Sample records for laboratory engineering change

  1. Naval Civil Engineering Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Naval Civil Engineering Laboratory Personnel from the Power Systems Department have participated in numerous distribution equipment research, development, demonstration, testing,...

  2. Naval Civil Engineering Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn Cyber Security NuclearNewNatural GasNatureNaval

  3. FACULTY OF TECHNOLOGY Heat Engineering Laboratory

    E-Print Network [OSTI]

    Zevenhoven, Ron

    Engineering Laboratory 2 Process Chemistry Centre (PCC) �bo Akademi University, Faculty of Technology, HeatFACULTY OF TECHNOLOGY Heat Engineering Laboratory Combined thermal treatment of CCA-wood waste Engineering Laboratory #12;- ii - Tiivistelmä suomeksi CCA-puujätteen ja kunnallisten jätevesien lietteen

  4. Polymer Reaction Engineering Laboratory Chemical and Biomolecular Engineering

    E-Print Network [OSTI]

    Choi, Kyu Yong

    Transporting chemicals Fume hoods and ventilation Refrigerators Incompatible chemicals The followingPolymer Reaction Engineering Laboratory Chemical and Biomolecular Engineering University are general guidelines for all laboratory workers: Follow all safety instructions carefully. Become

  5. Nuclear Engineering Division Irradiated Materials Laboratory

    E-Print Network [OSTI]

    Kemner, Ken

    Nuclear Engineering Division Irradiated Materials Laboratory The Irradiated Materials Laboratory (IML) in Argonne's Nuclear Engineering Division is used to conduct research on the behavior. #12;C O N TA C T > Dr. Michael C. Billone | 630-252-7146 | billone@anl.gov | Nuclear Engineering

  6. Facilties & Engineering Services | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilties & Engineering Services The Facilities Services Group (FSG) is responsible for the facilities and infrastructure of the Ames Laboratory. The group includes custodial...

  7. Sandia National Laboratories: Materials Science and Engineering...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CapabilitiesCapabilitiesMaterials Science and Engineering Support for Microsystems-Enabled Photovoltaic Grand Challenge Laboratory-Directed Research and Development Project...

  8. Argonne National Laboratory's Omnivorous Engine

    ScienceCinema (OSTI)

    Thomas Wallner

    2010-01-08T23:59:59.000Z

    Why can't an engine run on any fuel? Argonne is designing an omnivorous engine that can run on any blend of gasoline, ethanol or butanol?and calibrate itself to burn that fuel most efficiently.

  9. Argonne National Laboratory's Omnivorous Engine

    SciTech Connect (OSTI)

    Thomas Wallner

    2009-10-16T23:59:59.000Z

    Why can't an engine run on any fuel? Argonne is designing an omnivorous engine that can run on any blend of gasoline, ethanol or butanol—and calibrate itself to burn that fuel most efficiently.

  10. EIS-0290: Idaho National Engineering and Environmental Laboratory...

    Broader source: Energy.gov (indexed) [DOE]

    90: Idaho National Engineering and Environmental Laboratory Advanced Mixed Waste Treatment Project (AMWTP) EIS-0290: Idaho National Engineering and Environmental Laboratory...

  11. A Sustainable Focus for Laboratory Design, Engineering, and Operation...

    Broader source: Energy.gov (indexed) [DOE]

    A Sustainable Focus for Laboratory Design, Engineering, and Operation A Sustainable Focus for Laboratory Design, Engineering, and Operation Presentation-given at the Spring 2013...

  12. CRAD, Engineering - Oak Ridge National Laboratory High Flux Isotope...

    Broader source: Energy.gov (indexed) [DOE]

    Engineering - Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR CRAD, Engineering - Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR...

  13. CRAD, Engineering - Los Alamos National Laboratory Waste Characterizat...

    Broader source: Energy.gov (indexed) [DOE]

    Laboratory Waste Characterization, Reduction, and Repackaging Facility CRAD, Engineering - Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging...

  14. Department of Chemical Engineering Thermal and Flow Engineering Laboratory

    E-Print Network [OSTI]

    Zevenhoven, Ron

    Aug.2013 Department of Chemical Engineering Thermal and Flow Engineering Laboratory Ron Zevenhoven.1 Fluid statics 6.2 Fluid dynamics: viscosity, laminar / turbulent flow, boundary layer 6.3 Fluid dynamics: internal flows / tube flows 6.4 Fluid dynamics: pressure drop & energy dissipation in tube systems 6.5 Flow

  15. Department of Chemical Engineering Thermal and Flow Engineering Laboratory

    E-Print Network [OSTI]

    Zevenhoven, Ron

    August 12 Department of Chemical Engineering Thermal and Flow Engineering Laboratory Ron Zevenhoven.1 Fluid statics 6.2 Fluid dynamics: viscosity, laminar / turbulent flow, boundary layer 6.3 Fluid dynamics: internal flows / tube flows 6.4 Fluid dynamics: pressure drop & energy dissipation in tube systems 6.5 Flow

  16. Sandia National Laboratories: Systems Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErikGroundbreakingStandards SolarEndedfundamentalEngineering Sandia Student Wins

  17. Sandia National Laboratories: Systems Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErikGroundbreakingStandards SolarEndedfundamentalEngineering Sandia Student

  18. Sandia National Laboratories: Systems Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErikGroundbreakingStandards SolarEndedfundamentalEngineering Sandia

  19. Sandia National Laboratories: Systems Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErikGroundbreakingStandards SolarEndedfundamentalEngineering SandiaParticipated

  20. Sandia National Laboratories: Systems Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErikGroundbreakingStandards SolarEndedfundamentalEngineering

  1. ORE 601 Ocean and Resources Engineering Laboratory Designation

    E-Print Network [OSTI]

    Frandsen, Jannette B.

    ORE 601 Ocean and Resources Engineering Laboratory Designation Core course Catalog Description This course aims to provide ocean and resources engineering students with the fundamentals necessary Program Outcome 2: Basic science, mathematics, & engineering Program Outcome 3: Ocean engineering core

  2. FACULTY OF TECHNOLOGY Heat Engineering Laboratory

    E-Print Network [OSTI]

    Zevenhoven, Ron

    negative) net energy input, provided that the process is properly optimised, and utilises the benefits.abo.fi/tkf/vt), Turku, Finland 2 Helsinki University of Technology, Laboratory of Energy Engineering and Environmental,2,3] a similar organisation and lay-out style was adopted. The production of this report was financially

  3. ASSOCIATED LABORATORY PLASMA PHYSICS AND ENGINEERING

    E-Print Network [OSTI]

    Lisboa, Universidade TĂ©cnica de

    and approved by the "Consultative Committee for the Specific Research and Training Programme on Nuclear Energy in the frame of the so-called Broader Approach to Fusion Energy; · Collaboration on Nuclear FusionASSOCIATED LABORATORY ON PLASMA PHYSICS AND ENGINEERING Centro de Fusão Nuclear Centro de Física

  4. CRAD, Engineering - Oak Ridge National Laboratory High Flux Isotope...

    Broader source: Energy.gov (indexed) [DOE]

    Oak Ridge National Laboratory High Flux Isotope Reactor CRAD, Engineering - Oak Ridge National Laboratory High Flux Isotope Reactor February 2007 A section of Appendix C to DOE G...

  5. Idaho National Engineering Laboratory site development plan

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    This plan briefly describes the 20-year outlook for the Idaho National Engineering Laboratory (INEL). Missions, workloads, worker populations, facilities, land, and other resources necessary to fulfill the 20-year site development vision for the INEL are addressed. In addition, the plan examines factors that could enhance or deter new or expanded missions at the INEL. And finally, the plan discusses specific site development issues facing the INEL, possible solutions, resources required to resolve these issues, and the anticipated impacts if these issues remain unresolved.

  6. Visit to the Deep Underground Science and Engineering Laboratory

    ScienceCinema (OSTI)

    None

    2010-01-08T23:59:59.000Z

    U.S. Department of Energy scientists and administrators join members of the National Science Foundation and South Dakotas Sanford Underground Laboratory for the deepest journey yet to the proposed site of the Deep Underground Science and Engineering Laboratory (DUSEL).

  7. Stirling engine research at national and university laboratories in Japan

    SciTech Connect (OSTI)

    Hane, G.J.; Hutchinson, R.A.

    1987-09-01T23:59:59.000Z

    Pacific Northwest Laboratory (PNL) reviewed research projects that are related to the development of Stirling engines and that are under way at Japanese national laboratories and universities. The research and development focused on component rather than on whole engine development. PNL obtained the information from a literature review and interviews conducted at the laboratories and universities. The universities have less equipment available and operate with smaller staffs for research than do the laboratories. In particular, the Mechanical Engineering Laboratory and the Aerospace Laboratory conduct high-quality component and fundamental work. Despite having less equipment, some of the researchers at the universities conduct high-quality fundamental research. As is typical in Japan, several of the university professors are very active in consulting and advisory capacities to companies engaged in Stirling engine development, and also with government and association advisory and technical committees. Contacts with these professors and selective examination of their research are good ways to keep abreast of Japanese Stirling developments.

  8. Climate Change Science Institute at Oak Ridge National Laboratory

    E-Print Network [OSTI]

    Climate Change Science Institute at Oak Ridge National Laboratory A multidisciplinary research fields. The Climate Change Science Institute at Oak Ridge National Laboratory routinely partners simulations to improve regional modeling of climate extremes - Partners from Oak Ridge, Lawrence Berkeley

  9. Update on Engine Combustion Research at Sandia National Laboratories

    SciTech Connect (OSTI)

    Jay Keller; Gurpreet Singh

    2001-05-14T23:59:59.000Z

    The objectives of this paper are to describe the research efforts in diesel engine combustion at Sandia National Laboratories' Combustion Research Facility and to provide recent experimental results. We have four diesel engine experiments supported by the Department of Energy, Office of Heavy Vehicle Technologies: a one-cylinder version of a Cummins heavy-duty engine, a diesel simulation facility, a one-cylinder Caterpillar engine to evaluate combustion of alternative fuels, and a homogeneous-charge, compression ignition (HCCI) engine. Recent experimental results of diesel combustion research will be discussed and a description will be given of our HCCI experimental program and of our HCCI modeling work.

  10. Sandia National Laboratories: molecularly engineered ion exchanger

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbine bladelifetime ismobile test system Solarmolecularly engineered ion

  11. Sandia National Laboratories: Research: Research Foundations: Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch WelcomeSciencePrograms PeopleScience Engineering Science

  12. Engineer, Sandia National Laboratories | National Nuclear Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing Zirconia NanoparticlesSmart GrocerDepartment ofEngineer Honored by Alma

  13. Engineer, Sandia National Laboratories | National Nuclear Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing Zirconia NanoparticlesSmart GrocerDepartment ofEngineer Honored by

  14. Engine Research Facility | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4: Networking for37Energy StorageEngine Research Facility Argonne's

  15. Sandia National Laboratories: PolyFlow Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik SpoerkeSolar Regional Test Center inInsights forAwardsPolyFlow Engineering

  16. Sandia National Laboratories: 2014 Outstanding Engineer Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 ResourceAwardsSafeguards andSan$0.06 per09Engineer Award Sandian

  17. Sandia National Laboratories: Dish Engine Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0EnergySandia InvolvesDOE-BERPressure, NotDish Engine Systems CSP

  18. Sandia National Laboratories: Engineering Excellence Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0EnergySandiaConsortiumActMicrogridCyanobacteriaEngineering

  19. Waste Technology Engineering Laboratory (324 building)

    SciTech Connect (OSTI)

    Kammenzind, D.E.

    1997-05-27T23:59:59.000Z

    The 324 Facility Standards/Requirements Identification Document (S/RID) is comprised of twenty functional areas. Two of the twenty functional areas (Decontamination and Decommissioning and Environmental Restoration) were determined as nonapplicable functional areas and one functional area (Research and Development and Experimental Activities) was determined applicable, however, requirements are found in other functional areas and will not be duplicated. Each functional area follows as a separate chapter, either containing the S/RID or a justification for nonapplicability. The twenty functional areas listed below follow as chapters: 1. Management Systems; 2. Quality Assurance; 3. Configuration Management; 4. Training and Qualification; 5. Emergency Management; 6. Safeguards and Security; 7. Engineering Program; 8. Construction; 9. Operations; 10. Maintenance; 11. Radiation Protection; 12. Fire Protection; 13. Packaging and Transportation; 14. Environmental Restoration; 15. Decontamination and Decommissioning; 16. Waste Management; 17. Research and Development and Experimental Activities; 18. Nuclear Safety; 19. Occupational Safety and Health; 20. Environmental Protection.

  20. CRAD, Engineering- Oak Ridge National Laboratory High Flux Isotope Reactor

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Engineering Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  1. Successful neural network projects at the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Cordes, G.A.

    1991-01-01T23:59:59.000Z

    This paper presents recent and current projects at the Idaho National Engineering Laboratory (INEL) that research and apply neural network technology. The projects are summarized in the paper and their direct application to space reactor power and propulsion systems activities is discussed. 9 refs., 10 figs., 3 tabs.

  2. WInd engineering and Renewable Energy laboratory Gnie Mcanique

    E-Print Network [OSTI]

    Lausanne, Ecole Polytechnique Fédérale de

    WInd engineering and Renewable Energy laboratory Section de Génie Mécanique - Master Project - Wind tunnel investigations on wind farms Juliette Coëffé (juliette.coeffe@epfl.ch) ABSTRACT Wind energy efficient and optimized wind energy systems are needed. To this end, this master project, carried out

  3. Laboratory to change vehicle traffic-screening regimen at vehicle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Changes to vehicle traffic-screening Laboratory to change vehicle traffic-screening regimen at vehicle inspection station Lanes two through five will be open 24 hours a day and...

  4. The engineering institute of Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Farrar, Charles R [Los Alamos National Laboratory; Park, Gyuhae [Los Alamos National Laboratory; Cornwell, Phillip J [Los Alamos National Laboratory; Todd, Michael D [UCSD

    2008-01-01T23:59:59.000Z

    Los Alamos National Laboratory (LANL) and the University of California, San Diego (UCSD) have taken the unprecedented step of creating a collaborative, multi-disciplinary graduate education program and associated research agenda called the Engineering Institute. The mission of the Engineering Institute is to develop a comprehensive approach for conducting LANL mission-driven, multidisciplinary engineering research and to improve recruiting, revitalization, and retention of the current and future staff necessary to support the LANL' s national security responsibilities. The components of the Engineering Institute are (1) a joint LANL/UCSD degree program, (2) joint LANL/UCSD research projects, (3) the Los Alamos Dynamic Summer School, (4) an annual workshop, and (5) industry short courses. This program is a possible model for future industry/government interactions with university partners.

  5. Idaho National Engineering Laboratory installation roadmap assumptions document. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1993-05-01T23:59:59.000Z

    This document is a composite of roadmap assumptions developed for the Idaho National Engineering Laboratory (INEL) by the US Department of Energy Idaho Field Office and subcontractor personnel as a key element in the implementation of the Roadmap Methodology for the INEL Site. The development and identification of these assumptions in an important factor in planning basis development and establishes the planning baseline for all subsequent roadmap analysis at the INEL.

  6. Argonne National Laboratory Chemical Engineering Division Water-gas shift catalysis

    E-Print Network [OSTI]

    Argonne National Laboratory Chemical Engineering Division Water-gas shift catalysis Sara Yu Choung Engineering Division Argonne National Laboratory Hydrogen, Fuel Cells, and Infrastructure Technologies 2003 Merit Review Berkeley, CA May 19-22, 2003 #12;Argonne National Laboratory Chemical Engineering Division

  7. 1Mechanical, Aerospace and Nuclear Engineering nacThe Gaerttner Laboratory RPI LINAC Facility

    E-Print Network [OSTI]

    Danon, Yaron

    1Mechanical, Aerospace and Nuclear Engineering nacThe Gaerttner Laboratory RPI LINAC Facility and Nuclear Engineering nacThe Gaerttner Laboratory Capabilities of the RPI LINAC · Pulsed Electron Beam ­ 7ns;4Mechanical, Aerospace and Nuclear Engineering nacThe Gaerttner Laboratory Capabilities of the RPI LINAC

  8. The Idaho National Engineering and Environmental Laboratory Source Water Assessment

    SciTech Connect (OSTI)

    Sehlke, G.

