National Library of Energy BETA

Sample records for laboratory investigations view

  1. Argonne National Laboratory Investigates Premature Bearing Failures |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Investigates Premature Bearing Failures Argonne National Laboratory Investigates Premature Bearing Failures August 1, 2013 - 4:13pm Addthis This is an excerpt from the Second Quarter 2013 edition of the Wind Program R&D Newsletter. Researchers at Argonne National Laboratory (ANL) are investigating a leading cause of premature bearing failures in wind turbine gearboxes that can occur within the first 2 years of a gearbox's intended design life (20 years). The bearing

  2. Los Alamos National Laboratory Accident Investigation Board Corrective...

    Office of Environmental Management (EM)

    Accident Investigation Board Corrective Action Plan Update Los Alamos National Laboratory Accident Investigation Board Corrective Action Plan Update Topic: Status of the Corrective ...

  3. PPPL's "Star Power" video offers compelling view of Laboratory...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Visit http:www.pppl.gov. . Contact Info PPPL Office of Communications Email: PPPLOOC@pppl.gov Phone: 609-243-2755 Download Select and View High Resolution Images to Download ...

  4. Argonne National Laboratory Investigates Premature Bearing Failures...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Early results of this investigation were recently published in the peer-reviewed journal ... of Material Conference. Bench-top test methods are currently under development to mimic ...

  5. Los Alamos National Laboratory Investigates Fenton Hill to Support...

    Office of Environmental Management (EM)

    Investigates Fenton Hill to Support Future Land Use Los Alamos National Laboratory Investigates Fenton Hill to Support Future Land Use July 29, 2014 - 12:00pm Addthis Sampling...

  6. PPPL's "Star Power" video offers compelling view of Laboratory's

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    research | Princeton Plasma Physics Lab PPPL's "Star Power" video offers compelling view of Laboratory's research By Jeanne Jackson DeVoe September 4, 2013 Tweet Widget Google Plus One Share on Facebook PPPL has released its new "Star Power" informational video. (Photo by Greg Czechowicz/PPPL Office of Communications ) PPPL has released its new "Star Power" informational video. (Watch video: http://www.pppl.gov/star%20power) The U.S. Department of Energy's

  7. Laboratory investigation of crushed salt consolidation and fracture healing

    SciTech Connect (OSTI)

    Not Available

    1987-01-01

    A laboratory test program was conducted to investigate the consolidation behavior of crushed salt and fracture healing in natural and artificial salt. Crushed salt is proposed for use as backfill in a nuclear waste repository in salt. Artificial block salt is proposed for use in sealing a repository. Four consolidation tests were conducted in a hydrostatic pressure vessel at a maximum pressure of 2500 psi (17.2 MPa) and at room temperature. Three 1-month tests were conducted on salt obtained from the Waste Isolation Pilot Plant and one 2-month test was conducted on salt from Avery Island. Permeability was obtained using argon and either a steady-state or transient method. Initial porosities ranged from 0.26 to 0.36 and initial permeabilities from 2000 to 50,000 md. Final porosities and permeabilities ranged from 0.05 to 0.19 and from <10/sup -5/ md to 110 md, respectively. The lowest final porosity (0.05) and permeability (<10/sup -5/ md) were obtained in a 1-month test in which 2.3% moisture was added to the salt at the beginning of the test. The consolidation rate was much more rapid than in any of the dry salt tests. The fracture healing program included 20 permeability tests conducted on fractured and unfractured samples. The tests were conducted in a Hoek cell at hydrostatic pressures up to 3000 psi (20.6 MPa) with durations up to 8 days. For the natural rock salt tested, permeability was strongly dependent on confining pressure and time. The effect of confining pressure was much weaker in the artificial salt. In most cases the combined effects of time and pressure were to reduce the permeability of fractured samples to the same order of magnitude (or less) as the permeability measured prior to fracturing.

  8. Underwriters Laboratories now accepting certification investigation requests for E85 fuel dispensing equipment

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    MEDIA CONTACT: Joe Hirschmugl Global Media Relations Supervisor Underwriters Laboratories Phone: +1 847 830-1404 E-mail: Joseph.F.Hirschmugl@us.ul.com PRESS RELEASE FOR IMMEDIATE RELEASE Underwriters Laboratories Announces Development of Certification Requirements for E85 Dispensers Now Accepting Product Submittals for Certification Investigation NORTHBROOK, Ill. Oct. 16, 2007 - Underwriters Laboratories (UL), North America's leading safety testing and certification organization, announced the

  9. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    performance computer system installed at Los Alamos National Laboratory June 17, 2014 Unclassified 'Wolf' system to advance many fields of science LOS ALAMOS, N.M., June 17, 2014-Los Alamos National Laboratory recently installed a new high-performance computer system, called Wolf, which will be used for unclassified research. "This machine modernizes our mid-tier resources available to Laboratory scientists," said Bob Tomlinson, of the Laboratory's High Performance Computing group.

  10. Remedial investigation and feasibility study for the Lawrence Livermore National Laboratory Site 300 Pit 7 Complex

    SciTech Connect (OSTI)

    Taffet, M.J. ); Oberdorfer, J.A. ); McIlvride, W.A. )

    1989-10-01

    This report summarizes the results and conclusions of the investigation of tritium and other compounds in ground water in the vicinity of landfills at the Lawrence Livermore National Laboratory (LLNL) Site 300 Pit 7 Complex. 91 refs., 110 figs., 43 tabs.

  11. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Builders place final beam in first phase of CMRR project at Los Alamos National Laboratory July 22, 2008 LOS ALAMOS, New Mexico, July 22, 2008- Workers hoisted the final steel beam ...

  12. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forest fire near Los Alamos National Laboratory June 26, 2011 Los Alamos, New Mexico, June 26, 2011, 6:07pm-The Las Conchas fire burning in the Jemez Mountains approximately 12...

  13. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mexican pueblo preserves cultural history through collaborative tours with Los Alamos National Laboratory August 24, 2015 Students gain new insights into their ancestry LOS ALAMOS, N.M., Aug. 24, 2015-San Ildefonso Pueblo's Summer Education Enhancement Program brought together academic and cultural learning in the form of a recent tour of Cave Kiva Trail in Mortandad Canyon."Opening up this archaeological site and sharing it with the descendants of its first inhabitants is a

  14. Accident Investigation at the Idaho National Laboratory Engineering Demonstration Facility, February 2013

    Office of Energy Efficiency and Renewable Energy (EERE)

    On Monday, February 12, 2013, a principal investigator at the Idaho National Laboratory (INL) Engineering Demonstration Facility (IEDF) was testing the system configuration of experimental process involving liquid sodium carbonate. An unanticipated event occurred that resulted in the ejection of the 900° C liquid sodium carbonate from the system. The ejected liquid came into contact with the principal investigator and caused multiple second and third degree burn injuries to approximately 10 percent of his body. The Office of Health, Safety and Security (HSS) Site Lead for the Idaho Site shadowed the accident investigation team assembled by the contractor in an effort to independently verify that a rigorous, thorough, and unbiased investigation was taking place, and to maintain awareness of the events surrounding the accident

  15. RCRA Facility Investigation report for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Wilson, R. C.; Lewis, K. K.

    1991-09-01

    This report presents data and information related to remedial investigation studies for Oak Ridge National Laboratory (ORNL). Information is included on a soil gas survey, surface radiological investigations of waste areas, and well installation for ground water monitoring. (CBS)

  16. Laboratory Investigation of Contact Freezing and the Aerosol to Ice Crystal Transformation Process

    SciTech Connect (OSTI)

    Shaw, Raymond A.

    2014-10-28

    This project has been focused on the following objectives: 1. Investigations of the physical processes governing immersion versus contact nucleation, specifically surface-induced crystallization; 2. Development of a quadrupole particle trap with full thermodynamic control over the temperature range 0 to –40 °C and precisely controlled water vapor saturation ratios for continuous, single-particle measurement of the aerosol to ice crystal transformation process for realistic ice nuclei; 3. Understanding the role of ice nucleation in determining the microphysical properties of mixed-phase clouds, within a framework that allows bridging between laboratory and field measurements.

  17. The remedial investigation/feasibility study process at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    Martin Marietta Energy Systems, Inc. (Energy Systems), manages and operates the Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee, under a cost-plus-award-fee contract administered by the Department of Energy`s (DOE) Oak Ridge Operations Office (Operations Office). Energy Systems` environmental restoration program is responsible for eliminating or reducing the risk posed by inactive and surplus sites and facilities that have been contaminated with radioactive, hazardous, or mixed wastes. The remedial investigation and feasibility study (RI/FS) is being conducted as part of Energy Systems` environmental restoration program. The objective of the audit was to determine if the proposed interim source control action identified in the ``Proposed Plan for the Oak Ridge National Laboratory Waste Area Grouping 6 Interim Remedial Action`` had been adequately justified. The audit disclosed that the proposed source control interim remedial action, three flexible membrane caps estimated to cost $140 million for waste area grouping 6, was not adequately justified. We recommended that DOE justify the proposed action before agreeing to proceed. The Manager, Oak Ridge Operations Office, generally concurred with the audit recommendations.

  18. Remedial investigation of the High-Explosives (HE) Process Area, Lawrence Livermore National Laboratory Site 300

    SciTech Connect (OSTI)

    Crow, N.B.; Lamarre, A.L.

    1990-08-01

    This report presents the results of a Remedial Investigation (RI) to define the extent of high explosives (HE) compounds and volatile organic compounds (VOCs) found in the soil, rocks, and ground water of the HE Process Area of Lawrence Livermore National Laboratory's (LLNL) Site 300 Facility. The report evaluates potential public health environmental risks associated with these compounds. Hydrogeologic information available before February 15, 1990, is included; however, chemical analyses and water-level data are reported through March 1990. This report is intended to assist the California Regional Water Quality Control Board (RWQCB)--Central Valley Region and the US Environmental Protection Agency (EPA) in evaluating the extent of environmental contamination of the LLNL HE Process Area and ultimately in designing remedial actions. 90 refs., 20 figs., 7 tabs.

  19. LabView Based Nuclear Physics Laboratory experiments as a remote teaching and training tool for Latin American Educational Centers

    SciTech Connect (OSTI)

    Sajo-Bohus, L.; Greaves, E. D.; Barros, H.; Gonzalez, W.; Rangel, A.

    2007-10-26

    A virtual laboratory via internet to provide a highly iterative and powerful teaching tool for scientific and technical discipline is given. The experimenter takes advantage of a virtual laboratory and he can execute nuclear experiment at introductory level e.g. Gamma ray detection with Geiger-Mueller Counter at remote location using internet communication technology.

  20. Cultural Resource Investigations for a Multipurpose Haul Road on the Idaho National Laboratory

    SciTech Connect (OSTI)

    Brenda R. Pace; Cameron Brizzee; Hollie Gilbert; Clayton Marler; Julie Braun Williams

    2010-08-01

    The U. S. Department of Energy, Idaho Operations Office is considering options for construction of a multipurpose haul road to transport materials and wastes between the Materials and Fuels Complex (MFC) and other Idaho National Laboratory (INL) Site facilities. The proposed road will be closed to the public and designed for limited year-round use. Two primary options are under consideration: a new route south of the existing T-25 power line road and an upgrade to road T-24. In the Spring of 2010, archaeological field surveys and initial coordination and field reconnaissance with representatives from the Shoshone-Bannock Tribes were completed to identify any resources that may be adversely affected by the proposed road construction and to develop recommendations to protect any listed or eligible for listing on the National Register of Historic Places. The investigations showed that 24 archaeological resources and one historic marker are located in the area of potential effects for road construction and operation south of the T-25 powerline road and 27archaeological resources are located in the area of potential effects for road construction and operation along road T-24. Generalized tribal concerns regarding protection of natural resources were also documented in both road corridors. This report outlines recommendations for additional investigations and protective measures that can be implemented to minimize adverse impacts to the identified resources.

  1. Joint seismic, hydrogeological, and geomechanical investigations of a fracture zone in the Grimsel Rock Laboratory, Switzerland

    SciTech Connect (OSTI)

    Majer, E.L.; Myer, L.R.; Peterson, J.E. Jr.; Karasaki, K.; Long, J.C.S.; Martel, S.J. ); Bluemling, P.; Vomvoris, S. )

    1990-06-01

    This report is one of a series documenting the results of the Nagra-DOE Cooperative (NDC-I) research program in which the cooperating scientists explore the geological, geophysical, hydrological, geochemical, and structural effects anticipated from the use of a rock mass as a geologic repository for nuclear waste. From 1987 to 1989 the United States Department of Energy (DOE) and the Swiss Cooperative for the Storage of Nuclear Waste (Nagra) participated in an agreement to carryout experiments for understanding the effect of fractures in the storage and disposal of nuclear waste. As part of this joint work field and laboratory experiments were conducted at a controlled site in the Nagra underground Grimsel test site in Switzerland. The primary goal of these experiments in this fractured granite was to determine the fundamental nature of the propagation of seismic waves in fractured media, and to relate the seismological parameters to the hydrological parameters. The work is ultimately aimed at the characterization and monitoring of subsurface sites for the storage of nuclear waste. The seismic experiments utilizes high frequency (1000 to 10,000 Hertz) signals in a cross-hole configuration at scales of several tens of meters. Two-, three-, and four-sided tomographic images of the fractures and geologic structure were produced from over 60,000 raypaths through a 10 by 21 meter region bounded by two nearly horizontal boreholes and two tunnels. Intersecting this region was a dominant fracture zone which was the target of the investigations. In addition to these controlled seismic imaging experiments, laboratory work using core from this region were studied for the relation between fracture content, saturation, and seismic velocity and attenuation. In-situ geomechanical and hydrologic tests were carried out to determine the mechanical stiffness and conductivity of the fractures. 20 refs., 90 figs., 6 tabs.

  2. Site safety plan for Lawrence Livermore National Laboratory CERCLA investigations at site 300. Revision 2

    SciTech Connect (OSTI)

    Kilmer, J.

    1997-08-01

    Various Department of Energy Orders incorporate by reference, health and safety regulations promulgated by the Occupational Safety and Health Administration (OSHA). One of the OSHA regulations, 29 CFR 1910.120, Hazardous Waste Operations and Emergency Response, requires that site safety plans are written for activities such as those covered by work plans for Site 300 environmental investigations. Based upon available data, this Site Safety Plan (Plan) for environmental restoration has been prepared specifically for the Lawrence Livermore National Laboratory Site 300, located approximately 15 miles east of Livermore, California. As additional facts, monitoring data, or analytical data on hazards are provided, this Plan may need to be modified. It is the responsibility of the Environmental Restoration Program and Division (ERD) Site Safety Officer (SSO), with the assistance of Hazards Control, to evaluate data which may impact health and safety during these activities and to modify the Plan as appropriate. This Plan is not `cast-in-concrete.` The SSO shall have the authority, with the concurrence of Hazards Control, to institute any change to maintain health and safety protection for workers at Site 300.

  3. Laboratory Investigations of low-swirl injectors operating with syngases - article no. 011502

    SciTech Connect (OSTI)

    Littlejohn, D.; Cheng, R.K.; Noble, D.R.; Lieuwen, T.

    2010-01-15

    The low-swirl injector (LSI) is a lean premixed combustion technology that has the potential for adaptation to fuel-flexible gas turbines operating on a variety of fuels. The objective of this study is to gain a fundamental understanding of the effect of syngas on the LSI flame behavior, the emissions, and the flowfield characteristics for adaptation to the combustion turbines in integrated gasification combined cycle clean coal power plants. The experiments were conducted in two facilities. Open atmospheric laboratory flames generated by a full size (6.35 cm) LSI were used to investigate the lean blow-off limits, emissions, and the flowfield characteristics. Verification of syngas operation at elevated temperatures and pressures were performed with a reduced scale (2.54 cm) LSI in a small pressurized combustion channel. The results show that the basic LSI design is amenable to burning syngases with up to 60% H{sub 2}. Syngases with high H{sub 2} concentration have lower lean blow-off limits. From particle image velocimetry measurements, the flowfield similarity behavior and the turbulent flame speeds of syngases flames are consistent with those observed in hydrocarbon and pure or diluted hydrogen flames. The NOx emissions from syngas flames show log-linear dependency on the adiabatic flame temperature and are comparable to those reported for the gaseous fuels reported previously. Successful firing of the reduced-scale LSI at 450 K

  4. Workplace investigation of increased diagnosis of malignant melanoma among employees of Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Moore, D.H. II; Patterson, H.W.; Hatch, F.; Discher, D.; Schneider, J.S.; Bennett, D.

    1994-08-01

    Based on rates for the surrounding communities, the diagnosis rate of malignant melanoma for employees of Lawrence Livermore National Laboratory (LLNL) during 1972 to 1977 was three to four times higher than expected. In 1984 Austin and Reynolds concluded, as a result of a case-control study, that five occupational factors were {open_quotes}causally associated{close_quotes} with melanoma risk at LLNL. These factors were: (1) exposure to radioactive materials, (2) work at Site 300, (3) exposure to volatile photographic chemicals, (4) presence at the Pacific Test Site, and (5) chemist duties. Subsequent reviews of the Austin and Reynolds report concluded that the methods used were appropriate and correctly carried out. These reports did determine, however, that Austin and Reynolds` conclusion concerning a causal relationship between occupational factors and melanoma among employees was overstated. There is essentially no supporting evidence linking the occupational factors with melanoma from animal studies or human epidemiology. Our report summarizes the results of further investigation of potential occupational factors.

  5. Surface radiological investigations at the proposed SWSA 7 Site, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    McKenzie, S.P.; Murray, M.E.; Uziel, M.S.

    1995-08-01

    A surface radiological investigation was conducted intermittently from June 1994 to June 1995 at the proposed site for Solid Waste Storage Area (SWSA) 7. The stimulus for this survey was the observation in June 1992 of a man`s trousers became contaminated with {sup 9O}Sr while he was reviewing work on top of the High Flux Isotope Reactor (HFIR) cooling tower. Radiation surveys identified {sup 9O}Sr on the roofs of older buildings at the HFIR site. Since no {sup 9O}Sr was found on buildings built between 1988 and 1990, the {sup 9O}Sr was thought to have been deposited prior to 1988. Later in 1992, beta particles were identified on a bulldozer that had been used in a wooded area southwest of the Health Physics Research Reactor (HPRR) Access Road. More recently in April 1995, {sup 9O}Sr particles were identified on the top side of ceiling tiles in the overhead area of a building in the HFIR Complex. Considering that the proposed SWSA 7 site was located between the HFIR complex and the HPRR Access Road, it was deemed prudent to investigate the possibility that beta particles might also be present at the SWSA 7 site. A possible explanation for the presence of these particles has been provided by long-time ORNL employees and retirees. Strontium-90 as the titanate was developed in the early 1960s as part of the Systems for Nuclear Auxiliary Power (SNAP) Program. Strontium titanate ({sup 90}SrTiO{sub 3}) was produced at the Fission Product Development Laboratory (Building 3517) in the ORNL main plant area. Waste from the process was loaded into a 1-in. lead-lined dumpster, which was transferred to SWSA 5 where it was dumped into a trench. Dumping allowed some articles to become airborne.

  6. Triangle Universities Nuclear Laboratory : 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    View

  7. Laboratory {open_quotes}proof of principle{close_quotes} investigation for the acoustically enhanced remediation technology

    SciTech Connect (OSTI)

    Iovenitti, J.L.; Spencer, J.W. Jr.; Hill, D.G.

    1995-10-01

    Weiss Associates is conducting a three phase program investigating the systematics of using acoustic excitation fields (AEFs) to enhance the in-situ remediation of contaminated soil and ground water under both saturated and unsaturated conditions: Phase I - Laboratory Scale Parametric Investigation; Phase II - Technology Scaling Study; and Phase III - Large Scale Field Tests. Phase I, the subject of this paper, consisted primarily of a laboratory proof of principle investigation. The field deployment and engineering viability of acoustically enhanced remediation (AER) technology was also examined. Phase II is a technology scaling study addressing the scale up between laboratory size samples on the order of inches, and the data required for field scale testing, on the order of hundreds of feet. Phase III will consist of field scale testing at an non-industrialized, non-contaminated site and at a contaminated site to validate the technology. Summarized herein are the results of the Phase I {open_quotes}proof-of-principle{close_quotes} investigation, and recommendations for Phase H. A general overview of AER technology along with the plan for the Phase I investigation was presented.

  8. Laboratory investigation on the effect of in situ stresses on hydraulic fracture containment

    SciTech Connect (OSTI)

    Warpinski, N. R.; Clark, J. A.; Schmidt, R. A.; Huddle, C. W.

    1981-01-01

    Laboratory experiments have been conducted to determine the effect of in situ stress variations on hydraulic fracture containment. Fractures were initiated in layered rock samples with prescribed stress variations, and fracture growth characteristics were determined as a function of stress levels. Stress contrasts of 2-3 MPa were found to be sufficient to restrict fracture growth in laboratory samples of Nevada tuff and Tennessee and Nugget sandstones. The required stress level was found not to depend on mechanical rock properties. However, permeability and the resultant pore pressure effects were found to be important. Tests conducted at bimaterial interfaces between Nugget and Tennessee sandstone show that the resultant stresses set up near the interface due to the applied overburden stress affect the fracture behavior in the same way as the applied confining stresses. These results provide a guideline for determining the in situ stress contrast necessary to contain a fracture in a field treatment.

  9. Investigation of Yersinia pestis Laboratory Adaptation through a Combined Genomics and Proteomics Approach

    SciTech Connect (OSTI)

    Leiser, Owen P.; Merkley, Eric D.; Clowers, Brian H.; Kaiser, Brooke LD; Lin, Andy; Hutchison, Janine R.; Melville, Angela M.; Wagner, David M.; Keim, Paul S.; Foster, Jeff; Kreuzer, Helen W.

    2015-11-24

    The bacterial pathogen Yersinia pestis, the cause of plague in humans and animals, normally has a sylvatic lifestyle, cycling between fleas and mammals. In contrast, laboratory-grown Y. pestis experiences a more constant environment and conditions that it would not normally encounter. The transition from the natural environment to the laboratory results in a vastly different set of selective pressures, and represents what could be considered domestication. Understanding the kinds of adaptations Y. pestis undergoes as it becomes domesticated will contribute to understanding the basic biology of this important pathogen. In this study, we performed a Parallel Serial Passage Experiment (PSPE) to explore the mechanisms by which Y. pestis adapts to laboratory conditions, hypothesizing that cells would undergo significant changes in virulence and nutrient acquisition systems. Two wild strains were serially passaged in 12 independent populations each for ~750 generations, after which each population was analyzed using whole-genome sequencing. We observed considerable parallel evolution in the endpoint populations, detecting multiple independent mutations in ail, pepA, and zwf, suggesting that specific selective pressures are shaping evolutionary responses. Complementary LC-MS-based proteomic data provide physiological context to the observed mutations, and reveal regulatory changes not necessarily associated with specific mutations, including changes in amino acid metabolism, envelope biogenesis, iron storage and acquisition, and a type VI secretion system. Proteomic data support hypotheses generated by genomic data in addition to suggesting future mechanistic studies, indicating that future whole-genome sequencing studies be designed to leverage proteomics as a critical complement.

  10. Investigation of Yersinia pestis laboratory adaptation through a combined genomics and proteomics approach

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Leiser, Owen P.; Merkley, Eric D.; Clowers, Brian H.; Kaiser, Brooke L. Deatherage; Lin, Andy; Hutchison, Janine R.; Melville, Angela M.; Wagner, David M.; Keim, Paul S.; Foster, Jeff; et al

    2015-11-24

    Here, the bacterial pathogen Yersinia pestis, the cause of plague in humans and animals, normally has a sylvatic lifestyle, cycling between fleas and mammals. In contrast, laboratory-grown Y. pestis experiences a more constant environment and conditions that it would not normally encounter. The transition from the natural environment to the laboratory results in a vastly different set of selective pressures, and represents what could be considered domestication. Understanding the kinds of adaptations Y. pestis undergoes as it becomes domesticated will contribute to understanding the basic biology of this important pathogen. In this study, we performed a Parallel Serial Passage Experimentmore » (PSPE) to explore the mechanisms by which Y. pestis adapts to laboratory conditions, hypothesizing that cells would undergo significant changes in virulence and nutrient acquisition systems. Two wild strains were serially passaged in 12 independent populations each for ~750 generations, after which each population was analyzed using whole-genome sequencing. We observed considerable parallel evolution in the endpoint populations, detecting multiple independent mutations in ail, pepA, and zwf, suggesting that specific selective pressures are shaping evolutionary responses. Complementary LC-MS-based proteomic data provide physiological context to the observed mutations, and reveal regulatory changes not necessarily associated with specific mutations, including changes in amino acid metabolism, envelope biogenesis, iron storage and acquisition, and a type VI secretion system. Proteomic data support hypotheses generated by genomic data in addition to suggesting future mechanistic studies, indicating that future whole-genome sequencing studies be designed to leverage proteomics as a critical complement.« less

  11. Pacific Northwest National Laboratory Apatite Investigation at the 100-NR-2 Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2008-03-28

    This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by staff working on the 100-NR-2 Apatite Project. The U.S. Department of Energy, Fluor Hanford, Inc., Pacific Northwest National Laboratory, and the Washington Department of Ecology agreed that the long-term strategy for groundwater remediation at 100-N would include apatite sequestration as the primary treatment, followed by a secondary treatment. The scope of this project covers the technical support needed before, during, and after treatment of the targeted subsurface environment using a new high-concentration formulation.

  12. Type B Accident Investigation of the Arc Flash at Brookhaven National Laboratory, April 14, 2006

    Broader source: Energy.gov [DOE]

    This report is an independent product of the Type B Accident Investigation Board appointed by Elizabeth D. Sellers, Manager, Idaho Operations Office, U.S. Department of Energy.

  13. RCRA Facility Investigation report for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    This report presents compiled information concerning a facility investigation of waste area group 6(WAG-6), of the solid waste management units (SWMU's) at Oak Ridge National Laboratory (ORNL). The WAG is a shallow ground disposal area for low-level radioactive wastes and chemical wastes. The report contains information on hydrogeological data, contaminant characterization, radionuclide concentrations, risk assessment and baseline human health evaluation including a toxicity assessment, and a baseline environmental evaluation.

  14. RCRA Facility Investigation report for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    This report presents compiled information concerning a facility investigation of waste area group 6(WAG-6), of the solid waste management units (SWMU'S) at Oak Ridge National Laboratory (ORNL). The WAG is a shallow ground disposal area for low-level radioactive wastes and chemical wastes. The report contains information on hydrogeological data, contaminant characterization, radionuclide concentrations, risk assessment from doses to humans and animals and associated cancer risks, exposure via food chains, and historical data. (CBS)

  15. Modeling and laboratory investigations of microbial oil recovery mechanisms in porous media

    SciTech Connect (OSTI)

    Chang, M.M.; Bryant, R.S.; Stepp, A.K.; Bertus, K.M.

