National Laboratories, as part of the DOE complex, is committed to full compliance with all applicable environmental laws and regulations. This Environmental Protection Implementation Plan (EPIP) is intended to ensure that the environmental program objectives of DOE Order 5400.1 are achieved at SNL, Livermore. The EPIP will serve as an aid to management and staff to implement these new programs in a timely manner. 23 refs., 4 figs., 1 tab.

Not Available

1991-10-01T23:59:59.000Z

186

Results of Surveys for Special Status Reptiles at the Site 300 Facilities of Lawrence Livermore National Laboratory  

Science Conference Proceedings (OSTI)

The purpose of this report is to present the results of a live-trapping and visual surveys for special status reptiles at the Site 300 Facilities of Lawrence Livermore National Laboratory (LLNL). The survey was conducted under the authority of the Federal recovery permit of Swaim Biological Consulting (PRT-815537) and a Memorandum of Understanding issued from the California Department of Fish and Game. Site 300 is located between Livermore and Tracy just north of Tesla road (Alameda County) and Corral Hollow Road (San Joaquin County) and straddles the Alameda and San Joaquin County line (Figures 1 and 2). It encompasses portions of the USGS 7.5 minute Midway and Tracy quadrangles (Figure 2). Focused surveys were conducted for four special status reptiles including the Alameda whipsnake (Masticophis lateralis euryxanthus), the San Joaquin Whipsnake (Masticophis Hagellum ruddock), the silvery legless lizard (Anniella pulchra pulchra), and the California horned lizard (Phrynosoma coronanum frontale).

Woollett, J J

2008-09-18T23:59:59.000Z

187

Investigating Sources of Toxicity in Stormwater: Algae Mortality in Runoff Upstream of the Lawrence Livermore National Laboratory  

SciTech Connect

A source evaluation case study is presented for observations of algae toxicity in an intermittent stream passing through the Lawrence Livermore National Laboratory near Livermore, California. A five-step procedure is discussed to determine the cause of water toxicity problems and to determine appropriate environmental management practices. Using this approach, an upstream electrical transfer station was identified as the probable source of herbicides causing the toxicity. In addition, an analytical solution for solute transport in overland flow was used to estimate the application level of 40 Kg/ha. Finally, this source investigation demonstrates that pesticides can impact stream water quality regardless of application within levels suggested on manufacturer labels. Environmental managers need to ensure that pesticides that could harm aquatic organisms (including algae) not be used within close proximity to streams or storm drainages and that application timing should be considered for environmental protection.

Campbell, C G; Folks, K; Mathews, S; Martinelli, R

2003-10-06T23:59:59.000Z

188

Characterization of the Neutron Fields in the Lawrence Livermore National Laboratory (LLNL) Radiation Calibration Laboratory Low Scatter Calibration Facility  

SciTech Connect

In June 2007, the Department of Energy (DOE) revised its rule on Occupational Radiation Protection, Part 10 CFR 835. A significant aspect of the revision was the adoption of the recommendations outlined in International Commission on Radiological Protection (ICRP) Report 60 (ICRP-60), including new radiation weighting factors for neutrons, updated internal dosimetric models, and dose terms consistent with the newer ICRP recommendations. ICRP-60 uses the quantities defined by the International Commission on Radiation Units and Measurements (ICRU) for personnel and area monitoring including the ambient dose equivalent H*(d). A Joint Task Group of ICRU and ICRP has developed various fluence-to-dose conversion coefficients which are published in ICRP-74 for both protection and operational quantities. In February 2008, Lawrence Livermore National Laboratory (LLNL) replaced its old pneumatic transport neutron irradiation system in the Radiation Calibration Laboratory (RCL) Low Scatter Calibration Facility (B255, Room 183A) with a Hopewell Designs irradiator model N40. The exposure tube for the Hopewell system is located close to, but not in exactly the same position as the exposure tube for the pneumatic system. Additionally, the sources for the Hopewell system are stored in Room 183A where, prior to the change, they were stored in a separate room (Room 183C). The new source configuration and revision of the 10 CFR 835 radiation weighting factors necessitate a re-evaluation of the neutron dose rates in B255 Room 183A. This report deals only with the changes in the operational quantities ambient dose equivalent and ambient dose rate equivalent for neutrons as a result of the implementation of the revised 10 CFR 835. In the report, the terms 'neutron dose' and 'neutron dose rate' will be used for convenience for ambient neutron dose equivalent and ambient neutron dose rate equivalent unless otherwise stated.

Radev, R

2009-09-04T23:59:59.000Z

189

Final Progress Report for the NASA Inductrack Model Rocket Launcher at the Lawrence Livermore National Laboratory  

DOE Green Energy (OSTI)

The Inductrack magnetic levitation system, developed at the Lawrence Livermore National Laboratory, was studied for its possible use for launching rockets. Under NASA sponsorship, a small model system was constructed at the Laboratory to pursue key technical aspects of this proposed application. The Inductrack is a passive magnetic levitation system employing special arrays of high-field permanent magnets (Halbach arrays) on the levitating cradle, moving above a ''track'' consisting of a close-packed array of shorted coils with which are interleaved with special drive coils. Halbach arrays produce a strong spatially periodic magnetic field on the front surface of the arrays, while canceling the field on their back surface. Relative motion between the Halbach arrays and the track coils induces currents in those coils. These currents levitate the cradle by interacting with the horizontal component of the magnetic field. Pulsed currents in the drive coils, synchronized with the motion of the carrier, interact with the vertical component of the magnetic field to provide acceleration forces. Motional stability, including resistance to both vertical and lateral aerodynamic forces, is provided by having Halbach arrays that interact with both the upper and the lower sides of the track coils. At present, a 7.8 meter track composed of drive and levitation coils has been built and the electronic drive circuitry performs as designed. A 9 kg cradle that carries the Halbach array of permanent magnets has been built. A mechanical launcher is nearly complete which will provide an initial cradle velocity of 9 m/s into the electronic drive section. We have found that the drag forces from the levitation coils were higher than in our original design. However, measurements of drag force at velocities less than 1 m/s are exactly as predicted by theory. Provided here are recommended design changes to improve the track's performance so that a final velocity of 40 m/s can be achieved with the existing track. This project was designed and built as part of a Phase II contract that started in Feb. 1999 and ended in Sep. 2000 at a cost of $600K. A detailed budget on how this funding was spent is also included here.

Tung, L S; Post, R F; Martinez-Frias, J

2001-06-27T23:59:59.000Z

190

Since 1949, Sandia National Laboratories has  

NLE Websites -- All DOE Office Websites (Extended Search)

across our sites in Albuquerque, NM and Livermore, CA. Our highest goal is to become the laboratory that the United States turns to first for innovative systems engineering...

191

Impact of the January-February 1980 earthquake sequence on various structures at the Lawrence Livermore National Laboratory  

SciTech Connect

On January 24, 1980, California's Livermore Valley was rocked by a moderate earthquake that caused some damage to the Lawrence Livermore National Laboratory (LLNL). The earthquake, which measured 5.5 on the Richter scale and was centered about 20 km (12 mi) northwest of the Laboratory, produced estimated peak horizontal ground acceleration at LLNL of between 0.15 and 0.3 g. The earthquake was part of a sequence that included two sharp aftershocks (magnitudes 5.2 and 4.2) within 1.5 minutes of the initial event. A second earthquake (magnitude 5.8) struck on January 26, and several lesser earthquakes occurred during the next few weeks. This paper describes the damage impact of the January 24 earthquake, including: background information on LLNL, discussion of pre-earthquake seismic safety philosophy, and description of the impact of the January 24 earthquake, including a description of the seismic setting of the Laboratory, a discussion of the ground motion, and a summary of damage. This paper also describes a data gathering and reduction effort at LLNL in the aftermath of the January earthquakes.

Murray, R.C.; Nelson, T.A.; Coats, D.W.; Ng, D.S.; Weaver, H.J.

1981-02-04T23:59:59.000Z

192

Terahop and Lawrence Livermore National LaboratoryStructural Fire RF Testing  

SciTech Connect

The Georgia Public Safety Training Center's Live Fire Training Facility in Forsyth, GA is a three story structure constructed of rebar-reinforced concrete wall and floors. All the door and window coverings on the building are constructed of thick, plate metal to withstand the high temperatures generated inside the building during training exercises. All of the building's walls and floors are 1-foot thick, and regular concrete columns run up along the inside of the wall increasing the thickness to 20-inches in those locations. A center concrete staircase divides the structure in half. For typical exercises, fires are started in the back right corner of the building on the first floor and in the front right corner on the second floor as shown in Figure 2. Due to the high heat generated during these exercises, measured at 300 F on the floor and 700 F near the ceilings, there were limited locations at which equipment could be placed that did not incorporate heat shielding, such as the Lawrence Livermore National Laboratory's UWB system. However, upon inspection of the building, two preferable locations were identified in which equipment could be placed that would be protected from the temperature extremes generated by the fires. These locations are identified in Figure 2 as the tested TX locations. These were preferred locations because, while they protected the hardware from temperature extremes, they also force the RF transmission path through the building to cross very near the fire locations and anticipated plasma generation regions. Both of the locations listed in Figure 2 were tested by the UWB equipment and found to be suitable deployment locations to establish a solid RF link for data collection. The transmission location on the first floor was ultimately chosen for use during the actual exercises because it was accessible to the data collection team during the exercises. This allowed them to remove the hardware once the testing was complete without having to wait for the entire day of exercises to complete. Unfortunately, RF transmission directly through the central location of the fire on the first floor was not possible, so the transmission path had to be shifted approximately 6-feet off the side of the fire's center. The corner where the fire was located on the first floor was re-enforced with a mixture of concrete and metal fibers for heat resistance. This material was highly reflective, permitting very little RF energy to pass through it. This phenomenon was also observed and verified by Terahop's testing, discussed in the next section. An image of these re-enforced walls and a close up of the actual wall material containing the metal fibers can bee seen in Figure 3.

Haugen, P; Pratt, G

2007-02-26T23:59:59.000Z

193

L AW R E N C E N A T I O N A L LABORATORY LIVERMORE  

NLE Websites -- All DOE Office Websites (Extended Search)

AW AW R E N C E N A T I O N A L LABORATORY LIVERMORE Atoms for Peace After 50 Years R.N. Schock, E.S. Vergino, N. Joeck, and R.F. Lehman Issues in Science and Technology Spring 2004 Spring 2004 UCRL-JRNL-203590 This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark,

194

Lawrence Livermore Laboratory geothermal energy program. A status report on the development of the Total-Flow concept  

DOE Green Energy (OSTI)

The technology development activities of the Geothermal Energy Program at the Lawrence Livermore Laboratory are summarized. Significant progress toward development of the Total-Flow concept was made during FY 1978. The results show that the original goal of 70% engine efficiency for the Total-Flow impulse turbine is achievable, that a Total-Flow system is competitive economically with conventional systems, and that the Total-Flow concept offers the benefit of more efficient utilization of geothermal resources for electric power production. The evaluation of several liquid expanders designed for low-temperature (including geopressured) resources suggests that if development were continued, these expanders could be used in combination with conventional systems to increase overall system efficiency. Although the program was terminated before complete field testing of prototype systems could be carried out, the concepts have been adopted in other countries (Japan and Mexico), where development is continuing.

Austin, A.L.; Lundberg, A.W.

1978-10-02T23:59:59.000Z

195

Sandia National Laboratory (CA), Former Production Workers Screening...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

, Former Production Workers Screening Projects Sandia National Laboratory (CA), Former Production Workers Screening Projects Project Name: Worker Health Protection Program Covered...

196

Calibration of the Lawrence Livermore National Laboratory Passive-Active Neutron Drum Shuffler for Measurement of Highly Enriched Uranium Oxide  

SciTech Connect

In partial response to a Department of Energy (DOE) request to evaluate the state of measurements of special nuclear material, Lawrence Livermore National Laboratory (LLNL) evaluated and classified all highly enriched uranium (HEU) oxide items in its inventory. Because of a lack of traceable HEU standards, no items were deemed to fit the category of well measured. A subsequent DOE-HQ sponsored survey by New Brunswick Laboratory resulted in their preparation of certified reference material (CRM) 149 [Uranium (93% Enriched) Oxide-U{sub 3}O{sub 8} Standard for Neutron Counting Measurements], a unit of which was delivered to LLNL in October of 1999. This paper describes the approach to calibration of the LLNL passive-active neutron drum (PAN) shuffler for measurement of poorly measured/unmeasured HEU oxide inventory. Included are discussions of (1) the calibration effort, including the development of the mass calibration curve; (2) the results from an axial and radial mapping of the detector response over a wide region of the PAN shuffler counting chamber, and (3) an error model for the total (systematic + random) uncertainty in the predicted mass that includes the uncertainties in calibration and sample position.

Mount, M.; Glosup, J.; Cochran, C.; Dearborn, D.; Endres, E.

2000-06-16T23:59:59.000Z

197

Evaluation of Cavity Collapse and Surface Crater Formation for Selected Lawrence Livermore National Laboratory Underground Nuclear Tests - 2011, Part 2  

SciTech Connect

This report evaluates collapse evolution for selected Lawrence Livermore National Laboratory (LLNL) underground nuclear tests at the Nevada National Security Site (NNSS, formerly called the Nevada Test Site). The work is being done to support several different programs that desire access to the ground surface above expended underground nuclear tests. The programs include: the Borehole Management Program, the Environmental Restoration Program, and the National Center for Nuclear Security Gas-Migration Experiment. Safety decisions must be made before a crater area, or potential crater area, can be reentered for any work. Evaluation of cavity collapse and crater formation is input into the safety decisions. Subject matter experts from the LLNL Containment Program who participated in weapons testing activities perform these evaluations. Information used included drilling and hole construction, emplacement and stemming, timing and sequence of the selected test and nearby tests, geology, yield, depth of burial, collapse times, surface crater sizes, cavity and crater volume estimations, ground motion, and radiological release information. Both classified and unclassified data were reviewed. The evaluations do not include the effects of erosion that may modify the collapse craters over time. They also do not address possible radiation dangers that may be present. Various amounts of information are available for these tests, depending on their age and other associated activities. Lack of data can hamper evaluations and introduce uncertainty. We make no attempt to quantify this uncertainty. Evaluation of Cavity Collapse and Surface Crater Formation for Selected Lawrence Livermore National Laboratory Underground Nuclear Tests - 2011 was published on March 2, 2011. This report, considered Part 2 of work undertaken in calendar year 2011, compiles evaluations requested after the March report. The following unclassified summary statements describe collapse evolution and crater stability in response to a recent request to review 6 LLNL test locations in Yucca Flat, Rainier Mesa, and Pahute Mesa. They include: Baneberry in U8d; Clearwater in U12q; Wineskin in U12r, Buteo in U20a and Duryea in nearby U20a1; and Barnwell in U20az.

Pawloski, G A

2012-01-30T23:59:59.000Z

198

Lawrence Livermore National Laboratory search and property protection programs -- March 22, 1984  

SciTech Connect

On November 30, 1983, the LLNL Directorate met to discuss Laboratory policy regarding searches. An advance package (dated November 16, 1983) discussing background issues and DOE`s property protection and safeguards concerns was distributed to the Director and Associate Directors. A number of Associate Directors expressed concern about the nature of the theft problem at the Laboratory. There was also discussion about many employees` perception that Laboratory Management (including the Security Department) really did not care. The Director endorsed the need to establish searches in the SNM areas. The property protection type of searches were perceived as being very sensitive from a labor relations perspective. Nevertheless, the Directorate was sufficiently concerned about the safeguards and property protection issues to request the Security Department to develop a search plan for their review. A draft Search Program was prepared by the Security Department and reviewed individually with the Directorate for their comments. On March 19, 1984, the Directorate met collectively to consider a summary of these individual comments and to finalize a Search Program. Decisions made during that meeting have been incorporated into this document. This plan describes the search procedures that will be implemented at SNM areas and a two point program concerning property protection. Procedures are also set forth that will allow for expanded searches during periods of heightened security concern.

Leary, D.A.

1984-03-22T23:59:59.000Z

199

The Software Technology Center at Lawrence Livermore National Laboratory: Software engineering technology transfer in a scientific R&D laboratory  

SciTech Connect

Software engineering technology transfer for productivity and quality improvement can be difficult to initiate and sustain in a non-profit research laboratory where the concepts of profit and loss do not exist. In this experience report, the author discusses the approach taken to establish and maintain a software engineering technology transfer organization at a large R&D laboratory.

Zucconi, L.

1993-12-01T23:59:59.000Z

200

LIVERMORE SITE OFFICE CONTRACT MANAGEMENT PLAN For LAWRENCE LIVERMORE NATIONAL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LIVERMORE SITE OFFICE CONTRACT MANAGEMENT PLAN For LAWRENCE LIVERMORE NATIONAL LABORATORY CONTRACT NO. DE-AC52-07NA27344 LSO_CMP_6-10-088 i CONTENTS Contents 1. INTRODUCTION.............................................................................................................. 3 2. PURPOSE .......................................................................................................................... 3 2.2 Maintenance and Distribution ......................................................................................... 4 3. CONTRACT SUMMARY AND PRINCIPAL FEATURES............................................. 4 3.1 Contract Summary ...........................................................................................................

Note: This page contains sample records for the topic "laboratory livermore ca" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Evaluation of Cavity Collapse and Surface Crater Formation for Selected Lawrence Livermore National Laboratory Underground Nuclear Tests - 2010  

SciTech Connect

This report evaluates collapse evolution for selected Lawrence Livermore National Laboratory (LLNL) underground nuclear tests at the Nevada National Security Site (NNSS, formerly called the Nevada Test Site). The work is being done at the request of Navarro-Interra LLC, and supports environmental restoration efforts by the Department of Energy, National Nuclear Security Administration for the Nevada Site Office. Safety decisions must be made before a surface crater area, or potential surface crater area, can be reentered for any work. Our statements on cavity collapse and surface crater formation are input into their safety decisions. These statements do not include the effects of erosion that may modify the surface collapse craters over time. They also do not address possible radiation dangers that may be present. Subject matter experts from the LLNL Containment Program who had been active in weapons testing activities performed these evaluations. Information used included drilling and hole construction, emplacement and stemming, timing and sequence of the selected test and nearby tests, geology, yield, depth of burial, collapse times, surface crater sizes, cavity and crater volume estimations, and ground motion. Both classified and unclassified data were reviewed. Various amounts of information are available for these tests, depending on their age and other associated activities. Lack of data can hamper evaluations and introduce uncertainty. We make no attempt to quantify this uncertainty.

Pawloski, G A

2011-01-03T23:59:59.000Z

202

Lawrence Livermore National Laboratory interests and capabilities for research on the ecological effects of global climatic and atmospheric change  

Science Conference Proceedings (OSTI)

The Lawrence Livermore National Laboratory (LLNL) has interests and capabilities in all three types of research that must be conducted in order to understand and predict effects of global atmospheric and climatic (i.e., environmental) changes on ecological systems and their functions (ecosystem function is perhaps most conveniently defined as mass and energy exchange and storage). These three types of research are: (1) manipulative experiments with plants and ecosystems; (2) monitoring of present ecosystem, landscape, and global exchanges and pools of energy, elements, and compounds that play important roles in ecosystem function or the physical climate system, and (3) mechanistic (i.e., hierarchic and explanatory) modeling of plant and ecosystem responses to global environmental change. Specific experimental programs, monitoring plans, and modeling activities related to evaluation of ecological effects of global environmental change that are of interest to, and that can be carried out by LLNL scientists are outlined. Several projects have the distinction of integrating modeling with empirical studies resulting in an Integrated Product (a model or set of models) that DOE or any federal policy maker could use to assess ecological effects. The authors note that any scheme for evaluating ecological effects of atmospheric and climatic change should take into account exceptional or sensitive species, in particular, rare, threatened, or endangered species.

Amthor, J.S.; Houpis, J.L.; Kercher, J.R.; Ledebuhr, A.; Miller, N.L.; Penner, J.E.; Robison, W.L.; Taylor, K.E.

1994-09-01T23:59:59.000Z

203

LVOC - Livermore Valley Open Campus  

NLE Websites -- All DOE Office Websites (Extended Search)

LVOC - Livermore Valley Open Campus LVOC - Livermore Valley Open Campus ↓ Case Studies | ↓ About LVOC Get to market faster Making the impossible possible Lawrence Livermore and Sandia National Laboratories are home to some of the world's most unique state-of-the art facilities and resources. For decades, we have been using our combined capabilities, including a workforce of over 7000 employees to solve complex problems for the nation. Visit the science and technology epicenter - the Livermore Valley Open Campus - just east of San Francisco in the Tri-Valley's innovation ecosystem to find out what problems we can solve for you. LVOC Flyer We Keep Industry on the Cutting Edge of Innovative Technology About the Livermore Valley Open Campus LVOC Rendering Open for Business: The Livermore Valley Open Campus is located at the

204

LLNL (Lawrence Livermore National Laboratory) Oil Shale Pilot Plant status report  

SciTech Connect

The authors are studying aboveground oil shale retorting and have developed the LLNL Hot-Recycled-Solid (HRS) process as a generic, second-generation, rapid pyrolysis retorting system in which recycled shale is the solid heat carrier. In 1984-87, they operated a 1 ton-per-day HRS pilot plant to study retorting chemistry in an actual recirculation loop, Cena (1986). In 1989 they upgraded their laboratory pilot plant to process 4 ton-per-day of commercially sized shale, which will allow them, for the first time, to study pyrolysis and combustion chemistry using the full particle size, to produce enough oil for detailed characterization studies, to study environmental consequences, and to begin answering the many bulk solid handling questions concerning scale-up of the HRS process. In this paper the authors report on the status of their pilot plant operations. They have operated the facility circulating raw shale at ambient temperature and dolomite at elevated temperature. They plan the first hot shale run in November 1990. 5 refs., 16 figs., 4 tabs.

Cena, R.J.; Thorsness, C.B.

1990-10-26T23:59:59.000Z

205

Lawrence Livermore National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

secondary-ion mass spectrometer (NanoSIMS) and a new, ultrahigh-resolution scanning electron microscope. "Whether we're measuring oxygen isotopes in Australian zircons or in...