    2003-03-17T23:59:59.000Z

    The Idaho National Engineering and Environmental Laboratory (INEEL) covers approximately 890 square miles and includes 12 public water systems that must be evaluated for Source water protection purposes under the Safe Drinking Water Act. Because of its size and location, six watersheds and five aquifers could potentially affect the INEEL's drinking water sources. Based on a preliminary evaluation of the available information, it was determined that the Big Lost River, Birch Creek, and Little Lost River Watersheds and the eastern Snake River Plain Aquifer needed to be assessed. These watersheds were delineated using the United States Geologic Survey's Hydrological Unit scheme. Well capture zones were originally estimated using the RESSQC module of the Environmental Protection Agency's Well Head Protection Area model, and the initial modeling assumptions and results were checked by running several scenarios using Modflow modeling. After a technical review, the resulting capture zones were expanded to account for the uncertainties associated with changing groundwater flow directions, a this vadose zone, and other data uncertainties. Finally, all well capture zones at a given facility were merged to a single wellhead protection area at each facility. A contaminant source inventory was conducted, and the results were integrated with the well capture zones, watershed and aquifer information, and facility information using geographic information system technology to complete the INEEL's Source Water Assessment. Of the INEEL's 12 public water systems, three systems rated as low susceptibility (EBR-1, Main Gate, and Gun Range), and the remainder rated as moderate susceptibility. No INEEL public water system rated as high susceptibility. We are using this information to develop a source water management plan from which we will subsequently implement an INEEL-wide source water management program. The results are a very robust set of wellhead protection areas that will protect the INEEL's public water systems yet not too conservative to inhibit the INEEL from carrying out its missions.

  9. A graphical electromagnetic simulation laboratory for power systems engineering programs

    SciTech Connect (OSTI)

    Gole, A.M. [Univ. of Manitoba, Winnipeg, Manitoba (Canada)] [Univ. of Manitoba, Winnipeg, Manitoba (Canada); Nayak, O.B. [Manitoba HVDC Research Centre, Winnipeg, Manitoba (Canada)] [Manitoba HVDC Research Centre, Winnipeg, Manitoba (Canada); Sidhu, T.S.; Sachdev, M.S. [Univ. of Saskatchewan, Saskatoon, Saskatchewan (Canada)] [Univ. of Saskatchewan, Saskatoon, Saskatchewan (Canada)

    1996-05-01T23:59:59.000Z

    The recent availability of Electromagnetic Transient Programs with graphical front ends now makes it possible to put together models for circuits and systems in a manner similar to the connection of components in a laboratory. In the past, the non-graphical EMT Programs required considerable expertise in their use and thus distracted the students into the details or simulation. The introduction of a graphical simulation based laboratory into Undergraduate and Graduate Engineering Programs is presented, based on the PSCAD/EMTDC program. The philosophy behind the design of suitable example cases is presented within the framework of an Undergraduate Power Electronics Course, an HVdc Transmission Course and a course on Power System Protection.

  10. Idaho National Engineering Laboratory Waste Management Operations Roadmap Document

    SciTech Connect (OSTI)

    Bullock, M.

    1992-04-01T23:59:59.000Z

    At the direction of the Department of Energy-Headquarters (DOE-HQ), the DOE Idaho Field Office (DOE-ID) is developing roadmaps for Environmental Restoration and Waste Management (ER&WM) activities at Idaho National Engineering Laboratory (INEL). DOE-ID has convened a select group of contractor personnel from EG&G Idaho, Inc. to assist DOE-ID personnel with the roadmapping project. This document is a report on the initial stages of the first phase of the INEL`s roadmapping efforts.

  11. Idaho National Engineering Laboratory, Test Area North, Hangar 629 -- Photographs, written historical and descriptive data

    SciTech Connect (OSTI)

    NONE

    1994-12-31T23:59:59.000Z

    The report describes the history of the Idaho National Engineering Laboratory`s Hangar 629. The hangar was built to test the possibility of linking jet engine technology with nuclear power. The history of the project is described along with the development and eventual abandonment of the Flight Engine Test hangar. The report contains historical photographs and architectural drawings.

  12. Studies of Photovoltaic Roofing Systems at Wind Engineering and Fluids Laboratory at Colorado State University

    E-Print Network [OSTI]

    Studies of Photovoltaic Roofing Systems at Wind Engineering and Fluids Laboratory at Colorado State for Testing of Models of Photovoltaic Roofing Systems, at Wind Engineering and Fluids Laboratory, Colorado issues considered in this process. Over several decades, researchers affiliated with Wind Engineering

  13. 1Mechanical, Aerospace and Nuclear Engineering nacThe Gaerttner Laboratory Nuclear Data Research at RPI

    E-Print Network [OSTI]

    Danon, Yaron

    1Mechanical, Aerospace and Nuclear Engineering nacThe Gaerttner Laboratory Nuclear Data Research, Aerospace and Nuclear Engineering nacThe Gaerttner Laboratory Collaboration · RPI ­ Faculty: · Dr. Y. Danon.P Barry, Dr. R.C Block, B. Epping #12;3Mechanical, Aerospace and Nuclear Engineering nacThe Gaerttner

  14. Shih-Chieh Kao Oak Ridge National Laboratory, Computer Sciences and Engineering Division

    E-Print Network [OSTI]

    Shih-Chieh Kao Scientist Oak Ridge National Laboratory, Computer Sciences and Engineering Division Engineering, BS Research and Professional Experience 2010-Present Research Scientist. Oak Ridge National Laboratory, TN. 2009-2010 Post-doctoral Research Associate. Oak Ridge National Laboratory, TN. 2008-2009 Post

  15. EIS-0203: Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs

    Broader source: Energy.gov [DOE]

    Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs

  16. Tiger Team assessment of the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Not Available

    1991-08-01T23:59:59.000Z

    This report documents the Tiger Team Assessment of the Idaho National Engineering Laboratory (INEL) located in Idaho Falls, Idaho. INEL is a multiprogram, laboratory site of the US Department of Energy (DOE). Overall site management is provided by the DOE Field Office, Idaho; however, the DOE Field Office, Chicago has responsibility for the Argonne National Laboratory-West facilities and operations through the Argonne Area Office. In addition, the Idaho Branch Office of the Pittsburgh Naval Reactors Office has responsibility for the Naval Reactor Facility (NRF) at the INEL. The assessment included all DOE elements having ongoing program activities at the site except for the NRF. In addition, the Safety and Health Subteam did not review the Westinghouse Idaho Nuclear Company, Inc. facilities and operations. The Tiger Team Assessment was conducted from June 17 to August 2, 1991, under the auspices of the Office of Special Projects, Office of the Assistant Secretary for Environment, Safety and Health, Headquarters, DOE. The assessment was comprehensive, encompassing environmental, safety, and health (ES H) disciplines; management; and contractor and DOE self-assessments. Compliance with applicable federal, state, and local regulations; applicable DOE Orders; best management practices; and internal INEL site requirements was assessed. In addition, an evaluation of the adequacy and effectiveness of the DOE and the site contractors management of ES H/quality assurance programs was conducted.

  17. Tiger Team assessment of the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Not Available

    1991-08-01T23:59:59.000Z

    The Management Subteam conducted a management assessment of Environment, Safety, and Health (ES H) programs and their implementation of Idaho National Engineering Laboratory (INEL). The objectives of the assessment were to: (1) evaluate the effectiveness of existing management functions and processes in terms of ensuring environmental compliance, and the health and safety of workers and the general public; and (2) identify probable root causes for ES H findings and concerns. Organizations reviewed were DOE-Headquarters: DOE Field Offices, Chicago (CH) and Idaho (ID); Argonne Area Offices, East (AAO-E) and West (AAO-W); Radiological and Environmental Sciences Laboratory (RESL); Argonne National Laboratory (ANL); EG G Idaho, Inc. (EG G); Westinghouse Idaho Nuclear Company, Inc. (WINCO); Rockwell-INEL; MK-Ferguson of Idaho Company (MK-FIC); and Protection Technology of Idaho, Inc. (PTI). The scope of the assessment covered the following ES H management issues: policies and procedures; roles, responsibilities, and authorities; management commitment; communication; staff development, training, and certification; recruitment; compliance management; conduct of operations; emergency planning and preparedness; quality assurance; self assessment; oversight activities; and cost plus award fee processes.

  18. Tiger Team assessment of the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Not Available

    1991-08-01T23:59:59.000Z

    The purpose of the Safety and Health (S H) Subteam assessment was to determine the effectiveness of representative safety and health programs at the Idaho National Engineering Laboratory (INEL) site. Four Technical Safety Appraisal (TSA) Teams were assembled for this purpose by the US Department of Energy (DOE), Deputy Assistant Secretary for Safety and Quality Assurance, Office of Safety Appraisals (OSA). Team No. 1 reviewed EG G Idaho, Inc. (EG G Idaho) and the Department of Energy Field Office, Idaho (ID) Fire Department. Team No. 2 reviewed Argonne National Laboratory-West (ANL-W). Team No. 3 reviewed selected contractors at the INEL; specifically, Morrison Knudsen-Ferguson of Idaho Company (MK-FIC), Protection Technology of Idaho, Inc. (PTI), Radiological and Environmental Sciences Laboratory (RESL), and Rockwell-INEL. Team No. 4 provided an Occupational Safety and Health Act (OSHA)-type compliance sitewide assessment of INEL. The S H Subteam assessment was performed concurrently with assessments conducted by Environmental and Management Subteams. Performance was appraised in the following technical areas: Organization and Administration, Quality Verification, Operations, Maintenance, Training and Certification, Auxiliary Systems, Emergency Preparedness, Technical Support, Packaging and Transportation, Nuclear Criticality Safety, Security/Safety Interface, Experimental Activities, Site/Facility Safety Review, Radiological Protection, Personnel Protection, Worker Safety and Health (OSHA) Compliance, Fire Protection, Aviation Safety, Medical Services, and Firearms Safety.

  19. Chemical & Engineering News Serving the chemical, life sciences and laboratory worlds

    E-Print Network [OSTI]

    Chemical & Engineering News Serving the chemical, life sciences and laboratory worlds Awards Home of Catalysis Science & Technology (Probationary). Chemical & Engineering Or Petroleum Chemistry February 1, 2010 Volume 88, Number 5 p. 42 Sponsored by the George A. Olah Endowment

  20. PLASMA PROCESSING LABORATORY, DEPT. OF CHEMICAL AND BIOMOLECULAR ENGINEERING DIAGNOSTICS OF HIGHDIAGNOSTICS OF HIGH

    E-Print Network [OSTI]

    Economou, Demetre J.

    PLASMA PROCESSING LABORATORY, DEPT. OF CHEMICAL AND BIOMOLECULAR ENGINEERING DIAGNOSTICS for advanced diagnostics techniques Some conventional techniques for measuring basic plasma parameters. Vincent Donnellyand Prof. Vincent Donnelly #12;PLASMA PROCESSING LABORATORY, DEPT. OF CHEMICAL

  1. The Quality of Management and of the Science and Engineering at the NNSA National Security Laboratories

    Broader source: Energy.gov [DOE]

    The Quality of Management and of the Science and Engineering at the NNSA National Security Laboratories was presented to CRENEL 9/15/2014.

  2. Idaho National Engineering Laboratory installation roadmap document. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1993-05-30T23:59:59.000Z

    The roadmapping process was initiated by the US Department of Energy`s office of Environmental Restoration and Waste Management (EM) to improve its Five-Year Plan and budget allocation process. Roadmap documents will provide the technical baseline for this planning process and help EM develop more effective strategies and program plans for achieving its long-term goals. This document is a composite of roadmap assumptions and issues developed for the Idaho National Engineering Laboratory (INEL) by US Department of Energy Idaho Field Office and subcontractor personnel. The installation roadmap discusses activities, issues, and installation commitments that affect waste management and environmental restoration activities at the INEL. The High-Level Waste, Land Disposal Restriction, and Environmental Restoration Roadmaps are also included.

  3. Epidemiologic surveillance. Annual report for Idaho National Engineering Laboratory 1994

    SciTech Connect (OSTI)

    NONE

    1994-12-31T23:59:59.000Z

    Epidemiologic surveillance at DOE facilities consists of regular and systematic collection, analysis, and interpretation of data on absences due to illness and injury in the work force. Its purpose is to provide an early warning system for health problems occurring among employees at participating sites. In this annual report, the 1994 morbidity data for the Idaho National Engineering Laboratory are summarized. These analyses focus on absences of 5 or more consecutive workdays occurring among workers aged 17-85 years. They are arranged in five sets of tables that present: (1) the distribution of the labor force by occupational category and pay status; (2) the absences per person, diagnoses per absence, and diagnosis rates for the whole work force; (3) diagnosis rates by type of disease or injury; (4) diagnosis rates by occupational category; and (5) relative risks for specific types of disease or injury by occupational category.

  4. Global Climate Change Impacts:Global Climate Change Impacts: Implications for Climate EngineeringImplications for Climate Engineering

    E-Print Network [OSTI]

    Polz, Martin

    Global Climate Change Impacts:Global Climate Change Impacts: Implications for Climate Engineering Center Global Climate Change Impacts in the United States October 29, 2009 #12;2Global Climate Change Impacts in the United States 2 Response Strategies to ClimateResponse Strategies to Climate ChangeChange

  5. Overview of groundwater and surface water standards pertinent to the Idaho National Engineering Laboratory. Revision 3

    SciTech Connect (OSTI)

    Lundahl, A.L.; Williams, S.; Grizzle, B.J.

    1995-09-01T23:59:59.000Z

    This document presents an overview of groundwater- and surface water-related laws, regulations, agreements, guidance documents, Executive Orders, and DOE orders pertinent to the Idaho National Engineering Laboratory. This document is a summary and is intended to help readers understand which regulatory requirements may apply to their particular circumstances. However, the document is not intended to be used in lieu of applicable regulations. Unless otherwise noted, the information in this report reflects a summary and evaluation completed July 1, 1995. This document is considered a Living Document, and updates on changing laws and regulations will be provided.

  6. UNSUPERVISED CONDITION CHANGE DETECTION IN LARGE DIESEL ENGINES

    E-Print Network [OSTI]

    diesel engines and stationary power plants. The possibility of early detecting small defects priorUNSUPERVISED CONDITION CHANGE DETECTION IN LARGE DIESEL ENGINES Niels Henrik Pontoppidan and Jan detection in large diesel engines from acoustical emis- sion sensor signal and compared to more classical

  7. Engineering Manhattan style: Sandia Laboratories as an example of postwar engineering

    SciTech Connect (OSTI)

    NONE

    1996-09-01T23:59:59.000Z

    A great deal has been written about the history of science in America since World War II. Much of that work has explored the government`s research and development establishment, focusing on the scientific community immediately after the war. It is generally argued that the apparent triumphs of the huge and expensive wartime research and development projects gave rise to a belief that scientific resources should be nurtured and kept on hand - ready to provide service in an emergency. The Cold War drive for more and better weapons further fed this belief, leading to a massive system of national laboratories, military laboratories, and defense industries. The science of this complex is built on extensive financial support, the central strategy of which is that by steadily, and occasionally even lavishly funding large research programs, you will have a constant stream of scientific ideas that can be applied to national security purposes. What is true of science, is also true, in slightly modified form, of postwar engineering. The story I want to tell you today is, I think, an example of the way Cold War engineering r&d for national security worked. This report describes aspects of the Sandia National Laboratories.

  8. ME 374D Automotive Engineering laboratory ABET EC2000 syllabus

    E-Print Network [OSTI]

    Ben-Yakar, Adela

    and admission to an appropriate major sequence in engineering. Textbook(s): Internal Combustion Engines and emissions. Students use commercial engine-modeling software to explore effects of valve timing and intake tuning and conduct experiments with vehicle emissions, ignition timing, engine mechanisms, engine

  9. Global Analysis of Snow Cover Changes Using Google Earth Engine

    E-Print Network [OSTI]

    Coll, Jim

    2014-11-19T23:59:59.000Z

    Global Analysis of Snow Cover Changes Using MODIS and Google Earth Engine By: Jim Coll Importance of This Project • To establish whether or not Google Earth Engine is a viable platform for this type of “big data” analysis • Depending... is Google Earth Engine? Google Earth Engine is a massive data warehouse (2+ petabytes) of remote sensing imagery including all past Landsat and MODIS data. The platform supports JavaScript and Python analysis of these data, and performs the calculations...

  10. Faculty of Technology Heat Engineering Laboratory course 424508 E Ron Zevenhoven

    E-Print Network [OSTI]

    Zevenhoven, Ron

    Faculty of Technology Heat Engineering Laboratory course 424508 E Ron Zevenhoven TRP exam 9 jan;Faculty of Technology Heat Engineering Laboratory course 424508 E Ron Zevenhoven TRP exam 9 jan 2008 2/(m.K), determine numerically, using the grid shown in the Figure: a. the temperatures at the points 1, 2, 3, 4, 5

  11. Report on Audit of Architect and Engineering Costs at the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    NONE

    1996-03-22T23:59:59.000Z

    In September 1990 the Office of Inspector General (OIG) issued the Department-wide Audit of Architect and Engineering Design Costs (DOE/IG-0289) which concluded that the Department`s A/E costs averaged more than twice that of private industry. The primary cause of the higher costs was the lack of Departmental A/E cost standards that would provide measurement criteria for controlling costs. Consistent with our prior Department-wide audit, the purpose of this audit was to determine whether A/E services performed at the Laboratory were economical. Specifically, we determined whether the costs for A/E services at the Laboratory were comparable to the cost standards for A/E services in industry and the State; and, whether A/E costs were reasonable.