    1992-12-01

    Simulation and experimental results on the transport of microbes and nutrients in one-dimensional cores are presented, and the development of a three-dimensional, three-phase, multiple-component numerical model to describe the microbial transport and oil recovery in porous media is described. The change of rock`s wettability and associated relative permeability values after microbial treatments were accounted for in the model for additional oil recovery. Porosity and permeability reductions due to cell clogging have been considered and the production of gas by microbial metabolism has been incorporated. Governing equations for microbial and nutrient transport are coupled with continuity and flow equations under conditions appropriate for a black oil reservoir. The computer simulator has been used to determine the effects of various transport parameters on microbial transport phenomena. The model can accurately describe the observed transport of microbes, nutrients, and metabolites in coreflooding experiments. Input parameters are determined by matching laboratory experimental results. The model can be used to predict the propagation of microbes and nutrients in a model reservoir and to optimize injection strategies. Optimization of injection strategy results in increased oil recovery due to improvements in sweep efficiency. Field-scale numerical simulation studies using data from relative permeability experiments indicated that microbial treatment could improve oil recovery over waterflooding alone. This report addresses the work conducted under project BE3 of the FY92 annual plan.

  16. Modeling and laboratory investigations of microbial oil recovery mechanisms in porous media

    SciTech Connect (OSTI)

    Chang, M.M.; Bryant, R.S.; Stepp, A.K.; Bertus, K.M.

    1992-12-01

    Simulation and experimental results on the transport of microbes and nutrients in one-dimensional cores are presented, and the development of a three-dimensional, three-phase, multiple-component numerical model to describe the microbial transport and oil recovery in porous media is described. The change of rock's wettability and associated relative permeability values after microbial treatments were accounted for in the model for additional oil recovery. Porosity and permeability reductions due to cell clogging have been considered and the production of gas by microbial metabolism has been incorporated. Governing equations for microbial and nutrient transport are coupled with continuity and flow equations under conditions appropriate for a black oil reservoir. The computer simulator has been used to determine the effects of various transport parameters on microbial transport phenomena. The model can accurately describe the observed transport of microbes, nutrients, and metabolites in coreflooding experiments. Input parameters are determined by matching laboratory experimental results. The model can be used to predict the propagation of microbes and nutrients in a model reservoir and to optimize injection strategies. Optimization of injection strategy results in increased oil recovery due to improvements in sweep efficiency. Field-scale numerical simulation studies using data from relative permeability experiments indicated that microbial treatment could improve oil recovery over waterflooding alone. This report addresses the work conducted under project BE3 of the FY92 annual plan.

  17. Los Alamos National Laboratory Accident Investigation Board Corrective Action Plan Update

    Broader source: Energy.gov [DOE]

    At the January 13, 2016 Combined Committee Meeting David Nickless, DOE Los Alamos Field Office, Provided the members with an update on the status of the Corrective Actions that were identified by the Accident Investigation Board. It was noted that there are 22 Judgments of Need that were assessed against the Los Alamos Site.

  18. Biological investigations of the Sandia National Laboratories Sol se Mete Aerial Cable Facility

    SciTech Connect (OSTI)

    Sullivan, R.M.

    1994-10-01

    This report provides results of a comprehensive biological field survey performed on the Sandia National Laboratories Aerial Cable Facility, at the east end of Kirtland Air Force Base (KAFB), Bernalillo County, New Mexico. This survey was conducted late September through October, 1991. ACF occupies a 440-acre tract of land withdrawn by the US Forest Service (USFS) for use by KAFB, and in turn placed under operational control of SNL by the Department of Energy (DOE). All land used by SNL for ACF is part of a 15,851-acre tract of land withdrawn by the US Forest Service. In addition, a number of different organizations use the 15,851-acre area. The project area used by SNL encompasses portions of approximately six sections (3,840 acres) of US Forest Service land located within the foothills of the west side of the Manzano Mountains (East Mesa). The biological study area is used by the KAFB, the US Department of Interior, and SNL. This area includes: (1) Sol se Mete Springs and Canyon, (2) East Anchor Access Road, (3) East Anchor Site, (4) Rocket Sled Track, (5) North Arena, (6) East Instrumentation Site and Access Road, (7) West Anchor Access Road, (8) West Anchor Site, (9) South Arena, (10) Winch Sites, (11) West Instrumentation Sites, (12) Explosive Assembly Building, (13) Control Building, (14) Lurance Canyon Road and vicinity. Although portions of approximately 960 acres of withdrawn US Forest Service land have been altered, only 700 acres have been disturbed by activities associated with ACF; approximately 2,880 acres consist of natural habitat. Absence of grazing by livestock and possibly native ungulates, and relative lack of human disturbance have allowed this area to remain in a more natural vegetative state relative to the condition of private range lands throughout New Mexico. This report evaluates threatened and endangered species found on ACF, as well as a comprehensive assessment of biological habitats.

  19. Investigation of ISIS and Brookhaven National Laboratory ion source electrodes after extended operation

    SciTech Connect (OSTI)

    Lettry J.; Alessi J.; Faircloth, D.; Gerardin, A.; Kalvas, T.; Pereira, H.; Sgobba, S.

    2012-02-23

    Linac4 accelerator of Centre Europeen de Recherches Nucleaires is under construction and a RF-driven H{sup -} ion source is being developed. The beam current requirement for Linac4 is very challenging: 80 mA must be provided. Cesiated plasma discharge ion sources such as Penning or magnetron sources are also potential candidates. Accelerator ion sources must achieve typical reliability figures of 95% and above. Investigating and understanding the underlying mechanisms involved with source failure or ageing is critical when selecting the ion source technology. Plasma discharge driven surface ion sources rely on molybdenum cathodes. Deformation of the cathode surfaces is visible after extended operation periods. A metallurgical investigation of an ISIS ion source is presented. The origin of the deformation is twofold: Molybdenum sputtering by cesium ions digs few tenths of mm cavities while a growth of molybdenum is observed in the immediate vicinity. The molybdenum growth under hydrogen atmosphere is hard and loosely bound to the bulk. It is, therefore, likely to peel off and be transported within the plasma volume. The observation of the cathode, anode, and extraction electrodes of the magnetron source operated at BNL for two years are presented. A beam simulation of H{sup -}, electrons, and Cs{sup -} ions was performed with the IBSimu code package to qualitatively explain the observations. This paper describes the operation conditions of the ion sources and discusses the metallurgical analysis and beam simulation results.

  20. Investigation of ISIS and Brookhaven National Laboratory ion source electrodes after extended operation

    SciTech Connect (OSTI)

    Lettry, J.; Gerardin, A.; Pereira, H.; Sgobba, S.; Alessi, J.; Faircloth, D.; Kalvas, T.

    2012-02-15

    Linac4 accelerator of Centre Europeen de Recherches Nucleaires is under construction and a RF-driven H{sup -} ion source is being developed. The beam current requirement for Linac4 is very challenging: 80 mA must be provided. Cesiated plasma discharge ion sources such as Penning or magnetron sources are also potential candidates. Accelerator ion sources must achieve typical reliability figures of 95% and above. Investigating and understanding the underlying mechanisms involved with source failure or ageing is critical when selecting the ion source technology. Plasma discharge driven surface ion sources rely on molybdenum cathodes. Deformation of the cathode surfaces is visible after extended operation periods. A metallurgical investigation of an ISIS ion source is presented. The origin of the deformation is twofold: Molybdenum sputtering by cesium ions digs few tenths of mm cavities while a growth of molybdenum is observed in the immediate vicinity. The molybdenum growth under hydrogen atmosphere is hard and loosely bound to the bulk. It is, therefore, likely to peel off and be transported within the plasma volume. The observation of the cathode, anode, and extraction electrodes of the magnetron source operated at BNL for two years are presented. A beam simulation of H{sup -}, electrons, and Cs{sup -} ions was performed with the IBSimu code package to qualitatively explain the observations. This paper describes the operation conditions of the ion sources and discusses the metallurgical analysis and beam simulation results.

  1. Geoscience Perspectives in Carbon Sequestration - Educational Training and Research Through Classroom, Field, and Laboratory Investigations

    SciTech Connect (OSTI)

    Wronkiewicz, David; Paul, Varum; Abousif, Alsedik; Ryback, Kyle

    2013-09-30

    The most effective mechanism to limit CO2 release from underground Geologic Carbon Sequestration (GCS) sites over multi-century time scales will be to convert the CO2 into solid carbonate minerals. This report describes the results from four independent research investigations on carbonate mineralization: 1) Colloidal calcite particles forming in Maramec Spring, Missouri, provide a natural analog to evaluate reactions that may occur in a leaking GCS site. The calcite crystals form as a result of physiochemical changes that occur as the spring water rises from a depth of more than 190'. The resultant pressure decrease induces a loss of CO2 from the water, rise in pH, lowering of the solubility of Ca2+ and CO32-, and calcite precipitation. Equilibrium modelling of the spring water resulted in a calculated undersaturated state with respect to calcite. The discontinuity between the observed occurrence of calcite and the model result predicting undersaturated conditions can be explained if bicarbonate ions (HCO3-) are directly involved in precipitation process rather than just carbonate ions (CO32-). 2) Sedimentary rocks in the Oronto Group of the Midcontinent Rift (MCR) system contain an abundance of labile Ca-, Mg-, and Fe-silicate minerals that will neutralize carbonic acid and provide alkaline earth ions for carbonate mineralization. One of the challenges in using MCR rocks for GCS results from their low porosity and permeability. Oronto Group samples were reacted with both CO2-saturated deionized water at 90°C, and a mildly acidic leachant solution in flow-through core-flooding reactor vessels at room temperature. Resulting leachate solutions often exceeded the saturation limit for calcite. Carbonate crystals were also detected in as little as six days of reaction with Oronto Group rocks at 90oC, as well as experiments with forsterite

  2. Remedial investigation work plan for the Groundwater Operable Unit at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    This Remedial Investigation (RI) Work Plan has been developed as part of the US Department of Energy`s (DOE`s) investigation of the Groundwater Operable Unit (GWOU) at Oak Ridge National Laboratory (ORNL) located near Oak Ridge, Tennessee. The first iteration of the GWOU RI Work Plan is intended to serve as a strategy document to guide the ORNL GWOU RI. The Work Plan provides a rationale and organization for groundwater data acquisition, monitoring, and remedial actions to be performed during implementation of environmental restoration activities associated with the ORNL GWOU. It Is important to note that the RI Work Plan for the ORNL GWOU is not a prototypical work plan. The RI will be conducted using annual work plans to manage the work activities, and task reports will be used to document the results of the investigations. Sampling and analysis results will be compiled and reported annually with a review of data relative to risk (screening level risk assessment review) for groundwater. This Work Plan outlines the overall strategy for the RI and defines tasks which are to be conducted during the initial phase of investigation. This plan is presented with the understanding that more specific addenda to the plan will follow.

  3. Cultural Resource Investigation for the Materials and Fuels Complex Wastewater System Upgrade at the Idaho National Laboratory

    SciTech Connect (OSTI)

    Brenda R. Pace; Julie B raun Williams; Hollie Gilbert; Dino Lowrey; Julie Brizzee

    2010-05-01

    The Materials and Fuels Complex (MFC) located in Bingham County at the Idaho National Laboratory (INL) in southeastern Idaho is considering several alternatives to upgrade wastewater systems to meet future needs at the facility. In April and May of 2010, the INL Cultural Resource Management Office conducted archival searches, archaeological field surveys, and coordination with the Shoshone-Bannock Tribes to identify cultural resources that may be adversely affected by the proposed construction and to provide recommendations to protect any resources listed or eligible for listing on the National Register of Historic Places. These investigations showed that one National Register-eligible archaeological site is located on the boundary of the area of potential effects for the wastewater upgrade. This report outlines protective measures to help ensure that this resource is not adversely affected by construction.

  4. Investigating Sources of Toxicity in Stormwater: Algae Mortality in Runoff Upstream of the Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Campbell, C G; Folks, K; Mathews, S; Martinelli, R

    2003-10-06

    A source evaluation case study is presented for observations of algae toxicity in an intermittent stream passing through the Lawrence Livermore National Laboratory near Livermore, California. A five-step procedure is discussed to determine the cause of water toxicity problems and to determine appropriate environmental management practices. Using this approach, an upstream electrical transfer station was identified as the probable source of herbicides causing the toxicity. In addition, an analytical solution for solute transport in overland flow was used to estimate the application level of 40 Kg/ha. Finally, this source investigation demonstrates that pesticides can impact stream water quality regardless of application within levels suggested on manufacturer labels. Environmental managers need to ensure that pesticides that could harm aquatic organisms (including algae) not be used within close proximity to streams or storm drainages and that application timing should be considered for environmental protection.

  5. Remedial investigation report on Waste Area Group 5 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 1: Technical summary

    SciTech Connect (OSTI)

    1995-03-01

    A remedial investigation (RI) was performed to support environmental restoration activities for Waste Area Grouping (WAG) 5 at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. The WAG 5 RI made use of the observational approach, which concentrates on collecting only information needed to assess site risks and support future cleanup work. This information was interpreted and is presented using the framework of the site conceptual model, which relates contaminant sources and release mechanisms to migration pathways and exposure points that are keyed to current and future environmental risks for both human and ecological receptors. The site conceptual model forms the basis of the WAG 5 remedial action strategy and remedial action objectives. The RI provided the data necessary to verify this model and allows recommendations to be made to accomplish those objectives.

  6. Waste Area Grouping 4 Site Investigation Sampling and Analysis Plan, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1994-12-01

    Waste Area Grouping (WAG) 4 is one of 17 WAGs within and associated with Oak Ridge National Laboratory (ORNL), on the Oak Ridge Reservation in Oak Ridge, Tennessee. WAG 4 is located along Lagoon Road south of the main facility at ORNL. WAG 4 is a shallow-waste burial site consisting of three separate areas: (1) Solid Waste Storage Area (SWSA) 4, a shallow-land burial ground containing radioactive and potentially hazardous wastes; (2) an experimental Pilot Pit Area, including a pilot-scale testing pit; and (3) sections of two abandoned underground pipelines formerly used for transporting liquid, low-level radioactive waste. In the 1950s, SWSA 4 received a variety of low-and high-activity wastes, including transuranic wastes, all buried in trenches and auger holes. Recent surface water data indicate that a significant amount of {sup 90}Sr is being released from the old burial trenches in SWSA 4. This release represents a significant portion of the ORNL off-site risk. In an effort to control the sources of the {sup 90}Sr release and to reduce the off-site risk, a site investigation is being implemented to locate the trenches containing the most prominent {sup 90}Sr sources. This investigation has been designed to gather site-specific data to confirm the locations of {sup 90}Sr sources responsible for most off-site releases, and to provide data to be used in evaluating potential interim remedial alternatives prepared to direct the site investigation of the SWSA 4 area at WAG 4.

  7. Accident Investigation of the December 11, 2013, Integrated Device Fireset and Detonator Accidental Discharge at the Sandia National Laboratory Site 9920, Albuquerque, NM

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) Accident Investigation Board investigated an accident at Sandia National Laboratories, Site 9920 on December 11, 2013. Site 9920 personnel were testing an integrated explosive device, containing a fireset and detonator when the IED unexpectedly went off during handling, causing injury to the firing officer’s left hand.

  8. Cultural Resource Investigations for the Resumption of Transient Testing of Nuclear Fuels and Material at the Idaho National Laboratory

    SciTech Connect (OSTI)

    Brenda R. Pace; Julie B. Williams

    2013-11-01

    The U. S. Department of Energy (DOE) has a need to test nuclear fuels under conditions that subject them to short bursts of intense, high-power radiation called ‘transient testing’ in order to gain important information necessary for licensing new nuclear fuels for use in U.S. nuclear power plants, for developing information to help improve current nuclear power plant performance and sustainability, for improving the affordability of new generation reactors, for developing recyclable nuclear fuels, and for developing fuels that inhibit any repurposing into nuclear weapons. To meet this mission need, DOE is considering alternatives for re-use and modification of existing nuclear reactor facilities to support a renewed transient testing program. One alternative under consideration involves restarting the Transient Reactor Test (TREAT) reactor located at the Materials and Fuels Complex (MFC) on the Idaho National Laboratory (INL) site in southeastern Idaho. This report summarizes cultural resource investigations conducted by the INL Cultural Resource Management Office in 2013 to support environmental review of activities associated with restarting the TREAT reactor at the INL. These investigations were completed in order to identify and assess the significance of cultural resources within areas of potential effect associated with the proposed action and determine if the TREAT alternative would affect significant cultural resources or historic properties that are eligible for nomination to the National Register of Historic Places. No archaeological resources were identified in the direct area of potential effects for the project, but four of the buildings proposed for modifications are evaluated as historic properties, potentially eligible for nomination to the National Register of Historic Places. This includes the TREAT reactor (building #), control building (building #), guardhouse (building #), and warehouse (building #). The proposed re-use of these historic

  9. Fundamental Research on Percussion Drilling: Improved rock mechanics analysis, advanced simulation technology, and full-scale laboratory investigations

    SciTech Connect (OSTI)

    Michael S. Bruno

    2005-12-31

    This report summarizes the research efforts on the DOE supported research project Percussion Drilling (DE-FC26-03NT41999), which is to significantly advance the fundamental understandings of the physical mechanisms involved in combined percussion and rotary drilling, and thereby facilitate more efficient and lower cost drilling and exploration of hard-rock reservoirs. The project has been divided into multiple tasks: literature reviews, analytical and numerical modeling, full scale laboratory testing and model validation, and final report delivery. Literature reviews document the history, pros and cons, and rock failure physics of percussion drilling in oil and gas industries. Based on the current understandings, a conceptual drilling model is proposed for modeling efforts. Both analytical and numerical approaches are deployed to investigate drilling processes such as drillbit penetration with compression, rotation and percussion, rock response with stress propagation, damage accumulation and failure, and debris transportation inside the annulus after disintegrated from rock. For rock mechanics modeling, a dynamic numerical tool has been developed to describe rock damage and failure, including rock crushing by compressive bit load, rock fracturing by both shearing and tensile forces, and rock weakening by repetitive compression-tension loading. Besides multiple failure criteria, the tool also includes a damping algorithm to dissipate oscillation energy and a fatigue/damage algorithm to update rock properties during each impact. From the model, Rate of Penetration (ROP) and rock failure history can be estimated. For cuttings transport in annulus, a 3D numerical particle flowing model has been developed with aid of analytical approaches. The tool can simulate cuttings movement at particle scale under laminar or turbulent fluid flow conditions and evaluate the efficiency of cutting removal. To calibrate the modeling efforts, a series of full-scale fluid hammer

  10. Type B Accident Investigation on the August 5, 2003, Pu-238 Multiple Uptake Event at the Pu Facility, Los Alamos National Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE)

    On August 5, 2003, a release of plutonium-238 occurred in a storage room at the Plutonium Facility, Los Alamos National Laboratory, resulting in radiation doses to two workers in the room. The Accident Investigation Board concluded that the direct cause of the accident was the release of airborne contamination from a degraded package that contained cellulose material and plutonium-238 residues.

  11. AN INVESTIGATION INTO THE MECHANICS OF SINGLE CRYSTAL TURBINE BLADES WITH A VIEW TOWARDS ENHANCING GAS TURBINE EFFICIENCY

    SciTech Connect (OSTI)

    K.R. Rajagopal; I.J. Rao

    2006-05-05

    The demand for increased efficiency of gas turbines used in power generation and aircraft applications has fueled research into advanced materials for gas turbine blades that can withstand higher temperatures in that they have excellent resistance to creep. The term ''Superalloys'' describes a group of alloys developed for applications that require high performance at elevated temperatures. Superalloys have a load bearing capacity up to 0.9 times their melting temperature. The objective of the investigation was to develop a thermodynamic model that can be used to describe the response of single crystal superalloys that takes into account the microstructure of the alloy within the context of a continuum model. Having developed the model, its efficacy was to be tested by corroborating the predictions of the model with available experimental data. Such a model was developed and it is implemented in the finite element software ABAQUS/STANDARD through a user subroutine (UMAT) so that the model can be used in realistic geometries that correspond to turbine blades.

  12. Pacific Northwest National Laboratory | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pacific Northwest National Laboratory Pacific Northwest National Laboratory Pacific Northwest National Laboratory | June 2010 Aerial View Pacific Northwest National Laboratory | June 2010 Aerial View Pacific Northwest National Laboratory (PNNL) conducts research for national security missions, nuclear materials stewardship, non-proliferation missions, the nuclear fuel life cycle, energy production. PNNL is engaged in expanding the beneficial use of nuclear materials such as nuclear process

  13. Investigation of Yersinia pestis laboratory adaptation through a combined genomics and proteomics approach

    SciTech Connect (OSTI)

    Leiser, Owen P.; Merkley, Eric D.; Clowers, Brian H.; Kaiser, Brooke L. Deatherage; Lin, Andy; Hutchison, Janine R.; Melville, Angela M.; Wagner, David M.; Keim, Paul S.; Foster, Jeff; Kreuzer, Helen W.

    2015-11-24

    Here, the bacterial pathogen Yersinia pestis, the cause of plague in humans and animals, normally has a sylvatic lifestyle, cycling between fleas and mammals. In contrast, laboratory-grown Y. pestis experiences a more constant environment and conditions that it would not normally encounter. The transition from the natural environment to the laboratory results in a vastly different set of selective pressures, and represents what could be considered domestication. Understanding the kinds of adaptations Y. pestis undergoes as it becomes domesticated will contribute to understanding the basic biology of this important pathogen. In this study, we performed a Parallel Serial Passage Experiment (PSPE) to explore the mechanisms by which Y. pestis adapts to laboratory conditions, hypothesizing that cells would undergo significant changes in virulence and nutrient acquisition systems. Two wild strains were serially passaged in 12 independent populations each for ~750 generations, after which each population was analyzed using whole-genome sequencing. We observed considerable parallel evolution in the endpoint populations, detecting multiple independent mutations in ail, pepA, and zwf, suggesting that specific selective pressures are shaping evolutionary responses. Complementary LC-MS-based proteomic data provide physiological context to the observed mutations, and reveal regulatory changes not necessarily associated with specific mutations, including changes in amino acid metabolism, envelope biogenesis, iron storage and acquisition, and a type VI secretion system. Proteomic data support hypotheses generated by genomic data in addition to suggesting future mechanistic studies, indicating that future whole-genome sequencing studies be designed to leverage proteomics as a critical complement.

  14. Type B Accident Investigation of the March 20, 2003, Stair Installation Accident at Building 752, Sandia National Laboratories

    Broader source: Energy.gov [DOE]

    This report is an independent product of the Type B Accident Investigation Board appointed by Karen L. Boardman, Manager, Sandia Site Office (SSO), National Nuclear Security Administration (NNSA).

  15. Type B Accident Investigation Board Report on the September 7, 2001, Burn Accident at Oak Ridge National Laboratory, Building 9210

    Broader source: Energy.gov [DOE]

    This report is an independent product of the Type B Investigation Board appointed by G. Leah Dever, Manager, Oak Ridge Operations Office, U.S. Department of Energy.

  16. RCRA Facility Investigation report for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 3, Appendixes 1 through 8: Environmental Restoration Program

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    This report presents compiled information concerning a facility investigation of waste area group 6(WAG-6), of the solid waste management units (SWMU`S) at Oak Ridge National Laboratory (ORNL). The WAG is a shallow ground disposal area for low-level radioactive wastes and chemical wastes. The report contains information on hydrogeological data, contaminant characterization, radionuclide concentrations, risk assessment from doses to humans and animals and associated cancer risks, exposure via food chains, and historical data. (CBS)

  17. RCRA Facility Investigation report for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 2, Sections 4 through 9: Environmental Restoration Program

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    This report presents compiled information concerning a facility investigation of waste area group 6(WAG-6), of the solid waste management units (SWMU`s) at Oak Ridge National Laboratory (ORNL). The WAG is a shallow ground disposal area for low-level radioactive wastes and chemical wastes. The report contains information on hydrogeological data, contaminant characterization, radionuclide concentrations, risk assessment and baseline human health evaluation including a toxicity assessment, and a baseline environmental evaluation.

  18. Type B Accident Investigation Board Report on the March 27, 1998, Rotating Shaft Accident at the Ames Laboratory, Ames, Iowa

    Broader source: Energy.gov [DOE]

    This report is an independent product of the Type B Accident Investigation Board appointed by John Kennedy, Acting Manager, Chicago Operations Office, U.S. Department of Energy (DOE).

  19. Type B Accident Investigation of the July 14, 2005, Americium Contamination Accident at the Sigma Facility, Los Alamos National Laboratory

    Broader source: Energy.gov [DOE]

    This report is an independent product of the Type B Accident Investigation Board appointed by Edwin L. Wilmot, Manager of the Los Alamos Site Office of the National Nuclear Security Administration, U.S. Department of Energy.

  20. Field and laboratory investigations of coring-induced damage in core recovered from Marker Bed 139 at the waste isolation pilot plant underground facility

    SciTech Connect (OSTI)

    Holcomb, D.J.; Zeuch, D.H.; Morin, K.; Hardy, R.; Tormey, T.V.

    1995-09-01

    A combined laboratory and field investigation was carried out to determine the extent of coring-induced damage done to samples cored from Marker Bed 139 at the WIPP site. Coring-induced damage, if present, has the potential to significantly change the properties of the material used for laboratory testing relative to the in situ material properties, resulting in misleading conclusions. In particular, connected, crack-like damage could make the permeability of cored samples orders of magnitude greater than the in situ permeabilities. Our approach compared in situ velocity and resistivity measurements with laboratory measurements of the same properties. Differences between in situ and laboratory results could be attributed to differences in the porosity due to cracks. The question of the origin of the changes could not be answered directly from the results of the measurements. Pre-existing cracks, held closed by the in situ stress, could open when the core was cut free, or new cracks could be generated by coring-induced damage. We used core from closely spaced boreholes at three orientations (0{degree}, {plus_minus}45{degrees} relative to vertical) to address the origin of cracks. The absolute orientation of pre-existing cracks would be constant, independent of the borehole orientation. In contrast, cracks induced by coring were expected to show an orientation dependent on that of the source borehole.

  1. Golden Laboratories and Offices | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL's administrative offices and most research laboratories are located at our campus in Golden, Colorado, north of highway I-70 and west of Denver West Boulevard. View...

  2. Taking the long view

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Taking the long view Taking the long view on environmental stewardship A newly articulated mission for environmental stewardship at the Laboratory can be summed up in a simple phrase: clean up the past, control current operations, and create a sustainable future. March 20, 2012 Los Alamos Aerial Aerial view of a canyon in Los Alamos, New Mexico. Contact Environmental Communication & Public Outreach P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email "The future viability of

  3. Forensic Sites | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Administration (DEA) US Federal Bureau of Investigation (FBI) US Federal Bureau of Investigation (FBI) Laboratory US Fish and Wildlife Service Forensics Laboratory (FWS) ...