206

TECHNICAL EVALUATION OF SOIL REMEDIATION ALTERNATIVES AT THE BUILDING 812 OPERABLE UNIT, LAWRENCE LIVERMORE NATIONAL LABORATORY SITE 300  

SciTech Connect

The Department of Energy Livermore Site Office requested a technical review of remedial alternatives proposed for the Building 812 Operable Unit, Site 300 at the Lawrence Livermore National Laboratory. The team visited the site and reviewed the alternatives proposed for soil remediation in the draft RI/FS and made the following observations and recommendations. Based on the current information available for the site, the team did not identify a single technology that would be cost effective and/or ecologically sound to remediate DU contamination at Building 812 to current remedial goals. Soil washing is not a viable alternative and should not be considered at the site unless final remediation levels can be negotiated to significantly higher levels. This recommendation is based on the results of soil washing treatability studies at Fernald and Ashtabula that suggest that the technology would only be effective to address final remediation levels higher than 50 pCi/g. The technical review team identified four areas of technical uncertainty that should be resolved before the final selection of a preferred remedial strategy is made. Areas of significant technical uncertainty that should be addressed include: (1) Better delineation of the spatial distribution of surface contamination and the vertical distribution of subsurface contamination in the area of the firing table and associated alluvial deposits; (2) Chemical and physical characterization of residual depleted uranium (DU) at the site; (3) Determination of actual contaminant concentrations in air particulates to support risk modeling; and (4) More realistic estimation of cost for remedial alternatives, including soil washing, that were derived primarily from vendor estimates. Instead of conducting the planned soil washing treatability study, the team recommends that the site consider a new phased approach that combines additional characterization approaches and technologies to address the technical uncertainty in the remedial decision making. The site should redo the risk calculations as the future use scenario has changed for the site. As a result, the existing model is based on very conservative assumptions that result in calculation of unreasonably low cleanup goals. Specifically, the review team proposes that LLNL consider: (1) Revising the industrial worker scenario to a reasonable maximum exposure (RME) for a site worker that performs a weekly walk down of the area for two hours for 25 years (or an alternative RME if the exposure scenario changes); (2) Revising the ESSI of 2 mg U per kg soil for the deer mouse to account for less than 0.05 of the total ingested uranium being adsorbed by the gut; (3) Revising bioaccumulation factors (BAFs) for vegetation and invertebrates that are based on 100 mg of soluble uranium per kg of soil, as the uranium concentration in the slope soil does not average 100 mg/kg and it is not all in a soluble form; and (4) Measuring actual contaminant concentrations in air particulates at the site and using the actual values to support risk calculations. The team recommends that the site continue a phased approach during remediation. The activities should focus on elimination of the principal threats to groundwater by excavating (1) source material from the firing table and alluvial deposits, and (2) soil hotspots from the surrounding slopes with concentrations of U-235 and U-238 that pose unacceptable risk. This phased approach allows the remediation path to be driven by the results of each phase. This reduces the possibility of costly 'surprises', such as failure of soil treatment, and reduces the impact of remediation on endangered habitat. Treatment of the excavated material with physical separation equipment may result in a decreased volume of soil for disposal if the DU is concentrated in the fine-grained fraction, which can then be disposed of in an offsite facility at a considerable cost savings. Based on existing data and a decision to implement the recommended phased approach, the cost of characterization, excavation and physical

Eddy-Dilek, C.; Miles, D.; Abitz, R.

2009-08-14T23:59:59.000Z

207

Final Site-wide Environmental Impact Statement for Continued Operation of Lawrence Livermore National Laboratory and Supplemental Stockpile Stewardship and Management Programmatic Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

I I Chapters 1 through 12 Prepared by: COVER SHEET RESPONSIBLE AGENCY: U.S. Department of Energy (DOE) National Nuclear Security Administration TITLE: Final Site-wide Environmental Impact Statement for Continued Operation of Lawrence Livermore National Laboratory and Supplemental Stockpile Stewardship and Management Programmatic Environmental Impact Statement (DOE/EIS-0348 and DOE/EIS-0236-S3) CONTACT: For further information on this EIS, For general information on the DOE Call: 1-877-388-4930, or contact National Environmental Policy Act (NEPA) process, write or call: Thomas Grim Carol Borgstrom, Director Livermore Site Office Document Manager Office of NEPA Policy and Compliance NNSA (EH-42) 7000 East Avenue U.S. Department of Energy

208

Final Site-wide Environmental Impact Statement for Continued Operation of Lawrence Livermore National Laboratory and Supplemental Stockpile Stewardship and Management Programmatic Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Summary Summary Prepared by: COVER SHEET RESPONSIBLE AGENCY: U.S. Department of Energy (DOE) National Nuclear Security Administration TITLE: Final Site-wide Environmental Impact Statement for Continued Operation of Lawrence Livermore National Laboratory and Supplemental Stockpile Stewardship and Management Programmatic Environmental Impact Statement (DOE/EIS-0348 and DOE/EIS-0236-S3) CONTACT: For further information on this EIS, For general information on the DOE Call: 1-877-388-4930, or contact National Environmental Policy Act (NEPA) process, write or call: Thomas Grim Carol Borgstrom, Director Livermore Site Office Document Manager Office of NEPA Policy and Compliance NNSA (EH-42) 7000 East Avenue U.S. Department of Energy MS L-293 1000 Independence Avenue, SW

209

Final Site-wide Environmental Impact Statement for Continued Operation of Lawrence Livermore National Laboratory and Supplemental Stockpile Stewardship and Management Programmatic Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

III III Appendix E through P Prepared by: COVER SHEET RESPONSIBLE AGENCY: U.S. Department of Energy (DOE) National Nuclear Security Administration TITLE: Final Site-wide Environmental Impact Statement for Continued Operation of Lawrence Livermore National Laboratory and Supplemental Stockpile Stewardship and Management Programmatic Environmental Impact Statement (DOE/EIS-0348 and DOE/EIS-0236-S3) CONTACT: For further information on this EIS, For general information on the DOE Call: 1-877-388-4930, or contact National Environmental Policy Act (NEPA) process, write or call: Thomas Grim Carol Borgstrom, Director Livermore Site Office Document Manager Office of NEPA Policy and Compliance NNSA (EH-42) 7000 East Avenue U.S. Department of Energy

210

Final Site-wide Environmental Impact Statement for Continued Operation of Lawrence Livermore National Laboratory and Supplemental Stockpile Stewardship and Management Programmatic Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

II II Appendix A through D Prepared by: COVER SHEET RESPONSIBLE AGENCY: U.S. Department of Energy (DOE) National Nuclear Security Administration TITLE: Final Site-wide Environmental Impact Statement for Continued Operation of Lawrence Livermore National Laboratory and Supplemental Stockpile Stewardship and Management Programmatic Environmental Impact Statement (DOE/EIS-0348 and DOE/EIS-0236-S3) CONTACT: For further information on this EIS, For general information on the DOE Call: 1-877-388-4930, or contact National Environmental Policy Act (NEPA) process, write or call: Thomas Grim Carol Borgstrom, Director Livermore Site Office Document Manager Office of NEPA Policy and Compliance NNSA (EH-42) 7000 East Avenue U.S. Department of Energy

211

Former Worker Medical Screening Program - Lawrence Livermore...  

NLE Websites -- All DOE Office Websites (Extended Search)

Livermore National Laboratory Former Workers Former Worker Medical Screening Program (FWP) Project Name: Worker Health Protection Program Covered DOE Site: LLNL...

212

Idaho National Engineering and Environmental Laboratory Licensing Qualification Issues  

E-Print Network (OSTI)

Idaho National Engineering and Environmental Laboratory Licensing Qualification Issues Subcommittee Meeting Oct. 28, 2002 Livermore, CA #12;Idaho National Engineering and Environmental Laboratory · Approach to Regulatory Approval · Nuclear Design Codes · Summary #12;Idaho National Engineering

213

Livermore Contract Announcement | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Livermore Contract Announcement Livermore Contract Announcement Livermore Contract Announcement May 8, 2007 - 12:45pm Addthis Remarks as Prepared for Energy Secretary Samuel Bodman Good afternoon. Thank you all for coming and welcome to the Lawrence Livermore National Laboratory employees who are watching this on our Webcast. I know my remarks are of special importance to you. The Lawrence Livermore National Laboratory opened in 1952 using the "team science" approach pioneered by Ernest O. Lawrence. Livermore was - and is - a place where "new ideas" are dominant. Few would have predicted back then how deeply the work conducted at Lawrence Livermore would influence the course of history. And yet it has. Today is the 123rd anniversary of President Harry S Truman's birth. The first Cold War president, Truman's decisive

214

DOE Selects Lawrence Livermore National Security, LLC to Manage its  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lawrence Livermore National Security, LLC to Manage its Lawrence Livermore National Security, LLC to Manage its Lawrence Livermore National Laboratory DOE Selects Lawrence Livermore National Security, LLC to Manage its Lawrence Livermore National Laboratory May 8, 2007 - 12:45pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced that Lawrence Livermore National Security, LLC (LLNS) has been selected to be the management and operating contractor for DOE's National Nuclear Security Administration's (NNSA) Lawrence Livermore National Laboratory in California. "Livermore National Laboratory is a critical part of our nuclear weapons complex and has been for the last 55 years," Secretary Bodman said. "For the first time since the beginning of the laboratory a new contractor is

215

Livermore and Russian scientists propose new names for elements...  

NLE Websites -- All DOE Office Websites (Extended Search)

was named after Flerov - Flerov Laboratory of Nuclear Reactions (FLNR). Livermorium (atomic symbol Lv) was chosen to honor Lawrence Livermore National Laboratory (LLNL) and...

216

DOE - Office of Legacy Management -- Santa Susana Field Laboratory - CA 09  

NLE Websites -- All DOE Office Websites (Extended Search)

Santa Susana Field Laboratory - CA Santa Susana Field Laboratory - CA 09 FUSRAP Considered Sites Site: SANTA SUSANA FIELD LABORATORY (CA.09 ) Eliminated from consideration under FUSRAP - Remediation and certification complete Designated Name: Not Designated Alternate Name: Rockwell International, Energy Systems Group Atomics International CA.09-1 CA.09-2 Location: Chatsworth , California CA.09-3 Evaluation Year: 1985 CA.09-3 Site Operations: Conducted sodium reactor, irradiation and fuel burn up experimentation. CA.09-3 Site Disposition: Eliminated - Certification of remedial action completed CA.09-1 CA.09-3 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium CA.09-2 Radiological Survey(s): Yes CA.09-3 CA.09-4 Site Status: Eliminated from consideration under FUSRAP - Remediation and certification complete CA.09-5

217

Safety Basis Requirements for Nonnuclear Facilities at Lawrence Livermore National Laboratory Site-Specific Work Smart Standard Revision 3 December 2006  

SciTech Connect

This standard establishes requirements that, when coupled with Lawrence Livermore National Laboratory's (LLNL's) Integrated Safety Management System (ISMS) methods and other Work Smart Standards for assuring worker safety, assure that the impacts of nonnuclear operations authorized in LLNL facilities are well understood and controlled in a manner that protects the health of workers, the public, and the environment. All LLNL facilities shall be classified based on potential for adverse impact of operations to the health of co-located (i.e., nearby) workers and the public in accordance with this standard, Title 10 Code of Federal Regulations (10 CFR) 830, Subpart B, and Department of Energy Order (DOE O) 420.2A.

Beach, D; Brereton, S; Failor, R; Hildum, J; Ingram, C; Spagnolo, S; van Warmerdam, C

2007-06-07T23:59:59.000Z

218

Instrument calibration and measurement plan for the poorly measured/unmeasured category of highly enriched uranium at Lawrence Livermore National Laboratory  

SciTech Connect

In partial response to a Department of Energy (DOE) request to evaluate the state of measurements of special nuclear material, Lawrence Livermore National Laboratory (LLNL) evaluated and classified all highly enriched uranium (HEU) metal and oxide items in its inventory. Because of a lack of traceable HEU standards, no items were deemed to fit the category of well measured. A subsequent DOE-HQ sponsored survey by New Brunswick Laboratory resulted in their preparation of a set of certified reference material (CRM) standards for HEU oxide (U{sub 3}O{sub 8}) that are projected for delivery during September of 1999. However, CRM standards for HEU metal are neither in preparation nor are they expected to be prepared within the foreseeable future. Consequently, HEU metal working standards must be developed if the poorly measured/unmeasured portion of the LLNL inventory is to be reclassified. This paper describes the approach that LLNL will take to (1) develop a set of HEU metal working standards; (2) develop HEU metal and oxide calibration curves for the passive-active neutron (PAN) shuffler that are functions of mass, enrichment, size, and shape; and (3) reclassify the poorly measured/unmeasured inventory through direct measurement or reprocessing of previously archived data.

Glosup, J; Mount, M E

1999-07-01T23:59:59.000Z

219

Independent Oversight Inspection, Lawrence Livermore National...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

at the U. S. Department of Energy (DOE) Lawrence Livermore National Laboratory (LLNL) in June 2002. The inspection was performed as a joint effort by the OA Office of...

220

Experimental work on oil shale at Lawrence Livermore Laboratory and predictions of retorting characteristics of oil shale. [RISE  

SciTech Connect

An experimental program is being carried out to advance oil-shale retorting technology. This paper summarizes some results of laboratory and pilot retorting and gives the reactions of oil-shale char with gases. A computer model of the retorting process has been compared with retort experiments and has been used to predict in situ retorts under various operating conditions. Finally, the results of a retort using Negev (Israel) oil shale are compared with those using Colorado oil shale.

Rothman, A.J.; Lewis, A.E.

1977-06-21T23:59:59.000Z

Note: This page contains sample records for the topic "laboratory livermore ca" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

NEW GUN CAPABILITY WITH INTERCHANGABLE BARRELS TO INVESTIGATE LOW VELOCITY IMPACT REGIMES AT THE LAWRENCE LIVERMORE NATIONAL LABORATORY HIGH EXPLOSIVES APPLICATIONS FACILITY  

SciTech Connect

A new gas gun capability is being activated at Lawrence Livermore National Laboratories located in the High Explosives Applications Facility (HEAF). The single stage light gas (dry air, nitrogen, or helium) gun has interchangeable barrels ranging from 25.4 mm to 76.2 mm in diameter with 1.8 meters in length and is being fabricated by Physics Applications, Inc. Because it is being used for safety studies involving explosives, the gun is planned for operation inside a large enclosed firing tank, with typical velocities planned in the range of 10-300 m/s. Three applications planned for this gun include: low velocity impact of detonator or detonator/booster assemblies with various projectile shapes, the Steven Impact test that involves impact initiation of a cased explosive target, and the Taylor impact test using a cylindrical explosive sample impacted onto a rigid anvil for fracture studies of energetic materials. A highlight of the gun features, outline on work in progress for implementing this capability, and discussion of the planned areas of research will be included.

Vandersall, K S; Behn, A; Gresshoff, M; Jr., L F; Chiao, P I

2009-09-16T23:59:59.000Z

222

Electro-optic transient imaging instrumentation development at Lawrence Livermore National Laboratory: Implications for SSC instrumentation development  

Science Conference Proceedings (OSTI)

Over the last decade, the underground weapons physics laboratories fielded by LLNL's Nuclear Test and Experimental Sciences (NTES) program have experienced marked change. This change is characterized by a phenomenal growth in the amount of data returned per event. These techniques have been developed as a result of the severe demands placed upon transient instrumentation by the physics requirements of our underground nuclear laboratories. The detector front-ends must quickly detect, process and transmit a large volume of data to recording stations located approximately 1 km from the event. In a recent event, the detector front-ends successfully handled data at a prompt rate of approximately 13 Terabits/sec. Largely, this advance can be attributed directly to the increased use of electro-optic techniques. These highly-parallel high-bandwidth imaging instrumentation systems developed for the test program may have a lot to offer the high-energy physics community tackling the challenge of the unprecedented luminosity and fidelity demands at the SSC. In what follows, we discuss details of a few of our prompt instrumentation techniques and compare these capabilities to the detector requirements for the challenging physics at the SSC. 5 refs., 3 figs.

Lowry, M.; Jacoby, B.; Schulte, H.

1990-12-01T23:59:59.000Z

223

Independent Oversight Review of the Lawrence Livermore National...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- March 2001 March 2001 Review of the Lawrence Livermore National Laboratory Health Services Department The Office of Environment, Safety, and Health (ES&H) Oversight...

224

Consent Order, Lawrence Livermore National National Security, LLC -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lawrence Livermore National National Security, LLC - Lawrence Livermore National National Security, LLC - WCO-2010-01 Consent Order, Lawrence Livermore National National Security, LLC - WCO-2010-01 October 29, 2010 Consent Order issued to Lawrence Livermore National Security, LLC for deficiencies associated with the Lawrence Livermore National Laboratory Chronic Beryllium Disease Prevention Program This letter refers to the Office of Health, Safety and Security, Office of Enforcement investigation into deficiencies associated with the Lawrence Livermore National Laboratory (LLNL) Chronic Beryllium Disease Prevention Program (CBDPP) and related work planning and control processes. The results of the investigation were provided to Lawrence Livermore National Security, LLC (LLNS) in an Investigation Report dated July 7, 2009. An

225

Audit of Management of the Laboratory Directed Research and Development Program at the Lawrence Livermore National Laboratory, CR-B-98-02  

Energy.gov (U.S. Department of Energy (DOE))

The Department's national laboratories, since their establishment, have been permitted to conduct a limited amount of discretionary research activities. The Department's Defense Program...

226

Technical Qualification Program Self-Assessment Report - Livermore Field  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Livermore Livermore Field Office Technical Qualification Program Self-Assessment Report - Livermore Field Office The purpose of the Livermore Field Office (LFO) Teclmical Qualification Program (TQP) is to ensure that federal teclmical personnel with safety oversight responsibilities at defense nuclear facilities at Lawrence Livermore National Laboratory possess competence commensurate with responsibilities. LFO is committed to ensuring it has the necessary teclmical capabilities to provide the kind of management, direction, and guidance essential to safe operation ofDOE's defense nuclear facilities. LFO TQP Self-Assessment, May 2013 More Documents & Publications Technical Qualification Program Self-Assessment Report - Nevada Site Office Technical Qualification Program Self-Assessment Report - Sandia Site Office

227

Update on Calibration of the Lawrence Livermore National Laboratory Passive-Active Neutron Drum Shuffler for Measurement of Highly Enriched Uranium Oxide  

SciTech Connect

In October of 1999, Lawrence Livermore National Laboratory (LLNL) began an effort to calibrate the LLNL passive-active neutron (PAN) drum shuffler for measurement of highly enriched uranium (HEU) oxide. A single unit of certified reference material (CRM) 149 [Uranium (93% Enriched) Oxide - U{sub 3}O{sub 8} Standard for Neutron Counting Measurements] was used to (1) develop a mass calibration curve for HEU oxide in the nominal range of 393 g to 3144 g {sup 235}U, and (2) perform a detailed axial and radial mapping of the detector response over a wide region of the PAN shuffler counting chamber. Results from these efforts were reported at the Institute of Nuclear Materials Management 41st Annual Meeting in July 2000. This paper describes subsequent efforts by LLNL to use a unit of CRM 146 [Uranium Isotopic Standard for Gamma Spectrometry Measurements] in consort with Monte Carlo simulations of the PAN shuffler response to CRM 149 and CRM 146 units and a selected set of containers with CRM 149-equivalent U{sub 3}O{sub 8} to (1) extend the low range of the reported mass calibration curve to 10 g {sup 235}U, (2) evaluate the effect of U{sub 3}O{sub 8} density (2.4 g/cm{sup 3} to 4.8 g/cm{sup 3}) and container size (5.24 cm to 12.17 cm inside diameter and 6.35 cm to 17.72 cm inside height) on the PAN shuffler response, and (3) develop mass calibration curves for U{sub 3}O{sub 8} enriched to 20.1 wt% {sup 235}U and 52.5 wt% {sup 235}U.

Mount, M; O' Connell, W; Cochran, C; Rinard, P; Dearborn, D; Endres, E

2002-05-17T23:59:59.000Z

228

Calibration of the Lawrence Livermore National Laboratory Passive-Active Neutron Drum Shuffler for Measurement of Highly Enriched Uranium in Mixed Oxide  

SciTech Connect

As a follow-on to the Lawrence Livermore National Laboratory (LLNL) effort to calibrate the LLNL passive-active neutron drum (PAN) shuffler for measurement of highly enriched uranium (HEU) oxide, a method has been developed to extend the use of the PAN shuffler to the measurement of HEU in mixed uranium-plutonium (U-Pu) oxide. This method uses the current LLNL HEU oxide calibration algorithms, appropriately corrected for the mixed U-Pu oxide assay time, and recently developed PuO{sub 2} calibration algorithms to yield the mass of {sup 235}U present via differences between the expected count rate for the PuO{sub 2} and the measured count rate of the mixed U-Pu oxide. This paper describes the LLNL effort to use PAN shuffler measurements of units of certified reference material (CRM) 149 [uranium (93% Enriched) Oxide - U{sub 3}O{sub 8} Standard for Neutron Counting Measurements] and CRM 146 [Uranium Isotopic Standard for Gamma Spectrometry Measurements] and a selected set of LLNL PuO{sub 2}-bearing containers in consort with Monte Carlo simulations of the PAN shuffler response to each to (1) establish and validate a correction to the HEU calibration algorithm for the mixed U-Pu oxide assay time, (2) develop a PuO{sub 2} calibration algorithm that includes the effect of PuO{sub 2} density (2.4 g/cm{sup 3} to 4.8 g/cm{sup 3}) and container size (8.57 cm to 9.88 cm inside diameter and 9.60 cm to 13.29 cm inside height) on the PAN shuffler response, and (3) develop and validate the method for establishing the mass of {sup 235}U present in an unknown of mixed U-Pu oxide.

Mount, M; O' Connell, W; Cochran, C; Rinard, P; Dearborn, D; Endres, E

2002-05-23T23:59:59.000Z

229

Lawrence Livermore National Laboratory (LLNL)  

NLE Websites -- All DOE Office Websites

Phonebook | Phonebook | Site Map | Contact Us Search LLNL Go KEY RESEARCH Ensuring the safety, reliability, and security of the U.S. nuclear stockpile and applying science and technology to anticipate, innovate and deliver solutions to global security needs. Weapons Program High Explosives Application Facility Site 300 Global Security Energy and Environmental Security Defense Intelligence Nonproliferation Advancing energy security in the United States through the discovery, development, production and deployment of cost-effective, sustainable systems while protecting the environment. Energy Technologies Carbon Capture and Storage Climate and Carbon U.S. Energy Flow Charts Hydrogen Fuel Geothermal Wind Forecasting Underground Coal Gasification Vehicle Aerodynamics Turning scientific and technological concepts into reality, whether

230

Print - Lawrence Livermore National Laboratory  

UltraSpec is a new analytical tool for examining nuclear materials non-destructively. UltraSpec is a high-energy resolution spectrometer that can be used to ...

231

Print - Lawrence Livermore National Laboratory  

Security and energy conservation ; Fluid level sensing ; Transportation; Medical; Radar imaging; Material evaluation; Tools; Voice recognition ...

232

Application - Lawrence Livermore National Laboratory  

NEC (Numerical Electromagnetic Code), written by Gerald Burke, is a popular antenna modeling code for wire and surface antennas and scatterers.

233

Print - Lawrence Livermore National Laboratory  

... in a variety of exercises, including a 5 star node configuration outdoors with satellite exfiltration and simultaneous internet broadcast.

234

Search - Lawrence Livermore National Laboratory  

Giving animals in need a HOME. November 14, 2013. LLNL, Intel, Cray produce big data machine. ... for the Department of Energy's National Nuclear Security Administration

235

Technologies - Lawrence Livermore National Laboratory  

home \\ technologies. Technologies: Ready-to-Sign Licenses: Software: Patents: Technologies ... for the Department of Energy's National Nuclear Security Administration

236

Technologies - Lawrence Livermore National Laboratory  

Giving animals in need a HOME. November 14, 2013. LLNL, Intel, Cray produce big data machine. ... for the Department of Energy's National Nuclear Security Administration

237

Patents - Lawrence Livermore National Laboratory  

LLNL Home. Latest News Headlines. LLNL, Intel, Cray produce big data machine. November 4, 2013. ... for the Department of Energy's National Nuclear Security ...

238

Technologies - Lawrence Livermore National Laboratory  

Technologies Homeland Security & Defense. 7-MeV Neutron Interrogation: Scanner for Detection of Special Nuclear Material in Cargo Shipments; High Air Volume to Low ...

239

Print - Lawrence Livermore National Laboratory  

The resultant design is light weight, simple, efficient, and intrinsically compatible with high-voltage transmission-line voltages. Potential ...

240

Print - Lawrence Livermore National Laboratory  

Solar power is a renewable source of energy that involves no fossil fuel combustion, and releases no greenhouse gases. In the past, solar power has not been ...

Note: This page contains sample records for the topic "laboratory livermore ca" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Print - Lawrence Livermore National Laboratory  

... building, geology, etc.) to be ... LLNL is seeking potential commercial partners that ... Custom electronics have been implemented to control the ...

242

Print - Lawrence Livermore National Laboratory  

Container drums and barrels are commonly known and widely used for shipping, storage, etc. They typically have a rigid cylindrical construction, such as steel, and ...