  12. PIA - Human Resources - Personal Information Change Request ...

    Office of Environmental Management (EM)

    PIA - Human Resources - Personal Information Change Request - Idaho National Engineering Laboratory PIA - Human Resources - Personal Information Change Request - Idaho National...

  13. Climate Change Vulnerability Assessment for Idaho National Laboratory

    SciTech Connect (OSTI)

    Christopher P. Ischay; Ernest L. Fossum; Polly C. Buotte; Jeffrey A. Hicke; Alexander Peterson

    2014-10-01T23:59:59.000Z

    The University of Idaho (UI) was asked to participate in the development of a climate change vulnerability assessment for Idaho National Laboratory (INL). This report describes the outcome of that assessment. The climate change happening now, due in large part to human activities, is expected to continue in the future. UI and INL used a common framework for assessing vulnerability that considers exposure (future climate change), sensitivity (system or component responses to climate), impact (exposure combined with sensitivity), and adaptive capacity (capability of INL to modify operations to minimize climate change impacts) to assess vulnerability. Analyses of climate change (exposure) revealed that warming that is ongoing at INL will continue in the coming decades, with increased warming in later decades and under scenarios of greater greenhouse gas emissions. Projections of precipitation are more uncertain, with multi model means exhibiting somewhat wetter conditions and more wet days per year. Additional impacts relevant to INL include estimates of more burned area and increased evaporation and transpiration, leading to reduced soil moisture and plant growth.

  14. EA-0845: Expansion of the Idaho National Engineering Laboratory Research Center, Idaho Falls, Idaho

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to expand and upgrade facilities at the U.S. Department of Energy's Idaho National Engineering Laboratory Research Center, located in Idaho...

  15. EA-0907: Idaho National Engineering Laboratory Sewer System Upgrade Project, Idaho Falls, Idaho

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to upgrade the Sewer System at the U.S. Department of Energy's Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho.  The...

  16. EA-0843: Idaho National Engineering Laboratory Low-Level and Mixed Waste Processing, Idaho Falls, Idaho

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to (1) reduce the volume of the U.S. Department of Energy's Idaho National Engineering Laboratory's (INEL) generated low-level waste (LLW)...

  17. 20.109 Laboratory Fundamentals in Biological Engineering, Spring 2006

    E-Print Network [OSTI]

    Engelward, Bevin

    This course introduces experimental biochemical and molecular techniques from a quantitative engineering perspective. Rigorous quantitative data collection, statistical analysis, and conceptual understanding of instrumentation ...

  18. Chemical & Engineering News Serving the chemical, life sciences and laboratory worlds

    E-Print Network [OSTI]

    Zare, Richard N.

    fail. Fostering Creativity | Cover Story | Chemical & Engineering News httpChemical & Engineering News Serving the chemical, life sciences and laboratory worlds Cover Story Home » March 22, 2010 Issue » Cover Story » Bubbling With Enthusiasm » Fostering Creativity March 22

  19. ENGINEERING

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ENGINEERING the Future of ENERGY Regional University Alliance National Energy Technology Laboratory Office of Research and Development The Future of Energy The time to redraw...

  20. Research Profile In the Optical Materials Engineering Laboratory, we investi-

    E-Print Network [OSTI]

    Sandoghdar, Vahid

    be tuned.This has advantages for solar cells, where the nanocrystal size can be selected to optimize can be engineered to create new and use- ful optical properties for energy applications. Specifically-Dot Solar Cells Semiconductor nanocrystals, or quantum dots, exhibit opti- cal properties that depend

  1. Application of system simulation for engineering the technical computing environment of the Lawrence Livermore National Laboratorie

    SciTech Connect (OSTI)

    Boyd, V; Edmunds, T; Minuzzo, K; Powell, E; Roche, L

    1998-09-15T23:59:59.000Z

    This report summarizes an investigation performed by Lawrence Livermore National Laboratory? s (LLNL) Scientific Computing & Communications Department (SCCD) and the Garland Location of Raytheon Systems Company (RSC) from April through August.1998. The study assessed the applicability and benefits of utilizing System Simulation in architecting and deploying technical computing assets at LLNL, particularly in support of the ASCI program and associated scientific computing needs. The recommendations and other reported findings reflect the consensus of the investigation team. The investigation showed that there are potential benefits to performing component level simulation within SCCD in support of the ASCI program. To illustrate this, a modeling exercise was conducted by the study team that generated results consistent with measured operational performance. This activity demonstrated that a relatively modest effort could improve the toolset for making architectural trades and improving levels of understanding for managing operational practices. This capability to evaluate architectural trades was demonstrated by evaluating some of the productivity impacts of changing one of the design parameters of an existing file transfer system. The use of system simulation should be tailored to the local context of resource requirements/limitations, technology plans/processes/issues, design and deployment schedule, and organizational factors. In taking these matters into account, we recommend that simulation modeling be employed within SCCD on a limited basis for targeted engineering studies, and that an overall performance engineering program be established to better equip the Systems Engineering organization to direct future architectural decisions and operational practices. The development of an end-to-end modeling capability and enterprise-level modeling system within SCCD is not warranted in view of the associated development requirements and difficulty in determining firm operational performance requirements in advance of the critical architectural decisions. These recommendations also account for key differences between the programmatic and institutional environments at LLNL and RSC.

  2. Idaho National Engineering and Environmental Laboratory Awarded VPP Gold Star

    Broader source: Energy.gov [DOE]

    Our journey to safety excellence began some six (6) years ago. The task seemed ominous with 6000 plus employees ranging from administrative assistants and craftsman to research scientists and engineers. Another challenge was the geographic dispersion of work areas being as much as 50 miles apart. A core group of employees caught the vision and knew that it could be done, and it is that perseverance that has lead the INEEL to the DOE-VPP Gold Star.

  3. Comparison of Recuperator Alloy Degradation in Laboratory and Engine Testing

    SciTech Connect (OSTI)

    Pint, Bruce A [ORNL; More, Karren Leslie [ORNL; Trejo, Rosa M [ORNL; Lara-Curzio, Edgar [ORNL

    2006-01-01T23:59:59.000Z

    In order to increase the efficiency of advanced microturbines, durable alloy foils are needed for their recuperators to operate at 650-700 C. Prior work has demonstrated that water vapor in the exhaust gas causes more rapid consumption of Cr from austenitic alloys, leading to a reduction in lifetime for the thin-walled components in this application. New commercial alloy foils are being tested in both laboratory tests in humid air and in the exhaust gas of a modified 60 kW microturbine. Initial results are presented for a commercial batch of 80 {micro}m alloy 120 foil. The Cr consumption rates in laboratory testing were similar to those observed in previous testing. The initial results from the microturbine indicate a faster Cr consumption rate compared to the laboratory test, but longer term results are needed to quantify the difference. These results will help to verify a Cr consumption model for predicting lifetimes in this environment based on classical gas transport theory.

  4. Idaho National Engineering and Environmental Laboratory Environmental Technologies Proof-of-Concepts. Final report FY-96

    SciTech Connect (OSTI)

    Barrie, S.L.; Carpenter, G.S.; Crockett, A.B. [and others

    1997-04-01T23:59:59.000Z

    The Idaho National Engineering and Environmental Laboratory Environmental Technologies Proof-of-Concept Project was initiated for the expedited development of new or conceptual technologies in support of groundwater fate, transport, and remediation; buried waste characterization, retrieval, and treatment; waste minimization/pollution prevention; and spent fuel handling and storage. In Fiscal Year 1996, The Idaho National Engineering and Environmental Laboratory proposed 40 development projects and the Department of Energy funded 15. The projects proved the concepts of the various technologies, and all the technologies contribute to successful environmental management.

  5. Working with SRNL - Our Facilities - Engineering Development Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun1 Table 1.14Working With UsEngineering

  6. Introduce a Girl to Engineering Day | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfrared LandResponses to EngineeredA GENERAL2RadiativeIntriguingDiffusion

  7. Sandia National Laboratories: 2014 Outstanding Young Engineer Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 ResourceAwardsSafeguards andSan$0.06 per09Engineer Award

  8. Sandia National Laboratories: American Council of Engineering Companies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0Energy Advanced Nuclear EnergyCouncil of Engineering Companies

  9. A study of the requirements for the electrical engineering laboratories at Lamar State College of Technology

    E-Print Network [OSTI]

    Holtkamp, William Edward

    2012-06-07T23:59:59.000Z

    entering into a new four year technical school whioh has only the engineering build1ng available. An eleotrical engineering currioulum must be decided upon and the equipment selected to oorrelate the laboratory oourses with the theory. Wherever.... courses is as / follows& Electric and Magnetio Circuits, (3-3) Credit 4 D1rect ourrent electric and magnetic cirouits under steady state and transient ocnditions. 8. Direot Current Machinery, (3-3) Credit 4 A study of the theory and application...

  10. Proceedings of the National Renewable Energy Laboratory Wind Energy Systems Engineering Workshop

    SciTech Connect (OSTI)

    Dykes, K.

    2014-12-01T23:59:59.000Z

    The second National Renewable Energy Laboratory (NREL) Wind Energy Systems Engineering Workshop was held in Broomfield, Colorado, from January 29 to February 1, 2013. The event included a day-and-a-half workshop exploring a wide variety of topics related to system modeling and design of wind turbines and plants. Following the workshop, 2 days of tutorials were held at NREL, showcasing software developed at Sandia National Laboratories, the National Aeronautics and Space Administration's Glenn Laboratories, and NREL. This document provides a brief summary of the various workshop activities and includes a review of the content and evaluation results from attendees.

  11. The Jack Baskin School of Engineering In a rapidly changing world, the purpose of engineering remains constant: to use science

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    robotic systems, and medical robotic systems. software & services engineering We address a broad spectrumThe Jack Baskin School of Engineering In a rapidly changing world, the purpose of engineering. The world's challenges in energy, health, security and the environment require engineers who can apply

  12. Review of Heavy-Duty Engine Combustion Research at Sandia National Laboratories

    SciTech Connect (OSTI)

    Robert W. Carling; Gurpreet Singh

    2000-06-19T23:59:59.000Z

    The objectives of this paper are to describe the research efforts in diesel engine combustion at Sandia National Laboratories' Combustion Research Facility and to provide recent experimental results. We have four diesel engine experiments supported by the Department of Energy, Office of Heavy Vehicle Technologies: a one-cylinder version of a Cummins heavy-duty engine, a diesel simulation facility, a one-cylinder Caterpillar engine to evaluate combustion of alternative fuels, and a homogeneous-charge, compression-ignition (HCCI) engine facility is under development. Recent experimental results to be discussed are: the effects of injection timing and diluent addition on late-combustion soot burnout, diesel-spray ignition and premixed-burn behavior, a comparison of the combustion characteristics of M85 (a mixture of 85% methanol and 15% gasoline) and DF2 (No.2 diesel reference fuel), and a description of our HCCI experimental program and modeling work.

  13. Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory - Calendar Year 1999 Emission Report

    SciTech Connect (OSTI)

    Zohner, S.K.

    2000-05-30T23:59:59.000Z

    This report presents the 1999 calendar year update of the Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL Air Emission Inventory documents sources and emissions of nonradionuclide pollutants from operations at the INEEL. The report describes the emission inventory process and all of the sources at the INEEL, and provides nonradionuclide emissions estimates for stationary sources.

  14. Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory - Calendar Year 1998 Emissions Report

    SciTech Connect (OSTI)

    S. K. Zohner

    1999-10-01T23:59:59.000Z

    This report presents the 1998 calendar year update of the Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL Air Emission Inventory documents sources and emissions of nonradionuclide pollutants from operations at the INEEL. The report describes the emission inventory process and all of the sources at the INEEL, and provides nonradiological emissions estimates for stationary sources.

  15. Idaho National Engineering Laboratory Nonradiological Waste Management Information for 1992 and record to date

    SciTech Connect (OSTI)

    Randall, V.C.; Sims, A.M.

    1993-08-01T23:59:59.000Z

    This document provides detailed data and graphics on airborne and liquid effluent releases, fuel oil and coal consumption, water usage, and hazardous and mixed waste generated for calendar year 1992. This report summarizes industrial waste data records compiled since 1971 for the Idaho National Engineering Laboratory (INEL). The data presented are from the INEL Nonradiological Waste Management Information System.

  16. 2002 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    Meachum, T.R.; Lewis, M.G.

    2003-02-20T23:59:59.000Z

    The 2002 Wastewater Land Application site Performance Reports for the Idaho National Engineering and Environmental Laboratory describe site conditions for the facilities with State of Idaho Wastewater Land Application Permits. Permit-required monitoring data are summarized, and permit exceedences or environmental impacts relating to the operation of the facilities during the 2002 permit year are discussed.

  17. 2003 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    Teresa R. Meachum

    2004-02-01T23:59:59.000Z

    The 2003 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory describe the conditions for the facilities with State of Idaho Wastewater Land Application Permits. Permit-required monitoring data are summarized, and permit exceedences or environmental impacts relating to the operations of the facilities during the 2003 permit year are discussed.

  18. CRAD, Engineering- Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Engineering Program portion of an Operational Readiness Review of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  19. Idaho National Engineering Laboratory radioecology and ecology programs. 1983 progress report

    SciTech Connect (OSTI)

    Markham, O. D. [ed.

    1983-06-01T23:59:59.000Z

    Progress is reported in research on: the baseline ecology of the Idaho National Engineering Laboratory (INEL), the effects of disturbance on animal and plant communities, and the behavior of radionuclides in the environment surrounding radioactive waste sites. Separate abstracts have been prepared for individual reports. (ACR)

  20. CRAD, Engineering- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Engineering Program portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility.

  1. CSE293 Computer Science & Engineering Design Laboratory PDA and/or Cell Phone Projects

    E-Print Network [OSTI]

    Demurjian, Steven A.

    CSE293 Computer Science & Engineering Design Laboratory PDA and/or Cell Phone Projects Two of the rapidly emerging technologies with programmatic interfaces are PDAs (e.g., Palm pilots) and cell phones of features and capabilities has dramatically increased their functionality over the past 5 years. Cell phone

  2. Cloud Computing and Distributed Systems Laboratory DEPT. OF COMPUTER SCIENCE AND SOFTWARE ENGINEERING

    E-Print Network [OSTI]

    Melbourne, University of

    Cloud Computing and Distributed Systems Laboratory DEPT. OF COMPUTER SCIENCE AND SOFTWARE ENGINEERING THE UNIVERSITY OF MELBOURNE, AUSTRALIA The Cloud Computing and Distributed Systems (CLOUDS in 2008 by the CLOUDS lab at the University of Melbourne, facilitates the realization of the above vision

  3. Air emission inventory for the Idaho National Engineering Laboratory: 1994 emissions report

    SciTech Connect (OSTI)

    NONE

    1995-07-01T23:59:59.000Z

    This report Presents the 1994 update of the Air Emission inventory for the Idaho National Engineering Laboratory (INEL). The INEL Air Emission Inventory documents sources and emissions of non-radionuclide pollutants from operations at the INEL. The report describes the emission inventory process and all of the sources at the INEL, and provides non-radionuclide emissions estimates for stationary sources.

  4. OMWeb Virtual Web-based Remote Laboratory for Modelica in Engineering Courses

    E-Print Network [OSTI]

    Zhao, Yuxiao

    OMWeb ­ Virtual Web-based Remote Laboratory for Modelica in Engineering Courses Mohsen Torabzadeh the individual learning. OMWeb is part of the open source platform Open- Modelica. It can be applied to several be illustrated by dynamic simulations. Keywords: OMWeb, OpenModelica, Virtual, Web- based 1 Introduction

  5. Tim Menzies Artificial Intelligence Laboratory, School of Computer Science and Engineering,

    E-Print Network [OSTI]

    Menzies, Tim

    Menzies Artificial Intelligence Laboratory, School of Computer Science and Engineering, University of New. A sample of these results are presented here. For a devotee of the OO approach such as ourselves errors, faster delivery, and easier maintenance? We reject answers to these questions based on 'intuition

  6. Idaho National Engineering Laboratory Nonradiological Waste Management Information for 1993 and record to date

    SciTech Connect (OSTI)

    Sims, A.M.; Taylor, K.A.

    1994-08-01T23:59:59.000Z

    This document provides detailed data and graphics on airborne and liquid effluent releases, fuel oil and coal consumption, water usage, and hazardous and mixed waste generated for calendar year 1993. This report summarizes industrial waste data records compiled since 1971 for the Idaho National Engineering Laboratory (INEL). The data presented are from the INEL Nonradiological Waste Management Information System.