  4. White Oak Creek watershed: Melton Valley area Remedial Investigation report, at the Oak Ridge National Laboratory, Oak Ridge, Tennessee: Volume 2, Appendixes A and B

    SciTech Connect (OSTI)

    1996-11-01

    This document contains Appendixes A ``Source Inventory Information for the Subbasins Evaluated for the White Oak Creek Watershed`` and B ``Human Health Risk Assessment for White Oak Creek / Melton Valley Area`` for the remedial investigation report for the White Oak Creek Watershed and Melton Valley Area. Appendix A identifies the waste types and contaminants for each subbasin in addition to the disposal methods. Appendix B identifies potential human health risks and hazards that may result from contaminants present in the different media within Oak Ridge National Laboratory sites.

  5. Remedial investigation plan for Waste Area Grouping 1 at Oak Ridge National Laboratory, Oak Ridge, Tennessee: Responses to regulator comments

    SciTech Connect (OSTI)

    Not Available

    1991-05-01

    This document, ES/ER-6 D2, is a companion document to ORNL/RAP/Sub-87/99053/4 R1, Remedial Investigation Plan for ORNL Waste Area Grouping 1, dated August 1989. This document lists comments received from the Environmental Protection Agency, Region 4 (EPA) and the Tennessee Department of Health and Environment (TDHE) and responses to each of these comments. As requested by EPA, a revised Remedial Investigation (RI) Plan for Waste Area Grouping (WAG) 1 will not be submitted. The document is divided into two Sections and Appendix. Section I contains responses to comments issued on May 22, 1990, by EPA's Region 4 program office responsible for implementing the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). Section 2 contains responses to comments issued on April 7, 1989, by EPA's program office responsible for implementing the Resource Conservation and Recovery Act (RCRA); these comments include issues raised by the TDHE. The Appendix contains the attachments referenced in a number of the responses. 35 refs.

  6. Remedial investigation report on the Melton Valley watershed at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 3: Appendix C

    SciTech Connect (OSTI)

    1997-05-01

    The Melton Valley watershed presents a multifaceted management and decision-making challenge because of the very heterogeneous conditions that exist with respect to contaminant type, disposal unit age, mode of disposal, release mechanism, and potential risk-producing pathways. The investigation presented here has assembled relevant site data in the geographic context with the intent of enabling program managers and decision-makers to understand site conditions and evaluate the necessity, relative priority, and scope of potential remedial actions. The industrial and recreational exposure scenarios are used to provide a risk assessment reference context to evaluate levels of contamination in surface water, groundwater, soil, and sediment within each subbasin of the Melton Valley watershed. All available analytical results for the media of interest that could be qualified for use in the risk assessment were screened to determine carcinogenic risk values and noncarcinogenic hazard indexes and to identify the chemicals of concern (COCs) for each evaluated media in each subbasin.

  7. Lawrence Livermore National Laboratory | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory | July 2011 Aerial View Lawrence Livermore National Laboratory | July 2011 Aerial View Lawrence Livermore National Laboratory's (LLNL) primary mission is research and development in support of national security. As a nuclear weapons design laboratory, LLNL has responsibilities in nuclear stockpile stewardship. LLNL also applies its expertise to prevent the spread and use of

  8. Oak Ridge National Laboratory | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oak Ridge National Laboratory Oak Ridge National Laboratory An aerial view of the Oak Ridge National Laboratory campus. An aerial view of the Oak Ridge National Laboratory campus. The U.S. Department of Energy's (DOE) Oak Ridge National Laboratory (ORNL) is the nation's largest multi-program science and technology laboratory. ORNL's mission is to deliver scientific discoveries and technical breakthroughs that will accelerate the development and deployment of solutions in clean energy and global

  9. Experimental investigation of supercritical CO2 trapping mechanisms at the Intermediate Laboratory Scale in well-defined heterogeneous porous media

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Trevisan, Luca; Pini, Ronny; Cihan, Abdullah; Birkholzer, Jens T.; Zhou, Quanlin; Illangasekare, Tissa H.

    2014-12-31

    The heterogeneous nature of typical sedimentary formations can play a major role in the propagation of the CO2 plume, eventually dampening the accumulation of mobile phase underneath the caprock. From core flooding experiments, it is also known that contrasts in capillary threshold pressure due to different pore size can affect the flow paths of the invading and displaced fluids and consequently influence the build- up of non-wetting phase (NWP) at interfaces between geological facies. The full characterization of the geologic variability at all relevant scales and the ability to make observations on the spatial and temporal distribution of the migrationmore » and trapping of supercritical CO2 is not feasible from a practical perspective. To provide insight into the impact of well-defined heterogeneous systems on the flow dynamics and trapping efficiency of supercritical CO2 under drainage and imbibition conditions, we present an experimental investigation at the meter scale conducted in synthetic sand reservoirs packed in a quasi-two-dimensional flow-cell. Two immiscible displacement experiments have been performed to observe the preferential entrapment of NWP in simple heterogeneous porous media. The experiments consisted of an injection, a fluid redistribution, and a forced imbibition stages conducted in an uncorrelated permeability field and a homogeneous base case scenario. We adopted x-ray attenuation analysis as a non-destructive technique that allows a precise measurement of phase saturations throughout the entire flow domain. By comparing a homogeneous and a heterogeneous scenario we have identified some important effects that can be attributed to capillary barriers, such as dampened plume advancement, higher non-wetting phase saturations, larger contact area between the injected and displaced phases, and a larger range of non-wetting phase saturations.« less

  10. Oak Ridge National Laboratory | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oak Ridge National Laboratory Oak Ridge National Laboratory Oak Ridge National Laboratory | April 2013 Aerial View Oak Ridge National Laboratory | April 2013 Aerial View Oak Ridge National Laboratory (ORNL) conducts research and development to create scientific knowledge and solutions that strengthen the nation's leadership in key areas of science; increase the availability of clean, abundant energy; restore and protect the environment; and contribute to national security. ORNL also performs

  11. Argonne National Laboratory | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Argonne National Laboratory Argonne National Laboratory Argonne National Laboratory | October 21, 2008 Aerial View Argonne National Laboratory | October 21, 2008 Aerial View Argonne is a multidisciplinary science and engineering research center, where "dream teams" of world-class researchers work alongside experts from industry, academia and other government laboratories to address vital national challenges in clean energy, environment, technology and national security. Enforcement

  12. Remedial investigation report on Waste Area Grouping 5 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 2 -- Appendix A: Characterization methods and data summary

    SciTech Connect (OSTI)

    1995-09-01

    This document provides the Environmental Restoration Program with information about the results of investigations performed at Waste Area Grouping (WAG) 5. It includes information on risk assessments that have evaluated long-term impacts to human health and the environment. Information provided in this document forms the basis for decisions regarding the need for subsequent remediation work at WAG 5. This appendix presents background regulatory and technical information regarding the solid waste management units (SWMUs) at WAG 5 to address requirements established by the Federal Facility Agreement (FFA) for the Oak Ridge Reservation (ORR). The US Department of Energy (DOE) agreed to conduct remedial investigations (RIs) under the FFA at various sites at Oak Ridge National Laboratory (ORNL), including SWMUs and other areas of concern on WAG 5. The appendix gives an overview of the regulatory background to provide the context in which the WAG 5 RI was planned and implemented and documents how historical sources of data, many of which are SWMU-specific, were evaluated and used.

  13. Environmental | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environmental The Environmental Management Program at the Ames Laboratory includes Waste Management, Pollution Prevention, Recycling, Cultural Resources, and the Laboratory's Environmental Management System. Click on a subject to view applicable documents about each category. For more information you can also contact Sarah Morris-Benavides, Environmental Specialist at (515) 294-7923 or at sarahmb@ameslab.gov. Waste Management Pollution Prevention Recycling Cultural Resources Environmental

  14. White Oak Creek Watershed: Melton Valley Area Remedial Investigation Report, Oak Ridge National Laboratory, Oak Ridge, Tennessee: Volume 3 Appendix C

    SciTech Connect (OSTI)

    1996-11-01

    This report provides details on the baseline ecological risk assessment conducted in support of the Remedial Investigation (RI) Report for the Melton Valley areas of the White Oak Creek watershed (WOCW). The RI presents an analysis meant to enable the US Department of Energy (DOE) to pursue a series of remedial actions resulting in site cleanup and stabilization. The ecological risk assessment builds off of the WOCW screening ecological risk assessment. All information available for contaminated sites under the jurisdiction of the US Department of Energy`s Comprehensive Environmental Response, Compensation, and Liability Act Federal Facilities Agreement within the White Oak Creek (WOC) RI area has been used to identify areas of potential concern with respect to the presence of contamination posing a potential risk to ecological receptors within the Melton Valley area of the White Oak Creek watershed. The risk assessment report evaluates the potential risks to receptors within each subbasin of the watershed as well as at a watershed-wide scale. The WOC system has been exposed to contaminant releases from Oak Ridge National Laboratory and associated operations since 1943 and continues to receive contaminants from adjacent waste area groupings.

  15. Investigation of the Degradation Mechanisms of a Variety of Organic Photovoltaic Devices by Combination of Imaging Techniques—the ISOS-3Inter-laboratory Collaboration

    SciTech Connect (OSTI)

    Germack D.; Rosch, R.; Tanenbaum, D.M.; Jorgensen, M.; Seeland, M.; Barenklau, M.; Hermenau, M.; Voroshazi, E.; Lloyd, M.T.; Galagan, Y.; Zimmermann, B.; Wurfel, U.; Hosel, M.; Dam, H.F.; Gevorgyan, S.A.; Kudret, S.; Maes, W.; Lutsen, L.; Vanderzande, D.; Andriessen, R.; Teran-Escobar, G.; Lira-Cantu, M.; Rivaton, A.; Uzunoglu, G.Y.; Andreasen, B.; Madsen, M.V.; Norrman, K.; Hoppe, H.; Krebs, F.C.

    2012-04-01

    The investigation of degradation of seven distinct sets (with a number of individual cells of n {ge} 12) of state of the art organic photovoltaic devices prepared by leading research laboratories with a combination of imaging methods is reported. All devices have been shipped to and degraded at Risoe DTU up to 1830 hours in accordance with established ISOS-3 protocols under defined illumination conditions. Imaging of device function at different stages of degradation was performed by laser-beam induced current (LBIC) scanning; luminescence imaging, specifically photoluminescence (PLI) and electroluminescence (ELI); as well as by lock-in thermography (LIT). Each of the imaging techniques exhibits its specific advantages with respect to sensing certain degradation features, which will be compared and discussed here in detail. As a consequence, a combination of several imaging techniques yields very conclusive information about the degradation processes controlling device function. The large variety of device architectures in turn enables valuable progress in the proper interpretation of imaging results - hence revealing the benefits of this large scale cooperation in making a step forward in the understanding of organic solar cell aging and its interpretation by state-of-the-art imaging methods.

  16. Laboratory Equipment Donation Program - LEDP Widget

    Office of Scientific and Technical Information (OSTI)

    LEDP Widget You can access key features of the Laboratory Equipment Donation Program (LEDP) website by downloading the LEDP widget. Use the widget to search, view the equipment ...

  17. Accident Investigation of the August 21, 2012, Contamination Incident at the Los Alamos Neutron Science Center at the Los Alamos National Laboratory

    Broader source: Energy.gov [DOE]

    On August 25, 2012, radioactive contamination was identified on Flight Path 04 of the Lujan Center, an experimental area that is part of the Los Alamos Neutron Science Center at the Los Alamos National Laboratory in New Mexico. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC. The Operating Contractor quickly determined that the contamination had spread offsite, and response teams were immediately brought in.

  18. The View from HQ

    National Nuclear Security Administration (NNSA)

    A publication of the Office of Advanced Simulation & Computing, NNSA Defense Programs NA-ASC-500-07-Issue 3 May 2007 The View from HQ by Dimitri Kusnezov I have been spending much of my time these days thinking about science, technology and engineering and the role of the laboratories and how that will be reflected in the Complex of the future. This is on my mind for two reasons: one is my responsibility to produce a science and technology roadmap for Complex 2030-Defense Program's vision

  19. Laboratory Directors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Directors Laboratory Directors A gallery of Laboratory leadership, 1943 to the present. Laboratory historian Alan B. Carr Email Laboratory directors Charles McMillan (2011-present) Michael R. Anastasio (2006-2011) Robert Kuckuck (2005-2006) G. Peter Nanos (2003-2005) John C. Browne (1997-2003) Siegfried S. Hecker (1985-1997) Donald M. Kerr (1979-1985) Harold M. Agnew (1970-1979) Norris Bradbury (1945-1970) J. Robert Oppenheimer (1943-1945) Laboratory Directors Harold M. Agnew

  20. Type A Accident Investigation of the March 16, 2000, Plutonium-238 Multiple Intake Event at the Plutonium Facility, Los Alamos National Laboratory, New Mexico

    Broader source: Energy.gov [DOE]

    On March 16, 2000, at approximately 2 p.m., a radiological release of plutonium-238 occurred near a glovebox in the Plutonium Processing and Handling Facility (TA-55) of the Los Alamos National Laboratory. At least seven of the eight workers who were in the room at the time received confirmed intakes of plutonium-238.

  1. Type B Accident Investigation of the Subcontractor Employee Injuries from a November 15, 2000, Fall Accident at the Oak Ridge National Laboratory

    Broader source: Energy.gov [DOE]

    On November 15, 2000, an accident occurred at the U. S. Department of Energy (DOE) Oak Ridge National Laboratory located in Oak Ridge, Tennessee. An employee of Decon and Recovery Services of Oak Ridge, LLC (DRS), working on an Oak Ridge Operations Office (ORO) Environmental Management decommissioning and demolition project received serious injuries from a fall (approximately 13 feet) from a fixed ladder.

  2. Type A Accident Investigation of the June 21, 2001, Drilling Rig Operator Injury at the Fermi National Accelerator Laboratory, August 2001

    Broader source: Energy.gov [DOE]

    On June 21, 2001, at approximately 9:40 A.M., a construction sub-tier contractor employee (the “Operator”) at the Fermi National Accelerator Laboratory (Fermilab) received serious head injuries requiring hospitalization when he was struck by part of the drilling rig (a “tong”) that he was operating.

  3. Type B Accident Investigation Board Report of the July 7, 1997, Industrial Accident at the Knolls Atomic Power Laboratory Windsor Site, Windsor, Connecticut

    Broader source: Energy.gov [DOE]

    On Monday, July 7, 1997, at approximately 10:47 a. m., an asbestos abatement subcontractor laborer working at the Knolls Atomic Power Laboratory-Windsor Site stepped on and fell backward through an unprotected rooftop skylight in the northwest quadrant of Building 5 (see Figure #1).

  4. Type B Accident Investigation Board Report on the February 27, 1998, Shipping Violations Involving the Corehole 8 Project at the Oak Ridge National Laboratory, Oak Ridge, Tennesee

    Broader source: Energy.gov [DOE]

    This report is an independent product of the Type B Investigation Board appointed by James C. Hall, Manager, Oak Ridge Operations Office, U.S. Department of Energy. The Board was appointed to perform a Type B investigation of these incidents and to prepare an investigation report in accordance with DOE Order 225.1A, Accident Investigations.

  5. Laboratories | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories Our laboratories are available to industry and other organizations for researching, developing, and evaluating energy technologies. We have experienced lab technicians, scientists and engineers ready to design and run tests for you. Some labs are available for conducting your own research. A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z A Accelerated Exposure Testing Laboratory Advanced Optical Materials Laboratory Advanced

  6. An Investigation into the Transportation of Irradiated Uranium/Aluminum Targets from a Foreign Nuclear Reactor to the Chalk River Laboratories Site in Ontario, Canada - 12249

    SciTech Connect (OSTI)

    Clough, Malcolm; Jackson, Austin

    2012-07-01

    This investigation required the selection of a suitable cask and development of a device to hold and transport irradiated targets from a foreign nuclear reactor to the Chalk River Laboratories in Ontario, Canada. The main challenge was to design and validate a target holder to protect the irradiated HEU-Al target pencils during transit. Each of the targets was estimated to have an initial decay heat of 118 W prior to transit. As the targets have little thermal mass the potential for high temperature damage and possibly melting was high. Thus, the primary design objective was to conceive a target holder to dissipate heat from the targets. Other design requirements included securing the targets during transportation and providing a simple means to load and unload the targets while submerged five metres under water. A unique target holder (patent pending) was designed and manufactured together with special purpose experimental apparatus including a representative cask. Aluminum dummy targets were fabricated to accept cartridge heaters, to simulate decay heat. Thermocouples were used to measure the temperature of the test targets and selected areas within the target holder and test cask. After obtaining test results, calculations were performed to compensate for differences between experimental and real life conditions. Taking compensation into consideration the maximum target temperature reached was 231 deg. C which was below the designated maximum of 250 deg. C. The design of the aluminum target holder also allowed generous clearance to insert and unload the targets. This clearance was designed to close up as the target holder is placed into the cavity of the transport cask. Springs served to retain and restrain the targets from movement during transportation as well as to facilitate conductive heat transfer. The target holder met the design requirements and as such provided data supporting the feasibility of transporting targets over a relatively long period of time

  7. January 2013 Most Viewed Documents for Fission And Nuclear Technologie...

    Office of Scientific and Technical Information (OSTI)

    January 2013 Most Viewed Documents for Fission And Nuclear Technologies Laboratory studies of shearleach processing of zircaloy clad metallic uranium reactor fuel Swanson, J.L.; ...

  8. New Window Technology Saves Energy and the View | Department...

    Energy Savers [EERE]

    Window Technology Saves Energy and the View New Window Technology Saves Energy and the ... Laboratory are developing innovative new window technology that helps improve ...

  9. National Energy Technology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Laboratory the ENERGY lab Wellbore Integrity Assurance with NETL's Safe-Cementing Research CONTENTS 04 06 08 10 12 14 A View from the Top Federal Research Capabilities Researchers Projects Contact Us Wellbore cement integrity is paramount to safe, successful oil and natural gas drilling. Cement acts as the primary barrier between the wellbore and the environment. An unstable cement can compromise wellbore control, and research indicates that poor cement integrity is a primary factor

  10. Geoscience Laboratory | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    preparation and other relatively straight-forward laboratory manipulations. These include buffer preparations, solid sample grinding, solution concentration, filtration, and...

  11. Type A Accident Investigation Board Report on the July 11, 1996, Electrical Shock at Technical Area 53, Building MPF-14, Los Alamos National Laboratory

    Broader source: Energy.gov [DOE]

    This report is an independent product of an electrical shock accident investigation board appointed by Bruce G. Twining, Manager, Albuquerque Operations Office, Department of Energy.

  12. Type B Accident Investigation of the Mineral Oil Leak Discovered on January 8, 2001, Resulting in Property Damage at the Atlas Facility, Los Alamos National Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report is an independent product of the Type B Accident Investigation Board appointed by Acting Chief Operating Officer for Defense Programs, Ralph E. Erickson.

  13. Type B Accident Investigation Board Report on the November 17, 1997, Chiller Line Rupture at Technical Area 35, Building 27, Los Alamos National Laboratory

    Broader source: Energy.gov [DOE]

    This report is a product of an accident investigation board appointed by Bruce G. Twining, Manager, Albuquerque Operations Office, Department of Energy.

  14. Type B Accident Investigation Board Report on the October 22, 1997, Electrical Arc Blast at Building F-Zero Fermi National Accelerator Laboratory, Batavia, Illinois

    Broader source: Energy.gov [DOE]

    This report is an independent product of the Type B Accident Investigation Board appointed by Cherri J. Langenfeld, Manager, Chicago Operations Office, U.S. Department of Energy.

  15. Laboratory Fellows

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    selected as Los Alamos National Laboratory Fellows November 16, 2010 Scientific disciplines range from fundamental and applied physics to geology LOS ALAMOS, New Mexico, NOVEMBER 16, 2010-Five Los Alamos National Laboratory scientists from diverse fields of research have been named Laboratory Fellows. The five researchers are Brenda Dingus of the Neutron Science and Technology group; William (Bill) Louis of the Subatomic Physics group; John Sarrao, director of Los Alamos's Office of Science

  16. Laboratory Director

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Director Laboratory Director Charles F. McMillan has demonstrated success at balancing mission performance with security and safety. Contact Operator Los Alamos National Laboratory (505) 667-5061 McMillan has nearly 30 years of scientific and management experience in weapons science and stockpile certification, hands-on experience in both experimental physics and computational science, and demonstrated success at balancing mission performance with security and safety. Charles F.

  17. Laboratory Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Operations Laboratory Operations Latest announcements from the Lab on its operations. News Releases Science Briefs Photos Picture of the Week Publications Social Media Videos Fact Sheets The Laboratory began the Hazmat Challenge in 1996 to hone the skills of its own hazmat team members. 20th Hazmat Challenge tests skills of hazardous materials response teams Ten hazardous materials response teams from New Mexico, Missouri, Oklahoma and Nebraska test their skills in a series of graded,

  18. Laboratory Building.

    SciTech Connect (OSTI)

    Herrera, Joshua M.

    2015-03-01

    This report is an analysis of the means of egress and life safety requirements for the laboratory building. The building is located at Sandia National Laboratories (SNL) in Albuquerque, NM. The report includes a prescriptive-based analysis as well as a performance-based analysis. Following the analysis are appendices which contain maps of the laboratory building used throughout the analysis. The top of all the maps is assumed to be north.

  19. The Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    existing programs in climate change science and infrastructure. The Laboratory has a 15- year history in climate change science. The Climate, Ocean and Sea Ice Modeling (COSIM) ...

  20. Type B Accident Investigation Board Report on the June 2002 High Radiation Dose to Extremities in Building 151, Lawrence Livermore National Laboratory

    Broader source: Energy.gov [DOE]

    This report is an independent product of the Type B Accident Investigation Board appointed by Camille Yuan-Soo Hoo, Manager of the U.S. Department of Energy, Oakland Operations Office.

  1. Type A Accident Investigation Board Report on the February 20, 1996, Fall Fatality at the Radioactive Waste Management Complex Transuranic Storage Area- Retrieval Enclosure, Idaho National Engineering Laboratory

    Broader source: Energy.gov [DOE]

    This report is an independent product of the Type A Accident Investigation Board appointed by Tara O’Toole, M.D., M.P.H., Assistant Secretary for Environment, Safety and Health (EH-1).

  2. Type B Accident Investigation Board Report on the September 4, 1998, Flammable Liquid Fire/Explosion at Fermi National Accelerator Laboratory, Batavia, Illinois

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report is an independent product of the Type B Accident Investigation Board appointed by John P. Kennedy, Acting Manager, Chicago Operations Office, U.S. Department of Energy.

  3. Type A Accident Investigation Board Report on the August 13, 1996, Electrical Shock at TRA-609, Test Reactor Area, Idaho National Engineering Laboratory

    Broader source: Energy.gov [DOE]

    This report is an independent product of an electrical shock accident investigation report board appointed by John M. Wilcynski, Manager, Idaho Operations Office, U.S. Department of Energy.

  4. Type A Accident Investigation Board Report on the June 20, 1997, Construction Fatality at the Brookhaven National Laboratory, Upton, New York

    Broader source: Energy.gov [DOE]

    This report is an independent product of the Type A Accident Investigation Board appointed by Tara O’Toole, M.D., M.P.H., Assistant Secretary for Environment, Safety & Health, U.S. Department of Energy.

  5. Type B Accident Investigation Board Report of the July 2, 1997, Curium Intake by Shredder Operator at Building 513, Lawrence Livermore National Laboratory, Livermore, California

    Broader source: Energy.gov [DOE]

    This report is an independent product of the Type B Accident Investigation Board appointed by James M. Turner, Ph.D., Manager of the U.S. Department of Energy, Oakland Operations Office.

  6. Experimental investigations of long-term interactions of molten UO/sub 2/ with MgO and concrete at Argonne National Laboratory. [LMFBR

    SciTech Connect (OSTI)

    Stein, R.P.; Farhadieh, R.; Pedersen, D.R.; Gunther, W.H.; Purviance, R.T.

    1982-01-01

    Experimental work at Argonne is being performed to investigate the long-term molten-core-debris retention capability of the ex-vessel cavity following a postulated meltdown accident. The eventual objective of the work is to determine if normal structural material (concrete) or a specifically selected sacrificial material (MgO) located in the ex-vessel cavity region can effectively contain molten core debris. The materials under investigation at ANL are various types of concrete (limestone, basalt and magnetite) and commercially-available MgO brick. Results are presented of the status of real material experimental investigation at ANL into (1) molten UO/sub 2/ pool heat transfer, (2) long-term molten UO/sub 2/ penetration into concrete and (3) long-term molten UO/sub 2/ penetration into refractory substrates. The decay heating in the fuel has been simulated by direct electrical heating permitting the study of the long-term interaction.

  7. Type B accident investigation board report of the July 2, 1997 curium intake by shredder operator at Building 513 Lawrence Livermore National Laboratory, Livermore, California. Final report

    SciTech Connect (OSTI)

    1997-08-01

    On July 2, 1997 at approximately 6:00 A.M., two operators (Workers 1 and 2), wearing approved personal protective equipment (PPE), began a shredding operation of HEPA filters for volume reduction in Building 513 (B-513) at Lawrence Livermore National Laboratory (LLNL). The waste requisitions indicated they were shredding filters containing {le} 1 {micro}Ci of americium-241 (Am-241). A third operator (Worker 3) provided support to the shredder operators in the shredding area (hot area) from a room that was adjacent to the shredding area (cold area). At Approximately 8:00 A.M., a fourth operator (Worker 4) relieved Worker 2 in the shredding operation. Sometime between 8:30 A.M. and 9:00 A.M., Worker 3 left the cold area to make a phone call and set off a hand and foot counter in Building 514. Upon discovering the contamination, the shredding operation was stopped and surveys were conducted in the shredder area. Surveys conducted on the workers found significant levels of contamination on their PPE and the exterior of their respirator cartridges. An exit survey of Worker 1 was conducted at approximately 10:05 A.M., and found contamination on his PPE, as well as on the exterior and interior of his respirator. Contamination was also found on his face, chest, back of neck, hair, knees, and mustache. A nose blow indicated significant contamination, which was later determined to be curium-244.

  8. NEW GUN CAPABILITY WITH INTERCHANGABLE BARRELS TO INVESTIGATE LOW VELOCITY IMPACT REGIMES AT THE LAWRENCE LIVERMORE NATIONAL LABORATORY HIGH EXPLOSIVES APPLICATIONS FACILITY

    SciTech Connect (OSTI)

    Vandersall, K S; Behn, A; Gresshoff, M; Jr., L F; Chiao, P I

    2009-09-16

    A new gas gun capability is being activated at Lawrence Livermore National Laboratories located in the High Explosives Applications Facility (HEAF). The single stage light gas (dry air, nitrogen, or helium) gun has interchangeable barrels ranging from 25.4 mm to 76.2 mm in diameter with 1.8 meters in length and is being fabricated by Physics Applications, Inc. Because it is being used for safety studies involving explosives, the gun is planned for operation inside a large enclosed firing tank, with typical velocities planned in the range of 10-300 m/s. Three applications planned for this gun include: low velocity impact of detonator or detonator/booster assemblies with various projectile shapes, the Steven Impact test that involves impact initiation of a cased explosive target, and the Taylor impact test using a cylindrical explosive sample impacted onto a rigid anvil for fracture studies of energetic materials. A highlight of the gun features, outline on work in progress for implementing this capability, and discussion of the planned areas of research will be included.

