National Library of Energy BETA

Sample records for laboratory gilman hall

  1. NE-24 Gilman Hall, University of California, Certification Documentati...

    Office of Legacy Management (LM)

    ... of Gilman Hall contaminated by MED and AEC activities. 0 Meyers, Sheldon (DOE) to ... actions are documented in the following reports and correspondence: 4 0 Gates, Joseph M. ...

  2. Patrick Gilman | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Patrick Gilman - Wind Market Acceleration and Deployment Lead, Wind Program Most Recent IRS Issues New Tax Credit Guidance for Owners of Small Wind Turbines February 19 Ready, Set, ...

  3. Boynton v. Gilman, 53 Vt. 17 (1880) | Open Energy Information

    Open Energy Info (EERE)

    v. Gilman, 53 Vt. 17 (1880) Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal CaseHearing: Boynton v. Gilman, 53 Vt. 17 (1880)Legal Abstract Riparian rights...

  4. Middle School Schedule | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Schedule Saturday, February 20, 2016 (Iowa State University campus, Ames, Iowa) 7:30 - Registration and continental breakfast (Room 1002 Gilman Hall) 8:00 - Welcome & Announcements (Room 1002 Gilman Hall) 8:30 - Practice Rounds (TASF, Gilman, Spedding and Hach Halls) 9:30 - Round Robin (TASF, Gilman, Spedding and Hach Halls) 11:00 - Tie Breaker (if needed) 11:20 - LUNCH (Union Drive Dining Center - free for coaches, teams and volunteers) 12:30 - Double Elimination (top 12 teams determined by

  5. bboote | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bboote Ames Laboratory Profile Brett Boote Grad Asst-RA Chemical & Biological Sciences 0712 Gilman Phone Number: 515-294-8586 Email Address: bboote@iastate.edu

  6. dfreppon | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dfreppon Ames Laboratory Profile Daniel Freppon Grad Asst-RA Chemical & Biological Sciences 0712 Gilman Phone Number: 515-294-8586 Email Address: dfreppon

  7. jbobbitt | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    jbobbitt Ames Laboratory Profile Jonathan Bobbitt Grad Asst-RA Chemical & Biological Sciences 0712 Gilman Phone Number: 515-294-4285 Email Address: jbobbitt

  8. sburkhow | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sburkhow Ames Laboratory Profile Sadie Burkhow Chemical & Biological Sciences 0712 Gilman Phone Number: 515-294-7568 Email Address: sburkhow

  9. A Letter from Patrick Gilman: Wind Powering America Is Now Stakeholder Engagement and Outreach

    Broader source: Energy.gov [DOE]

    Patrick Gilman, Wind Energy Deployment manager, explains why Wind Powering America's name is in the process of being changed.

  10. X-ray K-edge analysis of drain lines in Wilhelm Hall, Ames Laboratory

    SciTech Connect (OSTI)

    Jensen, T.; Whitmore, C. |

    1999-01-05

    From August 12--27, 1998 X-ray K-edge measurements were made on drain lines in seven rooms in Wilhelm Hall, Ames Laboratory. The purpose of these measurements was to determine the extent of thorium (and other heavy metal) contamination inside these pipes. The K-edge method is a noninvasive inspection technique that can provide accurate quantification of heavy metal contamination interior to an object. Of the seven drain lines inspected, one was found to have no significant contamination, three showed significant thorium deposits, two showed mercury contamination, and one line was found to contain mercury, thorium and uranium. The K-edge measurements were found to be consistent with readings from hand-held survey meters, and provided much greater detail on the location and amount of heavy metal contamination.

  11. Exploration of deeply virtual Compton scattering on the neutron in the Hall A of Jefferson Laboratory

    SciTech Connect (OSTI)

    Malek Mazouz

    2006-12-08

    Generalized Parton Distributions (GPDs) are universal functions which provide a comprehensive description of hadron properties in terms of quarks and gluons. Deeply Virtual Compton Scattering (DVCS) is the simplest hard exclusive process involving GPDs. In particular, the DVCS on the neutron is mostly sensitive to E, the less constrained GPD, wich allows to access to the quark angular momentum. The first dedicated DVCS experiment on the neutron ran in the Hall A of Jefferson Lab in fall 2004. The high luminosity of the experiment and the resulting background rate recquired specific devices which are decribed in this document. The analysis methods and the experiment results, leading to preliminary constraints on the GPD E, are presented.

  12. Diffusion Compton profondement virtuelle dans le Hall A au Jefferson Laboratory

    SciTech Connect (OSTI)

    Carlos Munoz Camacho

    2005-12-01

    Generalized Parton Distributions (GPDs), introduced in the late 90s, provide a universal description of hadrons in terms of the underlying degrees of freedom of Quantum Chromodynamics: quarks and gluons. GPDs appear in a wide variety of hard exclusive reactions and the advent of high luminosity accelerator facilities has made the study of GPDs accessible to experiment. Deeply Virtual Compton Scattering (DVCS) is the golden process involving GPDs. The first dedicated DVCS experiment ran in the Hall A of Jefferson Lab in Fall 2004. An electromagnetic calorimeter and a plastic scintillator detector were constructed for this experiment, together with specific electronics and acquisition system. The experiment preparation, data taking and analysis are described in this document. Results on the absolute cross section difference for opposite beam helicities provide the first measurement of a linear combination of GPDs as a function of the momentum transfer to the nucleon.

  13. Directions to Wilson Hall, Fermilab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Directions Both the Fermilab box office and Ramsey Auditorium are located in Wilson Hall, the central laboratory building of Fermi National Accelerator Laboratory, as shown on the map below. Ramsey Auditorium is located at the south end of Wilson Hall. Enter through the Auditorium lobby doors on the ground level at the south end of Wilson Hall. Wilson Hall is clearly visible from the Pine Street entrance. From I-88, exit north at Farnsworth, which becomes Kirk north of Butterfield road. We also

  14. Electroproduction de pions neutres dans le Hall A au Jefferson Laboratory

    SciTech Connect (OSTI)

    Eric Fuchey

    2010-06-01

    The past decade has seen a strong evolution of the study of the hadron structure through exclusive processes, allowing to access to a more complete description of this structure. Exclusive processes include DVCS (Deeply Virtual Compton Scattering) as well as hard exclusive meson production. This document is particularly focussed on the latter, and more particularly on exclusive neutral pion production. In this thesis is described the analysis of triple coincidence events H(e, e'{gamma}{gamma})X, which were a consequent by-product of the DVCS experiment which occured during Fall 2004 at Jefferson Lab Hall A, to extract the ep {yields} ep{pi}{sup 0} cross section. This cross section has been measured at two values of four-momentum transfer Q{sup 2} = 1.9 GeV{sup 2} and Q{sup 2} = 2.3 GeV{sup 2}. The statistical precision for these measurements is achieved at better than 5 %. The kinematic range allows to study the evolution of the extracted cross section as a function of Q{sup 2} and W. Results are be confronted with Regge inspired calculations and Generalized (GPD) predictions. An intepretation of our data within the framework of semi-inclusive deep inelastic scattering is also discussed.

  15. islowing | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    islowing Ames Laboratory Profile Igor Slowing Assoc Scientist Chemical & Biological Sciences 2756 Gilman Phone Number: 515-294-1959 Email Address: islowing@iastate.edu Ames Laboratory Associate Ames Laboratory Research Projects: Homogeneous and Interfacial Catalysis in 3D Controlled Environment Nanorefinery Education: Ph.D., Iowa State University, 2003-2008 Licenciate in Chemistry, San Carlos University, Guatemala, 1988-1995 Professional Appointments: Staff Scientist, Ames Laboratory,

  16. The Hall

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hall dynamo effect and nonlinear mode coupling during sawtooth magnetic reconnection W. X. Ding, 1,2 D. L. Brower, 1,2 B. H. Deng, 1 A. F. Almagri, 2,3 D. Craig, 2,3 G. Fiksel, 2,3 V. Mirnov, 2,3 S. C. Prager, 2,3 J. S. Sarff, 2,3 and V. Svidzinski 2,3 1 Electrical Engineering Department, University of California at Los Angeles, Los Angeles, California 90095 2 Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas, University of Wisconsin-Madison, Madison, Wisconsin 53706

  17. DOE - Office of Legacy Management -- Berkeley CA Site - CA 03

    Office of Legacy Management (LM)

    FUSRAP Considered Sites Berkeley, CA Alternate Name(s): University of California Gilman Hall, University of California CA.03-1 Location: Gilman Hall, University of California, ...

  18. Fermilab Wilson Hall and Vicinity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wilson Hall and Vicinity Wilson Hall Ramsey Auditorium Booster Linac Antiproton Source Leon M. Lederman Science Education Center...

  19. Jefferson Lab Experimental Hall D

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    D Privacy and Security Notice Skip over navigation search Group This site's design is only visible in a graphical browser that supports web standards, but its content is accessible to any browser. Concerns? Hall D Navigation Hall D Main Hall D Engineering Hall D Staff Hall D Safety print version Hall D in October 2014 Related Links CEBAF at 12 GEV JLab Visitor's Center JLab Virtual Tour JLab page for scientists Experimental Hall A Experimental Hall B Experimental Hall C Hall D Task List - HDList

  20. Mary Hall Salishan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    From Hall et al, "Maximizing Multiprocessor Performance with the SUIF Compiler", IEEE Computer, Dec. 1996. 50% higher Specfp95 ratio than previously reported 3 1990s View *...

  1. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories and Facilities Laboratories and Facilities Laboratories and Facilities National Energy Technology Laboratory - The National Energy Technology Laboratory (NETL) is the lead field center for the Office of Fossil Energy's research and development program. Scientists at its Pittsburgh, Pa., and Morgantown, W. Va., campuses conduct onsite research while contract administrators oversee nearly 700 federally-sponsored projects conducted by private sector research partners. The Houston,

  2. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    performance computer system installed at Los Alamos National Laboratory June 17, 2014 Unclassified 'Wolf' system to advance many fields of science LOS ALAMOS, N.M., June 17, 2014-Los Alamos National Laboratory recently installed a new high-performance computer system, called Wolf, which will be used for unclassified research. "This machine modernizes our mid-tier resources available to Laboratory scientists," said Bob Tomlinson, of the Laboratory's High Performance Computing group.

  3. Hall A Annual Report 2013

    SciTech Connect (OSTI)

    Dalton, Mark M.

    2014-02-01

    Report over the experimental activities in Hall A at Thomas Jefferson National Accelerator Facility during 2013.

  4. Hall Ammendment Policy

    Broader source: Energy.gov [DOE]

    Joint statement providing interim policy on processing proposals for leasing DOE real property using the authority in 42 U.S.C. 7256, commonly referred to as the "Hall Amendment."

  5. June 24, 2015 in 100E Hildebrand Hall | Center for Gas SeparationsRele...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4, 2015 in 100E Hildebrand Hall Previous Next List Stephen Meckler (Lawrence Berkeley National Laboratory) Layered Zif-Polymer Composites Accessed through Metal Oxide Precursors...

  6. Jefferson Lab Experimental Hall B

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hall B Privacy and Security Notice Skip over navigation search Group Please upgrade your browser. This site's design is only visible in a graphical browser that supports web standards, but its content is accessible to any browser. Concerns? Hall B Navigation Hall B Main CLAS CLAS12 Other Expts Run Info Publications Public Interest print version Hall B Main CLAS Collaboration and Hall B CLAS Collaboration Information Phonebook, Opt-in, and Database Reviews and Service Work Login Working Groups

  7. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forest fire near Los Alamos National Laboratory June 26, 2011 Los Alamos, New Mexico, June 26, 2011, 6:07pm-The Las Conchas fire burning in the Jemez Mountains approximately 12...

  8. Unconventional Quantum Hall Effect and Tunable Spin Hall Effect...

    Office of Scientific and Technical Information (OSTI)

    to an Isolated MoS2 Trilayer Title: Unconventional Quantum Hall Effect and Tunable Spin Hall Effect in Dirac Materials: Application to an Isolated MoS2 Trilayer Authors: Li, ...

  9. Experimental Hall C | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    C Jefferson Lab has four experimental halls. Hall C is 150 feet in diameter and 60 feet tall. Hall C houses a High Momentum Spectrometer and provides space for large-installation experiments. These are stand-alone experiments requiring unique or highly specialized detectors, magnets and targeting systems. The research equipment in Hall C is used to study the weak charge of the proton, form factors of simple quark systems, the transition from hadrons to quarks and nuclei with a strange quark

  10. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mexican pueblo preserves cultural history through collaborative tours with Los Alamos National Laboratory August 24, 2015 Students gain new insights into their ancestry LOS ALAMOS, N.M., Aug. 24, 2015-San Ildefonso Pueblo's Summer Education Enhancement Program brought together academic and cultural learning in the form of a recent tour of Cave Kiva Trail in Mortandad Canyon."Opening up this archaeological site and sharing it with the descendants of its first inhabitants is a

  11. Experimental Hall A | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Jefferson Lab has four experimental halls. Hall A is the largest of these four experimental staging areas. It is 174 feet across and 80 feet tall from the floor to the highest spot on its domed ceiling. The foundation for the hall is 35 feet below ground. Hall A is outfitted with two primary detector systems - both high-resolution spectrometers, each weighing about 3 million pounds or 1,500 short tons. The hall is used primarily for experiments that study the structure of the nucleus and the

  12. WORKFORCE DIVERSITY TOWN HALL

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    WORKFORCE DIVERSITY TOWN HALL DECEMBER 6, 2011 1:00-2:00 PM FORRESTAL MAIN AUDITORIUM (BROADCAST TO ALL SITES) F O C U S M I S S I O N L E A R N I N G C O N T I N U A L DIVERSITY AND INCLUSION A C C O U N T A B I L I T Y WORKFORCE DIVERSITY TOWN HALL "When any of our citizens are unable to fulfll their potential due to the factors that have nothing to do with their talent, character, or work ethic, then I believe there's a role for government to play." President Barack Obama "I

  13. Cylindrical geometry hall thruster

    DOE Patents [OSTI]

    Raitses, Yevgeny; Fisch, Nathaniel J.

    2002-01-01

    An apparatus and method for thrusting plasma, utilizing a Hall thruster with a cylindrical geometry, wherein ions are accelerated in substantially the axial direction. The apparatus is suitable for operation at low power. It employs small size thruster components, including a ceramic channel, with the center pole piece of the conventional annular design thruster eliminated or greatly reduced. Efficient operation is accomplished through magnetic fields with a substantial radial component. The propellant gas is ionized at an optimal location in the thruster. A further improvement is accomplished by segmented electrodes, which produce localized voltage drops within the thruster at optimally prescribed locations. The apparatus differs from a conventional Hall thruster, which has an annular geometry, not well suited to scaling to small size, because the small size for an annular design has a great deal of surface area relative to the volume.

  14. ARM - Welcome to Study Hall

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox ...

  15. Experimental Hall B | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    B Jefferson Lab has four experimental halls. Hall B is the smallest of the experimental staging areas. It is 98 feet in diameter and 65 feet from floor to ceiling. Experiments that take data in Hall B employ beams of either electrons or photons. From 1995 to 2012, the heart of the Hall B physics program involved the use of the CEBAF Large Acceptance Spectrometer, or CLAS. This detector system spanned nearly the full angular range about the target and was specifically developed for the study of

  16. Experimental Hall D | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    D A fourth experimental hall, known as Hall D, is currently under construction and is scheduled to begin experiments in 2015. The Hall D project consists of an extension to the accelerator tunnel to house a new beam transport line, a dedicated magnet to tag photons created in beam-target interactions, a counting house, cryogenics plant and service buildings. When it is completed, Hall D will make it possible for scientists to study what are known as exotic mesons or hybrids. You can learn more

  17. Experimental Hall B | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and electromagnetic calorimeters for electron and neutral particle identification. Major research programs in Hall B include experiments to measure the spectrum of excited ...

  18. Manager, Sandia National Laboratories | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Novak Role: Manager, Sandia National Laboratories Award: University of New Mexico's Anderson School of Management's Hall of Fame Inductee Profile: Jim Novak from Sandia National...

  19. Town Hall Questions Answered

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8, 2014 CBFO Manager's weekly update to local residents Read Carlsbad Field Office Manager Joe Franco's letter to Eddy and Lea County residents for the week of April 14: at http://1.usa.gov/1mkxm7b Town Hall Questions Answered Q. What is the condition of Panel 7 right now? A. Work teams entering the underground facility as part of ongoing Phase 3 activities are still working to determine the full condition of Panel 7. Initial entries indicate good roof conditions. Q. What's the presumed reason

  20. QER- Comment of Addison Hall

    Broader source: Energy.gov [DOE]

    I and my family own land in Ashfield next to the proposed Kinder Morgan/Tennessee Pipeline route. We are opposed to the pipeline for a variety of reasons, including the highly questionable need for the proposed commodity increase and the inevitable damage to the environment and communities along the proposed route. Addison Hall for the Hall Family Trust.

  1. Anthony Kathryn Hall | Open Energy Information

    Open Energy Info (EERE)

    Anthony Kathryn Hall Jump to: navigation, search Name: Anthony & Kathryn Hall Place: United Kingdom Sector: Wind energy Product: UK-based private wind farm in Highland. References:...

  2. Experimental Hall C | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Hall C is used to study the weak charge of the proton, form factors of simple quark systems, the transition from hadrons to quarks and nuclei with a strange quark embedded....

  3. Sec. Chu Online Town Hall

    Broader source: Energy.gov [DOE]

    Secretary Steven Chu hosted an online town hall to discuss the clean energy and innovation agenda President Obama laid out in his 2011 State of the Union address. (January 26, 2011)

  4. Science and Energy Town Hall

    Broader source: Energy.gov [DOE]

    Watch a live broadcast of the Science & Energy Town Hall on Wednesday, January 20, 2016 from 2:30 p.m. to 3:30 p.m. EST.

  5. Jefferson Lab Experimental Hall C

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    C Privacy and Security Notice Skip over navigation search Group This site's design is only visible in a graphical browser that supports web standards, but its content is accessible to any browser. Concerns? Hall C Navigation Users Public Interest print version HES, HKS and Splitter Qweak spectrometer used to measure proton weak charge 12 GeV Upgrade Upgrade information 12 GeV Experiments SHMS-HMS User's Group User's Group mailing list Newsletter 12 GeV wiki Hall C Collaboration Information

  6. Town Hall meeting | OpenEI Community

    Open Energy Info (EERE)

    picture Submitted by Graham7781(2017) Super contributor 16 November, 2012 - 11:23 LEDS the focus of Monday's 10 a.m. Town Hall Meeting LEDS Town Hall meeting What: OpenEI's...

  7. Henderson Hall's Education and Career Fair

    Broader source: Energy.gov [DOE]

    Location: Smith Gym, Henderson Hall, Arlington, VAPOC: Donna FriendWebsite: http://www.mccshh.com/EducationCareerFairFall2014.html

  8. Building Green in Greensburg: City Hall Building

    Broader source: Energy.gov [DOE]

    This poster highlights energy efficiency, renewable energy, and sustainable features of the high-performing City Hall building in Greensburg, Kansas.

  9. Rebuilding It Better: Greensburg, Kansas, City Hall

    SciTech Connect (OSTI)

    D. Egan

    2010-04-13

    This document showcases the LEED-Platinum designed Greensburg City Hall, which was rebuilt green, after a massive tornado destroyed Greensburg, Kansas in May 2007.

  10. Hall-effect arc protector

    DOE Patents [OSTI]

    Rankin, R.A.; Kotter, D.K.

    1997-05-13

    The Hall-Effect Arc Protector is used to protect sensitive electronics from high energy arcs. The apparatus detects arcs by monitoring an electrical conductor, of the instrument, for changes in the electromagnetic field surrounding the conductor which would be indicative of a possible arcing condition. When the magnitude of the monitored electromagnetic field exceeds a predetermined threshold, the potential for an instrument damaging are exists and the control system logic activates a high speed circuit breaker. The activation of the breaker shunts the energy imparted to the input signal through a dummy load to the ground. After the arc condition is terminated, the normal signal path is restored. 2 figs.

  11. Hall-effect arc protector

    DOE Patents [OSTI]

    Rankin, Richard A. (Ammon, ID); Kotter, Dale K. (Shelley, ID)

    1997-01-01

    The Hall-Effect Arc Protector is used to protect sensitive electronics from high energy arcs. The apparatus detects arcs by monitoring an electrical conductor, of the instrument, for changes in the electromagnetic field surrounding the conductor which would be indicative of a possible arcing condition. When the magnitude of the monitored electromagnetic field exceeds a predetermined threshold, the potential for an instrument damaging are exists and the control system logic activates a high speed circuit breaker. The activation of the breaker shunts the energy imparted to the input signal through a dummy load to the ground. After the arc condition is terminated, the normal signal path is restored.

  12. Portland State University Shattuck Hall

    High Performance Buildings Database

    Portland, OR Portland State's Shattuck hall was originally constructed as an elementary school in 1915. In 2007 the university undertook extensive renovations of the building to bring it up to current seismic requirements. In addition to structural improvements, the design team was able to upgraded the building's aging mechanical and electrical systems, upgrade plumbing, and restore the large light wells that bring daylight into the U-shaped building. The resulting building houses Portland State's Architecture department, where students are able to learn from the exposed building systems.

  13. Town Hall with Secretary Moniz

    ScienceCinema (OSTI)

    Energy Secretary Ernest Moniz; Deputy Secretary of Energy Daniel Poneman

    2013-07-25

    In a town hall meeting with Department staff, Energy Secretary Ernest Moniz spoke about his plans for a reorganization of the Energy Department?s management structure. The plans will help better achieve the Department?s key priorities and those of the President, including implementing the President?s Climate Action Plan, ?all of the above? energy strategy and nuclear security agenda. After his remarks, Moniz, joined by Deputy Secretary Dan Poneman, took questions from the audience in the Forrestal Auditorium as well as email questions from other Department locations.

  14. Concept for Reducing Hall Thruster Chamber Wall Erosion with...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concept for Reducing Hall Thruster Chamber Wall Erosion with Lithium Vapor Shielding. Hall ... This invention addresses these concerns using a lightweight material (liquid lithium) in a ...

  15. Topological Hubbard Model and Its High-Temperature Quantum Hall...

    Office of Scientific and Technical Information (OSTI)

    Topological Hubbard Model and Its High-Temperature Quantum Hall Effect Title: Topological Hubbard Model and Its High-Temperature Quantum Hall Effect Authors: Neupert, Titus ; ...

  16. Building America Top Innovations Hall of Fame Profile - Building...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Top Innovations Hall of Fame Profile - Building America's Top Innovations Propel the Home Building Industry toward Higher Performance Building America Top Innovations Hall of Fame ...

  17. Effective Field Theory of Fractional Quantized Hall Nematics...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Effective Field Theory of Fractional Quantized Hall Nematics Citation Details In-Document Search Title: Effective Field Theory of Fractional Quantized Hall ...

  18. Effective field theory of fractional quantized Hall nematics...

    Office of Scientific and Technical Information (OSTI)

    Effective field theory of fractional quantized Hall nematics Citation Details In-Document Search Title: Effective field theory of fractional quantized Hall nematics Authors: ...

  19. Quantum Anomalous Hall Effect in 2D Organic Topological Insulators...

    Office of Scientific and Technical Information (OSTI)

    Quantum Anomalous Hall Effect in 2D Organic Topological Insulators Citation Details In-Document Search Title: Quantum Anomalous Hall Effect in 2D Organic Topological Insulators ...

  20. Building America Top Innovations Hall of Fame Profile - Building...

    Energy Savers [EERE]

    Building America Top Innovations Hall of Fame Profile - Building Energy Optimization Analysis Method (BEopt) Building America Top Innovations Hall of Fame Profile - Building Energy...

  1. Anomalous spin precession and spin Hall effect in semiconductor...

    Office of Scientific and Technical Information (OSTI)

    Anomalous spin precession and spin Hall effect in semiconductor quantum wells Title: Anomalous spin precession and spin Hall effect in semiconductor quantum wells Authors: Bi, ...

  2. Quantum Hall effects in a Weyl semimetal: Possible application...

    Office of Scientific and Technical Information (OSTI)

    Quantum Hall effects in a Weyl semimetal: Possible application in pyrochlore iridates Title: Quantum Hall effects in a Weyl semimetal: Possible application in pyrochlore iridates ...

  3. Hall County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    B. Places in Hall County, Texas Estelline, Texas Lakeview, Texas Memphis, Texas Turkey, Texas Retrieved from "http:en.openei.orgwindex.php?titleHallCounty,Texas&oldid...