  7. ThermalEngineeringLaboratory,VanderbiltUniversity Monte Carlo Study of Thermal Transport of Direction

    E-Print Network [OSTI]

    Walker, D. Greg

    refrigeration and energy saving buildings 2/12 #12;ThermalEngineeringLaboratory,VanderbiltUniversity Analog into n-type semiconductor, this creates the space charge region and built-in potential (voltage (Temperature Distribution) V Space Charge Region P N Iq, T, V 3/12 #12;Thermal

  8. ThermalEngineeringLaboratory,VanderbiltUniversity Molecular Dynamics Simulation of Thin Films with

    E-Print Network [OSTI]

    Walker, D. Greg

    refrigeration and energy saving buildings 2/9 #12;ThermalEngineeringLaboratory,VanderbiltUniversity Analog to pn-type semiconductor, this creates the space charge region and built-in potential (voltage) · A forward bias decreases) V Space Charge Region P N Iq, T, V 3/9 #12;Thermal

  9. The Laboratory Environment of the URI Integrated Computer Engineering Design (ICED) Curriculum

    E-Print Network [OSTI]

    Uht, Augustus K.

    The Laboratory Environment of the URI Integrated Computer Engineering Design (ICED) Curriculum continuity. URI's new ICED undergraduate cur­ riculum addresses these issues through a comprehensive multi environment of the ICED curriculum. The pedagogical use of industrial CAD logic design and synthesis tools

  10. CSE293 Computer Science & Engineering Design Laboratory Marklin Computer Controllable Model Trains Project

    E-Print Network [OSTI]

    Demurjian, Steven A.

    CSE293 Computer Science & Engineering Design Laboratory Marklin Computer Controllable Model Trains" of the system. The real time control is for, of all things, model railroading trains. If you had them as a kid trains, where there is digital control for every train (each train has an onboard computer), for switches

  11. ThermalEngineeringLaboratory,VanderbiltUniversity Convection Heat Transfer of Nanofluids in Commercial

    E-Print Network [OSTI]

    Walker, D. Greg

    EngineeringLaboratory,VanderbiltUniversity Experimental Setup Straight Tube Setup Constant Temperature Bath Parastaltic Pump Nanofluid Reservoir Heated.91 od di Commercial System Setup Heater Insulation Water block 4/10 #12;Thermal gain across the heated tube for the DI-water and the 0.5% nanofluid · Greater temperature gain in the 1

  12. THE IMPACT OF THERMAL ENGINEERING RESEARCH ON GLOBAL CLIMATE CHANGE

    SciTech Connect (OSTI)

    Phelan, Patrick [Arizona State University; Abdelaziz, Omar [ORNL; Otanicar, Todd [University of Tulsa; Phelan, Bernadette [Phelan Research Solutions, Inc.; Prasher, Ravi [Arizona State University; Taylor, Robert [University of New South Wales, Sydney, Australia; Tyagi, Himanshu [Indian Institute of Technology Ropar, India

    2014-01-01T23:59:59.000Z

    Global climate change is recognized by many people around the world as being one of the most pressing issues facing our society today. The thermal engineering research community clearly plays an important role in addressing this critical issue, but what kind of thermal engineering research is, or will be, most impactful? In other words, in what directions should thermal engineering research be targeted in order to derive the greatest benefit with respect to global climate change? To answer this question we consider the potential reduction in greenhouse gas (GHG) emissions, coupled with potential economic impacts, resulting from thermal engineering research. Here a new model framework is introduced that allows a technological, sector-by-sector analysis of GHG emissions avoidance. For each sector, we consider the maximum reduction in CO2 emissions due to such research, and the cost effectiveness of the new efficient technologies. The results are normalized on a country-by-country basis, where we consider the USA, the European Union, China, India, and Australia as representative countries or regions. Among energy supply-side technologies, improvements in coal-burning power generation are seen as having the most beneficial CO2 and economic impacts. The one demand-side technology considered, residential space cooling, offers positive but limited impacts. The proposed framework can be extended to include additional technologies and impacts, such as water consumption.

  13. Engineering Change Towards a sustainable future in the developing world The Royal Academy of Engineering 73

    E-Print Network [OSTI]

    Cambridge, University of

    the goals of sustainable development. The human species is living an unsustainable existence. The scientificEngineering Change Towards a sustainable future in the developing world The Royal Academy to grow from 6 billion today to 9 billion by 2050, and living standards are predicted to increase

  14. Strontium distribution coefficients of surficial sediment samples from the Idaho National Engineering Laboratory, Idaho

    SciTech Connect (OSTI)

    Liszewski, M.J.; Miller, K.E. [Geological Survey, Idaho Falls, ID (United States); Rosentreter, J.J. [Idaho State Univ., Idaho Falls, ID (United States)

    1997-05-01T23:59:59.000Z

    Strontium distribution coefficients (K{sub d}`s) were measured for 20 surficial sediment samples collected from selected sites at the Idaho national Engineering Laboratory (INEL). The measurements were made to help assess the variability of strontium K{sub d}`s found at the INEL as part of an ongoing investigation of strontium chemical transport properties of surficial and interbedded sediments at the INEL. The investigation is being conducted by the US Geological Survey and Idaho State University in cooperation with the US Department of Energy. Batch experimental techniques wee used to determine K{sub d}`s of surficial sediments using a synthesized aqueous solution representative of wastewater in waste disposal ponds at the INEL. Strontium K{sub d}`s of the 20 surficial sediments ranged from 36 {+-} 1 to 275 {+-} 6 milliliters per gram. These results indicate significant variability in the strontium sorptive capacities of surficial sediments at the INEL. Some of this variability can be attributed to physical and chemical properties of the sediment itself; however, the remainder of the variability may be due to compositional changes in the equilibrated solutions after being mixed with the sediment.

  15. Policy Flash 2013-21 Change to Procurement Evaluation & Re-Engineering...

    Broader source: Energy.gov (indexed) [DOE]

    1 Change to Procurement Evaluation & Re-Engineering Team (PERT) Review Cycle Policy Flash 2013-21 Change to Procurement Evaluation & Re-Engineering Team (PERT) Review Cycle Policy...

  16. Mechanical Energy and Power Systems Laboratory Mechanical Energy and Power Systems Laboratory Proceedings of the ASME 2009 International Mechanical Engineering Conference and

    E-Print Network [OSTI]

    Van de Ven, James D.

    Mechanical Energy and Power Systems Laboratory Mechanical Energy and Power Systems Laboratory Proceedings of the ASME 2009 International Mechanical Engineering Conference and Exposition ASME/IMECE 2009 Copyright c 2009 by ASME Dr. James D. Van de Ven #12;seal, and several of it's important variables.C(3

  17. College of Engineering CE Civil Engineering

    E-Print Network [OSTI]

    MacAdam, Keith

    College of Engineering CE Civil Engineering KEY: # = new course * = course changed = course.Lecture,twohours;laboratory,fourhoursperweek.Prereqorcoreq:MA113orconsentofinstructor. CE 120 INTRODUCTION TO CIVIL ENGINEERING. (1) An introduction to the civil engineering profession and the use of computer hardware and software in CE systems analysis and design

  18. 2001 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    Meachum, T.R.; Lewis, M.G.

    2002-02-15T23:59:59.000Z

    The 2001 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory describe site conditions for the facilities with State of Idaho Wastewater Land Application Permits. Permit-required monitoring data are summarized, and any permit exceedences or environmental impacts relating to the operation of any of the facilities during the 2001 permit year are discussed. Additionally, any special studies performed at the facilities, which related to the operation of the facility or application of the wastewater, are discussed.

  19. 2001 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    Meachum, Teresa Ray; Lewis, Michael George

    2002-02-01T23:59:59.000Z

    The 2001 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory describe site conditions for the facilities with State of Idaho Wastewater Land Application Permits. Permit-required monitoring data are summarized, and any permit exceedences or environmental impacts relating to the operation of any of the facilities during the 2001 permit year are discussed. Additionally, any special studies performed at the facilities, which related to the operation of the facility or application of the wastewater, are discussed.

  20. Environmental resource document for the Idaho National Engineering Laboratory. Volume 2

    SciTech Connect (OSTI)

    Irving, J.S.

    1993-07-01T23:59:59.000Z

    This document contains information related to the environmental characterization of the Idaho National Engineering Laboratory (INEL). The INEL is a major US Department of Energy facility in southeastern Idaho dedicated to nuclear research, waste management, environmental restoration, and other activities related to the development of technology. Environmental information covered in this document includes land, air, water, and ecological resources; socioeconomic characteristics and land use; and cultural, aesthetic, and scenic resources.

  1. Determination of transport parameters from coincident chloride and tritium plumes at the Idaho National Engineering Laboratory

    E-Print Network [OSTI]

    Fryar, Alan Ernest

    1986-01-01T23:59:59.000Z

    -radioactive waste, but rad1onuclides are often toxic at far lower concentrations than are hazardous non-radi oacti ve speci es (Freeze and Cherry, 1979). Most radioactive waste, in terms of activity, is generated at vari ous stages of what Freeze and Cherry...DETERMINATION OF TRANSPORT PARAMETERS FROM COINCIDENT CHLORIDE AND TRITIUM PLUMES AT THE IDAHO NATIONAL ENGINEERING LABORATORY A Thesis by ALAN ERNEST FRYAR Submitted to the Graduate College of Texas A&M University in partial fulfillment...

  2. Environmental resource document for the Idaho National Engineering Laboratory. Volume 1

    SciTech Connect (OSTI)

    Irving, J.S.

    1993-07-01T23:59:59.000Z

    This document contains information related to the environmental characterization of the Idaho National Engineering Laboratory (INEL). The INEL is a major US Department of Energy facility in southeastern Idaho dedicated to nuclear research, waste management, environmental restoration, and other activities related to the development of technology. Environmental information covered in this document includes land, air, water, and ecological resources; socioeconomic characteristics and land use; and cultural, aesthetic, and scenic resources.

  3. Air emissions inventory for the Idaho National Engineering Laboratory -- 1995 emissions report

    SciTech Connect (OSTI)

    NONE

    1996-06-01T23:59:59.000Z

    This report presents the 1995 update of the Air Emission Inventory for the Idaho National Engineering Laboratory (INEL). The INEL Air Emission Inventory documents sources and emissions of non-radionuclide pollutants from operations at the INEL. The report describes the emission inventory process and all of the sources at the INEL, and provides non-radionuclide emissions estimates for stationary sources. The air contaminants reported include nitrogen oxides, sulfur oxides, carbon monoxide, volatile organic compounds, particulates, and hazardous air pollutants (HAPs).

  4. Air Emission Inventory for the Idaho National Engineering Laboratory, 1993 emissions report

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    This report presents the 1993 update of the Air Emission Inventory for the Idaho National Engineering Laboratory (INEL). The purpose of the Air Emission Inventory is to commence the preparation of the permit to operate application for the INEL, as required by the recently promulgated Title V regulations of the Clean Air Act. The report describes the emission inventory process and all of the sources at the INEL and provides emissions estimates for both mobile and stationary sources.

  5. Idaho National Engineering and Environmental Laboratory Site Report on the Production and Use of Recycled Uranium

    SciTech Connect (OSTI)

    L. C. Lewis; D. C. Barg; C. L. Bendixsen; J. P. Henscheid; D. R. Wenzel; B. L. Denning

    2000-09-01T23:59:59.000Z

    Recent allegations regarding radiation exposure to radionuclides present in recycled uranium sent to the gaseous diffusion plants prompted the Department of Energy to undertake a system-wide study of recycled uranium. Of particular interest, were the flowpaths from site to site operations and facilities in which exposure to plutonium, neptunium and technetium could occur, and to the workers that could receive a significant radiation dose from handling recycled uranium. The Idaho National Engineering and Environmental Laboratory site report is primarily concerned with two locations. Recycled uranium was produced at the Idaho Chemical Processing Plant where highly enriched uranium was recovered from spent fuel. The other facility is the Specific Manufacturing Facility (SMC) where recycled, depleted uranium is manufactured into shapes for use by their customer. The SMC is a manufacturing facility that uses depleted uranium metal as a raw material that is then rolled and cut into shapes. There are no chemical processes that might concentrate any of the radioactive contaminant species. Recyclable depleted uranium from the SMC facility is sent to a private metallurgical facility for recasting. Analyses on the recast billets indicate that there is no change in the concentrations of transuranics as a result of the recasting process. The Idaho Chemical Processing Plant was built to recover high-enriched uranium from spent nuclear fuel from test reactors. The facility processed diverse types of fuel which required uniquely different fuel dissolution processes. The dissolved fuel was passed through three cycles of solvent extraction which resulted in a concentrated uranyl nitrate product. For the first half of the operating period, the uranium was shipped as the concentrated solution. For the second half of the operating period the uranium solution was thermally converted to granular, uranium trioxide solids. The dose reconstruction project has evaluated work exposure and exposure to the public as the result of normal operations and accidents that occurred at the INEEL. As a result of these studies, the maximum effective dose equivalent from site activities did not exceed seventeen percent of the natural background in Eastern Idaho. There was no year in which the radiation dose to the public exceeded the applicable limits for that year. Worker exposure to recycled uranium was minimized by engineering features that reduced the possibility of direct exposure.

  6. Engineering for a ChangingWorld A Roadmap to the Future of

    E-Print Network [OSTI]

    commodities, discarding them when their skills become obsolete or replaceable by cheaper engineering services from abroad. There are concerns that the in- creasing trends of outsourcing engineering servicesEngineering for a ChangingWorld A Roadmap to the Future of Engineering Practice, Research

  7. * These Electives may change frequently throughout the year. MECHANICAL ENGINEERING DEPARTMENT ELECTIVES*

    E-Print Network [OSTI]

    California at Santa Barbara, University of

    * These Electives may change frequently throughout the year. MECHANICAL ENGINEERING DEPARTMENT in Engineering Staff ME 125BE Building Energy Systems Eisenhower ME 125CH LabView and Mechatronics Hare ME 125CM 101 Ethics in Engineering Walling ENGR 103 (4) Advanced Engineering Writing Holms MATRL 100A Structure

  8. * These Electives may change frequently throughout the year. MECHANICAL ENGINEERING DEPARTMENT ELECTIVES*

    E-Print Network [OSTI]

    California at Santa Barbara, University of

    * These Electives may change frequently throughout the year. MECHANICAL ENGINEERING DEPARTMENT Chemistry Staff ENGR 101 Ethics in Engineering Staff ENV S 105 (4) Solar and Renewable Energy Staff MATRL 101 Ethics in Engineering Walling ENGR 103 (4) Advanced Engineering Writing Holms MATRL 100A Structure

  9. Hyun-shik Chang | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2MLLCBasics Hydropower Basics ContentHydropower,Chang

  10. Electronics and Electrical Engineering Laboratory technical publications announcements covering laboratory programs, January to March 1992, with 1992/1993 EEEL events calendar

    SciTech Connect (OSTI)

    Gonzalez, J.A.

    1992-10-01T23:59:59.000Z

    This is the thirty-second issue of a quarterly publication providing information on the technical work of the National Institute of Standards and Technology Electronics and Electrical Engineering Laboratory (EEEL). This issue of the EEEL Technical Publication Announcements covers the first quarter of calendar year 1992. This issue contains citations and abstracts for Laboratory publications published in the quarter. Major subject headings include the following: Fundamental Electrical Measurements; Semiconductor Microelectronics; Signal Acquisition, Processing, and Transmission; Electrical Systems; Electromagnetic Interference.

  11. Development of a Laboratory Kit for Robotics Engineering Education Gregory S. Fischer, William R. Michalson, Taskin Padir, Gary Pollice

    E-Print Network [OSTI]

    Camesano, Terri

    industrial automation robot, the Unimate. With the advances in enabling technologies (electronics, hardware engineering disciplines together to design and construct robots and robotic systems for diverse applicationsDevelopment of a Laboratory Kit for Robotics Engineering Education Gregory S. Fischer, William R

  12. High Level Waste Tank Closure Project at the Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    Wessman, D. L.; Quigley, K. D.

    2002-02-27T23:59:59.000Z

    The Department of Energy, Idaho Operations Office (DOE-ID) is making preparations to close two underground high-level waste (HLW) storage tanks at the Idaho National Engineering and Environmental Laboratory (INEEL) to meet Resource Conservation and Recovery Act (RCRA) regulations and Department of Energy orders. Closure of these two tanks is scheduled for 2004 as the first phase in closure of the eleven 300,000 gallon tanks currently in service at the Idaho Nuclear Technology and Engineering Center (INTEC). The INTEC Tank Farm Facility (TFF) Closure sequence consists of multiple steps to be accomplished through the existing tank riser access points. Currently, the tank risers contain steam and process waste lines associated with the steam jets, corrosion coupons, and liquid level indicators. As necessary, this equipment will be removed from the risers to allow adequate space for closure equipment and activities.

  13. Idaho National Engineering and Environmental Laboratory Wildland Fire Management Environmental Assessment

    SciTech Connect (OSTI)

    Irving, John S

    2003-04-01T23:59:59.000Z

    DOE prepared an environmental assessment (EA)for wildland fire management activities on the Idaho National Engineering and Environmental Laboratory (INEEL) (DOE/EA-1372). The EA was developed to evaluate wildland fire management options for pre-fire, fire suppression, and post fire activities. Those activities have an important role in minimizing the conversion of the native sagebrush steppe ecosystem found on the INEEL to non-native weeds. Four alternative management approaches were analyzed: Alternative 1 - maximum fire protection; Alternative 2 - balanced fire protection; Alternative 2 - balanced fire protection; Alternative 3 - protect infrastructure and personnel; and Alternative 4 - no action/traditional fire protection.