243

Print - Lawrence Livermore National Laboratory  

Concrete structures are ubiquitous in the infrastructure of the country. Bridge decks, roadways, parking structures and more require condition assessment and ...

244

Print - Lawrence Livermore National Laboratory  

... we've established a program for LLNL scientists and engineers to join a company for up to three ... for the Department of Energy's National Nuclear Security ...

245

Print - Lawrence Livermore National Laboratory  

Improving security at U.S. seaports is one of the nations most difficult technical and practical challenges. Detection of contraband such as special ...

246

Search - Lawrence Livermore National Laboratory  

White captures second award for nuclear forensics work. November 15, 2013. Giving animals in need a HOME. November 14, 2013. LLNL, Intel, Cray produce ...

247

Technologies - Lawrence Livermore National Laboratory  

Energy & Environment. DNA Tagged Reagents for Aerosol Experiments (DNATrax) OPTICONDISTOR: High Power Optically Isolated Transistor; Industrial Partnerships Office P ...

248

Technologies - Lawrence Livermore National Laboratory  

LLNL Home. Latest News Headlines. LLNL, Intel, Cray produce big data machine. November 4, 2013. First results from most sensitive dark matter detector. October 31, 2013.

249

Print - Lawrence Livermore National Laboratory  

Animal and Crop Health; Homeland Security; Food/Product Safety; Force Protection; Forensics; Molecular Diagnostics; Development Status.

250

Technologies - Lawrence Livermore National Laboratory  

Director search process gets under way. November 26, 2013. Employee selected as Face of Stroke ambassador. November 26, 2013. LLNL Home. Latest News ...

251

Resources - Lawrence Livermore National Laboratory  

Search for student internship opportunities and technologies suitable for business plan competition projects. Learn more about IPO initiatives to ...

252

Sitemap - Lawrence Livermore National Laboratory  

Sitemap. Home; About IPO; Contacting Us; Company Contact Form; Search; Tech News Signup; Awards; Success Stories; Convergent Science, Inc. ...

253

Inventors - Lawrence Livermore National Laboratory  

Director search process gets under way. November 26, 2013. Employee selected as Face of Stroke ambassador. November 26, 2013. LLNL Home. Latest News ...

254

Technologies - Lawrence Livermore National Laboratory  

Technology Search. Subscribe to our technology RSS feed. Browse by Industry. Automotive & Transportation; Biotechnology, Medical, & Health ...

255

Print - Lawrence Livermore National Laboratory  

The increasing national and international demand for water has led to increasing reliance on subsurface storage, both for naturally and artificially recharged water.

256

Print - Lawrence Livermore National Laboratory  

... (LLNL). In the late eighties he started and led the Industrial Partnering program while he was Associate Director for Engineering. In 1995, ...

257

Print - Lawrence Livermore National Laboratory  

R&D 100 Awards. R&D 100 Awards are considered the "Oscars of Innovation". The winning of an R&D 100 Award provides a mark of excellence known to industry, government ...

258

Lawrence Livermore National Laboratory (LLNL)  

National Nuclear Security Administration (NNSA)

installation of X-ray powder diffractometer with imaging plate detector and diamond anvil cell, calibration and test experiments. Purpose of Work: Our goal is a better...

259

Print - Lawrence Livermore National Laboratory  

Under a cooperative research and development project, ... (power generation ... in both propulsion and structures and saving airlines hundreds of millions of ...

260

Historical Doses from Tritiated Water and Tritiated Hydrogen Gas Released to the Atmosphere from Lawrence Livermore National Laboratory (LLNL). Part 6. Summary  

DOE Green Energy (OSTI)

Throughout fifty-three years of operations, an estimated 792,000 Ci (29,300 TBq) of tritium have been released to the atmosphere at the Livermore site of Lawrence Livermore National Laboratory (LLNL); about 75% was tritium gas (HT) primarily from the accidental releases of 1965 and 1970. Routine emissions contributed slightly more than 100,000 Ci (3,700 TBq) HT and about 75,000 Ci (2,800 TBq) tritiated water vapor (HTO) to the total. A Tritium Dose Reconstruction was undertaken to estimate both the annual doses to the public for each year of LLNL operations and the doses from the few accidental releases. Some of the dose calculations were new, and the others could be compared with those calculated by LLNL. Annual doses (means and 95% confidence intervals) to the potentially most exposed member of the public were calculated for all years using the same model and the same assumptions. Predicted tritium concentrations in air were compared with observed mean annual concentrations at one location from 1973 onwards. Doses predicted from annual emissions were compared with those reported in the past by LLNL. The highest annual mean dose predicted from routine emissions was 34 {micro}Sv (3.4 mrem) in 1957; its upper confidence limit, based on very conservative assumptions about the speciation of the release, was 370 {micro}Sv (37 mrem). The upper confidence limits for most annual doses were well below the current regulatory limit of 100 {micro}Sv (10 mrem) for dose to the public from release to the atmosphere; the few doses that exceeded this were well below the regulatory limits of the time. Lacking the hourly meteorological data needed to calculate doses from historical accidental releases, ingestion/inhalation dose ratios were derived from a time-dependent accident consequence model that accounts for the complex behavior of tritium in the environment. Ratios were modified to account for only those foods growing at the time of the releases. The highest dose from an accidental release was calculated for a release of about 1,500 Ci HTO that occurred in October 1954. The likely dose for this release was probably less than 360 {micro}Sv (36 mrem), but, because of many unknowns (e.g., release-specific meteorological and accidental conditions) and conservative assumptions, the uncertainty was very high. As a result, the upper confidence limit on the predictions, considered a dose that could not have been exceeded, was estimated to be 2 mSv (200 mrem). The next highest dose, from the 1970 accidental release of about 290,000 Ci (10,700 TBq) HT when wind speed and wind direction were known, was one-third as great. Doses from LLNL accidental releases were well below regulatory reporting limits. All doses, from both routine and accidental releases, were far below the level (3.6 mSv [360 mrem] per year) at which adverse health effects have been documented in the literature.

Peterson, S

2007-09-05T23:59:59.000Z

Note: This page contains sample records for the topic "laboratory livermore ca" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Experimental Determination of Ca-Silicate Dissolution Rates: A Source of Calcium for Geologic CO2 Sequestration  

NLE Websites -- All DOE Office Websites (Extended Search)

Experimental Determination of Ca-Silicate Dissolution Rates: Experimental Determination of Ca-Silicate Dissolution Rates: A Source of Calcium for Geologic CO 2 Sequestration Susan A. Carroll (carroll6@llnl.gov; 925-423-5694) Energy and Environment Directorate Lawrence Livermore National Laboratory L-219 Livermore, CA 94550 Kevin G. Knauss (knauss@llnl.gov; 925-422-1372) Energy and Environment Directorate Lawrence Livermore National Laboratory L-219 Livermore, CA 94550 2 Introduction The international scientific community recognizes that greenhouse gases have the potential to influence climate, and that potential changes in sea level and weather patterns would be largely deleterious. Because CO 2 is emitted in such large quantities and its atmospheric concentration has been consistently rising throughout the recent past, it is only prudent to focus attention on reducing

262

Enforcement Letter, Lawrence Livermore National Security LLC, - May 15,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Security LLC, - May Security LLC, - May 15, 2008 Enforcement Letter, Lawrence Livermore National Security LLC, - May 15, 2008 May 15, 2008 Enforcement Letter issued to Lawrence Livermore National Security, LLC related to the Protection of Classified Information at the Lawrence Livermore National Laboratory In our recent dialogue via televideo with your Deputy, safeguards and security director, and other key managers of your staff, we discussed our reasons for sending this enforcement letter to Lawrence Livermore National Security, LLC; the purpose of this letter; and our concerns about the protection of classified information at the Lawrence Livermore National Laboratory (LLNL). Accordingly, this is not a formal enforcement action and imposes no requirements. Enforcement Letter, Lawrence Livermore National Security LLC- May 15, 2008

263

from Savannah River National Laboratory  

Issue: Depleted uranium present in shallow soils and sediments at Lawrence Livermore National Laboratory Site 300.

264

Report on Department of Homeland Security Sponsored Research Project at Lawrence Livermore National Laboratory on Preparation for an Improvised Nuclear Device Event  

SciTech Connect

Following the events of September 11th, a litany of imaginable horribles was trotted out before an anxious and concerned public. To date, government agencies and academics are still grappling with how to best respond to such catastrophes, and as Senator Lieberman's quote says above, now is the time to plan and prepare for such events. One of the nation's worst fears is that terrorists might detonate an improvised nuclear device (IND) in an American city. With 9/11 serving as the catalyst, the government and many NGOs have invested money into research and development of response capabilities throughout the country. Yet, there is still much to learn about how to best respond to an IND event. My summer 2008 internship at Lawrence Livermore National Laboratory afforded me the opportunity to look in depth at the preparedness process and the research that has been conducted on this issue. While at the laboratory I was tasked to collect, combine, and process research on how cities and the federal government can best prepare for the horrific prospect of an IND event. Specific projects that I was involved with were meeting reports, research reviews, and a full project report. Working directly with Brooke Buddemeier and his support team at the National Atmospheric Release Advisory Center, I was able to witness first hand, preparation for meetings with response planners to inform them of the challenges that an IND event would pose to the affected communities. In addition, I supported the Homeland Security Institute team (HSI), which was looking at IND preparation and preparing a Congressional report. I participated in meetings at which local responders expressed their concerns and contributed valuable information to the response plan. I specialized in the psycho-social aspects of an IND event and served as a technical advisor to some of the research groups. Alongside attending and supporting these meetings, I worked on an independent research project which collected information from across disciplines to outline where the state of knowledge on IND response is. In addition, the report looked at meetings that were held over the summer in various cities. The meetings were attended by both federal responders and local responders. The meetings explored issues regarding IND preparation and how to mitigate the effects of an IND detonation. Looking at the research and current preparation activity the report found that the state of knowledge in responding and communicating is a mixed bag. Some aspects of an IND attack are well understood, some are not, but much is left to synthesize. The effects of an IND would be devastating, yet much can be done to mitigate those effects through education, preparation, and research. A major gap in current knowledge is how to effectively communicate with the public before an attack. Little research on the effectiveness of public education has been done, but it is likely that educating the public about the effects of an IND and how to best protect oneself could save many lives.

A., B

2008-07-31T23:59:59.000Z

265

Final Site-wide Environmental Impact Statement for Continued Operation of Lawrence Livermore National Laboratory and Supplemental Stockpile Stewardship and Management Programmatic Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SW/SPEIS Chapter 4 - Description of the Existing Environment SW/SPEIS Chapter 4 - Description of the Existing Environment March 2005 4.9-9 TABLE 4.9.3-1.-Federal and California Species with Protected or Sensitive Status Known to Occur at the Livermore Site and Site 300 in 2001 and 2002 Site Status Common Name Livermore Site Site 300 Federal Status Code State Status Code Plants Big tarplant a - X - CNPS List 1 B Hogwallow starfish - X - CNPS List 4 Large-flowered fiddleneck - X FE (CH) CNPS List 1 B Round-leaved filaree - X - CNPS List 2 Stinkbells - X - CNPS List 4 Diamond-petaled poppy - X FSC CNPS List 1 B Gypsum rock jasmine - X - CNPS List 4 Gypsum loving larkspur - X - CNPS List 4 Invertebrates Valley elderberry longhorn beetle - X FT - California linderiella fairy shrimp - X FSC - Amphibians

266

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Security, LLC, Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.  

E-Print Network (OSTI)

with 1 LLNL researcher at ORNL o Virtual Laboratory for Technology (including Materials Research) · HEDLP Facility short pulse Titan Laser Joe Kwan, 33rd FPA Annual Meeting #12;`Snowflake Divertor' NSTX and DIII

267

Lawrence Livermore National Laboratory (LLNL) Experimental Test Site (Site 300) Salinity Evaluation and Minimization Plan for Cooling Towers and Mechanical Equipment Discharges  

SciTech Connect

This document was created to comply with the Central Valley Regional Water Quality Control Board (CVRWQCB) Waste Discharge Requirement (Order No. 98-148). This order established new requirements to assess the effect of and effort required to reduce salts in process water discharged to the subsurface. This includes the review of technical, operational, and management options available to reduce total dissolved solids (TDS) concentrations in cooling tower and mechanical equipment water discharges at Lawrence Livermore National Laboratory's (LLNL's) Experimental Test Site (Site 300) facility. It was observed that for the six cooling towers currently in operation, the total volume of groundwater used as make up water is about 27 gallons per minute and the discharge to the subsurface via percolation pits is 13 gallons per minute. The extracted groundwater has a TDS concentration of 700 mg/L. The cooling tower discharge concentrations range from 700 to 1,400 mg/L. There is also a small volume of mechanical equipment effluent being discharged to percolation pits, with a TDS range from 400 to 3,300 mg/L. The cooling towers and mechanical equipment are maintained and operated in a satisfactory manner. No major leaks were identified. Currently, there are no re-use options being employed. Several approaches known to reduce the blow down flow rate and/or TDS concentration being discharged to the percolation pits and septic systems were reviewed for technical feasibility and cost efficiency. These options range from efforts as simple as eliminating leaks to implementing advanced and innovative treatment methods. The various options considered, and their anticipated effect on water consumption, discharge volumes, and reduced concentrations are listed and compared in this report. Based on the assessment, it was recommended that there is enough variability in equipment usage, chemistry, flow rate, and discharge configurations that each discharge location at Site 300 should be considered separately when deciding on an approach for reducing the salt discharge to the subsurface. The smaller units may justify moderate changes to equipment, and may benefit from increased cleaning frequencies, more accurate and suitable chemical treatment, and sources of make up water and discharge re-use. The larger cooling towers would be more suitable for automated systems where they don't already exist, re-circulation and treatment of blow down water, and enhanced chemical dosing strategies. It may be more technically feasible and cost efficient for the smaller cooling towers to be replaced by closed loop dry coolers or hybrid towers. There are several potential steps that could be taken at each location to reduce the TDS concentration and/or water use. These include: sump water filtration, minimization of drift, accurate chemical dosing, and use of scale and corrosion coupons for chemical calibration. The implementation of some of these options could be achieved by a step-wise approach taken at two representative facilities. Once viable prototype systems have been proven in the field, systematic implementation should proceed for the remaining systems, with cost, desired reduction, and general feasibility taken into consideration for such systems.

Daily III, W D

2010-02-24T23:59:59.000Z

268

Historical Doses from Tritiated Water and Tritiated Hydrogen Gas Released to the Atmosphere from Lawrence Livermore National Laboratory (LLNL). Part 5. Accidental Releases  

DOE Green Energy (OSTI)

Over the course of fifty-three years, LLNL had six acute releases of tritiated hydrogen gas (HT) and one acute release of tritiated water vapor (HTO) that were too large relative to the annual releases to be included as part of the annual releases from normal operations detailed in Parts 3 and 4 of the Tritium Dose Reconstruction (TDR). Sandia National Laboratories/California (SNL/CA) had one such release of HT and one of HTO. Doses to the maximally exposed individual (MEI) for these accidents have been modeled using an equation derived from the time-dependent tritium model, UFOTRI, and parameter values based on expert judgment. All of these acute releases are described in this report. Doses that could not have been exceeded from the large HT releases of 1965 and 1970 were calculated to be 43 {micro}Sv (4.3 mrem) and 120 {micro}Sv (12 mrem) to an adult, respectively. Two published sets of dose predictions for the accidental HT release in 1970 are compared with the dose predictions of this TDR. The highest predicted dose was for an acute release of HTO in 1954. For this release, the dose that could not have been exceeded was estimated to have been 2 mSv (200 mrem), although, because of the high uncertainty about the predictions, the likely dose may have been as low as 360 {micro}Sv (36 mrem) or less. The estimated maximum exposures from the accidental releases were such that no adverse health effects would be expected. Appendix A lists all accidents and large routine puff releases that have occurred at LLNL and SNL/CA between 1953 and 2005. Appendix B describes the processes unique to tritium that must be modeled after an acute release, some of the time-dependent tritium models being used today, and the results of tests of these models.

Peterson, S

2007-08-15T23:59:59.000Z

269

Record simulations conducted on Lawrence Livermore supercomputer  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 For immediate release: 03/19/2013 | NR-13-03-05 Record simulations conducted on Lawrence Livermore supercomputer Breanna Bishop, LLNL, (925) 423-9802, bishop33@llnl.gov Printer-friendly OSIRIS simulation on Sequoia of the interaction of a fast-ignition-scale laser with a dense DT plasma. The laser field is shown in green, the blue arrows illustrate the magnetic field lines at the plasma interface and the red/yellow spheres are the laser-accelerated electrons that will heat and ignite the fuel. High Resolution Image LIVERMORE, Calif. -- Researchers at Lawrence Livermore National Laboratory have performed record simulations using all 1,572,864 cores of Sequoia, the largest supercomputer in the world. Sequoia, based on IBM BlueGene/Q architecture, is the first machine to exceed one million computational

270

Director of the National Ignition Facility, Lawrence Livermore National  

NLE Websites -- All DOE Office Websites (Extended Search)

Director of the National Ignition Facility, Lawrence Livermore National Director of the National Ignition Facility, Lawrence Livermore National Laboratory | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Who We Are > In The Spotlight > Edward Moses Director of the National Ignition Facility, Lawrence Livermore National Laboratory

271

Retired lab physicist and computational pioneer, Lawrence Livermore  

National Nuclear Security Administration (NNSA)

Retired lab physicist and computational pioneer, Lawrence Livermore Retired lab physicist and computational pioneer, Lawrence Livermore National Laboratory | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Who We Are > In The Spotlight > Berni Alder Retired lab physicist and computational pioneer, Lawrence Livermore National Laboratory

272

Technical Qualification Program Self-Assessment Report - Livermore Field  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technical Qualification Program Self-Assessment Report - Livermore Technical Qualification Program Self-Assessment Report - Livermore Field Office Technical Qualification Program Self-Assessment Report - Livermore Field Office The purpose of the Livermore Field Office (LFO) Teclmical Qualification Program (TQP) is to ensure that federal teclmical personnel with safety oversight responsibilities at defense nuclear facilities at Lawrence Livermore National Laboratory possess competence commensurate with responsibilities. LFO is committed to ensuring it has the necessary teclmical capabilities to provide the kind of management, direction, and guidance essential to safe operation ofDOE's defense nuclear facilities. LFO TQP Self-Assessment, May 2013 More Documents & Publications Technical Qualification Program Self-Assessment Report - Pacific Northwest

273

Lawrence Livermore to build advanced laser system in Czech Republic  

NLE Websites -- All DOE Office Websites (Extended Search)

9-06 9-06 For immediate release: 09/17/2013 | NR-13-09-06 High Resolution Image The High Repetition-Rate Advanced Petawatt Laser System, or HAPLS, will be designed, developed, assembled and tested at Lawrence Livermore. It will be transferred to the ELI Beamlines facility in 2016, where it will be commissioned for use by the international scientific community. Lawrence Livermore to build advanced laser system in Czech Republic Breanna Bishop, LLNL, (925) 423-9802, bishop33@llnl.gov High Resolution Image Artist renderings of the ELI Beamlines facility, currently under construction in the Czech Republic. High Resolution Image A CAD image of the ELI-HAPLS laser. LIVERMORE, Calif. - Lawrence Livermore National Laboratory (LLNL), through Lawrence Livermore National Security LLC (LLNS), has been awarded more than

274

Comparison of the Recently proposed Super Marx Generator Approach to Thermonuclear Ignition with the DT Laser Fusion-Fission Hybrid Concept by the Lawrence Livermore National Laboratory  

E-Print Network (OSTI)

The recently proposed Super Marx generator pure deuterium micro-detonation ignition concept is compared to the Lawrence Livermore National Ignition Facility (NIF) Laser DT fusion-fission hybrid concept (LiFE) [1]. In a Super Marx generator a large number of ordinary Marx generators charge up a much larger second stage ultra-high voltage Marx generator, from which for the ignition of a pure deuterium micro-explosion an intense GeV ion beam can be extracted. A typical example of the LiFE concept is a fusion gain of 30, and a fission gain of 10, making up for a total gain of 300, with about 10 times more energy released into fission as compared to fusion. This means a substantial release of fission products, as in fusion-less pure fission reactors. In the Super Marx approach for the ignition of a pure deuterium micro-detonation a gain of the same magnitude can in theory be reached [2]. If feasible, the Super Marx generator deuterium ignition approach would make lasers obsolete as a means for the ignition of ther...

Winterberg, Friedwardt

2009-01-01T23:59:59.000Z

275

Historical Doses from Tritiated Water and Tritiated Hydrogen Gas Released to the Atmosphere from Lawrence Livermore National Laboratory (LLNL) Part 1. Description of Tritium Dose Model (DCART) for Routine Releases from LLNL  

DOE Green Energy (OSTI)

DCART (Doses from Chronic Atmospheric Releases of Tritium) is a spreadsheet model developed at Lawrence Livermore National Laboratory (LLNL) that calculates doses from inhalation of tritiated hydrogen gas (HT), inhalation and skin absorption of tritiated water (HTO), and ingestion of HTO and organically bound tritium (OBT) to adult, child (age 10), and infant (age 6 months to 1 year) from routine atmospheric releases of HT and HTO. DCART is a deterministic model that, when coupled to the risk assessment software Crystal Ball{reg_sign}, predicts doses with a 95% confidence interval. The equations used by DCART are described and all distributions on parameter values are presented. DCART has been tested against the results of other models and several sets of observations in the Tritium Working Groups of the International Atomic Energy Agency's programs, Biosphere Modeling and Assessment and Environmental Modeling for Radiation Safety. The version of DCART described here has been modified to include parameter values and distributions specific to conditions at LLNL. In future work, DCART will be used to reconstruct dose to the hypothetical maximally exposed individual from annual routine releases of HTO and HT from all LLNL facilities and from the Sandia National Laboratory's Tritium Research Laboratory over the last fifty years.

Peterson, S R

2006-09-27T23:59:59.000Z

276

Historical Doses from Tritiated Water and Tritiated Hydrogen Gas Relesed to the Atmosphere from Lawrence Livermore National Laboratory (LLNL) Part 1. Description of Tritium Dose Model (DCART) for Chronic Releases from LLNL  

DOE Green Energy (OSTI)

DCART (Doses from Chronic Atmospheric Releases of Tritium) is a spreadsheet model developed at Lawrence Livermore National Laboratory (LLNL) that calculates doses from inhalation of tritiated hydrogen gas (HT), inhalation and skin absorption of tritiated water (HTO), and ingestion of HTO and organically bound tritium (OBT) to adult, child (age 10), and infant (age 6 months to 1 year) from routine atmospheric releases of HT and HTO. DCART is a deterministic model that, when coupled to the risk assessment software Crystal Ball{reg_sign}, predicts doses with a 95th percentile confidence interval. The equations used by DCART are described and all distributions on parameter values are presented. DCART has been tested against the results of other models and several sets of observations in the Tritium Working Group of the International Atomic Energy Agency's Biosphere Modeling and Assessment Programme. The version of DCART described here has been modified to include parameter values and distributions specific to conditions at LLNL. In future work, DCART will be used to reconstruct dose to the hypothetical maximally exposed individual from annual routine releases of HTO and HT from all LLNL facilities and from the Sandia National Laboratory's Tritium Research Laboratory over the last fifty years.