  9. RCRA Facility Investigation report for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 4, Technical memorandums 06-03A, 06-04A, 06-05A, and 06-08A: Environmental Restoration Program

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    This report presents data and information related to remedial investigation studies for Oak Ridge National Laboratory (ORNL). Information is included on a soil gas survey, surface radiological investigations of waste areas, and well installation for ground water monitoring. (CBS)

  10. Remedial investigation report on the Melton Valley Watershed at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 1: Evaluation, interpretation, and data summary

    SciTech Connect (OSTI)

    1997-05-01

    The Melton Valley watershed presents a multifaceted management and decision-making challenge because of the very heterogeneous conditions that exist with respect to contaminant type, disposal unit age, mode of disposal, release mechanism, and potential risk-producing pathways. The investigation presented here has assembled relevant site data in the geographic context with the intent of enabling program managers and decision-makers to understand site conditions and evaluate the necessity, relative priority, and scope of potential remedial actions.

  11. Remedial investigation/feasibility study Work Plan and addenda for Operable Unit 4-12: Central Facilities Area Landfills II and III at the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Keck, K.N.; Stormberg, G.J.; Porro, I.; Sondrup, A.J.; McCormick, S.H.

    1993-07-01

    This document is divided into two main sections -- the Work Plan and the addenda. The Work Plan describes the regulatory history and physical setting of Operable Unit 4-12, previous sampling activities, and data. It also identifies a preliminary conceptual model, preliminary remedial action alternatives, and preliminary applicable or relevant and appropriate requirements. In addition, the Work Plan discusses data gaps and data quality objectives for proposed remedial investigation activities. Also included are tasks identified for the remedial investigation/feasibility study (RI/FS) and a schedule of RI/FS activities. The addenda include details of the proposed field activities (Field Sampling Plan), anticipated quality assurance activities (Quality Assurance Project Plan), policies and procedures to protect RI/FS workers and the environment during field investigations (Health and Safety Plan), and policies, procedures, and activities that the Department of Energy will use to involve the public in the decision-making process concerning CFA Landfills II and III RI/FS activities (Community Relations Plan).

  12. Sandia National Laboratories: Working with Sandia: Become a Supplier

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    attempts to procure goods from existing laboratory suppliers. View Notice Step 1. SAM Registration Government Registration within the System for Award Management (SAM) The...

  13. Equipment Pool | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pool What is the Equipment Pool? Property that is no longer required or being used by a research group or administrative office is sent to the Ames Laboratory's warehouse Equipment Pool area for reuitilization within the Laboratory. What property is in the Equipment Pool? 1. Visit the Equipment Pool Listing page, or 2. Visit our Ames Laboratory warehouse between the hours of 7:30-4 p.m. to view the items in the equipment pool. How do I request property from the Pool? Contact Brian Aspengren,

  14. EM Opens New Waste Repackaging Facility at Laboratory | Department...

    Office of Environmental Management (EM)

    Opens New Waste Repackaging Facility at Laboratory EM Opens New Waste Repackaging Facility at Laboratory March 7, 2013 - 12:00pm Addthis A view of the new facility where ...

  15. Laboratory Access | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Access Planning Ahead Planning Ahead Please complete the Beam Time Request (BTR) and Support Request forms thourgh the User Portal. Thorough chemical and sample information must be included in your BTR. Support Request forms include a list of collaborators that require laboratory access and your group's laboratory equipment requests. Researcher safety is taken seriously at SLAC. Please remember that radioactive materials, nanomaterials, and biohazardous materials have additional safety

  16. Remedial investigation report on the Melton Valley watershed at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 2: Appendixes A and B

    SciTech Connect (OSTI)

    1997-05-01

    The Melton Valley watershed presents a multifaceted management and decision-making challenge because of the very heterogeneous conditions that exist with respect to contaminant type, disposal unit age, mode of disposal, release mechanism, and potential risk-producing pathways. The investigation presented here has assembled relevant site data in the geographic context with the intent of enabling program managers and decision-makers to understand site conditions and evaluate the necessity, relative priority, and scope of potential remedial actions. The industrial and recreational exposure scenarios are used to provide a risk assessment reference context to evaluate levels of contamination in surface water, groundwater, soil, and sediment within each subbasin of the Melton Valley watershed. All available analytical results for the media of interest that could be qualified for use in the risk assessment were screened to determine carcinogenic risk values and noncarcinogenic hazard indexes and to identify the chemicals of concern (COCs) for each evaluated media in each subbasin.

  17. Los Alamos National Laboratory opens new waste repackaging facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANL opens new waste repackaging facility Los Alamos National Laboratory opens new waste repackaging facility The Laboratory has brought a third waste repackaging facility online to increase its capability to process nuclear waste for permanent disposal. March 7, 2013 A view of the new box line facility where transuranic waste will be repackaged at Los Alamos National Laboratory. A view of the new box line facility where transuranic waste will be repackaged at Los Alamos National Laboratory.

  18. September 2013 Most Viewed Documents for Geosciences | OSTI, US Dept of

    Office of Scientific and Technical Information (OSTI)

    Energy Office of Scientific and Technical Information September 2013 Most Viewed Documents for Geosciences Fundamental Research on Percussion Drilling: Improved rock mechanics analysis, advanced simulation technology, and full-scale laboratory investigations Michael S. Bruno (2005) 35 Seismic design evaluation guidelines for buried piping for the DOE HLW Facilities Lin, Chi-Wen [Consultant, Martinez, CA (United States)]; Antaki, G. [Westinghouse Savannah River Co., Aiken, SC (United

  19. June 2015 Most Viewed Documents for Geosciences | OSTI, US Dept of Energy

    Office of Scientific and Technical Information (OSTI)

    Office of Scientific and Technical Information June 2015 Most Viewed Documents for Geosciences Fundamental Research on Percussion Drilling: Improved rock mechanics analysis, advanced simulation technology, and full-scale laboratory investigations Michael S. Bruno (2005) 64 Gas-phase diffusion in porous media: Evaluation of an advective- dispersive formulation and the dusty-gas model including comparison to data for binary mixtures Webb, S.W. (1996) 53 Stress-dependent permeability of

  20. National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supercomputing Challenge draws more than 200 students to Los Alamos National Laboratory April 16, 2015 NOTE TO EDITORS: Media are welcome to attend the awards ceremony from 9 a.m. to noon a.m., April 21 at the Church of Christ, 2323 Diamond Drive, Los Alamos. Student teams from around New Mexico showcase year-long research projects April 20-21 LOS ALAMOS, N.M., April 16, 2015-More than 200 New Mexico students and their teachers are at Los Alamos National Laboratory April 20-21 for the 25th

  1. National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Community invited to learn about emerging technologies July 6, 2016 DisrupTech showcases innovation from Los Alamos National Laboratory LOS ALAMOS, N.M., July 6, 2016-New technologies emerging from Los Alamos National Laboratory that address everything from fusion energy to medical testing will be on display for members of the community, investors and business leaders at the DisrupTech showcase, Thursday, July 14, starting at 1:00 p.m. at the Los Alamos Golf Course Event Center. "We call it

  2. High-volume, high-value usage of Flue Gas Desulfurization (FGD) by-products in underground mines Phase 1: Laboratory investigations. Quarterly report, July 1994--September 1994

    SciTech Connect (OSTI)

    1994-12-01

    During the quarter a second series of samples were collected and partially characterized chemically and mineralogically. The samples were collected at the disposal site operated by Freeman United Coal Co. The second collection was necessary because of deterioration due to hydration of the original samples. A study of the hydration characteristics was completed during the quarter. Important reactions included the immediate formation of ettringite and portlandite. The hydration and transformation was found to be a slow process. A second phase of gypsum formation from ettringite deterioration was identified. The slow hydration of anhydrite with its resultant swell is a potential problem which will be addressed further. Geotechnical characterization, during the quarter included completion of the preliminary characterization, analysis of the findings, experimentation with sample preparation for the final characterization/mix design, and design of the final experimental program. The analysis of the coals collected during the core drilling and hydrologic planning were completed. Also during the quarter a meeting was held with representatives of the shotcrete industry to discuss transport systems for emplacement. The pros and cons of pneumatic and hydraulic systems were discussed and plans formulated for further investigations.

  3. White Oak Creek Watershed: Melton Valley Area Remedial Investigation Report, Oak Ridge National Laboratory, Oak Ridge, Tennessee: Volume 1 Main Text

    SciTech Connect (OSTI)

    1996-11-01

    The purpose of this Remedial Investigation (RI) report is to present an analysis of the Melton Valley portion of the White Oak Creek (WOC) watershed, which will enable the US Department of Energy (DOE) to pursue a series of cost-effective remedial actions resulting in site cleanup and stabilization. In this RI existing levels of contamination and radiological exposure are compared to levels acceptable for future industrial and potential recreational use levels at the site. This comparison provides a perspective for the magnitude of remedial actions required to achieve a site condition compatible with relaxed access restrictions over existing conditions. Ecological risk will be assessed to evaluate measures required for ecological receptor protection. For each subbasin, this report will provide site-specific analyses of the physical setting including identification of contaminant source areas, description of contaminant transport pathways, identification of release mechanisms, analysis of contaminant source interactions with groundwater, identification of secondary contaminated media associated with the source and seepage pathways, assessment of potential human health and ecological risks from exposure to contaminants, ranking of each source area within the subwatershed, and outline the conditions that remedial technologies must address to stop present and future contaminant releases, prevent the spread of contamination and achieve the goal of limiting environmental contamination to be consistent with a potential recreational use of the site.

  4. JOBAID-VIEWING USER RECORDS

    Broader source: Energy.gov [DOE]

    In this job aid you will View To-Do List using Filter and View options, View Completed Work, and View Curriculum Status and Detials areas. 

  5. Experimental investigation of supercritical CO2 trapping mechanisms at the Intermediate Laboratory Scale in well-defined heterogeneous porous media

    SciTech Connect (OSTI)

    Trevisan, Luca; Pini, Ronny; Cihan, Abdullah; Birkholzer, Jens T.; Zhou, Quanlin; Illangasekare, Tissa H.

    2014-12-31

    The heterogeneous nature of typical sedimentary formations can play a major role in the propagation of the CO2 plume, eventually dampening the accumulation of mobile phase underneath the caprock. From core flooding experiments, it is also known that contrasts in capillary threshold pressure due to different pore size can affect the flow paths of the invading and displaced fluids and consequently influence the build- up of non-wetting phase (NWP) at interfaces between geological facies. The full characterization of the geologic variability at all relevant scales and the ability to make observations on the spatial and temporal distribution of the migration and trapping of supercritical CO2 is not feasible from a practical perspective. To provide insight into the impact of well-defined heterogeneous systems on the flow dynamics and trapping efficiency of supercritical CO2 under drainage and imbibition conditions, we present an experimental investigation at the meter scale conducted in synthetic sand reservoirs packed in a quasi-two-dimensional flow-cell. Two immiscible displacement experiments have been performed to observe the preferential entrapment of NWP in simple heterogeneous porous media. The experiments consisted of an injection, a fluid redistribution, and a forced imbibition stages conducted in an uncorrelated permeability field and a homogeneous base case scenario. We adopted x-ray attenuation analysis as a non-destructive technique that allows a precise measurement of phase saturations throughout the entire flow domain. By comparing a homogeneous and a heterogeneous scenario we have identified some important effects that can be attributed to capillary barriers, such as dampened plume advancement, higher non-wetting phase saturations, larger contact area between the injected and displaced phases, and a larger range of non-wetting phase saturations.

  6. Geomechanics Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geomechanics Laboratory - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  7. Biomass Compositional Analysis Laboratory Procedures | Bioenergy | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass Compositional Analysis Laboratory Procedures NREL develops laboratory analytical procedures (LAPs) for standard biomass analysis. These procedures help scientists and analysts understand more about the chemical composition of raw biomass feedstocks and process intermediates for conversion to biofuels. View Publications Subscribe to email updates about revisions and additions to biomass analysis procedures, FAQs, calculation spreadsheets, and publications. Email: Subscribe Unsubscribe

  8. ThreatView

    Energy Science and Technology Software Center (OSTI)

    2007-09-25

    The ThreatView project is based on our prior work with the existing ParaView open-source scientific visualization application. Where ParaView provides a grapical client optimized scientific visualization over the VTK parallel client server architecture, ThreatView provides a client optimized for more generic visual analytics over the same architecture. Because ThreatView is based on the VTK parallel client-server architecture, data sources can reside on remote hosts, and processing and rendering can be performed in parallel. As seenmore » in Fig. 1, ThreatView provides four main methods for visualizing data: Landscape View, which displays a graph using a landscape metaphor where clusters of graph nodes produce "hills" in the landscape; Graph View, which displays a graph using a traditional "ball-and-stick" style; Table View, which displays tabular data in a standard spreadsheet; and Attribute View, which displays a tabular "histogram" of input data - for a selected table column, the Attribute View displays each unique value within the column, and the number of times that value appears in the data. There are two supplemental view types: Text View, which displays tabular data one-record-at-a-time; and the Statistics View, which displays input metadata, such as the number of vertices and edges in a graph, the number of rows in a table, etc.« less

  9. Investigating Aeroelastic Performance of Multi-Mega Watt Wind Turbine Rotors Using CFD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Investigating Aeroelastic Performance of Multi-MegaWatt Wind Turbine Rotors Using CFD David A. Corson 1 Altair Engineering, Inc., Clifton Park, NY, 12065 D. Todd Griffith 2 Sandia National Laboratories, Albuquerque, NM, 87185 Tom Ashwill 3 Sandia National Laboratories, Albuquerque, NM, 87185 Farzin Shakib 4 Altair Engineering, Inc., Mountain View, CA, 94043 Recent trends in wind power technology are focusing on increasing power output through an increase in rotor diameter. As the rotor diameter

  10. National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ignition Facility Former Army Ranger wins Sandia-sponsored student of the year award Former Army Ranger Damon Alcorn recently received the Sandia National Laboratories-Livermore Chamber of Commerce Student of the Year Award. Presented at the Chamber's State of the City Luncheon last month, the annual award highlights a Las Positas College student with exemplary academic... NNSA makers and hackers engage innovation and partnerships NNSA's labs change the world everyday through cutting-edge

  11. Lab Plan | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab Plan Ames Laboratory

  12. Intergranular attack of alloy 600: laboratory investigations

    SciTech Connect (OSTI)

    Pinard-Legry, G.; Plante, G.

    1985-08-01

    In order to define some of the parameters of the IGA phenomenon, chemical and electrochemical corrosion tests were performed on alloy 600 C-ring samples in caustic media at high temperature. Metallographic examinations showed that temperature and the composition of the solution has a marked effect on the occurrence of IGA. In 36% caustic solution, silicate did not inhibit corrosion as was the case in more dilute solution. The presence of magnetite had an adverse effect probably because it changed the local chemistry. The electrochemical potential effect was not significant on IGA morphology in the range E/sub corr/ +- 20 mV. Tensile stress increased the rate of IGA but was not necessary in order to produce IGA in an already aggressive environment. The presence of oxides did not change the alloy 600 corrosion potential significantly, except for Cr/sub 2/O/sub 3/. Borate ions had an inhibiting effect on IGA in 10 % caustic. The addition of boric acid to 10 % caustic produced changes in pH at high temperatures which were measured as part of this report. 6 refs., 30 figs., 12 tabs.

  13. The view from Kiev

    SciTech Connect (OSTI)

    Kiselyov, S.

    1993-11-01

    This article reports the observations of correspondents for the Bulletin (two Russian journalists, one based in Moscow, the other in Kiev) who investigated the status of the Soviet Union's Black Sea Fleet and Ukraine's status as a non-nuclear-weapons state. After two years of wrangling and two earlier failed settlements, Russian President Boris Yeltsin met with Ukrainian President Leonid Kravchuk at Massandra in Crimea. On September 3, the leaders announced that Russia would buy out Ukraine's interest in the fleet and lease the port at Sevastopol. The Massandra summit was also supposed to settle Ukraine's status as a non-nuclear-weapons state. Described here are the Kiev-based correspondent's views on the Massandra summit (and its major topics), which was to have been called off by the Russian foreign ministry when Ukrainian Prime Minister Leonid Kuchma resigned.

  14. Type A Accident Investigation Board report on the January 17, 1996, electrical accident with injury in Technical Area 21 Tritium Science and Fabrication Facility Los Alamos National Laboratory. Final report

    SciTech Connect (OSTI)

    1996-04-01

    An electrical accident was investigated in which a crafts person received serious injuries as a result of coming into contact with a 13.2 kilovolt (kV) electrical cable in the basement of Building 209 in Technical Area 21 (TA-21-209) in the Tritium Science and Fabrication Facility (TSFF) at Los Alamos National Laboratory (LANL). In conducting its investigation, the Accident Investigation Board used various analytical techniques, including events and causal factor analysis, barrier analysis, change analysis, fault tree analysis, materials analysis, and root cause analysis. The board inspected the accident site, reviewed events surrounding the accident, conducted extensive interviews and document reviews, and performed causation analyses to determine the factors that contributed to the accident, including any management system deficiencies. Relevant management systems and factors that could have contributed to the accident were evaluated in accordance with the guiding principles of safety management identified by the Secretary of Energy in an October 1994 letter to the Defense Nuclear Facilities Safety Board and subsequently to Congress.

  15. Laboratory Waste | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Waste Sharps Broken Glass Containment Hazardous Waste All waste produced in the Sample Prep Labs should be appropriately disposed of at SLAC. You are prohibited to transport waste back to your home institution. Designated areas exist in the labs for sharps, broken glass, and hazardous waste. Sharps, broken glass, and hazardous waste must never be disposed of in the trash cans or sink drains. Containment Bottles, jars, and plastic bags are available for containing chemical waste. Place

  16. Laboratory Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory Applications What are contaminants normally found in hydrogen from fueling nozzle? JP Hsu SmartChemistry.com Particulates are most common found in Hydrogen - 96% hydrogen fuel contains particulates in 108 Particulate Samplings. Typical Particulate filter - 0.035mg/kg SmartChemistry.com H 2 Station X Particulate Sample Particulate Concentration at 700 Bar: 2.0 mg/kg Particulate filter after sampling, in which 4.001mg particulates are found in 2 kilogram hydrogen SmartChemistry.com H 2

  17. Nevada Work Instruction Laboratory Dynamic Rock/Soil Testing

    SciTech Connect (OSTI)

    M. Schweppe; T.R. Scotese

    2005-08-29

    This procedure defines processes for performance and reporting of geotechnical laboratory tests supporting geotechnical investigations.

  18. Los Alamos National Laboratory Venture Acceleration Fund boosts three

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    businesses Venture Acceleration Fund boosts three businesses LANL Venture Acceleration Fund boosts three businesses Integrative Enzymatics, Vapour Organic Beauty and HydroBio will receive startup funding from the Laboratory. June 19, 2012 Aerial view of Los Alamos National Laboratory Aerial view of Los Alamos National Laboratory. Contact Nancy Ambrosiano Communications Office (505) 667-0471 Email New Mexico firms in health, beauty and agriculture gain support LOS ALAMOS, New Mexico, June 19,

  19. Los Alamos National Laboratory selects three small businesses for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    environmental work LANL selects three small businesses for environmental work Los Alamos National Laboratory selects three small businesses for environmental work The companies chosen are Terranear PMC, Navarro Research and Engineering, Inc., and Adelante Consulting, Inc. May 14, 2013 Aerial view of Los Alamos National Laboratory. Aerial view of Los Alamos National Laboratory. Contact Patti Jones Communications Office (505) 665-7748 Email Their excellent safety records and technical

  20. Los Alamos National Laboratory selects three small businesses for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    environmental work LANL selects three small businesses for environmental work Los Alamos National Laboratory selects three small businesses for environmental work The companies chosen are Terranear PMC, Navarro Research and Engineering, Inc., and Adelante Consulting, Inc. May 14, 2013 Aerial view of Los Alamos National Laboratory. Aerial view of Los Alamos National Laboratory. Contact Fred deSousa Communications Office (505) 665-3430 Email Their excellent safety records and technical

  1. Los Alamos National Laboratory selects three small businesses for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    environmental work LANL selects three small businesses for environmental work Los Alamos National Laboratory selects three small businesses for environmental work The companies chosen are Terranear PMC, Navarro Research and Engineering, Inc., and Adelante Consulting, Inc. May 14, 2013 Aerial view of Los Alamos National Laboratory. Aerial view of Los Alamos National Laboratory. Contact Fred deSousa Communications Office (505) 665-3430 Email Their excellent safety records and technical

  2. Laboratory Activities

    SciTech Connect (OSTI)

    Brown, Christopher F.; Serne, R. Jeffrey

    2008-01-17

    This chapter summarizes the laboratory activities performed by PNNLs Vadose Zone Characterization Project in support of the Tank Farm Vadose Zone Program, led by CH2M HILL Hanford Group, Inc. The results of these studies are contained in numerous reports (Lindenmeier et al. 2002; Serne et al. 2002a, 2002b, 2002c, 2002d, 2002e; Lindenmeier et al. 2003; Serne et al. 2004a, 2004b; Brown et al. 2005, 2006a, 2007; Serne et al. 2007) and have generated much of the data reported in Chapter 22 (Geochemistry-Contaminant Movement), Appendix G (Geochemistry-Contaminant Movement), and Cantrell et al. (2007, SST WMA Geochemistry Data Package in preparation). Sediment samples and characterization results from PNNLs Vadose Zone Characterization Project are also shared with other science and technology (S&T) research projects, such as those summarized in Chapter 12 (Associated Science Activities).

  3. National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and principal investigator of the ChemCam team Roger Wiens. * Nov. 13, 2013: Retired Los Alamos physicist John C. Hopkins reflects on his Cold War career in the weapons program....

  4. National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    principal investigator of the ChemCam team Roger Wiens. * Nov. 13, 2013: Retired Los Alamos physicist John C. Hopkins reflects on his Cold War career in the weapons program. - 3 -...

  5. Biogas From Municipal WWTPs: Fuel Cells Viewed as a Value Proposition

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    From Municipal WWTPs Fuel Cells Viewed as a Value Proposition Biogas and Fuel Cells Workshop National Renewable Energy Laboratory Golden, Colorado June 12, 2012 WWTP Anaerobic ...

  6. Heat Transfer Laboratory | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heat Transfer Laboratory Materials in solids or fluid forms play an important role in a ... Argonne's Heat Transfer Laboratory enables researchers to: Synthesize and prepare heat ...

  7. Inquiry 2012, Issue 2 | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2, Issue 2 Welcome to Inquiry 2012, Issue 2 Faces of the Ames Laboratory Image This issue of Inquiry focuses on some of the many faces that make up the Ames Laboratory. In fact, it is the people -- the researchers, support staff and students -- who make the Laboratory what it is. In this issue, we introduce nine of our researchers. You get to learn about their research but also find out a little about them personally. What motivates them, how they view their work and the Ames Laboratory. We also

  8. Sandia National Laboratories:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    12, 2015 Articles Kristina Czuchlewski (5346) is principal investigator for the 26-member PANTHER team. Managing the data deluge Pete Atherton Lab to Market CYGNUS MILESTONE Sandia Big Shots Annual exercise event Annual Exercise an earth-shaking activity Sandia President and Laboratories Director Jill Hruby Partnerships, mission synergy key to Sandia's future Sandia California Security Police Officers train to improve skills Perfecting marksmanship Paul Cooper Explosives legend Paul Cooper

  9. National Laboratory Impact Initiative

    Broader source: Energy.gov [DOE]

    The National Laboratory Impact Initiative supports the relationship between the Office of Energy Efficiency & Renewable Energy and the national laboratory enterprise.  The national laboratories...

  10. Oak Ridge National Laboratory: Recent Accomplishments and Challenges in the Environmental Management Program

    Office of Environmental Management (EM)

    Oak Ridge National Laboratory Oak Ridge National Laboratory Oak Ridge National Laboratory | April 2013 Aerial View Oak Ridge National Laboratory | April 2013 Aerial View Oak Ridge National Laboratory (ORNL) conducts research and development to create scientific knowledge and solutions that strengthen the nation's leadership in key areas of science; increase the availability of clean, abundant energy; restore and protect the environment; and contribute to national security. ORNL also performs

  11. Sandia National Laboratories: Sandia National Laboratories: Missions:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Defense Systems & Assessments: Accomplishments Top Archives About Defense Systems & Assessments Program Areas Accomplishments Archives Cybersecurity Programs Archives Sandia's scientists and engineers have a significant impact on national security and continually deliver results. View our previous accomplishments: 2011 Archives: View our 2011 Accomplishments 2010 Archives: View our 2010 Accomplishments

  12. Our view: Vaccinate now, prevent flu later

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Our view: Vaccinate now, prevent flu later Our view: Vaccinate now, prevent flu later Los Alamos National Laboratory scientists are predicting that this winter's flu season is most likely to peak in February across much of the United States. The scientists can say this because of the model they have constructed. December 24, 2015 Man sneezing Model suggests still time to get your flu shot and be protected. "There's no crystal ball when it comes to predicting disease outbreaks," said

  13. Renewable Energy Laboratory

    Open Energy Info (EERE)

    Radiation Budget Measurement Networks, National Oceanic and Atmospheric Administration Air Resources Laboratory and Earth System Research Laboratory Global Monitoring Division *...

  14. Jefferson Laboratory Findings Excite Theoreticians, Experimentatlists |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab Laboratory Findings Excite Theoreticians, Experimentatlists Jefferson Laboratory Findings Excite Theoreticians, Experimentatlists March 1999 Seemingly reasonable assumptions define the human view of the world. But ruled of thumb can mislead - or be altogether incorrect. Fortunately, in physics, most assumptions can be tested. Those that don't measure up are amended. An experiment at the Department of Energy's Thomas Jefferson National Accelerator Facility (Jefferson Lab) has

  15. CABLE TECHNOLOGY LABORATORIES, INC. DETERMINATION OF THRESHOLD...

    Office of Scientific and Technical Information (OSTI)

    CABLE TECHNOLOGY LABORATORIES, INC. DETERMINATION OF THRESHOLD AND MAXIMUM OPERATING ELECTRIC STRESSES FOR SELECTED HIGH VOLTAGE INSULATIONS Investigation of Aged Polymeric ...

  16. Los Alamos National Laboratory Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos National Laboratory 14 15 Technology Transfer 2011-2012 Progress Report Technology Transfer 2011-2012 Progress Report In 2011, The National Institutes of Health awarded a five-year Models of Infectious Disease Agent Study (MIDAS) grant to a team of researchers from Los Alamos National Laboratory (LANL) and Tulane University. This team, lead by principal investigator Sara Del Valle, connects social media and epidemiological research in an attempt to predict people's social behavior and

  17. Taking the long view

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2012 Los Alamos Aerial Aerial view of a canyon in Los Alamos, New Mexico. Contact Environmental Communication & Public Outreach P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505)...