  14. Idaho National Engineering and Environmental Laboratory Wildland Fire Management Environmental Assessment - April 2003

    SciTech Connect (OSTI)

    Irving, J.S.

    2003-04-30T23:59:59.000Z

    DOE prepared an environmental assessment (EA)for wildland fire management activities on the Idaho National Engineering and Environmental Laboratory (INEEL) (DOE/EA-1372). The EA was developed to evaluate wildland fire management options for pre-fire, fire suppression, and post fire activities. Those activities have an important role in minimizing the conversion of the native sagebrush steppe ecosystem found on the INEEL to non-native weeds. Four alternative management approaches were analyzed: Alternative 1 - maximum fire protection; Alternative 2 - balanced fire protection; Alternative 2 - balanced fire protection; Alternative 3 - protect infrastructure and personnel; and Alternative 4 - no action/traditional fire protection.

  15. Long-term land use future scenarios for the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    In order to facilitate decision regarding environmental restoration activities at the Idaho National Engineering Laboratory (INEL), the United States Department of Energy, Idaho Operations Office (DOE-ID) conducted analyses to project reasonable future land use scenarios at the INEL for the next 100 years. The methodology for generating these scenarios included: review of existing DOE plans, policy statements, and mission statements pertaining to the INEL; review of surrounding land use characteristics and county developments policies; solicitation of input from local, county, state and federal planners, policy specialists, environmental professionals, and elected officials; and review of environmental and development constraints at the INEL site that could influence future land use.

  16. 1995 annual epidemiologic surveillance report for Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    NONE

    1995-12-31T23:59:59.000Z

    The US Department of Energy's (DOE) conduct of epidemiologic surveillance provides an early warning system for health problems among workers. This program monitors illnesses and health conditions that result in an absence of five or more consecutive workdays, occupational injuries and illnesses, and disabilities and deaths among current workers. This report summarizes epidemiologic surveillance data collected from the Idaho National Engineering and Environmental Laboratory (INEEL) from January 1, 1995 through December 31, 1995. The data were collected by a coordinator at INEEL and submitted to the Epidemiologic Surveillance Data Center, located at Oak Ridge Institute for Science and Education, where quality control procedures and data analyses were carried out.

  17. Educating Next Generation Nuclear Criticality Safety Engineers at the Idaho National Laboratory

    SciTech Connect (OSTI)

    J. D. Bess; J. B. Briggs; A. S. Garcia

    2011-09-01T23:59:59.000Z

    One of the challenges in educating our next generation of nuclear safety engineers is the limitation of opportunities to receive significant experience or hands-on training prior to graduation. Such training is generally restricted to on-the-job-training before this new engineering workforce can adequately provide assessment of nuclear systems and establish safety guidelines. Participation in the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPhEP) can provide students and young professionals the opportunity to gain experience and enhance critical engineering skills. The ICSBEP and IRPhEP publish annual handbooks that contain evaluations of experiments along with summarized experimental data and peer-reviewed benchmark specifications to support the validation of neutronics codes, nuclear cross-section data, and the validation of reactor designs. Participation in the benchmark process not only benefits those who use these Handbooks within the international community, but provides the individual with opportunities for professional development, networking with an international community of experts, and valuable experience to be used in future employment. Traditionally students have participated in benchmarking activities via internships at national laboratories, universities, or companies involved with the ICSBEP and IRPhEP programs. Additional programs have been developed to facilitate the nuclear education of students while participating in the benchmark projects. These programs include coordination with the Center for Space Nuclear Research (CSNR) Next Degree Program, the Collaboration with the Department of Energy Idaho Operations Office to train nuclear and criticality safety engineers, and student evaluations as the basis for their Master's thesis in nuclear engineering.

  18. Research on Ocean Resources, Marine Geo-Engineering and Climate Change -New Regulations: Implications for Ocean

    E-Print Network [OSTI]

    Frandsen, Jannette B.

    Research on Ocean Resources, Marine Geo-Engineering and Climate Change - New Regulations: Implications for Ocean Engineers Dr. Philomène Verlaan Visiting Colleague, Department of Oceanography & Senior Framework for Scientific Research Involving Ocean Fertilization", a definition of marine geo-engineering

  19. Changing the Way Engineers Think |GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the way engineers think about designing and testing parts. New technologies, such as additive manufacturing, where metal parts are built up from powder fused together bit by...

  20. Accident Investigation at the Idaho National Laboratory Engineering Demonstration Facility, February 2013

    Broader source: Energy.gov [DOE]

    On Monday, February 12, 2013, a principal investigator at the Idaho National Laboratory (INL) Engineering Demonstration Facility (IEDF) was testing the system configuration of experimental process involving liquid sodium carbonate. An unanticipated event occurred that resulted in the ejection of the 900° C liquid sodium carbonate from the system. The ejected liquid came into contact with the principal investigator and caused multiple second and third degree burn injuries to approximately 10 percent of his body. The Office of Health, Safety and Security (HSS) Site Lead for the Idaho Site shadowed the accident investigation team assembled by the contractor in an effort to independently verify that a rigorous, thorough, and unbiased investigation was taking place, and to maintain awareness of the events surrounding the accident

  1. Idaho National Engineering and Environmental Laboratory Site Environmental Report for Calendar Year 1997

    SciTech Connect (OSTI)

    R. B. Evans; D. Roush; R. W. Brooks; D. B. Martin

    1998-08-01T23:59:59.000Z

    The results of the various monitoring programs for 1997 indicated that radioactivity from the Idaho National Engineering and Environmental Laboratory (INEEL) operations could generally not be distinguished from worldwide fallout and natural radioactivity in the region surrounding the INEEL. Although some radioactive materials were discharged during INEEL operations, concentrations in the offsite environment and doses to the surrounding population were far less than state of Idaho and federal health protection guidelines. The maximum potential population dose from submersion, ingestion, inhalation, and deposition to the approximately 121,500 people residing within an 80-km (50-mi) radius from the geographical center of the INEEL was estimated to be 0.2 person-rem (2 x 10-3 person-Sv) using the MDIFF air dispersion model. This population dose is less than 0.0005% of the estimated 43,700 person-rem (437 person-Sv) population dose from background radioactivity.

  2. Commercial disposal options for Idaho National Engineering Laboratory low-level radioactive waste

    SciTech Connect (OSTI)

    Porter, C.L.; Widmayer, D.A.

    1995-09-01T23:59:59.000Z

    The Idaho National Engineering Laboratory (INEL) is a Department of Energy (DOE)-owned, contractor-operated site. Significant quantities of low-level radioactive waste (LLW) have been generated and disposed of onsite at the Radioactive Waste Management Complex (RWMC). The INEL expects to continue generating LLW while performing its mission and as aging facilities are decommissioned. An on-going Performance Assessment process for the RWMC underscores the potential for reduced or limited LLW disposal capacity at the existing onsite facility. In order to properly manage the anticipated amount of LLW, the INEL is investigating various disposal options. These options include building a new facility, disposing the LLW at other DOE sites, using commercial disposal facilities, or seeking a combination of options. This evaluation reports on the feasibility of using commercial disposal facilities.

  3. Air Emission Inventory for the Idaho National Engineering Laboratory: 1992 emissions report

    SciTech Connect (OSTI)

    Stirrup, T.S.

    1993-06-01T23:59:59.000Z

    This report presents the 1992 Air Emission Inventory for the Idaho National Engineering Laboratory. Originally, this report was in response to the Environmental Oversight and Monitoring Agreement in 1989 between the State of Idaho and the Department of Energy Idaho Field Office, and a request from the Idaho Air Quality Bureau. The current purpose of the Air Emission Inventory is to provide the basis for the preparation of the INEL Permit-to-Operate (PTO) an Air Emission Source Application, as required by the recently promulgated Title V regulations of the Clean Air Act. This report includes emissions calculations from 1989 to 1992. The Air Emission Inventory System, an ORACLE-based database system, maintains the emissions inventory.

  4. Idaho National Engineering Laboratory site environmental report for calendar year 1995

    SciTech Connect (OSTI)

    Mitchell, R.G.; Peterson, D.; Hoff, D.L.

    1996-08-01T23:59:59.000Z

    This report presents a compilation of data collected in 1995 for the routine environmental surveillance programs conducted on and around the Idaho National Engineering Laboratory (INEL). During 1995, the offsite surveillance program was conducted by the Environmental Science and Research Foundation. Onsite surveillance was performed by Lockheed Idaho Technologies Company (LITCO). Ground-water monitoring, both on and offsite, was performed by the US Geological Survey (USGS). This report also presents summaries of facility effluent monitoring data collected by INEL contractors. This report, prepared in accordance with the requirements in DOE Order 5400.1, is not intended to cover the numerous special environmental research programs being conducted at the INEL by the Foundation, LITCO, USGS, and others.

  5. Radiological, physical, and chemical characterization of transuranic wastes stored at the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Apel, M.L.; Becker, G.K.; Ragan, Z.K.; Frasure, J.; Raivo, B.D.; Gale, L.G.; Pace, D.P.

    1994-03-01T23:59:59.000Z

    This document provides radiological, physical and chemical characterization data for transuranic radioactive wastes and transuranic radioactive and hazardous (i.e., mixed) wastes stored at the Idaho National Engineering Laboratory and considered for treatment under the Private Sector Participation Initiative Program (PSPI). Waste characterization data are provided in the form of INEL Waste Profile Sheets. These documents provide, for each content code, information on waste identification, waste description, waste storage configuration, physical/chemical waste composition, radionuclide and associated alpha activity waste characterization data, and hazardous constituents present in the waste. Information is provided for 139 waste streams which represent an estimated total volume of 39,380{sup 3} corresponding to a total mass of approximately 19,000,000 kg. In addition, considerable information concerning alpha, beta, gamma, and neutron source term data specific to Rocky Flats Plant generated waste forms stored at the INEL are provided to assist in facility design specification.

  6. The Idaho National Engineering Laboratory site environmental report for calendar year 1989

    SciTech Connect (OSTI)

    Hoff, D.L.; Mitchell, R.G.; Bowman, G.C.; Moore, R.

    1990-06-01T23:59:59.000Z

    To verify that exposures resulting from operations at the Department of Energy (DOE) nuclear facilities have remained very small, each site at which nuclear activities are underway operates an environmental surveillance program to monitor the air, water and any other pathway where radionuclides from operations might conceivably reach workers or members of the public. This report presents data collected in 1989 for the routine environmental surveillance program conducted by the Radiological and Environmental Sciences Laboratory (RESL) of DOE and the US Geological Survey (USGS) at the Idaho National Engineering Laboratory (INEL) site. The environmental surveillance program for the INEL and vicinity for 1989 included the collection and analysis of samples from potential exposure pathways. Three basic groups of samples were collected. Those collected within the INEL boundaries will be referred to as onsite samples. Samples collected outside, but near, the Site boundaries will be referred to as boundary samples or part of a group of offsite samples. Samples collected from locations considerably beyond the Site boundaries will be referred to as distant samples or part of the offsite group. With the exception of Craters of the Moon National Monument, the distant locations are sufficiently remote from the Site to ensure that detectable radioactivity is primarily due to natural background sources or sources other than INEL operations. 35 refs., 14 figs., 13 tabs.

  7. RH-TRU Waste Characterization by Acceptable Knowledge at the Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    Schulz, C.; Givens, C.; Bhatt, R.; Whitworth, J.

    2003-02-24T23:59:59.000Z

    Idaho National Engineering and Environmental Laboratory (INEEL) is conducting an effort to characterize approximately 620 drums of remote-handled (RH-) transuranic (TRU) waste currently in its inventory that were generated at the Argonne National Laboratory-East (ANL-E) Alpha Gamma Hot Cell Facility (AGHCF) between 1971 and 1995. The waste was generated at the AGHCF during the destructive examination of irradiated and unirradiated fuel pins, targets, and other materials from reactor programs at ANL-West (ANL-W) and other Department of Energy (DOE) reactors. In support of this effort, Shaw Environmental and Infrastructure (formerly IT Corporation) developed an acceptable knowledge (AK) collection and management program based on existing contact-handled (CH)-TRU waste program requirements and proposed RH-TRU waste program requirements in effect in July 2001. Consistent with Attachments B-B6 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit (HWFP) and th e proposed Class 3 permit modification (Attachment R [RH-WAP] of this permit), the draft AK Summary Report prepared under the AK procedure describes the waste generating process and includes determinations in the following areas based on AK: physical form (currently identified at the Waste Matrix Code level); waste stream delineation; applicability of hazardous waste numbers for hazardous waste constituents; and prohibited items. In addition, the procedure requires and the draft summary report contains information supporting determinations in the areas of defense relationship and radiological characterization.

  8. Idaho National Engineering and Environmental Laboratory institutional plan -- FY 2000--2004

    SciTech Connect (OSTI)

    Enge, R.S.

    1999-12-01T23:59:59.000Z

    In this first institutional plan prepared by Bechtel BWXT Idaho, LLC, for the Idaho National Engineering and Environmental Laboratory, the INEEL will focus its efforts on three strategic thrusts: (1) Environmental Management stewardship for DOE-EM, (2) Nuclear reactor technology for DOE-Nuclear Energy (NE), and (3) Energy R and D, demonstration, and deployment (initial focus on biofuels and chemicals from biomass). The first strategic thrust focuses on meeting DOE-EMs environmental cleanup and long-term stewardship needs in a manner that is safe, cost-effective, science-based, and approved by key stakeholders. The science base at the INEEL will be further used to address a grand challenge for the INEEL and the DOE complex--the development of a fundamental scientific understanding of the migration of subsurface contaminants. The second strategic thrust is directed at DOE-NEs needs for safe, economical, waste-minimized, and proliferation-resistant nuclear technologies. As NE lead laboratories, the INEEL and ANL will pursue specific priorities. The third strategic thrust focuses on DOE's needs for clean, efficient, and renewable energy technology. As an initial effort, the INEEL will enhance its capability in biofuels, bioprocessing, and biochemicals. The content of this institutional plan is designed to meet basic DOE requirements for content and structure and reflect the key INEEL strategic thrusts. Updates to this institutional plan will offer additional content and resource refinements.

  9. Technology Evaluations Related to Mercury, Technetium, and Chloride in Treatment of Wastes at the Idaho Nuclear Technology and Engineering Center of the Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    C. M. Barnes; D. D. Taylor; S. C. Ashworth; J. B. Bosley; D. R. Haefner

    1999-10-01T23:59:59.000Z

    The Idaho High-Level Waste and Facility Disposition Environmental Impact Statement defines alternative for treating and disposing of wastes stored at the Idaho Nuclear Technology and Engineering Center. Development is required for several technologies under consideration for treatment of these wastes. This report contains evaluations of whether specific treatment is needed and if so, by what methods, to remove mercury, technetium, and chlorides in proposed Environmental Impact Statement treatment processes. The evaluations of mercury include a review of regulatory requirements that would apply to mercury wastes in separations processes, an evaluation of the sensitivity of mercury flowrates and concentrations to changes in separations processing schemes and conditions, test results from laboratory-scale experiments of precipitation of mercury by sulfide precipitation agents from the TRUEX carbonate wash effluent, and evaluations of methods to remove mercury from New Waste Calcining Facility liquid and gaseous streams. The evaluation of technetium relates to the need for technetium removal and alternative methods to remove technetium from streams in separations processes. The need for removal of chlorides from New Waste Calcining Facility scrub solution is also evaluated.

  10. Engineering change modelling using a function-behaviour-structure scheme

    E-Print Network [OSTI]

    Hamraz, Bahram

    2013-11-12T23:59:59.000Z

    an FBS Linkage model is demonstrated. The method’s potential benefits are discussed. Finally, the application of the method to two industrial case studies involving a diesel engine and a scanning electron microscope is presented. The method evaluation...

  11. 2002 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory and Associated Documentation

    SciTech Connect (OSTI)

    Meachum, Teresa Ray; Michael G. Lewis

    2003-02-01T23:59:59.000Z

    The 2002 Wastewater Land Application site Performance Reports for the Idaho National Engineering and Environmental Laboratory describe site conditions for the facilities with State of Idaho Wastewater Land Application Permits. Permit-required monitoring data are summarized, and permit exceedences or environmental impacts relating to the operation of the facilities during the 2002 permit year are discussed.

  12. Project Management Plan for the Idaho National Engineering Laboratory Waste Isolation Pilot Plant Experimental Test Program

    SciTech Connect (OSTI)

    Connolly, M.J.; Sayer, D.L.