Peterson, S

2004-06-30T23:59:59.000Z

277

Associate director for Physical and Life Sciences, Lawrence Livermore  

National Nuclear Security Administration (NNSA)

Associate director for Physical and Life Sciences, Lawrence Livermore Associate director for Physical and Life Sciences, Lawrence Livermore National Laboratory | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Who We Are > In The Spotlight > William Goldstein Associate director for Physical and Life Sciences, Lawrence Livermore

278

Four Lawrence Livermore researchers named 2013 APS Fellows  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 For immediate release: 12/23/2013 | NR-13-12-06 Four Lawrence Livermore National Laboratory scientists have been selected as 2013 fellows of the American Physical Society (APS). They include, from left: Charles Cerjan, Ian Thompson, Eric Schwegler and Marilyn Schneider. Four Lawrence Livermore researchers named 2013 APS Fellows Breanna Bishop, LLNL, (925) 423-9802, bishop33@llnl.gov LIVERMORE, Calif. - Four Lawrence Livermore National Laboratory scientists have been selected as 2013 fellows of the American Physical Society (APS). Physicist Charles Cerjan was cited by the Division of Atomic, Molecular and Optical Physics for "seminal contributions to time-dependent Schrodinger equation propagation algorithms and their application to particle scattering and intense field dynamics, the development of laser-produced

279

Lawrence Livermore National Security Enforcement Letter (NEL-2013-03)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Penrose C. Albright Penrose C. Albright Department of Energy Washington, DC 20585 July 22, 2013 President and Laboratory Director Lawrence Livermore National Security, LLC Lawrence Livermore National Laboratory 7000 East Avenue Livermore, California 94550 NEL-2013-03 Dear Dr. Albright: The Office of Health, Safety and Security's Office of Enforcement and Oversight has evaluated the facts and circumstances surrounding programmatic deficiencies identified in the Lawrence Livermore National Security, LLC (LLNS) software quality assurance (SQA) program. LLNS reported these deficiencies on January 16, 2013, in Noncompliance Tracking System (NTS) report NTS--LSO-LLNL-LLNL- 2013-0001, LLNL Software Quality Assurance Program Does Not Meet DOE 0 414.1 D Standards and Procedures Requirements.

280

UC Regents Visit Lawrence Livermore  

NLE Websites -- All DOE Office Websites (Extended Search)

of a regional-scale earthquake simulation at TSF and were briefed on the Lab's response to the Fukushima Daiichi power plant disaster in Japan. Livermore Mayor John...

Note: This page contains sample records for the topic "laboratory livermore ca" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Sandia National Laboratories: Working with Sandia: Current Suppliers  

... personnel to Sandia National Laboratories facilities in Albuquerque, New Mexico, Carlsbad, New Mexico and Livermore, California. ...

282

The Livermore Phantom History and Supplementation  

Science Conference Proceedings (OSTI)

In vivo monitoring facilities determine the absence or presence of internally entrained radionuclides. To be of greatest utility, the detection systems must detect and quantify the nuclides of interest at levels of interest. Phantoms have been developed to improve measurements at in vivo monitoring facilities. Since the 1970s, the Lawrence Livermore National Laboratory (LLNL, or simply "Livermore") phantom continues to be a well-used tool at lung monitoring facilities, especially for the detection of low-energy emissions from transuranics. The history of its development from need, through design development and current availability, is summarized. The authors have taken the LLNL phantom one step further by scanning the phantom surface and announce the availability of the scan files on the internet.

Snyder, Sandra F.; Traub, Richard J.

2010-03-01T23:59:59.000Z

283

Sandia National Laboratories: Contact Us  

NLE Websites -- All DOE Office Websites (Extended Search)

Contact Us Contact Us Contact Us By email: For questions or comments about the Sandia website please contact the Sandia webmaster. By mail: New Mexico California Sandia National Laboratories, New Mexico P.O. Box 5800 Albuquerque, NM 87185-(mail stop)* non-mail deliveries: 1515 Eubank SE Albuquerque, NM 87123 Sandia National Laboratories, California P.O. Box 969 Livermore, CA 94551-0969 non-mail deliveries: 7011 East Avenue Livermore, CA 94550 * All mail must contain an appropriate mail stop to ensure delivery. For employee mail stops, reference our Employee Locator. Other Contacts Employee locator Online employee locator Telephone employee locator service: (505) 845-0011 Press Queries New Mexico News media help line: (505) 844-4902 (for members of the news media) Additional Media Relations contacts

284

Livermore Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Livermore Biomass Facility Jump to: navigation, search Name Livermore Biomass Facility Facility...

285

Cold cases heat up through Lawrence Livermore approach to identifying  

NLE Websites -- All DOE Office Websites (Extended Search)

10-03 10-03 For immediate release: 10/10/2012 | NR-12-10-03 Cold cases heat up through Lawrence Livermore approach to identifying remains Anne M Stark, LLNL, (925) 422-9799, stark8@llnl.gov Printer-friendly Bruce Buchholz loads a sample in the accelerator. High Resolution Image LIVERMORE, Calif. -- In an effort to identify the thousands of John/Jane Doe cold cases in the United States, a Lawrence Livermore National Laboratory researcher and a team of international collaborators have found a multidisciplinary approach to identifying the remains of missing persons. Using "bomb pulse" radiocarbon analysis developed at Lawrence Livermore, combined with recently developed anthropological analysis and forensic DNA techniques, the researchers were able to identify the remains of a missing

286

Livermore Scientists Team with Russia to Discover Element 118  

NLE Websites -- All DOE Office Websites (Extended Search)

"Synthesis of the isotopes of elements 118 and 116" (Abstract) "Synthesis of the isotopes of elements 118 and 116" (Abstract) Physical Review C, October 9, 2006 Livermore Scientists Team With Russia To Discover Elements 113 and 115 LLNL News Release, February. 2, 2004 "Present at the Creation" Science & Technology Review, January/February 2002 Island of Stability NOVA Science Now, September 2006 Social Media Logos Follow LLNL on YouTube Subscribe to LLNL's RSS feed Follow LLNL on Facebook Follow LLNL on Twitter Follow LLNL on Flickr Contact: Anne M. Stark Phone: (925) 422-9799 E-mail: stark8l@llnl.gov FOR IMMEDIATE RELEASE October 16, 2006 NR-06-10-03 Livermore scientists team with Russia to discover element 118 LIVERMORE, Calif. - Scientists from the Chemistry, Materials and Life Sciences Directorate at Lawrence Livermore National Laboratory, in

287

Submitting Organization Sandia National Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

P.O. Box 5800 Albuquerque, NM 87185 Susan Brozik Address: P.O. Box 5800, MS 0892 City/State: Albuquerque, NM Zip/Postal Code: 87185 Country: USA Phone: 505-844-5105 Fax: 505-845-8161 smbrozi@sandia.gov Contact Person Glenn Kubiak Sandia National Laboratories Director, Biological and Materials Science Center Address: 7011 East Avenue, MS 9405 City/State: Livermore, CA Zip/Postal Code: 94551

288

Organic Particles Kevin Wilson Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA  

NLE Websites -- All DOE Office Websites (Extended Search)

for Studying the Chemical Transformations of for Studying the Chemical Transformations of Organic Particles Kevin Wilson Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA Molecular weight growth and decomposition chemistries play important roles in the transformation of particles from soot formation to atmospheric aerosol oxidation. Understanding these complex reaction pathways requires novel methods of analyzing particle phase hydrocarbons. We are developing a suite of synchrotron-based tools to provide better insights into the molecular composition, isomer distribution, and elemental composition of complex hydrocarbon mixtures, aimed at developing simple yet realistic descriptions of molecular weight growth and decomposition that occur during a heterogeneous reaction.

289

A Cure for the Valentine's Blues? Livermore Supercomputer Seeks to Mend  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Cure for the Valentine's Blues? Livermore Supercomputer Seeks to A Cure for the Valentine's Blues? Livermore Supercomputer Seeks to Mend Broken Hearts A Cure for the Valentine's Blues? Livermore Supercomputer Seeks to Mend Broken Hearts February 14, 2013 - 9:56am Addthis The Cardioid code developed by a team of Livermore and IBM scientists divides the heart into a large number of manageable pieces, or subdomains. The development team used two approaches, called Voronoi (left) and grid (right), to break the enormous computing challenge into much smaller individual tasks. | Photo from the Lawrence Livermore National Laboratory The Cardioid code developed by a team of Livermore and IBM scientists divides the heart into a large number of manageable pieces, or subdomains. The development team used two approaches, called Voronoi (left) and grid

290

Livermore Work for DOD  

NLE Websites -- All DOE Office Websites (Extended Search)

estimate the plumes' health effects. During war and in less turbulent times, the Laboratory delivers services and products to DOD. They range from a new missile warhead to a...

291

Technology & Market Discovery - Lawrence Livermore National Laboratory  

Technology & Market Discovery. The commercialization of many technologies developed at LLNL require the market expertise and funding capabilty of the entrepreneurial ...

292

Lawrence Livermore National Laboratory | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

contract, which oversees the lab. Additionally, the field office promotes national nuclear safety, executes assigned NNSA and Department of Energy programs and conducts...

293

Lawrence Livermore National Laboratory: Request Blocked  

If this does not unblock the URL, contact the LLNL Institutional Web Team. Please include the Support ID listed below in your e-mail. Your Support ID is: ...

294

Company Contact Form - Lawrence Livermore National Laboratory  

Internet : Newsletter : Federal Business Opportunity (FBO) Other: Comments or Questions? IMPORTANT!!! IMPORTANT!!! IMPORTANT!!! To ensure ...

295

Reporting Forms - Lawrence Livermore National Laboratory  

Weapons & Complex Integration. News Center. News Center. Around the Lab. Contacts. For Reporters. ... for the Department of Energy's National Nuclear Security ...

296

Awards and Patents - Lawrence Livermore National Laboratory  

UWB dual burst transmit driver : Gergory E. Dallum, Garth C ... Gamma Ray Spectroscopy Employing Divalent Europium-Doped Alkaline Earth Halides and Digital Readout ...

297

Awards and Patents - Lawrence Livermore National Laboratory  

Roger Werne, Deputy Director of IPO, has created the LLNL Entrepreneurs Hall of Fame. On October 12 fifteen former LLNL scientists and engineers were recognized for ...

298

Lawrence Livermore Laboratory energy and technology review  

SciTech Connect

Separate abstracts were prepared for four sections of this report, two of which appear in Nuclear Science Abstracts and two in ERDA Research Abstracts. (CH)

Carr, R.B.; Barnett, J.M.; Berlo, R.C.; McCaleb, C.S.; Prono, J.K. (eds.)

1975-08-01T23:59:59.000Z

299

Physicist, Lawrence Livermore National Laboratory | National...  

National Nuclear Security Administration (NNSA)

He is honored for his scientific leadership to advance understanding in a long-standing nuclear weapons physics anomaly and his contribution to nuclear weapons stockpile...

300

Researcher, Lawrence Livermore National Laboratory | National...  

NLE Websites -- All DOE Office Websites (Extended Search)

Christian Marois, a former LLNL postdoc now at NRC Herzberg Institute of Astrophysics in Canada was the other lead author. Learn more about these publications off site link ....

Note: This page contains sample records for the topic "laboratory livermore ca" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Lawrence Livermore National Laboratory: 60 Second Science  

NLE Websites -- All DOE Office Websites (Extended Search)

LLNL Click on images for high-resolution photos. More information R&D The LEOPARD (Laser Energy Optimization by Precision Adjustments to the Radiant Distribution) technology has...

302

Lawrence Livermore National Laboratory Technology Marketing ...  

Hydrogen is a renewable energy carrier that has the potential to replace fossil fuels in our economy. The majority of hydrogen produced today is from natural gas, ...

303

Lawrence Livermore National Laboratory Technologies Available ...  

One aspect of this program increases utilization of the nation's secure reserves of conventional and unconventional fossil fuels.

304

Lawrence Livermore National Laboratory: Contact Us  

NLE Websites -- All DOE Office Websites (Extended Search)

and Environmental Sciences Education Program Energy Engineering Industrial Partnerships, Tech Transfer Internships Jobs Lasers National Ignition Facility Nonproliferation,...

305

Sandia National Laboratories: Locations: Livermore, California...  

NLE Websites -- All DOE Office Websites (Extended Search)

here Report a problem - Maps Labs - Help Google Maps - 2014 Google - Terms of Use - Privacy Report a problem - Maps Labs - Help Google Maps - 2014...

306

Record Series Descriptions: Lawrence Livermore National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Using Niobium-92m, Barium-133, and Strontium-85 Records Relating to Interlaboratory Comparison of Human Subjects Records Relating to Proposed Technetium-99 Counting Program...

307

Sandia National Laboratories: Locations: Livermore, California...  

NLE Websites -- All DOE Office Websites (Extended Search)

Education California and Bay Area schools California's strong commitment to supporting public education is shown in the state's constitution, which requires 40% of state revenues...

308

Compton Imaging System - Lawrence Livermore National Laboratory  

LLNL Home. Latest News Headlines. LLNL, Intel, Cray produce big data machine. November 4, 2013. First results from most sensitive dark matter detector. October 31, 2013.

309

Ceramic Filters - Lawrence Livermore National Laboratory  

LLNL Home. Latest News Headlines. LLNL, Intel, Cray produce big data machine. November 4, 2013. First results from most sensitive dark matter detector. October 31, 2013.

310

Research and Technology - Lawrence Livermore National Laboratory  

LLNL Home. Latest News Headlines. LLNL, Intel, Cray produce big data machine. November 4, 2013. First results from most sensitive dark matter detector. October 31, 2013.

311

Tech Transfer - Lawrence Livermore National Laboratory  

LLNL Home. Latest News Headlines. LLNL, Intel, Cray produce big data machine. November 4, 2013. First results from most sensitive dark matter detector. October 31, 2013.

312

Awards and Patents - Lawrence Livermore National Laboratory  

Director search process gets under way. November 26, 2013. Employee selected as Face of Stroke ambassador. November 26, ...

313

Browse Software - Lawrence Livermore National Laboratory  

Search & Browse Software: Licensing Instructions: Patents: Browse Software. You can filter the displayed results by keyword (columns included in ...

314

License Agreement - Lawrence Livermore National Laboratory  

Director search process gets under way. November 26, 2013. Employee selected as Face of Stroke ambassador. November 26, ...

315

Optical Waveform Recorder - Lawrence Livermore National Laboratory  

Director search process gets under way. November 26, 2013. Employee selected as Face of Stroke ambassador. November 26, ...

316

Working With Us - Lawrence Livermore National Laboratory  

Director search process gets under way. November 26, 2013. Employee selected as Face of Stroke ambassador. November 26, ...

317

All News - Lawrence Livermore National Laboratory  

Director search process gets under way. November 26, 2013. Employee selected as Face of Stroke ambassador. November 26, 2013. LLNL Home. Latest News ...

318

Lawrence Livermore National Laboratory, P. O. Box  

NLE Websites -- All DOE Office Websites (Extended Search)

Massively Parallel Systems Donald F rederick, L LNL Presented a t S upercompu@ng ' 11 LLNL---PRES---508651 Case S tudy: O utline * Problem D escrip@on * Computa@onal A pproach *...

319

Lawrence Livermore National Laboratory | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

(Official) Funding Mods Available Upon Request Conformed Contract (Unofficial) LLNL Sec A (SF33) (pdf, 91KB) See Modifications Section under Conformed Contract Link LLNS...

320

Researcher, Lawrence Livermore National Laboratory | National...  

National Nuclear Security Administration (NNSA)

appeared in the Nov. 28, 2008 edition of Science, shares the award. That paper included LLNL author Mike Fitzgerald with Paul Kalas of UC Berkeley serving as the lead author. Learn...

Note: This page contains sample records for the topic "laboratory livermore ca" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Lawrence Livermore National Laboratory (LLNL): Photography Restriction...  

NLE Websites -- All DOE Office Websites (Extended Search)

Photography About LLNL About LLNL What we do How we do it Our Values Organization Management and Sponsors Publications History Organizations Global Security National Ignition...

322

Lawrence Livermore National Laboratory (LLNL): Prohibited and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Controlled Items About LLNL About LLNL What we do How we do it Our Values Organization Management and Sponsors Publications History Organizations Global Security National Ignition...

323

All News - Lawrence Livermore National Laboratory  

R&D Magazine follows up on the success of laser peening, a technology developed at LLNL and licensed to Metal Improvement Company (MIC). Read More.

324

News Release - Lawrence Livermore National Laboratory  

to power electric vehicles for generations to come, ... ZAI is in discussions with multiple fleet vehicle manufacturers to develop products for their

325

Lawrence Livermore National Laboratory Technology Marketing ...  

Search Help Energy Innovation ... provide sustainable energy applications that lessen our dependence on fossil fuels. ... therefore enhance the energy security of the ...

326

Dr. Yuan Ping Lawrence Livermore National Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Creating, diagnosing and Creating, diagnosing and controlling high-energy- density matter with lasers Dr. Yuan Ping Lawrence Livermore National Lab Tuesday, Oct 22, 2013 - 3:00PM MBG AUDITORIUM Refreshments at 2:45PM The PrinceTon Plasma Physics laboraTory is a U.s. DeParTmenT of energy faciliTy Since their invention in 1960's, lasers with power spanning from Kilo- Watt to PetaWatt have been widely used in almost every branch of sci- ence, leading to numerous discoveries and novel techniques. At present, lasers are capable of creating extreme states of matter in a laboratory, at conditions resembling those most extreme in the Universe: they heat matter up to the temperatures inside stars, they create electric field and

327

Lawrence Livermore and Rensselaer Polytechnic Institute scientists set a  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 For immediate release: 04/30/2013 | NR-13-04-06 Lawrence Livermore and Rensselaer Polytechnic Institute scientists set a new simulation speed record on the Sequoia supercomputer Donald B Johnston, LLNL, (925) 423-4902, johnston19@llnl.gov Printer-friendly Lawrence Livermore scientists, from left, David Jefferson and Peter Barnes. Photo by Laura Schulz and Meg Epperly/LLNL High Resolution Image Computer scientists at Lawrence Livermore National Laboratory (LLNL) and Rensselaer Polytechnic Institute have set a high performance computing speed record that opens the way to the scientific exploration of complex planetary-scale systems. In a paper to be published in May, the joint team will announce a record-breaking simulation speed of 504 billion events per second on LLNL's

328

California utilities partner with Lawrence Livermore to improve state's  

NLE Websites -- All DOE Office Websites (Extended Search)

2-12-04 2-12-04 For immediate release: 12/20/2012 | NR-12-12-04 California utilities partner with Lawrence Livermore to improve state's energy grid Lynda L Seaver, LLNL, (925) 423-3103, seaver1@llnl.gov Printer-friendly California utilities will use the advanced technologies and expertise of Lawrence Livermore National Laboratory to improve the efficiency, security and safety of the state's utility systems under an agreement approved today by the California Public Utilities Commission (CPUC). The CPUC approved funding of a five-year research and development agreement between Pacific Gas and Electric Company, Southern California Edison Company and San Diego Gas and Electric Company, and Lawrence Livermore (LLNL) that will provide the utilities with access to LLNL technological

329

Expanding Your Horizons Conference, Lawrence Livermore National...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lawrence Livermore National Lab Expanding Your Horizons Conference, Lawrence Livermore National Lab August 1, 2013 2:45PM EDT to August 31, 2013 3:45PM EDT University of the...

330

Lawrence Livermore announces voluntary separation program  

NLE Websites -- All DOE Office Websites (Extended Search)

| NR-13-05-02 Lawrence Livermore announces voluntary separation program Lynda L Seaver, LLNL, (925) 423-3103, seaver1@llnl.gov Printer-friendly Lawrence Livermore National...

331

Calibration of the Lawrence Livermore National Laboratory Passive-Active Neutron Drum Shuffler for Measurement of Highly Enriched Uranium in Oxides within DOE-STD-3013-2000 Containers  

SciTech Connect

Lawrence Livermore National Laboratory (LLNL) uses the LLNL passive-active neutron drum (PAN) shuffler (Canberra Model JCC-92) for accountability measurement of highly enriched uranium (HEU) oxide and HEU in mixed uranium-plutonium (U-Pu) oxide. In June 2002, at the 43rd Annual Meeting of the Institute of Nuclear Material Management, LLNL reported on an extensive effort to calibrate this shuffler, based on standards measurements and extensive simulations, for HEU oxides and mixed U-Pu oxides in thin-walled primary and secondary containers. In August 2002, LLNL began to also use DOE-STD-3013-2000 containers for HEU oxide and mixed U-Pu oxide. These DOE-STD-3013-2000 containers are comprised of a stainless steel convenience can enclosed in welded stainless steel primary and secondary containers. Compared to the double thin-walled containers, the DOE-STD-3013-2000 containers have substantially thicker walls, and the density of materials in these containers was found to extend over a greater range (1.35 g/cm{sup 3} to 4.62 g/cm{sup 3}) than foreseen for the double thin-walled containers. Further, the DOE-STD-3013-2000 Standard allows for oxides containing at least 30 wt% Pu plus U whereas the calibration algorithms for thin-walled containers were derived for virtually pure HEU or mixed U-Pu oxides. An initial series of Monte Carlo simulations of the PAN shuffler response to given quantities of HEU oxide and mixed U-Pu oxide in DOE-STD-3013-2000 containers was generated and compared with the response predicted by the calibration algorithms for thin-walled containers. Results showed a decrease on the order of 10% in the count rate, and hence a decrease in the calculated U mass for measured unknowns, with some varying trends versus U mass. Therefore a decision was made to develop a calibration algorithm for the PAN shuffler unique to the DOE-STD-3013-2000 container. This paper describes that effort and selected unknown item measurement results.

Mount, M E; O' Connell, W J

2005-06-03T23:59:59.000Z

332

Minutes of the 7th Meeting of the Livermore Vulnerability Committee  

SciTech Connect

This memorandum provides the minutes of the 7th meeting of the Livermore Vulnerability Committee. The Laboratory commitments in the Tapestry experiment, with particular reference to those experiments proposed in the Polaris MK 2 and the Minuteman MK 2 programs.

Germain, L.