  18. ParaView

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... program in step 4 above. 1. Open ParaView and select File->Connect from the menu. 5. The server config script will start an xterm allowing you to login to the selected system. ...

  19. Ames Laboratory Logos | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Laboratory Logos The Ames Laboratory Logo comes in several formats. EPS files are vector graphics created in Adobe Illustrator and saved with a tiff preview so they will...

  20. Laboratory Graduate Research Appointment | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Graduate Research Program Perform your thesis research among the best and the brightest at Argonne National Laboratory. About the Program Laboratory Graduate Research (Lab Grad) appointments are available to qualified U.S. university graduate students who wish to carry out their thesis research at Argonne National Laboratory under co-sponsorship of an Argonne staff member and a faculty member. The university sets the academic standard and awards the degree. The participation of the

  1. Ames Laboratory Hot Canyon | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Laboratory Hot Canyon This historical film footage, originally produced in the early 1950s as part of a series by WOI-TV, shows atomic research at Ames Laboratory. The work was conducted in a special area of the Laboratory known as the "Hot Canyon."

  2. NREL: Wind Research - NREL and Sandia National Laboratories to...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia National Laboratories to Sharpen Wind Farm Turbine Controls A meteorological tower in the background, one wind turbine in the front, and one turbine to the right. A view ...

  3. Los Alamos National Laboratory selects small businesses for nuclear waste

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    services LANL selects small businesses for nuclear waste services LANL selects small businesses for nuclear waste services Environmental Dimensions, Inc.; North Wind, Inc.; Navarro Research and Engineering, Inc.; and Portage, Inc. selected to bid for a number of individual tasks. February 16, 2012 Aerial view of Los Alamos National Laboratory Aerial view of Los Alamos National Laboratory. Contact Colleen Curran Communications Office (505) 664-0344 Email Subcontract worth up to $200 million

  4. National Laboratory's Weapons Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Security, LLC, began managing the Laboratory. Prior to joining the Laboratory, McMillan served in a variety of research and management positions at Lawrence Livermore...

  5. Sustainability | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sustainability Ames Laboratory is committed to environmental sustainability in all of its operations as outlined in the Laboratory's Site Sustainability Plan. Executive orders set ...

  6. Laboratory Equipment & Supplies | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Equipment & Supplies John Bargar, SSRL Scientist Equipment is available to serve disciplines from biology to material science. All laboratories contain the following standard laboratory equipment: pH meters with standard buffers, analytical balances, microcentrifuges, vortex mixers, ultrasonic cleaning baths, magnetic stirrers, hot plates, and glassware. Most laboratories offer ice machines and cold rooms. Specialty storage areas for samples include a -80 freezer, argon and nitrogen glove

  7. The Sample Preparation Laboratories | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cynthia Patty 1 Sam Webb 2 John Bargar 3 Arizona 4 Chemicals 5 Team Work 6 Bottles 7 Glass 8 Plan Ahead! See the tabs above for Laboratory Access and forms you'll need to complete. Equipment and Chemicals tabs detail resources already available on site. Avoid delays! Hazardous materials use may require a written Standard Operating Procedure (SOP) before you work. Check the Chemicals tab for more information. The Sample Preparation Laboratories The Sample Preparation Laboratories provide wet lab

  8. Status of Laboratory Goals | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Status of Laboratory Goals Status of Calendar Year 2016 objectives and targets. Item 1 Recommendation: The EMSSC recommends an Open House be held in the Ames Laboratory Storeroom and Warehouse by April 1, 2016. The Open House will provide Ames Laboratory employees the opportunity to discover what supplies are readily available through the storeroom and showcase the Equipment Pool website. This recommendation will increase awareness of the sustainable purchasing requirements by showcasing these

  9. Commercialization of a DOE Laboratory

    SciTech Connect (OSTI)

    Stephenson, Barry A.

    2008-01-15

    On April 1, 1998, Materials and Chemistry Laboratory, Inc. (MCLinc) began business as an employee-owned, commercial, applied research laboratory offering services to both government and commercial clients. The laboratory had previously been a support laboratory to DoE's gaseous diffusion plant in Oak Ridge (K-25). When uranium enrichment was halted at the site, the laboratory was expanded to as an environmental demonstration center and served from 1992 until 1997 as a DOE Environmental User Facility. In 1997, after the laboratory was declared surplus, it was made available to the employee group who operated the laboratory for DOE as a government-owned, contractor-operated facility. This paper describes briefly the process of establishing the business. Attributes that contributed to the success of MCLinc are described. Some attention is given to lessons learned and to changes that could facilitate future attempts to make similar transitions. Lessons learnt: as with any business venture, operation over time has revealed that some actions taken by the laboratory founders have contributed to its successful operation while others were not so successful. Observations are offered in hopes that lessons learned may suggest actions that will facilitate future attempts to make similar transitions. First, the decision to vest significant ownership of the business in the core group of professionals operating the business is key to its success. Employee-owners of the laboratory have consistently provided a high level of service to its customers while conducting business in a cost-efficient manner. Secondly, an early decision to provide business support services in-house rather than purchasing them from support contractors on site have proven cost-effective. Laboratory employees do multiple tasks and perform overhead tasks in addition to their chargeable technical responsibilities. Thirdly, assessment of technical capabilities in view of market needs and a decision to offer these

  10. Analytical Chemistry Laboratory | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemistry Laboratory provides a broad range of analytical chemistry support services to the scientific and engineering programs. AnalyticalChemistryLaboratoryfactsheet...

  11. Equipment | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Zeiss Axiovert 200 Optical Microscope Spark Cutter Fully Equipped Metallographic Laboratory Electropolisher Dimpler

  12. Accounting Resources | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accounting Resources Ames Laboratory Human Resources Forms Ames Laboratory Travel Forms Ames Laboratory Forms (Select Department) ISU Intramural PO Request...

  13. Purdue Hydrogen Systems Laboratory

    SciTech Connect (OSTI)

    Jay P Gore; Robert Kramer; Timothee L Pourpoint; P. V. Ramachandran; Arvind Varma; Yuan Zheng

    2011-12-28

    The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up. Efforts

  14. Investigating and Using Biomass Gases

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Investigating and Using Biomass Gases Grades: 9-12 Topic: Biomass Authors: Eric Benson and Melissa Highfill Owner: National Renewable Energy Laboratory This educational material is...

  15. Brookhaven National Laboratory | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Brookhaven National Laboratory

  16. Most Viewed Documents for Geosciences: December 2014 | OSTI,...

    Office of Scientific and Technical Information (OSTI)

    and full-scale laboratory investigations Michael S. Bruno (2005) 19 Simulation of water-rock interaction in the Yellowstone geothermal system using TOUGHREACT Dobson, Patrick ...

  17. Linear-array ultrasonic waveguide transducer for under sodium viewing.

    SciTech Connect (OSTI)

    Sheen, S. H.; Chien, H. T.; Wang, K.; Lawrence, W. P.; Engel, D.; Nuclear Engineering Division

    2010-09-01

    In this report, we first present the basic design of a low-noise waveguide and its performance followed by a review of the array transducer technology. The report then presents the concept and basic designs of arrayed waveguide transducers that can apply to under-sodium viewing for in-service inspection of fast reactors. Depending on applications, the basic waveguide arrays consist of designs for sideway and downward viewing. For each viewing application, two array geometries, linear and circular, are included in design analysis. Methods to scan a 2-D target using a linear array waveguide transducer are discussed. Future plan to develop a laboratory array waveguide prototype is also presented.

  18. REACTOR VIEWING APPARATUS

    DOE Patents [OSTI]

    Monk, G.S.

    1959-01-13

    An optical system is presented that is suitable for viewing objects in a region of relatively high radioactivity, or high neutron activity, such as a neutronic reactor. This optical system will absorb neutrons and gamma rays thereby protecting personnel fronm the harmful biological effects of such penetrating radiations. The optical system is comprised of a viewing tube having a lens at one end, a transparent solid member at the other end and a transparent aqueous liquid completely filling the tube between the ends. The lens is made of a polymerized organic material and the transparent solid member is made of a radiation absorbent material. A shield surrounds the tube betwcen the flanges and is made of a gamma ray absorbing material.

  19. Stereoscopic optical viewing system

    DOE Patents [OSTI]

    Tallman, C.S.

    1986-05-02

    An improved optical system which provides the operator with a stereoscopic viewing field and depth of vision, particularly suitable for use in various machines such as electron or laser beam welding and drilling machines. The system features two separate but independently controlled optical viewing assemblies from the eyepiece to a spot directly above the working surface. Each optical assembly comprises a combination of eye pieces, turning prisms, telephoto lenses for providing magnification, achromatic imaging relay lenses and final stage pentagonal turning prisms. Adjustment for variations in distance from the turning prisms to the workpiece, necessitated by varying part sizes and configurations and by the operator's visual accuity, is provided separately for each optical assembly by means of separate manual controls at the operator console or within easy reach of the operator.

  20. Stereoscopic optical viewing system

    DOE Patents [OSTI]

    Tallman, Clifford S.

    1987-01-01

    An improved optical system which provides the operator a stereoscopic viewing field and depth of vision, particularly suitable for use in various machines such as electron or laser beam welding and drilling machines. The system features two separate but independently controlled optical viewing assemblies from the eyepiece to a spot directly above the working surface. Each optical assembly comprises a combination of eye pieces, turning prisms, telephoto lenses for providing magnification, achromatic imaging relay lenses and final stage pentagonal turning prisms. Adjustment for variations in distance from the turning prisms to the workpiece, necessitated by varying part sizes and configurations and by the operator's visual accuity, is provided separately for each optical assembly by means of separate manual controls at the operator console or within easy reach of the operator.

  1. Sandia National Laboratories: Careers: Videos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facebook Twitter YouTube Flickr RSS Careers Videos Career Profiles View All Jobs Bryn Bryn Mechanical Engineer Elaine Elaine Social Scientist Kevin Kevin Principal Investigator Donna Donna Software Engineer Marco Marco Mechanical Engineer Pete Pete Systems Analyst Casey Casey Network and Software Engineer Kimberly Kimberly Systems Analyst / Operations Research Andrew Andrew Systems Engineer David David Systems Research and Analysis Tameka Tameka User Experience Tameka Computer Software Research

  2. Sandia National Laboratories: News: Videos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Videos Sandia Digital Media View our Streaming Media Library

  3. Princeton Plasma Physics Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Physics Laboratory P.O. Box 451 Princeton, NJ 08543-0451 GPS: 100 Stellarator Road Princeton, NJ 08540 www.pppl.gov 2015 Princeton Plasma Physics Laboratory. A...

  4. Princeton Plasma Physics Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Physics Laboratory P.O. Box 451 Princeton, NJ 08543-0451 GPS: 100 Stellarator Road Princeton, NJ 08540 www.pppl.gov 2016 Princeton Plasma Physics Laboratory. A ...

  5. DOE Laboratory Partnerships

    Broader source: Energy.gov [DOE]

    DOE national laboratories were created to support the various missions of the Department, including energy, national security, science and related environmental activities. The laboratories conduct innovative research and development in literally hundreds of technology areas, some available nowhere else.

  6. Accident Investigation of the June 17, 2012, Construction Accident- Structural Steel Collapse at The Over pack Storage Expansion #2 at the Naval Reactors Facility at the Idaho National Laboratory, Idaho Falls, Idaho

    Broader source: Energy.gov [DOE]

    This report documents the Naval Reactors investigation into the collapse ofa partially-erected spent fuel storage building, Overpack Storage Expansion #2 (OSE2), at the Naval Reactors Facility. The Accident Investigation Board inspected the scene, collected physical and photographic evidence, interviewed involved personnel, and reviewed relevant documents to determine the key causes of the accident. Based on the information gathered during the investigation, the Board identified several engineering and safety deficiencies that need to be addressed to prevent recurrence.

  7. Type A Accident Investigation Board Report of the July 28, 1998, Fatality and Multiple Injuries Resulting from Release of Carbon Dioxide at Building 648, Test Reactor Area, Idaho National Engineering and Environmental Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report is an independent product of the Type A Accident Investigation Board appointed by Peter N. Brush, Acting Assistant Secretary for Environment, Safety and Health (EH-1).

  8. Ames Laboratory Emergency Plan | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Laboratory Emergency Plan Version Number: 14.0 Document Number: Plan 46300.001 Effective Date: 04/2016 File (public): PDF icon Plan 46300.001 Rev14 Emergency Plan

  9. National Renewable Energy Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tribal Energy Program Review Roger Taylor Manger State, Local & Tribal Integrated Application Group National Renewable Energy Laboratory November 5-8, 2007 Major DOE National Laboratories Brookhaven Brookhaven Pacific Northwest Pacific Northwest Lawrence Berkeley Lawrence Berkeley Lawrence Livermore Lawrence Livermore h h h h h INEL INEL National Renewable National Renewable Energy Laboratory Energy Laboratory Los Alamos Los Alamos Sandia Sandia Argonne Argonne Oak Ridge Oak Ridge Defense

  10. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos National Laboratory i Table of Contents Letter from the Division Director 1 Innovation Prize Nominations 2 Innovation Prize Winner 5 About the Feynman Center for Innovation 6 Innovation Assets 7 Strategic Sponsored Work 8 National High Magnetic Field Laboratory 9 Licensing 10 SOLVE 11 Economic Development 12 STAR Cryoelectronics 13 Partnership 14 Verdesian Life Sciences 15 R&D 100 Awards 16 Federal Laboratory Consortium Awards 17 Los Alamos National Laboratory 1 As scientists and

  11. Management | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Sciences & Engineering Focus: Understanding & Control of Interfacial Processes Web Site Michael Thackeray Michael Thackeray (Deputy Director) Argonne National Laboratory...

  12. FY 2005 Laboratory Table

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Congressional Budget Request Laboratory Tables Preliminary Department of Energy FY 2005 Congressional Budget Request Office of Management, Budget and Evaluation/CFO February 2004 Laboratory Tables Preliminary Department of Energy Department of Energy FY 2005 Congressional Budget FY 2005 Congressional Budget Request Request Office of Management, Budget and Evaluation/CFO February 2004 Laboratory Tables Laboratory Tables Printed with soy ink on recycled paper Preliminary Preliminary The numbers

  13. islowing | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    islowing Ames Laboratory Profile Igor Slowing Assoc Scientist Chemical & Biological Sciences 2756 Gilman Phone Number: 515-294-1959 Email Address: islowing@iastate.edu Ames Laboratory Associate Ames Laboratory Research Projects: Homogeneous and Interfacial Catalysis in 3D Controlled Environment Nanorefinery Education: Ph.D., Iowa State University, 2003-2008 Licenciate in Chemistry, San Carlos University, Guatemala, 1988-1995 Professional Appointments: Staff Scientist, Ames Laboratory,

  14. levin | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    levin Ames Laboratory Profile Evgenii Levin Scientist I Division of Materials Science & Engineering 107 Spedding Phone Number: 515-294-6093 Email Address: levin@iastate.edu Ames Laboratory Research Projects: Novel Materials Preparation & Processing Methodologies Professional Appointments: Scientist I & Adj. Associate Professor, Ames Laboratory U.S. DOE, and Department of Physics and Astronomy, Iowa State University, 2010- present Associate Scientist & Lecturer, Ames Laboratory

  15. biswasr | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University, 1976 Professional Appointments: Senior Scientist Ames Laboratory and Microelectronics Research Center, 2013- present Adjunct Professor, Dept. of Physics & Astronomy;...

  16. Alamos National Laboratory's 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    $2 million pledged during Los Alamos National Laboratory's 2014 employee giving campaign December 17, 2013 "I Give Because..." theme focuses on unique role Lab plays in local communities LOS ALAMOS, N.M., Dec. 17, 2013-Nearly $2 million has been pledged by Los Alamos National Laboratory employees to United Way and other eligible nonprofit programs during the Laboratory's 2014 Employee Giving Campaign. Los Alamos National Security, LLC, which manages and operates the Laboratory for the

  17. Sandia National Laboratories | National Nuclear Security Administration |

    National Nuclear Security Administration (NNSA)

    (NNSA) Sandia National Laboratories Sandia National Laboratories DE-AC04-94AL85000 Operated by Sandia Corporation a Subsidiary of Lockheed Martin Corporation Contract Conformed 09/30/2015 to Modification 0588. View previous Sandia Contract and Mods (M081-A201). BASIC Contract (Official) Modifications (Official) Funding Mods Available Upon Request Conformed Contract (Updated 09/30/2015 to Mod 0588) (Unofficial) SNL M202 Section A (Supersedes Basic and all Mods) (pdf, 397KB) SNL M216 (9/15/04)

  18. Conference Center | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    UGA-SREL Conference Center front view UGA-SREL Conference Center large conference room Large conference room small conference room Small conference room The University of Georgia - Savannah River Ecology Laboratory Conference Center is a 5,000-square-foot multi-purpose facility located on the U.S. Department of Energy's Savannah River Site (SRS) near Aiken, S.C. The facility is used by the Savannah River Ecology Laboratory, the Department of Energy, schools, businesses, and other groups, to host

  19. Latest News Releases | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Latest News Releases Ames Laboratory Chief Research Officer finalists announced 08/22/2016 Five finalists have been announced for the position of Chief Research Officer for Ames Laboratory. Each finalist will have a day and a half on-site interview, including a public forum. The public forums will all be held in Spedding Hall Auditorium (Room 301) from 3:30 - 5:00 p.m. on the date listed below for each of the finalists. Click on the candidate's name to view their curriculum vitae. Finalists are:

  20. Sandia National Laboratories: About Sandia: Laboratories' Foundation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories Foundation Capabilties Sandia's ability to deliver on its national security missions is built on a strong foundation, which originated in the early days of the Laboratories' nuclear weapons program. As we think about it today, the foundation with all its component parts drives Sandia to achieve its mission strategies. We invest in our vital resources - people, research, and facilities and tools - to build a unique set of capabilities that enable mission delivery. Capabilities The

  1. Sandia National Laboratories: Electrostatic Discharge (ESD) Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrostatic Discharge (ESD) Laboratory We have field and laboratory capabilities to measure electrostatic environment generation, storage, and charge transfer effects. Non-contact electrostatic field surveillance techniques are available to monitor charge generation of conductors or dielectrics, and induction or physical contact charging of wiring or pin voltage for electrical system components. The Sandia severe personnel electrostatic discharge simulator, with a maximum charge voltage of 25

  2. LCLS Sample Preparation Laboratory | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LCLS Sample Preparation Laboratory Kayla Zimmerman | (650) 926-6281 Lisa Hammon, LCLS Lab Coordinator Welcome to the LCLS Sample Preparation Laboratory. This small general use wet lab is located in Rm 109 of the Far Experimental Hall near the MEC, CXI, and XCS hutches. It conveniently serves all LCLS hutches and is available for final stage sample preparation. Due to space limitations, certain types of activities may be restricted and all access must be scheduled in advance. User lab bench

  3. Sandia National Laboratories: Laboratories' Strategic Framework

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Strategic Framework Vision, Mission, and Values Strategic Framework Mission Areas Laboratories Foundation Strategic Objectives and Crosscuts About Strategic Framework strategic framework Sandia continues to be engaged in the significant demands of the nation's nuclear weapons modernization program while conducting a whole range of activities in broader national security. The Laboratories' strategic framework drives strategic decisions about the totality of our work and has positioned our

  4. INL Laboratory Scale Atomizer

    SciTech Connect (OSTI)

    C.R. Clark; G.C. Knighton; R.S. Fielding; N.P. Hallinan

    2010-01-01

    A laboratory scale atomizer has been built at the Idaho National Laboratory. This has proven useful for laboratory scale tests and has been used to fabricate fuel used in the RERTR miniplate experiments. This instrument evolved over time with various improvements being made ‘on the fly’ in a trial and error process.

  5. Pacific Northwest National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Applied Mathematics "Error analysis of finite element method for Poisson-Nernst-Planck equations" View All Recent Publications Doing Business with PNNL Tour PNNL Virtually ...

  6. The BetterBuildings View

    Broader source: Energy.gov [DOE]

    The BetterBuildings View Newsletter, April 2011, from the U.S. Department of Energy's Better Buildings Neighborhood Program.

  7. Electronic Fabrication & Repair | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electronic Fabrication & Repair The Electronics group provides custom design and fabrication of electronic equipment.. We convert ideas into custom-finished equipment in our shop using ORCAD Schematic Capture and PCB Layout software in conjunction with our PCB machine to make prototype circuit boards in-house. Our technicians also aid in automating and controlling research project instrumentation using Texas Instruments LabView. We repair all kinds of scientific and laboratory electronic and

  8. ORISE: Worker Health Studies - Beryllium Testing Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BeLPT Process Diagram BeLPT Process Diagram Click image for larger view Oak Ridge Institute for Science Education Beryllium Testing Laboratory Beryllium is a metal that is primarily used as a hardening agent in alloys. Its low density, heat stability and high melting point have made it of benefit to the aerospace and defense industries. However, beryllium dust or fumes produced during machining or manufacturing activities can cause sensitivity in some persons that may lead to chronic beryllium

  9. Jefferson Lab - Laboratory Directed Research & Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an LDRD Proposal or LOI View Submitted FY17 LDRD Proposals Proposals from Previous Years Create an LDRD Project Report Mid-year Report Template Mid-year Report Instructions Annual Report Template Annual Report Instructions LDRD Reports LDRD Publications The JLab LDRD program documentation has been modeled on the material developed by SLAC for its LDRD program Laboratory Directed Research & Development Formal LDRD Plans FT16 Plan FY15 Plan FY14 Plan

  10. Jefferson Lab - Laboratory Directed Research & Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an LDRD Proposal or LOI View Submitted FY17 LDRD Proposals Proposals from Previous Years Create an LDRD Project Report Mid-year Report Template Mid-year Report Instructions Annual Report Template Annual Report Instructions LDRD Reports LDRD Publications The JLab LDRD program documentation has been modeled on the material developed by SLAC for its LDRD program Laboratory Directed Research & Development LDRD Home Lab Directed Research and Development An important element of Jefferson Lab's

  11. Type A Accident Investigation Board Report on the January 17, 1996, Electrical Accident With Injury in Building 209, Technical Area 21, Tritium Science and Fabrication Facility, Los Alamos National Laboratory

    Broader source: Energy.gov [DOE]

    This report is an independent product of the Type A Accident Investigation Board appointed by Tara O’Toole, M.D., M.P.H., Assistant Secretary for Environment, Safety and Health (EH-1).

  12. LABORATORY NEW HIRE NOTICE: LABORATORY DELAYED OPENING OR CLOSURE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LABORATORY NEW HIRE NOTICE: LABORATORY DELAYED OPENING OR CLOSURE DUE TO INCLEAMENT WEATHER During the winter months, the Los Alamos National Laboratory (LANL) may at times...

  13. Protective laser beam viewing device

    DOE Patents [OSTI]

    Neil, George R.; Jordan, Kevin Carl

    2012-12-18

    A protective laser beam viewing system or device including a camera selectively sensitive to laser light wavelengths and a viewing screen receiving images from the laser sensitive camera. According to a preferred embodiment of the invention, the camera is worn on the head of the user or incorporated into a goggle-type viewing display so that it is always aimed at the area of viewing interest to the user and the viewing screen is incorporated into a video display worn as goggles over the eyes of the user.

  14. False color viewing device

    DOE Patents [OSTI]

    Kronberg, J.W.

    1991-05-08

    This invention consists of a viewing device for observing objects in near-infrared false-color comprising a pair of goggles with one or more filters in the apertures, and pads that engage the face for blocking stray light from the sides so that all light reaching, the user`s eyes come through the filters. The filters attenuate most visible light and pass near-infrared (having wavelengths longer than approximately 700 nm) and a small amount of blue-green and blue-violet (having wavelengths in the 500 to 520 nm and shorter than 435 nm, respectively). The goggles are useful for looking at vegetation to identify different species and for determining the health of the vegetation, and to detect some forms of camouflage.

  15. False color viewing device

    DOE Patents [OSTI]

    Kronberg, James W.

    1992-01-01

    A viewing device for observing objects in near-infrared false-color comprising a pair of goggles with one or more filters in the apertures, and pads that engage the face for blocking stray light from the sides so that all light reaching the user's eyes come through the filters. The filters attenuate most visible light and pass near-infrared (having wavelengths longer than approximately 700 nm) and a small amount of blue-green and blue-violet (having wavelengths in the 500 to 520 nm and shorter than 435 nm, respectively). The goggles are useful for looking at vegetation to identify different species and for determining the health of the vegetation, and to detect some forms of camouflage.

  16. False color viewing device

    DOE Patents [OSTI]

    Kronberg, J.W.

    1992-10-20

    A viewing device for observing objects in near-infrared false-color comprising a pair of goggles with one or more filters in the apertures, and pads that engage the face for blocking stray light from the sides so that all light reaching the user's eyes come through the filters. The filters attenuate most visible light and pass near-infrared (having wavelengths longer than approximately 700 nm) and a small amount of blue-green and blue-violet (having wavelengths in the 500 to 520 nm and shorter than 435 nm, respectively). The goggles are useful for looking at vegetation to identify different species and for determining the health of the vegetation, and to detect some forms of camouflage. 7 figs.

  17. Xing Chen | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Xing Chen Principal Investigator and Group Leader - Nanostructured Materials Group Dr. Xing Chen is an Applications Scientist and group leader of the Nanostructured Materials Group in the Energy Systems Division at Argonne National Laboratory. Dr. Chen received his B.S. in Applied Physics from University of Science and Technology of China and Ph.D. in Physics from University of Delaware, and worked as a postdoctoral appointee at Argonne before promoted as a staff scientist. Holder of more than a

  18. Chemical Physics | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics FWP/Project Description: Project Leader(s): James Evans, Mark Gordon Principal Investigators: James Evans, Mark Gordon, Klaus Ruedenberg, Theresa Windus Key Scientific Personnel: Da-Jiang Liu, Michael Schmidt. The theoretical Chemical Physics program at Ames Laboratory supports integrated efforts in electronic structure theory and non-equilibrium statistical mechanical & multiscale modeling. The primary focus is on the development and especially application of methods that enable the

  19. Going green earns Laboratory gold

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Going green earns Laboratory gold Going green earns Laboratory gold The Laboratory's newest facility is its first to achieve both the Leadership in Energy and Environmental Design...

  20. Laboratory program helps small businesses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab helps small businesses Laboratory program helps small businesses The free program, run jointly by Los Alamos and Sandia National Laboratories, leverages the laboratories'...

  1. Budget Office | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that the Laboratory complies with all Department Of Energy cost controls Providing decision-making support to senior Laboratory management Providing support to the Laboratory...

  2. Going green earns Laboratory gold

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Going green earns Laboratory gold Going green earns Laboratory gold The Laboratory's newest facility is its first to achieve both the Leadership in Energy and Environmental Design ...

  3. Mountain View Grand | Open Energy Information

    Open Energy Info (EERE)

    Mountain View Grand Jump to: navigation, search Name Mountain View Grand Facility Mountain View Grand Sector Wind energy Facility Type Small Scale Wind Facility Status In Service...