    1993-11-01T23:59:59.000Z

    EG&G Idaho, Inc. and Argonne National Laboratory-West (ANL-W) are participating in the Idaho National Engineering Laboratory`s (INEL`s) Waste Isolation Pilot Plant (WIPP) Experimental Test Program (WETP). The purpose of the INEL WET is to provide chemical, physical, and radiochemical data on transuranic (TRU) waste to be stored at WIPP. The waste characterization data collected will be used to support the WIPP Performance Assessment (PA), development of the disposal No-Migration Variance Petition (NMVP), and to support the WIPP disposal decision. The PA is an analysis required by the Code of Federal Regulations (CFR), Title 40, Part 191 (40 CFR 191), which identifies the processes and events that may affect the disposal system (WIPP) and examines the effects of those processes and events on the performance of WIPP. A NMVP is required for the WIPP by 40 CFR 268 in order to dispose of land disposal restriction (LDR) mixed TRU waste in WIPP. It is anticipated that the detailed Resource Conservation and Recovery Act (RCRA) waste characterization data of all INEL retrievably-stored TRU waste to be stored in WIPP will be required for the NMVP. Waste characterization requirements for PA and RCRA may not necessarily be identical. Waste characterization requirements for the PA will be defined by Sandia National Laboratories. The requirements for RCRA are defined in 40 CFR 268, WIPP RCRA Part B Application Waste Analysis Plan (WAP), and WIPP Waste Characterization Program Plan (WWCP). This Project Management Plan (PMP) addresses only the characterization of the contact handled (CH) TRU waste at the INEL. This document will address all work in which EG&G Idaho is responsible concerning the INEL WETP. Even though EG&G Idaho has no responsibility for the work that ANL-W is performing, EG&G Idaho will keep a current status and provide a project coordination effort with ANL-W to ensure that the INEL, as a whole, is effectively and efficiently completing the requirements for WETP.

  13. Progress in High-Level Waste Tank Cleaning at the Idaho National Environmental and Engineering Laboratory

    SciTech Connect (OSTI)

    Lockie, K. A.; McNaught, W. B.

    2002-02-26T23:59:59.000Z

    The Department of Energy Idaho Operations Office (DOE-ID) is making preparations to close two underground high-level waste (HLW) storage tanks at the Idaho National Engineering and Environmental Laboratory (INEEL) to meet Resource Conservation and Recovery Act (RCRA) regulations and Department of Energy (DOE) orders. Closure of these two tanks is scheduled for 2004 as the first phase in closure of the eleven 300,000 gallon tanks currently in service at the Idaho Nuclear Technology and Engineering Center (INTEC). Design, development, and deployment of a remotely operated tank cleaning system were completed in August 2001. The system incorporates many commercially available components, which have been adapted for application in cleaning high-level waste tanks. The system also uses existing waste transfer technology (steam-jets) to remove tank heel solids from the tank bottoms during the cleaning operations. By using this existing transfer system and commercially available equipment, the cost of developing custom designed cleaning equipment can be avoided. Remotely operated directional spray nozzles, automatic rotating wash balls, video monitoring equipment, decontamination spray-rings, and tank specific access interface devices have been integrated to provide a system that efficiently cleans tank walls and heel solids in an acidic, radioactive environment. This system is also compliant with operational and safety performance requirements at INTEC. Through the deployment of the tank cleaning system, the INEEL High Level Waste Program has demonstrated the capability to clean tanks to meet RCRA clean closure standards and DOE closure performance measures. The tank cleaning system deployed at the INTEC offers unique advantages over other approaches evaluated at the INEEL and throughout the DOE Complex. The system's ability to agitate and homogenize the tank heel sludge will simplify verification-sampling techniques and reduce the total quantity of samples required to demonstrate compliance with the performance standards. This will reduce tank closure budget requirements and improve closure-planning schedules.

  14. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011 LOSEngineering |LabVideoLaboratories

  15. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011 LOSEngineering |LabVideoLaboratoriesForest fire

  16. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011 LOSEngineering |LabVideoLaboratoriesForest

  17. Laboratory Evaluation of In Situ Chemical Oxidation for Groundwater Remediation, Test Area North, Operable Unit 1-07B, Idaho National Engineering and Environmental Laboratory, Volume Three - Appendix F

    SciTech Connect (OSTI)

    Cline, S.R.; Denton, D.L.; Giaquinto, J.M.; McCracken, M.K.; Starr, R.C.

    1999-04-01T23:59:59.000Z

    This appendix supports the results and discussion of the laboratory work performed to evaluate the feasibility of in situ chemical oxidation for Idaho National Environmental and Engineering Laboratory's (INEEL) Test Area North (TAN) which is contained in ORNL/TM-13711/V1. This volume contains Appendix F. Appendix F is essentially a photocopy of the ORNL researchers' laboratory notebooks from the Environmental Sciences Division (ESD) and the Radioactive Materials Analytical Laboratory (RMAL).

  18. Evaluation of Rocky Flats Plant stored plutonium inventory at the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Clements, T.L. Jr.; Einerson, J.J.

    1995-09-01T23:59:59.000Z

    The purpose of this document is to evaluate reported inventories of plutonium contained in stored transuranic (TRU) waste generated by the Rocky Flats Plant (RFP). From 1970 to 1989, this waste was shipped to the Idaho National Engineering Laboratory (INEL) and placed in aboveground retrievable storage at the Radioactive Waste Management Complex (RWMC)-Transuranic Storage Area (TSA). This evaluation was initiated to address potential uncertainty in quantities of stored plutonium reported in the Radioactive Waste Management Information System (RWMIS). The RWMIS includes radionuclide information from generators that shipped TRU waste to INEL for storage. Recent evaluations performed on buried TRU waste (1954-1970) resulted in significant revision to the original reported values of plutonium, americium, and enriched uranium. These evaluations were performed based on Rocky Flats Plant (RFP) Inventory Difference (ID) records. This evaluation for stored TRU waste was performed to: (1) identify if significant discrepancies exist between RWMIS reported values and RFP ID records, (2) describe the methodology used to perform the RWMIS evaluation, (3) determine a Best Estimate (BE) and 95% Upper Confidence Bound (UB) on the plutonium inventory, (4) provide conclusions based on this evaluation, and (5) identify recommendations and/or actions that might be needed.

  19. Mercury Removal at Idaho National Engineering and Environmental Laboratory's New Waste Calcining Facility

    SciTech Connect (OSTI)

    Ashworth, Samuel Clay; Wood, R. A.; Taylor, D. D.; Sieme, D. D.

    2000-03-01T23:59:59.000Z

    Technologies were investigated to determine viable processes for removing mercury from the calciner (NWCF) offgas system at the Idaho National Engineering and Environmental Laboratory. Technologies for gas phase and aqueous phase treatment were evaluated. The technologies determined are intended to meet EPA Maximum Achievable Control Technology (MACT) requirements under the Clean Air Act and Resource Conservation and Recovery Act (RCRA). Currently, mercury accumulation in the calciner off-gas scrubbing system is transferred to the tank farm. These transfers lead to accumulation in the liquid heels of the tanks. The principal objective for aqueous phase mercury removal is heel mercury reduction. The system presents a challenge to traditional methods because of the presence of nitrogen oxides in the gas phase and high nitric acid in the aqueous scrubbing solution. Many old and new technologies were evaluated including sorbents and absorption in the gas phase and ion exchange, membranes/sorption, galvanic methods, and UV reduction in the aqueous phase. Process modifications and feed pre-treatment were also evaluated. Various properties of mercury and its compounds were summarized and speciation was predicted based on thermodynamics. Three systems (process modification, NOxidizer combustor, and electrochemical aqueous phase treatment) and additional technology testing were recommended.

  20. 1998 Environmental Monitoring Program Report for the Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    L. V. Street

    1999-09-01T23:59:59.000Z

    This report describes the calendar year 1998 compliance monitoring and environmental surveillance activities of the Lockheed Martin Idaho Technologies Company Environmental Monitoring Program performed at the Idaho National Engineering and Environmental Laboratory. This report includes results of sampling performed by the Drinking Water, Effluent, Storm Water, Groundwater Monitoring, and Environmental Surveillance Programs. This report compares the 1998 results to program-specific regulatory guidelines and past data to evaluate trends. The primary purposes of the monitoring and surveillance activities are to evaluate environmental conditions, to provide and interpret data, to verify compliance with applicable regulations or standards, and to ensure protection of public health and the environment. Surveillance of environmental media did not identify any previously unknown environmental problems or trends, which would indicate a loss of control or unplanned releases from facility operations. The INEEL complied with permits and applicable regulations, with the exception of nitrogen samples in a disposal pond effluent stream and iron and total coliform bacteria in groundwater downgradient from one disposal pond. Data collected by the Environmental Monitoring Program demonstrate that the public health and environment were protected.

  1. The Idaho National Engineering Laboratory Site environmental report for calendar Year 1990

    SciTech Connect (OSTI)

    Hoff, D.L.; Mitchell, R.G.; Moore, R.; Shaw, R.M.

    1991-06-01T23:59:59.000Z

    The results of the various monitoring programs for 1990 indicate that most radioactivity from the Idaho National Engineering Laboratory (INEL) operations could not be distinguished from worldwide fallout and natural radioactivity in the region surrounding the INEL Site. Although some radioactive materials were discharged during Site operations, concentrations and doses to the surrounding population were of no health consequence and were far less than State of Idaho and Federal health protection guidelines. The first section of the report summarizes Calendar Year 1990 and January 1 through April 1, 1991, INEL activities related to compliance with environmental regulations and laws. The balance of the report describes the surveillance program, the collection of foodstuffs at the INEL boundary and distant offsite locations, and the collection of air and water samples at onsite locations and offsite boundary and distant locations. The report also compares and evaluates the sample results and discusses implications, if any. Nonradioactive and radioactive effluent monitoring at the Site, and the US Geological Survey (USGS) ground-water monitoring program are also summarized. 33 refs., 18 figs., 29 tabs.

  2. Incineration of DOE offsite mixed waste at the Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    Harris, J.D.; Harvego, L.A.; Jacobs, A.M. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States); Willcox, M.V. [Dept. of Energy Idaho Operations Office, Idaho Falls, ID (United States)

    1998-01-01T23:59:59.000Z

    The Waste Experimental Reduction Facility (WERF) incinerator at the Idaho National Engineering and Environmental Laboratory (INEEL) is one of three incinerators in the US Department of Energy (DOE) Complex capable of incinerating mixed low-level waste (MLLW). WERF has received MLLW from offsite generators and is scheduled to receive more. The State of Idaho supports receipt of offsite MLLW waste at the WERF incinerator within the requirements established in the (INEEL) Site Treatment Plan (STP). The incinerator is operating as a Resource Conservation and Recovery Act (RCRA) Interim Status Facility, with a RCRA Part B permit application currently being reviewed by the State of Idaho. Offsite MLLW received from other DOE facilities are currently being incinerated at WERF at no charge to the generator. Residues associated with the incineration of offsite MLLW waste that meet the Envirocare of Utah waste acceptance criteria are sent to that facility for treatment and/or disposal. WERF is contributing to the treatment and reduction of MLLW in the DOE Complex.

  3. Recommendations of treatment technologies for radioactively contaminated lead at the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Neupauer, R.M.; Zukauskas, J.F.

    1992-03-01T23:59:59.000Z

    Approximately one million pounds of radioactively contaminated lead are currently stored at the Idaho National Engineering Laboratory (INEL) and must be treated according to the Resource Conservation and Recovery Act. This excess lead exists in various forms, including brick, sheet, shot, wool, blankets, steel-jacketed casks, scrap, and miscellaneous solids. Several lead treatment technologies were evaluated based on effectiveness, applicability, feasibility, availability of equipment and materials, health and safety, generation of secondary waste streams, cost, and flexibility. Emphasis is given in this report to those treatment technologies that yield recyclable lead products. Methods that treat lead for storage and disposal were also investigated. Specific treatment technologies for decontaminating the excess lead at the INEL are recommended. The proposed treatment for lead brick, sheet, shot, blankets, and scrap is a series of surface decontamination techniques followed by melt-refining, if necessary. The recommended series of treatments for lead casks begins with removing and macroencapsulating the steel jackets, followed by size reducing and melt-refining the lead. Macroencapsulation is the proposed treatment for miscellaneous lead solids. Recycling lead that has been successfully decontaminated and macroencapsulating or stabilizing the treatment residuals is also recommended.

  4. Idaho National Engineering and Environmental Laboratory Offsite Environmental Surveillance Program Report: First Quarter 1999

    SciTech Connect (OSTI)

    R. Evans

    1999-09-01T23:59:59.000Z

    The Environmental Science and Research Foundation conducts an Offsite Environmental Surveillance Program at the US Department of Energy's Idaho National Engineering and Environmental Laboratory (INEEL). The Foundation's environmental surveillance program monitors the effects, if any, of US Department of Energy (DOE) activities on the offsite environment, collects data to confirm compliance with applicable environmental laws and regulations, and observes any trends in the environmental levels of radioactivity. This report for the first quarter 1999 is based on 564 samples of air (including airborne radioactivity, fine particulates, and atmospheric moisture), precipitation, milk, and wild game tissues. All concentrations of radioactivity found in these samples were consistent with concentrations which have been found in sampling during recent quarters and which have been attributed in the past to natural background radiation, worldwide fallout from past nuclear weapons ! testing, an d nuclear operations around the world. No measured concentrations could be directly attributed to operations at the INEEL. Concentrations in all samples were below the guidelines set by both the DOE and the US Environmental Protection Agency (EPA) for protection of the public.

  5. Idaho National Engineering and Environmental Laboratory Offsite Environmental Surveillance Program Report: Third Quarter 1999

    SciTech Connect (OSTI)

    R. Evans

    2000-03-01T23:59:59.000Z

    The Environmental Science and Research Foundation conducts an offsite environmental surveillance program for the Department of Energy's Idaho National Engineering and Environmental Laboratory (INEEL). The Foundation's environmental surveillance program monitors the effects, if any, of US Department of Energy (DOE) activities on the offsite environment, collects data to confirm compliance with applicable environmental laws and regulations, and observes any trends in the environmental levels of radioactivity. This report for the third quarter of 1999 is based on 704 samples of air, fine particulates, atmospheric moisture, precipitation, milk, and food. All concentrations of radioactivity found in these samples were consistent with concentrations which have been found in sampling during recent quarters and which have been attributed in the past to natural background radiation, worldwide fallout from past nuclear weapons testing, and nuclear operations around the world. No! measured concentrations could be directly attributed to operations at the INEEL. Concentrations in all samples were below the guidelines set by both the DOE and the US Environmental Protection Agency (EPA) for protection of the public.

  6. Idaho National Engineering and Environmental Laboratory Offsite Environmental Surveillance Program Report: Fourth Quarter 1998

    SciTech Connect (OSTI)

    T. Saffle; R. Evans

    1999-08-01T23:59:59.000Z

    The Environmental Science and Research Foundation conducts the Offsite Environmental Surveillance Program at the US Department of Energy's Idaho National Engineering and Environmental Laboratory (INEEL). The Foundation's environmental surveillance program monitors the effects, if any, of US Department of Energy (DOE) activities on the offsite environment, collects data to confirm compliance with applicable environmental laws and regulations, and observes any trends in the environmental levels of radioactivity. This report for the fourth quarter 1998 is based on 622 samples collected of air, fine particulates, atmospheric moisture, precipitation, water, milk, potatoes, and game animals. All concentrations of radioactivity found in these samples were consistent with concentrations which have been found in sampling during recent quarters and which have been attributed in the past to natural background radioactivity, worldwide fallout from past nuclear weapons testing, an! d nuclear operations around the world. No measured concentrations could be directly attributed to operations at the INEEL, although statistical differences did exist between on-site and distant gross beta concentrations. No evidence could be found to link these differences with a specific INEEL source. Concentrations in all samples were below the guidelines set by both the DOE and the US Environmental Protection Agency (EPA) for protection of the public.

  7. Idaho National Engineering and Environmental Laboratory Offsite Environmental Surveillance Program Report: Second Quarter 1999

    SciTech Connect (OSTI)

    R. Evans

    1999-12-01T23:59:59.000Z

    The Environmental Science and Research Foundation conducts an Offsite Environmental Surveillance Program at the US Department of Energy's Idaho National Engineering and Environmental Laboratory (INEEL). The Foundation's environmental surveillance program monitors the effects, if any, of US Department of Energy (DOE) activities on the offsite environment, collects data to confirm compliance with applicable environmental laws and regulations, and observes any trends in the environmental levels of radioactivity. This report for the second quarter 1999 is based on 618 samples of air (including airborne radioactivity, fine particulates, and atmospheric moisture), precipitation, milk, drinking water, sheep, wild game tissues, and environmental radiation. All concentrations of radioactivity found in these samples were consistent with concentrations which have been found in sampling during recent quarters and which have been attributed in the past to natural background radiation, worldwide fallout from past nuclear weapons testing, and nuclear operations around the world. No measured concentrations could be directly attributed to operations at the INEEL. Concentrations in all samples were below the guidelines set by both the DOE and the US Environmental Protection Agency (EPA) for protection of the public.