1965-05-26T23:59:59.000Z

333

EA-1106: Explosive Waste Treatment Facility at Site 300, Lawrence Livermore  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

106: Explosive Waste Treatment Facility at Site 300, Lawrence 106: Explosive Waste Treatment Facility at Site 300, Lawrence Livermore National Laboratory, San Joaquin County, California EA-1106: Explosive Waste Treatment Facility at Site 300, Lawrence Livermore National Laboratory, San Joaquin County, California SUMMARY This EA evaluates the environmental impacts of the proposal to build, permit, and operate the Explosive Waste Treatment Facility to treat explosive waste at the U.S. Department of Energy's Lawrence Livermore National Laboratory Experimental Test Site, Site 300. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD April 16, 1996 EA-1106: Finding of No Significant Impact Explosive Waste Treatment Facility at Site 300, Lawrence Livermore National Laboratory April 16, 1996

334

Ca  

NLE Websites -- All DOE Office Websites (Extended Search)

P O. Box 3090 P O. Box 3090 Ca rlsbad, New Mexico 88221 Mr. John Kieling , Acting Bureau Chief Hazardous Waste Bureau MAY 1 6 2012 New Mexico Environment Department 2905 E. Rodeo Park Drive, Bldg . 1 Santa Fe, New Mexico 87505-6303 Subject: Transmittal of the Waste Isolation Pilot Plant Revised Calendar Year 2005-2008 Culebra Potentiometric Surface Map Package Dear Mr. Kieling: On August 5 , 2011 , the New Mexico Environmental Department (NMED) approved the Groundwater Work Plan submitted as a condition to the Final Stipulated Order dated December 1, 2009. An additional condition of the Order, upon approval of the Work Plan , is the submittal of a series of revised Culebra potentiometric surface maps within timeframes specified by the Order. Enclosed is the revised second submittal due to the NMED. The

335

A Gamma-Ray Burst Bibliography, 1973-2001 UC Berkeley Space Sciences Laboratory, Berkeley, CA 94720-7450  

E-Print Network (OSTI)

A Gamma-Ray Burst Bibliography, 1973-2001 K. Hurley UC Berkeley Space Sciences Laboratory, Berkeley, CA 94720-7450 Abstract. On the average, 1.5 new publications on cosmic gamma-ray bursts enter have been tracking the gamma-ray burst literature for about the past twenty-one years, keeping

California at Berkeley, University of

336

Lawrence Livermore National Laborotory Safety Basis Assessment Final February 11, 2011  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Safety Basis Assessment INTRODUCTION This site visit report documents the collective results of the review of Lawrence Livermore National Laboratory (LLNL) safety basis processes and discusses its scope, objective, results and conclusions. Appendix A provides lists of the documents, interviews, and observations and Appendix B includes the plan for the review. This combined assessment was sponsored by the National Nuclear Safety Administration (NNSA) Livermore Site Office (LSO) and conducted jointly by staff from the Office of Health, Safety and Security (HSS) and LSO. The review was conducted in late 2010 and included site visits from November 29 - December 3, 2010 and December 13-17, 2010. Overall, the LLNL programs

337

Lawrence Livermore National Laborotory Safety Basis Assessment Final February 11, 2011  

NLE Websites -- All DOE Office Websites (Extended Search)

Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Safety Basis Assessment INTRODUCTION This site visit report documents the collective results of the review of Lawrence Livermore National Laboratory (LLNL) safety basis processes and discusses its scope, objective, results and conclusions. Appendix A provides lists of the documents, interviews, and observations and Appendix B includes the plan for the review. This combined assessment was sponsored by the National Nuclear Safety Administration (NNSA) Livermore Site Office (LSO) and conducted jointly by staff from the Office of Health, Safety and Security (HSS) and LSO. The review was conducted in late 2010 and included site visits from November 29 - December 3, 2010 and December 13-17, 2010. Overall, the LLNL programs

338

Categorical Exclusion Determinations: Lawrence Livermore Site Office |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lawrence Livermore Site Lawrence Livermore Site Office Categorical Exclusion Determinations: Lawrence Livermore Site Office Categorical Exclusion Determinations issued by Lawrence Livermore Site Office. DOCUMENTS AVAILABLE FOR DOWNLOAD September 18, 2012 CX-010083: Categorical Exclusion Determination Radiography of Explosive Samples B321C CX(s) Applied: B3.6 Date: 09/18/2012 Location(s): California Offices(s): Lawrence Livermore Site Office September 18, 2012 CX-009257: Categorical Exclusion Determination Radiography of Explosive Samples B321C CX(s) Applied: B3.6 Date: 09/18/2012 Location(s): California Offices(s): Lawrence Livermore Site Office May 14, 2012 CX-008172: Categorical Exclusion Determination High-Pressure Crogenic Pump and Hydrogen Filling Station CX(s) Applied: B5.15 Date: 05/14/2012

339

Sandia/California named winner of "Environmental Spirit" Award by Livermore  

NLE Websites -- All DOE Office Websites (Extended Search)

RELEASES RELEASES FOR IMMEDIATE RELEASE January 31, 2008 Sandia/California named winner of "Environmental Spirit" Award by Livermore Chamber of Commerce LIVERMORE, Calif. -Sandia National Laboratories' Livermore, Calif., site has been selected by the Livermore Chamber of Commerce as recipient of its inaugural Environmental Spirit Award. The award was presented to Sandia for its environmental programs and ongoing commitment to protecting the environment, wildlife, and numerous species on the laboratory's 400-acre site, says Dale Kaye Chamber president and CEO. "Sandia has not only shown tremendous sensitivity to the land they occupy, but also a dedicated commitment to its community," says Kaye. "This is an organization that helps to protect our world and we are

340

Lawrence Livermore announces new strategic national security...  

NLE Websites -- All DOE Office Websites (Extended Search)

Livermore announces new strategic national security assignments Lynda L Seaver, LLNL, (925) 423-3103, seaver1@llnl.gov Printer-friendly Bruce Goodwin Photos by Julie...

Note: This page contains sample records for the topic "laboratory livermore ca" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Outline of UCRL-Livermore Rover Program  

SciTech Connect

This report describes the development plan, and problems which would be addressed, for the nuclear rocket engine design/UCRL-Livermore ROVER.

York, H.F.

1995-09-01T23:59:59.000Z

342

It's only natural: Lawrence Livermore helps find link to  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 For immediate release: 03/04/2013 | NR-13-03-01 It's only natural: Lawrence Livermore helps find link to arsenic-contaminated groundwater Anne M Stark, LLNL, (925) 422-9799, stark8@llnl.gov Printer-friendly Hand pump at a community well of a sampling site in Bangladesh. Human activities are not the primary cause of arsenic found in groundwater in Bangladesh. Instead, a team of researchers from Lawrence Livermore National Laboratory, Barnard College, Columbia University, University of Dhaka, Desert Research Institute and University of Tennessee found that the arsenic in groundwater in the region is part of a natural process that predates any recent human activity, such as intensive pumping. The results appear in the March 4 edition of the Proceedings of the

343

Alan Alda awards Lawrence Livermore engineer for making science  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 For immediate release: 06/04/2013 | NR-13-06-01 From left: Steve Maguire, who won in the video category of the 2013 Flame Challenge, Alan Alda and Nick Williams, who won in the written category. Alan Alda awards Lawrence Livermore engineer for making science understandable Linda A Lucchetti, LLNL, (925) 422-5815, lucchetti1@llnl.gov Students from Candlewood Middle School in Dix Hills N.Y. join Alan Alda in presenting the Flame Challege Award to Nick Williams at the World Science Festival. What is time? How would you explain it to a 5th grader? Nick Williams, a retired engineer and science presenter from Lawrence Livermore National Laboratory not only has done a fine job of conveying the concept of time to 11 year olds, he's being recognized for it. Williams

344

The Current and Historical Distribution of Special Status Amphibians at the Livermore Site and Site 300  

SciTech Connect

65 surveys were completed in 2002 to assess the current distribution of special status amphibians at the Lawrence Livermore National Laboratory's (LLNL) Livermore Site and Site 300. Combined with historical information from previous years, the information presented herein illustrates the dynamic and probable risk that amphibian populations face at both sites. The Livermore Site is developed and in stark contrast to the mostly undeveloped Site 300. Yet both sites have significant issues threatening the long-term sustainability of their respective amphibian populations. Livermore Site amphibians are presented with a suite of challenges inherent of urban interfaces, most predictably the bullfrog (Rana catesbeiana), while Site 300's erosion issues and periodic feral pig (Sus scrofa) infestations reduce and threaten populations. The long-term sustainability of LLNL's special status amphibians will require active management and resource commitment to maintain and restore amphibian habitat at both sites.

Hattem, M V; Paterson, L; Woollett, J

2008-08-20T23:59:59.000Z

345

LINCS: Livermore's network architecture. [Octopus computing network  

SciTech Connect

Octopus, a local computing network that has been evolving at the Lawrence Livermore National Laboratory for over fifteen years, is currently undergoing a major revision. The primary purpose of the revision is to consolidate and redefine the variety of conventions and formats, which have grown up over the years, into a single standard family of protocols, the Livermore Interactive Network Communication Standard (LINCS). This standard treats the entire network as a single distributed operating system such that access to a computing resource is obtained in a single way, whether that resource is local (on the same computer as the accessing process) or remote (on another computer). LINCS encompasses not only communication but also such issues as the relationship of customer to server processes and the structure, naming, and protection of resources. The discussion includes: an overview of the Livermore user community and computing hardware, the functions and structure of each of the seven layers of LINCS protocol, the reasons why we have designed our own protocols and why we are dissatisfied by the directions that current protocol standards are taking.

Fletcher, J.G.

1982-01-01T23:59:59.000Z

346

Science on Saturday @ Lawrence Livermore Lab  

Energy.gov (U.S. Department of Energy (DOE))

Science on Saturday. Science on Saturday (SOS) is a series of science lectures for middle and high school students. Each topic highlights cutting-edge science occurring at the Lawrence Livermore...

347

CES-21 board meets at Lawrence Livermore  

NLE Websites -- All DOE Office Websites (Extended Search)

1613ces 04162013 CES-21 board meets at Lawrence Livermore James A Bono, LLNL, (925) 422-9919, bono4@llnl.gov Printer-friendly LLNL's Computation Associate Director Dona Crawford...

348

Moran_OthHyd_VE.ppt  

National Nuclear Security Administration (NNSA)

Livermore National Laboratory under Contract No. W-7405-Eng-48. Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551-0808 Hydrodynamic test problems...

349

LLNL-ABS-490222 Page 1 Session 5: Materials: Constitutive Properties...  

National Nuclear Security Administration (NNSA)

Strengths Dynamic Strength Experiments at Lawrence Livermore National Laboratory R. M. Cavallo Lawrence Livermore National Laboratory, Livermore, CA USA Summary: We...

350

EA-1422: Sandia National Laboratories Site-Wide Environmental  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

422: Sandia National Laboratories Site-Wide Environmental 422: Sandia National Laboratories Site-Wide Environmental Assessment/California EA-1422: Sandia National Laboratories Site-Wide Environmental Assessment/California SUMMARY Sandia National Laboratories (SNL) is one of three national laboratories that support the DOE's statutory responsibilities for nuclear weapons research and design, development of energy technologies, and basic scientific research. SNL is composed of four geographically separated facilities: Albuquerque, New Mexico (SNL/NM); Tonopah, Nevada; Kauai, Hawaii; and Livermore, California (SNL/CA). This SWEA focuses on SNL/CA. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD September 3, 2012 EA-1422-SA-01: Supplement Analysis Final Site-Wide Environmental Assessment for Sandia National

351

Lawrence Livermore Laser Fusion Program: a status report  

SciTech Connect

The Laser Fusion Program at the Lawrence Livermore Laboratory is presently emerging from a three-year period of intensive development of the tools required for significant DT implosion experiments of continuously increasing scale. These diverse tools include target design codes, sophisticated target fabrication techniques, radically new diagnostics instrumentation, high peak- power-high brightness laser technology, and fully integrated laser-target- diagnostic irradiation facilities. These tools have recently led to the successful production of neutrons from compressed DT-containing targets together with a wealth of correlating plasma physics data. The current status of major program activities at LLL will be reviewed and major future milestones will be projected. (auth)

Krupke, W.F.

1975-04-15T23:59:59.000Z

352

Sandia National Laboratories - Sandia Lab News  

NLE Websites -- All DOE Office Websites (Extended Search)

Home navigation panel Sandia Lab News Vol. 53, No. 2 January 26, 2001 Sandia National Laboratories Albuquerque, New Mexico 87185-0165 || Livermore, California...

353

Sandia National Laboratories: About Sandia: Leadership: Chief...  

NLE Websites -- All DOE Office Websites (Extended Search)

Rottler is Chief Technology Officer and Vice President, Science and Technology, at Sandia National Laboratories, which is located in Albuquerque, New Mexico and Livermore,...

354

Lawrence Livermore, Intel, Cray produce big data machine to serve as  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 For immediate release: 11/04/2013 | NR-13-11-01 High Resolution Image Catalyst is a unique high performance computing (HPC) cluster that will serve research scientists and provide a proving ground for new HPC and Big Data technologies and architectures. It was recently installed at Lawrence Livermore National Laboratory. Lawrence Livermore, Intel, Cray produce big data machine to serve as catalyst for next-generation HPC clusters Donald B Johnston, LLNL, (925) 423-4902, johnston19@llnl.gov Lawrence Livermore National Laboratory in partnership with Intel and Cray, today announced a unique high performance computing (HPC) cluster that will serve research scientists at all three institutions and provide a proving ground for new HPC and Big Data technologies and architectures.

355

PROCEEDINGS OF WORKSHOP ON THERMOMECHANICAL-HYDROCHEMICAL MODELING FOR A HARDROCK WASTE REPOSITORY. JULY 29-31, 1980. MARRIOTT INN, BERKELEY, CA  

E-Print Network (OSTI)

80-0679, Sandia National Laboratories, Albuquerque, NM (inConducted at Sandia National Laboratories in Support of theLawrence Livermore National Laboratory Massachusetts

Authors, Various

2010-01-01T23:59:59.000Z

356

Modeling of thermally driven hydrological processes in partially saturated fractured rock  

E-Print Network (OSTI)

Lawrence Livermore National Laboratory, Livermore, CA.Lawrence Berkeley National Laboratory, Berkeley, CA. Wu, Y-SAND84-2621, Sandia National Laboratories, Albuquerque, NM.

Tsang, Yvonne

2010-01-01T23:59:59.000Z

357

Lawrence Livermore and Cool Earth Solar receive $1.7 million for renewable  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 For immediate release: 05/14/2013 | NR-13-05-03 Lawrence Livermore and Cool Earth Solar receive $1.7 million for renewable energy demonstration project Anne M Stark, LLNL, (925) 422-9799, stark8@llnl.gov Printer-friendly The concentrator photovoltaic (CPV) system in the field. Photo courtesy of Cool Earth Inc. High Resolution Image The California Energy Commission (CEC) has awarded $1.7 million to a partnership between Lawrence Livermore National Laboratory and Cool Earth Solar Inc. (CES) to conduct a community-scale renewable energy integration demonstration project at the Livermore Valley Open Campus. CES is the prime awardee and is contributing an additional $1 million in matching funds to the CEC amount, while LLNL will provide advanced R&D support for the effort.

358

EA-1442: Final Environmental Assessment  

Energy.gov (U.S. Department of Energy (DOE))

Proposed Construction and Operation of a Biosafety Level 3 Facility at Lawrence Livermore National Laboratory, Livermore, CA

359

Search process for Lawrence Livermore director, LLNS president...  

NLE Websites -- All DOE Office Websites (Extended Search)

6.13search 11262013 Search process for Lawrence Livermore director, LLNS president gets under way Lynda L Seaver, LLNL, (925) 423-3103, seaver1@llnl.gov LIVERMORE, Calif. - The...

360

Workforce Statistics - Livermore Field Office | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Livermore Field Office | National Nuclear Security Livermore Field Office | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Workforce Statistics - Livermore Field Office Home > About Us > Our Operations > Management and Budget > Office of Civil Rights > Workforce Statistics > Workforce Statistics - Livermore Field Office Workforce Statistics - Livermore Field Office

Note: This page contains sample records for the topic "laboratory livermore ca" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Welcome to the Livermore Field Office | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Livermore Field Office | National Nuclear Security Livermore Field Office | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Welcome to the Livermore Field Office Home > Field Offices > Welcome to the Livermore Field Office Welcome to the Livermore Field Office The NNSA Livermore Field Office (LFO) is located at the Lawrence Livermore

362

Sandia National Laboratories: Featured Programs at the Livermore...  

NLE Websites -- All DOE Office Websites (Extended Search)

is interested in: Developing the science and computing foundation necessary for robust cyber security R&D Developing full knowledge of technical threat concerns Developing,...

363

Sandia National Laboratories: Livermore Valley Open Campus (LVOC...  

NLE Websites -- All DOE Office Websites (Extended Search)

in 2011 as a space for open, collaborative work in areas such as bioscience, cyber security, detection technologies, and hydrogen applications. Collaborators can visit...

364

UCRL-ID-119170 LAWRENCE LIVERMORE NATIONAL LABORATORY  

E-Print Network (OSTI)

,030 +11,192 +1.5% Naval petroleum and oil shale reserves........................ 21,316 20,272 19,099 -1

365

John Lindl and Bruce Hammel Lawrence Livermore National Laboratory  

E-Print Network (OSTI)

Advances in Indirect Drive ICF Target Physics Presentation to 20th IAEA Fusion Energy Conference #12;NIF in Inertial Confinement Fusion Inertial Confinement Fusion uses direct or indirect drive to couple driver by cold, dense main fuel Direct Drive Hot spot (10 keV) Cold, dense main fuel (200-1000 g/cm3) Indirect

366

Sandia National Laboratories: Working at the Livermore Valley...  

NLE Websites -- All DOE Office Websites (Extended Search)

such as the Combustion Research Facility (CRF), the National Ignition Facility (NIF), and long-standing leadership in state-of-the art computing systems. Transportation...

367

Review of the Lawrence Livermore Nationa Laboratory Identiified...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- To avoid the potential that some of these necessary verifications are not performed (an error of omission), as a Human Performance Improvement initiative, consider revising the...

368

LAWRENCE LIVERMORE NATIONAL LABORATORY OVERVIEW OF LLNL LICENSE ...  

one or more fields of use. ... c. Security and energy conservation; d. ... Number of Licenses Total Cost for All Licenses 1 $100,000

369

DOECGF 2009 Site Report: Lawrence Livermore National Laboratory  

Science Conference Proceedings (OSTI)

The Data group provides data analysis and visualization support to its customers. This consists primarily of the development and support of VisIt, a data analysis and visualization tool. Support ranges from answering questions about the tool, providing classes on how to use the tool, and performing data analysis and visualization for customers. The Information Management and Graphics Group supports and develops tools that enhance our ability to access, display, and understand large, complex data sets. Activities include applying visualization software for terascale data exploration; running video production labs on two networks; supporting graphics libraries and tools for end users; maintaining PowerWalls and assorted other displays; and developing software for searching, managing, and browsing scientific data. Researchers in the Center for Applied Scientific Computing (CASC) work on various projects including the development of visualization techniques for terascale data exploration that are funded by the ASC program, among others. The researchers also have LDRD projects and collaborations with other lab researchers, academia, and industry.

Brugger, E; Springmeyer, R R

2009-04-17T23:59:59.000Z

370

Lawrence Livermore National Laboratory's top 10 science stories...  

NLE Websites -- All DOE Office Websites (Extended Search)

most energetic laser facility. Combining extreme levels of energy and peak power on a target in NIF is a critical requirement for achieving one of physics' grand challenges --...

371

Lawrence Livermore National Laboratory (LLNL): Around the Lab...  

NLE Websites -- All DOE Office Websites (Extended Search)

222013) 'Fun with Science' as seen on TV (3212013) Lab scientists contributed to Higgs Boson results (3212013) March 2013 issue of Science & Technology Review (3112013)...

372

Porous Metals for Jewelry - Lawrence Livermore National Laboratory  

Jewelry is typically made of alloys of precious metals (gold, platinum, silver, etc). These metals are typically dense and can weigh a significant amount.

373

Earthquake engineering programs at the Lawrence Livermore Laboratory  

SciTech Connect

Information is presented concerning assessments of current seismic design methods; systematic evaluation program for older operating reactors; seismic vulnerability of fuel reprocessing facilities; and advisability of seismic scram.

Tokarz, F.J.

1980-02-28T23:59:59.000Z

374

Electrostatic Generator/Motor - Lawrence Livermore National Laboratory  

LLNL Home. Latest News Headlines. LLNL, Intel, Cray produce big data machine. November 4, 2013. First results from most sensitive dark matter detector. October 31, 2013.

375

3D Stereo Viewer - Lawrence Livermore National Laboratory  

Director search process gets under way. November 26, 2013. Employee selected as Face of Stroke ambassador. November 26, 2013. LLNL Home. Latest News ...

376

Lawrence Livermore National Laboratory (LLNL): What we do  

NLE Websites -- All DOE Office Websites (Extended Search)

About LLNL > What we do About LLNL About LLNL What we do How we do it Our Values Organization Management and Sponsors Publications History Organizations Global Security National...

377

R&D 100 Awards - Lawrence Livermore National Laboratory  

R&D 100 Awards. R&D 100 Awards are considered the "Oscars of Innovation". The winning of an R&D 100 Award provides a mark of excellence known to industry, government ...

378

Independent Activity Report, Livermore Site Office - January 2011 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Independent Activity Report, Livermore Site Office - January 2011 Independent Activity Report, Livermore Site Office - January 2011 Independent Activity Report, Livermore Site Office - January 2011 January 2011 Livermore Site Office Facility Representative Program Assessment [ARPT-LSO-2011-001] This activity report documents the results of the Office of Health, Safety and Security's (HSS) review of and participation in the Livermore Site Office Self-Assessment of the Facility Representative (FR) Program. This self-assessment was led by the U.S. Department of Energy (DOE) Livermore Site Office (LSO) and conducted by LSO staff, HSS staff, National Nuclear Security Administration (NNSA) Office of the Chief of Defense Nuclear Safety (CDNS) staff, a peer from Los Alamos Site Office, and a FR subject matter expert from NNSA.

379

Livermore Field Office Public Affairs | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Livermore Field Office Public Affairs | National Nuclear Security Livermore Field Office Public Affairs | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Livermore Field Office Public Affairs Home > Field Offices > Welcome to the Livermore Field Office > Livermore Field Office Public Affairs Livermore Field Office Public Affairs The LFO Office of Public Affairs is the primary point of contact between

380

FY 2010 Lawrence Livermore National Security, LLC, PER Summary...  

National Nuclear Security Administration (NNSA)

Apply for Our Jobs Our Jobs Working at NNSA Blog FY 2010 Lawrence Livermore National Security, LLC, PER Summary Home > About Us > Our Operations > Acquisition and Project...

Note: This page contains sample records for the topic "laboratory livermore ca" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

FY 2011 Lawrence Livermore National Security, LLC, PER Summary...  

National Nuclear Security Administration (NNSA)

Apply for Our Jobs Our Jobs Working at NNSA Blog FY 2011 Lawrence Livermore National Security, LLC, PER Summary Home > About Us > Our Operations > Acquisition and Project...

382

FY 2008 Lawrence Livermore National Security, LLC, PER Summary...  

National Nuclear Security Administration (NNSA)

Apply for Our Jobs Our Jobs Working at NNSA Blog FY 2008 Lawrence Livermore National Security, LLC, PER Summary Home > About Us > Our Operations > Acquisition and Project...

383

FY 2009 Lawrence Livermore National Security, LLC, PER Summary...  

National Nuclear Security Administration (NNSA)

Apply for Our Jobs Our Jobs Working at NNSA Blog FY 2009 Lawrence Livermore National Security, LLC, PER Summary Home > About Us > Our Operations > Acquisition and Project...

384

Lawrence Livermore teams with industry to advance energy technologies...  

NLE Websites -- All DOE Office Websites (Extended Search)

release: 03192012 | NR-12-03-01 Lawrence Livermore teams with industry to advance energy technologies using high performance computing Donald B Johnston , LLNL, (925)...

385

Lawrence Livermore research highlighted at AAAS annual meeting  

NLE Websites -- All DOE Office Websites (Extended Search)

Lawrence Livermore research highlighted at AAAS annual meeting Breanna Bishop, LLNL, (925) 423-9802, bishop33@llnl.gov Printer-friendly Mike Dunne, Debbie Callahan and...

386

Lawrence Livermore increases contracts awarded to small businesses...  

NLE Websites -- All DOE Office Websites (Extended Search)

standing in front of the NIF diagnostics that she works on. Photos by Julie KorhummelLLNL Lawrence Livermore increases contracts awarded to small businesses for third straight...