  4. Education | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Education Education The MFRC has established a network of Midwest crime laboratories and university-based forensic science programs. This network has two general goals: help universities become better casework, research, and development partners for crime laboratories; and to engage crime laboratories in university efforts. These efforts can better-prepare the next generation of forensic scientists, advance the state-of-the-art in forensic science research, and influence students whose

  5. Sandia National Laboratories: Locations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Locations Locations Sandia California CINT photo A national and international presence Sandia operates laboratories, testing facilities, and offices in multiple sites around the United States and participates in research collaborations around the world. Sandia's executive management offices and larger laboratory complex are located in Albuquerque, New Mexico. Our second principal laboratory is located in Livermore, California. Although most of our 9,840 employees work at these two locations,

  6. National Renewable Energy Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8 Annual Review Roger Taylor November 17, 2008 National Renewable Energy Laboratory Innovation for Our Energy Future Major DOE National Laboratories Brookhaven Pacific Northwest Lawrence Berkeley Lawrence Livermore          INEL National Renewable Energy Laboratory Los Alamos Sandia Argonne Oak Ridge   Defense Program Labs  Office of Science Labs  Energy Efficiency and Renewable Energy Lab  Environmental Management Lab  Fossil Energy Lab NETL 

  7. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    purchases nearly $1 billion in goods and services last fiscal year December 6, 2010 Surpasses goals for small business procurements LOS ALAMOS, New Mexico, December 6, 2010-Los Alamos National Laboratory purchased nearly $1 billion in goods and services in the 2010 fiscal year ending September 30, 2010. The $925 million in purchases was helped in part by funding from the American Reinvestment and Recovery Act the Laboratory received for environmental remediation and basic research.The Laboratory

  8. Idaho_National_Laboratory

    Office of Environmental Management (EM)

    Stacey Francis Small Business Program Manager Idaho National Laboratory 2 Idaho National Laboratory Prime Contractors * Idaho National Laboratory - Managed and Operated by Battelle Energy Alliance, LLC - Office of Nuclear Energy * Idaho Cleanup Project - Managed by Fluor Idaho, LLC - Office of Environmental Management * Naval Reactor Facility - Managed by Bechtel Marine Propulsion Corporation - Naval Nuclear Propulsion Program Department of Energy - Idaho 3 We Maintain: * 890 square miles * 111

  9. Laboratory History | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory History The National Renewable Energy Laboratory has a rich history of renewable energy and energy efficiency research and innovation that spans decades. NREL's Roots: The Creation of SERI NREL was designated a national laboratory by President George Bush on September 16, 1991. But the birth of the organization began more than two decades before. Learn about the global politics, energy landscape, and environmental drivers that led to the creation of NREL's predecessor, the Solar

  10. Laboratory announces 2008 Fellows

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab announces 2008 Fellows Laboratory announces 2008 Fellows Robert C. Albers, Paul A. Johnson and Kurt E. Sickafus recognized for contributions. December 4, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in

  11. CASL - Idaho National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Idaho National Laboratory Idaho Falls, ID INL is the lead nuclear energy (NE) laboratory for the U.S. Department of Energy. The laboratory has designed and operated 52 test reactors, including EBR-1, the world's first nuclear power plant Key Contributions System safety analysis Multiscale fuel performance simulation Multiphysics coupling framework (MOOSE) Reactor physics Multiphase flow Validation Nuclear Science User Facilities Key Outcomes Test stand for NE programs Virtual Environment for

  12. Sandia National Laboratories: Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facebook Twitter YouTube Flickr RSS Pathfinder Airborne ISR Systems Publications Sandia National Laboratories: Synthetic Aperature Radar (SAR): Publications Reports authored by Sandia National Laboratories 63 results OSTI ID Report No. Type Title Authors Pub. Date Researcher Sponsor 1121978 Full Text Available SAND2013-10619 Technical Report Window taper functions for subaperture processing. Doerry, Armin Walter Dec. 2013 Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

  13. Savannah River National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Savannah River National Laboratory srnl.doe.gov SRNL is a DOE National Laboratory operated by Savannah River Nuclear Solutions. At a glance 'Tin whiskers' suppression method Researchers at the Savannah River National Laboratory (SRNL) have identified a treatment method that slows or prevents the formation of whiskers in lead-free solder. Tin whiskers spontaneously grow from thin films of tin, often found in microelectronic devices in the form of solders and platings. Background This problem was

  14. Mentoring | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mentoring Why mentoring? As one of the largest laboratories in the nation for science and engineering research, Argonne National Laboratory is home to some of the most prolific and well-renowned scientists and engineers. To maintain an environment that fosters innovative research, we are committed to ensuring the success of our major players on the frontlines of our research-our Postdoctoral Scientists. The Argonne National Laboratory has a long-standing reputation as a place that offers

  15. jevans | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    jevans Ames Laboratory Profile James Evans Associate Chemical & Biological Sciences 505 Zaffarano Phone Number: 515-294-1638 Email Address: evans@ameslab.gov Ames Laboratory Associate and Professor, Iowa State University Website(s): Evans Research Group Ames Laboratory Research Projects: Chemical Physics Theoretical/Computational Tools for Energy-Relevant Catalysis Education: Postdoctoral Fellow, Chemical Physics, Iowa State University, 1979-81 Ph.D. Mathematical Physics, University of

  16. jwang | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    jwang Ames Laboratory Profile Jigang Wang Assoc Prof Division of Materials Science & Engineering B15 Spedding Phone Number: 515-294-2964 Email Address: jgwang@iastate.edu Ames Laboratory Research Projects: Metamaterials Education: Ph.D. Electrical Engineering, Rice University, Houston, TX, 2005 M.S. Electrical Engineering, Rice University, Houston, TX, 2002 B.S. Physics, Jilin University, Changchun, P. R. China, 2000 Professional Appointments: Associate Scientist, Ames Laboratory, Iowa State

  17. makinc | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    makinc Ames Laboratory Profile Mufit Akinc Associate Division of Materials Science & Engineering 2220C Hoover Phone Number: 515-294-0738 Email Address: makinc@iastate.edu Ames Laboratory Associate and Professor, Iowa State University Ames Laboratory Research Projects: Bioinspired Materials Education: Post-doc Materials Sciences, Argonne National Lab., Argonne, IL, 1977 Ph.D. Ceramic Engineering, Iowa State University, Ames IA, 1977 M.S. Chemistry, Middle East Technical University, Ankara,

  18. mark | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mark Ames Laboratory Profile Mark Gordon Associate Chemical & Biological Sciences 201 Spedding Phone Number: 515-294-0452 Email Address: mark@si.msg.chem.iastate.edu Ames Laboratory Associate and Distinguished Professor, Iowa State University Website(s): Mark Gordon's Quantum Theory Group Ames Laboratory Research Projects: Chemical Physics Theoretical/Computational Tools for Energy-Relevant Catalysis Education: Postdoctoral Associate, Iowa State University, 1967-1970 Ph.D. Carnegie-Mellon

  19. sadow | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sadow Ames Laboratory Profile Aaron Sadow Associate Chemical & Biological Sciences 2101B Hach Phone Number: 515-294-8069 Email Address: sadow@iastate.edu Scientist, Ames Laboratory and Associate Professor, Iowa State University Website(s): Sadow's Group Page Ames Laboratory Research Projects: Homogeneous and Interfacial Catalysis in 3D Controlled Environment Education: Postdoctoral Associate, Swiss Federal Institute of Technology (ETH), 2003-2005 PhD., University of California, Berkeley,

  20. Alamos National Laboratory's 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    .1 million pledged during Los Alamos National Laboratory's 2013 employee giving campaign December 17, 2012 LOS ALAMOS, NEW MEXICO, December 17, 2012-Los Alamos National Laboratory employees have again demonstrated concern for their communities and those in need by pledging a record $2.13 million to United Way and other eligible nonprofit programs. Los Alamos National Security, LLC, which manages and operates the Laboratory for the National Nuclear Security Administration, plans to prorate its $1

  1. Type B Accident Investigation of the January 10, 2006, Flash...

    Broader source: Energy.gov (indexed) [DOE]

    Independent Oversight Follow-up Review, Savannah River National Laboratory - January 2012 Type B Accident Investigation of the Arc Flash at Brookhaven National Laboratory, April ...

  2. Type B Accident Investigation of the Arc Flash at Brookhaven...

    Energy Savers [EERE]

    Arc Flash at Brookhaven National Laboratory, April 14, 2006 Type B Accident Investigation of the Arc Flash at Brookhaven National Laboratory, April 14, 2006 February 10, 2006 An ...

  3. Type B Accident Investigation Board Report of the Brookhaven...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory Employee Injury at Building 1005H on October 9, 2009 Type B Accident Investigation Board Report of the Brookhaven National Laboratory Employee Injury at Building ...

  4. Muncrief | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Muncrief Ames Laboratory Profile Diane Muncrief Personnel Officer Human Resources Office Director's Office 151 TASF Phone Number: 515-294-5731 Email Address: muncrief@ameslab.gov

  5. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    accomplishment," Deputy Laboratory Director and this year's campaign champion Ike Richardson said of this year's pledged - 2 - amount. "The LANL team raised 1.5 million, which...

  6. tchou | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tchou Ames Laboratory Profile Tsung-han Chou Student Associate Division of Materials Science & Engineering 132 Spedding Phone Number: 515-294-6822 Email Address: tchou...

  7. dpaulc | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dpaulc Ames Laboratory Profile Daniel Cole Student Associate Chemical & Biological Sciences 10 Carver Co-Lab Phone Number: 515-294-1235 Email Address: dpaulc...

  8. aatesin | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    aatesin Ames Laboratory Profile Abdurrahman Atesin Associate Chemical & Biological Sciences 2311 Hach Phone Number: 515-294-7568 Email Address: aatesin

  9. abhranil | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    abhranil Ames Laboratory Profile Abhranil Biswas Grad Asst-RA Chemical & Biological Sciences 2236 Hach Phone Number: 515-294-7568 Email Address: abiswas

  10. aboesenb | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    aboesenb Ames Laboratory Profile Adam Boesenberg Associate Division of Materials Science & Engineering 110 Metals Development Phone Number: 515-294-5903 Email Address: aboesenb

  11. achatman | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    achatman Ames Laboratory Profile Andrew Chatman Student Associate Division of Materials Science & Engineering 37 Spedding Phone Number: 515-294-4446 Email Address: achatman

  12. adf | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    adf Ames Laboratory Profile Alex Findlater Student Associate Chemical & Biological Sciences 231 Spedding Phone Number: 515-294-7568 Email Address: adf

  13. ahaupert | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ahaupert Ames Laboratory Profile Alysha Haupert Custodian I Facilities Services 241C Metals Development Phone Number: 515-294-4360 Email Address: ahaupert

  14. aklekner | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    aklekner Ames Laboratory Profile Alon Klekner Engr Tech I Facilities Services 167C Metals Development Phone Number: 515-294-1589 Email Address: aklekner

  15. alicia | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    alicia Ames Laboratory Profile Alicia Carriquiry Chemical & Biological Sciences 3419 Snedecor Phone Number: 515-294-7782 Email Address: alicia

  16. andresg | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    andresg Ames Laboratory Profile Andres Garcia Grad Asst-RA Chemical & Biological Sciences 307 Wilhelm Phone Number: 515-294-6027 Email Address: andresg

  17. annacari | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    annacari Ames Laboratory Profile Anna Prisacari Grad Asst-RA Simulation, Modeling, & Decision Science 1620 Howe Phone Number: 515-294-8060 Email Address: annacari

  18. arbenson | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    arbenson Ames Laboratory Profile Alex Benson Lab Assistant-X Division of Materials Science & Engineering 258 Metals Development Phone Number: 515-294-4446 Email Address: arbenson

  19. ashheath | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ashheath Ames Laboratory Profile Ashley Heath Lab Assistant-X Simulation, Modeling, & Decision Science 1620 Howe Phone Number: 515-294-3891 Email Address: ashheath

  20. ashleymc | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ashleymc Ames Laboratory Profile Ashley Cruikshank Grad Asst-RA Chemical & Biological Sciences 2236 Hach Phone Number: 515-294-7568 Email Address: ashleymc

  1. bartine | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bartine Ames Laboratory Profile Jeffrey Bartine Program Coord III Environmental, Safety, Health, and Assurance G40 TASF Phone Number: 515-294-4743 Email Address: bartine

  2. bastaw | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bastaw Ames Laboratory Profile Ashraf Bastawros Associate Chemical & Biological Sciences 2347 Howe Phone Number: 515-294-3039 Email Address: bastaw

  3. baugie | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    baugie Ames Laboratory Profile Brent Augustine Student Associate Division of Materials Science & Engineering 206 Wilhelm Phone Number: 309-748-0439 Email Address: baugie

  4. bbergman | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bbergman Ames Laboratory Profile Brian Bergman Facil Mechanic III Facilities Services Maintenance Shop Phone Number: 515-294-4346 Email Address: bbergman@ameslab.gov

  5. bboote | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bboote Ames Laboratory Profile Brett Boote Grad Asst-RA Chemical & Biological Sciences 0712 Gilman Phone Number: 515-294-8586 Email Address: bboote@iastate.edu

  6. bcleland | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bcleland Ames Laboratory Profile Beth Cleland Custodian I Facilities Services 241C Metals Development Phone Number: 515-294-5446 Email Address: bcleland

  7. bender | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bender Ames Laboratory Profile Lee Bendickson Lab Tech III Division of Materials Science & Engineering 3288 Molecular Biology Bldg Phone Number: 515-294-5682 Email Address: bender

  8. bkkuhn | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bkkuhn Ames Laboratory Profile Bridget Kuhn Office Assistant-X Human Resources Office 118 TASF Phone Number: 515-294-2680 Email Address: bkkuhn@iastate.edu

  9. boehmer | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    boehmer Ames Laboratory Profile Anna Boehmer Postdoc Res Associate Division of Materials Science & Engineering A15 Zaffarano Phone Number: 515-294-3246 Email Address: boehmer

  10. boersma | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    boersma Ames Laboratory Profile Stephanie Boersma Director I Budget Office 231 TASF Phone Number: 515-294-8785 Email Address: boersma

  11. bspire | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bspire Ames Laboratory Profile Bruce Spire Erd Machinist Sr Facilities Services 160 Metals Development Phone Number: 515-294-5428 Email Address: bspire

  12. burghera | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    burghera Ames Laboratory Profile Alexander Burgher Facil Mechanic III Facilities Services 158B Metals Development Phone Number: 515-294-3756 Email Address: burghera

  13. byrd | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    byrd Ames Laboratory Profile David Byrd Asst Scientist I Division of Materials Science & Engineering 109 Metals Development Phone Number: 515-294-5747 Email Address: byrd

  14. camacken | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    camacken Ames Laboratory Profile Cameron Mackenzie Associate Simulation, Modeling, & Decision Science 3029 Black Engineering Phone Number: 515-294-6283 Email Address: camacken

  15. carraher | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carraher Ames Laboratory Profile Jack Carraher Postdoc Res Associate Chemical & Biological Sciences 2118 BRL Phone Number: 515-294-5826 Email Address: carraher

  16. cbandas | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cbandas Ames Laboratory Profile Christopher Bandas Associate Chemical & Biological Sciences 2311 Hach Phone Number: 515-294-7568 Email Address: cbandas

  17. cbenetti | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cbenetti Ames Laboratory Profile Caleb Benetti Student Associate Division of Materials Science & Engineering A204 Zaffarano Phone Number: 515-294-4446 Email Address: cbenetti

  18. ccowan | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ccowan Ames Laboratory Profile Carol Cowan Secretary III Human Resources Office 151 TASF Phone Number: 515-294-2680 Email Address: ccowan

  19. chelseya | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    chelseya Ames Laboratory Profile Chelsey Aisenbrey Program Coord II Human Resources Office 151 TASF Phone Number: 515-294-8062 Email Address: chelseya

  20. chenx | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    chenx Ames Laboratory Profile Xiang Chen Associate Division of Materials Science & Engineering 249 Spedding Phone Number: 515-294-4446 Email Address: chenx

  1. crossm | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    crossm Ames Laboratory Profile Jeanine Crosman Secretary III Facilities Services 158H Metals Development Phone Number: 515-294-3496 Email Address: crossm

  2. dballal | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dballal Ames Laboratory Profile Deepti Ballal Postdoc Res Associate Division of Materials Science & Engineering 112 Wilhelm Phone Number: 515-294-9636 Email Address: dballal

  3. dboeke | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dboeke Ames Laboratory Profile David Boeke Research Tech Sr Division of Materials Science & Engineering 122 Metals Development Phone Number: 515-294-5816 Email Address: dboeke

  4. dfreppon | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dfreppon Ames Laboratory Profile Daniel Freppon Grad Asst-RA Chemical & Biological Sciences 0712 Gilman Phone Number: 515-294-8586 Email Address: dfreppon

  5. djchadde | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    djchadde Ames Laboratory Profile David Chadderdon Grad Asst-RA Division of Materials Science & Engineering 2140 BRL Phone Number: 515-294-4446 Email Address: djchadde

  6. dmeyer | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dmeyer Ames Laboratory Profile Dale Meyer Engr Tech II Facilities Services 158D Metals Development Phone Number: 515-294-3614 Email Address: dmeyer@ameslab.gov

  7. eckels | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    eckels Ames Laboratory Profile David Eckels Associate Chemical & Biological Sciences 105 Spedding Phone Number: 515-294-7943 Email Address: eckels

  8. eguidez | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    eguidez Ames Laboratory Profile Emilie Guidez Associate Chemical & Biological Sciences 201 Spedding Phone Number: 515-294-7568 Email Address: eguidez

  9. finzell | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    finzell Ames Laboratory Profile Peter Finzell Grad Asst-RA Simulation, Modeling, & Decision Science 1620 Howe Phone Number: 515-294-8060 Email Address: surgeftr

  10. flanders | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    flanders Ames Laboratory Profile Duane Flanders Sheet Metal Mech Facilities Services Maintenance Shop Phone Number: 515-294-1746 Email Address: flanders@ameslab.gov

  11. galvin | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    galvin Ames Laboratory Profile Glen Galvin Mgr Info Tech I Simulation, Modeling, & Decision Science 1620 Howe Phone Number: 515-294-6604 Email Address: galvin

  12. Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Assessment of Radionuclide Monitoring in the CSRA Savannah River NERP Research ... Upcoming Seminars The Savannah River Ecology Laboratory is a research unit of the ...

  13. carter | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carter Ames Laboratory Profile Steven Carter Engr IV Facilities Services 158 Metals Development Phone Number: 515-294-7889 Email Address: carter@ameslab.gov...

  14. Los Alamos National Laboratory's

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    produced by current operations. LANL and regulatory agencies survey the air, soil, sediment, groundwater, and surface water around the Laboratory to make sure contaminants from...

  15. marit | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Honors & Awards: AAAS Fellow, 2007 Regents Award for Faculty Excellence, 2003 Inventor Incentive Award, Ames Laboratory, 2002 Iowa Regents Faculty Citation Award, 2000...

  16. jwgong | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Laboratory Profile Jianwu Gong Student Associate Division of Materials Science & Engineering Chemical & Biological Sciences 326 Wilhelm Phone Number: 515-294-7568 Email...

  17. ackerman | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ackerman Ames Laboratory Profile David Ackerman Associate Chemical & Biological Sciences 2025 Black Engineering Phone Number: 515-294-1638 Email Address: ackerman...

  18. Projects | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Tool Mark Characterization Development of an AccuTOF-DART Database for Use by Forensic Laboratories Forensic Technology Center of Excellence MFRC Training Development &...

  19. dscomito | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dscomito Ames Laboratory Profile Daniel Comito Student Associate Division of Materials Science & Engineering A524 Zaffarano Phone Number: 515-294-9800 Email Address: dscomito...

  20. Sandia National Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of, or supplemental to, this entry is a fair and accurate representation of this ... Sandia National Laboratories' (Sandia) Xyce Parallel Circuit Simulator is the world's ...

  1. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3, 2015 Projects save taxpayer dollars, promote environmental stewardship, sustainability LOS ALAMOS, N.M., April 22, 2015-Nearly 400 Los Alamos National Laboratory employees on 32...

  2. National Laboratory Photovoltaics Research

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE supports photovoltaic (PV) research and development and facilities at its national laboratories to accelerate progress toward achieving the SunShot Initiative's technological and economic...

  3. NREL: Research Facilities - Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In the lab, researchers study plant structures from the tissue scale to the molecular ... Photobiological Laboratory Researchers use this lab for enzyme engineering to block the ...

  4. The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    David Jiles, Palmer Endowed Chair of the electrical and computer engineering ... When Ames Laboratory was experiencing a seemingly elevated number of power outages, Lab staff ...

  5. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sustainability award October 14, 2010 LOS ALAMOS, New Mexico, October 14, 2010-Los Alamos National Laboratory recently received an Environmental Sustainability (EStar) ...

  6. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6th Hazmat Challenge July 31, 2012 Competition tests skills of hazardous materials response teams LOS ALAMOS, New Mexico, July 31, 2012 What: Los Alamos National Laboratory (LANL)...

  7. covey | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    covey Ames Laboratory Profile Debra Covey Director II Director's Office Office of Sponsored Research Administration 311 TASF Phone Number: 515-294-1048 Email Address: covey...

  8. gbjorlnd | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gbjorlnd Ames Laboratory Profile Grace Bjorland Lab Assistant-X Division of Materials Science & Engineering B36 Spedding Phone Number: 515-294-4446 Email Address: gbjorlnd

  9. gharper | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gharper Ames Laboratory Profile Gregory Harper Sys Control Tech Facilities Services Maintenance Shop Phone Number: 515-294-1746 Email Address: gharper

  10. gillilan | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gillilan Ames Laboratory Profile Steven Gilliland Sys Control Tech Facilities Services Maintenance Shop Phone Number: 515-294-3078 Email Address: gillilan

  11. grootvel | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    grootvel Ames Laboratory Profile Mark Grootveld Mgr Facility Serv Facilities Services 158 Metals Development Phone Number: 515-294-7895 Email Address: grootveld@ameslab.gov

  12. gsbacon | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gsbacon Ames Laboratory Profile Graham Bacon Student Associate Division of Materials Science & Engineering 129 Wilhelm Phone Number: 515-294-4446 Email Address: gsbacon

  13. guan | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    guan Ames Laboratory Profile Yong Guan Associate Chemical & Biological Sciences 3219 Coover Phone Number: 515-294-8378 Email Address: guan

  14. haberer | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    haberer Ames Laboratory Profile Charles Haberer Facil Mechanic II Facilities Services 158 Metals Development Phone Number: 515-294-3757 Email Address: haberer

  15. hanrahanm | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hanrahanm Ames Laboratory Profile Michael Hanrahan Student Associate Chemical & Biological Sciences 331 Spedding Phone Number: 515-294-7568 Email Address: mph

  16. hauptman | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hauptman Ames Laboratory Profile John Hauptman Associate Facilities Services A411 Zaffarano Phone Number: 515-294-8572 Email Address: hauptman

  17. hcelliott | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hcelliott Ames Laboratory Profile Henrietta Elliott Custodian I Facilities Services 241C Metals Development Phone Number: 515-294-5446 Email Address: hcelliott

  18. herrman | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    herrman Ames Laboratory Profile Terrance Herrman Engr V Facilities Services 167 Metals Development Phone Number: 515-294-7896 Email Address: herrman

  19. jac | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    jac Ames Laboratory Profile Justin Conrad Student Associate Chemical & Biological Sciences 305 TASF Phone Number: 515-294-4604 Email Address: jac

  20. jbobbitt | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    jbobbitt Ames Laboratory Profile Jonathan Bobbitt Grad Asst-RA Chemical & Biological Sciences 0712 Gilman Phone Number: 515-294-4285 Email Address: jbobbitt

  1. jboschen | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    jboschen Ames Laboratory Profile Jeffery Boschen Grad Asst-RA Chemical & Biological Sciences 124 Spedding Phone Number: 515-294-7568 Email Address: jboschen

  2. jhahn | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    jhahn Ames Laboratory Profile Jane Hahn Facilities Services 158B Metals Development Phone Number: 515-294-3756 Email Address: jhahn@ameslab.gov

  3. jrblaum | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    jrblaum Ames Laboratory Profile Jacqueline Blaum Student Associate Division of Materials Science & Engineering 37 Spedding Phone Number: 515-294-4446 Email Address: jrblaum

  4. kabryden | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    kabryden Ames Laboratory Profile Kristy Bryden Adj Asst Prof Simulation, Modeling, & Decision Science 149 Music Phone Number: 515-294-3971 Email Address: kabryden

  5. kasuni | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    kasuni Ames Laboratory Profile Walikadage Boteju Grad Asst-RA Chemical & Biological Sciences Critical Materials Institute 2306 Hach Phone Number: 515-294-6342 Email Address: kasuni

  6. kbratlie | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    kbratlie Ames Laboratory Profile Kaitlin Bratlie Associate Division of Materials Science & Engineering 2220 Hoover Phone Number: 515-294-7304 Email Address: kbratlie

  7. kgalayda | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    kgalayda Ames Laboratory Profile Katherine Galayda Student Associate Chemical & Biological Sciences B5 Spedding Phone Number: 515-294-3887 Email Address: kgalayda@iastate.edu

  8. klclark | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    klclark Ames Laboratory Profile Katie Clark Program Coord II Human Resources Office 151 TASF Phone Number: 515-294-8753 Email Address: klclark@ameslab.gov

  9. kmbryden | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    kmbryden Ames Laboratory Profile Kenneth Bryden Prof Simulation, Modeling, & Decision Science 2274 Howe Phone Number: 515-294-3891 Email Address: kmbryden

  10. lcademar | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lcademar Ames Laboratory Profile Ludovico Cademartiri Associate Division of Materials Science & Engineering 2240J Hoover Phone Number: 515-294-4549 Email Address: lcademar

  11. lenyeart | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lenyeart Ames Laboratory Profile Linda Enyeart Admin Spec II Chemical & Biological Sciences 144A Spedding Phone Number: 515-294-6029 Email Address: lenyeart@ameslab.gov

  12. liza | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    liza Ames Laboratory Profile Liza Alexander Student Associate Chemical & Biological Sciences 2242 Molecular Biology Bldg Phone Number: 515-294-6116 Email Address: liza@iastate.edu

  13. long | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    long Ames Laboratory Profile Catherine Long Supv-Custodial Svc Facilities Services 158G Metals Development Phone Number: 515-294-4360 Email Address: long@ameslab.gov

  14. lucasr | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lucasr Ames Laboratory Profile Lucas Rozendaal Associate Facilities Services 158 Metals Development Phone Number: 515-294-3757 Email Address: lucasr@iastate.edu

  15. maheedhar | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    maheedhar Ames Laboratory Profile Maheedhar Gunasekharan Grad Asst-RA Chemical & Biological Sciences 327 Wilhelm Phone Number: 515-294-7568 Email Address: maheedhar@ameslab.gov

  16. mbonilla | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mbonilla Ames Laboratory Profile Claudia Bonilla escobar Postdoc Res Associate Division of Materials Science & Engineering 252 Spedding Phone Number: 515-294-2041 Email Address: mbonilla