  8. College of Engineering Change of Major Procedures and Course Request

    E-Print Network [OSTI]

    Buehrer, R. Michael

    by Spring 2015 to continue taking MinE classes. #12;Plan of Study & DARS Plan of Study · Pathways Planner://www.enge.vt.edu/undergraduate/undergrad-plan-of- study.html to help you get started. Degree Audit Reporting System (DARS): · A DARS is a computer Engineering Student you can run a "what if" DARS for the major you desire to enter. Go to: Hokie Spa, degree

  9. HIGH LEVEL WASTE TANK CLOSURE PROJECT AT THE IDAHO NATIONAL ENGINEERING AND ENVIRONMENTAL LABORATORY

    SciTech Connect (OSTI)

    Quigley, K.D.; Wessman, D

    2003-02-27T23:59:59.000Z

    The Department of Energy, Idaho Operations Office (DOE-ID) is in the process of closing two underground high-level waste (HLW) storage tanks at the Idaho National Engineering and Environmental Laboratory (INEEL) to meet Resource Conservation and Recovery Act (RCRA) regulations and Department of Energy orders. Closure of these two tanks is scheduled for 2004 as the first phase in closure of the eleven 1.14 million liter (300,000 gallon) tanks currently in service at the Idaho Nuclear Technology and Engineering Center (INTEC). The INTEC Tank Farm Facility (TFF) Closure sequence consists of multiple steps to be accomplished through the existing tank riser access points. Currently, the tank risers contain steam and process waste lines associated with the steam jets, corrosion coupons, and liquid level indicators. As necessary, this equipment will be removed from the risers to allow adequate space for closure equipment and activities. The basic tank closure sequence is as follows: Empty the tank to the residual heel using the existing jets; Video and sample the heel; Replace steam jets with new jet at a lower position in the tank, and remove additional material; Flush tank, piping and secondary containment with demineralized water; Video and sample the heel; Evaluate decontamination effectiveness; Displace the residual heel with multiple placements of grout; and Grout piping, vaults and remaining tank volume. Design, development, and deployment of a remotely operated tank cleaning system were completed in June 2002. The system incorporates many commercially available components, which have been adapted for application in cleaning high-level waste tanks. The system is cost-effective since it also utilizes existing waste transfer technology (steam jets), to remove tank heel solids from the tank bottoms during the cleaning operations. Remotely operated directional spray nozzles, automatic rotating wash balls, video monitoring equipment, decontamination spray-rings, and tank -specific access interface devices have been integrated to provide a system that efficiently cleans tank walls and heel solids in an acidic, radioactive environment. Through the deployment of the tank cleaning system, the INEEL High Level Waste Program has cleaned tanks to meet RCRA clean closure standards and DOE closure performance measures. Design, development, and testing of tank grouting delivery equipment were completed in October 2002. The system incorporates lessons learned from closures at other DOE facilities. The grout will be used to displace the tank residuals remaining after the cleaning is complete. To maximize heel displacement to the discharge pump, grout was placed in a sequence of five positions utilizing two riser locations. The project is evaluating the use of six positions to optimize the residuals removed. After the heel has been removed and the residuals stabilized, the tank, piping, and secondary containment will be grouted.

  10. Site-specific probabilistic seismic hazard analyses for the Idaho National Engineering Laboratory. Volume 2: Appendices

    SciTech Connect (OSTI)

    NONE

    1996-05-01T23:59:59.000Z

    The identification of seismic sources is often based on a combination of geologic and tectonic considerations and patterns of observed seismicity; hence, a historical earthquake catalogue is important. A historical catalogue of earthquakes of approximate magnitude (M) 2.5 and greater for the time period 1850 through 1992 was compiled for the INEL region. The primary data source used was the Decade of North American Geology (DNAG) catalogue for the time period from about 1800 through 1985 (Engdahl and Rinehart, 1988). A large number of felt earthquakes, especially prior to the 1970`s, which were below the threshold of completeness established in the DNAG catalogue (Engdahl and Rinehart, 1991), were taken from the state catalogues compiled by Stover and colleagues at the National Earthquake Information Center (NEIC) and combined with the DNAG catalogue for the INEL region. The state catalogues were those of Idaho, Montana, Nevada, Utah, and Wyoming. NEIC`s Preliminary Determination of Epicenters (PDE) and the state catalogues compiled by the Oregon Department of Geology and Mineral Industries (DOGAMI), and the University of Nevada at Reno (UNR) were also used to supplement the pre-1986 time period. A few events reanalyzed by Jim Zollweg (Boise State University, written communication, 1994) were also modified in the catalogue. In the case of duplicate events, the DNAG entry was preferred over the Stover et al. entry for the period 1850 through 1985. A few events from Berg and Baker (1963) were also added to the catalogue. This information was and will be used in determining the seismic risk of buildings and facilities located at the Idaho National Engineering Laboratory.

  11. Tank Closure Progress at the Department of Energy's Idaho National Engineering Laboratory Tank Farm Facility

    SciTech Connect (OSTI)

    Quigley, K.D. [CH2M..WG Idaho, LLC, Idaho Falls, ID (United States); Butterworth, St.W. [CH2M..WG Idaho, LLC, Idaho Falls, ID (United States); Lockie, K.A. [U.S. Department of Energy, Idaho Operations Office, Idaho Falls, ID (United States)

    2008-07-01T23:59:59.000Z

    Significant progress has been made at the U.S. Department of Energy (DOE) Idaho National Laboratory (INL) to empty, clean and close radioactive liquid waste storage tanks at the Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility (TFF). The TFF includes eleven 1,135.6-kL (300,000-gal) underground stainless steel storage tanks and four smaller, 113.5-kL (30,000-gal) stainless steel tanks, along with tank vaults, interconnecting piping, and ancillary equipment. The TFF tanks have historically been used to store a variety of radioactive liquid waste, including wastes associated with past spent nuclear fuel reprocessing. Although four of the large storage tanks remain in use for waste storage, the other seven 1,135.6-kL (300,000-gal) tanks and the four 113.5-kL (30,000-gal) tanks have been emptied of waste, cleaned and filled with grout. A water spray cleaning system was developed and deployed to clean internal tank surfaces and remove remaining tank wastes. The cleaning system was effective in removing all but a very small volume of solid residual waste particles. Recent issuance of an Amended Record of Decision (ROD) in accordance with the National Environmental Policy Act, and a Waste Determination complying with Section 3116 of the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005, has allowed commencement of grouting activities on the cleaned tanks. The first three 113.5-kL (30,000-gal) tanks were grouted in the Fall of 2006 and the fourth tank and the seven 1,135.6-kL (300,000-gal) tanks were filled with grout in 2007 to provide long-term stability. It is currently planned that associated tank valve boxes and interconnecting piping, will be stabilized with grout as early as 2008. (authors)

  12. Idaho National Engineering Laboratory (INEL) Environmental Restoration (ER) Program Baseline Safety Analysis File (BSAF)

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The Baseline Safety Analysis File (BSAF) is a facility safety reference document for the Idaho National Engineering Laboratory (INEL) environmental restoration activities. The BSAF contains information and guidance for safety analysis documentation required by the U.S. Department of Energy (DOE) for environmental restoration (ER) activities, including: Characterization of potentially contaminated sites. Remedial investigations to identify and remedial actions to clean up existing and potential releases from inactive waste sites Decontamination and dismantlement of surplus facilities. The information is INEL-specific and is in the format required by DOE-EM-STD-3009-94, Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports. An author of safety analysis documentation need only write information concerning that activity and refer to BSAF for further information or copy applicable chapters and sections. The information and guidance provided are suitable for: {sm_bullet} Nuclear facilities (DOE Order 5480-23, Nuclear Safety Analysis Reports) with hazards that meet the Category 3 threshold (DOE-STD-1027-92, Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports) {sm_bullet} Radiological facilities (DOE-EM-STD-5502-94, Hazard Baseline Documentation) Nonnuclear facilities (DOE-EM-STD-5502-94) that are classified as {open_quotes}low{close_quotes} hazard facilities (DOE Order 5481.1B, Safety Analysis and Review System). Additionally, the BSAF could be used as an information source for Health and Safety Plans and for Safety Analysis Reports (SARs) for nuclear facilities with hazards equal to or greater than the Category 2 thresholds, or for nonnuclear facilities with {open_quotes}moderate{close_quotes} or {open_quotes}high{close_quotes} hazard classifications.

  13. Idaho National Engineering and Environmental Laboratory Site Environmental Report for Calendar Year 1998

    SciTech Connect (OSTI)

    T. R. Saffle; R. G. Mitchell; R. B. Evans; D. B. Martin

    2000-07-01T23:59:59.000Z

    The results of the various monitoring programs for 1998 indicated that radioactivity from the DOE's Idaho National Engineering and Environmental Laboratory (INEEL) operations could generally not be distinguished from worldwide fallout and natural radioactivity in the region surrounding the INEEL. Although some radioactive materials were discharged during INEEL operations, concentrations in the offsite environment and doses to the surrounding population were far less than state of Idaho and federal health protection guidelines. Gross alpha and gross beta measurements, used as a screening technique for air filters, were investigated by making statistical comparisons between onsite or boundary location concentrations and the distant community group concentrations. Gross alpha activities were generally higher at distant locations than at boundary and onsite locations. Air samples were also analyzed for specific radionuclides. Some human-made radionuclides were detected at offsite locations, but most were near the minimum detectable concentration and their presence was attributable to natural sources, worldwide fallout, and statistical variations in the analytical results rather than to INEEL operations. Low concentrations of 137Cs were found in muscle tissue and liver of some game animals and sheep. These levels were mostly consistent with background concentrations measured in animals sampled onsite and offsite in recent years. Ionizing radiation measured simultaneously at the INEEL boundary and distant locations using environmental dosimeters were similar and showed only background levels. The maximum potential population dose from submersion, ingestion, inhalation, and deposition to the approximately 121,500 people residing within an 80-km (50-mi) radius from the geographical center of the INEEL was estimated to be 0.08 person-rem (8 x 10-4 person-Sv) using the MDIFF air dispersion model. This population dose is less than 0.0002 percent of the estimated 43,7 00 person-rem (437 person-Sv) population dose from background radioactivity.

  14. An Image and Video Search Engine for the World-Wide Web John R. Smith and Shih-Fu Chang

    E-Print Network [OSTI]

    Chang, Shih-Fu

    An Image and Video Search Engine for the World-Wide Web John R. Smith and Shih-Fu Chang Department of Electrical Engineering and Center for Image Technology for New Media Columbia University, New York, N

  15. Artificial Intelligence 114 (1999) 297347 An articulate virtual laboratory for engineering

    E-Print Network [OSTI]

    Forbus, Kenneth D.

    , such as power plants, propulsion systems, refrigerators, and heat pumps, and the study of thermodynamic cyclesArtificial Intelligence 114 (1999) 297­347 CyclePad: An articulate virtual laboratory CyclePad, a fully implemented articulate virtual laboratory that captures a substantial fraction

  16. HISTORICAL AMERICAN ENGINEERING RECORD - IDAHO NATIONAL ENGINEERING AND ENVIRONMENTAL LABORATORY, TEST AREA NORTH, HAER NO. ID-33-E

    SciTech Connect (OSTI)

    Susan Stacy; Hollie K. Gilbert

    2005-02-01T23:59:59.000Z

    Test Area North (TAN) was a site of the Aircraft Nuclear Propulsion (ANP) Project of the U.S. Air Force and the Atomic Energy Commission. Its Cold War mission was to develop a turbojet bomber propelled by nuclear power. The project was part of an arms race. Test activities took place in five areas at TAN. The Assembly & Maintenance area was a shop and hot cell complex. Nuclear tests ran at the Initial Engine Test area. Low-power test reactors operated at a third cluster. The fourth area was for Administration. A Flight Engine Test facility (hangar) was built to house the anticipated nuclear-powered aircraft. Experiments between 1955-1961 proved that a nuclear reactor could power a jet engine, but President John F. Kennedy canceled the project in March 1961. ANP facilities were adapted for new reactor projects, the most important of which were Loss of Fluid Tests (LOFT), part of an international safety program for commercial power reactors. Other projects included NASA's Systems for Nuclear Auxiliary Power and storage of Three Mile Island meltdown debris. National missions for TAN in reactor research and safety research have expired; demolition of historic TAN buildings is underway.

  17. Texas Tech University | Whitacre College of Engineering | Box 43103 | Lubbock, Texas 79409-3103 | 806.742.3451| www.coe.ttu.edu Undergraduate Laboratory Renovation Initiative

    E-Print Network [OSTI]

    Gelfond, Michael

    -3103 | 806.742.3451| www.coe.ttu.edu Undergraduate Laboratory Renovation Initiative The Whitacre College of Engineering Undergraduate Laboratory Renovation Initiative is a $6.5MM effort to properly equip and modernize Systems & Alternative Energy Lab Audiovisual, Studio & Collaborative Classrooms Department of Construction

  18. Staff Member, Staff Member, and Staff Supervisor, respectively, Oak Ridge National Laboratory, Engineering Technology Division, Oak Ridge, TN 37831-8066.

    E-Print Network [OSTI]

    Hively, Lee M.

    1 Staff Member, Staff Member, and Staff Supervisor, respectively, Oak Ridge National Laboratory, Engineering Technology Division, Oak Ridge, TN 37831-8066. D. E. Welch1 , L. M. Hively1 , R. F. Holdaway1 STP Conshohocken, PA, 2002. Abstract Oak Ridge National Laboratory has developed a new technique to monitor

  19. US Department of Energy multiprogram laboratories, 1981 to 1991, a decade of change

    SciTech Connect (OSTI)

    Not Available

    1993-04-01T23:59:59.000Z

    The U.S. Department of Energy`s multiprogram laboratories were conceived as a means of enlisting private enterprise and managerial skills to develop atomic weapons during World War II. Today these laboratories perform research and development in a host of areas critical to the U.S. Research and development areas incorporated within their missions include: technologies for maintaining national security; the fundamental nature of matter and energy processes; environmental processes; energy production technologies; and energy conserving technologies. This document identifies the laboratories and describes historical trends, laboratory projections, individual laboratory profiles, and laboratory organization and oversight for the multiprogram system.

  20. Preliminary Waste Form Compliance Plan for the Idaho National Engineering and Environmental Laboratory High-Level Waste

    SciTech Connect (OSTI)

    B. A. Staples; T. P. O'Holleran

    1999-05-01T23:59:59.000Z

    The Department of Energy (DOE) has specific technical and documentation requirements for high-level waste (HLW) that is to be placed in a federal repository. This document describes in general terms the strategy to be used at the Idaho National Engineering and Environmental Laboratory (INEEL) to demonstrate that vitrified HLW, if produced at the INEEL, meets these requirements. Waste form, canister, quality assurance, and documentation specifications are discussed. Compliance strategy is given, followed by an overview of how this strategy would be implemented for each specification.

  1. In situ vitrification application to buried waste: Final report of intermediate field tests at Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Callow, R.A.; Weidner, J.R.; Loehr, C.A.; Bates, S.O. (EG and G Idaho, Inc., Idaho Falls, ID (United States)); Thompson, L.E.; McGrail, B.P. (Pacific Northwest Lab., Richland, WA (United States))

    1991-08-01T23:59:59.000Z

    This report describes two in situ vitrification field tests conducted on simulated buried waste pits during June and July 1990 at the Idaho National Engineering Laboratory. In situ vitrification, an emerging technology for in place conversion of contaminated soils into a durable glass and crystalline waste form, is being investigated as a potential remediation technology for buried waste. The overall objective of the two tests was to access the general suitability of the process to remediate waste structures representative of buried waste found at Idaho National Engineering Laboratory. In particular, these tests, as part of a treatability study, were designed to provide essential information on the field performance of the process under conditions of significant combustible and metal wastes and to test a newly developed electrode feed technology. The tests were successfully completed, and the electrode feed technology successfully processed the high metal content waste. Test results indicate the process is a feasible technology for application to buried waste. 33 refs., 109 figs., 39 tabs.

  2. Site-specific probabilistic seismic hazard analyses for the Idaho National Engineering Laboratory. Volume 1: Final report

    SciTech Connect (OSTI)

    NONE

    1996-05-01T23:59:59.000Z

    This report describes and summarizes a probabilistic evaluation of ground motions for the Idaho National Engineering Laboratory (INEL). The purpose of this evaluation is to provide a basis for updating the seismic design criteria for the INEL. In this study, site-specific seismic hazard curves were developed for seven facility sites as prescribed by DOE Standards 1022-93 and 1023-96. These sites include the: Advanced Test Reactor (ATR); Argonne National Laboratory West (ANL); Idaho Chemical Processing Plant (ICPP or CPP); Power Burst Facility (PBF); Radioactive Waste Management Complex (RWMC); Naval Reactor Facility (NRF); and Test Area North (TAN). The results, probabilistic peak ground accelerations and uniform hazard spectra, contained in this report are not to be used for purposes of seismic design at INEL. A subsequent study will be performed to translate the results of this probabilistic seismic hazard analysis to site-specific seismic design values for the INEL as per the requirements of DOE Standard 1020-94. These site-specific seismic design values will be incorporated into the INEL Architectural and Engineering Standards.