  4. Compliance, HQ GILMAD J&ILL STUDY

    Office of Legacy Management (LM)

    ... z : 1 an d , California 34612 Dear Fr. klu: Pt your request, representatives from LLL and LBL surveyed several areas ;,? Gilman Hall on the University of California, Berkeley ...

  5. Designation of Sites for Remedial Action - Metal Hydrides, Beverly...

    Office of Legacy Management (LM)

    This approach was used for some of the contamination at Gilman Hall, Berkeley, California, and the University of Chicago, Chicago, Illinois. However, there may be other areas of ...

  6. Grji'

    Office of Legacy Management (LM)

    This approach was used for some of the contamination at Gilman Hall, Berkeley, California Illinois, , and the University of Chicago, Chicago, However, there may be other areas of ...

  7. Experiment Hall & Beamline | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1104-m-circumference optical bench. The hall floor is made of 1-ft-thick poured concrete. Usual practice in poured concrete construction is the use of evenly spaced cuts in...

  8. OSDBU Federal Contracting Town Hall Meeting

    Broader source: Energy.gov [DOE]

    In June of 2015, John Hale III, Director of the Office of Small and Disadvantaged Business Utilization, served as the moderator for the Federal Contracting Town Hall Meeting during the CelebrAsian...

  9. OpenEI Community - Town Hall meeting

    Open Energy Info (EERE)

    st, 2012 http:en.openei.orgcommunityblogtown-hall-meeting-october-1st-2012

  10. Hypernuclei in Hall C | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hypernuclei in Hall C Hypernuclei in Hall C High Resolution Electron Spectrometer The High Resolution Electron Spectrometer (teal and red, top left) was recently built with a grant from Japan's Ministry of Education, Culture, Sports, Science and Technology. The ministry also funded the new splitter magnet (dark green) and the High Resolution Kaon Spectrometer (purple and light green, top right). Nuclear scientists have gone to great lengths to pry open the nucleus and peer deep inside. They've

  11. Deck Those Halls! | Department of Energy

    Energy Savers [EERE]

    Deck Those Halls! Deck Those Halls! December 14, 2010 - 2:24pm Addthis Drew Bittner Writer/Editor, Office of Energy Efficiency and Renewable Energy It's mid-December, so odds are good you've already decorated your home for the holidays. If so, you're ahead of me; it took us about three days to get the lights on the tree and we still have items to put up at home, not to mention lots of Christmas cards to send out. My point is, many of us are pressed for time in this holiday season. Between

  12. TBB-0042- In the Matter of Curtis Hall

    Broader source: Energy.gov [DOE]

    This letter concerns the complaint of retaliation filed by Curtis Hall (the complainant or Mr. Hall) with the Department of Energy under 10 C . F. R. Part 7 0 8 , the DOE Con tractor Employee ...

  13. Fractional quantum spin Hall effect in flat-band checkerboard...

    Office of Scientific and Technical Information (OSTI)

    Fractional quantum spin Hall effect in flat-band checkerboard lattice model Citation Details In-Document Search Title: Fractional quantum spin Hall effect in flat-band checkerboard ...

  14. Phase transitions in quantum Hall multiple layer systems

    SciTech Connect (OSTI)

    Pusep, Yu A.; Fernandes dos Santos, L.; Smirnov, D.; Bakarov, A. K.; Toropov, A. I.

    2013-12-04

    Polarized photoluminescence from multiple well electron systems was studied in the regime of the integer quantum Hall effect. Two quantum Hall ferromagnetic ground states assigned to the uncorrelated miniband quantum Hall state and to the spontaneous interwell phase coherent dimer quantum Hall state were observed. The photoluminescence associated with these states exhibits features caused by finite-size skyrmions. The depolarization of the ferromagnetic ground state was observed in bilayer system.

  15. Diversity and Inclusion Town Hall Program Book | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Town Hall Program Book Diversity and Inclusion Town Hall Program Book As part of a larger effort to create a culture that values diversity, we have been conducting focus groups to engage in a dialog and hear feedback on how diversity can be improved. At the Town Hall, DOE employees will hear the results of these discussions. View the program booklet from the Diversity and Inclusion Town Hall below. For more information about the Department's diversity and inclusion programs, visit

  16. Effective Field Theory of Fractional Quantized Hall Nematics (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Effective Field Theory of Fractional Quantized Hall Nematics Citation Details In-Document Search Title: Effective Field Theory of Fractional Quantized Hall Nematics We present a Landau-Ginzburg theory for a fractional quantized Hall nematic state and the transition to it from an isotropic fractional quantum Hall state. This justifies Lifshitz-Chern-Simons theory - which is shown to be its dual - on a more microscopic basis and enables us to compute a ground state

  17. Spring 2015 Henderson Hall Education and Career Fair

    Office of Energy Efficiency and Renewable Energy (EERE)

    Location: Smith Gym, Henderson Hall, Arlington, VAPOC: DOECorporateRecruitment@hq.doe.govWebsite: http://bit.ly/1FRIJOF

  18. Quantitative analytical model for magnetic reconnection in hall magnetohydrodynamics

    SciTech Connect (OSTI)

    Simakov, Andrei N

    2008-01-01

    Magnetic reconnection is of fundamental importance for laboratory and naturally occurring plasmas. Reconnection usually develops on time scales which are much shorter than those associated with classical collisional dissipation processes, and which are not fully understood. While such dissipation-independent (or 'fast') reconnection rates have been observed in particle and Hall magnetohydrodynamics (MHD) simulations and predicted analytically in electron MHD, a quantitative analytical theory of fast reconnection valid for arbitrary ion inertial lengths d{sub i} has been lacking. Here we propose such a theory without a guide field. The theory describes two-dimensional magnetic field diffusion regions, provides expressions for the reconnection rates, and derives a formal criterion for fast reconnection in terms of dissipation parameters and di. It also demonstrates that both open X-point and elongated diffusion regions allow dissipation-independent reconnection and reveals a possibility of strong dependence of the reconnection rates on d{sub i}.

  19. Newmark-Hall synthetic history development

    SciTech Connect (OSTI)

    Aramayo, G.A.

    1990-11-01

    The methodology used to develop synthetic acceleration time histories with spectral content that envelopes the Newmark-Hall spectra is described. Six acceleration time histories are developed for two conditions of foundation and 3 critical damping factors. The target spectra corresponds to the mediam centered probability level.

  20. The Honorable,Edward Rendell, '. City Hall

    Office of Legacy Management (LM)

    I:! i394 .\ . The Honorable,Edward Rendell, '. City Hall Philadelphia, Pennsylvania 19107 Dear Mayor Rendell : ', ,' . , Secretary of Energy Hazel O',teary has announced-a new approach.to.openness in the Department of Energy (DDE) and its communications with the public. . In support of this initiative, we are.pleased to forward the enclosed information related to the,former. Penn Salt Manufacturing' Co. site in your jurisdiction that performed.work for DOE or its predecessor agencies. This

  1. Town_Hall_Meeting_10_29_15.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Town Hall with Secretary Moniz Town Hall with Secretary Moniz July 18, 2013 - 3:42pm Addthis Secretary Moniz speaks at a townhall with DOE employees on the Departmental reorganization. Dan Leistikow Dan Leistikow Former Director, Office of Public Affairs In a town hall meeting with Department staff, Energy Secretary Ernest Moniz spoke about his plans for a reorganization of the Energy Department's management structure. The plans will help better achieve the Department's key priorities and those

  2. Town Hall with Secretary Moniz | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Town Hall with Secretary Moniz Town Hall with Secretary Moniz July 18, 2013 - 3:42pm Addthis Secretary Moniz speaks at a townhall with DOE employees on the Departmental reorganization. Dan Leistikow Dan Leistikow Former Director, Office of Public Affairs In a town hall meeting with Department staff, Energy Secretary Ernest Moniz spoke about his plans for a reorganization of the Energy Department's management structure. The plans will help better achieve the Department's key priorities and those

  3. Webcast: National Energy Literacy Virtual Town Hall | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Webcast: National Energy Literacy Virtual Town Hall Webcast: National Energy Literacy Virtual Town Hall Webcast: National Energy Literacy Virtual Town Hall On August 5, 2014, the Department of Energy (DOE) hosted a dynamic virtual conversation of ongoing efforts from across the country in utilizing the Energy Literacy Framework to address one of our nations' biggest national challenges, "Energy Illiteracy." The goal of this webinar was to share resources in energy education and provide

  4. Spin-Hall-assisted magnetic random access memory (Journal Article) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Spin-Hall-assisted magnetic random access memory Citation Details In-Document Search Title: Spin-Hall-assisted magnetic random access memory We propose a write scheme for perpendicular spin-transfer torque magnetoresistive random-access memory that significantly reduces the required tunnel current density and write energy. A sub-nanosecond in-plane polarized spin current pulse is generated using the spin-Hall effect, disturbing the stable magnetic state. Subsequent switching

  5. Missed Today's Town Hall with Sec. Chu? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Missed Today's Town Hall with Sec. Chu? Missed Today's Town Hall with Sec. Chu? January 26, 2011 - 4:02pm Addthis We have the video of today's online town hall event with Secretary Chu up and ready for your viewing. Check it out here. Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs We have the video of today's online town hall event with Secretary Chu up and ready for your viewing. Check it out here. During the event, Secretary Chu highlighted several

  6. Rebuilding It Better: Greensburg, Kansas. City Hall (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-04-01

    This document showcases the LEED-Platinum designed Greensburg City Hall, which was rebuilt green, after a massive tornado destroyed Greensburg, Kansas in May 2007.

  7. Engineering quantum anomalous/valley Hall states in graphene...

    Office of Scientific and Technical Information (OSTI)

    Engineering quantum anomalousvalley Hall states in graphene via metal-atom adsorption: An ab-initio study Citation Details In-Document Search Title: Engineering quantum anomalous...

  8. Building America Top Innovations Hall of Fame Profile … Unvented...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In addition to influencing builders across the country to adopt unvented, conditioned ... AMERICA TOP INNOVATIONS HALL OF FAME PROFILE INNOVATIONS CATEGORY: 1. Advanced ...

  9. Building America Top Innovations Hall of Fame Profile … High...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... TOP INNOVATIONS BUILDING AMERICA BUILDING AMERICA TOP INNOVATIONS HALL OF FAME PROFILE Habitat affiliates across the country held "blitz builds" to construct homes for Gulf Coast ...

  10. Hall's Warehouse Corp Solar Project | Open Energy Information

    Open Energy Info (EERE)

    Corp. Solar Project" Retrieved from "http:en.openei.orgwindex.php?titleHall%27sWarehouseCorpSolarProject&oldid397541" Feedback Contact needs updating Image...

  11. Rebuilding It Better: Greensburg, Kansas. City Hall (Brochure)

    Broader source: Energy.gov [DOE]

    This brochure details the energy efficient and sustainable aspects of the LEED Platinum-designated City Hall building in Greensburg, Kansas.

  12. Centre Hall, Pennsylvania: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hall, Pennsylvania: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.8475635, -77.6861093 Show Map Loading map... "minzoom":false,"mappingser...

  13. Hall County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hall County, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.30778, -83.804868 Show Map Loading map... "minzoom":false,"mappingserv...

  14. Systems and Methods for Cylindrical Hall Thrusters with Independently...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systems and Methods for Cylindrical Hall Thrusters with Independently Controllable Ionization and Acceleration Stages Yevgeny Raitses, Nathaniel J. Fisch and Kevin D. Diamant (The...

  15. Robert B. Laughlin and the Fractional Quantum Hall Effect

    Office of Scientific and Technical Information (OSTI)

    Robert B. Laughlin and the Fractional Quantum Hall Effect Resources with Additional Information Robert B. Laughlin Photo Courtesy of LLNL Robert B. Laughlin shared the 1998 Nobel...

  16. Rebuilding It Better: Greensburg, Kansas, City Hall (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-09-01

    This brochure details the energy efficient and sustainable aspects of the LEED Platinum-designated City Hall building in Greensburg, Kansas.

  17. Robert B. Laughlin and the Fractional Quantum Hall Effect

    Office of Scientific and Technical Information (OSTI)

    Robert B. Laughlin and the Fractional Quantum Hall Effect Resources with Additional Information Robert B. Laughlin Photo Courtesy of LLNL Robert B. Laughlin shared the 1998 Nobel ...

  18. Lees-Kubota Lecture Hall, Guggenheim 101

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SPECIAL SEMINAR - Monday, November 3 rd Lees-Kubota Lecture Hall, Guggenheim 101 11:15am-12:15pm "Perovskite Solar Cells: Towards New Materials and New Applications" Professor Nripan Mathews Nanyang Technological University, Singapore Abstract: Perovskite solar cells have attracted a lot of attention primarily due to its high efficiency (~19%). Much of the attention has focused on CH 3 NH 3 PbI 3 (Eg-1.55eV) whose high performance can be traced to a high absorption coefficient as well

  19. Segmented electrode hall thruster with reduced plume

    DOE Patents [OSTI]

    Fisch, Nathaniel J.; Raitses, Yevgeny

    2004-08-17

    An apparatus and method for thrusting plasma, utilizing a Hall thruster with segmented electrodes along the channel, which make the acceleration region as localized as possible. Also disclosed are methods of arranging the electrodes so as to minimize erosion and arcing. Also disclosed are methods of arranging the electrodes so as to produce a substantial reduction in plume divergence. The use of electrodes made of emissive material will reduce the radial potential drop within the channel, further decreasing the plume divergence. Also disclosed is a method of arranging and powering these electrodes so as to provide variable mode operation.

  20. Undulator Hall Air Temperature Fault Scenarios

    SciTech Connect (OSTI)

    Sevilla, J.; Welch, J.; ,

    2010-11-17

    Recent experience indicates that the LCLS undulator segments must not, at any time following tuning, be allowed to change temperature by more than about {+-}2.5 C or the magnetic center will irreversibly shift outside of acceptable tolerances. This vulnerability raises a concern that under fault conditions the ambient temperature in the Undulator Hall might go outside of the safe range and potentially could require removal and retuning of all the segments. In this note we estimate changes that can be expected in the Undulator Hall air temperature for three fault scenarios: (1) System-wide power failure; (2) Heating Ventilation and Air Conditioning (HVAC) system shutdown; and (3) HVAC system temperature regulation fault. We find that for either a system-wide power failure or an HVAC system shutdown (with the technical equipment left on), the short-term temperature changes of the air would be modest due to the ability of the walls and floor to act as a heat ballast. No action would be needed to protect the undulator system in the event of a system-wide power failure. Some action to adjust the heat balance, in the case of the HVAC power failure with the equipment left on, might be desirable but is not required. On the other hand, a temperature regulation failure of the HVAC system can quickly cause large excursions in air temperature and prompt action would be required to avoid damage to the undulator system.

  1. Pair spectrometer hodoscope for Hall D at Jefferson Lab

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Barbosa, Fernando J.; Hutton, Charles L.; Sitnikov, Alexandre; Somov, Alexander S.; Somov, S.; Tolstukhin, Ivan

    2015-09-21

    We present the design of the pair spectrometer hodoscope fabricated at Jefferson Lab and installed in the experimental Hall D. The hodoscope consists of thin scintillator tiles; the light from each tile is collected using wave-length shifting fibers and detected using a Hamamatsu silicon photomultiplier. Light collection was measured using relativistic electrons produced in the tagger area of the experimental Hall B.

  2. Energy spectrum, dissipation, and spatial structures in reduced Hall magnetohydrodynamic

    SciTech Connect (OSTI)

    Martin, L. N.; Dmitruk, P.; Gomez, D. O.

    2012-05-15

    We analyze the effect of the Hall term in the magnetohydrodynamic turbulence under a strong externally supported magnetic field, seeing how this changes the energy cascade, the characteristic scales of the flow, and the dynamics of global magnitudes, with particular interest in the dissipation. Numerical simulations of freely evolving three-dimensional reduced magnetohydrodynamics are performed, for different values of the Hall parameter (the ratio of the ion skin depth to the macroscopic scale of the turbulence) controlling the impact of the Hall term. The Hall effect modifies the transfer of energy across scales, slowing down the transfer of energy from the large scales up to the Hall scale (ion skin depth) and carrying faster the energy from the Hall scale to smaller scales. The final outcome is an effective shift of the dissipation scale to larger scales but also a development of smaller scales. Current sheets (fundamental structures for energy dissipation) are affected in two ways by increasing the Hall effect, with a widening but at the same time generating an internal structure within them. In the case where the Hall term is sufficiently intense, the current sheet is fully delocalized. The effect appears to reduce impulsive effects in the flow, making it less intermittent.

  3. Fractional Quantum Hall Effect at Landau Level Filling v=4/11...

    Office of Scientific and Technical Information (OSTI)

    Fractional Quantum Hall Effect at Landau Level Filling v411. Citation Details In-Document Search Title: Fractional Quantum Hall Effect at Landau Level Filling v411. Abstract...

  4. Non-abelian fractional quantum hall effect for fault-resistant...

    Office of Scientific and Technical Information (OSTI)

    Non-abelian fractional quantum hall effect for fault-resistant topological quantum computation. Citation Details In-Document Search Title: Non-abelian fractional quantum hall...

  5. Spin Hall magnetoresistance at high temperatures

    SciTech Connect (OSTI)

    Uchida, Ken-ichi; Qiu, Zhiyong; Kikkawa, Takashi; Iguchi, Ryo; Saitoh, Eiji

    2015-02-02

    The temperature dependence of spin Hall magnetoresistance (SMR) in Pt/Y{sub 3}Fe{sub 5}O{sub 12} (YIG) bilayer films has been investigated in a high temperature range from room temperature to near the Curie temperature of YIG. The experimental results show that the magnitude of the magnetoresistance ratio induced by the SMR monotonically decreases with increasing the temperature and almost disappears near the Curie temperature. We found that, near the Curie temperature, the temperature dependence of the SMR in the Pt/YIG film is steeper than that of a magnetization curve of the YIG; the critical exponent of the magnetoresistance ratio is estimated to be 0.9. This critical behavior of the SMR is attributed mainly to the temperature dependence of the spin-mixing conductance at the Pt/YIG interface.

  6. Recent results and challenges in development of metallic Hall sensors for fusion reactors

    SciTech Connect (OSTI)

    ?uran, Ivan; Mulek, Radek; Kova?k, Karel; Sentkerestiov, Jana; Kohout, Michal

    2014-08-21

    Reliable and precise diagnostic of local magnetic field is crucial for successful operation of future thermonuclear fusion reactors based on magnetic confinement. Magnetic sensors at these devices will experience an extremely demanding operational environment with large radiation and thermal loads in combination with required long term, reliable, and service-free performance. Neither present day commercial nor laboratory measurement systems comply with these requirements. Metallic Hall sensors based on e.g. copper or bismuth could potentially satisfy these needs. We present the technology for manufacturing of such sensors and some initial results on characterization of their properties.

  7. 2008 CNM Users Meeting | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 CNM Users Meeting Tuesday, May 6, 2008 4:45-5:45 CNM Facility Tour 7:00-9:30 Users Week Banquet Wednesday, May 7, 2008 CNM Plenary and Science Session Bldg. 402 Lecture Hall 8:45-8:50 Welcome, Paul Evans, University of Wisconsin-Madison, CNM UEC Chair 8:50-9:00 Welcome from Laboratory Directorate,Al Sattelberger, Associate Laboratory Director for Energy Sciences & Engineering, Argonne National Laboratory 9:00-9:30 Update from Washington: Eric Rohlfing, Associate Director of Science for

  8. Public invited to LANL-sponsored Energy Town Hall

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LOS ALAMOS, New Mexico, April 19, 2010-The public is invited to learn about projects in energy conservation, generation, research, and management at an Energy Town Hall April 21. ...

  9. Missed the Town Hall with Secretary Chu? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the video of the online town hall event with Secretary Chu up and ready for your viewing. ... about 40 minutes of questions from both the in-house audience and the online audiences. ...

  10. Property:Building/FloorAreaTheatresConcertHallsCinemas | Open...

    Open Energy Info (EERE)

    Property Edit with form History Property:BuildingFloorAreaTheatresConcertHallsCinemas Jump to: navigation, search This is a property of type Number. Floor area for Theatres,...

  11. Hall County, Nebraska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Hall County is a county in Nebraska. Its FIPS County Code is 079. It is classified as ASHRAE...

  12. TBH-0042- In the Matter of Curtis Hall

    Broader source: Energy.gov [DOE]

    This Initial Agency Decision involves a whistleblower complaint filed by Mr. Curtis Hall (also referred to as the complainant or the individual) under the Department of Energy (DOE) Contractor...

  13. Generation of magnetic skyrmion bubbles by inhomogeneous spin Hall currents

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | DOE PAGES Generation of magnetic skyrmion bubbles by inhomogeneous spin Hall currents This content will become publicly available on March 7, 2017 « Prev Next » Title: Generation of magnetic skyrmion bubbles by inhomogeneous spin Hall currents Authors: Heinonen, Olle ; Jiang, Wanjun ; Somaily, Hamoud ; te Velthuis, Suzanne G. E. ; Hoffmann, Axel Publication Date: 2016-03-07 OSTI Identifier: 1240477 Type: Publisher's Accepted Manuscript Journal Name: Physical Review B

  14. Microscopic theory of quantum anomalous Hall effect in graphene (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Microscopic theory of quantum anomalous Hall effect in graphene Citation Details In-Document Search Title: Microscopic theory of quantum anomalous Hall effect in graphene Authors: Qiao, Zhenhua ; Jiang, Hua ; Li, Xiao ; Yao, Yugui ; Niu, Qian Publication Date: 2012-03-27 OSTI Identifier: 1098600 Type: Publisher's Accepted Manuscript Journal Name: Physical Review B Additional Journal Information: Journal Volume: 85; Journal Issue: 11; Journal ID: ISSN 1098-0121

  15. Spin Hall Effects in Metallic Antiferromagnets (Journal Article) | DOE

    Office of Scientific and Technical Information (OSTI)

    PAGES Spin Hall Effects in Metallic Antiferromagnets « Prev Next » Title: Spin Hall Effects in Metallic Antiferromagnets Authors: Zhang, Wei ; Jungfleisch, Matthias B. ; Jiang, Wanjun ; Pearson, John E. ; Hoffmann, Axel ; Freimuth, Frank ; Mokrousov, Yuriy Publication Date: 2014-11-04 OSTI Identifier: 1181195 Type: Publisher's Accepted Manuscript Journal Name: Physical Review Letters Additional Journal Information: Journal Volume: 113; Journal Issue: 19; Journal ID: ISSN 0031-9007

  16. Spin Hall effects in metallic antiferromagnets - perspectives for future

    Office of Scientific and Technical Information (OSTI)

    spin-orbitronics (Journal Article) | DOE PAGES Hall effects in metallic antiferromagnets - perspectives for future spin-orbitronics « Prev Next » Title: Spin Hall effects in metallic antiferromagnets - perspectives for future spin-orbitronics Authors: Sklenar, Joseph [1] ; Zhang, Wei [2] ; Jungfleisch, Matthias B. [2] ; Jiang, Wanjun [2] ; Saglam, Hilal [3] ; Pearson, John E. [2] ; Ketterson, John B. [4] Search DOE PAGES for author "Ketterson, John B." Search DOE PAGES for ORCID

  17. Building America Top Innovations Hall of Fame Profile - Building Energy

    Energy Savers [EERE]

    Optimization Analysis Method (BEopt) | Department of Energy America Top Innovations Hall of Fame Profile - Building Energy Optimization Analysis Method (BEopt) Building America Top Innovations Hall of Fame Profile - Building Energy Optimization Analysis Method (BEopt) PDF icon 3_3a_ba_innov_beopt_011713.pdf More Documents & Publications Building Energy Optimization Analysis Method (BEopt) - Building America Top Innovation BEopt Version 2.0: New Features Building America Webinar: Building

  18. Hall effect measurements on InAs nanowires

    SciTech Connect (OSTI)

    Bloemers, Ch.; Grap, T.; Lepsa, M. I.; Moers, J.; Gruetzmacher, D.; Lueth, H.; Trellenkamp, St.; Schaepers, Th.

    2012-10-08

    We have processed Hall contacts on InAs nanowires grown by molecular beam epitaxy using an electron beam lithography process with an extremely high alignment accuracy. The carrier concentrations determined from the Hall effect measurements on these nanowires are lower by a factor of about 4 in comparison with those measured by the common field-effect technique. The results are used to evaluate quantitatively the charging effect of the interface and surface states.

  19. Stability of Hall equilibria in neutron star crusts

    SciTech Connect (OSTI)

    Marchant, Pablo; Reisenegger, Andreas; Valdivia, Juan Alejandro; Hoyos, Jaime H.