  17. mdotzler | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mdotzler Ames Laboratory Profile Mike Dotzler Facil Mechanic III Facilities Services Maintenance Shop Phone Number: 515-294-4346 Email Address: mdotzler

  18. mduenas | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mduenas Ames Laboratory Profile Maria Duenas fadic Student Associate Chemical & Biological Sciences 35A Carver Co-Lab Phone Number: 515-294-2368 Email Address: mduenas

  19. mhenely | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mhenely Ames Laboratory Profile Michael Henely Custodian I Facilities Services 241C Metals Development Phone Number: 515-294-5446 Email Address: mhenely

  20. ndesilva | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ndesilva Ames Laboratory Profile Nuwan De silva Associate Chemical & Biological Sciences Critical Materials Institute 236 Wilhelm Phone Number: 515-294-7568 Email Address: ndesilva

  1. olsenjro | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    olsenjro Ames Laboratory Profile Jarrett Olsen Custodian I Facilities Services 241C Metals Development Phone Number: 515-294-4360 Email Address: olsenjro@ameslab.gov

  2. ppezzini | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ppezzini Ames Laboratory Profile Paolo Pezzini Postdoc Res Associate Simulation, Modeling, & Decision Science Off Campus Phone Number: 515-294-3891 Email Address: ppezzini

  3. qslin | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    qslin Ames Laboratory Profile Qisheng Lin Assoc Scientist Division of Materials Science & Engineering 353 Spedding Phone Number: 515-294-3513 Email Address: qslin@ameslab.gov

  4. rberrett | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rberrett Ames Laboratory Profile Ronald Berrett Sys Control Tech Facilities Services Maintenance Shop Phone Number: 515-294-1746 Email Address: rberrett

  5. rdanders | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rdanders Ames Laboratory Profile Ross Anderson Research Tech Sr Division of Materials Science & Engineering 109 Metals Development Phone Number: 515-294-5747 Email Address: rdanders

  6. rfry | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rfry Ames Laboratory Profile Robert Fry Electronics Tech I Facilities Services 258 Metals Development Phone Number: 515-294-4823 Email Address: rfry

  7. rgonzalez | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rgonzalez Ames Laboratory Profile Reymundo Gonzalez Associate Chemical & Biological Sciences 2262 Hach Phone Number: 515-294-7568 Email Address: rgonzalez01

  8. rmalmq | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rmalmq Ames Laboratory Profile Richard Malmquist Facil Mechanic III Facilities Services Maintenance Shop Phone Number: 515-294-1228 Email Address: rmalmq

  9. rodgers | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rodgers Ames Laboratory Profile Elizabeth Rodgers Program Coord III Office of Sponsored Research Administration Director's Office 305 TASF Phone Number: 515-294-1254 Email Address: rodgers

  10. rofox | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rofox Ames Laboratory Profile Rodney Fox Associate Chemical & Biological Sciences 3162 Sweeney Phone Number: 515-294-9104 Email Address: rofox

  11. sburkhow | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sburkhow Ames Laboratory Profile Sadie Burkhow Grad Asst-RA Chemical & Biological Sciences 0712 Gilman Phone Number: 515-294-7568 Email Address: sburkhow

  12. schenad | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    schenad Ames Laboratory Profile Shen Chen Grad Asst-TA/RA Division of Materials Science & Engineering 211 Physics Phone Number: 515-294-9361 Email Address: schenad

  13. seliger | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    seliger Ames Laboratory Profile Victoria Seliger Custodian I Facilities Services 241C Metals Development Phone Number: 515-294-4360 Email Address: seliger

  14. sjbajic | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sjbajic Ames Laboratory Profile Stanley Bajic Assoc Scientist Chemical & Biological Sciences 5 Spedding Phone Number: 515-294-8194 Email Address: sjbajic

  15. sumitc | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sumitc Ames Laboratory Profile Sumit Chaudhary Associate Division of Materials Science & Engineering 2124 Coover Phone Number: 515-294-0606 Email Address: sumitc

  16. takinyi | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    takinyi Ames Laboratory Profile Tina Akinyi Simulation, Modeling, & Decision Science 1620 Howe Phone Number: 515-294-3891 Email Address: takinyi

  17. tatesin | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tatesin Ames Laboratory Profile Tulay Atesin Associate Chemical & Biological Sciences 2262 Hach Phone Number: 515-294-7568 Email Address: tatesin@ameslab.gov

  18. tboell | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tboell Ames Laboratory Profile Tyler Boell Lab Assistant-X Division of Materials Science & Engineering 146 Metals Development Phone Number: 515-294-4446 Email Address: tboell

  19. tdball | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tdball Ames Laboratory Profile Teresa Ball Custodian I Facilities Services 241C Metals Development Phone Number: 515-294-4360 Email Address: tdball

  20. timma | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    timma Ames Laboratory Profile Timothy Anderson Associate Chemical & Biological Sciences B28 Spedding Phone Number: 515-294-7568 Email Address: timma

  1. tkales | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tkales Ames Laboratory Profile Thomas Ales Student Associate Division of Materials Science & Engineering 150 Metals Development Phone Number: 515-294-4446 Email Address: tkales

  2. vaclav | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    vaclav Ames Laboratory Profile Michael Vaclav Engr IV Facilities Services 158E Metals Development Phone Number: 515-294-7891 Email Address: vaclav

  3. valery | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    valery Ames Laboratory Profile Valery Borovikov Postdoc Res Associate Division of Materials Science & Engineering 205 Metals Development Phone Number: 515-294-4312 Email Address: valery

  4. vbalema | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    vbalema Ames Laboratory Profile Viktor Balema Division of Materials Science & Engineering 259 Spedding Phone Number: 515-294-4446 Email Address: vbalema

  5. vdahl | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    vdahl Ames Laboratory Profile Vincent Dahl Mgr Facilities Mnt Facilities Services Maintenance Shop Phone Number: 515-294-1746 Email Address: vdahl

  6. weverett | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    weverett Ames Laboratory Profile William Everett Student Associate Chemical & Biological Sciences 121 Spedding Phone Number: 515-294-7568 Email Address: weverett@iastate.edu

  7. witt | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    witt Ames Laboratory Profile Lynnette Witt Interim Director Human Resources Human Resources Office 151 TASF Phone Number: 515-294-5740 Email Address: witt@ameslab.gov

  8. xinyufu | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    xinyufu Ames Laboratory Profile Xinyu Fu Student Associate Chemical & Biological Sciences 2238 Molecular Biology Bldg Phone Number: 515-294-7568 Email Address: xinyufu

  9. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory has awarded master task order agreements to three small businesses for environmental support services work worth up to 400 million within a five-year period....

  10. Employees | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    due to weather or other circumstances, assistance for working remotely, clubs and sports leagues, and many other topics of interest to the laboratory community. Quick...

  11. anderegg | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    anderegg Ames Laboratory Profile James Anderegg Asst Scientist III Division of Materials Science & Engineering 325 Spedding Phone Number: 515-294-3480 Email Address:...

  12. jacton | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    jacton Ames Laboratory Profile James Acton Grad Asst-RA Division of Materials Science & Engineering 0215 Hach Phone Number: 515-294-4446 Email Address: jacton...

  13. oliver | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    oliver Ames Laboratory Profile James Oliver Associate Simulation, Modeling, & Decision Science 2274 Howe Phone Number: 515-294-2649 Email Address: oliver@iastate.edu...

  14. vanmarel | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    vanmarel Ames Laboratory Profile Ross Vanmarel Facil Mechanic III Facilities Services 158 Metals Development Phone Number: 515-294-1746 Email Address: vanmarel...

  15. Mentoring | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory About Safety News Careers Education Community Diversity Directory Energy Environment Security User Facilities Science Work with Argonne Careers Apply ...

  16. cbertoni | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cbertoni Ames Laboratory Profile Colleen Bertoni Grad Asst-RA Chemical & Biological Sciences 201 Spedding Phone Number: 515-294-7568 Email Address: cbertoni...

  17. dcheng | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dcheng Ames Laboratory Profile Di Cheng Student Associate Division of Materials Science & Engineering A311 Zaffarano Phone Number: 515-294-5373 Email Address: dcheng@iastate.edu...

  18. Advanced Materials Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Much Cheaper, More Abundant Catalyst May Lower Hydrogen-Powered Car Costs Advanced Materials Laboratory, Analysis, Capabilities, Energy, Facilities, Highlights - Energy Research, ...

  19. Advanced Materials Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Sandia Researchers Win CSP:ELEMENTS Funding Award Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy Storage, Facilities, National Solar Thermal Test ...

  20. The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Insider Facilities New sign to identify Ames Laboratory A new brick and metal sign will soon leave no doubt about the identity of the Ames Laboratory. The sign will feature a brick pedestal base topped with a two-sided metal panel with Ames Laboratory emblazoned in white lettering (8 1/2" tall) on a blue background. The sign panel is nearly 12- feet long. A vertical pylon with the Ames Laboratory logo will stand 8'6" tall. READ MORE Research: New material discovery allows study of

  1. National Laboratory Geothermal Publications

    Broader source: Energy.gov [DOE]

    You can find publications, including technical papers and reports, about geothermal technologies, research, and development at the following U.S. Department of Energy national laboratories.

  2. Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    short-pulse laser, scientists from Los Alamos, the Technical University of Darmstadt, Germany, and Sandia National Laboratories focus high-intensity light on an ultra-thin...

  3. Princeton Plasma Physics Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    generations. The Laboratory, managed by Princeton University, has a more-than 60-year history of discovery and leadership in the field of fusion energy. PPPL researchers are...

  4. angiemcg | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    angiemcg Ames Laboratory Profile Angela Mcguigan Secretary II Simulation, Modeling, & Decision Science 1620 Howe Phone Number: 515-294-8060 Email Address: angiemcg...

  5. Purchasing | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in 44 states. Purchased Items and supplier base: Biological Materials Chemicals Computers, Monitors and Printers Furniture Laboratory Supplies Metals Office Supplies...

  6. hilstromj | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hilstromj Ames Laboratory Profile Jeremy Hilstrom Office Assistant-X Human Resources Office 151 TASF Phone Number: 515-294-2680 Email Address: hilst000...

  7. schon | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    schon Ames Laboratory Profile Mallory Schon Program Coord II Human Resources Office 151 TASF Phone Number: 515-294-8062 Email Address: schon...

  8. mmdaub | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mmdaub Ames Laboratory Profile Molly Granseth Program Asst II Human Resources Office Environmental, Safety, Health, and Assurance 105 TASF Phone Number: 515-294-2864 Email Address:...

  9. hmorris | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hmorris Ames Laboratory Profile Haley Morris Office Assistant-X Human Resources Office Environmental, Safety, Health, and Assurance 105 TASF Phone Number: 515-294-2153 Email...

  10. Inquiry | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facility, a nearly 10 million building that will house an array of state-of-the art electron microscopy equipment. It's Ames Laboratory's first new research facility in...

  11. Awards | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Performance Award, 2013 (with two other researchers) U.S. Department of Energy Vehicle Technologies Office R&D Award, 2013 Argonne National Laboratory Distinguished...

  12. Sandia National Laboratories: Synthetic Aperture Radar (SAR) Imagery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Images Facebook Twitter YouTube Flickr RSS Pathfinder Airborne ISR Systems Synthetic Aperture Radar (SAR) Imagery The following is a selection of imagery available for your viewing, sorted by frequency band and/or program. (Note: Resolutions are for original images prior to downsampling for web viewing.) Images are available for public reproduction. Please credit Sandia using the following statement 'Courtesy of Sandia National Laboratories, Airborne ISR' Click thumbnails below to enlarge

  13. Fermilab | Tritium at Fermilab | Ferry Creek Aerial View

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ferry Creek Aerial View Ferry Creek Aerial View

  14. Fermilab | Tritium at Fermilab | Kress Creek Aerial View

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kress Creek Aerial View Kress Creek Aerial View

  15. devo | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    devo Ames Laboratory Profile Deborah Schlagel Asst Scientist III Division of Materials Science & Engineering 111 Metals Development Phone Number: 515-294-3924 Email Address: schlagel@iastate.edu Ames Laboratory Research Projects: Novel Materials Preparation & Processing Methodologies Research Interests: Synthesis of single crystals of Huesler alloys, magneto-responsive materials, superconductors, elements and alloys Single crystal characterization and property analysis

  16. The Virtual Robotics Laboratory

    SciTech Connect (OSTI)

    Kress, R.L.; Love, L.J.

    1999-09-01

    The growth of the Internet has provided a unique opportunity to expand research collaborations between industry, universities, and the national laboratories. The Virtual Robotics Laboratory (VRL) is an innovative program at Oak Ridge National Laboratory (ORNL) that is focusing on the issues related to collaborative research through controlled access of laboratory equipment using the World Wide Web. The VRL will provide different levels of access to selected ORNL laboratory secondary education programs. In the past, the ORNL Robotics and Process Systems Division has developed state-of-the-art robotic systems for the Army, NASA, Department of Energy, Department of Defense, as well as many other clients. After proof of concept, many of these systems sit dormant in the laboratories. This is not out of completion of all possible research topics. but from completion of contracts and generation of new programs. In the past, a number of visiting professors have used this equipment for their own research. However, this requires that the professor, and possibly his/her students, spend extended periods at the laboratory facility. In addition, only a very exclusive group of faculty can gain access to the laboratory and hardware. The VRL is a tool that enables extended collaborative efforts without regard to geographic limitations.

  17. The Virtual Robotics Laboratory

    SciTech Connect (OSTI)

    Kress, R.L.; Love, L.J.

    1997-03-01

    The growth of the Internet has provided a unique opportunity to expand research collaborations between industry, universities, and the national laboratories. The Virtual Robotics Laboratory (VRL) is an innovative program at Oak Ridge National Laboratory (ORNL) that is focusing on the issues related to collaborative research through controlled access of laboratory equipment using the World Wide Web. The VRL will provide different levels of access to selected ORNL laboratory equipment to outside universities, industrial researchers, and elementary and secondary education programs. In the past, the ORNL Robotics and Process Systems Division (RPSD) has developed state-of-the-art robotic systems for the Army, NASA, Department of Energy, Department of Defense, as well as many other clients. After proof of concept, many of these systems sit dormant in the laboratories. This is not out of completion of all possible research topics, but from completion of contracts and generation of new programs. In the past, a number of visiting professors have used this equipment for their own research. However, this requires that the professor, and possibly his students, spend extended periods at the laboratory facility. In addition, only a very exclusive group of faculty can gain access to the laboratory and hardware. The VRL is a tool that enables extended collaborative efforts without regard to geographic limitations.

  18. riedemann | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    riedemann Ames Laboratory Profile Trevor Riedemann Asst Scientist III Division of Materials Science & Engineering 110 Metals Development Phone Number: 515-294-1366 Email Address: riedemann@ameslab.gov Assistant Scientist III Website(s): Novel Materials Preparation & Processing Methodologies Materials Preparation Center Ames Laboratory Research Projects: Novel Materials Preparation & Processing Methodologies Education: Masters of Science, Metallurgy, Iowa State University, 1996

  19. Idaho National Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Snake River Geothermal Consortium (SRGC) is a research partnership focused on advancing geothermal energy. Hosted by the Idaho National Laboratory (INL), SRGC proposes establishing FORGE as a resource for technology development, deployment, and validation. Their team includes members from national laboratories, universities, industry, and state and federal agencies. The technical team consists of members from Baker Hughes, the Center for Advanced Energy Studies (CAES) – Idaho National Laboratory, University of Idaho, Idaho State University, Boise State University, University of Wyoming - Campbell Scientific, Chena Power, Geothermal Resources Group, Idaho Department of Water Resources, Idaho Geologic Survey, Lawrence Livermore National Laboratory, Mink GeoHydro, National Renewable Energy Laboratory, University of Oklahoma, University of Utah, U.S. Geothermal, and the U.S. Geological Survey (USGS).

  20. Sandia National Laboratories: Sandia National Laboratories: Missions:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Defense Systems & Assessments: About Us Defense Systems About Defense Systems & Assessments Program Areas Accomplishments Cybersecurity Programs About Defense Systems & Assessments soldier silhouetted by a sunset Defense Systems & Assessments supports guardians of peace and freedom on the battlefield and in the laboratory by applying engineering, science, and technology solutions to deter, detect, defeat, and defend threats to our national security. We analyze and exploit the

  1. Sandia National Laboratories: Sandia National Laboratories: Missions:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Weapons: About About Nuclear Weapons at Sandia Weapons Researcher World-class scientists and engineers come to Sandia to conduct breakthrough research in nuclear weapons. Sandia designs more than 6,300 parts of a modern nuclear weapon's 6,500 components. Our state-of-the-art laboratories facilitate large-scale testing and computer simulation. Sandia's work is of the highest consequence and those doing the work face awesome responsibilities. Unlike other national labs, which focus on

  2. Highland View school | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Highland View school Highland View school Aerial showing Highland View school and surrounding homes

  3. Radiation View Factor With Shadowing

    Energy Science and Technology Software Center (OSTI)

    1992-02-24

    FACET calculates the radiation geometric view factor (alternatively called shape factor, angle factor, or configuration factor) between surfaces for axisymmetric, two-dimensional planar and three-dimensional geometries with interposed third surface obstructions. FACET was developed to calculate view factors as input data to finite element heat transfer analysis codes.

  4. Sandia National Laboratories beginnings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia National Laboratories beginnings focus of Los Alamos' 70th anniversary lecture March 6, 2013 LOS ALAMOS, N.M., March 6, 2013-Sandia National Laboratories historian Rebecca Ullrich discusses Sandia's transition from a Los Alamos division to an independent organization during a talk at 5:30 p.m., March 13 at the Bradbury Science Museum in Los Alamos. The talk is part of the Laboratory's 70th anniversary lecture series. Sandia Labs' origins are in Los Alamos' Z Division, the engineering

  5. Factsheets | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Factsheets There's a wealth of information about Ames Laboratory in the fact sheets available here. To open a printable pdf version, simply click on the thumbnail of the particular fact sheet in which you're interested. We will continue to add fact sheets on individual research efforts so check back and if there's something specific about Ames Laboratory that you'd like to know more about but can't locate, please check with us at info@ameslab.gov. Material Facts Find out Ames Laboratory's vital

  6. Sonication standard laboratory module

    DOE Patents [OSTI]

    Beugelsdijk, Tony; Hollen, Robert M.; Erkkila, Tracy H.; Bronisz, Lawrence E.; Roybal, Jeffrey E.; Clark, Michael Leon

    1999-01-01

    A standard laboratory module for automatically producing a solution of cominants from a soil sample. A sonication tip agitates a solution containing the soil sample in a beaker while a stepper motor rotates the sample. An aspirator tube, connected to a vacuum, draws the upper layer of solution from the beaker through a filter and into another beaker. This beaker can thereafter be removed for analysis of the solution. The standard laboratory module encloses an embedded controller providing process control, status feedback information and maintenance procedures for the equipment and operations within the standard laboratory module.

  7. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    70th anniversary app for iPhone, iPads June 5, 2013 LOS ALAMOS, N.M., June 4, 2013-Los Alamos National Laboratory has launched its first app for iPhones and iPads as part of the Laboratory's yearlong celebration of 70 years serving the nation. The free application is available from the Apple Store (search for Los Alamos National Lab). The app enables users to learn more about the Laboratory's national security mission, cutting edge research, unique history, top-flight scientists and the many

  8. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    remembers former director Harold Agnew September 30, 2013 Manhattan Project pioneer was LANL director from 1970-1979 LOS ALAMOS, N.M., Sept. 30, 2013-Los Alamos National Laboratory Director Charlie McMillan today remembered Harold Agnew as a national treasure who transformed the Laboratory into what it is in the 21st century. "His contributions to the Laboratory made us the institution we are today," McMillan said. "It was his vision - decades ago - that recognized that national

  9. Sandia National Laboratories

    National Nuclear Security Administration (NNSA)

    National Laboratories Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Sand 2011-4582 P. ENERGY U.S. DEPARTMENT OF Albuquerque N e w M e x i c o Sandia Mountains Q Q ApproximatelyQ8,800QacresQQ ofQDOE-ownedQandQQ permittedQland Q Q LocatedQwithinQtheQQ KirtlandQAirQForceQQ

  10. The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Insider Honors and Awards Gordon receives INCITE grant Ames Laboratory scientist Mark Gordon has been awarded a 2016 INCITE grant from the U.S. Department of Energy's (DOE) Office ...

  11. Los Alamos National Laboratory ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Los Alamos National Laboratory * Est. 1943 The Pulse-Newsletter of the Los Alamos Neutron Science Center and Accelerator Operations and Technology Division I N S I D E 2 From ...

  12. sandia national laboratory

    National Nuclear Security Administration (NNSA)

    %2A en Sandia National Laboratories http:nnsa.energy.govaboutusourlocationssandia

    Page...

  13. baik | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    baik Ames Laboratory Profile Kamalakar Baikerikar Assoc Scientist Division of Materials Science & Engineering 221 Metals Development Phone Number: 515-294-7995 Email Address: baik@ameslab.gov

  14. bcarsten | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bcarsten Ames Laboratory Profile Beverly Carstensen Secretary II Division of Materials Science & Engineering 105 Metals Development Phone Number: 515-294-4071 Email Address: bcarsten@ameslab.gov

  15. bwing | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bwing Ames Laboratory Profile William Wing Erd Machinist Sr Division of Materials Science & Engineering Facilities Services 160 Metals Development Phone Number: 515-294-5428 Email Address: bwing

  16. ccelania | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ccelania Ames Laboratory Profile Christopher Celania Grad Asst-RA Division of Materials Science & Engineering Critical Materials Institute 325 Spedding Phone Number: 641-226-7542 Email Address: ccelania

  17. cmgarris | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cmgarris Ames Laboratory Profile Christin Garrison Grad Asst-RA Chemical & Biological Sciences 27 Carver Co-Lab Phone Number: 515-294-7568 Email Address: cmgarris@iastate.edu

  18. dabrice | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dabrice Ames Laboratory Profile David Brice Student Associate Division of Materials Science & Engineering 150 Metals Development Phone Number: 515-294-4446 Email Address: dabrice@iastate.edu

  19. feenstra | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    feenstra Ames Laboratory Profile Adam Feenstra Grad Asst-RA Chemical & Biological Sciences 35B Carver Co-Lab Phone Number: 515-294-2368 Email Address: feenstra

  20. foughtel | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    forrestal NNSA Headquarters

    fors

    foughtel Ames Laboratory Profile Eliscia Fought Student Associate Chemical & Biological Sciences 124 Spedding Phone Number: 515-294-7568 Email Address: foughtel

  1. Tours | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Care is taken to match tours to the expressed interests of the visiting group. Our hope is to help the public become more aware of the Ames Laboratory, create stronger Lab...

  2. BENSON | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BENSON Ames Laboratory Profile Zackery Benson Student Associate Division of Materials Science & Engineering A204 Zaffarano Phone Number: 515-294-4446 Email Address: zbenson@ameslab.gov

  3. Lawrence Berkeley National Laboratory

    National Nuclear Security Administration (NNSA)

    7%2A en Solar power purchase for DOE laboratories http:nnsa.energy.govmediaroompressreleasessolarpower

  4. Students | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interested in exploring what it would be like to work at a national laboratory? If you are a student in science, technology, engineering or math, you can find out more at Argonne. ...

  5. National Laboratory Contacts

    Broader source: Energy.gov [DOE]

    The Geothermal Technologies Office works closely with several DOE national laboratories in managing and contributing to research and development projects. Below are the primary contacts at these...

  6. Brookhaven National Laboratory

    Broader source: Energy.gov [DOE]

    Site OverviewThe Brookhaven National Laboratory (BNL) was established in 1947 by the Atomic Energy Commission (AEC) (predecessor to U.S. Department of Energy [DOE]). Formerly Camp Upton, a U.S....

  7. hansenre | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hansenre Ames Laboratory Profile Rebecca Hansen Grad Asst-RA Chemical & Biological Sciences 0027A Carver Co-Lab Phone Number: 515-294-2368 Email Address: hansenre

  8. himashir | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    himashir Ames Laboratory Profile Himashi Andaraarachchi Grad Asst-RA Chemical & Biological Sciences 209B Wilhelm Phone Number: 515-294-7568 Email Address: himashir@iastate.edu

  9. jiahao | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    jiahao Ames Laboratory Profile Jiahao Chen Student Associate Division of Materials Science & Engineering A300 Zaffarano Phone Number: 515-294-0689 Email Address: jiahao@iastate.edu

  10. joiner | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    joiner Ames Laboratory Profile Stacy Joiner Program Manager I Office of Sponsored Research Administration Director's Office 306 TASF Phone Number: 515-294-5932 Email Address: joiner@ameslab.gov

  11. nabrajbhattarai | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nabrajbhattarai Ames Laboratory Profile Nabraj Bhattarai Postdoc Res Associate Division of Materials Science & Engineering 216 Wilhelm Phone Number: 515-294-2162 Email Address: nabrajbhattarai@ameslab.gov

  12. perrya | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    perrya Ames Laboratory Profile Perry Antonelli Grad Asst-RA Simulation, Modeling, & Decision Science 2240H Hoover Phone Number: 515-294-1841 Email Address: perrya@iastate.edu

  13. pieper | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pieper Ames Laboratory Profile Elizabeth Pieper Program Coord I Office of Sponsored Research Administration Director's Office 311 TASF Phone Number: 515-294-6486 Email Address: pieper@ameslab.gov

  14. pmberge | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pmberge Ames Laboratory Profile Paul Berge Industrial Spec Division of Materials Science & Engineering 111 Metals Development Phone Number: 515-294-5972 Email Address: pmberge@iastate.edu

  15. szhou | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    szhou Ames Laboratory Profile Shihuai Zhou Asst Scientist III Division of Materials Science & Engineering 204 Wilhelm Phone Number: 515-294-5489 Email Address: szhou@ameslab.gov

  16. zdorkowski | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    zdorkowski Ames Laboratory Profile Richard Zdorkowski Program Manager I Director's Office Office of Sponsored Research Administration 128 Spedding Phone Number: 515-294-5640 Email Address: zdorkowski@ameslab.gov

  17. zrein | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    zrein Ames Laboratory Profile Zachary Reinhart Grad Asst-RA Simulation, Modeling, & Decision Science 1620 Howe Phone Number: 515-294-3891 Email Address: zrein@iastate.edu

  18. Research | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    combined with the laboratory's state-of-the-art facilities has produced a wide variety of game-changing discoveries and inventions in fields as diverse as energy storage and...

  19. Los Alamos National Laboratory

    Broader source: Energy.gov [DOE]

    HISTORYLos Alamos National Laboratory (LANL) is located in Los Alamos County in north central New Mexico (NM). LANL, founded in 1943 during World War II as Project Y, served as a secret facility...

  20. Idaho National Laboratory

    SciTech Connect (OSTI)

    McCarthy, Kathy

    2009-01-01

    INL is the leading laboratory for nuclear R&D. Nuclear engineer Dr. Kathy McCarthy talks aobut the work there and the long-term benefits it will provide.