387

A Collaborative Effort to Address the Distribution of Plutonium-Contaminated Sludge in Livermore, California  

E-Print Network (OSTI)

For over a half-century, the U.S. Department of Energy nuclear weapons laboratory in Livermore, California has worked with plutonium in the course of its mission to research and develop nuclear weapons. Plutonium releases via the Laboratorys sewer system resulted in the contamination of sewage sludge that was distributed and used widely as soil conditioner in parks, landscaping around public buildings, and in home lawns and gardens. The amount of sludge distributed and the concentration of the radioactivity in the sludge are uncertain. In 1999, research was undertaken to investigate the historic distribution of sewage sludge (1958-1976) in Livermore. Navigating the uncertainties surrounding the sludge distribution more than forty years after it began presented an enormous ethical challenge. Community members who received the sludge at no cost were not told that the sludge they received may have been contaminated with plutonium, and the log-book that had recorded the names and addresses of sludge recipients had disappeared. The half-life of weapons-grade plutonium is about 24,000 years. Therefore, former, current, and future Livermore residents are at potential increased risk of cancer and other health impacts from their largely unrecognized and therefore unavoidable

Patrice Sutton; A Jacqueline Cabasso; A Tracy Barreau; B Marylia Kelley C

2007-01-01T23:59:59.000Z

388

Site Visit Report, Livermore Site Office - February 2011 | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Site Visit Report, Livermore Site Office - February 2011 Site Visit Report, Livermore Site Office - February 2011 Site Visit Report, Livermore Site Office - February 2011 February 2011 Livermore Site Office Safety Basis Self-Assessment This site visit report documents the collective results of the Office of Health, Safety and Security's (HSS) assessment of National Nuclear Safety Administration (NNSA) Livermore Site Office (LSO) safety basis processes and discusses its scope, objective, results and conclusions. Appendix A provides lists of the documents, interviews, and observations and Appendix B includes the plan for the review. The assessment was sponsored by LSO as a self-assessment and conducted jointly by HSS and LSO staff. It was completed in late 2010 and included site visits from November 29 - December

389

Livermore Regional Air Quality model (LIRAQ-1)  

SciTech Connect

The Livermore Regional Air Quality (LIRAQ) model is an Eulerian grid model developed for use in assessing the regional air quality of a region with temporally and spatially varying meteorology in complex terrain. The first implementation of this approach is embodied in the LIRAQ-1 model and is intended for use with either simple chemical systems or relatively inert pollutants. The basic model formulation is based on the conservation of mass equation integrated vertically from the surface to the base of an inversion layer, thereby creating a single layer model with a grid structure established in the two horizontal dimensions. Surface pollutant concentrations are related to vertical average concentrations using a logarithmic profile. Atmospheric transport, inversion height, source emissions, and topography are all prescribed. Data for the San Francisco Bay Area obtained during 1973 have been used in validation studies. (auth)

MacCracken, M.C.; Grant, K.E.

1975-10-01T23:59:59.000Z

390

Energy conservation and management plan for plant facilities at the Livermore site  

SciTech Connect

An energy conservation and management plan for the Livermore site of the Lawrence Livermore Laboratory is presented. The plan defines the energy-conservation goals for the next 10 years and proposes the ways and means of attaining them. The main features contained in this plan are as follows: development of the criteria and underlying assumptions required for long range planning, including energy growth rates and the case for using the concept of the technical-fix energy growth rate, LLL energy outlook and fuel cost projections, and life-cycle-cost criteria; targets of the long-range plan include between 1975 and 1985, an annual energy usage growth equal to 5.8 percent of the 1975 energy consumption, 1985 and thereafter, zero energy growth, a change from the current dependence on natural gas to the use of other fuels for heating, and a doubling of the 30-day strategic oil storage capacity; and cost schedule for the next 10 years.

Ng, W.; Szybalski, S.; Kerr, W. H.; Meyer, H. J.

1976-03-15T23:59:59.000Z

391

Hanford 100N Area Apatite Emplacement: Laboratory Results of Ca-Citrate-PO4 Solution Injection and Sr-90 Immobilization in 100N Sediments  

Science Conference Proceedings (OSTI)

This report summarizes laboratory scale studies investigating the remediation of Sr-90 by Ca-citrate-PO4 solution injection/infiltration to support field injection activities in the Hanford 100N area. This study is focused on experimentally testing whether this remediation technology can be effective under field scale conditions to mitigate Sr-90 migration 100N area sediments into the Columbia River. Sr-90 is found primarily adsorbed to sediments by ion exchange (99% adsorbed, thermodynamically more stable than Ca-apatite. Once the Sr-90 is in the apatite structure, Sr-90 will decay to Y-90 (29.1 y half-life) then Zr-90 (64.1 h half-life) without the potential for migration into the Columbia River. For this technology to be effective, sufficient apatite needs to be emplaced in sediments to incorporate Sr and Sr-90 for 300 years (~10 half-lives of Sr-90), and the rate of incorporation needs to exceed the natural groundwater flux rate of Sr in the 100N area. A primary objective of this study is to supply an injection sequence to deliver sufficient apatite into subsurface sediments that minimizes initial mobility of Sr-90, which occurs because the injection solution has a higher ionic strength compared to groundwater. This can be accomplished by sequential injections of low, then high concentration injection of Ca-citrate-PO4 solutions. Assessment of low concentration Ca-citrate-PO4, citrate-PO4, and PO4 solutions show greater Sr and Sr-90 incorporation during initial precipitation and less initial mobilization with solutions with low Ca2+ concentration. While all solutions showed nearly the same Sr uptake into apatite (14 to 17% by 2 weeks, 21% to 30% by 5 weeks), the incorporation efficiency (i.e., mM Sr incorporated per mM PO4 injected) was higher for solutions containing citrate. The Sr incorporation rate into apatite during initial precipitation (by 1 month) averaged 4.64 1.9 x 10-4 h-1 (half-life 1500 430 h, 8.85 x 10-7 mg Sr/day/mg apatite). The injection solution used in field injections #3 to #18 (10 mM PO4, 1 mM Ca, 2.5 mM citrate), which is deficient in Ca (a total of 16.7 mM needed to form apatite with 10 mM of PO4), resulted in the initial Sr and Ca peak (24 h) at 4.7x groundwater. By 30 days, the aqueous Sr concentration was 0.28x groundwater and Ca 0.43x groundwater, as both Sr and Ca are used to form initial apatite precipitates. Reactive transport simulation of the complex ion exchange, biodegradation, and precipitation processes showed that the initial Sr groundwater increase mobilized only 1.5% of the Sr mass in sediments. Citrate biodegradation, a necessary step in Ca-citrate-PO4 solutions forming apatite, had an average half-life of 50 h (at aquifer sediment/water ratio and temperature), and decreased an order of magnitude with sediment depth as the microbial biomass decreased five orders of magnitude. The rate of citrate biodegradation was relatively invariant with biomass and water saturation (50% to 100%, for vadose zone infiltration) possibly due to significant microbial injection using river water and subsurface microbial mobilization.

Szecsody, James E.; Burns, Carolyn A.; Moore, Robert C.; Fruchter, Jonathan S.; Vermeul, Vincent R.; Williams, Mark D.; Girvin, Donald C.; McKinley, James P.; Truex, Michael J.; Phillips, Jerry L.

2007-10-01T23:59:59.000Z

392

FY 2012 Lawrence Livermore National Security, LLC, PEP | National Nuclear  

National Nuclear Security Administration (NNSA)

PEP | National Nuclear PEP | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog FY 2012 Lawrence Livermore National Security, LLC, PEP Home > About Us > Our Operations > Acquisition and Project Management > Performance Evaluations > FY 2012 Lawrence Livermore National Security, LLC, PEP FY 2012 Lawrence Livermore National Security, LLC, PEP

393

Laser System for Livermore's Mono Energetic Gamma-Ray Source  

SciTech Connect

A Mono-energetic Gamma-ray (MEGa-ray) source, based on Compton scattering of a high-intensity laser beam off a highly relativistic electron beam, requires highly specialized laser systems. To minimize the bandwidth of the {gamma}-ray beam, the scattering laser must have minimal bandwidth, but also match the electron beam depth of focus in length. This requires a {approx}1 J, 10 ps, fourier-transform-limited laser system. Also required is a high-brightness electron beam, best provided by a photoinjector. This electron source requires a second laser system with stringent requirements on the beam including flat transverse and longitudinal profiles and fast rise times. Furthermore, these systems must be synchronized to each other with ps-scale accuracy. Using a novel hyper-dispersion compressor configuration and advanced fiber amplifiers and diode-pumped Nd:YAG amplifiers, we have designed laser systems that meet these challenges for the X-band photoinjector and Compton-scattering source being built at Lawrence Livermore National Laboratory.

Gibson, D; Albert, F; Bayramian, A; Marsh, R; Messerly, M; Ebbers, C; Hartemann, F

2011-03-14T23:59:59.000Z

394

Lawrence Livermore researchers awarded a billion supercomputer...  

NLE Websites -- All DOE Office Websites (Extended Search)

-- Mira, an IBM Blue GeneQ system located at Argonne National Laboratory (ANL), and Titan, a Cray XK7 system located at Oak Ridge National Laboratory (ORNL). Open to...

395

Laboratory Directed Research and Development FY 2000 Annual Report  

SciTech Connect

This Annual Report provides an overview of the FY2000 Laboratory Directed Research and Development (LDRD) Program at Lawrence Livermore National Laboratory (LLNL) and presents a summary of the results achieved by each project during the year.

Al-Ayat, R

2001-05-24T23:59:59.000Z

396

Lawrence Livermore Site Office Manager Joins EM's Senior Leadership Team  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lawrence Livermore Site Office Manager Joins EM's Senior Lawrence Livermore Site Office Manager Joins EM's Senior Leadership Team Lawrence Livermore Site Office Manager Joins EM's Senior Leadership Team November 9, 2011 - 12:00pm Addthis WASHINGTON, D.C. - EM Acting Assistant Secretary Dave Huizenga announced today that Alice Williams, manager of the DOE National Nuclear Security Administration (NNSA) Lawrence Livermore Site Office has joined the EM senior leadership team. "I am very excited to have Alice join EM Principal Deputy Assistant Secretary Tracy Mustin and I as we continue work toward the achievement of the EM vision and the continuing evolution of an EM organization that is focused on delivery of mission success to meet the nation's needs in the 21st century," Huizenga said. In ensuing months, Williams will work closely with Huizenga and Mustin as

397

Boralex Beaver Livermore Falls Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Livermore Falls Biomass Facility Livermore Falls Biomass Facility Jump to: navigation, search Name Boralex Beaver Livermore Falls Biomass Facility Facility Boralex Beaver Livermore Falls Sector Biomass Location Androscoggin County, Maine Coordinates 44.1912416°, -70.1707037° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.1912416,"lon":-70.1707037,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

398

2012 Annual Workforce Analysis and Staffing Plan Report - Livermore  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6.W~~l 6.W~~l #II VA. 'lf,fi:'¥Ylj Nsffonal Nuclear Security Admfnfat111tlon Department of Energy National Nuclear Security Administration Livermore Site Office PO Box 808, L-293 7000 East Avenue Livermore, California 94551-0808 !JAN 18 2013 3250 COR-M0-1/17/2013-490077 MEMORANDUM FOR KAREN L. BOARDMAN CHAIRPERSON FEDERAL TECHNICAL CAPABILITY PANEL FROM: v KIMBERLY DAVIS LEBAK "/'JJ. f /ti/ MANAGER ~ ..--r; tV[ SUBJECT: REFRENCE: Workforce Analysis and Staffing Plan Report for the Livermore Field Office 2012, Revision I Memorandum (K. Boardman/Distribution), Annual Workforce Analysis and Staffing Plan Report for Calendar Year 2012, dated October 24, 2012 Please see the attached revised Workforce Analysis and Staffing Plan Report for the Livermore

399

FY 2009 Lawrence Livermore National Security, LLC, PER Summary | National  

National Nuclear Security Administration (NNSA)

Lawrence Livermore National Security, LLC, PER Summary | National Lawrence Livermore National Security, LLC, PER Summary | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog FY 2009 Lawrence Livermore National Security, LLC, PER Summary Home > About Us > Our Operations > Acquisition and Project Management > Performance Evaluations > FY 2009 Lawrence Livermore National Security,

400

Livermore Site Office Facility Representative Program Self-Assessment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ARPT-LSO-2011-001 ARPT-LSO-2011-001 Site: Livermore Site Office Subject: Office of Independent Oversight's Office of Environment, Safety and Health Evaluations Activity Report for the Livermore Site Office Facility Representative Program Self-Assessment Dates of Activity 01/24/2011 - 01/28/2011 Report Preparer Robert Freeman Activity Description/Purpose: This activity report documents the results of the Office of Health, Safety and Security's (HSS) review of and participation in the Livermore Site Office Self-Assessment of the Facility Representative (FR) Program. This self-assessment was led by the U.S. Department of Energy (DOE) Livermore Site Office (LSO) and conducted by LSO staff, HSS staff, National Nuclear Security Administration (NNSA) Office of the Chief of Defense Nuclear Safety (CDNS) staff, a peer from Los Alamos Site

Note: This page contains sample records for the topic "laboratory livermore ca" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

2010 Annual Planning Summary Livermore Site Office (LSO) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to be prepared in the next 24 months, and the planned cost and schedule for each NEPA review identified. 2010 Annual Planning Summary Livermore Site Office (LSO) More Documents...

402

Lawrence Livermore engineering team makes breakthrough in solar...  

NLE Websites -- All DOE Office Websites (Extended Search)

Allan Chang and Mihail Bora. Lawrence Livermore engineering team makes breakthrough in solar energy research Kenneth K Ma, LLNL, (925)-423-7602, ma28@llnl.gov High Resolution...

403

Lawrence Livermore charitable campaign raises $3.3 million for...  

National Nuclear Security Administration (NNSA)

Lawrence Livermore raises 3.3 million for local organizations Posted on December 12, 2013 at 3:00 pm ET Printer-friendly version Printer-friendly version Facebook Twitter...

404

Hanford 100N Area Apatite Emplacement: Laboratory Results of Ca-Citrate-PO4 Solution Injection and Sr-90 Immobilization in 100N Sediments  

DOE Green Energy (OSTI)

This report summarizes laboratory scale studies investigating the remediation of Sr-90 by Ca-citrate-PO4 solution injection/infiltration to support field injection activities in the Hanford 100N area. This study is focused on experimentally testing whether this remediation technology can be effective under field scale conditions to mitigate Sr-90 migration 100N area sediments into the Columbia River. Sr-90 is found primarily adsorbed to sediments by ion exchange (99% adsorbed, < 1% in groundwater) in the upper portion of the unconfined aquifer and lower vadose zone. Although primarily adsorbed, Sr-90 is still considered a high mobility risk as it is mobilized by seasonal river stage increases and by plumes of higher ionic strength relative to groundwater. This remediation technology relies upon the Ca-citrate-PO4 solution forming apatite precipitate [Ca6(PO4)10(OH)2], which incorporates some Sr-90 during initial precipitation and additionally slowly incorporates Sr-90 by solid phase substitution for Ca. Sr substitution occurs because Sr-apatite is thermodynamically more stable than Ca-apatite. Once the Sr-90 is in the apatite structure, Sr-90 will decay to Y-90 (29.1 y half-life) then Zr-90 (64.1 h half-life) without the potential for migration into the Columbia River. For this technology to be effective, sufficient apatite needs to be emplaced in sediments to incorporate Sr and Sr-90 for 300 years (~10 half-lives of Sr-90), and the rate of incorporation needs to exceed the natural groundwater flux rate of Sr in the 100N area. A primary objective of this study is to supply an injection sequence to deliver sufficient apatite into subsurface sediments that minimizes initial mobility of Sr-90, which occurs because the injection solution has a higher ionic strength compared to groundwater. This can be accomplished by sequential injections of low, then high concentration injection of Ca-citrate-PO4 solutions. Assessment of low concentration Ca-citrate-PO4, citrate-PO4, and PO4 solutions show greater Sr and Sr-90 incorporation during initial precipitation and less initial mobilization with solutions with low Ca2+ concentration. While all solutions showed nearly the same Sr uptake into apatite (14 to 17% by 2 weeks, 21% to 30% by 5 weeks), the incorporation efficiency (i.e., mM Sr incorporated per mM PO4 injected) was higher for solutions containing citrate. The Sr incorporation rate into apatite during initial precipitation (by 1 month) averaged 4.64 1.9 x 10-4 h-1 (half-life 1500 430 h, 8.85 x 10-7 mg Sr/day/mg apatite). The injection solution used in field injections #3 to #18 (10 mM PO4, 1 mM Ca, 2.5 mM citrate), which is deficient in Ca (a total of 16.7 mM needed to form apatite with 10 mM of PO4), resulted in the initial Sr and Ca peak (24 h) at 4.7x groundwater. By 30 days, the aqueous Sr concentration was 0.28x groundwater and Ca 0.43x groundwater, as both Sr and Ca are used to form initial apatite precipitates. Reactive transport simulation of the complex ion exchange, biodegradation, and precipitation processes showed that the initial Sr groundwater increase mobilized only 1.5% of the Sr mass in sediments. Citrate biodegradation, a necessary step in Ca-citrate-PO4 solutions forming apatite, had an average half-life of 50 h (at aquifer sediment/water ratio and temperature), and decreased an order of magnitude with sediment depth as the microbial biomass decreased five orders of magnitude. The rate of citrate biodegradation was relatively invariant with biomass and water saturation (50% to 100%, for vadose zone infiltration) possibly due to significant microbial injection using river water and subsurface microbial mobilization.

Szecsody, James E.; Burns, Carolyn A.; Moore, Robert C.; Fruchter, Jonathan S.; Vermeul, Vincent R.; Williams, Mark D.; Girvin, Donald C.; McKinley, James P.; Truex, Michael J.; Phillips, Jerry L.

2007-10-01T23:59:59.000Z

405

Livermore energy policy model and projections of energy futures for the Gas Research Institute  

Science Conference Proceedings (OSTI)

The Energy and Resource Planning Group at the Lawrence Livermore National Laboratory (LLNL) was asked by the Gas Research Institute to evaluate ten of their research projects relative to proposed funding levels for 1982. These energy technology projects included gas from unconventional and synthetic sources as well as utilization technologies. The primary tool used in the evaluation was the LLNL Energy Policy Model (EPM). The report gives background information about the study, the basic assumptions used in the study, and some conclusions, and presents selected supporting results from the EPM runs.

Castleton, R.

1981-06-01T23:59:59.000Z

406

The Department of Energy's National Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

THE THE DEPARTMENT OF ENERGY'S National Laboratories All National Laboratories Achievements History Argonne National Laboratory (ANL) Achievements History Brookhaven National Laboratory (BNL) Achievements History Fermi National Accelerator Laboratory (FNAL) Achievements History Idaho National Laboratory (INL) Achievements History Lawrence Berkeley National Laboratory (LBNL) Achievements History Lawrence Livermore National Laboratory (LLNL) Achievements History Los Alamos National Laboratory (LANL) Achievements History National Energy Technology Laboratory (NETL) Achievements History National Renewable Energy Laboratory (NREL) Achievements History Oak Ridge National Laboratory (ORNL) Achievements History Pacific Northwest National Laboratory (PNNL) Achievements History

407

Energy Innovations from Livermore Lab to Power Hawaiian Nonprofit |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovations from Livermore Lab to Power Hawaiian Nonprofit Innovations from Livermore Lab to Power Hawaiian Nonprofit Energy Innovations from Livermore Lab to Power Hawaiian Nonprofit February 28, 2011 - 11:31am Addthis Mike Gleason (second from left), president and CEO of The Arc of Hilo. Also shown, from left: Annemarie Meike, Mark Sueksdorf, Marjorie Gonzalez and Larry Ferderber | Photo Courtesy of LLNL Mike Gleason (second from left), president and CEO of The Arc of Hilo. Also shown, from left: Annemarie Meike, Mark Sueksdorf, Marjorie Gonzalez and Larry Ferderber | Photo Courtesy of LLNL April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs What are the key facts? LLNL technologies will reduce the plant's electrical bills by 50 percent and provide sustainable and energy efficient solutions for the

408

FY 2012 Lawrence Livermore National Security, LLC, PER Summary | National  

National Nuclear Security Administration (NNSA)

PER Summary | National PER Summary | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog FY 2012 Lawrence Livermore National Security, LLC, PER Summary Home > About Us > Our Operations > Acquisition and Project Management > Performance Evaluations > FY 2012 Lawrence Livermore National Security, LLC, ...

409

Report of exploratory trenching for the Decontamination and Waste Treatment Facility at Lawrence Livermore National Laboratory, Livermore, California  

Science Conference Proceedings (OSTI)

Three exploratory trenches, totaling about 1,300 ft in length were excavated and logged across the site of a proposed Decontamination and Waste Treatment Facility (DWTF), to assess whether or not active Greenville fault zone, located about 4100 ft to the northeast, pass through or within 200 ft of the site. The layout of the trenches (12-16 ft deep) was designed to provide continuous coverage across the DWTF site and an area within 200 ft northeast and southwest of the site. Deposits exposed in the trench walls are primarily of clay, and are typical of weakly cemented silty sand to sandy silt with the alluvial deposits in the area. Several stream channels were encountered that appear to have an approximated east-west orintation. The channel deposits consist of well-sorted, medium to coarse-grained sand and gravel. A well-developed surface soil is laterally continuous across all three trenches. The soil reportedly formed during late Pleistocene time (about 35,000 to 40,000 yr before present) based on soil stratigraphic analyses. A moderately to well-developed buried soil is laterally continuous in all three trenches, except locally where it has been removed by channelling. This buried soil apparently formed about 100,000 yr before present. At least one older, discontinuous soil is present below the 100,000-yr-old soil in some locations. The age of the older soil is unknown. At several locations, two discontinuous buried soils were observed between the surface soil and the 100,000-yr-old soil. Various overlapping stratigraphic units could be traced across the trenches providing a continuous datum of at least 100,000 yr to assess the presence or absence of faulting. The continuity of stratigraphic units in all the trenches demonstrated that no active faults pass through or within 200 ft of the proposed DWTF site.

Dresen, M.D.; Weiss, R.B.

1985-12-01T23:59:59.000Z

410

Los Alamos National Laboratory and Lawrence Livermore National Laboratory Plutonium Sustainment Monthly Program Report September 2012  

SciTech Connect

In March of 2012 the Plutonium Sustainment program at LANL completed or addressed the following high-level activities: (1) Delivered Revision 2 of the Plutonium Sustainment Manufacturing Study, which incorporated changes needed due to the release of the FY2013 President's Budget and the delay in the Chemistry and Metallurgy Research Replacement Nuclear Facility (CMRRNF). (2) W87 pit type development activities completed a detailed process capability review for the flowsheet in preparation for the Engineering Development Unit Build. (3) Completed revising the Laser Beam Welding schedule to address scope and resource changes. (4) Completed machining and inspecting the first set of high-fidelity cold parts on Precitech 2 for Gemini. (5) The Power Supply Assembly Area started floor cutting with a concrete saw and continued legacy equipment decommissioning. There are currently no major issues associated with achieving MRT L2 Milestones 4195-4198 or the relevant PBIs associated with Plutonium Sustainment. There are no budget issues associated with FY12 final budget guidance. Table 1 identifies all Baseline Change Requests (BCRs) that were initiated, in process, or completed during the month. The earned value metrics overall for LANL are within acceptable thresholds, so no high-level recovery plan is required. Each of the 5 major LANL WBS elements is discussed in detail.

McLaughlin, Anastasia Dawn [Los Alamos National Laboratory; Storey, Bradford G. [Los Alamos National Laboratory; Bowidowicz, Martin [Los Alamos National Laboratory; Robertson, William G. [Los Alamos National Laboratory; Hobson, Beverly F. [Los Alamos National Laboratory

2012-10-22T23:59:59.000Z

411

Department of Energy Laboratories, Researchers to Showcase High...  

Office of Science (SC) Website

PnMPI Tools: A Whole Lot Greater than the Sum of Their Parts Martin Schulz and Bronis R. de Supinski, Lawrence Livermore National Laboratory Evaluation of Active Storage...

412

LCC-0087 final  

NLE Websites -- All DOE Office Websites (Extended Search)

7 UCRL-ID-148940 July 2002 NLC Polarized Positron Photon Beam Target Thermal Structural Modeling Werner Stein Lawrence Livermore National Laboratory Livermore, CA John C. Sheppard...