    2014-12-01

    In the solid crusts of neutron stars, the advection of the magnetic field by the current-carrying electrons, an effect known as Hall drift, should play a very important role as the ions remain essentially fixed (as long as the solid does not break). Although Hall drift preserves the magnetic field energy, it has been argued that it may drive a turbulent cascade to scales at which ohmic dissipation becomes effective, allowing a much faster decay in objects with very strong fields. On the other hand, it has been found that there are 'Hall equilibria', i.e., field configurations that are unaffected by Hall drift. Here we address the crucial question of the stability of these equilibria through axially symmetric (two-dimensional (2D)) numerical simulations of Hall drift and ohmic diffusion, with the simplifying assumption of uniform electron density and conductivity. We demonstrate the 2D stability of a purely poloidal equilibrium, for which ohmic dissipation makes the field evolve toward an attractor state through adjacent stable configurations, around which damped oscillations occur. For this field, the decay scales with the ohmic timescale. We also study the case of an unstable equilibrium consisting of both poloidal and toroidal field components that are confined within the crust. This field evolves into a stable configuration, which undergoes damped oscillations superimposed on a slow evolution toward an attractor, just as the purely poloidal one.

  20. Oak Ridge Operations PO. Box E

    Office of Legacy Management (LM)

    PO. Box E Oak Ridge,Tennessee 37830 E. 6. DeLaney, DRAP, NE-24 COMPLETION OF DECONTAMINATION OF GILMAN HALL, UNIVERSITY OF CALIFORNIA AT BERKELEY Attached is a copy of the final report covering the remedial actions and associated radiological survey work on Gilman Hall. Your attention is called to the last paragraph of the attached letter from Mr. Davis (SAN) which states: "Completion of this work has fulfilled OR's obligation under the Formerly Utilized Sites Remedial Action Program

  1. Admittance of multiterminal quantum Hall conductors at kilohertz frequencies

    SciTech Connect (OSTI)

    Hernndez, C.; Consejo, C.; Chaubet, C.; Degiovanni, P.

    2014-03-28

    We present an experimental study of the low frequency admittance of quantum Hall conductors in the [100?Hz, 1?MHz] frequency range. We show that the frequency dependence of the admittance of the sample strongly depends on the topology of the contacts connections. Our experimental results are well explained within the Christen and Bttiker approach for finite frequency transport in quantum Hall edge channels taking into account the influence of the coaxial cables capacitance. In the Hall bar geometry, we demonstrate that there exists a configuration in which the cable capacitance does not influence the admittance measurement of the sample. In this case, we measure the electrochemical capacitance of the sample and observe its dependence on the filling factor.

  2. Reconnection events in two-dimensional Hall magnetohydrodynamic turbulence

    SciTech Connect (OSTI)

    Donato, S.; Servidio, S.; Carbone, V. [Dipartimento di Fisica, Universita della Calabria, I-87036 Cosenza (Italy); Dmitruk, P. [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Fisica de Buenos Aires, CONICET, Buenos Aires (Argentina); Shay, M. A.; Matthaeus, W. H. [Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716 (United States); Cassak, P. A. [Department of Physics, West Virginia University, Morgantown, West Virginia 26506 (United States)

    2012-09-15

    The statistical study of magnetic reconnection events in two-dimensional turbulence has been performed by comparing numerical simulations of magnetohydrodynamics (MHD) and Hall magnetohydrodynamics (HMHD). The analysis reveals that the Hall term plays an important role in turbulence, in which magnetic islands simultaneously reconnect in a complex way. In particular, an increase of the Hall parameter, the ratio of ion skin depth to system size, broadens the distribution of reconnection rates relative to the MHD case. Moreover, in HMHD the local geometry of the reconnection region changes, manifesting bifurcated current sheets and quadrupolar magnetic field structures in analogy to laminar studies, leading locally to faster reconnection processes in this case of reconnection embedded in turbulence. This study supports the idea that the global rate of energy dissipation is controlled by the large scale turbulence, but suggests that the distribution of the reconnection rates within the turbulent system is sensitive to the microphysics at the reconnection sites.

  3. Study of the effects of guide field on Hall reconnection

    SciTech Connect (OSTI)

    Tharp, T. D.; Yamada, M.; Ji, H.; Lawrence, E.; Dorfman, S.; Myers, C.; Yoo, J.; Huang, Y.-M.; Bhattacharjee, A.

    2013-05-15

    The results from guide field studies on the Magnetic Reconnection Experiment (MRX) are compared with results from Hall magnetohydrodynamic (HMHD) reconnection simulation with guide field. The quadrupole field, a signature of two-fluid reconnection at zero guide field, is modified by the presence of a finite guide field in a manner consistent with HMHD simulation. The modified Hall current profile contains reduced electron flows in the reconnection plane, which quantitatively explains the observed reduction of the reconnection rate. The present results are consistent with the hypothesis that the local reconnection dynamics is dominated by Hall effects in the collisionless regime of the MRX plasmas. While very good agreement is seen between experiment and simulations, we note that an important global feature of the experiments, a compression of the guide field by the reconnecting plasma, is not represented in the simulations.

  4. On the question of hysteresis in Hall magnetohydrodynamic reconnection

    SciTech Connect (OSTI)

    Sullivan, Brian P.; Bhattacharjee, A.; Huang Yimin

    2010-11-15

    Controversy has been raised regarding the cause of hysteresis, or bistability, of solutions to the equations that govern the geometry of the reconnection region in Hall magnetohydrodynamic (MHD) systems. This brief communication presents a comparison of the frameworks within which this controversy has arisen and illustrates that the Hall MHD hysteresis originally discovered numerically by Cassak et al. [Phys. Rev. Lett. 95, 235002 (2005)] is a different phenomenon from that recently reported by Zocco et al. [Phys. Plasmas 16, 110703 (2009)] on the basis of analysis and simulations in electron MHD with finite electron inertia. We demonstrate that the analytic prediction of hysteresis in EMHD does not describe or explain the hysteresis originally reported in Hall MHD, which is shown to persist even in the absence of electron inertia.

  5. Hall effect in a strong magnetic field: Direct comparisons of compressible magnetohydrodynamics and the reduced Hall magnetohydrodynamic equations

    SciTech Connect (OSTI)

    Martin, L. N.; Dmitruk, P.; Gomez, D. O.

    2010-11-15

    In this work we numerically test a model of Hall magnetohydrodynamics in the presence of a strong mean magnetic field: the reduced Hall magnetohydrodynamic model (RHMHD) derived by [Gomez et al., Phys. Plasmas 15, 102303 (2008)] with the addition of weak compressible effects. The main advantage of this model lies in the reduction of computational cost. Nevertheless, up until now the degree of agreement with the original Hall MHD system and the range of validity in a regime of turbulence were not established. In this work direct numerical simulations of three-dimensional Hall MHD turbulence in the presence of a strong mean magnetic field are compared with simulations of the weak compressible RHMHD model. The results show that the degree of agreement is very high (when the different assumptions of RHMHD, such as spectral anisotropy, are satisfied). Nevertheless, when the initial conditions are isotropic but the mean magnetic field is maintained strong, the results differ at the beginning but asymptotically reach a good agreement at relatively short times. We also found evidence that the compressibility still plays a role in the dynamics of these systems, and the weak compressible RHMHD model is able to capture these effects. In conclusion the weak compressible RHMHD model is a valid approximation of the Hall MHD turbulence in the relevant physical context.

  6. Inverse spin Hall effect in Pt/(Ga,Mn)As

    SciTech Connect (OSTI)

    Nakayama, H.; Chen, L.; Chang, H. W.; Ohno, H.; Matsukura, F.

    2015-06-01

    We investigate dc voltages under ferromagnetic resonance in a Pt/(Ga,Mn)As bilayer structure. A part of the observed dc voltage is shown to originate from the inverse spin Hall effect. The sign of the inverse spin Hall voltage is the same as that in Py/Pt bilayer structure, even though the stacking order of ferromagnetic and nonmagnetic layers is opposite to each other. The spin mixing conductance at the Pt/(Ga,Mn)As interface is determined to be of the order of 10{sup 19 }m{sup −2}, which is about ten times greater than that of (Ga,Mn)As/p-GaAs.

  7. Nanoconstriction-based spin-Hall nano-oscillator

    SciTech Connect (OSTI)

    Demidov, V. E.; Urazhdin, S.; Zholud, A.; Sadovnikov, A. V.; Demokritov, S. O.

    2014-10-27

    We experimentally demonstrate magnetic nano-oscillators driven by pure spin current produced by the spin Hall effect in a bow tie-shaped nanoconstriction. These devices exhibit single-mode auto-oscillation and generate highly-coherent electronic microwave signals with a significant power and the spectral linewidth as low as 6.2 MHz at room temperature. The proposed simple and flexible device geometry is amenable to straightforward implementation of advanced spintronic structures such as chains of mutually coupled spin-Hall nano-oscillators.

  8. Quantum anomalous Hall effect in topological insulator memory

    SciTech Connect (OSTI)

    Jalil, Mansoor B. A.; Tan, S. G.; Siu, Z. B.

    2015-05-07

    We theoretically investigate the quantum anomalous Hall effect (QAHE) in a magnetically coupled three-dimensional-topological insulator (3D-TI) system. We apply the generalized spin-orbit coupling Hamiltonian to obtain the Hall conductivity ?{sup xy} of the system. The underlying topology of the QAHE phenomenon is then analyzed to show the quantization of ?{sup xy} and its relation to the Berry phase of the system. Finally, we analyze the feasibility of utilizing ?{sup xy} as a memory read-out in a 3D-TI based memory at finite temperatures, with comparison to known magnetically doped 3D-TIs.

  9. Laboratories | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories Our laboratories are available to industry and other organizations for researching, developing, and evaluating energy technologies. We have experienced lab technicians, scientists and engineers ready to design and run tests for you. Some labs are available for conducting your own research. A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z A Accelerated Exposure Testing Laboratory Advanced Optical Materials Laboratory Advanced

  10. VEE-0067- In the Matter of M.L. Halle Oil Service, Inc.

    Broader source: Energy.gov [DOE]

    On August 9, 1999 M.L. Halle Oil Service, Inc. (Halle) of Manchester, New Hampshire, filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy ...

  11. Quantum anomalous Hall effect in single-layer and bilayer graphene...

    Office of Scientific and Technical Information (OSTI)

    Quantum anomalous Hall effect in single-layer and bilayer graphene Citation Details In-Document Search Title: Quantum anomalous Hall effect in single-layer and bilayer graphene ...

  12. 06.27.14 SRS Retirees Town Hall Meeting-Dave Hepner Page...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Meeting-Dave Hepner Page 1 SRSRA TOWN HALL MEETING New Ellenton Community Center JUNE 27, 2014 After reviewing the notes and discussing the Town Hall Meeting held on June 27, 2014,...

  13. Bernhard Mecking steps down as Hall B leader at Jefferson Lab | Jefferson

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab Bernhard Mecking steps down as Hall B leader at Jefferson Lab Bernhard Mecking Jefferson Lab staff scientist Bernhard Mecking with the CEBAF Large Acceptance Spectrometer (CLAS) in Hall B. Bernhard Mecking steps down as Hall B leader at Jefferson Lab April 2, 2003 On 1 February 2003, Bernhard Mecking stepped down as leader of Hall B to return to full-time research at the Department of Energy's Thomas Jefferson National Accelerator Facility (Jefferson Lab) in Newport News, Virginia.

  14. After 105 Years, Historic City Hall in West Des Moines, Iowa Goes Green |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy After 105 Years, Historic City Hall in West Des Moines, Iowa Goes Green After 105 Years, Historic City Hall in West Des Moines, Iowa Goes Green May 9, 2011 - 5:22pm Addthis The restored Historic City Hall building in West Des Moines' Valley Junction neighborhood. | Photo credit: Vicky Saylor The restored Historic City Hall building in West Des Moines' Valley Junction neighborhood. | Photo credit: Vicky Saylor April Saylor April Saylor Former Digital Outreach Strategist,

  15. Geoscience Laboratory | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    preparation and other relatively straight-forward laboratory manipulations. These include buffer preparations, solid sample grinding, solution concentration, filtration, and...

  16. AGU SubTER Town Hall Presentation 2015 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AGU SubTER Town Hall Presentation 2015 AGU SubTER Town Hall Presentation 2015 PDF icon AGU SubTER Townhall 2015.pdf More Documents & Publications SubTER Fact Sheet SubTER Presentation at Town Hall - American Geophysical Union SubTER Crosscut White Paper

  17. EX/P5-4 Two-Fluid Hall Effect on Plasma Relaxation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EX/P5-4 Two-Fluid Hall Effect on Plasma Relaxation in a High-Temperature Plasma W.X. Ding 1,3), V. Mirnov 2,3), A. F. Almagri 2,3), D.L. Brower 1,3), D. Craig 2,3), B.H. Deng 1,3), D. J. Den Hartog 2,3) , G. Fiksel 2,3), C.C. Hegna 2,3), S.C. Prager 2,3), J.S. Sarff 2,3) 1) University of California, Los Angeles, California 90095 USA 2) University of Wisconsin-Madison, Madison, Wisconsin 53706 USA 3) The Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas e-mail contact

  18. Commissioning and Testing the 1970's Era LASS Solenoid Magnet in JLab's Hall D

    SciTech Connect (OSTI)

    Ballard, Joshua T.; Biallas, George H.; Brown, G.; Butler, David E.; Carstens, Thomas J.; Chudakov, Eugene A.; Creel, Jonathan D.; Egiyan, Hovanes; Martin, F.; Qiang, Yi; Smith, Elton S.; Stevens, Mark A.; Spiegel, Scot L.; Whitlatch, Timothy E.; Wolin, Elliott J.; Ghoshal, Probir K.

    2015-06-01

    JLab refurbished and reconfigured the LASS1, 1.85m bore Solenoid and installed it as the principal analysis magnet for nuclear physics in the newly constructed, Hall D at Jefferson Lab. The magnet contains four superconducting coils within an iron yoke. The magnet was built in the early1970's at Stanford Linear Accelerator Center and used a second time at Los Alamos National Laboratory. The coils were extensively refurbished and individually tested by JLab. A new Cryogenic Distribution Box provides cryogens and their control valving, current distribution bus, and instrumentation pass-through. A repurposed CTI 2800 refrigerator system and new transfer line complete the system. We describe the re-configuration, the process and problems of re-commissioning the magnet and the results of testing the completed magnet.

  19. Laboratory Fellows

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    selected as Los Alamos National Laboratory Fellows November 16, 2010 Scientific disciplines range from fundamental and applied physics to geology LOS ALAMOS, New Mexico, NOVEMBER 16, 2010-Five Los Alamos National Laboratory scientists from diverse fields of research have been named Laboratory Fellows. The five researchers are Brenda Dingus of the Neutron Science and Technology group; William (Bill) Louis of the Subatomic Physics group; John Sarrao, director of Los Alamos's Office of Science

  20. Laboratory Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Operations /newsroom/_assets/images/operations-icon.png Laboratory Operations Latest announcements from the Lab on its operations. Community, Events Laboratory Operations Environmental Stewardship Melissa Blueflower-Sanchez and Robert Sanchez, owners of R and M Construction, LLC, of Santa Clara Pueblo. Four regional businesses receive Native American Venture Acceleration Fund grants The grants are designed to help the recipients create jobs, increase their revenue base and help

  1. Laboratory Building.

    SciTech Connect (OSTI)

    Herrera, Joshua M.

    2015-03-01

    This report is an analysis of the means of egress and life safety requirements for the laboratory building. The building is located at Sandia National Laboratories (SNL) in Albuquerque, NM. The report includes a prescriptive-based analysis as well as a performance-based analysis. Following the analysis are appendices which contain maps of the laboratory building used throughout the analysis. The top of all the maps is assumed to be north.

  2. Contactless measurement of alternating current conductance in quantum Hall structures

    SciTech Connect (OSTI)

    Drichko, I. L.; Diakonov, A. M.; Malysh, V. A.; Smirnov, I. Yu.; Ilyinskaya, N. D.; Usikova, A. A.; Galperin, Y. M.; Kummer, M.; Känel, H. von

    2014-10-21

    We report a procedure to determine the frequency-dependent conductance of quantum Hall structures in a broad frequency domain. The procedure is based on the combination of two known probeless methods—acoustic spectroscopy and microwave spectroscopy. By using the acoustic spectroscopy, we study the low-frequency attenuation and phase shift of a surface acoustic wave in a piezoelectric crystal in the vicinity of the electron (hole) layer. The electronic contribution is resolved using its dependence on a transverse magnetic field. At high frequencies, we study the attenuation of an electromagnetic wave in a coplanar waveguide. To quantitatively calibrate these data, we use the fact that in the quantum-Hall-effect regime the conductance at the maxima of its magnetic field dependence is determined by extended states. Therefore, it should be frequency independent in a broad frequency domain. The procedure is verified by studies of a well-characterized p-SiGe/Ge/SiGe heterostructure.

  3. Recent Results of TMD Measurements from Jefferson Lab Hall A

    SciTech Connect (OSTI)

    Jiang, Xiaodong

    2013-10-01

    This slide-show presents results on transverse momentum distributions. The presentation covers: target single-spin asymmetry (SSA) (in parity conserving interactions); Results of JLab Hall A polarized {sup 3}He target TMD measurement; Semi-?inclusive deep-inelastic scattering channels (E06-010); Target single-spin asymmetry A{sub UT}, Collins and Sivers SSA on neutron; Double-spin asymmetry A{sub LT}, extract TMD g{sub 1T} on neutron; Inclusive channels SSA (E06-010, E05-015, E07-013) Target SSA: inclusive {sup 3}He(e,e) quasi-elastic scattering; Target SSA: inclusive {sup 3}He(e,e) deep inelastic-elastic scattering; New SIDIS experiments planned in Hall-A for JLab-12 GeV.

  4. Effects of Enhanced Eathode Electron Emission on Hall Thruster Operation

    SciTech Connect (OSTI)

    Y. Raitses, A. Smirnov and N. J. Fisch

    2009-04-24

    Interesting discharge phenomena are observed that have to do with the interaction between the magnetized Hall thruster plasma and the neutralizing cathode. The steadystate parameters of a highly ionized thruster discharge are strongly influenced by the electron supply from the cathode. The enhancement of the cathode electron emission above its self-sustained level affects the discharge current and leads to a dramatic reduction of the plasma divergence and a suppression of large amplitude, low frequency discharge current oscillations usually related to an ionization instability. These effects correlate strongly with the reduction of the voltage drop in the region with the fringing magnetic field between the thruster channel and the cathode. The measured changes of the plasma properties suggest that the electron emission affects the electron cross-field transport in the thruster discharge. These trends are generalized for Hall thrusters of various configurations.

  5. Precise quantization of anomalous Hall effect near zero magnetic field

    SciTech Connect (OSTI)

    Bestwick, A. J.; Fox, E. J.; Kou, Xufeng; Pan, Lei; Wang, Kang L.; Goldhaber-Gordon, D.

    2015-05-04

    In this study, we report a nearly ideal quantum anomalous Hall effect in a three-dimensional topological insulator thin film with ferromagnetic doping. Near zero applied magnetic field we measure exact quantization in the Hall resistance to within a part per 10,000 and a longitudinal resistivity under 1 Ω per square, with chiral edge transport explicitly confirmed by nonlocal measurements. Deviations from this behavior are found to be caused by thermally activated carriers, as indicated by an Arrhenius law temperature dependence. Using the deviations as a thermometer, we demonstrate an unexpected magnetocaloric effect and use it to reach near-perfect quantization by cooling the sample below the dilution refrigerator base temperature in a process approximating adiabatic demagnetization refrigeration.

  6. Fractionally charged skyrmions in fractional quantum Hall effect

    SciTech Connect (OSTI)

    Balram, Ajit C.; Wurstbauer, U.; Wójs, A.; Pinczuk, A.; Jain, J. K.

    2015-11-26

    The fractional quantum Hall effect has inspired searches for exotic emergent topological particles, such as fractionally charged excitations, composite fermions, abelian and nonabelian anyons and Majorana fermions. Fractionally charged skyrmions, which support both topological charge and topological vortex-like spin structure, have also been predicted to occur in the vicinity of 1/3 filling of the lowest Landau level. The fractional skyrmions, however, are anticipated to be exceedingly fragile, suppressed by very small Zeeman energies. Here we show that, slightly away from 1/3 filling, the smallest manifestations of the fractional skyrmion exist in the excitation spectrum for a broad range of Zeeman energies, and appear in resonant inelastic light scattering experiments as well-defined resonances slightly below the long wavelength spin wave mode. The spectroscopy of these exotic bound states serves as a sensitive tool for investigating the residual interaction between composite fermions, responsible for delicate new fractional quantum Hall states in this filling factor region.

  7. Intermittency in Hall-magnetohydrodynamics with a strong guide field

    SciTech Connect (OSTI)

    Rodriguez Imazio, P.; Martin, L. N.; Dmitruk, P.; Mininni, P. D.; National Center for Atmospheric Research, P.O. Box 3000, Boulder, Colorado 80307

    2013-05-15

    We present a detailed study of intermittency in the velocity and magnetic field fluctuations of compressible Hall-magnetohydrodynamic turbulence with an external guide field. To solve the equations numerically, a reduced model valid when a strong guide field is present is used. Different values for the ion skin depth are considered in the simulations. The resulting data are analyzed computing field increments in several directions perpendicular to the guide field, and building structure functions and probability density functions. In the magnetohydrodynamic limit, we recover the usual results with the magnetic field being more intermittent than the velocity field. In the presence of the Hall effect, field fluctuations at scales smaller than the ion skin depth show a substantial decrease in the level of intermittency, with close to monofractal scaling.

  8. Transition in Electron Transport in a Cylindrical Hall Thruster

    SciTech Connect (OSTI)

    J.B. Parker, Y. Raitses, and N.J. Fisch

    2010-06-02

    Through the use of high-speed camera and Langmuir probe measurements in a cylindrical Hall thruster, we report the discovery of a rotating spoke of increased plasma density and light emission which correlates with increased electron transport across the magnetic field. As cathode electron emission is increased, a sharp transition occurs where the spoke disappears and electron transport decreases. This suggests that a significant fraction of the electron current might be directed through the spoke.

  9. Jackie Chen inducted into Alameda County Women's Hall of Fame

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    inducted into Alameda County Women's Hall of Fame - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste

  10. Gradient instabilities of electromagnetic waves in Hall thruster plasma

    SciTech Connect (OSTI)

    Tomilin, Dmitry

    2013-04-15

    This paper presents a linear analysis of gradient plasma instabilities in Hall thrusters. The study obtains and analyzes the dispersion equation of high-frequency electromagnetic waves based on the two-fluid model of a cold plasma. The regions of parameters corresponding to unstable high frequency modes are determined and the dependence of the increments and intrinsic frequencies on plasma parameters is obtained. The obtained results agree with those of previously published studies.

  11. Metal-to-insulator switching in quantum anomalous Hall states

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kou, Xufeng; Pan, Lei; Wang, Jing; Fan, Yabin; Choi, Eun Sang; Lee, Wei -Li; Nie, Tianxiao; Murata, Koichi; Shao, Qiming; Zhang, Shou -Cheng; et al

    2015-10-07

    After decades of searching for the dissipationless transport in the absence of any external magnetic field, quantum anomalous Hall effect (QAHE) was recently achieved in magnetic topological insulator films. However, the universal phase diagram of QAHE and its relation with quantum Hall effect (QHE) remain to be investigated. Here, we report the experimental observation of the giant longitudinal resistance peak and zero Hall conductance plateau at the coercive field in the six quintuple-layer (Cr0.12Bi0.26Sb0.62)2Te3 film, and demonstrate the metal-to-insulator switching between two opposite QAHE plateau states up to 0.3 K. Moreover, the universal QAHE phase diagram is confirmed through themore » angle-dependent measurements. Our results address that the quantum phase transitions in both QAHE and QHE regimes are in the same universality class, yet the microscopic details are different. Additionally, the realization of the QAHE insulating state unveils new ways to explore quantum phase-related physics and applications.« less

  12. Metal-to-insulator switching in quantum anomalous Hall states

    SciTech Connect (OSTI)

    Kou, Xufeng; Pan, Lei; Wang, Jing; Fan, Yabin; Choi, Eun Sang; Lee, Wei -Li; Nie, Tianxiao; Murata, Koichi; Shao, Qiming; Zhang, Shou -Cheng; Wang, Kang L.