  1. Argonne National Laboratory

    Broader source: Energy.gov [DOE]

    HISTORYThe Argonne National Laboratory (ANL) site is approximately 27 miles southwest of downtown Chicago in DuPage County, Illinois.  The 1,500 acre ANL site is completely surrounded by the 2,240...

  2. The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    85th birthday While scientists often talk about their life's work, few lives have been fuller than that of Ames Laboratory's Karl A. Gschneidner, Jr. who was honored for over six...

  3. Idaho National Laboratory

    ScienceCinema (OSTI)

    McCarthy, Kathy

    2013-05-28

    INL is the leading laboratory for nuclear R&D. Nuclear engineer Dr. Kathy McCarthy talks aobut the work there and the long-term benefits it will provide.

  4. Sandia National Laboratories

    Broader source: Energy.gov [DOE]

    The Sandia National Laboratories (SNL) is comprised of 2,820 acres within the boundaries of the 118 square miles Kirtland Air Force Base, and is located 6.5 miles east of downtown Albuquerque, New...

  5. kcho | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    kcho Ames Laboratory Profile Kyuil Cho Asst Scientist III Division of Materials Science & Engineering A02 Zaffarano Phone Number: 515-294-7249 Email Address: kcho@ameslab.gov...

  6. Log in | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Error message Access denied. You must log in to view this page.

  7. Safety | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Argonne National Laboratory and the U.S. Department of Energy (DOE) are very concerned about the well-being of all employees. Students at the undergraduate and graduate level as well as postdoctoral appointees form an essential component of the research endeavor at the laboratory. However, research does not stand alone but must be integrated into a program of environment, safety, and security. From time to time, incidents regarding students and postdocs occur across the DOE complex. It is

  8. Sandia National Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PHOTOVOLTAIC ARRAY PERFORMANCE MODEL D. L. King, W. E. Boyson, J. A. Kratochvil Sandia National Laboratories Albuquerque, New Mexico 87185-0752 2 SAND2004-3535 Unlimited Release Printed August 2004 Photovoltaic Array Performance Model David L. King, William E. Boyson, Jay A. Kratochvil Photovoltaic System R&D Department Sandia National Laboratories P. O. Box 5800 Albuquerque, New Mexico 87185-0752 Abstract This document summarizes the equations and applications associated with the

  9. Sandia National Laboratories:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    21, 2016 Articles 25 years of Laboratory-Directed Research and Development Headlights of a laboratory Sandia total spending, economic impact up in 2015 A driving force Sandia researchers break down lightning strikes into microseconds When lightning strikes Enormous blades for offshore energy A mighty wind CSI: Dognapping program honored for science outreach CSI: Dognapping Program helps new Sandians get started on the right path ANGLEing toward success

  10. News | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Researchers with the Argonne Center for Collaborative Energy Storage Science (ACCESS) will partner with industry to improve lead-acid battery performance. (Photo: Shutterstock) Lead-acid battery companies join forces with Argonne National Laboratory to enhance battery performance Full Story » Exploring the unrealized potential of lead batteries is the goal of a new collaboration between Argonne National Laboratory and two leading lead recycling and lead battery manufacturing companies, RSR

  11. Facilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Some of the nation's most powerful and sophisticated facilities for energy research Argonne National Laboratory is home to some of the nation's most powerful and sophisticated research facilities. As a U.S. Department of Energy national laboratory, Argonne offers access to the facilities listed below through a variety of arrangements. Advanced Powertrain Research Facility Center for Transportation Research Materials Engineering Research Facility Distributed Energy Research Center

  12. SANDIA NATIONAL LABORATORIES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2009 Highlights 2 SANDIA NATIONAL LABORATORIES From the Chief Technology O cer The Laboratory Directed Research and Development (LDRD) program is the sole discretionary research and development (R&D) investment program at Sandia. LDRD provides the opportunity for our technical sta to contribute to our Nation's future, to our collective ability to address and nd solutions to a range of daunting scienti c and technological challenges. The results of their work will shape the course of science

  13. FY 2006 Laboratory Table

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory Tables Preliminary Department of Energy FY 2006 Congressional Budget Request Office of Management, Budget and Evaluation/CFO February 2005 Laboratory Tables Preliminary Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals,

  14. FY 2007 Laboratory Table

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory tables preliminary Department of Energy FY 2007 Congressional Budget Request February 2006 Printed with soy ink on recycled paper Office of Chief Financial Officer Laboratory tables preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or other

  15. FY 2008 Laboratory Table

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory Table Preliminary Department of Energy FY 2008 Congressional Budget Request February 2007 Office of Chief Financial Officer Laboratory Table Preliminary Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or other

  16. FY 2010 Laboratory Table

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory Tables Preliminary May 2009 Office of Chief Financial Officer FY 2010 Congressional Budget Request Laboratory Tables Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by

  17. FY 2011 Laboratory Table

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory Tables Department of Energy FY 2011 Congressional Budget Request DOE/CF-0055 March 2010 Office of Chief Financial Officer Laboratory Tables Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments

  18. Safety | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Careers Education Community Diversity Directory Argonne National Laboratory About Safety News Careers Education Community Diversity Directory Energy Environment Security User Facilities Science Work with Argonne Safety Biosafety Safety Safety is integral to Argonne's scientific research and engineering technology mission. As a leading U.S. Department of Energy multi-program research laboratory, our obligation to the American people demands that we conduct our research and operations safely

  19. Pacific Northwest National Laboratory,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Administration Pacific Northwest National Laboratory NNSA deputy visits PNNL to see radiochemistry and threat detection capabilities NNSA Principal Deputy Administrator Madelyn Creedon visited the Pacific Northwest National Laboratory (PNNL) in Washington this month to see the work it does for the agency, focusing on radiochemistry and threat detection. NNSA hosts international CTBT on-site inspection experts at Nevada National Security Site This month, NNSA hosted a Comprehensive

  20. antropov | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    antropov Ames Laboratory Profile Vladimir Antropov Scientist II Division of Materials Science & Engineering 284 Metals Development Phone Number: 515-294-7245 Email Address: antropov@ameslab.gov Ames Laboratory Research Projects: Exploratory Development of Theoretical Methods Education: Ph.D. Condensed Matter Physics, Institute of Physics of Metals, Yekaterinburg, Russia, 1987 M. D. Theoretical Physics, Ural Polytechnical Institute, Yekaterinburg, Russia, 1984 Professional Appointments:

  1. Los Alamos NATIONAL LABORATORY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    / Los Alamos NATIONAL LABORATORY - - - - EST.1943 ....,,..... _ _ _ memorandum E ter Management ' . McMillan, DIR, AIOO -5101/Fax 7-2997 Office of the Director DIR-15-094 July 23, 2015 SUBJECT: SUBCONTRACTING OPPORTUNITIES WITH SMALL BUSINESS Los Alamos National Laboratory has maintained a strong institutional commitment to small business subcontracting over the years. It is my intention that we continue this commitment, which was formalized in the Prime Contract Appendix M provision for a

  2. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and LANS partner to record $2 million in pledges for local United Way programs November 20, 2008 LOS ALAMOS, New Mexico, November 20, 2008- Los Alamos National Laboratory employees once again demonstrated concern for their communities and those in need by pledging a record $1 million to United Way programs in Northern New Mexico and Santa Fe. With a dollar-for-dollar match by Los Alamos National Security, LLC, which operates the Laboratory, the total contribution is more than $2 million.

  3. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 13 construction forum in Albuquerque April 7, 2009 LOS ALAMOS, New Mexico, April 7, 2009- Companies big and small can learn about upcoming construction projects and procurement opportunities at Los Alamos National Laboratory by attending a construction forum April 13 at the Hotel Albuquerque, 800 Rio Grande Blvd. N.W., in Albuquerque's Old Town. "The forum is designed to provide key information about Laboratory construction business opportunities. We want interested businesses to have

  4. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    captures eight NNSA Pollution Prevention awards April 15, 2009 LOS ALAMOS, New Mexico, April 15, 2009-Los Alamos National Laboratory employee teams and organizations earned eight 2009 Pollution Prevention awards from the National Nuclear Security Administration (NNSA). The awards are based on an NNSA-wide competition that acknowledges pollution prevention, recycling, and affirmative procurement accomplishments. The Laboratory also received a Department of Energy "E Star" award for its

  5. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 million to local United Way organizations, other nonprofits December 1, 2009 Los Alamos, New Mexico, December 1, 2009-Los Alamos National Laboratory employees once more demonstrated concern for their communities and those in need by pledging a record $1.3 million to United Way and other eligible nonprofit programs.Los Alamos National Security, LLC, which operates the Laboratory, plans to prorate its $1 million match among the selected nonprofit organizations, bringing the total donation to

  6. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    communicators capture numerous awards from Society for Technical Communication April 15, 2010 Recognizing outstanding technical communications products LOS ALAMOS, New Mexico, April 15, 2010-Los Alamos National Laboratory employees received a number of awards in the 2009 Technical Publications and Online Communication competition sponsored by the East Tennessee chapter of the Society for Technical Communication (STC). Laboratory entries competed at a regional, national and international level

  7. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 million to local United Way organizations, other nonprofits November 18, 2010 LOS ALAMOS, New Mexico, November 18, 2010-Los Alamos National Laboratory employees have again demonstrated concern for their communities and those in need by pledging a record $1.5 million to United Way and other eligible nonprofit programs. Los Alamos National Security, LLC, which operates the Laboratory, plans to prorate its $1 million match among the selected nonprofit organizations, bringing the total donation to

  8. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy environmental sustainability award October 14, 2010 LOS ALAMOS, New Mexico, October 14, 2010-Los Alamos National Laboratory recently received an Environmental Sustainability (EStar) award from the Department of Energy for integrating sustainable practices in its design for the Radiological Laboratory/ Utility/Office Building (RLUOB). The RLUOB is part of the Lab's Chemistry and Metallurgy Research Replacement (CMRR) Project. The Lab ultimately expects to achieve Leadership

  9. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    strategy for long-term environmental sustainability March 1, 2013 Blueprint for planning work activities with the environment in mind LOS ALAMOS, N.M., March 1, 2013-The Department of Energy and Los Alamos National Laboratory have developed a long-term strategy for environmental stewardship and sustainability that provides a blueprint for protecting the environment while accomplishing the Laboratory's national security missions. "This plan represents a significant amount of effort on the

  10. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 14, 2013 Value of up to $150 million over five years LOS ALAMOS, N.M., May 14, 2013-Los Alamos National Laboratory has awarded a master task order agreement in which three small businesses will compete for environmental work worth up to $150 million over five years. The businesses each have offices in northern New Mexico. The agreement is for technical services for the Laboratory's Environmental Programs directorate and includes work such as environmental engineering design, regulatory

  11. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    new student app July 15, 2014 Job searching tool for students, postdocs LOS ALAMOS, N.M., July 15, 2014-Los Alamos National Laboratory recently launched its new student mobile app that students and postdoctoral candidates can use to learn about employment opportunities, science research, education programs and more. The Los Alamos Students mobile app is free and can be downloaded from iTunes and Google Play (for android platforms). "The Laboratory's new Student App is a great way for

  12. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    recognizes employee teams with 2015 Pollution Prevention Awards April 22, 2015 Projects save taxpayer dollars, promote environmental stewardship, sustainability LOS ALAMOS, N.M., April 22, 2015-Nearly 400 Los Alamos National Laboratory employees on 32 teams received Pollution Prevention awards during an Earth Day awards ceremony on Wednesday, saving taxpayers $5.6 million while also reusing, recycling, re-tasking and re-routing waste. "The goal of the Laboratory's pollution prevention

  13. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos National Laboratory has been at the forefront of high-explosives research since the Manhattan Project in 1943. The science of high-explosive performance is central to stockpile stewardship. Yet, explosives science at the Laboratory isn't simply about maintaining and certifying the aging U.S. nuclear deterrent; it's also about developing novel applications of that science to other national security challenges. In 2015, Los Alamos executed more than 400 high-explosive-driven experiments

  14. Workshops | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Workshops Photos Videos Career Opportunities CNM Intranet CNM on Facebook Career Opportunities CNM Intranet CNM on Facebook Argonne National Laboratory Center for Nanoscale Materials About Research Capabilities For Users People Publications News & Events News & Events RESEARCH HIGHLIGHTS COLLOQUIUM SERIES SEMINAR SERIES Argonne Press Releases Feature Stories In the News Users Meetings Workshops Photos Videos Workshops September 17-18, 2015 Argonne National Laboratory and the

  15. The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Insider Honors and Awards Bertoni awarded Margaret Butler Fellowship in Computational Science. Ames Laboratory and Iowa State University PhD student Colleen Bertoni has been named this year's recipient of the Margaret Butler Fellowship in Computational Science. Bertoni will spend 2017 at the Argonne Leadership Computing Facility (ALCF), a DOE user facility at Argonne National Laboratory. "This is a great opportunity, and I'm looking forward to doing research at the ALCF," said Bertoni.

  16. Fy 2009 Laboratory Table

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory Tables Preliminary February 2008 Office of Chief Financial Officer Department of Energy FY 2009 Congressional Budget Request Laboratory Tables Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to

  17. Laboratory Organization Chart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Organization Chart Director Deputy Director Leadership Team Advisory Board Directorate Staff Org Chart ⇒ Navigate Section Director Deputy Director Leadership Team Advisory Board Directorate Staff Org Chart Berkeley Lab Organization Chart ESnet Protective Services ETA/ESDR ETA/EAEI ETA Chief Operating Officer Laboratory Council RIIO Sustainability Deputy Director Innovation & Partnerships Office Public Affairs Information Technology Office of the Chief Financial Officer Human

  18. Laboratory disputes citizens' lawsuit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab disputes ctizens' lawsuit Laboratory disputes citizens' lawsuit Lab officials expressed surprise to a lawsuit alleging noncompliance with the federal Clean Water Act filed today by citizens groups. February 7, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos

  19. Science @WIPP: Underground Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WIPP Underground Laboratory Double Beta Decay Dark Matter Biology Repository Science Renewable Energy Underground Laboratory The deep geologic repository at WIPP provides an ideal environment for experiments in many scientific disciplines, including particle astrophysics, waste repository science, mining technology, low radiation dose physics, fissile materials accountability and transparency, and deep geophysics. The designation of the Carlsbad Department of Energy office as a "field"

  20. The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Center News Releases Feature Stories In The News Inquiry Magazine Past Issues Videos For the Media Greenlee Project Insider TwitterFacebookFlickrInYoutube R&D picked up a news release on Ames Laboratory researchers' discovery of a new type of Weyl semimetal, and accompanied the story with this cool artwork. READ MORE Fall 2016 Science Undergraduate Laboratory Intern (SULI) students Curt Waltmann (left), Timothy Hackett and Haley Hood began their program on Aug. 22, start of the Iowa

  1. Visitors | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Visitors Visitors are welcome at Ames Laboratory. As a U.S. Department of Energy research facility, Ames Laboratory is subject to security conditions established by the Department of Homeland Security. To make sure that you are complying with the current security conditions, please check with the Plant Protection Desk on the ground floor level of the Technical and Administrative Services Facility (TASF) building. Protection personnel can help you locate a specific staff member or direct you to a

  2. jonesll | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    jonesll Ames Laboratory Profile Lawrence Jones Associate Division of Materials Science & Engineering Facilities Services 121 Metals Development Phone Number: 515-294-5236 Email Address: jonesll@ameslab.gov Ames Laboratory Research Projects: Novel Materials Preparation & Processing Methodologies Education: M.S. Metallurgical Engineering, Iowa State University, 1985 B.S. Metallurgical Engineering, Iowa State University, 1983 Professional Appointments: Iowa State University; Ames

  3. kmh | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    kmh Ames Laboratory Profile Kai-ming Ho Distinguished Professor Division of Materials Science & Engineering A502 Zaffarano Phone Number: 515-294-1960 Email Address: kmh@ameslab.gov Ames Laboratory Research Projects: Exploratory Development of Theoretical Methods Photonic Systems Structures and Dynamics in Condensed Systems Surface Structures Far-from-Equilibrium Education: Ph.D. Physics, University of California, Berkeley (thesis advisor: Marvin Cohen), 1978 B.Sc., B.Sc(Sp) University of

  4. mjkramer | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mjkramer Ames Laboratory Profile Matthew Kramer Director III Division of Materials Science & Engineering 125 Metals Development Phone Number: 515-294-0276 Email Address: mjkramer@ameslab.gov Ames Laboratory Research Projects: Structures and Dynamics in Condensed Systems Competition & Correlation Among Length Scales: Mesostructure & Mechanical Properties Education: Ph.D. Geology, Iowa State University, 1988 M.S. Geology, University of Rochester, 1983 B.S. Geomechanics, University of

  5. naa | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    na-00 Infrastructure and Operations NNSA's missions require a secure production and laboratory infrastructure meeting immediate and long term needs. The Associate Administrator for Infrastructure and Operations develops and executes NNSA's infrastructure investment, maintenance, and operations programs and policies

    naa Ames Laboratory Profile Nathaniel Anderson Grad Asst-RA Division of Materials Science & Engineering 43 Spedding Phone Number: 515-294-1184 Email Address:

  6. Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Economic development in Northern New Mexico focus of new podcast from Los Alamos National Laboratory November 25, 2013 Podcast part of Lab's new multi-channel effort to better engage with the community LOS ALAMOS, N.M., Nov. 27, 2013-Podcasts and webinars are among the new communications tools being rolled out by Los Alamos National Laboratory's Community Programs Office to reach a broader audience. The first podcast discusses economic development and the Northern New Mexico 20/20 Campaign, a

  7. Cytogenetic Biodosimetry Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cytogenetic Biodosimetry Laboratory Blood samples are shipped at room temperature to the laboratory. White blood cells, lymphocytes, are cultured under sterile conditions in an incubator for 48 hours using a standard growth medium. Culture tubes are centrifuged, and cells are re-suspended in a weak salt solution, which allows the chromosomes to separate and spread evenly on slides. Chromosomes are stained making them visible under a microscope at up to 1,000x magnifcation. Slides are then

  8. Target Fabrication: A View from the Users

    SciTech Connect (OSTI)

    Kyrala, George A.; Balkey, Matthew M.; Barnes, Cris W.; Batha, Steven H.; Christensen, Cindy R.; Cobble, James A.; Fincke, James; Keiter, Paul; Lanier, Nicholas; Paisley, Dennis; Sorem, Michael; Swift, Damian; Workman, Jonathan

    2004-03-15

    Targets are used for a variety of purposes, but ultimately we use them to validate codes that help us predict and understand new phenomena or effects. The sophistication and complexity of High Energy Density Physics (HEDP) and Inertial Confinement Fusion (ICF) targets has increased in to match the advances made in modeling complex phenomena. The targets have changed from simple hohlraums, spherical geometries, and planar foils, to 3-dimensional geometries that require precision in construction, alignment, and metrology. Furthermore, material properties, such as surface morphologies and volume texture, have significant impact on the behavior of the targets and must be measured and controlled. In the following we will discuss how experimental physicists view targets and the influence that target construction has on interpreting the experimental results. We review a representative sampling of targets fabricated at the Los Alamos National Laboratory that are used in different experiments in support of ICF and HEDP.

  9. TARGET FABRICATION: A VIEW FROM THE USERS.

    SciTech Connect (OSTI)

    Kyrala, George A.; Balkey, Matthew M.; Batha, Steven H.; Barnes, Cris W.; Christensen, Cindy; Cobble, James; Fincke, James; Keiter, Paul; Lanier, Nicholas; Paisley, Dennis; Sorem, Michael S.; Swift, Damian; Workman, Jonathan

    2003-07-18

    Targets are used for a variety of purposes, but ultimately we use them to validate codes that help us predict and understand new phenomena or effects. The sophistication and complexity of High Energy Density Physics (HEDP) and Inertial Confinement Fusion (ICF) targets has increased in time to match the advances made in modeling complex phenomena. The targets have changed from simple hohlraums, spherical geometries, and planar foils, to 3-dimensional geometries that require precision in construction, alignment, and metrology. Furthermore, material properties, such as surface morphologies and volume texture, have significant impact on the behavior of the targets and must be measured and controlled. In the following we will discuss how experimental physicists view targets and the influence that target construction has on interpreting the experimental results. We review a representative sampling of targets fabricated at the Los Alamos National Laboratory that are used in different experiments in support of ICF and HEDP.

  10. Prairie View A&M University | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Prairie View A&M University Prairie View A&M University, Historically Black College and University (HBCU) Professor Tian-sen Huang The Prairie View Plasma Lab (PVPL) is the only fusion plasma lab operated at an HBCU, and a major research and education laboratory at Prairie View A&M University (PVAMU). The lab has two rotamak devices supported by two 500kHz/400 kW rf generators to operate a rotating magnetic field drive-FRC plasma. Since PVPL 2001, PPPL/OSUR provided significant

  11. A Wide Field of View Plasma Spectrometer

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Skoug, Ruth M.; Funsten, Herbert O.; Moebius, Eberhard; Harper, Ron W.; Kihara, Keith H.; Bower, Jonathan S.

    2016-07-23

    Here we present a fundamentally new type of space plasma spectrometer, the wide field of view plasma spectrometer, whose field of view is >1.25π ster using fewer resources than traditional methods. The enabling component is analogous to a pinhole camera with an electrostatic energy-angle filter at the image plane. Particle energy-per-charge is selected with a tunable bias voltage applied to the filter plate relative to the pinhole aperture plate. For a given bias voltage, charged particles from different directions are focused by different angles to different locations. Particles with appropriate locations and angles can transit the filter plate and aremore » measured using a microchannel plate detector with a position-sensitive anode. Full energy and angle coverage are obtained using a single high-voltage power supply, resulting in considerable resource savings and allowing measurements at fast timescales. Lastly, we present laboratory prototype measurements and simulations demonstrating the instrument concept and discuss optimizations of the instrument design for application to space measurements.« less

  12. One-nucleon-induced nonmesonic hypernuclear decay in laboratory coordinates

    SciTech Connect (OSTI)

    Galeao, A. P.; Barbero, C.; De Conti, C.; Krmpotic, F.

    2013-05-06

    We present a formalism for the computation of one-nucleon-induced nonmesonic weak hypernuclear decay rates in laboratory coordinates, within an independent-particle shell model framework, with a view to its generalization to the case of two-nucleon-induced transitions.

  13. Accounting | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accounting The Accounting Office facilitates the financial reporting to the US DOE. The Accounting Office is responsible for the Accounts Payable, Accounts Receivable, Travel Reimbursement, Payroll and Leave, and Capital Property financial and record keeping processes for Ames Lab. Attention: Most of the content in this area is not available to the general public, please login to view all content.

  14. 2013-1-Inquiry | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2013-1-Inquiry Welcome to Inquiry 2013, Issue 1 The Critical Materials Institute is Born Image This issue of Inquiry focuses on the Critical Materials Institute, the Deparment of Energy's latest Energy Innovation Hub. In January, DOE announced that a team of public and private partners led by the Ames Laboratory had been selected for the Hub and $120 million in funding over five years. The lead story takes a broad view

  15. Atmospheric Radiation Measurement (ARM) Data Products from Principal Investigators

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The PI data sets have been made available by ARM principal investigators (PI) or by others for use by the scientific community through the ARM Archive. These data are value-added products to particular ARM data sets or are derived research data of value to ARM science. Principal Investigators' names, date ranges, and research sites involved are listed in table format with the titles of the data products available. Titles are links to a page of additional details (such as the PI's contact information) and a link to the directory where the data set resides. Users will be requested to create a password, but the data files are free for viewing and downloading. The URL to go directly to the ARM Archive, bypassing the information pages, is http://www.archive.arm.gov/. The Office of Biological and Environmental Research in DOE's Office of Science is responsible for the ARM Program. The ARM Archive physically resides at the Oak Ridge National Laboratory.

  16. Laboratory Information Management Systems for Forensic Laboratories: A White Paper for Directors and Decision Makers

    SciTech Connect (OSTI)

    Anthony Hendrickson; Brian Mennecke; Kevin Scheibe; Anthony Townsend; ,

    2005-10-01

    Modern, forensics laboratories need Laboratory Information Management Systems (LIMS) implementations that allow the lab to track evidentiary items through their examination lifecycle and also serve all pertinent laboratory personnel. The research presented here presents LIMS core requirements as viewed by respondents serving in different forensic laboratory capacities as well as different forensic laboratory environments. A product-development methodology was employed to evaluate the relative value of the key features that constitute a LIMS, in order to develop a set of relative values for these features and the specifics of their implementation. In addition to the results of the product development analysis, this paper also provides an extensive review of LIMS and provides an overview of the preparation and planning process for the successful upgrade or implementation of a LIMS. Analysis of the data indicate that the relative value of LIMS components are viewed differently depending upon respondents' job roles (i.e., evidence technicians, scientists, and lab management), as well as by laboratory size. Specifically, the data show that: (1) Evidence technicians place the most value on chain of evidence capabilities and on chain of custody tracking; (2) Scientists generally place greatest value on report writing and generation, and on tracking daughter evidence that develops during their analyses; (3) Lab. Managers place the greatest value on chain of custody, daughter evidence, and not surprisingly, management reporting capabilities; and (4) Lab size affects LIMS preference in that, while all labs place daughter evidence tracking, chain of custody, and management and analyst report generation as their top three priorities, the order of this prioritization is size dependent.

  17. CERTS Microgrid Laboratory Test Bed

    SciTech Connect (OSTI)

    Lasseter, R. H.; Eto, J. H.; Schenkman, B.; Stevens, J.; Volkmmer, H.; Klapp, D.; Linton, E.; Hurtado, H.; Roy, J.

    2010-06-08

    CERTS Microgrid concept captures the emerging potential of distributed generation using a system approach. CERTS views generation and associated loads as a subsystem or a 'microgrid'. The sources can operate in parallel to the grid or can operate in island, providing UPS services. The system can disconnect from the utility during large events (i.e. faults, voltage collapses), but may also intentionally disconnect when the quality of power from the grid falls below certain standards. CERTS Microgrid concepts were demonstrated at a full-scale test bed built near Columbus, Ohio and operated by American Electric Power. The testing fully confirmed earlier research that had been conducted initially through analytical simulations, then through laboratory emulations, and finally through factory acceptance testing of individual microgrid components. The islanding and resynchronization method met all Institute of Electrical and Electronics Engineers Standard 1547 and power quality requirements. The electrical protection system was able to distinguish between normal and faulted operation. The controls were found to be robust under all conditions, including difficult motor starts and high impedance faults.

  18. Contract Research | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Laboratory can enter into contractual agreements with private companies and institutions for research and expertise that cannot be found within the private sector. The Laboratory, ...

  19. Laboratory Directed Research and Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Phone Book Jobs Laboratory Directorate - Strategic Planning Office Laboratory Directed Research and Development (LDRD) LBNL LDRD Program Guidelines LDRD FY 2017 Call for...

  20. Stephen Streiffer | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stephen Streiffer, Associate Lab Director Stephen Streiffer Associate Laboratory Director - Photon Sciences Stephen Streiffer is the Associate Laboratory Director for Photon...