413

LCC-0088 final  

NLE Websites -- All DOE Office Websites (Extended Search)

8 UCRL-ID-148936 July 2002 Thermal Stress Analyses for the NLC Positron Target Werner Stein, Anne Sunwoo Lawrence Livermore National Laboratory Livermore, CA John C. Sheppard,...

414

PowerPoint Presentation  

National Nuclear Security Administration (NNSA)

P. O. Box 808, Livermore, CA 94551 This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract...

415

Characterization and Optimization of Photoelectrode Surfaces...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen and Fuel Cells Program Tadashi Ogitsu (Primary Contact), Woon Ih Choi, Brandon Wood Lawrence Livermore National Laboratory (LLNL) 7000 East Ave., L-413 Livermore, CA 94550...

416

Marv Hamstad  

Science Conference Proceedings (OSTI)

... From 1971 to 1984 his AE research and development efforts were carried out at Lawrence Livermore National Laboratory (LLNL; Livermore, CA ...

2012-10-01T23:59:59.000Z

417

Sandia National Laboratories, California Environmental Management System Program Manual.  

Science Conference Proceedings (OSTI)

The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004and Department of Energy (DOE) Order 450.1. Sandia National Laboratories, California (SNL/CA) has maintained functional environmental programs to assist with regulatory compliance for more than 30 years. During 2005, these existing programs were rolled into a formal environmental management system (EMS) that expands beyond the traditional compliance focus to managing and improving environmental performance and stewardship practices for all site activities. An EMS is a set of inter-related elements that represent a continuing cycle of planning, implementing, evaluating, and improving processes and actions undertaken to achieve environmental policy and goals. The SNL/CA EMS Program conforms to the International Standard for Environmental Management Systems, ISO 14001:2004 (ISO 2004). The site received ISO 14001 certification in September 2006. SNL/CA's EMS Program is applicable to the Sandia, Livermore site only. Although SNL/CA operates as one organizational division of the overall Sandia National Laboratories, the EMS Program is site-specific, with site-specific objectives and targets. SNL/CA (Division 8000) benefits from the organizational structure as it provides corporate level policies, procedures, and standards, and established processes that connect to and support elements of the SNL/CA EMS Program. Additionally, SNL/CA's EMS Program benefits from two corporate functional programs (Facilities Energy Management and Fleet Services programs) that maintain responsibility for energy management and fleet services for all Sandia locations. Each EMS element is further enhanced with site-specific processes and standards. Division 8000 has several groups operating at Sandia National Laboratories, New Mexico (SNL/NM). Although these groups, from an organizational perspective, are part of Division 8000, they are managed locally and fall under the environmental requirements specific to their New Mexico location. The New Mexico groups in Division 8000 follow the corporate EMS Program for New Mexico operations.

Larsen, Barbara L.

2011-04-01T23:59:59.000Z

418

Sandia National Laboratories, California Environmental Management System Program Manual.  

SciTech Connect

The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004 and Department of Energy (DOE) Order 450.1. Sandia National Laboratories, California (SNL/CA) has maintained functional environmental programs to assist with regulatory compliance for more than 30 years. During 2005, these existing programs were rolled into a formal environmental management system (EMS) that expands beyond the traditional compliance focus to managing and improving environmental performance and stewardship practices for all site activities. An EMS is a set of inter-related elements that represent a continuing cycle of planning, implementing, evaluating, and improving processes and actions undertaken to achieve environmental policy and goals. The SNL/CA EMS Program conforms to the International Standard for Environmental Management Systems, ISO 14001:2004 (ISO 2004). The site received ISO 14001 certification in September 2006. SNL/CA's EMS Program is applicable to the Sandia, Livermore site only. Although SNL/CA operates as one organizational division of the overall Sandia National Laboratories, the EMS Program is site-specific, with site-specific objectives and targets. SNL/CA (Division 8000) benefits from the organizational structure as it provides corporate level policies, procedures, and standards, and established processes that connect to and support elements of the SNL/CA EMS Program. Additionally, SNL/CA's EMS Program benefits from two corporate functional programs (Facilities Energy Management and Fleet Services Environmental programs) that maintain responsibility for energy management and fleet services for all Sandia locations. Each EMS element is further enhanced with site-specific processes and standards. Division 8000 has several groups operating at Sandia National Laboratories, New Mexico (SNL/NM). Although these groups, from an organizational perspective, are part of Division 8000, they are managed locally and fall under the environmental requirements specific to their New Mexico location. The New Mexico groups in Division 8000 follow the corporate EMS Program for New Mexico operations.

2009-04-01T23:59:59.000Z

419

Sandia National Laboratories, California Environmental Management System program manual.  

SciTech Connect

The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004and Department of Energy (DOE) Order 436.1. Sandia National Laboratories, California (SNL/CA) has maintained functional environmental programs to assist with regulatory compliance for more than 30 years. During 2005, these existing programs were rolled into a formal environmental management system (EMS) that expands beyond the traditional compliance focus to managing and improving environmental performance and stewardship practices for all site activities. An EMS is a set of inter-related elements that represent a continuing cycle of planning, implementing, evaluating, and improving processes and actions undertaken to achieve environmental policy and goals. The SNL/CA EMS Program conforms to the International Standard for Environmental Management Systems, ISO 14001:2004 (ISO 2004). The site first received ISO 14001 certification in September 2006 and recertification in 2009. SNL/CA's EMS Program is applicable to the Sandia, Livermore site only. Although SNL/CA operates as one organizational division of the overall Sandia National Laboratories, the EMS Program is site-specific, with site-specific objectives and targets. SNL/CA (Division 8000) benefits from the organizational structure as it provides corporate level policies, procedures, and standards, and established processes that connect to and support elements of the SNL/CA EMS Program. Additionally, SNL/CA's EMS Program benefits from two corporate functional programs (Facilities Energy and Water Resource Management and Fleet Services programs) that maintain responsibility for energy management and fleet services for all Sandia locations. Each EMS element is further enhanced with site-specific processes and standards. Division 8000 has several groups operating at Sandia National Laboratories, New Mexico (SNL/NM). Although these groups, from an organizational perspective, are part of Division 8000, they are managed locally and fall under the environmental requirements specific to their New Mexico location. The New Mexico groups in Division 8000 follow the corporate EMS Program for New Mexico operations.

Larsen, Barbara L.

2012-03-01T23:59:59.000Z

420

Public Affairs Office: Livermore Lab Physicist Dates Lifetime of Solar  

NLE Websites -- All DOE Office Websites (Extended Search)

Dating the Solar System: Where Were You When the Solar System Was Being Formed? Dating the Solar System: Where Were You When the Solar System Was Being Formed? Chemistry & Materials Science Directorate, LLNL Chronology of the early Solar System from chondrule-bearing calcium-aluminium-rich inclusions Nature, April 21, 2005 Building Planets at PSI: The Origin of the Solar System Planetary Science Institute Social Media Logos Follow LLNL on YouTube Subscribe to LLNL's RSS feed Follow LLNL on Facebook Follow LLNL on Twitter Follow LLNL on Flickr Contact: Anne M. Stark Phone: (925) 422-9799 E-mail: stark8@llnl.gov FOR IMMEDIATE RELEASE April 20, 2005 NR-05-04-02 Livermore Lab physicist dates lifetime of solar nebula at two million years LIVERMORE, Calif. - The oxygen and magnesium content of some of the oldest objects in the universe are giving clues to the lifetime of the

Note: This page contains sample records for the topic "laboratory livermore ca" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Laser fusion experiment yields record energy at Lawrence Livermore's  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 For immediate release: 08/26/2013 | NR-13-08-04 High Resolution Image All NIF experiments are controlled and orchestrated by the integrated computer control system in the facility's control room. It consists of 950 front-end processors attached to about 60,000 control points, including mirrors, lenses, motors, sensors, cameras, amplifiers, capacitors and diagnostic instruments. Laser fusion experiment yields record energy at Lawrence Livermore's National Ignition Facility Breanna Bishop, LLNL, (925) 423-9802, bishop33@llnl.gov High Resolution Image The preamplifiers of the National Ignition Facility are the first step in increasing the energy of laser beams as they make their way toward the target chamber. LIVERMORE, Calif. -- In the early morning hours of Aug.13, Lawrence

422

Smashing science: Livermore scientists discover how explosives respond to  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 For immediate release: 12/12/2013 | NR-13-12-03 High Resolution Image A schematic representation of the shock experiment. The resulting energy release pushed the shock front to the left. Image by Liam Krauss/LLNL. Smashing science: Livermore scientists discover how explosives respond to shockwaves Anne M Stark, LLNL, (925) 422-9799, stark8@llnl.gov Watch Video A laser pulse impinging on an aluminum ablation layer (which is coated on a glass substrate to the right), which generates a rapidly expanding plasma. This small explosion pushes the ablator to the left and drives a shock wave in the sample. The experiment simultaneously measures the speed of the shock wave in the sample, and the speed of the ablator expansion, which allows Livermore researchers to estimate the pressure and density of the

423

Livermore team successfully leads important test of a conventional warhead  

NLE Websites -- All DOE Office Websites (Extended Search)

102813_dod 102813_dod 10/28/2013 Livermore team successfully leads important test of a conventional warhead for the DoD Anne M Stark, LLNL, (925) 422-9799, stark8@llnl.gov LLNL served as technical lead and integrator on an important test to assess a new conventional warhead designed by the Lab. Dave Hare, Livermore's program manager of the test, called it an "unequivocal success." Below is the press release from the Department of Defense Defense Department successfully conducts warhead sled test The Defense Department announced recently the successful testing of an advanced conventional precision effects warhead, a critical part of a national effort to establish a conventional prompt strike capability. This capability will contribute to the country's ability to defend its interests

424

Livermore, Los Alamos Team for Artificial Retina Project to Help Restore Vision for Many  

NLE Websites -- All DOE Office Websites (Extended Search)

9 9 6 www.federallabs.org Livermore, Los Alamos Team for Artificial Retina Project to Help Restore Vision for Many signals in the eye that the brain uses to create a visual image. As a core member of the team, Los Alamos National Laboratory is developing and applying techniques for the functional imaging of physiological and prosthetic stimulation in neural tissue to characterize information encoding and processing by the retina and to validate the efficacy of electrical stimulation. Coupled experimental studies and computer simulations are being used to investigate the biophysical and physiological properties of retinal neuronal tissue. In clinical trials, patients with vision loss were able to successfully identify objects, increase mobility, and

425

DOE/EIS-0157-SA-01; Supplement Analysis for Continued Operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oakland Operations Office, Oakland, California Oakland Operations Office, Oakland, California 6833/(0(17 $1$/<6,6 147 &RQWLQXHG 2SHUDWLRQ RI /DZUHQFH /LYHUPRUH 1DWLRQDO /DERUDWRU\ DQG 6DQGLD 1DWLRQDO /DERUDWRULHV /LYHUPRUH 9ROXPH , 0DLQ 5HSRUW March 1999 DOE/EIS-0157-SA-01 6833/(0(17 $1$/<6,6 147 &RQWLQXHG 2SHUDWLRQ RI /DZUHQFH /LYHUPRUH 1DWLRQDO /DERUDWRU\ DQG 6DQGLD 1DWLRQDO /DERUDWRULHV /LYHUPRUH 9ROXPH , 0DLQ 5HSRUW March 1999 DOE/EIS-0157-SA-01 Supplement Analysis March 1999 iii CONTENTS NOTATION......................................................................................................................... vii SUMMARY......................................................................................................................... S-1 1 INTRODUCTION..........................................................................................................

426

R&D for a Soft X-Ray Free Electron Laser Facility  

E-Print Network (OSTI)

Physical Society, 1996 R&D 100 Award for global feedbackLaboratory, Berkeley, CA R&D Engineer, Lawrence LivermoreLaboratory, Livermore, CA R&D Engineer, Weyerhaeuser

Staples, John

2009-01-01T23:59:59.000Z

427

Ergonomics problems and solutions in biotechnology laboratories  

SciTech Connect

The multi-functional successful ergonomics program currently implemented at Lawrence Livermore National Laboratory (LLNL) will be presented with special emphasis on recent findings in the Biotechnology laboratory environment. In addition to a discussion of more traditional computer-related repetitive stress injuries and associated statistics, the presentation will cover identification of ergonomic problems in laboratory functions such as pipetting, radiation shielding, and microscope work. Techniques to alleviate symptoms and prevent future injuries will be presented.

Coward, T.W.; Stengel, J.W.; Fellingham-Gilbert, P.

1995-03-01T23:59:59.000Z

428

Inexact Restoration method for Derivative-Free Optimization with ...  

E-Print Network (OSTI)

Nov 21, 2011 ... tory because, sometimes, the presence of topologically complex ...... Laboratories , Albuquerque, NM and Livermore, CA, SAND2009-. 6265...

429

ARMIUnmanned Air VehicielSatellites W. R. Bolton Sandia National Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

VehicielSatellites VehicielSatellites W. R. Bolton Sandia National Laboratories Livermore, CA 94550 Introduction The Atmospheric Radiation Measurement/Unmanned Aerospace Vehicle (ARM/UAV) Program has as a major mission to support the ARM Cloud and Radiation Testbed (CART) sites with an airborne measurement capability. The UA V capability will complement piloted aircraft and supplement the capabilities of ground-based CART instru- ments. The ARM/UAV Program strategy emphasizes meaningful scientific activity embedded in the development activities and has three phases of increasing system capability: .Demonstration flights in the first year emphasize early scientific results and initial operational experience with UAVs in an atmospheric research role. Because of the desire for an early demonstration, this activity will be

430

Los Alamos National Laboratory - Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Nuclear Safety Home Nuclear Sites Map Nuclear Sites List › Argonne National Laboratory › East Tennessee Technology Park › Hanford › Idaho Site › Los Alamos National Laboratory › Lawrence Livermore National Laboratory › Nevada National Security Site › New Brunswick Laboratory › Oak Ridge National Laboratory › Paducah › Pantex › Pacific Northwest National Laboratory › Portsmouth Gaseous Diffusion Plant › Sandia National Laboratories › Savannah River Site › Waste Isolation Pilot Plant › West Valley Demonstration Project › Y-12 National Security Complex HSS Reports - Enforcement - Corporate Safety Analysis Fire Protection DOELAP - Safety and Emergency Management Evaluations Safety Basis Information System Office of Corporate Safety Analysis

431

Activities of the High Energy Density Laboratory Plasmas  

E-Print Network (OSTI)

3-4, 2008 Livermore, CA on behalf of the HEDLP FESAC subpanel #12;"joint HEDLP program [OFES+NNSA and 28 contributed talks M. Donovan (NNSA) NNSA perspective G. Nardella (OFES) OFES perspective HEDLP #12;IFE HEDLP science: conventional and alternative concepts · Conventional ICF (NNSA funded

432

Sandia National Laboratories: About Sandia: Community Involvement:  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Night Science Night Family Science Night Family Science Night provides an evening of hands-on science activities held at local elementary schools in the Albuquerque, NM and Livermore, CA communities. Students and parents work together to conduct simple inquiry-based science activities. Sandia provides all materials and instructions (English and Spanish). For schools outside of our communities, we offer the following resources to help you host your own Family Science Night. Class Materials and Activities Activities (English and Spanish) (PDF) Activities to try at home (MS Word) Videos Watch a video of our Family Science Night. Contacts Albuquerque, NM Laurie Bergemann (505) 284-5204 ljberge@sandia.gov Livermore, CA Stephanie Beasly (925) 294-4992 sbeasly@sandia.gov Family Science Night

433

Newsletter  

E-Print Network (OSTI)

Arms Control Analysis, Sandia National Laboratory,Laboratory, CA Mr. Clyde LAYNE Sandia National Laboratory,and Disarmament Agency, the Sandia and Lawrence Livermore

1995-01-01T23:59:59.000Z

434

Livermore's 2004 R&D 100 Awards: Magnetically Levitated Train Takes Flight  

DOE Green Energy (OSTI)

the 1960s, transportation industry planners have sought an energy-efficient design for a train that can glide through air at speeds up to 500 kilometers per hour. This type of train, called a magnetically levitated (maglev) train, is thought to be a viable solution to meet the nation's growing need for intercity and urban transportation networks. However, despite some promising developments, unresolved concerns with the operation and safety of maglev trains has prevented the transition from demonstration model to commercial development. Inductrack, a maglev system originally conceived by Livermore physicist Richard Post, is designed to address these issues. Post's work on Inductrack began with funding from Livermore's Laboratory Directed Research and Development Program, and in 2003, the technology was licensed to General Atomics (GA) in San Diego for train and transit system applications. This year, members of the Livermore-GA team received an R&D 100 Award for Inductrack's development. Inductrack uses permanent magnets to produce the magnetic fields that levitate the train and provides economic and operational advantages over other maglev systems. It can be adapted to both high-speed and urban-speed environments. In the event of a power failure, the train slows gradually until it comes to rest on its auxiliary wheels. The maintenance requirements for Inductrack are also lower than they are for other systems, plus it has a short turning radius and is designed for quiet operation. Previous designs for maglev systems did not offer the energy efficiency or safety protections that are in the Inductrack design. Electromagnetic systems (EMS) use powered electromagnets to levitate the train. However, these systems are based on magnetic attraction rather than repulsion and thus are inherently unstable. In EMS trains, the levitation gap--the separation between the magnet pole faces and the iron rail--is only about 10 millimeters and, during operation, must be maintained to within {+-}1 millimeter. Position sensors and electronic feedback systems are required to control the magnetic current and to compensate for the inherent instability. This requirement, plus the onboard source of emergency power required to ensure operational safety during a sudden power loss, increases the complexity of EMS trains. In contrast, in electrodynamic systems (EDS), large superconducting magnet coils mounted on the sides of the train generate high-intensity magnetic field poles. Interaction of the current between the coils and the track levitates the train. At operating speeds (above a liftoff speed of about 100 kilometers per hour), the magnetic levitation force balances the weight of the car at a stable position. EDS trains do not require the feedback control systems that EMS trains use to stabilize levitation. However, the superconducting magnetic coils must be kept at temperatures of only 5 kelvins, so costly electrically powered cryogenic equipment is required. Also, passengers, especially those with pacemakers, must be shielded from the high magnetic fields generated by the superconductors.

Hazi, A

2005-09-20T23:59:59.000Z

435

Nonlinear RR Lyrae models with new Livermore opacities  

Science Conference Proceedings (OSTI)

A.N. Cox recently showed that a 20% opacity decrease in the 20,000--30,000 K region as indicated by the new Livermore OPAL opacities reconciles the discrepancy between pulsation and evolution masses of double-mode RR Lyrae variables. Nonlinear hydrodynamic calculations were performed for RR Lyrae models of mass 0l75 M{circle_dot}, 51 L{circle_dot}, and Z=0.0001 including this opacity decrease. The Stellingwerf periodic relaxation method was used to converge the models to a limit cycle, and the Floquet matrix eigenvalues calculated to search for a tendency of the fundamental mode to grow from the full-amplitude overtone solution, and the overtone mode to grow from the full-amplitude fundamental solution, thereby predicting double-mode behavior. Models of T{sup eff} < 7000 K with the opacity decrease have positive fundamental-mode growth rates in the overtone solution, in contrast to earlier results by Hodson and Cox, and models with T{sub eff} < 7000 have positive 1st overtone growth rates in the fundamental-mode behavior was not found.

Guzik, J.A.; Cox, A.N.

1992-05-01T23:59:59.000Z

436

Nonlinear RR Lyrae models with new Livermore opacities  

Science Conference Proceedings (OSTI)

A.N. Cox recently showed that a 20% opacity decrease in the 20,000--30,000 K region as indicated by the new Livermore OPAL opacities reconciles the discrepancy between pulsation and evolution masses of double-mode RR Lyrae variables. Nonlinear hydrodynamic calculations were performed for RR Lyrae models of mass 0l75 M{circle dot}, 51 L{circle dot}, and Z=0.0001 including this opacity decrease. The Stellingwerf periodic relaxation method was used to converge the models to a limit cycle, and the Floquet matrix eigenvalues calculated to search for a tendency of the fundamental mode to grow from the full-amplitude overtone solution, and the overtone mode to grow from the full-amplitude fundamental solution, thereby predicting double-mode behavior. Models of T{sup eff} < 7000 K with the opacity decrease have positive fundamental-mode growth rates in the overtone solution, in contrast to earlier results by Hodson and Cox, and models with T{sub eff} < 7000 have positive 1st overtone growth rates in the fundamental-mode behavior was not found.

Guzik, J.A.; Cox, A.N.

1992-01-01T23:59:59.000Z

437

Livermore Field Office Technical Qualification Program Self Assessment Report, May 31, 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Security Administration (NNSA) Nuclear Security Administration (NNSA) Livermore Field Office Technical Qualification Program Self Assessment Report May 31, 2013 Assessment Team Richard crowe:NNSA NA-SH-80, Team Leader Dan Schwendenman, NNSA NA-SH-50 Carol lngn;:NNSA LFO Facility Operations Approved By: Phll ' F~nt .r/:;,/;.J ~I Date Date Date~/ NNSA Livermore Field Office TQP Self Assessment (NNSA LSO TQP SA) Report Table of Contents Executive Summary ............................................................................................................. 1 Introduction .......................................................................................................................... 3 Scope and Methodology ...................................................................................................... 3

438

2010 Lawrence Livermore National Laboratory Annual Illness and Injury Surveillance Report  

SciTech Connect

The U.S. Department of Energy's (DOE) commitment to assuring the health and safety of its workers includes the conduct of illness and injury surveillance activities that provide an early warning system to detect health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence, occupational injuries and illnesses, and disabilities and deaths among current workers.

U.S. Department of Energy, Office of Health, Safety and Health, Office of Health and Safety, Office of Illness and Injury Prevention Programs

2011-08-16T23:59:59.000Z

439

2010 Lawrence Livermore National Laboratory Annual Illness and Injury Surveillance Report  

SciTech Connect

The U.S. Department of Energy's (DOE) commitment to assuring the health and safety of its workers includes the conduct of illness and injury surveillance activities that provide an early warning system to detect health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence, occupational injuries and illnesses, and disabilities and deaths among current workers.

U.S. Department of Energy, Office of Health, Safety and Health, Office of Health and Safety, Office of Illness and Injury Prevention Programs

2011-08-16T23:59:59.000Z

440

2008 Lawrence Livermore National Laboratory Annual Illness and Injury Surveillance Report  

SciTech Connect

The U.S. Department of Energys (DOE) commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence of workdays, occupational injuries and illnesses, and disabilities and deaths among current workers.

U.S. Department of Energy, Office of Health, Safety and Health, Office of Health and Safety, Office of Illness and Injury Prevention Programs

2009-09-21T23:59:59.000Z

Note: This page contains sample records for the topic "laboratory livermore ca" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Lawrence Livermore National Laboratory oil shale: Quarterly report, October-December 1987  

DOE Green Energy (OSTI)

A unique mass spectrometry (MS) method for the study of water formation during oil shale batch pyrolysis was recently discussed. Water evolution observations differ from what others have reported, necessitating a detailed quality assurance study. That study is discussed in this report, along with the water calibration techniques that have been used to obtain quantitative data from our Triple Quadrupole Mass Spectrometer (TQMS) - which normally provides qualitative information. The rate of pyrolysis of raw shale and the rate of combustion of retorted shale in a new apparatus which allows C and H mass balances have been measured. Thus, the fraction of the raw shale organic C that is pyrolyzed and burned can be measured. The shale sample is fluidized with an inert gas which sweeps the pyrolysis gases out of the pyrolyzer and into a tube furnace where they are burned with oxygen. The concentrations of carbon dioxide and steam produced by this oxidation are measured on-line by means of a mass spectrometer. Following pyrolysis, the organic C and H which remain in the retorted shale are burned in the same fluidized bed by adding oxygen to the fluidizing gas. An experiment has also been conducted to find out if indeed Green River shale can be retorted in half the time generally used. The LLNL pilot retort was used, and the pyrolysis appears to have been completed when pyrolysis time at 500/sup 0/ was reduced from 3 m to 1.5 m. The evidence is the fact that the combustor temperature, which is sensitive to the carbon content of the retorted shale, did not increase when pyrolysis time was reduced.