    2015-10-07

    After decades of searching for the dissipationless transport in the absence of any external magnetic field, quantum anomalous Hall effect (QAHE) was recently achieved in magnetic topological insulator films. However, the universal phase diagram of QAHE and its relation with quantum Hall effect (QHE) remain to be investigated. Here, we report the experimental observation of the giant longitudinal resistance peak and zero Hall conductance plateau at the coercive field in the six quintuple-layer (Cr0.12Bi0.26Sb0.62)2Te3 film, and demonstrate the metal-to-insulator switching between two opposite QAHE plateau states up to 0.3 K. Moreover, the universal QAHE phase diagram is confirmed through the angle-dependent measurements. Our results address that the quantum phase transitions in both QAHE and QHE regimes are in the same universality class, yet the microscopic details are different. Additionally, the realization of the QAHE insulating state unveils new ways to explore quantum phase-related physics and applications.

  13. Laboratory Directors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Siegfried S. Hecker (1985-1997) Donald M. Kerr (1979-1985) Harold M. Agnew (1970-1979) Norris Bradbury (1945-1970) J. Robert Oppenheimer (1943-1945) Laboratory Directors Harold M. ...

  14. National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supercomputing Challenge draws more than 200 students to Los Alamos National Laboratory April 16, 2015 NOTE TO EDITORS: Media are welcome to attend the awards ceremony from 9 a.m. to noon a.m., April 21 at the Church of Christ, 2323 Diamond Drive, Los Alamos. Student teams from around New Mexico showcase year-long research projects April 20-21 LOS ALAMOS, N.M., April 16, 2015-More than 200 New Mexico students and their teachers are at Los Alamos National Laboratory April 20-21 for the 25th

  15. Large spin-wave bullet in a ferrimagnetic insulator driven by spin Hall

    Office of Scientific and Technical Information (OSTI)

    effect. (Journal Article) | SciTech Connect Large spin-wave bullet in a ferrimagnetic insulator driven by spin Hall effect. Citation Details In-Document Search Title: Large spin-wave bullet in a ferrimagnetic insulator driven by spin Hall effect. Due to its transverse nature, spin Hall effects (SHE) provide the possibility to excite and detect spin currents and magnetization dynamics even in magnetic insulators. Magnetic insulators are outstanding materials for the investigation of nonlinear

  16. Berry phase mechanism of the anomalous Hall effect in a disordered

    Office of Scientific and Technical Information (OSTI)

    two-dimensional magnetic semiconductor structure. (Journal Article) | SciTech Connect Berry phase mechanism of the anomalous Hall effect in a disordered two-dimensional magnetic semiconductor structure. Citation Details In-Document Search Title: Berry phase mechanism of the anomalous Hall effect in a disordered two-dimensional magnetic semiconductor structure. In this study, the anomalous Hall effect (AHE) arises from the interplay of spin-orbit interactions and ferromagnetic order and is a

  17. SubTER Presentation at Town Hall - American Geophysical Union | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Presentation at Town Hall - American Geophysical Union SubTER Presentation at Town Hall - American Geophysical Union Subter, the Subsurface Crosscut at the Energy Department, conducted a Town Hall meeting to share information and create a dialogue regarding the grand challenges of energy production and storage in the subsurface. The event was held at the AGU Fall Meeting in San Francisco on December 15, 2014. Click here to learn more about SubTER. Open the full slide presentation

  18. January 22, 2014 in 100E Hildebrand Hall | Center for GasSeparationsR...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 22, 2014 in 100E Hildebrand Hall Previous Next List Miguel Gonzalez (Dept. of Chemistry, UC Berkeley) Designing Metal-Organic Frameworks for Catalysis Richard Martin...

  19. Tunable Anderson metal-insulator transition in quantum spin-Hall...

    Office of Scientific and Technical Information (OSTI)

    Tunable Anderson metal-insulator transition in quantum spin-Hall insulators Citation ... This content will become publicly available on June 3, 2016 Title: Tunable Anderson ...

  20. Plasma analogy and non-Abelian statistics for Ising-type quantum Hall

    Office of Scientific and Technical Information (OSTI)

    states (Journal Article) | SciTech Connect Plasma analogy and non-Abelian statistics for Ising-type quantum Hall states Citation Details In-Document Search Title: Plasma analogy and non-Abelian statistics for Ising-type quantum Hall states We study the non-Abelian statistics of quasiparticles in the Ising-type quantum Hall states which are likely candidates to explain the observed Hall conductivity plateaus in the second Landau level, most notably the one at filling fraction {nu}=5/2. We

  1. EECBG Success Story: After 105 Years, Historic City Hall in West...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    City Hall in West Des Moines, Iowa Goes Green EECBG Success Story: Grant Improves ... of Oro Valley EECBG Success Story: Energy Upgrades to Save Small Arizona Town Big ...

  2. PREPRINT QUASIPARTICLE AGGREGATION I N THE FRACTIONAL QUANTUM HALL EFFECT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    91618 PREPRINT QUASIPARTICLE AGGREGATION I N THE FRACTIONAL QUANTUM HALL EFFECT R. B. Laughlin This paper was prepared for submittal to the Proceedings of the 17th International Conference on the Physics of Semi conductors San Francisco, California August 6-10, 1984 October 10, 1984 This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be made before publication, this preprint is made available with the un- derstanding that it will not be cited or

  3. Titanium diboride ceramic fiber composites for Hall-Heroult cells

    DOE Patents [OSTI]

    Besmann, T.M.; Lowden, R.A.

    1990-05-29

    An improved cathode structure is described for Hall-Heroult cells for the electrolytic production of aluminum metal. This cathode structure is a preform fiber base material that is infiltrated with electrically conductive titanium diboride using chemical vapor infiltration techniques. The structure exhibits good fracture toughness, and is sufficiently resistant to attack by molten aluminum. Typically, the base can be made from a mat of high purity silicon carbide fibers. Other ceramic or carbon fibers that do not degrade at temperatures below about 1000 C can be used.

  4. Titanium diboride ceramic fiber composites for Hall-Heroult cells

    DOE Patents [OSTI]

    Besmann, Theodore M.; Lowden, Richard A.

    1990-01-01

    An improved cathode structure for Hall-Heroult cells for the electrolytic production of aluminum metal. This cathode structure is a preform fiber base material that is infiltrated with electrically conductive titanium diboride using chemical vapor infiltration techniques. The structure exhibits good fracture toughness, and is sufficiently resistant to attack by molten aluminum. Typically, the base can be made from a mat of high purity silicon carbide fibers. Other ceramic or carbon fibers that do not degrade at temperatures below about 1000 deg. C can be used.

  5. ,The Honorable Thomas Henino City Hall Plaza I

    Office of Legacy Management (LM)

    Department of Energy Washington,. DC 20585 MAR 29 1995 ,The Honorable Thomas Henino City Hall Plaza I Boston, Massachusetts 02201 '. ! Dear Mayor Menino: Even though additional involvement by DOE is,not necessary at this site, we are prepared to respond to any concerns you may have. -' : __ if you have any questions,' please feel free to call me eat 301-427li721 or Dr. W. Alexander Willlams (301-427-1719)~of my staff. ' gyp , ,~.&.Qz J ~ J / d .!~a : T- " ames W. Wagoner I -. Secretary

  6. Ion dynamics in an E??B Hall plasma accelerator

    SciTech Connect (OSTI)

    Young, Christopher V. Lucca Fabris, Andrea; Cappelli, Mark A.

    2015-01-26

    We show the time evolution of the ion velocity distribution function in a Hall plasma accelerator during a 20?kHz natural, quasi-periodic plasma oscillation. We apply a time-synchronized laser induced fluorescence technique at different locations along the channel midline, obtaining time- and spatially resolved ion velocity measurements. Strong velocity and density fluctuations and multiple ion populations are observed throughout the so-called breathing mode ionization instability, opening an experimental window into the detailed ion dynamics and physical processes at the heart of such devices.

  7. Topological Hall conductivity of vortex and skyrmion spin textures

    SciTech Connect (OSTI)

    Jalil, M. B. A. Ghee Tan, Seng; Eason, Kwaku; Kong, Jian Feng

    2014-05-07

    We analyze the topological Hall conductivity experienced by conduction electrons whose spins are strongly coupled to axially symmetric spin textures, such as magnetic vortex and skyrmion of types I and II, theoretically by gauge theory, and numerically via micromagnetic simulations. The numerical results are in agreement with the theoretical predictions. Divergence between the two is seen when the vortex/skyrmion core radius is comparable or larger than the element size, and when the skyrmion configuration breaks down at high Dzyaloshinskii-Moriya interaction strength.

  8. Sandia National Laboratories: Electrostatic Discharge (ESD) Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrostatic Discharge (ESD) Laboratory We have field and laboratory capabilities to measure electrostatic environment generation, storage, and charge transfer effects....

  9. The Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    existing programs in climate change science and infrastructure. The Laboratory has a 15- year history in climate change science. The Climate, Ocean and Sea Ice Modeling (COSIM) project develops and maintains advanced numerical models of the ocean, sea ice, and ice sheets for use in global climate change projections. COSIM models were used extensively in simulations underpinning the recent climate assessment by the Intergovernmental Panel on Climate Change (IPCC) that was awarded the 2007 Nobel

  10. Lab Plan | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab Plan Ames Laboratory

  11. Refrigeration Recovery for Experiment Hall High Target Loads

    SciTech Connect (OSTI)

    Peter Knudsen, Venkatarao Ganni, Errol Yuksek, Jonathan Creel

    2010-04-01

    The Qweak experiment at Jefferson Lab (JLab) is a 3000 W hydrogen target scheduled for the summer of 2010 and running for two years until the planned shut-down for 12GeV. The End Station Refrigerator (ESR) supports the three experiment halls, two of which may normally have a hydrogen target. The refrigerator for the ESR is a CTI/Helix 1500 W 4.5-K refrigerator nominally capable of supporting a 1250 W target load at 12 bar and 15-K (plus 1100 W of 4.5-K refrigeration). As such, this refrigerator is not capable of supporting the Qweak experiment target load in its present condition. Additionally, since the installation of an ambient air vaporizer for a single use, two week run duration of a high target load in the summer of 2003 there has been a consistent usage of the Central Helium Liquefier’s (CHL’s) 3 bar 4.5-K helium, supplied via an existing transfer-line to the ESR, for other high target loads. By the fall of 2004, it was apparent that this continued use of CHL’s supercritical helium was routinely being sought by the hall experimenters. As such, a method of refrigeration recovery was proposed to reduce the support required of CHL for these high target loads, including the anticipated Qweak experiment, while utilizing the recovered CHL refrigeration from the target to increase ESR’s 12 bar 15-K capacity.

  12. Hall effect in quantum critical charge-cluster glass

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bozovic, Ivan; Wu, Jie; Bollinger, Anthony T.; Sun, Yujie

    2016-04-04

    Upon doping, cuprates undergo a quantum phase transition from an insulator to a d-wave superconductor. The nature of this transition and of the insulating state is vividly debated. Here, we study the Hall effect in La2-xSrxCuO4 (LSCO) samples doped near the quantum critical point at x ≈ 0.06. Dramatic fluctuations in the Hall resistance appear below TCG ≈ 1.5 K and increase as the sample is cooled down further, signaling quantum critical behavior. We explore the doping dependence of this effect in detail, by studying a combinatorial LSCO library in which the Sr content is varied in extremely fine steps,more » Δx ≈ 0.00008. Furthermore, we observe that quantum charge fluctuations wash out when superconductivity emerges but can be restored when the latter is suppressed by applying a magnetic field, showing that the two instabilities compete for the ground state.« less

  13. Fractionally charged skyrmions in fractional quantum Hall effect

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Balram, Ajit C.; Wurstbauer, U.; Wójs, A.; Pinczuk, A.; Jain, J. K.

    2015-11-26

    The fractional quantum Hall effect has inspired searches for exotic emergent topological particles, such as fractionally charged excitations, composite fermions, abelian and nonabelian anyons and Majorana fermions. Fractionally charged skyrmions, which support both topological charge and topological vortex-like spin structure, have also been predicted to occur in the vicinity of 1/3 filling of the lowest Landau level. The fractional skyrmions, however, are anticipated to be exceedingly fragile, suppressed by very small Zeeman energies. Here we show that, slightly away from 1/3 filling, the smallest manifestations of the fractional skyrmion exist in the excitation spectrum for a broad range of Zeemanmore » energies, and appear in resonant inelastic light scattering experiments as well-defined resonances slightly below the long wavelength spin wave mode. The spectroscopy of these exotic bound states serves as a sensitive tool for investigating the residual interaction between composite fermions, responsible for delicate new fractional quantum Hall states in this filling factor region.« less

  14. Hall magnetohydrodynamic reconnection in the plasmoid unstable regime

    SciTech Connect (OSTI)

    Baalrud, S. D.; Bhattacharjee, A.; Huang, Y.-M.; Germaschewski, K.

    2011-09-15

    A set of reduced Hall magnetohydrodynamic (MHD) equations are used to evaluate the stability of large aspect ratio current sheets to the formation of plasmoids (secondary islands). Reconnection is driven by resistivity in this analysis, which occurs at the resistive skin depth d{sub {eta}}{identical_to}S{sub L}{sup -1/2}{radical}(L{nu}{sub A}/{gamma}), where S{sub L} is the Lundquist number, L, the length of the current sheet, {nu}{sub A,} the Alfven speed, and {gamma}, the growth rate. Modifications to a recent resistive MHD analysis [N. F. Loureiro et al., Phys. Plasmas 14, 100703 (2007)] arise when collisions are sufficiently weak that d{sub {eta}} is shorter than the ion skin depth d{sub i}{identical_to}c/{omega}{sub pi}. Secondary islands grow faster in this Hall MHD regime: the maximum growth rate scales as (d{sub i}/L){sup 6/13}S{sub L}{sup 7/13}{nu}{sub A}/L and the number of plasmoids as (d{sub i}/L){sup 1/13}S{sub L}{sup 11/26}, compared to S{sub L}{sup 1/4}{nu}{sub A}/L and S{sup 3/8}, respectively, in resistive MHD.

  15. Community Events | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Analysis, Third Edition (Chapman & HallCRC) Chapters: 6, 7 Moderators: J. Larson, K. Khan March 27, 2015 Northwestern University (Evanston Campus) Pancoe Auditorium...

  16. Large size GEM for Super Bigbite Spectrometer (SBS) polarimeter for Hall A 12GeV program at JLab

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gnanvo, Kondo; Liyanage, Nilanga; Nelyubin, Vladimir; Saenboonruang, Kiadtisak; Sacher, Seth; Wojtsekhowski, Bogdan

    2015-05-01

    We report on the R&D effort in the design and construction of a large size GEM chamber for the Proton Polarimeter of the Super Bigbite Spectrometer (SBS) in Hall A at Thomas Jefferson National Laboratory (JLab). The SBS Polarimeter trackers consist of two sets of four large chambers of size 200 cm x 60 cm2. Each chamber is a vertical stack of four GEM modules with an active area of 60 cm x 50 cm. We have built and tested several GEM modules and we describe in this paper the design and construction of the final GEM as well asmore » the preliminary results on performances from tests carried out in our detector lab and with test beams at (Fermilab).« less

  17. Large size GEM for Super Bigbite Spectrometer (SBS) polarimeter for Hall A 12GeV program at JLab

    SciTech Connect (OSTI)

    Gnanvo, Kondo; Liyanage, Nilanga; Nelyubin, Vladimir; Saenboonruang, Kiadtisak; Sacher, Seth; Wojtsekhowski, Bogdan

    2015-05-01

    We report on the R&D effort in the design and construction of a large size GEM chamber for the Proton Polarimeter of the Super Bigbite Spectrometer (SBS) in Hall A at Thomas Jefferson National Laboratory (JLab). The SBS Polarimeter trackers consist of two sets of four large chambers of size 200 cm x 60 cm2. Each chamber is a vertical stack of four GEM modules with an active area of 60 cm x 50 cm. We have built and tested several GEM modules and we describe in this paper the design and construction of the final GEM as well as the preliminary results on performances from tests carried out in our detector lab and with test beams at (Fermilab).

  18. Laboratory Activities

    SciTech Connect (OSTI)

    Brown, Christopher F.; Serne, R. Jeffrey

    2008-01-17

    This chapter summarizes the laboratory activities performed by PNNLs Vadose Zone Characterization Project in support of the Tank Farm Vadose Zone Program, led by CH2M HILL Hanford Group, Inc. The results of these studies are contained in numerous reports (Lindenmeier et al. 2002; Serne et al. 2002a, 2002b, 2002c, 2002d, 2002e; Lindenmeier et al. 2003; Serne et al. 2004a, 2004b; Brown et al. 2005, 2006a, 2007; Serne et al. 2007) and have generated much of the data reported in Chapter 22 (Geochemistry-Contaminant Movement), Appendix G (Geochemistry-Contaminant Movement), and Cantrell et al. (2007, SST WMA Geochemistry Data Package in preparation). Sediment samples and characterization results from PNNLs Vadose Zone Characterization Project are also shared with other science and technology (S&T) research projects, such as those summarized in Chapter 12 (Associated Science Activities).

  19. Hall MHD Stability and Turbulence in Magnetically Accelerated Plasmas

    SciTech Connect (OSTI)

    H. R. Strauss

    2012-11-27

    The object of the research was to develop theory and carry out simulations of the Z pinch and plasma opening switch (POS), and compare with experimental results. In the case of the Z pinch, there was experimental evidence of ion kinetic energy greatly in excess of the ion thermal energy. It was thought that this was perhaps due to fine scale turbulence. The simulations showed that the ion energy was predominantly laminar, not turbulent. Preliminary studies of a new Z pinch experiment with an axial magnetic field were carried out. The axial magnetic is relevant to magneto - inertial fusion. These studies indicate the axial magnetic field makes the Z pinch more turbulent. Results were also obtained on Hall magnetohydrodynamic instability of the POS.

  20. The Hall D solenoid helium refrigeration system at JLab

    SciTech Connect (OSTI)

    Laverdure, Nathaniel A.; Creel, Jonathan D.; Dixon, Kelly d.; Ganni, Venkatarao; Martin, Floyd D.; Norton, Robert O.; Radovic, Sasa

    2014-01-01

    Hall D, the new Jefferson Lab experimental facility built for the 12GeV upgrade, features a LASS 1.85 m bore solenoid magnet supported by a 4.5 K helium refrigerator system. This system consists of a CTI 2800 4.5 K refrigerator cold box, three 150 hp screw compressors, helium gas management and storage, and liquid helium and nitrogen storage for stand-alone operation. The magnet interfaces with the cryo refrigeration system through an LN2-shielded distribution box and transfer line system, both designed and fabricated by JLab. The distribution box uses a thermo siphon design to respectively cool four magnet coils and shields with liquid helium and nitrogen. We describe the salient design features of the cryo system and discuss our recent commissioning experience.

  1. AmesLab-ISUMap2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GILMAN HALL OFFICE & LAB BLDG PHYSICS HALL WILHELM HALL FRILEY HALL HELSER HALL UNION DRIVE BISSELL ROAD U N I O N D R I V E BEYER COURT UNIO N DRIVE OSBORN DRIVE COMMUNICATIONS BUILDING MOLECULAR BIOLOGY BUILDING METALS DEVELOPMENT BUILDING GENETICS LAB INSECTARY SCIENCE HALL II SCIENCE HALL LAGOMARCINO HALL M E C H . M A IN T . B U IL D IN G P R IN T IN G A N D P U B L IC A T IO N S LIBRARY STORAGE FACILITY ADMINISTRATIVE SERVICES BLDG WANDA DALEY DRIVE STANGE ROAD HORSE BARN RUMINANT

  2. LCLS Sample Preparation Laboratory | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LCLS Sample Preparation Laboratory Kayla Zimmerman | (650) 926-6281 Lisa Hammon, LCLS Lab Coordinator Welcome to the LCLS Sample Preparation Laboratory. This small general use wet...

  3. Heat Transfer Laboratory | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heat Transfer Laboratory Materials in solids or fluid forms play an important role in a ... Argonne's Heat Transfer Laboratory enables researchers to: Synthesize and prepare heat ...

  4. National Laboratory Impact Initiative

    Broader source: Energy.gov [DOE]

    The National Laboratory Impact Initiative supports the relationship between the Office of Energy Efficiency & Renewable Energy and the national laboratory enterprise.  The national laboratories...

  5. Formation of quantum spin Hall state on Si surface and energy gap scaling

    Office of Scientific and Technical Information (OSTI)

    with strength of spin orbit coupling (Journal Article) | SciTech Connect Formation of quantum spin Hall state on Si surface and energy gap scaling with strength of spin orbit coupling Citation Details In-Document Search Title: Formation of quantum spin Hall state on Si surface and energy gap scaling with strength of spin orbit coupling For potential applications in spintronics and quantum computing, it is desirable to place a quantum spin Hall insulator [i.e., a 2D topological insulator

  6. Hall effect in quantum critical charge-cluster glass (Journal Article) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Hall effect in quantum critical charge-cluster glass Citation Details In-Document Search This content will become publicly available on April 4, 2017 Title: Hall effect in quantum critical charge-cluster glass Upon doping, cuprates undergo a quantum phase transition from an insulator to a d-wave superconductor. The nature of this transition and of the insulating state is vividly debated. Here, we study the Hall effect in La2-xSrxCuO4 (LSCO) samples doped near the quantum

  7. Hole carrier in MgB{sub 2} characterized by Hall measurements (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Hole carrier in MgB{sub 2} characterized by Hall measurements Citation Details In-Document Search Title: Hole carrier in MgB{sub 2} characterized by Hall measurements The longitudinal resistivity ({rho}{sub xx}) and Hall coefficient (R{sub H}) were measured for MgB{sub 2} sintered under high pressure. We found that R{sub H} is positive like cuprate high-T{sub c} superconductors, and decreases as the temperature increases for 40 K <T<300K. The cotangent of the

  8. Quantum Anomalous Hall Effect in Hg_1-yMn_yTe Quantum Wells

    SciTech Connect (OSTI)

    Liu, Chao-Xing; Qi, Xiao-Liang; Dai, Xi; Fang, Zhong; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-03-19

    The quantum Hall effect is usually observed when the two-dimensional electron gas is subjected to an external magnetic field, so that their quantum states form Landau levels. In this work we predict that a new phenomenon, the quantum anomalous Hall effect, can be realized in Hg{sub 1-y}Mn{sub y}Te quantum wells, without the external magnetic field and the associated Landau levels. This effect arises purely from the spin polarization of the Mn atoms, and the quantized Hall conductance is predicted for a range of quantum well thickness and the concentration of the Mn atoms. This effect enables dissipationless charge current in spintronics devices.

  9. Halls Middle School students get a taste of science at Y-12 | Y-12 National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Security Complex Halls Middle School ... Halls Middle School students get a taste of science at Y-12 Posted: May 21, 2013 - 12:40pm Engineering, science and history experts give Halls Middle School students a taste of science past and present at Y-12. During a visit to the Y-12 National Security Complex on May 20, eighth graders Miller Sullivan, center, and Tyler Young, right, learn what happens to a banana when it is submerged in liquid nitrogen. Darryl Smith, left, was one of four

  10. Renewable Energy Laboratory

    Open Energy Info (EERE)

    Radiation Budget Measurement Networks, National Oceanic and Atmospheric Administration Air Resources Laboratory and Earth System Research Laboratory Global Monitoring Division *...

  11. Formation of quantum spin Hall state on Si surface and energy...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Formation of quantum spin Hall ... GrantContract Number: FG02-04ER46148 Type: Accepted Manuscript Journal Name: Scientific Reports ...

  12. LEDS the focus of Monday's 10 a.m. Town Hall Meeting | OpenEI...

    Open Energy Info (EERE)

    LEDS the focus of Monday's 10 a.m. Town Hall Meeting Home > Blogs > Graham7781's blog Graham7781's picture Submitted by Graham7781(2017) Super contributor 16 November, 2012 - 11:23...

  13. Beam Position Reconstruction for the g2p Experiment in Hall A...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Beam Position Reconstruction for the g2p Experiment in Hall A at Jefferson Lab Citation Details In-Document Search Title: Beam Position Reconstruction for the g2p...

  14. Electron Cross-field Transport in a Low Power Cylindrical Hall Thruster

    SciTech Connect (OSTI)

    A. Smirnov; Y. Raitses; N.J. Fisch

    2004-06-24

    Conventional annular Hall thrusters become inefficient when scaled to low power. Cylindrical Hall thrusters, which have lower surface-to-volume ratio, are therefore more promising for scaling down. They presently exhibit performance comparable with conventional annular Hall thrusters. Electron cross-field transport in a 2.6 cm miniaturized cylindrical Hall thruster (100 W power level) has been studied through the analysis of experimental data and Monte Carlo simulations of electron dynamics in the thruster channel. The numerical model takes into account elastic and inelastic electron collisions with atoms, electron-wall collisions, including secondary electron emission, and Bohm diffusion. We show that in order to explain the observed discharge current, the electron anomalous collision frequency {nu}{sub B} has to be on the order of the Bohm value, {nu}{sub B} {approx} {omega}{sub c}/16. The contribution of electron-wall collisions to cross-field transport is found to be insignificant.

  15. Town Hall Meeting October 1st, 2012 | OpenEI Community

    Open Energy Info (EERE)

    Town Hall Meeting October 1st, 2012 Home > Blogs > Graham7781's blog Graham7781's picture Submitted by Graham7781(2017) Super contributor 19 September, 2012 - 13:40 OpenEI Town...

  16. Formation of quantum spin Hall state on Si surface and energy...

    Office of Scientific and Technical Information (OSTI)

    on Si surface and energy gap scaling with strength of spin orbit coupling Title: Formation of quantum spin Hall state on Si surface and energy gap scaling with strength of spin ...

  17. Formation of quantum spin Hall state on Si surface and energy...

    Office of Scientific and Technical Information (OSTI)

    and energy gap scaling with strength of spin orbit coupling Citation Details In-Document Search Title: Formation of quantum spin Hall state on Si surface and energy gap scaling ...

  18. Engineering quantum anomalous/valley Hall states in graphene via metal-atom

    Office of Scientific and Technical Information (OSTI)

    adsorption: An ab-initio study (Journal Article) | SciTech Connect Engineering quantum anomalous/valley Hall states in graphene via metal-atom adsorption: An ab-initio study Citation Details In-Document Search Title: Engineering quantum anomalous/valley Hall states in graphene via metal-atom adsorption: An ab-initio study Authors: Ding, Jun ; Qiao, Zhenhua ; Feng, Wanxiang ; Yao, Yugui ; Niu, Qian Publication Date: 2011-11-15 OSTI Identifier: 1101181 Type: Publisher's Accepted Manuscript

  19. Fractional quantum spin Hall effect in flat-band checkerboard lattice model

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Fractional quantum spin Hall effect in flat-band checkerboard lattice model Citation Details In-Document Search Title: Fractional quantum spin Hall effect in flat-band checkerboard lattice model Authors: Li, Wei ; Sheng, D. N. ; Ting, C. S. ; Chen, Yan Publication Date: 2014-08-04 OSTI Identifier: 1180073 Grant/Contract Number: FG02-06ER46305 Type: Publisher's Accepted Manuscript Journal Name: Physical Review B Additional Journal Information: Journal

  20. Quantum Anomalous Hall Effect in 2D Organic Topological Insulators (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Quantum Anomalous Hall Effect in 2D Organic Topological Insulators Citation Details In-Document Search Title: Quantum Anomalous Hall Effect in 2D Organic Topological Insulators Authors: Wang, Z. F. ; Liu, Zheng ; Liu, Feng Publication Date: 2013-05-06 OSTI Identifier: 1102216 Type: Publisher's Accepted Manuscript Journal Name: Physical Review Letters Additional Journal Information: Journal Volume: 110; Journal Issue: 19; Journal ID: ISSN 0031-9007 Publisher:

  1. Quantum anomalous Hall effect in single-layer and bilayer graphene (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Quantum anomalous Hall effect in single-layer and bilayer graphene Citation Details In-Document Search Title: Quantum anomalous Hall effect in single-layer and bilayer graphene Authors: Tse, Wang-Kong ; Qiao, Zhenhua ; Yao, Yugui ; MacDonald, A. H. ; Niu, Qian Publication Date: 2011-04-26 OSTI Identifier: 1100329 Type: Publisher's Accepted Manuscript Journal Name: Physical Review B Additional Journal Information: Journal Volume: 83; Journal Issue: 15; Journal ID:

  2. Reduced spin-Hall effects from magnetic proximity (Journal Article) | DOE

    Office of Scientific and Technical Information (OSTI)

    PAGES Reduced spin-Hall effects from magnetic proximity « Prev Next » Title: Reduced spin-Hall effects from magnetic proximity Authors: Zhang, Wei ; Jungfleisch, Matthias B. ; Jiang, Wanjun ; Liu, Yaohua ; Pearson, John E. ; Velthuis, Suzanne G. E. te ; Hoffmann, Axel ; Freimuth, Frank ; Mokrousov, Yuriy Publication Date: 2015-03-26 OSTI Identifier: 1176970 Grant/Contract Number: AC02-06CH11357 Type: Publisher's Accepted Manuscript Journal Name: Physical Review B Additional Journal

  3. Performance of the Two Aerogel Cherenkov Detectors of the JLab Hall A

    Office of Scientific and Technical Information (OSTI)

    Hadron Spectrometer (Journal Article) | SciTech Connect Journal Article: Performance of the Two Aerogel Cherenkov Detectors of the JLab Hall A Hadron Spectrometer Citation Details In-Document Search Title: Performance of the Two Aerogel Cherenkov Detectors of the JLab Hall A Hadron Spectrometer We report on the design and commissioning of two silica aerogel Cherenkov detectors with different refractive indices. In particular, extraordinary performance in terms of the number of detected

  4. Scattering universality classes of side jump in the anomalous Hall effect

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Scattering universality classes of side jump in the anomalous Hall effect Citation Details In-Document Search Title: Scattering universality classes of side jump in the anomalous Hall effect Authors: Yang, Shengyuan A. ; Pan, Hui ; Yao, Yugui ; Niu, Qian Publication Date: 2011-03-31 OSTI Identifier: 1100161 Type: Publisher's Accepted Manuscript Journal Name: Physical Review B Additional Journal Information: Journal Volume: 83; Journal Issue: 12; Journal

  5. Topological system with a twisting edge band: A position-dependent Hall

    Office of Scientific and Technical Information (OSTI)

    resistance (Journal Article) | SciTech Connect Topological system with a twisting edge band: A position-dependent Hall resistance Citation Details In-Document Search Title: Topological system with a twisting edge band: A position-dependent Hall resistance Authors: Liu, Xuele ; Sun, Qing-feng ; Xie, X. C. Publication Date: 2012-06-27 OSTI Identifier: 1103667 Type: Publisher's Accepted Manuscript Journal Name: Physical Review B Additional Journal Information: Journal Volume: 85; Journal Issue:

  6. Fractional quantum Hall junctions and two-channel Kondo models

    SciTech Connect (OSTI)

    Sandler, Nancy P.; Fradkin, Eduardo

    2001-06-15

    A mapping between fractional quantum Hall (FQH) junctions and the two-channel Kondo model is presented. We discuss this relation in detail for the particular case of a junction of a FQH state at {nu}=1/3 and a normal metal. We show that in the strong coupling regime this junction has a non-Fermi-liquid fixed point. At this fixed point the electron Green{close_quote}s function has a branch cut and the impurity entropy is equal to S=1/2ln2. We construct the space of perturbations at the strong coupling fixed point and find that the dimension of the tunneling operator is 1/2. These properties are strongly reminiscent of the non-Fermi-liquid fixed points of a number of quantum impurity models, particularly the two-channel Kondo model. However we have found that, in spite of these similarities, the Hilbert spaces of these two systems are quite different. In particular, although in a special limit the Hamiltonians of both systems are the same, their Hilbert spaces are not since they are determined by physically distinct boundary conditions. As a consequence the spectrum of operators in the two problems is different.

  7. Habitat Restoration/Enhancement Fort Hall Reservation : 2008 Annual Report.

    SciTech Connect (OSTI)

    Osborne, Hunter

    2009-07-23

    Habitat enhancement, protection and monitoring were the focus of the Resident Fisheries Program during 2008. Enhancement and protection included sloping, fencing and planting wetlands plugs at sites on Spring Creek (Head-waters). Many previously constructed instream structures (rock barbs and wing dams) were repaired throughout the Fort Hall Indian Reservation (Reservation). Physical sampling during 2008 included sediment and depth measurements (SADMS) in Spring Creek at the Car Removal site. SADMS, used to track changes in channel morphology and specifically track movements of silt through Bottoms stream systems were completed for 5 strata on Spring Creek. Water temperature and chemistry were monitored monthly on Spring Creek, Clear Creek, Diggie Creek, and Portneuf (Jimmy Drinks) and Blackfoot rivers. Fish population densities and biomass were sampled in five reservation streams which included nine sites. Sampling protocols were identical to methods used in past years. Numbers of fish in Spring Creek series remained relatively low, however, there was an increase of biomass overall since 1993. Salmonid fry densities were monitored near Broncho Bridge and were similar to 2006, and 2007, however, as in years past, high densities of macrophytes make it very difficult to see fry in addition to lack of field technicians. Mean catch rate by anglers on Bottoms streams stayed the same as 2007 at 1.5/hr. Numbers of fish larger than 18-inches caught by anglers increased from 2007 at .20 to .26/hr.

  8. Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory

    National Nuclear Security Administration (NNSA)

    Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory The Terascale Simulation Facility is a world-class supercomputing

  9. Ames Laboratory Logos | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Laboratory Logos The Ames Laboratory Logo comes in several formats. EPS files are vector graphics created in Adobe Illustrator and saved with a tiff preview so they will...

  10. Jefferson Lab is a world-leading laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab is a world-leading laboratory funded by the U.S. Department of Energy's Office of Science. The lab is devoted to the study of the building blocks of matter that make up 98 percent of our visible universe. Scientists from across the nation and around the world use the lab's facilities to probe the nucleus of the atom. Below: Magnets (red) focus electron beams as they speed to three experimental halls Front Cover: JLab nuclear physicists discuss particle structure equations Back

  11. Laboratory Graduate Research Appointment | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Graduate Research Program Perform your thesis research among the best and the brightest at Argonne National Laboratory. About the Program Laboratory Graduate Research (Lab Grad) appointments are available to qualified U.S. university graduate students who wish to carry out their thesis research at Argonne National Laboratory under co-sponsorship of an Argonne staff member and a faculty member. The university sets the academic standard and awards the degree. The participation of the

  12. Ames Laboratory Emergency Plan | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Laboratory Emergency Plan Version Number: 13.0 Document Number: Plan 46300.001 Effective Date: 11/2014

  13. Ames Laboratory Hot Canyon | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Laboratory Hot Canyon This historical film footage, originally produced in the early 1950s as part of a series by WOI-TV, shows atomic research at Ames Laboratory. The work was conducted in a special area of the Laboratory known as the "Hot Canyon."

  14. The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Hub led by the Ames Laboratory, recovers valuable rare-earth magnetic material from manufacturing waste and creates useful magnets out of it. Ames Laboratory...

  15. mark | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Laboratory Profile Mark Gordon Associate Chemical & Biological Sciences 201 Spedding ... Group Ames Laboratory Research Projects: Chemical Physics TheoreticalComputational Tools ...

  16. Facilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Facility Distributed Energy Research Center Engine Research Facility Heat Transfer Laboratory Tribology Laboratory Transportation Beamline at the Advanced Photon Source...

  17. National Renewable Energy Laboratory

    Office of Environmental Management (EM)

    Renewable Energy Laboratory Innovation for Our Energy Future Renewable Resource Options Geothermal Biomass Solar Hydro Wind National Renewable Energy Laboratory Innovation ...

  18. Sustainability | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sustainability Ames Laboratory is committed to environmental sustainability in all of its operations as outlined in the Laboratory's Site Sustainability Plan. Executive orders set ...

  19. Cytogenetic Biodosimetry Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cytogenetic Biodosimetry Laboratory Blood samples are shipped at room temperature to the laboratory. White blood cells, lymphocytes, are cultured under sterile conditions in an...

  20. Onset of fast reconnection in Hall magnetohydrodynamics mediated by the plasmoid instability

    SciTech Connect (OSTI)

    Huang Yimin; Bhattacharjee, A.; Sullivan, Brian P.

    2011-07-15

    The role of a super-Alfvenic plasmoid instability in the onset of fast reconnection is studied by means of the largest Hall magnetohydrodynamics simulations to date, with system sizes up to 10{sup 4} ion skin depths (d{sub i}). It is demonstrated that the plasmoid instability can facilitate the onset of rapid Hall reconnection, in a regime where the onset would otherwise be inaccessible because the Sweet-Parker width is significantly above d{sub i}. However, the topology of Hall reconnection is not inevitably a single stable X-point. There exists an intermediate regime where the single X-point topology itself exhibits instability, causing the system to alternate between a single X-point geometry and an extended current sheet with multiple X-points produced by the plasmoid instability. Through a series of simulations with various system sizes relative to d{sub i}, it is shown that system size affects the accessibility of the intermediate regime. The larger the system size is, the easier it is to realize the intermediate regime. Although our Hall magnetohydrodynamics (MHD) model lacks many important physical effects included in fully kinetic models, the fact that a single X-point geometry is not inevitable raises the interesting possibility for the first time that Hall MHD simulations may have the potential to realize reconnection with geometrical features similar to those seen in fully kinetic simulations, namely, extended current sheets and plasmoid formation.

  1. The Sample Preparation Laboratories | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cynthia Patty 1 Sam Webb 2 John Bargar 3 Arizona 4 Chemicals 5 Team Work 6 Bottles 7 Glass 8 Plan Ahead! See the tabs above for Laboratory Access and forms you'll need to complete. Equipment and Chemicals tabs detail resources already available on site. Avoid delays! Hazardous materials use may require a written Standard Operating Procedure (SOP) before you work. Check the Chemicals tab for more information. The Sample Preparation Laboratories The Sample Preparation Laboratories provide wet lab

  2. Status of Laboratory Goals | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Status of Laboratory Goals Status of Calendar Year 2016 objectives and targets. Item 1 Recommendation: The EMSSC recommends an Open House be held in the Ames Laboratory Storeroom and Warehouse by April 1, 2016. The Open House will provide Ames Laboratory employees the opportunity to discover what supplies are readily available through the storeroom and showcase the Equipment Pool website. This recommendation will increase awareness of the sustainable purchasing requirements by showcasing these

  3. Fractional quantum Hall effect at Landau level filling ν = 4/11

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pan, W.; Baldwin, K. W.; West, K. W.; Pfeiffer, L. N.; Tsui, D. C.

    2015-01-09

    In this study, we report low temperature electronic transport results on the fractional quantum Hall effect of composite fermions at Landau level filling ν = 4/11 in a very high mobility and low density sample. Measurements were carried out at temperatures down to 15mK, where an activated magnetoresistance Rxx and a quantized Hall resistance Rxy, within 1% of the expected value of h/(4/11)e2, were observed. The temperature dependence of the Rxx minimum at 4/11 yields an activation energy gap of ~ 7 mK. Developing Hall plateaus were also observed at the neighboring states at ν = 3/8 and 5/13.

  4. Ultra-sensitive Hall sensors based on graphene encapsulated in hexagonal boron nitride

    SciTech Connect (OSTI)

    Dauber, Jan; Stampfer, Christoph; Sagade, Abhay A.; Neumaier, Daniel; Oellers, Martin; Watanabe, Kenji; Taniguchi, Takashi

    2015-05-11

    The encapsulation of graphene in hexagonal boron nitride provides graphene on substrate with excellent material quality. Here, we present the fabrication and characterization of Hall sensor elements based on graphene boron nitride heterostructures, where we gain from high mobility and low charge carrier density at room temperature. We show a detailed device characterization including Hall effect measurements under vacuum and ambient conditions. We achieve a current- and voltage-related sensitivity of up to 5700?V/AT and 3?V/VT, respectively, outpacing state-of-the-art silicon and III/V Hall sensor devices. Finally, we extract a magnetic resolution limited by low frequency electric noise of less than 50 nT/?(Hz) making our graphene sensors highly interesting for industrial applications.

  5. Spin Hall magnetoresistance in CoFe2O4/Pt films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wu, Hao; Qintong, Zhang; Caihua, Wan; Ali, Syed Shahbaz; Yuan, Zhonghui; You, Lu; Wang, Junling; Choi, Yongseong; Han, Xiufeng

    2015-05-13

    Pulse laser deposition and magnetron sputtering techniques have been employed to prepare MgO(001)//CoFe2O4/Pt samples. Cross section transmission electron microscope results prove that the CoFe2O4 film epitaxially grew along (001) direction. X-ray magnetic circular dichroism results show that magnetic proximity effect in this sample is negligible. Magnetoresistance (MR) properties confirm that spin Hall MR (SMR) dominates in this system. Spin Hall effect-induced anomalous Hall voltage was also observed in this sample. Lastly, these results not only demonstrate the universality of SMR effect but also demonstrate the utility in spintronics of CoFe2O4 as a new type of magnetic insulator.

  6. Analytical Chemistry Laboratory | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemistry Laboratory provides a broad range of analytical chemistry support services to the scientific and engineering programs. AnalyticalChemistryLaboratoryfactsheet...

  7. Laboratory Equipment & Supplies | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Most laboratories offer ice machines and cold rooms. Specialty storage areas for samples include a -80 freezer, argon and nitrogen glove boxes, radiation contamination areas, inert ...

  8. Equipment | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Zeiss Axiovert 200 Optical Microscope Spark Cutter Fully Equipped Metallographic Laboratory Electropolisher Dimpler

  9. Global Hall-MHD simulations of magnetorotational instability in a plasma Couette flow experiment

    SciTech Connect (OSTI)

    Ebrahimi, F.; Lefebvre, B.; Bhattacharjee, A.; Forest, C. B.

    2011-06-15

    Global MHD and Hall-MHD numerical simulations relevant to the Madison plasma Couette flow experiment (MPCX) have been performed using the extended MHD code NIMROD. The MPCX has been constructed to study the magnetorotational instability (MRI) in a plasma. The two-fluid Hall effect, which is relevant to some astrophysical situations such as protostellar disks, is also expected to be important in the MPCX. Here, we first derive the local Hall dispersion relation including viscosity, extending earlier work by Balbus and Terquem [Astrophys. J. 552, 235 (2001)]. The predictions of the local analysis are then compared with nonlocal calculations of linear stability of the MRI for a parameter range relevant to the MPCX. It is found that the MHD stability limit and mode structure are altered by the Hall term, and nonlocal analysis is necessary to obtain quantitatively reliable predictions for MPCX. Two-fluid physics also significantly changes the nonlinear evolution and saturation of the axisymmetric MRI. Both the Reynolds and Maxwell stresses contribute significantly to momentum transport. In the Hall regime, when the magnetic field is parallel to the rotation axis, the Maxwell stress is larger than the Reynolds stress (similar to the MHD regime). However, when the magnetic field is antiparallel to the rotation axis in the Hall regime, the Reynolds stress is much larger than the Maxwell stress. To further study the role of non-axisymmetric modes, we have also carried out fully nonlinear MHD computations. Non-axisymmetric modes play an increasingly important role as the magnetic Reynolds number increases and grow to large amplitudes in a saturated turbulent state.

  10. Accounting Resources | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accounting Resources Ames Laboratory Human Resources Forms Ames Laboratory Travel Forms Ames Laboratory Forms (Select Department) ISU Intramural PO Request

  11. Experimental evidences of a large extrinsic spin Hall effect in AuW alloy

    SciTech Connect (OSTI)

    Laczkowski, P.; Rojas-Sánchez, J.-C.

    2014-04-07

    We report an experimental study of a gold-tungsten alloy (7 at. % W concentration in Au host) displaying remarkable properties for spintronics applications using both magneto-transport in lateral spin valve devices and spin-pumping with inverse spin Hall effect experiments. A very large spin Hall angle of about 10% is consistently found using both techniques with the reliable spin diffusion length of 2 nm estimated by the spin sink experiments in the lateral spin valves. With its chemical stability, high resistivity, and small induced damping, this AuW alloy may find applications in the nearest future.

  12. JLab mourns loss of long-time colleague, Hall B staff scientist and senior

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    YerPI physicist Kim Egiyan | Jefferson Lab long-time colleague, Hall B staff scientist and senior YerPI physicist Kim Egiyan JLab mourns loss of long-time colleague, Hall B staff scientist and senior YerPI physicist Kim Egiyan August 25, 2006 Kim Egiyan Kim Egiyan K.Sh. Egiyan was born on 18 June 1935 in the Armenian village of Mirzik in the Khanlar region of Azerbaijan. Kim attended the Yerevan State University, Yerevan (Armenia) and in 1957, after finishing his studies at the university,

  13. Observation of the Integer Quantum Hall Effect in Record High-Mobility

    Office of Scientific and Technical Information (OSTI)

    Uniform Wafer-Scale Epitaxial Graphene Films Grown on the Si-Face of 6H-SiC(0001). (Journal Article) | SciTech Connect Observation of the Integer Quantum Hall Effect in Record High-Mobility Uniform Wafer-Scale Epitaxial Graphene Films Grown on the Si-Face of 6H-SiC(0001). Citation Details In-Document Search Title: Observation of the Integer Quantum Hall Effect in Record High-Mobility Uniform Wafer-Scale Epitaxial Graphene Films Grown on the Si-Face of 6H-SiC(0001). Abstract not provided.

  14. Disorder Matters in the 5/2 Fractional Quantum Hall Effect (invited).

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Disorder Matters in the 5/2 Fractional Quantum Hall Effect (invited). Citation Details In-Document Search Title: Disorder Matters in the 5/2 Fractional Quantum Hall Effect (invited). Abstract not provided. Authors: Pan, Wei Publication Date: 2015-01-01 OSTI Identifier: 1244839 Report Number(s): SAND2015-20724C 555991 DOE Contract Number: AC04-94AL85000 Resource Type: Conference Resource Relation: Conference: Proposed for presentation at the International

  15. Tunable Anderson metal-insulator transition in quantum spin-Hall insulators

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Tunable Anderson metal-insulator transition in quantum spin-Hall insulators Citation Details In-Document Search This content will become publicly available on June 3, 2016 Title: Tunable Anderson metal-insulator transition in quantum spin-Hall insulators Authors: Chen, Chui-Zhen ; Liu, Haiwen ; Jiang, Hua ; Sun, Qing-feng ; Wang, Ziqiang ; Xie, X. C. Publication Date: 2015-06-04 OSTI Identifier: 1183777 Grant/Contract Number: FG02-99ER45747 Type:

  16. Understanding the physics of a possible non-Abelian fractional quantum hall

    Office of Scientific and Technical Information (OSTI)

    effect state. (Technical Report) | SciTech Connect SciTech Connect Search Results Technical Report: Understanding the physics of a possible non-Abelian fractional quantum hall effect state. Citation Details In-Document Search Title: Understanding the physics of a possible non-Abelian fractional quantum hall effect state. We wish to present in this report experimental results from a one-year Senior Council Tier-1 LDRD project that focused on understanding the physics of a possible non-Abelian

  17. National Laboratory's Weapons Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Us » Strategic Programs » National Laboratory Impact Initiative Team National Laboratory Impact Initiative Team The mission of the Office of Energy Efficiency and Renewable Energy's (EERE's) National Laboratory Impact Initiative is to significantly increase the industrial impact of the Energy Department's national laboratories on the U.S. clean energy sector. The goals of the Initiative are to: Increase and enhance laboratory-private sector relationships Increase and streamline access to

  18. The BDX experiment at Jefferson Laboratory

    SciTech Connect (OSTI)

    Celentano, Andrea

    2015-06-01

    The existence of MeV-GeV dark matter (DM) is theoretically well motivated but remarkably unexplored. The Beam Dump eXperiment (BDX) at Jefferson Laboratory aims to investigate this mass range. Dark matter particles will be detected through scattering on a segmented, plastic scintillator detector placed downstream of the beam-dump at one of the high intensity JLab experimental Halls. The experiment will collect up to 1022 electrons-on-target (EOT) in a one-year period. For these conditions, BDX is sensitive to the DM-nucleon elastic scattering at the level of a thousand counts per year, and is only limited by cosmogenic backgrounds. The experiment is also sensitive to DM-electron elastic and inelastic scattering, at the level of 10 counts/year. The foreseen signal for these channels is a high-energy (> 100 MeV) electromagnetic shower, with almost no background. The experiment has been presented in form of a Letter of Intent to the laboratory, receiving positive feedback, and is currently being designed.