Lewis, A.E. (ed.)

1988-01-01T23:59:59.000Z

442

The Hazardous Material Technician Apprenticeship Program at Lawrence Livermore National Laboratory  

Science Conference Proceedings (OSTI)

This document describes an apprenticeship training program for hazardous material technician. This entry-level category is achieved after approximately 216 hours of classroom and on-the-job training. Procedures for evaluating performance include in-class testing, use of on-the-job checks, and the assignment of an apprentice mentor for each trainee. (TEM)

Steiner, S.D.

1987-07-01T23:59:59.000Z

443

Lawrence Livermore National Laboratory's Videos on YouTube  

DOE Data Explorer (OSTI)

LLNL established its current channel on YouTube in June of 2009. While many of the video clips concern the National Ignition Facility and are also available at the LLNL website, other offerings include quick looks at research discoveries such as Element 117 and medical advancements such as the artificial retina.

444

Superconducting magnet development capability of the LLNL (Lawrence Livermore National Laboratory) High Field Test Facility  

SciTech Connect

This paper discusses the following topics: High-Field Test Facility Equipment at LLNL; FENIX Magnet Facility; High-Field Test Facility (HFTF) 2-m Solenoid; Cryogenic Mechanical Test Facility; Electro-Mechanical Conductor Test Apparatus; Electro-Mechanical Wire Test Apparatus; FENIX/HFTF Data System and Network Topology; Helium Gas Management System (HGMS); Airco Helium Liquefier/Refrigerator; CTI 2800 Helium Liquefier; and MFTF-B/ITER Magnet Test Facility.

Miller, J.R.; Shen, S.; Summers, L.T.

1990-02-01T23:59:59.000Z

445

Lawrence Livermore National Laboratory oil shale project. Quarterly report, October-December 1980  

DOE Green Energy (OSTI)

In this report, simulated modified in-situ (MIS) operations, chemical reaction studies and retort modelling are covered in detail. The MIS pilot retort studies include: runs S-23 and S-21; retort analysis by offgas data; estimated retorting rate based on inlet composition and flow rate; and carbon and sulfur balances. Chemical reaction studies cover gas-phase reactions where the rates of the water-gas shift reaction and combustion of CO and hydrocarbons were measured to develop simple kinetic schemes for gas-phase reactions in a combustion retort. Under the studies on heat of combustion, an equation was developed which relates the heat of combustion of Fischer assay spent shale to its composition. Field retort operation of Rio Blanco Oil Shale Company's (RBOSC) Retort 0 run has been completed, and data are being analyzed.

Rothman, A.J. (ed.)

1981-03-01T23:59:59.000Z

446

Technical assessment of Engineering`s Manufacturing Technology Thrust Area at Lawrence Livermore National Laboratory  

SciTech Connect

This document investigates the connection between the Manufacturing Technology Thrust Area and its market and concludes that the connection should include the programs internal to LLNL and customers outside of LLNL. The thrust area`s existing mission is reviewed and while it remains relevant to the future, it is too broad for the assigned resources. The scope of the thrust area`s mission is therefore narrowed to more specifically address precision in manufacturing. The course to pursue the new focus is plotted, and the projects for FY95 are briefly discussed.

Blaedel, K.L.

1995-07-27T23:59:59.000Z

447

Historical review of plutonium storage container failures at Lawrence Livermore National Laboratory  

Science Conference Proceedings (OSTI)

As part of the DOE Plutonium Vulnerability Assessment, an investigation was made to characterize the can failures at LLNL. Since the LLNL Plutonium Facility was opened for plutonium operations in 1961, there have only been three can failures that could be remembered by plutonium handlers, vault workers, chemical analysts, and material managers. Only one of these can failures was discovered during the processing of more than 606 packages containing plutonium as part of the LLNL Plutonium Inventory Reduction Program. A very low failure rate, especially since some of the 606 cans had been in storage for two to three decades. Two of the three containers that failed were made of aluminum and were packaged with 1.25 inch diameter plutonium metal spheres. The cans were split down their entire length and the plutonium metal was heavily oxidized. The secondary gallon container of the third package failure was found to be imploded in the storage vault. Upon closer examination, the plastic bags around the inner pint can were badly melted and the lid on the can was loose. Like the other two failures, the metal was heavily oxidized. In all three of the can failures, it is theorized that air entered the inner can through incomplete sealing and the oxygen in the air then reacted with the plutonium metal to produce plutonium oxide. Air was supplied to the inner can by permeation through the surrounding plastic bag. The air could have either diffused through the bag or could have been pumped through the twisted and taped ends of the inner most bag. The inner bags and cans were packaged into second bags and cans in an air atmosphere; therefore, trapping air inside the packaging configuration that could have passed through the bags. A failure of the inner can integrity would be necessary for the air to pass into it. In all three LLNL can failure cases, it is believed that the seal of the inner can was not sufficient to prevent a breach of the can environment.

Dodson, K.E.

1994-05-01T23:59:59.000Z

448

Category:United States Department of Energy National Laboratories | Open  

Open Energy Info (EERE)

United States Department of Energy National Laboratories United States Department of Energy National Laboratories Jump to: navigation, search This category uses the form Research Institution. Pages in category "United States Department of Energy National Laboratories" The following 12 pages are in this category, out of 12 total. A Argonne National Laboratory B Brookhaven National Laboratory I Idaho National Laboratory L Lawrence Berkeley National Laboratory (LBNL) L cont. Lawrence Livermore National Laboratory Los Alamos National Laboratory N National Energy Technology Laboratory National Renewable Energy Laboratory O Oak Ridge National Laboratory P Pacific Northwest National Laboratory S Sandia National Laboratories Savannah River National Laboratory (SRNL) Retrieved from "http://en.openei.org/w/index.php?title=Category:United_States_Department_of_Energy_National_Laboratories&oldid=207305

449

Laboratory or Facility Representative Email Addresses Phone #  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory or Facility Representative Email Addresses Phone # Ames Laboratory Stacy Joiner joiner@ameslab.gov 515-294-5932 Argonne National Laboratory Connie Cleary ccleary@anl.gov 630-252-8111 Brookhaven National Laboratory Walter Copan wcopan@bnl.gov 631-344-3035 Fermi National Acclerator Laboratory Bruce Chrisman chrisman@fnal.gov 630-840-6657 Idaho National Laboratory Steven McMaster steven.mcmaster@inl.gov 208-526-1340 Kansas City Plant Caron O'Dower codower@kcp.com 816-997-2645 Lawrence Berkeley National Laboratory Viviana Wolinsky viwolinsky@lbl.gov 510-486-6463 Lawrence Livermore National Laboratory Roger Werne werne1@llnl.gov 925-423-9353 Los Alamos National Laboratory John Mott jmott@lanl.gov 505-665-0883 National Energy Technology Laboratory Jessica Sosenko jessica.sosenko@netl.doe.gov 412-386-7417

450

Lawrence Livermore celebrates 25 years of carbon dating  

NLE Websites -- All DOE Office Websites (Extended Search)

spectrometer for use in the biology field to tracking radionuclides from the Dai-ichi Nuclear Power Plant disaster, the Laboratory's Center for Accelerator Mass Spectrometry...

451

Livermore celebrates 60th Anniversary | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

is not just the past 60 years, but the future of this Laboratory." Science & Technology Day highlighted LLNL's record of innovation with featured speakers and panel...

452

Sandia National Laboratories: The Center for Cyber Defenders...  

NLE Websites -- All DOE Office Websites (Extended Search)

- CA Grad Summer 644623 - CA High School Summer Search Sandia's CareersJobs Computer security is of critical importance, not only to Sandia National Laboratories but also to...

453

Sandia National Laboratories is a multi-program laboratory operated by Sandia Co  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies and economic competitiveness. Annular Core Research Reactor Facility At the Annular Core Research Reactor (ACRR) facility, Sandia researchers can subject various test objects to a

454

Lawrence Livermore Site Office Safety Basis Self-Assessment Final February 11, 2011  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Livermore Site Office Livermore Site Office Safety Basis Self-Assessment INTRODUCTION This site visit report documents the collective results of the Office of Health, Safety and Security's (HSS) assessment of National Nuclear Safety Administration (NNSA) Livermore Site Office (LSO) safety basis processes and discusses its scope, objective, results and conclusions. Appendix A provides lists of the documents, interviews, and observations and Appendix B includes the plan for the review. The assessment was sponsored by LSO as a self-assessment and conducted jointly by HSS and LSO staff. It was completed in late 2010 and included site visits from November 29 - December 3, 2010 and December 13-17, 2010. The assessment revealed that LSO has implemented appropriate plans, procedures, and

455

Lawrence Livermore Site Office Safety Basis Self-Assessment Final February 11, 2011  

NLE Websites -- All DOE Office Websites (Extended Search)

Livermore Site Office Livermore Site Office Safety Basis Self-Assessment INTRODUCTION This site visit report documents the collective results of the Office of Health, Safety and Security's (HSS) assessment of National Nuclear Safety Administration (NNSA) Livermore Site Office (LSO) safety basis processes and discusses its scope, objective, results and conclusions. Appendix A provides lists of the documents, interviews, and observations and Appendix B includes the plan for the review. The assessment was sponsored by LSO as a self-assessment and conducted jointly by HSS and LSO staff. It was completed in late 2010 and included site visits from November 29 - December 3, 2010 and December 13-17, 2010. The assessment revealed that LSO has implemented appropriate plans, procedures, and

456

Materials Week '97: Tuesday AM Session - TMS  

Science Conference Proceedings (OSTI)

... Laboratory, P.O. Box 808, Livermore, CA 94551; G.M. Stocks, Metals and Ceramics Division, MS 6114, Oak Ridge National Laboratory, Oak Ridge, TN 37831.

457

SciTech Connect: "smart grid"  

Office of Scientific and Technical Information (OSTI)

Laboratory (LLNL), Livermore, CA (United States) Los Alamos National Laboratory (LANL), Los Alamos, NM (United States) Los Alamos Site Office, NM (United States) Morgantown...

458

Independent Oversight Review of Integrated Safety Management System Effectiveness at the Livermore Site Office, October 2011  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of Enforcement and Oversight Office of Enforcement and Oversight Independent Oversight Review of Integrated Safety Management System Effectiveness at the Livermore Site Office October 2011 Office of Safety and Emergency Management Evaluations Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose ............................................................................................................................................. 1 2.0 Background ...................................................................................................................................... 1 3.0 Scope ................................................................................................................................................ 1

459

SLAC National Accelerator Laboratory Our Vision. Our Mission...  

NLE Websites -- All DOE Office Websites (Extended Search)

National Accelerator Laboratory Our Vision. Our Mission. Our Values. SLAC National Accelerator Laboratory 2575 Sand Hill Road Menlo Park, CA 94025-7015 slac.stanford.edu Great...

460

Microsoft Word - Cd-CA.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

The First Cadmium Enzyme - Carbonic Anhydrase 2 from the marine diatom Thalassiosira weissflogii Todd W. Lane 1 , Mak A. Saito 2 , Graham N. George 3 , Ingrid J. Pickering 3 , Roger C. Prince 4 and François M.M. Morel 5 1 Biosystems Research Department, Sandia National Labs, Livermore, CA 2 Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA 3 Department of Geological Sciences, University of Saskatchewan, Saskatoon, Canada 4 ExxonMobil Research and Engineering Company, Annandale, NJ 5 Department of Geosciences, Princeton University, Princeton, NJ Cadmium is known to be extremely toxic to mammals, and is generally viewed alongside mercury an environmental problem and toxic element that is not used by nature in any way. We have reported the characterization of a previously unknown

Note: This page contains sample records for the topic "laboratory livermore ca" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

CA.0  

Office of Legacy Management (LM)

of_f$ergy of_f$ergy Washington, DC 20545 *. CA.0 MAY 2 9 1987 .r ,. Hr. Carl Schafer Director of Environmental Poli,cy Office of the Deputy Assistant Secretary of Defense for Installations Pentagon . ..&&&.@.&&;-D.C. 20301 Dear Mr.~:Schafer: As you know, the Department of Ene,rgy (DOE) is implementing a program to identify sites that may be radiologically contaminated as a result of DOE predecessor operations and to correct any pioblems associated with this contamination if there is DOE authority to do so. Reviews of historical materials from the Manhattan Engineer District (MED) and Atomic Energy Commission (AEC) era conducted in support of this program have identified number of active and former Department of Defense (DOD) installations and

462

Research programs at the Department of Energy National Laboratories. Volume 2: Laboratory matrix  

Science Conference Proceedings (OSTI)

For nearly fifty years, the US national laboratories, under the direction of the Department of Energy, have maintained a tradition of outstanding scientific research and innovative technological development. With the end of the Cold War, their roles have undergone profound changes. Although many of their original priorities remain--stewardship of the nation`s nuclear stockpile, for example--pressing budget constraints and new federal mandates have altered their focus. Promotion of energy efficiency, environmental restoration, human health, and technology partnerships with the goal of enhancing US economic and technological competitiveness are key new priorities. The multiprogram national laboratories offer unparalleled expertise in meeting the challenge of changing priorities. This volume aims to demonstrate each laboratory`s uniqueness in applying this expertise. It describes the laboratories` activities in eleven broad areas of research that most or all share in common. Each section of this volume is devoted to a single laboratory. Those included are: Argonne National Laboratory; Brookhaven National Laboratory; Idaho National Engineering Laboratory; Lawrence Berkeley Laboratory; Lawrence Livermore National Laboratory; Los Alamos National Laboratory; National Renewable Energy Laboratory; Oak Ridge National Laboratory; Pacific Northwest Laboratory; and Sandia National Laboratories. The information in this volume was provided by the multiprogram national laboratories and compiled at Lawrence Berkeley Laboratory.

NONE

1994-12-01T23:59:59.000Z

463

Lawrence Livermore National Security CFO Processes Functional Management Assessment  

Science Conference Proceedings (OSTI)

The scope of the Functional Management Assessment of the CFO included a review of the CFO Organizational Structure, including deployed financial services and the division of responsibilities and internal controls between CFO and other organizations that perform financial functions across the Laboratory. In addition, the assessment team solicited input from end users and reviewers. Three issues discussed are: ISSUE 1: Financial activities and cash transactions are occurring outside the CFO organization. Approximately $200M of non-purchase order spending occurs in seven areas outside CFO control (travel, relocation, special disbursements, IPO, legal, risk management, and freight). NIF financial services have not been integrated into the CFO organization and operate outside CFO control. Business risks--There is no single point of financial accountably; Currently within the CFO and Business and Operations organizations there is a lack of clarity of roles and responsibilities for financial activities; Financial talent within the laboratory is fragmented; and Inefficiencies exist based on the current structure; An example of the above business risks associated with organizational structure can be observed in the process for reimbursement of relocation costs to employees. Currently, Human Resources and Travel both administer portions of an employee's relocation. Costs are reviewed for compliance with FAR travel guidelines and for compliance with the offer letter but there is no financial review for allowability of costs nor is there a single point where the total relocation costs are reviewed. Through the e-pay system the check is processed by the CFO organization but there is no review by that organization. ISSUE 2: Impact of involuntary separation on current and future activities. 3 risks are: (1) Loss of internal controls--with the upcoming involuntary reductions there will be a loss of personnel with institutional knowledge which will increase the risk of losing internal control on some processes. The organization needs to be cognizant of this risk and take measures to minimize financial risk and ensure on-going A-123 compliance. (2) Project Costing Implementation (PCI) delay--the implementation of PCI is key to achieving integration and reporting of financial data. Presently, business analysts spend half of their time collecting and compiling data and 94% of the labs financial management reports are created using spreadsheets. Currently, the PCI project is on schedule but the involuntary reductions may result in loss of support in this area. (3) Financial Performance Milestones not met--for FY-08 there are fixed, base and stretch financial performance milestones for the laboratory. With reductions in staff the risk of missing key milestones increases. ISSUE 3: Strategically growing the Work for Others (WFO) Portfolio. A key objective of the laboratory is to increase WFO. Greater reliance on WFO will result in additional funding sources and increase the number of control points and financial activities to be monitored thus increasing the level of financial complexity at the lab. The CFO organization should work now to improve controls and processes to accommodate these changes. In particular the following areas should be focused on: (1) Cost reporting needs to be streamlined; (2) Cost Transfer controls need to be increased; and (3) Timely monitoring and close out of contracts needs occur.

Sparks, A; Sampson, D; Thomas, B; Mendez, M

2008-06-12T23:59:59.000Z

464

Lawrence Livermore National Security Cost Model Functional Management Assessment  

Science Conference Proceedings (OSTI)

The scope of the Functional Management Assessment of the cost model included a review of the plan and progress of the Cost Model Review Team. The review focused on processes in place to ensure simplicity, compliance with cost accounting standards and indirect cost allocation methodology, and the change management plan. This was intended to be a high-level initial review in order to provide recommendations for a subsequent more comprehensive review. The single document reviewed by the team during the assessment was the Indirect Cost Recovery Model Review, which describes how the indirect rate restructure and new organizational structure have resulted in streamlined charging practices to better understand and strategically manage costs. ISSUE 1: The cost model focuses heavily on rate structure but not on cost management. Significant progress has been made to simplify the rate structure. The number of indirect rates has been reduced from 67 different indirect rates used under the prior contract to 32 rates in the first year of the LLNS contract, with a goal of further reduction to 16 for FY09. The reductions are being recommended by a broad-based Working Group driven by Lab leadership desiring a simplified rate structure that would make it easier to analyze the true cost of overhead, be viewed as equitable, and ensure appropriate use of Service, i.e., operations, Centers. This has been a real challenge due to the significant change in approach from one that previously involved a very complex rate structure. Under this prior approach, the goal was to manage the rates, and rates were established at very detailed levels that would 'shine the light' on pools of overhead costs. As long as rates stayed constant or declined, not as much attention tended to be given to them, particularly with so many pools to review (184 indirect rate pools in FY05). However, as difficult and important as simplifying the rate structure has been, the fundamental reason for the simplification is to make it easier to analyze the true cost of overhead so the costs can be effectively managed. For the current year, the overall the goal of keeping the total cost of an FTE to FY07 levels. This approach reflects the past practice of managing to rates rather than focusing on costs, although streamlined with the more simplified rate structure. Given all the challenges being faced with the contract transition, this was a reasonable interim tactic for dealing with the known cost increases such as fees and taxes. Nonetheless, in order to take full advantage of the opportunities that exist for making sound decisions for further reducing the rates themselves, the Laboratory needs to implement an ongoing and disciplined approach to understanding and managing overhead cost. ISSUE 2: The NIF has a significantly different rate structure than other Laboratory work. Because of its significant size and unique organizational structure as a major construction project, the National Ignition Facility (NIF) has indirect charges that vary from the norm. These variations were reviewed and approved by and disclosed to the NNSA in the Laboratory's past annual Disclosure Statements. In mid-FY 09, NIF will begin transition from a construction line item to an operational center. The reallocation of costs when this occurs could significantly impact the Laboratory's rates and rate structure planning for that transition from a cost- and rate- impact standpoint should begin soon. ISSUE 3: The new rate model must be finalized shortly in order to implement the model beginning in FY 09. As noted in Issue No.1, a Working Group has developed a simplified rate structure for the Lab to use for FY09. The Working Group has evaluated the cost impacts of the simplified rate structure at the major program level and identified a disparate impact in the Safeguards and Security area where a substantial increase in overhead cost allocation may need to be mitigated. The simplified rate structure will need to be approved by the Laboratory Director and issued within the Laboratory to formulate detailed bu

Tevis, J; Hirahara, J; Thomas, B; Mendez, M

2008-06-12T23:59:59.000Z

465

LCC-0090 final  

NLE Websites -- All DOE Office Websites (Extended Search)

90 UCRL-ID-148938 July 2002 Thermal Stress Analyses for a Multislug Beam NLC Positron Target Werner Stein, Anne Sunwoo Lawrence Livermore National Laboratory Livermore, CA John C....

466

Enforcement Action 2003-04  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Washington, DC 20585 September 3, 2003 Dr. Michael R. Anastasio Lawrence Livermore National Laboratory P.O. Box 808, L-001 Livermore, CA 94551-0808 EA-2003-04 Subject:...

467

Sandia National Laboratories: The First Fifty Years  

SciTech Connect

On Nov. 1, 1999, Sandia National Laboratories celebrates its 50th birthday. Although Sandia has its roots in the World War II-era Manhattan Project, Sandia began operating as a separate nuclear weapons engineering laboratory under the management of AT&T on Nov. 1, 1949. Today the lab employs more than 7,000 people at its two sites in Albuquerque and Livermore, California, and has research and development missions in national security, energy and environmental technologies, and U.S. economic competitiveness. Lockheed Martin Corporation operates Sandia for the US. Department of Energy.

MORA,CARL J.

1999-11-03T23:59:59.000Z

468

Trace Metals in Oil Laboratory Proficiency Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing service for Trace Metals in Oil. Soybean oil sample to test for Iron, Copper, and Nickel using AOCS Official method Ca 18-79. Trace Metals in Oil Laboratory Proficiency Program Laboratory Proficiency Program (LPP) aocs applicants

469

Sandia National Laboratories: About Sandia: Leadership  

NLE Websites -- All DOE Office Websites (Extended Search)

About About Leadership Leadership with Paul Hommert : President and Laboratories Director Throughout its history, Sandia has been guided by the core principle of - in the words of President Harry Truman - providing "exceptional service in the national interest." Paul Hommert Paul Hommert President & Laboratories Director Paul Hommert is the director of Sandia National Laboratories and president of Sandia Corporation. Sandia has principal sites in Albuquerque, N.M., and Livermore, Calif., an annual budget of $2.5 billion, and approximately 9,400 employees. View full biography President's message Download biography (PDF, 1.5 MB) Kim Sawyer Kim Sawyer Deputy Laboratories Director & Executive Vice President for Mission Support Kimberly (Kim) C. Sawyer is the deputy Laboratories director and executive

470

Livermore scientists assist in solving riddle of black hole spin | National  

NLE Websites -- All DOE Office Websites (Extended Search)

scientists assist in solving riddle of black hole spin | National scientists assist in solving riddle of black hole spin | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Livermore scientists assist in solving riddle of ... Livermore scientists assist in solving riddle of black hole spin Posted By Office of Public Affairs NNSA Blog

471

Livermore scientists assist in solving riddle of black hole spin | National  

National Nuclear Security Administration (NNSA)

scientists assist in solving riddle of black hole spin | National scientists assist in solving riddle of black hole spin | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Livermore scientists assist in solving riddle of ... Livermore scientists assist in solving riddle of black hole spin Posted By Office of Public Affairs NNSA Blog

472

Lawrence Livermore charitable campaign raises $3.3 million for local  

National Nuclear Security Administration (NNSA)

charitable campaign raises $3.3 million for local charitable campaign raises $3.3 million for local organizations | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Lawrence Livermore charitable campaign raises $3.3 million ... Lawrence Livermore charitable campaign raises $3.3 million for local organizations Posted By Office of Public Affairs

473

Livermore scientist, engineers train to be inspectors for test ban treaty  

National Nuclear Security Administration (NNSA)

scientist, engineers train to be inspectors for test ban treaty scientist, engineers train to be inspectors for test ban treaty organization | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Livermore scientist, engineers train to be inspectors ... Livermore scientist, engineers train to be inspectors for test ban treaty organization