  19. Equivalence of donor and acceptor fits of temperature dependent Hall carrier density and Hall mobility data: Case of ZnO

    SciTech Connect (OSTI)

    Brochen, Stphane; Feuillet, Guy; Pernot, Julien

    2014-04-28

    In this work, statistical formulations of the temperature dependence of ionized and neutral impurity concentrations in a semiconductor, needed in the charge balance equation and for carrier scattering calculations, have been developed. These formulations have been used in order to elucidate a confusing situation, appearing when compensating acceptor (donor) levels are located sufficiently close to the conduction (valence) band to be thermally ionized and thereby to emit (capture) an electron to (from) the conduction (valence) band. In this work, the temperature dependent Hall carrier density and Hall mobility data adjustments are performed in an attempt to distinguish the presence of a deep acceptor or a deep donor level, coexisting with a shallower donor level and located near the conduction band. Unfortunately, the present statistical developments, applied to an n-type hydrothermal ZnO sample, lead in both cases to consistent descriptions of experimental Hall carrier density and mobility data and thus do not allow to determine the nature, donor or acceptor, of the deep level. This demonstration shows that the emission of an electron in the conduction band, generally assigned to a (0/+1) donor transition from a donor level cannot be applied systematically and could also be attributed to a (?1/0) donor transition from an acceptor level. More generally, this result can be extended for any semiconductor and also for deep donor levels located close to the valence band (acceptor transition)

  20. Federal Laboratory Consortium | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Federal Laboratory Consortium

  1. Brookhaven National Laboratory | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Brookhaven National Laboratory

  2. Tritium Laboratory Karlsruhe: administrative and technical framework for isotope laboratory operation

    SciTech Connect (OSTI)

    Welte, S.; Besserer, U.; Osenberg, D.; Wendel, J.

    2015-03-15

    Originally licensed in 1993 the Tritium Laboratory Karlsruhe (TLK) is a unique pilot scale isotope laboratory focused on tritium handling and processing to conduct a variety of scientific experiments and development tasks in view of future fusion power plants. TLK currently operates 15 glove boxes of 125 m{sup 3} total volume in an experimental hall measuring nearly 1500 m{sup 2}. The tritium infrastructure, comprising of the tritium storage system, the tritium transfer system and the isotope separation system, is integrated into TLK as a closed loop system to supply tritium to the experiments. Having a license for handling of up to 40 g of tritium and a closed tritium processing loop, TLK is a unique institute in non-military tritium research. In order to fulfil all requirements regarding the license, a framework of regulations is applied as a basis for the operation of TLK, as well as the setup of new experiments and the design of components. This paper will give an overview on the framework of operation in view of licensing issues, as well as administrative and technical regulations mandatory to legally and reliably operate an isotope laboratory of this scale.

  3. High School Schedule | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Schedule January 23, 2016 SCHEDULE Location: Engineering Building, Iowa State University campus, Ames, Iowa 7:30 a.m. Registration and Continental Breakfast, Hoover Hall atrium 8:00 a.m. Opening Ceremonies, 2055 Hoover Hall 8:30-11:00 Round-Robin competition (Hoover, Howe & Pearson Halls) 11:00 Announcements, 2055 Hoover Hall 11:15 Tie-breaker round if needed 11:30 - 12:30 Lunch (Union Drive Community Center - tickets provided) 12:30-4:30 p.m. Double-elimination competition (Howe and Hoover

  4. EECBG Success Story: After 105 Years, Historic City Hall in West Des Moines, Iowa Goes Green

    Broader source: Energy.gov [DOE]

    The city of West Des Moines, Iowa is used funding to renovate the Historic City Hall building located in Valley Junction, including the installation of four geothermal heating wells, a rooftop covered with vegetation, solar panels and permeable pavers to allow stormwater through to the soil below. Learn more.

  5. Structure transitions induced by the Hall term in homogeneous and isotropic magnetohydrodynamic turbulence

    SciTech Connect (OSTI)

    Miura, H., E-mail: miura.hideaki@nifs.ac.jp [Department of Helical Plasma Research, National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Araki, K. [Faculty of Engineering, Okayama University of Science, 1-1 Ridai-cho, Okayama 700-0005 (Japan)

    2014-07-15

    Hall effects on local structures in homogeneous, isotropic, and incompressible magnetohydrodynamic turbulence are studied numerically. The transition of vortices from sheet-like to tubular structures induced by the Hall term is found, while the kinetic energy spectrum does not distinguish the two types of structures. It is shown by the use of the sharp low-pass filter that the transition occurs not only in the scales smaller than the ion skin depth but also in a larger scale. The transition is related with the forward energy transfer in the spectral space. Analyses by the use of the sharp low-pass filter show that the nonlinear energy transfer associated with the Hall term is dominated by the forward transfer and relatively local in the wave number space. A projection of the simulation data to a Smagorinsky-type sub-grid-scale model shows that the high wave number component of the Hall term may possibly be replaced by the model effectively.

  6. Analysis of Impacts of a Clean Energy Standard as requested by Chairman Hall

    Reports and Publications (EIA)

    2011-01-01

    This report responds to a request from Chairman Ralph M. Hall for an analysis of the impacts of a Clean Energy Standard (CES). The request, as outlined in the letter included in Appendix A, sets out specific assumptions and scenarios for the study.

  7. Newport News School Board Member Hosting Town Hall Thursday (Daily Press) |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab Newport News School Board Member Hosting Town Hall Thursday (Daily Press) External Link: http://articles.dailypress.com/2012-03-05/news/dp-nws-ednotebook-0305-20120304_1... By jlab_admin on Tue, 2012-03-06

  8. The impact of Hall physics on magnetized high energy density plasma jets

    SciTech Connect (OSTI)

    Gourdain, P.-A.; Seyler, C. E.; Atoyan, L.; Greenly, J. B.; Hammer, D. A.; Kusse, B. R.; Pikuz, S. A.; Potter, W. M.; Schrafel, P. C.; Shelkovenko, T. A.

    2014-05-15

    Hall physics is often neglected in high energy density plasma jets due to the relatively high electron density of such jets (n{sub e}???10{sup 19}?cm{sup ?3}). However, the vacuum region surrounding the jet has much lower densities and is dominated by Hall electric field. This electric field redirects plasma flows towards or away from the axis, depending on the radial current direction. A resulting change in the jet density has been observed experimentally. Furthermore, if an axial field is applied on the jet, the Hall effect is enhanced and ignoring it leads to serious discrepancies between experimental results and numerical simulations. By combining high currents (?1 MA) and magnetic field helicity (15 angle) in a pulsed power generator such as COBRA, plasma jets can be magnetized with a 10?T axial field. The resulting field enhances the impact of the Hall effect by altering the density profile of current-free plasma jets and the stability of current-carrying plasma jets (e.g., Z-pinches)

  9. WIPP Employee Inducted Into Mine Rescue Hall of Fame- WIPP Teams Recognized at National Competition

    Broader source: Energy.gov [DOE]

    CARLSBAD, N.M., August 2, 2013 - Long-time Waste Isolation Pilot Plant (WIPP) employee Gary Kessler was inducted into the Metal/Non-Metal National Mine Rescue Hall of Fame on Aug. 1, 2013 at the biennial mine rescue competition in Reno, Nevada.

  10. September 24, 2014 in 100E Hildebrand Hall | Center for Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SeparationsRelevant to Clean Energy Technologies | Blandine Jerome 4, 2014 in 100E Hildebrand Hall Previous Next List Jihye Park (Dept. of Chemistry, Texas A&M University) Photochromic MOFs: Reversible Generation of Singlet Oxygen Kyungmin Choi (Dept. of Chemistry, UC Berkeley) Supercapacitors of Nanocrystalline Metal-Organic Frameworks

  11. Princeton Plasma Physics Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Physics Laboratory P.O. Box 451 Princeton, NJ 08543-0451 GPS: 100 Stellarator Road Princeton, NJ 08540 www.pppl.gov 2015 Princeton Plasma Physics Laboratory. A...

  12. DOE Laboratory Partnerships

    Broader source: Energy.gov [DOE]

    DOE national laboratories were created to support the various missions of the Department, including energy, national security, science and related environmental activities. The laboratories conduct innovative research and development in literally hundreds of technology areas, some available nowhere else.

  13. haberer | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    haberer Ames Laboratory Profile Charles Haberer Facilities Services 158 Metals Development Phone Number: 515-294-3757 Email Address: haberer

  14. levin | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    levin Ames Laboratory Profile Evgenii Levin Scientist I Division of Materials Science & Engineering 107 Spedding Phone Number: 515-294-6093 Email Address: levin@iastate.edu Ames Laboratory Research Projects: Novel Materials Preparation & Processing Methodologies Professional Appointments: Scientist I & Adj. Associate Professor, Ames Laboratory U.S. DOE, and Department of Physics and Astronomy, Iowa State University, 2010- present Associate Scientist & Lecturer, Ames Laboratory

  15. FY 2005 Laboratory Table

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Congressional Budget Request Laboratory Tables Preliminary Department of Energy FY 2005 Congressional Budget Request Office of Management, Budget and Evaluation/CFO February 2004 Laboratory Tables Preliminary Department of Energy Department of Energy FY 2005 Congressional Budget FY 2005 Congressional Budget Request Request Office of Management, Budget and Evaluation/CFO February 2004 Laboratory Tables Laboratory Tables Printed with soy ink on recycled paper Preliminary Preliminary The numbers

  16. Management | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Sciences & Engineering Focus: Understanding & Control of Interfacial Processes Web Site Michael Thackeray Michael Thackeray (Deputy Director) Argonne National Laboratory...

  17. Alamos National Laboratory's 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    $2 million pledged during Los Alamos National Laboratory's 2014 employee giving campaign December 17, 2013 "I Give Because..." theme focuses on unique role Lab plays in local communities LOS ALAMOS, N.M., Dec. 17, 2013-Nearly $2 million has been pledged by Los Alamos National Laboratory employees to United Way and other eligible nonprofit programs during the Laboratory's 2014 Employee Giving Campaign. Los Alamos National Security, LLC, which manages and operates the Laboratory for the

  18. biswasr | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University, 1976 Professional Appointments: Senior Scientist Ames Laboratory and Microelectronics Research Center, 2013- present Adjunct Professor, Dept. of Physics & Astronomy;...

  19. Sandia National Laboratories: Laboratories' Strategic Framework

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Strategic Framework Vision, Mission, and Values Strategic Framework Mission Areas Laboratories Foundation Strategic Objectives and Crosscuts About Strategic Framework strategic framework Sandia continues to be engaged in the significant demands of the nation's nuclear weapons modernization program while conducting a whole range of activities in broader national security. The Laboratories' strategic framework drives strategic decisions about the totality of our work and has positioned our

  20. INL Laboratory Scale Atomizer

    SciTech Connect (OSTI)

    C.R. Clark; G.C. Knighton; R.S. Fielding; N.P. Hallinan

    2010-01-01

    A laboratory scale atomizer has been built at the Idaho National Laboratory. This has proven useful for laboratory scale tests and has been used to fabricate fuel used in the RERTR miniplate experiments. This instrument evolved over time with various improvements being made ‘on the fly’ in a trial and error process.

  1. Sandia National Laboratories is a multi-program laboratory operated...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, ... laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed ...

  2. LABORATORY NEW HIRE NOTICE: LABORATORY DELAYED OPENING OR CLOSURE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LABORATORY NEW HIRE NOTICE: LABORATORY DELAYED OPENING OR CLOSURE DUE TO INCLEAMENT WEATHER During the winter months, the Los Alamos National Laboratory (LANL) may at times...

  3. Laboratory program helps small businesses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab helps small businesses Laboratory program helps small businesses The free program, run jointly by Los Alamos and Sandia National Laboratories, leverages the laboratories'...

  4. Going green earns Laboratory gold

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Going green earns Laboratory gold Going green earns Laboratory gold The Laboratory's newest facility is its first to achieve both the Leadership in Energy and Environmental Design...

  5. Budget Office | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that the Laboratory complies with all Department Of Energy cost controls Providing decision-making support to senior Laboratory management Providing support to the Laboratory...

  6. Sandia National Laboratories: Locations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Locations Locations Sandia California CINT photo A national and international presence Sandia operates laboratories, testing facilities, and offices in multiple sites around the United States and participates in research collaborations around the world. Sandia's executive management offices and larger laboratory complex are located in Albuquerque, New Mexico. Our second principal laboratory is located in Livermore, California. Although most of our 9,840 employees work at these two locations,

  7. The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Timothy Hackett and Kathryn White are the SULI students for spring semester 2016. Ames Laboratory's fall Science Undergraduate Laboratory Internship (SULI) students began their program with the start of fall semester Aug. 24. The students are, left to right, Kathryn White, Shannon Goes, Kaiser Aguirre, and Adam Dziulko. Department of Energy Deputy Secretary Elizabeth Sherwood-Randall poses with SULI and CCI students who participated in a roundtable discussion during her visit to Ames Laboratory

  8. Savannah River National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Savannah River National Laboratory srnl.doe.gov SRNL is a DOE National Laboratory operated by Savannah River Nuclear Solutions. At a glance 'Tin whiskers' suppression method Researchers at the Savannah River National Laboratory (SRNL) have identified a treatment method that slows or prevents the formation of whiskers in lead-free solder. Tin whiskers spontaneously grow from thin films of tin, often found in microelectronic devices in the form of solders and platings. Background This problem was

  9. jwang | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    jwang Ames Laboratory Profile Jigang Wang Associate Division of Materials Science & Engineering B15 Spedding Phone Number: 515-294-2964 Email Address: jgwang@iastate.edu Ames Laboratory Research Projects: Metamaterials Education: Ph.D. Electrical Engineering, Rice University, Houston, TX, 2005 M.S. Electrical Engineering, Rice University, Houston, TX, 2002 B.S. Physics, Jilin University, Changchun, P. R. China, 2000 Professional Appointments: Associate Scientist, Ames Laboratory, Iowa State

  10. Education | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Education Education The MFRC has established a network of Midwest crime laboratories and university-based forensic science programs. This network has two general goals: help universities become better casework, research, and development partners for crime laboratories; and to engage crime laboratories in university efforts. These efforts can better-prepare the next generation of forensic scientists, advance the state-of-the-art in forensic science research, and influence students whose

  11. National Energy Technology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Design Standards for the NETL Logo Feburary 2016 The Logo Display of the NETL logo is critical because this symbol represents who we are - it's our signature. Consistent application of the logo is crucial to the success of our identity. As the primary identifier of the National Energy Technology Laboratory, it is essential that the logo's appearance is consistent throughout all of the Laboratory's communications. Over time, consistent and repeated use of the logo will establish a

  12. rshouk | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rshouk Ames Laboratory Profile Robert Houk Prof Chemical & Biological Sciences B27 Spedding Phone Number: 515-294-9462 Email Address: rshouk@iastate.edu Ames Laboratory Associate and Professor, Iowa State University Ames Laboratory Research Projects: Chemical Analysis of Nanodomains Education: Postdoctoral Associate, Iowa State University, 1981 Ph.D. Iowa State University, 1980 B.S. Slippery Rock State College, 1974 Professional Appointments: Senior Chemist and Professor of Chemistry, Iowa

  13. Mentoring | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mentoring Why mentoring? As one of the largest laboratories in the nation for science and engineering research, Argonne National Laboratory is home to some of the most prolific and well-renowned scientists and engineers. To maintain an environment that fosters innovative research, we are committed to ensuring the success of our major players on the frontlines of our research-our Postdoctoral Scientists. The Argonne National Laboratory has a long-standing reputation as a place that offers

  14. Enhanced spin Hall effect by electron correlations in CuBi alloys

    SciTech Connect (OSTI)

    Gu, Bo Xu, Zhuo; Mori, Michiyasu; Maekawa, Sadamichi; Ziman, Timothy

    2015-05-07

    A recent experiment in CuBi alloys obtained a large spin Hall angle (SHA) of ?0.24 (Niimi et al., Phys. Rev. Lett. 109, 156602 (2012)). We find that the SHA can be dramatically enhanced by Bi impurities close to the Cu surface. The mechanisms of this enhancement are two-fold. One is that the localized impurity state on surface has a decreased hybridization and combined with Coulomb correlation effect. The other comes from the low-dimensional state of conduction electrons on surface, which results in a further enhancement of skew scattering by impurities. Furthermore, we note that a discrepancy in sign of SHA between the experiment and previous theories is simply caused by different definitions of SHA. This re-establishes skew scattering as the essential mechanism underlying the spin Hall effect in CuBi alloys.

  15. Edge-channel interferometer at the graphene quantum Hall pn junction

    SciTech Connect (OSTI)

    Morikawa, Sei; Moriya, Rai; Masubuchi, Satoru Machida, Tomoki; Watanabe, Kenji; Taniguchi, Takashi

    2015-05-04

    We demonstrate a quantum Hall edge-channel interferometer in a high-quality graphene pn junction under a high magnetic field. The co-propagating p and n quantum Hall edge channels traveling along the pn interface functions as a built-in Aharonov-Bohm-type interferometer, the interferences in which are sensitive to both the external magnetic field and the carrier concentration. The trajectories of peak and dip in the observed resistance oscillation are well reproduced by our numerical calculation that assumes magnetic flux quantization in the area enclosed by the co-propagating edge channels. Coherent nature of the co-propagating edge channels is confirmed by the checkerboard-like pattern in the dc-bias and magnetic-field dependences of the resistance oscillations.

  16. Sheath oscillation characteristics and effect on near-wall conduction in a krypton Hall thruster

    SciTech Connect (OSTI)

    Zhang, Fengkui Kong, Lingyi; Li, Chenliang; Yang, Haiwei; Li, Wei

    2014-11-15

    Despite its affordability, the krypton Hall-effect thruster in applications always had problems in regard to performance. The reason for this degradation is studied from the perspective of the near-wall conductivity of electrons. Using the particle-in-cell method, the sheath oscillation characteristics and its effect on near-wall conduction are compared in the krypton and xenon Hall-effect thrusters both with wall material composed of BNSiO{sub 2}. Comparing these two thrusters, the sheath in the krypton-plasma thruster will oscillate at low electron temperatures. The near-wall conduction current is only produced by collisions between electrons and wall, thereby causing a deficiency in the channel current. The sheath displays spatial oscillations only at high electron temperature; electrons are then reflected to produce the non-oscillation conduction current needed for the krypton-plasma thruster. However, it is accompanied with intensified oscillations.

  17. Variational principle for linear stability of flowing plasmas in Hall magnetohydrodynamics

    SciTech Connect (OSTI)

    Hirota, M.; Yoshida, Z.; Hameiri, E.

    2006-02-15

    Linear stability of equilibrium states with flow is studied by means of the variational principle in Hall magnetohydrodynamics (MHD). The Lagrangian representation of the linearized Hall MHD equation is performed by considering special perturbations that preserves some constants of motion (the Casimir invariants). The resultant equation has a Hamiltonian structure which enables the variational principle. There is however some difficulties in showing the positive definiteness of the quadratic form in the presence of flow. The dynamically accessible variation is a more restricted class of perturbations which, by definition, preserves all the Casimir invariants. For such variations, the quadratic form (the second variation of Hamiltonian) can be positive definite. Some conditions for stability are derived by applying this variational principle to the double Beltrami equilibrium.

  18. Minimum energy states of the cylindrical plasma pinch in single-fluid and Hall magnetohydrodynamics

    SciTech Connect (OSTI)

    Khalzov, I. V.; Schnack, D. D.; Mirnov, V. V.; Ebrahimi, F.

    2012-01-15

    Relaxed states of a plasma column are found analytically in single-fluid and Hall magnetohydrodynamics (MHD). We perform complete minimization of the energy with constraints imposed by invariants inherent in the corresponding models. It is shown that the relaxed state in Hall MHD is a force-free magnetic field with uniform axial flow and/or rigid azimuthal rotation. In contrast, the relaxed states in single-fluid MHD are more complex due to the coupling between velocity and magnetic field. Cylindrically and helically symmetric relaxed states are considered for both models. Helical states may be time dependent and analogous to helical waves, propagating on a cylindrically symmetric background. Application of our results to reversed-field pinches (RFP) is discussed. The radial profile of the parallel momentum predicted by the single-fluid MHD relaxation theory is shown to be in reasonable agreement with experimental observation from the Madison symmetric torus RFP experiment.

  19. kabryden | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    kabryden Ames Laboratory Profile Kristy Bryden Associate Simulation, Modeling, & Decision Science 149 Music Phone Number: 515-294-3971 Email Address: kabryden...

  20. CASL - Idaho National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The laboratory has designed and operated 52 test reactors, including EBR-1, the world's first nuclear power plant Key Contributions System safety analysis Multiscale fuel ...

  1. angiemcg | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    angiemcg Ames Laboratory Profile Angela Mcguigan Secretary II Simulation, Modeling, & Decision Science 1620 Howe Phone Number: 515-294-8060 Email Address: angiemcg...

  2. antropov | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Laboratory Research Projects: Exploratory Development of Theoretical Methods Education: Ph.D. Condensed Matter Physics, Institute of Physics of Metals, Yekaterinburg,...

  3. OAK RIDGE NATIONAL LABORATORY

    Office of Legacy Management (LM)

    Dr. Williams: Trip Report of ORNL Health Physics Support at the Uniroyal Chemical Company ... Laboratory (ORNL) provided health physics support for the Uniroyal Chemical Company. ...

  4. Purchasing | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in 44 states. Purchased Items and supplier base: Biological Materials Chemicals Computers, Monitors and Printers Furniture Laboratory Supplies Metals Office Supplies...

  5. carter | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carter Ames Laboratory Profile Steven Carter Engr IV Facilities Services 158 Metals Development Phone Number: 515-294-7889 Email Address: carter@ameslab.gov...

  6. cbertoni | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cbertoni Ames Laboratory Profile Colleen Bertoni Grad Asst-RA Chemical & Biological Sciences 201 Spedding Phone Number: 515-294-7568 Email Address: cbertoni...

  7. pmberge | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pmberge Ames Laboratory Profile Paul Berge Industrial Spec Division of Materials Science & Engineering 110 Metals Development Phone Number: 515-294-5972 Email Address:...

  8. abhranil | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    abhranil Ames Laboratory Profile Abhranil Biswas Student Associate Chemical & Biological Sciences 2236 Hach Phone Number: 515-294-7568 Email Address: abiswas

  9. aboesenb | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    aboesenb Ames Laboratory Profile Adam Boesenberg Associate Division of Materials Science & Engineering 110 Metals Development Phone Number: 515-294-5903 Email Address: aboesenb

  10. achatman | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    achatman Ames Laboratory Profile Andrew Chatman Division of Materials Science & Engineering 37 Spedding Phone Number: 515-294-4446 Email Address: achatman

  11. ackerman | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ackerman Ames Laboratory Profile David Ackerman Associate Chemical & Biological Sciences 2025 Black Engineering Phone Number: 515-294-1638 Email Address: ackerman

  12. adabbott | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    adabbott Ames Laboratory Profile Adam Abbott Chemical & Biological Sciences Critical Materials Institute 122 Spedding Phone Number: 515-294-4500 Email Address: adabbott

  13. adaoud | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    adaoud Ames Laboratory Profile Abdelwadood Daoud Simulation, Modeling, & Decision Science 1620 Howe Phone Number: 515-294-8060 Email Address: adaoud

  14. adf | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    adf Ames Laboratory Profile Alex Findlater Student Associate Chemical & Biological Sciences 231 Spedding Phone Number: 515-294-7568 Email Address: adf

  15. ahaupert | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ahaupert Ames Laboratory Profile Alysha Haupert Facilities Services 241C Metals Development Phone Number: 515-294-4360 Email Address: ahaupert

  16. aklekner | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    aklekner Ames Laboratory Profile Alon Klekner Engr Tech I Facilities Services 167C Metals Development Phone Number: 515-294-1589 Email Address: aklekner

  17. andresg | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    andresg Ames Laboratory Profile Andres Garcia Grad Asst-RA Chemical & Biological Sciences 307 Wilhelm Phone Number: 515-294-6027 Email Address: andresg

  18. arbenson | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    arbenson Ames Laboratory Profile Alex Benson Division of Materials Science & Engineering 258 Metals Development Phone Number: 515-294-4446 Email Address: arbenson

  19. ashheath | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ashheath Ames Laboratory Profile Ashley Heath Simulation, Modeling, & Decision Science 1620 Howe Phone Number: 515-294-3891 Email Address: ashheath

  20. bastaw | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bastaw Ames Laboratory Profile Ashraf Bastawros Associate Chemical & Biological Sciences 2347 Howe Phone Number: 515-294-3039 Email Address: bastaw

  1. baugie | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    baugie Ames Laboratory Profile Brent Augustine Student Associate Division of Materials Science & Engineering 206 Wilhelm Phone Number: 309-748-0439 Email Address: baugie

  2. bbergman | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bbergman Ames Laboratory Profile Brian Bergman Facil Mechanic III Facilities Services Maintenance Shop Phone Number: 515-294-4346 Email Address: bbergman@ameslab.gov

  3. bcleland | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bcleland Ames Laboratory Profile Beth Cleland Custodian I Facilities Services 241C Metals Development Phone Number: 515-294-5446 Email Address: bcleland

  4. bender | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bender Ames Laboratory Profile Lee Bendickson Lab Tech III Division of Materials Science & Engineering 3288 Molecular Biology Bldg Phone Number: 515-294-5682 Email Address: bender

  5. bkkuhn | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bkkuhn Ames Laboratory Profile Bridget Kuhn Human Resources Office 118 TASF Phone Number: 515-294-2680 Email Address: bkkuhn@iastate.edu

  6. boehmer | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    boehmer Ames Laboratory Profile Anna Boehmer Postdoc Res Associate Division of Materials Science & Engineering A15 Zaffarano Phone Number: 515-294-3246 Email Address: boehmer

  7. boersma | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    boersma Ames Laboratory Profile Stephanie Boersma Budget Analyst V Budget Office 231 TASF Phone Number: 515-294-8785 Email Address: boersma

  8. bondarenko | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bondarenko Ames Laboratory Profile Volodymyr Bondarenko Division of Materials Science & Engineering A117 Zaffarano Phone Number: 515-294-4072 Email Address: bondarenko

  9. bspire | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bspire Ames Laboratory Profile Bruce Spire Erd Machinist Sr Facilities Services 160 Metals Development Phone Number: 515-294-5428 Email Address: bspire

  10. burghera | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    burghera Ames Laboratory Profile Alexander Burgher Facil Mechanic III Facilities Services 158B Metals Development Phone Number: 515-294-3756 Email Address: burghera

  11. byrd | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    byrd Ames Laboratory Profile David Byrd Asst Scientist I Division of Materials Science & Engineering 109 Metals Development Phone Number: 515-294-5747 Email Address: byrd

  12. carraher | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carraher Ames Laboratory Profile Jack Carraher Postdoc Res Associate Chemical & Biological Sciences 2118 BRL Phone Number: 515-294-5826 Email Address: carraher@iastate.edu

  13. cbenetti | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cbenetti Ames Laboratory Profile Caleb Benetti Student Associate Division of Materials Science & Engineering A204 Zaffarano Phone Number: 515-294-4446 Email Address: cbenetti

  14. ccelania | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ccelania Ames Laboratory Profile Christopher Celania Grad Asst-TA/RA Division of Materials Science & Engineering 325 Spedding Phone Number: 641-226-7542 Email Address: ccelania

  15. ccowan | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ccowan Ames Laboratory Profile Carol Cowan Secretary III Human Resources Office 151 TASF Phone Number: 515-294-2680 Email Address: ccowan

  16. chenx | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    chenx Ames Laboratory Profile Xiang Chen Division of Materials Science & Engineering 249 Spedding Phone Number: 515-294-4446 Email Address: chenx

  17. cmarquardt | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cmarquardt Ames Laboratory Profile Cynthia Marquardt Secretary II Facilities Services 158 Metals Development Phone Number: 515-294-3756 Email Address: cmarquardt

  18. crossm | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    crossm Ames Laboratory Profile Jeanine Crosman Secretary III Facilities Services 158H Metals Development Phone Number: 515-294-3496 Email Address: crossm

  19. dabrice | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dabrice Ames Laboratory Profile David Brice Division of Materials Science & Engineering 150 Metals Development Phone Number: 515-294-4446 Email Address: dabrice

  20. dbaldwin | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dbaldwin Ames Laboratory Profile David Baldwin Director II Chemical & Biological Sciences 130 Spedding Phone Number: 515-294-2069 Email Address: dbaldwin

  1. dballal | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dballal Ames Laboratory Profile Deepti Ballal Division of Materials Science & Engineering 112 Wilhelm Phone Number: 515-294-9636 Email Address: dballal

  2. dboeke | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dboeke Ames Laboratory Profile David Boeke Research Tech Sr Division of Materials Science & Engineering 122 Metals Development Phone Number: 515-294-5816 Email Address: dboeke

  3. deshong | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    deshong Ames Laboratory Profile Rhonda Deshong Program Asst II Human Resources Office 151 TASF Phone Number: 515-294-0931 Email Address: deshong@ameslab.gov

  4. djbell | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    djbell Ames Laboratory Profile Daniel Bell Grad Asst-RA Simulation, Modeling, & Decision Science 1620 Howe Phone Number: 515-294-3891 Email Address: djbell

  5. djchadde | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    djchadde Ames Laboratory Profile David Chadderdon Grad Asst-RA Division of Materials Science & Engineering 2140 BRL Phone Number: 515-294-4446 Email Address: djchadde

  6. dmeyer | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dmeyer Ames Laboratory Profile Dale Meyer Engr Tech II Facilities Services 158D Metals Development Phone Number: 515-294-3614 Email Address: dmeyer@ameslab.gov

  7. eckels | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    eckels Ames Laboratory Profile David Eckels Associate Chemical & Biological Sciences 105 Spedding Phone Number: 515-294-7943 Email Address: eckels@ameslab.gov

  8. eguidez | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    eguidez Ames Laboratory Profile Emilie Guidez Associate Chemical & Biological Sciences 201 Spedding Phone Number: 515-294-7568 Email Address: eguidez@ameslab.gov

  9. finzell | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    finzell Ames Laboratory Profile Peter Finzell Grad Asst-RA Simulation, Modeling, & Decision Science 1620 Howe Phone Number: 515-294-8060 Email Address: surgeftr

  10. flanders | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    flanders Ames Laboratory Profile Duane Flanders Sheet Metal Mech Facilities Services Maintenance Shop Phone Number: 515-294-1746 Email Address: flanders@ameslab.gov

  11. galvin | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    galvin Ames Laboratory Profile Glen Galvin Mgr Info Tech I Simulation, Modeling, & Decision Science 1620 Howe Phone Number: 515-294-6604 Email Address: galvin

  12. gbjorlnd | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gbjorlnd Ames Laboratory Profile Grace Bjorland Division of Materials Science & Engineering B36 Spedding Phone Number: 515-294-4446 Email Address: gbjorlnd

  13. gharper | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gharper Ames Laboratory Profile Gregory Harper Sys Control Tech Facilities Services Maintenance Shop Phone Number: 515-294-1746 Email Address: gharper

  14. gsbacon | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gsbacon Ames Laboratory Profile Graham Bacon Division of Materials Science & Engineering 129 Wilhelm Phone Number: 515-294-4446 Email Address: gsbacon

  15. guan | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    guan Ames Laboratory Profile Yong Guan Associate Chemical & Biological Sciences 3219 Coover Phone Number: 515-294-8378 Email Address: guan

  16. hanrahanm | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hanrahanm Ames Laboratory Profile Michael Hanrahan Chemical & Biological Sciences 331 Spedding Phone Number: 515-294-7568 Email Address: mph

  17. hauptman | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hauptman Ames Laboratory Profile John Hauptman Associate Facilities Services A411 Zaffarano Phone Number: 515-294-8572 Email Address: hauptman

  18. hcelliott | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hcelliott Ames Laboratory Profile Henrietta Elliott Custodian I Facilities Services 241C Metals Development Phone Number: 515-294-5446 Email Address: hcelliott

  19. herrman | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    herrman Ames Laboratory Profile Terrance Herrman Engr V Facilities Services 167 Metals Development Phone Number: 515-294-7896 Email Address: herrman

  20. hilstromj | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hilstromj Ames Laboratory Profile Jeremy Hilstrom Office Assistant-X Human Resources Office 118 TASF Phone Number: 515-294-2680 Email Address: hilst000

  1. himashir | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    himashir Ames Laboratory Profile Himashi Andaraarachchi Student Associate Chemical & Biological Sciences 209B Wilhelm Phone Number: 515-294-7568 Email Address: himashir

  2. jac | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    jac Ames Laboratory Profile Justin Conrad Student Associate Chemical & Biological Sciences 305 TASF Phone Number: 515-294-4604 Email Address: jac

  3. jboschen | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    jboschen Ames Laboratory Profile Jeffery Boschen Grad Asst-RA Chemical & Biological Sciences 124 Spedding Phone Number: 515-294-7568 Email Address: jboschen

  4. jiahao | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    jiahao Ames Laboratory Profile Jiahao Chen Division of Materials Science & Engineering A300 Zaffarano Phone Number: 515-294-0689 Email Address: jiahao@iastate.edu

  5. jrblaum | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    jrblaum Ames Laboratory Profile Jacqueline Blaum Division of Materials Science & Engineering 37 Spedding Phone Number: 515-294-4446 Email Address: jrblaum

  6. kasuni | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    kasuni Ames Laboratory Profile Walikadage Boteju Grad Asst-RA Chemical & Biological Sciences Critical Materials Institute 2306 Hach Phone Number: 515-294-6342 Email Address: kasuni

  7. kbratlie | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    kbratlie Ames Laboratory Profile Kaitlin Bratlie Associate Division of Materials Science & Engineering 2220 Hoover Phone Number: 515-294-7304 Email Address: kbratlie

  8. klclark | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    klclark Ames Laboratory Profile Katie Clark Program Coord II Human Resources Office 151 TASF Phone Number: 515-294-8753 Email Address: klclark@ameslab.gov

  9. kmbryden | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    kmbryden Ames Laboratory Profile Kenneth Bryden Associate Simulation, Modeling, & Decision Science 2274 Howe Phone Number: 515-294-3891 Email Address: kmbryden

  10. liza | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    liza Ames Laboratory Profile Liza Alexander Grad Asst-RA Chemical & Biological Sciences 2242 Molecular Biology Bldg Phone Number: 515-294-6116 Email Address: liza

  11. long | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    long Ames Laboratory Profile Catherine Long Supv-Custodial Svc Facilities Services 158G Metals Development Phone Number: 515-294-4360 Email Address: long

  12. maheedhar | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    maheedhar Ames Laboratory Profile Maheedhar Gunasekharan Grad Asst-RA Chemical & Biological Sciences 327 Wilhelm Phone Number: 515-294-7568 Email Address: maheedhar

  13. ppezzini | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ppezzini Ames Laboratory Profile Paolo Pezzini Postdoc Res Associate Simulation, Modeling, & Decision Science Off Campus Phone Number: 515-294-3891 Email Address: ppezzini...

  14. dcheng | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dcheng Ames Laboratory Profile Di Cheng Student Associate Division of Materials Science & Engineering A311 Zaffarano Phone Number: 515-294-5373 Email Address: dcheng@iastate.edu...

  15. bartine | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bartine Ames Laboratory Profile Jeffrey Bartine Program Coord III Environmental, Safety, Health, and Assurance G40 TASF Phone Number: 515-294-4743 Email Address: bartine...

  16. Leadership | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    scientific user facility in North America; and the Argonne Accelerator Institute. Harry Weerts Harry Weerts, Associate Laboratory Director, Physical Sciences and Engineering...

  17. mjkramer | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Laboratory Profile Matthew Kramer Director III Division of Materials Science & Engineering 125 Metals Development Phone Number: 515-294-0276 Email Address:...

  18. Workshops | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Workshop Summary June 8-10, 2015 NSRC Workshop on "Big, Deep, and Smart Data Analytics in Materials Imaging" Oak Ridge National Laboratory This workshop brought together ...

  19. hoenig | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hoenig Ames Laboratory Profile Douglas Hoenig Mgr Facility Serv Facilities Services 158J Metals Development Phone Number: 515-294-0930 Email Address: hoenig@ameslab.gov...

  20. grootvel | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    grootvel Ames Laboratory Profile Mark Grootveld Mgr Facility Serv Facilities Services 158 Metals Development Phone Number: 515-294-7895 Email Address: grootveld@ameslab.gov...

  1. Laboratory Organization Chart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Board Directorate Staff Org Chart Berkeley Lab Organization Chart ESnet Protective Services ETAESDR ETAEAEI ETA Chief Operating Officer Laboratory Council RIIO...

  2. NREL: Research Facilities - Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In the lab, researchers study plant structures from the tissue scale to the molecular ... Photobiological Laboratory Researchers use this lab for enzyme engineering to block the ...

  3. Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Assessment of Radionuclide Monitoring in the CSRA Savannah River NERP Research ... Upcoming Seminars The Savannah River Ecology Laboratory is a research unit of the ...

  4. The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    David Jiles, Palmer Endowed Chair of the electrical and computer engineering ... When Ames Laboratory was experiencing a seemingly elevated number of power outages, Lab staff ...

  5. Laboratory disputes citizens' lawsuit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    officials expressed surprise to a lawsuit alleging noncompliance with the federal Clean Water Act filed today by citizens groups. February 7, 2008 Los Alamos National Laboratory...

  6. timma | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    timma Ames Laboratory Profile Timothy Anderson Associate Chemical & Biological Sciences B28 Spedding Phone Number: 515-294-7568 Email Address: timma...

  7. rdanders | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rdanders Ames Laboratory Profile Ross Anderson Research Tech Sr Division of Materials Science & Engineering 108 Metals Development Phone Number: 515-294-5816 Email Address:...

  8. Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    short-pulse laser, scientists from Los Alamos, the Technical University of Darmstadt, Germany, and Sandia National Laboratories focus high-intensity light on an ultra-thin...

  9. Princeton Plasma Physics Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    generations. The Laboratory, managed by Princeton University, has a more-than 60-year history of discovery and leadership in the field of fusion energy. PPPL researchers are...

  10. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    He was the third director of Los Alamos National Laboratory, succeeding Robert Oppenheimer and Norris Bradbury. He served from 1970 to 1979. Joined Manhattan Project in 1943 During ...

  11. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LOS ALAMOS, New Mexico, November 20, 2008- Los Alamos National Laboratory employees once again demonstrated concern for their communities and those in need by pledging a record...

  12. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2009 Los Alamos, New Mexico, December 1, 2009-Los Alamos National Laboratory employees once more demonstrated concern for their communities and those in need by pledging a record...

  13. xinyufu | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    xinyufu Ames Laboratory Profile Xinyu Fu Student Associate Chemical & Biological Sciences 2238 Molecular Biology Bldg Phone Number: 515-294-7568 Email Address: xinyufu...

  14. National Laboratory Geothermal Publications

    Broader source: Energy.gov [DOE]

    You can find publications, including technical papers and reports, about geothermal technologies, research, and development at the following U.S. Department of Energy national laboratories.

  15. mmdaub | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mmdaub Ames Laboratory Profile Molly Granseth Program Asst II Human Resources Office Environmental, Safety, Health, and Assurance 105 TASF Phone Number: 515-294-2864 Email Address:...

  16. Muncrief | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Muncrief Ames Laboratory Profile Diane Muncrief Personnel Officer Human Resources Office 151 TASF Phone Number: 515-294-5731 Email Address: muncrief...

  17. hmorris | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hmorris Ames Laboratory Profile Haley Morris Office Assistant-X Human Resources Office Environmental, Safety, Health, and Assurance 105 TASF Phone Number: 515-294-2153 Email...

  18. Inquiry | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facility, a nearly 10 million building that will house an array of state-of-the art electron microscopy equipment. It's Ames Laboratory's first new research facility in...

  19. Awards | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Performance Award, 2013 (with two other researchers) U.S. Department of Energy Vehicle Technologies Office R&D Award, 2013 Argonne National Laboratory Distinguished...

  20. Sandia National Laboratories:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    event Annual Exercise an earth-shaking activity Sandia President and Laboratories Director Jill Hruby Partnerships, mission synergy key to Sandia's future Sandia California...

  1. Los Alamos National Laboratory's

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    produced by current operations. LANL and regulatory agencies survey the air, soil, sediment, groundwater, and surface water around the Laboratory to make sure contaminants from...

  2. mbonilla | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mbonilla Ames Laboratory Profile Claudia Bonilla escobar Postdoc Res Associate Division of Materials Science & Engineering 252 Spedding Phone Number: 515-294-2041 Email Address: mbonilla

  3. mdotzler | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mdotzler Ames Laboratory Profile Mike Dotzler Facil Mechanic III Facilities Services Maintenance Shop Phone Number: 515-294-4346 Email Address: mdotzler

  4. mhend | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mhend Ames Laboratory Profile Matthew Henderson Sys Analyst I Chemical & Biological Sciences 327 Wilhelm Phone Number: 515-294-1293 Email Address: mhend@ameslab.gov

  5. mhenely | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mhenely Ames Laboratory Profile Michael Henely Custodian I Facilities Services 241C Metals Development Phone Number: 515-294-5446 Email Address: mhenely@iastate.edu

  6. mwiley | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mwiley Ames Laboratory Profile Megan Hovey Student Associate Chemical & Biological Sciences 2252 Hach Phone Number: 515-294-8069 Email Address: mwiley

  7. nalms | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nalms Ames Laboratory Profile Nathan Alms Lab Assistant-X Division of Materials Science & Engineering 322 Spedding Phone Number: 515-294-4446 Email Address: nalms

  8. ndesilva | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ndesilva Ames Laboratory Profile Nuwan De silva Postdoc Res Associate Critical Materials Institute Chemical & Biological Sciences 236 Wilhelm Phone Number: 515-294-7568 Email Address: ndesilva

  9. olsenjro | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    olsenjro Ames Laboratory Profile Jarrett Olsen Custodian I Facilities Services 241C Metals Development Phone Number: 515-294-4360 Email Address: olsenjro@ameslab.gov

  10. pbenzoni | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pbenzoni Ames Laboratory Profile Peter Benzoni Chemical & Biological Sciences 327 Wilhelm Phone Number: 515-294-7568 Email Address: pbenzoni

  11. perrya | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    perrya Ames Laboratory Profile Perry Antonelli Grad Asst-RA Simulation, Modeling, & Decision Science 2240H Hoover Phone Number: 515-294-1841 Email Address: perrya

  12. qslin | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    qslin Ames Laboratory Profile Qisheng Lin Assoc Scientist Division of Materials Science & Engineering 353 Spedding Phone Number: 515-294-3513 Email Address: qslin@ameslab.gov

  13. rberrett | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rberrett Ames Laboratory Profile Ronald Berrett Sys Control Tech Facilities Services Maintenance Shop Phone Number: 515-294-1746 Email Address: rberrett

  14. rfry | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rfry Ames Laboratory Profile Robert Fry Electronics Tech I Facilities Services 258 Metals Development Phone Number: 515-294-4823 Email Address: rfry

  15. rmalmq | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rmalmq Ames Laboratory Profile Richard Malmquist Facil Mechanic III Facilities Services Maintenance Shop Phone Number: 515-294-1228 Email Address: rmalmq

  16. rodgers | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rodgers Ames Laboratory Profile Elizabeth Rodgers Program Coord III Office of Sponsored Research Administration Director's Office 305 TASF Phone Number: 515-294-1254 Email Address: rodgers

  17. rofox | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rofox Ames Laboratory Profile Rodney Fox Associate Chemical & Biological Sciences 3162 Sweeney Phone Number: 515-294-9104 Email Address: rofox@iastate.edu

  18. schenad | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    schenad Ames Laboratory Profile Shen Chen Division of Materials Science & Engineering 211 Physics Phone Number: 515-294-9361 Email Address: schenad

  19. schon | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    schon Ames Laboratory Profile Mallory Schon Program Coord II Human Resources Office 151 TASF Phone Number: 515-294-8062 Email Address: schon

  20. seliger | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    seliger Ames Laboratory Profile Victoria Seliger Custodian I Facilities Services 241C Metals Development Phone Number: 515-294-4360 Email Address: seliger

  1. sumitc | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sumitc Ames Laboratory Profile Sumit Chaudhary Associate Division of Materials Science & Engineering 2124 Coover Phone Number: 515-294-0606 Email Address: sumitc

  2. tboell | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tboell Ames Laboratory Profile Tyler Boell Division of Materials Science & Engineering 146 Metals Development Phone Number: 515-294-4446 Email Address: tboell

  3. tjoliveira | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tjoliveira Ames Laboratory Profile Tiago De oliveira Associate Chemical & Biological Sciences 505 Zaffarano Phone Number: 515-294-7568 Email Address: tjoliveira@ameslab.gov

  4. tkales | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tkales Ames Laboratory Profile Thomas Ales Division of Materials Science & Engineering 150 Metals Development Phone Number: 515-294-4446 Email Address: tkales@iastate.edu

  5. vaclav | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    vaclav Ames Laboratory Profile Michael Vaclav Engr IV Facilities Services 158E Metals Development Phone Number: 515-294-7891 Email Address: vaclav

  6. valery | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    valery Ames Laboratory Profile Valery Borovikov Postdoc Res Associate Division of Materials Science & Engineering 205 Metals Development Phone Number: 515-294-4312 Email Address: valery

  7. weverett | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    weverett Ames Laboratory Profile William Everett Student Associate Chemical & Biological Sciences 121 Spedding Phone Number: 515-294-7568 Email Address: weverett@iastate.edu

  8. witt | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    witt Ames Laboratory Profile Lynnette Witt Interim Director Human Resources Human Resources Office 151 TASF Phone Number: 515-294-5740 Email Address: witt@ameslab.gov

  9. dscomito | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dscomito Ames Laboratory Profile Daniel Comito Student Associate Division of Materials Science & Engineering A524 Zaffarano Phone Number: 515-294-9800 Email Address: dscomito...

  10. vdahl | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    vdahl Ames Laboratory Profile Vincent Dahl Mgr Facilities Mnt Facilities Services Maintenance Shop Phone Number: 515-294-1746 Email Address: vdahl...

  11. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    funds July 21, 2009 Funding will aid environmental cleanup and compliance Los Alamos, New Mexico, July 22, 2009-Los Alamos National Laboratory today announced plans to begin...

  12. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and affirmative procurement accomplishments. The Laboratory also received a Department of Energy "E Star" award for its Environmental Management System project, based on a...

  13. sjbajic | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sjbajic Ames Laboratory Profile Stanley Bajic Assoc Scientist Chemical & Biological Sciences 5 Spedding Phone Number: 515-294-8194 Email Address: sjbajic...

  14. jwgong | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Laboratory Profile Jianwu Gong Student Associate Division of Materials Science & Engineering Chemical & Biological Sciences 326 Wilhelm Phone Number: 515-294-7568 Email...

  15. marit | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Honors & Awards: AAAS Fellow, 2007 Regents Award for Faculty Excellence, 2003 Inventor Incentive Award, Ames Laboratory, 2002 Iowa Regents Faculty Citation Award, 2000...

  16. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3, 2015 Projects save taxpayer dollars, promote environmental stewardship, sustainability LOS ALAMOS, N.M., April 22, 2015-Nearly 400 Los Alamos National Laboratory employees on 32...

  17. Projects | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Tool Mark Characterization Development of an AccuTOF-DART Database for Use by Forensic Laboratories Forensic Technology Center of Excellence MFRC Training Development &...

  18. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    accomplishment," Deputy Laboratory Director and this year's campaign champion Ike Richardson said of this year's pledged - 2 - amount. "The LANL team raised 1.5 million, which...

  19. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2009 Lab contributes computer modeling, antibody engineering capabilities Los Alamos, New Mexico, July 28, 2009- Los Alamos National Laboratory scientists will codirect a new...

  20. tchou | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tchou Ames Laboratory Profile Tsung-han Chou Student Associate Division of Materials Science & Engineering 132 Spedding Phone Number: 515-294-6822 Email Address: tchou...

  1. Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    location of the Savannah River Ecology Laboratory, is one of the original ten SREL habitat reserves and was selected to complement the old-field habitatplant succession studies ...

  2. National Laboratory Photovoltaics Research

    Broader source: Energy.gov [DOE]

    DOE supports photovoltaic (PV) research and development and facilities at its national laboratories to accelerate progress toward achieving the SunShot Initiative's technological and economic...

  3. dpaulc | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dpaulc Ames Laboratory Profile Daniel Cole Student Associate Chemical & Biological Sciences 10 Carver Co-Lab Phone Number: 515-294-1235 Email Address: dpaulc...

  4. Factsheets | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    elements on the front and provides information on the back concerning Ames Laboratory's historical involvement in rare earth research, the Critical Materials Institute and the...

  5. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6th Hazmat Challenge July 31, 2012 Competition tests skills of hazardous materials response teams LOS ALAMOS, New Mexico, July 31, 2012 What: Los Alamos National Laboratory (LANL)...

  6. Sustainability | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sustainability "Much of Argonne's cutting-edge research is dedicated to discovery and ... Argonne's Sustainability and Environmental Program embodies the laboratory's commitment to ...

  7. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sustainability award October 14, 2010 LOS ALAMOS, New Mexico, October 14, 2010-Los Alamos National Laboratory recently received an Environmental Sustainability (EStar) ...

  8. joiner | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    joiner Ames Laboratory Profile Stacy Joiner Program Manager I Office of Sponsored Research Administration Director's Office 332 TASF Phone Number: 515-294-5932 Email Address:...

  9. zdorkowski | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    zdorkowski Ames Laboratory Profile Richard Zdorkowski Program Manager I Director's Office Office of Sponsored Research Administration 128 Spedding Phone Number: 515-294-5640 Email...

  10. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory has awarded master task order agreements to three small businesses for environmental support services work worth up to 400 million within a five-year period....

  11. Employees | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    due to weather or other circumstances, assistance for working remotely, clubs and sports leagues, and many other topics of interest to the laboratory community. Quick...

  12. tdball | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tdball Ames Laboratory Profile Teresa Ball Custodian I Facilities Services 241C Metals Development Phone Number: 515-294-4360 Email Address: tdball...

  13. anderegg | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    anderegg Ames Laboratory Profile James Anderegg Asst Scientist III Division of Materials Science & Engineering 325 Spedding Phone Number: 515-294-3480 Email Address:...

  14. jacton | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    jacton Ames Laboratory Profile James Acton Grad Asst-RA Division of Materials Science & Engineering 0215 Hach Phone Number: 515-294-4446 Email Address: jacton...

  15. oliver | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    oliver Ames Laboratory Profile James Oliver Associate Simulation, Modeling, & Decision Science 2274 Howe Phone Number: 515-294-2649 Email Address: oliver@iastate.edu...

  16. vanmarel | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    vanmarel Ames Laboratory Profile Ross Vanmarel Facil Mechanic III Facilities Services 158 Metals Development Phone Number: 515-294-1746 Email Address: vanmarel...

  17. covey | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    covey Ames Laboratory Profile Debra Covey Director II Director's Office Office of Sponsored Research Administration 311 TASF Phone Number: 515-294-1048 Email Address: covey...

  18. A spin-filter made of quantum anomalous Hall insulator nanowires

    SciTech Connect (OSTI)

    Wu, Jiansheng

    2014-07-28

    Topological end states (TES) in quantum anomalous Hall insulator nanowires can induce tunneling within the gap. Such TES are spin polarized, thus the induced current is spin polarized as well, which can be used to construct a spin-filter applied in spintronics. An interferometry device is designed to control the polarized current as well. The advantage and finite size effect on this system are discussed.

  19. The Honorable Rudolph Giuliani City Hall New York, New York 10007

    Office of Legacy Management (LM)

    Deparhent of Eneigy Washington, DC 20585 ,, , The Honorable Rudolph Giuliani City Hall New York, New York 10007 Dear Mayor Giuljani: :. / Secretary of Energy Hazel O'Leary has announced- a new approach to opennes ', -the Department of Energy (DOE).and,its communications with the public.- I support of this initiative, we are pleased to forward the enclosed inforo related to the Ledoux and Co. site in your jurisdiction that performed wa for DOE's predecessor agencies. 'information, use, and

  20. February 26, 2014 in 100E Hildebrand Hall | Center for Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SeparationsRelevant to Clean Energy Technologies | Blandine Jerome February 26, 2014 in 100E Hildebrand Hall Previous Next List Dawei Feng (Dept. of Chemistry, Texas A&M University) Alkylamine-Tethered Porous Polymer Networks for CO2 Capture Walter Drisdell (Materials Sciences Division, LBNL) Investigating CO2 Adsorption in an Amine-Appended Metal-Organic Framework using NEXAFS Spectroscopy

  1. Building America Top Innovations Hall of Fame Profile … Ducts in Conditioned Space

    Energy Savers [EERE]

    A duct chase in a dropped hallway ceiling provides an affordable way to put ducts in conditioned space, a technique that saves energy and improves indoor air quality. Moving ductwork into the home's conditioned space can save 8%-15% on homeowner air-conditioning bills. Thousands of homes are now applying this important best practice promoted by Building America research. BUILDING AMERICA TOP INNOVATIONS HALL OF FAME PROFILE INNOVATIONS CATEGORY: 1. Advanced Technologies and Practices 1.1

  2. Building America Top Innovations Hall of Fame Profile … Low-Cost Ventilation in Production Housing

    Energy Savers [EERE]

    simple, cost-effective techniques for providing fresh air throughout the home, including exhaust-only and central fan-integrated supply ventilation. Building America has refined simple whole-house ventilation systems that cost less than $350 to install. BUILDING AMERICA TOP INNOVATIONS HALL OF FAME PROFILE INNOVATIONS CATEGORY: 1. Advanced Technologies and Practices 1.3 Assured Health, Safety, and Durability Low-Cost Ventilation in Production Housing As high-performance homes get more air-tight

  3. Secretary Chu to Tour Sandia National Laboratories and Highlight...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    also host a State of the Union Town Hall with students at the University of New Mexico. ... State of the Union Town Hall at University of New Mexico WHO: Energy Secretary Steven Chu ...

  4. devo | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    devo Ames Laboratory Profile Deborah Schlagel Asst Scientist III Division of Materials Science & Engineering 111 Metals Development Phone Number: 515-294-3924 Email Address: schlagel@iastate.edu Ames Laboratory Research Projects: Novel Materials Preparation & Processing Methodologies Research Interests: Synthesis of single crystals of Huesler alloys, magneto-responsive materials, superconductors, elements and alloys Single crystal characterization and property analysis

  5. riedemann | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    riedemann Ames Laboratory Profile Trevor Riedemann Asst Scientist III Division of Materials Science & Engineering 110 Metals Development Phone Number: 515-294-1366 Email Address: riedemann@ameslab.gov Assistant Scientist III Website(s): Novel Materials Preparation & Processing Methodologies Materials Preparation Center Ames Laboratory Research Projects: Novel Materials Preparation & Processing Methodologies Education: Masters of Science, Metallurgy, Iowa State University, 1996

  6. Hall-effect-controlled gas dynamics in protoplanetary disks. I. Wind solutions at the inner disk

    SciTech Connect (OSTI)

    Bai, Xue-Ning

    2014-08-20

    The gas dynamics of protoplanetary disks (PPDs) is largely controlled by non-ideal magnetohydrodynamic (MHD) effects including Ohmic resistivity, the Hall effect, and ambipolar diffusion. Among these the role of the Hall effect is the least explored and most poorly understood. In this series, we have included, for the first time, all three non-ideal MHD effects in a self-consistent manner to investigate the role of the Hall effect on PPD gas dynamics using local shearing-box simulations. In this first paper, we focus on the inner region of PPDs, where previous studies (Bai and Stone 2013; Bai 2013) excluding the Hall effect have revealed that the inner disk up to ?10 AU is largely laminar, with accretion driven by a magnetocentrifugal wind. We confirm this basic picture and show that the Hall effect modifies the wind solutions depending on the polarity of the large-scale poloidal magnetic field B{sub 0} threading the disk. When B{sub 0}??>0, the horizontal magnetic field is strongly amplified toward the disk interior, leading to a stronger disk wind (by ?50% or less in terms of the wind-driven accretion rate). The enhanced horizontal field also leads to much stronger large-scale Maxwell stress (magnetic braking) that contributes to a considerable fraction of the wind-driven accretion rate. When B{sub 0}??<0, the horizontal magnetic field is reduced, leading to a weaker disk wind (by ? 20%) and negligible magnetic braking. Under fiducial parameters, we find that when B{sub 0}??>0, the laminar region extends farther to ?10-15 AU before the magnetorotational instability sets in, while for B{sub 0}??<0, the laminar region extends only to ?3-5 AU for a typical accretion rate of ?10{sup 8} to10{sup 7} M {sub ?} yr{sup 1}. Scaling relations for the wind properties, especially the wind-driven accretion rate, are provided for aligned and anti-aligned field geometries.

  7. Sandia National Laboratories: Sandia National Laboratories: Missions:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Defense Systems & Assessments: About Us Defense Systems About Defense Systems & Assessments Program Areas Accomplishments Cybersecurity Programs About Defense Systems & Assessments soldier silhouetted by a sunset Defense Systems & Assessments supports guardians of peace and freedom on the battlefield and in the laboratory by applying engineering, science, and technology solutions to deter, detect, defeat, and defend threats to our national security. We analyze and exploit the

  8. Sandia National Laboratories: Sandia National Laboratories: Missions:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Weapons: About About Nuclear Weapons at Sandia Weapons Researcher World-class scientists and engineers come to Sandia to conduct breakthrough research in nuclear weapons. Sandia designs more than 6,300 parts of a modern nuclear weapon's 6,500 components. Our state-of-the-art laboratories facilitate large-scale testing and computer simulation. Sandia's work is of the highest consequence and those doing the work face awesome responsibilities. Unlike other national labs, which focus on

  9. Sandia National Laboratories

    National Nuclear Security Administration (NNSA)

    National Laboratories Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Sand 2011-4582 P. ENERGY U.S. DEPARTMENT OF Albuquerque N e w M e x i c o Sandia Mountains Q Q ApproximatelyQ8,800QacresQQ ofQDOE-ownedQandQQ permittedQland Q Q LocatedQwithinQtheQQ KirtlandQAirQForceQQ

  10. Sandia National Laboratories beginnings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia National Laboratories beginnings focus of Los Alamos' 70th anniversary lecture March 6, 2013 LOS ALAMOS, N.M., March 6, 2013-Sandia National Laboratories historian Rebecca Ullrich discusses Sandia's transition from a Los Alamos division to an independent organization during a talk at 5:30 p.m., March 13 at the Bradbury Science Museum in Los Alamos. The talk is part of the Laboratory's 70th anniversary lecture series. Sandia Labs' origins are in Los Alamos' Z Division, the engineering

  11. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    70th anniversary app for iPhone, iPads June 5, 2013 LOS ALAMOS, N.M., June 4, 2013-Los Alamos National Laboratory has launched its first app for iPhones and iPads as part of the Laboratory's yearlong celebration of 70 years serving the nation. The free application is available from the Apple Store (search for Los Alamos National Lab). The app enables users to learn more about the Laboratory's national security mission, cutting edge research, unique history, top-flight scientists and the many

  12. Sonication standard laboratory module

    DOE Patents [OSTI]

    Beugelsdijk, Tony; Hollen, Robert M.; Erkkila, Tracy H.; Bronisz, Lawrence E.; Roybal, Jeffrey E.; Clark, Michael Leon

    1999-01-01

    A standard laboratory module for automatically producing a solution of cominants from a soil sample. A sonication tip agitates a solution containing the soil sample in a beaker while a stepper motor rotates the sample. An aspirator tube, connected to a vacuum, draws the upper layer of solution from the beaker through a filter and into another beaker. This beaker can thereafter be removed for analysis of the solution. The standard laboratory module encloses an embedded controller providing process control, status feedback information and maintenance procedures for the equipment and operations within the standard laboratory module.

  13. ARGONNE NATIONAL LABORATORY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARGONNE NATIONAL LABORATORY P. 0. Box 5207 Chicago 80, Ill. N U C W SHELL STRUCTURE AND 18-DECAY I. ODD A IVUCLEZ PI, G. Mayer and S . A. Moszkowski Argonne National Laboratory Chicago, I l l i n o i s m-4626 Physics & Mathematics L. W. Nordheim Duke University Durham, North Carolina ( A t present on Ieave a t the Los Alamos S c i e n t i f i c Laboratory, Los Alamos, New Mexfco) 1 1 . EVEN A NUCLEX L. W. Nordheim The study reported i n Part I was started independently by the Chicago and

  14. Brookhaven National Laboratory

    Broader source: Energy.gov [DOE]

    Site OverviewThe Brookhaven National Laboratory (BNL) was established in 1947 by the Atomic Energy Commission (AEC) (predecessor to U.S. Department of Energy [DOE]). Formerly Camp Upton, a U.S....

  15. The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Insider Honors and Awards Gordon receives INCITE grant Ames Laboratory scientist Mark Gordon has been awarded a 2016 INCITE grant from the U.S. Department of Energy's (DOE) Office ...

  16. baik | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    baik Ames Laboratory Profile Kamalakar Baikerikar Assoc Scientist Division of Materials Science & Engineering 221 Metals Development Phone Number: 515-294-7995 Email Address: baik@ameslab.gov

  17. bcarsten | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bcarsten Ames Laboratory Profile Beverly Carstensen Secretary II Division of Materials Science & Engineering 105 Metals Development Phone Number: 515-294-4071 Email Address: bcarsten@ameslab.gov

  18. bwing | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bwing Ames Laboratory Profile William Wing Erd Machinist Sr Division of Materials Science & Engineering Facilities Services 160 Metals Development Phone Number: 515-294-5428 Email Address: bwing

  19. feenstra | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    feenstra Ames Laboratory Profile Adam Feenstra Grad Asst-RA Chemical & Biological Sciences 35B Carver Co-Lab Phone Number: 515-294-2368 Email Address: feenstra

  20. foughtel | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    forrestal

    fors

    foughtel Ames Laboratory Profile Eliscia Fought Student Associate Chemical & Biological Sciences 124 Spedding Phone Number: 515-294-7568 Email Address: foughtel

  1. hansenre | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hansenre Ames Laboratory Profile Rebecca Hansen Grad Asst-RA Chemical & Biological Sciences 0027A Carver Co-Lab Phone Number: 515-294-2368 Email Address: hansenre

  2. kgalayda | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    kgalayda Ames Laboratory Profile Katherine Galayda Grad Asst-RA Chemical & Biological Sciences B5 Spedding Phone Number: 515-294-3887 Email Address: kgalayda@iastate.edu

  3. The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    85th birthday While scientists often talk about their life's work, few lives have been fuller than that of Ames Laboratory's Karl A. Gschneidner, Jr. who was honored for over six...

  4. naa | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    naa Ames Laboratory Profile Nathaniel Anderson Grad Asst-RA Division of Materials Science & Engineering B36 Spedding Phone Number: 515-294-0255 Email Address: naa@iastate.edu...

  5. Idaho National Laboratory

    ScienceCinema (OSTI)

    McCarthy, Kathy

    2013-05-28

    INL is the leading laboratory for nuclear R&D. Nuclear engineer Dr. Kathy McCarthy talks aobut the work there and the long-term benefits it will provide.

  6. Argonne National Laboratory

    Broader source: Energy.gov [DOE]

    HISTORYThe Argonne National Laboratory (ANL) site is approximately 27 miles southwest of downtown Chicago in DuPage County, Illinois.  The 1,500 acre ANL site is completely surrounded by the 2,240...

  7. Research | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    combined with the laboratory's state-of-the-art facilities has produced a wide variety of game-changing discoveries and inventions in fields as diverse as energy storage and...

  8. sandia national laboratory

    National Nuclear Security Administration (NNSA)

    %2A en Sandia National Laboratories http:nnsa.energy.govaboutusourlocationssandia

    Page...

  9. DOE Laboratory Accreditation Program

    Broader source: Energy.gov [DOE]

    Administered by the Office of Worker Safety and Health Policy, the DOE Laboratory Accreditation Program (DOELAP) is responsible for implementing performance standards for DOE contractor external dosimetry and radiobioassay programs through periodic performance testing and on-site program assessments.

  10. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    science. Information about the teacher conference is available from the Laboratory's Scott Robbins of the Education and Postdoc Office at 667-3639 or srobbins@lanl.gov by e-mail...

  11. mduenas | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mduenas Ames Laboratory Profile Maria Duenas fadic Grad Asst-RA Chemical & Biological Sciences 35A Carver Co-Lab Phone Number: 515-294-2368 Email Address: mduenas@iastate.edu

  12. nabrajbhattarai | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nabrajbhattarai Ames Laboratory Profile Nabraj Bhattarai Postdoc Res Associate Division of Materials Science & Engineering 216 Wilhelm Phone Number: 515-294-2162 Email Address: nabrajbhattarai@ameslab.gov

  13. pieper | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pieper Ames Laboratory Profile Elizabeth Pieper Program Coord I Office of Sponsored Research Administration Director's Office 311 TASF Phone Number: 515-294-6486 Email Address: pieper@ameslab.gov

  14. szhou | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    szhou Ames Laboratory Profile Shihuai Zhou Asst Scientist III Division of Materials Science & Engineering 204 Wilhelm Phone Number: 515-294-5489 Email Address: szhou@ameslab.gov

  15. zrein | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    zrein Ames Laboratory Profile Zachary Reinhart Grad Asst-RA Simulation, Modeling, & Decision Science 1620 Howe Phone Number: 515-294-3891 Email Address: zrein@iastate.edu

  16. Lawrence Berkeley National Laboratory

    National Nuclear Security Administration (NNSA)

    7%2A en Solar power purchase for DOE laboratories http:nnsa.energy.govmediaroompressreleasessolarpower

  17. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Veteran-Owned small businesses.Roybal added that purchases by the Laboratory also help stimulate the Northern New Mexico economy by creating or sustaining jobs in small business...

  18. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Los Alamos Students mobile app is free and can be downloaded from iTunes and Google Play (for android platforms). "The Laboratory's new Student App is a great way for...

  19. Los Alamos National Laboratory

    Broader source: Energy.gov [DOE]

    HISTORYLos Alamos National Laboratory (LANL) is located in Los Alamos County in north central New Mexico (NM). LANL, founded in 1943 during World War II as Project Y, served as a secret facility...

  20. Sandia National Laboratories

    Broader source: Energy.gov [DOE]

    The Sandia National Laboratories (SNL) is comprised of 2,820 acres within the boundaries of the 118 square miles Kirtland Air Force Base, and is located 6.5 miles east of downtown Albuquerque, New...

  1. BENSON | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BENSON Ames Laboratory Profile Zackery Benson Lab Assistant-X Division of Materials Science & Engineering A204 Zaffarano Phone Number: 515-294-4446 Email Address: zbenson@ameslab.gov

  2. kcho | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    kcho Ames Laboratory Profile Kyuil Cho Asst Scientist III Division of Materials Science & Engineering A02 Zaffarano Phone Number: 515-294-7249 Email Address: kcho@ameslab.gov...

  3. Tours | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Visitor Information Tours Vacume The Office of Public Affairs provides tours of the Ames Laboratory for a variety of groups, including college students; teachers; and professionals representing diverse occupations and interests. Care is taken to match tours to the expressed interests of the visiting group. Our hope is to help the public become more aware of the Ames Laboratory, create stronger Lab/community relations and encourage interest in science and math. In planning tours, our top

  4. Environmental | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environmental The Environmental Management Program at the Ames Laboratory includes Waste Management, Pollution Prevention, Recycling, Cultural Resources, and the Laboratory's Environmental Management System. Click on a subject to view applicable documents about each category. For more information you can also contact Sarah Morris-Benavides, Environmental Specialist at (515) 294-7923 or at sarahmb@ameslab.gov. Waste Management Pollution Prevention Recycling Cultural Resources Environmental

  5. Safety | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Careers Education Community Diversity Directory Argonne National Laboratory About Safety News Careers Education Community Diversity Directory Energy Environment Security User Facilities Science Work with Argonne Safety Biosafety Safety Safety is integral to Argonne's scientific research and engineering technology mission. As a leading U.S. Department of Energy multi-program research laboratory, our obligation to the American people demands that we conduct our research and operations safely

  6. The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wellness Active for Life Challenge Begins Active for Life is a nationwide wellness program sponsored by the American Cancer Society. This 8-week voluntary program, which kicks off on Monday, April 4, encourages Ames Laboratory employees to begin and/or maintain an active, physically-fit lifestyle. Employees form wellness teams to set individual and team wellness goals. The teams will compete against one another internally within the Ames Laboratory community AND as a whole against other U.S.

  7. jonesll | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    jonesll Ames Laboratory Profile Lawrence Jones Assoc Scientist Division of Materials Science & Engineering Facilities Services 121 Metals Development Phone Number: 515-294-5236 Email Address: jonesll@ameslab.gov Ames Laboratory Research Projects: Novel Materials Preparation & Processing Methodologies Education: M.S. Metallurgical Engineering, Iowa State University, 1985 B.S. Metallurgical Engineering, Iowa State University, 1983 Professional Appointments: Iowa State University; Ames

  8. FY 2006 Laboratory Table

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory Tables Preliminary Department of Energy FY 2006 Congressional Budget Request Office of Management, Budget and Evaluation/CFO February 2005 Laboratory Tables Preliminary Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals,

  9. FY 2008 Laboratory Table

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory Table Preliminary Department of Energy FY 2008 Congressional Budget Request February 2007 Office of Chief Financial Officer Laboratory Table Preliminary Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or other

  10. FY 2010 Laboratory Table

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory Tables Preliminary May 2009 Office of Chief Financial Officer FY 2010 Congressional Budget Request Laboratory Tables Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by

  11. FY 2011 Laboratory Table

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory Tables Department of Energy FY 2011 Congressional Budget Request DOE/CF-0055 March 2010 Office of Chief Financial Officer Laboratory Tables Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments

  12. Safety | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Argonne National Laboratory and the U.S. Department of Energy (DOE) are very concerned about the well-being of all employees. Students at the undergraduate and graduate level as well as postdoctoral appointees form an essential component of the research endeavor at the laboratory. However, research does not stand alone but must be integrated into a program of environment, safety, and security. From time to time, incidents regarding students and postdocs occur across the DOE complex. It is

  13. Sandia National Laboratories:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Prognostics Management System Reduces Offshore Wind O&M Costs | Department of Energy Sandia National Laboratories' Structural Health Monitoring and Prognostics Management System Reduces Offshore Wind O&M Costs Sandia National Laboratories' Structural Health Monitoring and Prognostics Management System Reduces Offshore Wind O&M Costs September 16, 2015 - 11:53am Addthis Offshore wind energy could potentially play a significant role in helping the United States obtain an energy

  14. Sandia National Laboratories:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    21, 2016 Articles 25 years of Laboratory-Directed Research and Development Headlights of a laboratory Sandia total spending, economic impact up in 2015 A driving force Sandia researchers break down lightning strikes into microseconds When lightning strikes Enormous blades for offshore energy A mighty wind CSI: Dognapping program honored for science outreach CSI: Dognapping Program helps new Sandians get started on the right path ANGLEing toward success

  15. Visitors | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Visitors Visitors are welcome at Ames Laboratory. As a U.S. Department of Energy research facility, Ames Laboratory is subject to security conditions established by the Department of Homeland Security. To make sure that you are complying with the current security conditions, please check with the Plant Protection Desk on the ground floor level of the Technical and Administrative Services Facility (TASF) building. Protection personnel can help you locate a specific staff member or direct you to a

  16. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 million to local United Way organizations, other nonprofits November 18, 2010 LOS ALAMOS, New Mexico, November 18, 2010-Los Alamos National Laboratory employees have again demonstrated concern for their communities and those in need by pledging a record $1.5 million to United Way and other eligible nonprofit programs. Los Alamos National Security, LLC, which operates the Laboratory, plans to prorate its $1 million match among the selected nonprofit organizations, bringing the total donation to

  17. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy environmental sustainability award October 14, 2010 LOS ALAMOS, New Mexico, October 14, 2010-Los Alamos National Laboratory recently received an Environmental Sustainability (EStar) award from the Department of Energy for integrating sustainable practices in its design for the Radiological Laboratory/ Utility/Office Building (RLUOB). The RLUOB is part of the Lab's Chemistry and Metallurgy Research Replacement (CMRR) Project. The Lab ultimately expects to achieve Leadership

  18. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    strategy for long-term environmental sustainability March 1, 2013 Blueprint for planning work activities with the environment in mind LOS ALAMOS, N.M., March 1, 2013-The Department of Energy and Los Alamos National Laboratory have developed a long-term strategy for environmental stewardship and sustainability that provides a blueprint for protecting the environment while accomplishing the Laboratory's national security missions. "This plan represents a significant amount of effort on the

  19. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 14, 2013 Value of up to $150 million over five years LOS ALAMOS, N.M., May 14, 2013-Los Alamos National Laboratory has awarded a master task order agreement in which three small businesses will compete for environmental work worth up to $150 million over five years. The businesses each have offices in northern New Mexico. The agreement is for technical services for the Laboratory's Environmental Programs directorate and includes work such as environmental engineering design, regulatory

  20. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2, 2015 Projects save taxpayer dollars, promote environmental stewardship, sustainability LOS ALAMOS, N.M., April 22, 2015-Nearly 400 Los Alamos National Laboratory employees on 32 teams received Pollution Prevention awards during an Earth Day awards ceremony on Wednesday, saving taxpayers $5.6 million while also reusing, recycling, re-tasking and re-routing waste. "The goal of the Laboratory's pollution prevention efforts is to reduce or eliminate waste whenever possible. The awards