  3. INL Site Portion of the April 1995 Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Mamagement Programmatic Final Environmental Impact Statement

    SciTech Connect (OSTI)

    N /A

    2005-06-30T23:59:59.000Z

    In April 1995, the Department of Energy (DOE) and the Department of the Navy, as a cooperating agency, issued the Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Final Environmental Impact Statement (1995 EIS). The 1995 EIS analyzed alternatives for managing The Department's existing and reasonably foreseeable inventories of spent nuclear fuel through the year 2035. It also included a detailed analysis of environmental restoration and waste management activities at the Idaho National Engineering and Environmental Laboratory (INEEL). The analysis supported facility-specific decisions regarding new, continued, or planned environmental restoration and waste management operations. The Record of Decision (ROD) was signed in June 1995 and amended in February 1996. It documented a number of projects or activities that would be implemented as a result of decisions regarding INL Site operations. In addition to the decisions that were made, decisions on a number of projects were deferred or projects have been canceled. DOE National Environmental Policy Act (NEPA) implementing procedures (found in 10 CFR Part 1 021.330(d)) require that a Supplement Analysis of site-wide EISs be done every five years to determine whether the site-wide EIS remains adequate. While the 1995 EIS was not a true site-wide EIS in that several programs were not included, most notably reactor operations, this method was used to evaluate the adequacy of the 1995 EIS. The decision to perform a Supplement Analysis was supported by the multi-program aspect of the 1995 EIS in conjunction with the spirit of the requirement for periodic review. The purpose of the SA is to determine if there have been changes in the basis upon which an EIS was prepared. This provides input for an evaluation of the continued adequacy of the EIS in light of those changes (i.e., whether there are substantial changes in the proposed action, significant new circumstances, or new information relevant to environmental concerns). This is not to question the previous analysis or decisions based on that analysis, but whether the environmental impact analyses are still adequate in light of programmatic changes. In addition, the information for each of the projects for which decisions were deferred in the ROD needs to be reviewed to determine if decisions can be made or if any additional NEP A analysis needs to be completed. The Supplement Analysis is required to contain sufficient information for DOE to determine whether (1) an existing EIS should be supplemented, (2) a new EIS should be prepared, or (3) no further NEP A documentation is required.

  4. Jimmy Chau , Thomas Little Multimedia Communications Laboratory, Electrical and Computer Engineering, Boston University, Boston, MA

    E-Print Network [OSTI]

    Little, Thomas

    , Electrical and Computer Engineering, Boston University, Boston, MA Current-Mirror Transmitter & Hybrid VLC Rich, and Michelle Nadeau. This work is supported by the NSF under cooperative agreement EEC-0812056 must be regulated for reliable operation, and · the large, regulated current needs to switch quickly

  5. ME 266P Mechanical Engineering Design Project Laboratory ABET EC2000 syllabus

    E-Print Network [OSTI]

    Ben-Yakar, Adela

    Management (Gantt Charts) 3. Product and Personal Liability of Engineers 4. Intellectual Property ­ Patents of three or four persons each. Each team receives a different project assignment (the team's stated of Course to Meeting the Requirements of Criterion 5: Relationship of the Course to ME Program Outcomes

  6. Advanced Flow Diagnostics and Experimental Aerodynamics Laboratory Department of Aerospace Engineering

    E-Print Network [OSTI]

    Hu, Hui

    Dr. Hui HU Advanced Flow Diagnostics and Experimental Aerodynamics Laboratory Department-inspired flows, bioinspired aerodynamic designs for micro-air-vehicle (MAV) applications. ­ Microfluidics, micro. ­ Low-speed aerodynamics, laminar boundary layer separation, transition and flow control. ­ Wind

  7. Idaho National Engineering and Environmental Laboratory, Old Waste Calcining Facility, Scoville vicinity, Butte County, Idaho -- Photographs, written historical and descriptive data. Historical American engineering record

    SciTech Connect (OSTI)

    NONE

    1997-12-31T23:59:59.000Z

    This report describes the history of the Old Waste Calcining Facility. It begins with introductory material on the Idaho National Engineering and Environmental Laboratory, the Materials Testing Reactor fuel cycle, and the Idaho Chemical Processing Plant. The report then describes management of the wastes from the processing plant in the following chapters: Converting liquid to solid wastes; Fluidized bed waste calcining process and the Waste Calcining Facility; Waste calcining campaigns; WCF gets a new source of heat; New Waste Calcining Facility; Last campaign; Deactivation and the RCRA cap; Significance/context of the old WCF. Appendices contain a photo key map for HAER photos, a vicinity map and neighborhood of the WCF, detailed description of the calcining process, and chronology of WCF campaigns.

  8. Cultural Resource Assessment of the Test Area North Demolition Landfill at the Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    Brenda R. Pace

    2003-07-01T23:59:59.000Z

    The proposed new demolition landfill at Test Area North on the Idaho National Engineering and Environmental Laboratory (INEEL) will support ongoing demolition and decontamination within the facilities on the north end of the INEEL. In June of 2003, the INEEL Cultural Resource Management Office conducted archival searches, field surveys, and coordination with the Shoshone-Bannock Tribes to identify all cultural resources that might be adversely affected by the project and to provide recommendations to protect those listed or eligible for listing on the National Register of Historic Places. These investigations showed that landfill construction and operation would affect two significant cultural resources. This report outlines protective measures to ensure that these effects are not adverse.

  9. 1997 Idaho National Engineering and Environmental Laboratory (INEEL) National Emission Standards for Hazardous Air Pollutants (NESHAPs) -- Radionuclides annual report

    SciTech Connect (OSTI)

    NONE

    1998-06-01T23:59:59.000Z

    Under Section 61.94 of Title 40, Code of Federal Regulations (CFR), Part 61, Subpart H, National Emission Standards for Emissions of Radionuclides Other Than Radon From Department of Energy Facilities, each Department of Energy (DOE) facility must submit an annual report documenting compliance. This report addresses the Section 61.94 reporting requirements for operations at the Idaho National Engineering and Environmental Laboratory (INEEL) for calendar year (CY) 1997. Section 1 of this report provides an overview of the INEEL facilities and a brief description of the radioactive materials and processes at the facilities. Section 2 identifies radioactive air effluent release points and diffuse sources at the INEEL and actual releases during 1997. Section 2 also describes the effluent control systems for each potential release point. Section 3 provides the methodology and EDE calculations for 1997 INEEL radioactive emissions.

  10. Radiological, physical, and chemical characterization of low-level alpha contaminated wastes stored at the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Apel, M.L.; Becker, G.K.; Ragan, Z.K.; Frasure, J.; Raivo, B.D.; Gale, L.G.; Pace, D.P.

    1994-03-01T23:59:59.000Z

    This document provides radiological, physical, and chemical characterization data for low-level alpha-contaminated radioactive and low-level alpha-contaminated radioactive and hazardous (i.e., mixed) wastes stored at the Idaho National Engineering Laboratory and considered for treatment under the Private Sector Participation Initiative Program. Waste characterization data are provided in the form of INEL Waste Profile Sheets. These documents provide, for each content code, information on waste identification, waste description, waste storage configuration, physical/chemical waste composition, radionuclide and associated alpha activity waste characterization data, and hazardous constituents present in the waste. Information is provided for 97 waste streams which represent an estimated total volume of 25,450 m 3 corresponding to a total mass of approximately 12,000,000 kg. In addition, considerable information concerning alpha, beta, gamma, and neutron source term data specific to Rocky Flats-generated waste forms stored at the INEL are provided to assist in facility design specification.

  11. Short-Term and Long-Term Technology Needs/Matching Status at Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    S. L. Claggett

    1999-12-01T23:59:59.000Z

    This report identifies potential technology deployment opportunities for the Environmental Management (EM) programs at the Idaho National Engineering and Environmental Laboratory (INEEL). The focus is on identifying candidates for Accelerated Site Technology Deployment (ASTD) proposals within the Environmental Restoration and Waste Management areas. The 86 technology needs on the Site Technology Coordination Group list were verified in the field. Six additional needs were found, and one listed need was no longer required. Potential technology matches were identified and then investigated for applicability, maturity, cost, and performance. Where promising, information on the technologies was provided to INEEL managers for evaluation. Eleven potential ASTD projected were identified, seven for near-term application and four for application within the next five years.

  12. 2003 Idaho National Engineering and Environmental Laboratory Shallow Injection Well Verification and Status Report

    SciTech Connect (OSTI)

    Lewis, M.G.

    2003-08-21T23:59:59.000Z

    A detailed verification of the shallow injection well inventory for Bechtel BWXT Idaho, LLC and Argonne National Laboratory-West-operated facilities was performed in 2003. Fourteen wells, or 20%, were randomly selected for the verification. This report provides updated information on the 14 shallow injection wells that were randomly selected for the 2003 verification. Where applicable, additional information is provided for shallow injection wells that were not selected for the 2003 verification. This updated information was incorporated into the 2003 Shallow Injection Wells Inventory, Sixty-eight wells were removed from the 2003 Shallow Injection Well Inventory.

  13. 2003 Idaho National Engineering and Environmental Laboratory Shallow Injection Well Verification and Status Report

    SciTech Connect (OSTI)

    Mike Lewis

    2003-08-01T23:59:59.000Z

    A detailed verification of the shallow injection well inventory for Bechtel BWXT Idaho, LLC and Argonne National Laboratory-West-operated facilities was performed in 2003. Fourteen wells, or 20%, were randomly selected for the verification. This report provides updated information on the 14 shallow injection wells that were randomly selected for the 2003 verification. Where applicable, additional information is provided for shallow injection wells that were not selected for the 2003 verification. This updated information was incorporated into the 2003 Shallow Injection Wells Inventory. Sixty-eight wells were removed from the 2003 Shallow Injection Well Inventory.

  14. Analysis Activities at Idaho National Engineering & Environmental...

    Broader source: Energy.gov (indexed) [DOE]

    Analysis Activities at Idaho National Engineering & Environmental Laboratory Analysis Activities at Idaho National Engineering & Environmental Laboratory Presentation on INEENL's...

  15. Floodplain Assessment for the Proposed Engineered Erosion Controls at TA-72 in Lower Sandia Canyon, Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Hathcock, Charles D. [Los Alamos National Laboratory

    2012-08-27T23:59:59.000Z

    Los Alamos National Laboratory (LANL) is preparing to implement engineering controls in Sandia Canyon at Technical Area (TA) 72. Los Alamos National Security (LANS) biologists conducted a floodplain determination and this project is located within a 100-year floodplain. The proposed project is to rehabilitate the degraded channel in lower Sandia Canyon where it crosses through the outdoor firing range at TA-72 to limit the loss of sediment and dissipate floodwater leaving LANL property (Figure 1). The proposed construction of these engineered controls is part of the New Mexico Environment Department's (NMED) approved LANL Individual Storm Water Permit. The purpose of this project is to install storm water controls at Sandia Watershed Site Monitoring Area 6 (S-SMA-6). Storm water controls will be designed and installed to meet the requirements of NPDES Permit No. NM0030759, commonly referred to as the LANL Individual Storm Water Permit (IP). The storm water control measures address storm water mitigation for the area within the boundary of Area of Concern (AOC) 72-001. This action meets the requirements of the IP for S-SMA-6 for storm water controls by a combination of: preventing exposure of upstream storm water and storm water generated within the channel to the AOC and totally retaining storm water falling outside the channel but within the AOC.

  16. Baseline Flowsheet Generation for the Treatment and Disposal of Idaho National Engineering and Environmental Laboratory Sodium Bearing Waste

    SciTech Connect (OSTI)

    Barnes, C.M.; Lauerhass, L.; Olson, A.L.; Taylor, D.D.; Valentine, J.H.; Lockie, K.A. (DOE- ID)

    2002-01-16T23:59:59.000Z

    The High-Level Waste (HLW) Program at the Idaho National Engineering and Environmental Laboratory (INEEL) must implement technologies and processes to treat and qualify radioactive wastes located at the Idaho Nuclear Technology and Engineering Center (INTEC) for permanent disposal. This paper describes the approach and accomplishments to date for completing development of a baseline vitrification treatment flowsheet for sodium-bearing waste (SBW), including development of a relational database used to manage the associated process assumptions. A process baseline has been developed that includes process requirements, basis and assumptions, process flow diagrams, a process description, and a mass balance. In the absence of actual process or experimental results, mass and energy balance data for certain process steps are based on assumptions. Identification, documentation, validation, and overall management of the flowsheet assumptions are critical to ensuring an integrated, focused program. The INEEL HLW Program initially used a roadmapping methodology, developed through the INEEL Environmental Management Integration Program, to identify, document, and assess the uncertainty and risk associated with the SBW flowsheet process assumptions. However, the mass balance assumptions, process configuration and requirements should be accessible to all program participants. This need resulted in the creation of a relational database that provides formal documentation and tracking of the programmatic uncertainties related to the SBW flowsheet.

  17. Baseline Flowsheet Generation for the Treatment and Disposal of Idaho National Engineering and Environmental Laboratory Sodium Bearing Waste

    SciTech Connect (OSTI)

    Barnes, Charles Marshall; Lauerhass, Lance; Olson, Arlin Leland; Taylor, Dean Dalton; Valentine, James Henry; Lockie, Keith Andrew

    2002-02-01T23:59:59.000Z

    The High-Level Waste (HLW) Program at the Idaho National Engineering and Environmental Laboratory (INEEL) must implement technologies and processes to treat and qualify radioactive wastes located at the Idaho Nuclear Technology and Engineering Center (INTEC) for permanent disposal. This paper describes the approach and accomplishments to date for completing development of a baseline vitrification treatment flowsheet for sodium-bearing waste (SBW), including development of a relational database used to manage the associated process assumptions. A process baseline has been developed that includes process requirements, basis and assumptions, process flow diagrams, a process description, and a mass balance. In the absence of actual process or experimental results, mass and energy balance data for certain process steps are based on assumptions. Identification, documentation, validation, and overall management of the flowsheet assumptions are critical to ensuring an integrated, focused program. The INEEL HLW Program initially used a roadmapping methodology, developed through the INEEL Environmental Management Integration Program, to identify, document, and assess the uncertainty and risk associated with the SBW flowsheet process assumptions. However, the mass balance assumptions, process configuration and requirements should be accessible to all program participants. This need resulted in the creation of a relational database that provides formal documentation and tracking of the programmatic uncertainties related to the SBW flowsheet.

  18. Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan : ASC software quality engineering practices Version 3.0.

    SciTech Connect (OSTI)

    Turgeon, Jennifer L.; Minana, Molly A.; Hackney, Patricia; Pilch, Martin M.

    2009-01-01T23:59:59.000Z

    The purpose of the Sandia National Laboratories (SNL) Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. Quality is defined in the US Department of Energy/National Nuclear Security Agency (DOE/NNSA) Quality Criteria, Revision 10 (QC-1) as 'conformance to customer requirements and expectations'. This quality plan defines the SNL ASC Program software quality engineering (SQE) practices and provides a mapping of these practices to the SNL Corporate Process Requirement (CPR) 001.3.6; 'Corporate Software Engineering Excellence'. This plan also identifies ASC management's and the software project teams responsibilities in implementing the software quality practices and in assessing progress towards achieving their software quality goals. This SNL ASC Software Quality Plan establishes the signatories commitments to improving software products by applying cost-effective SQE practices. This plan enumerates the SQE practices that comprise the development of SNL ASC's software products and explains the project teams opportunities for tailoring and implementing the practices.

  19. Innovative Application of Maintenance-Free Phase-Change Thermal Energy Storage for Dish-Engine Solar Power Generation

    SciTech Connect (OSTI)

    Qui, Songgang [Temple University] [Temple University; Galbraith, Ross [Infinia] [Infinia

    2013-01-23T23:59:59.000Z

    This final report summarizes the final results of the Phase II Innovative Application of Maintenance-Free Phase-Change Thermal Energy Storage for Dish-Engine Solar Power Generation project being performed by Infinia Corporation for the U.S. Department of Energy under contract DE-FC36-08GO18157 during the project period of September 1, 2009 - August 30, 2012. The primary objective of this project is to demonstrate the practicality of integrating thermal energy storage (TES) modules, using a suitable thermal salt phase-change material (PCM) as its medium, with a dish/Stirling engine; enabling the system to operate during cloud transients and to provide dispatchable power for 4 to 6 hours after sunset. A laboratory prototype designed to provide 3 kW-h of net electrical output was constructed and tested at Infinia's Ogden Headquarters. In the course of the testing, it was determined that the system's heat pipe network - used to transfer incoming heat from the solar receiver to both the Stirling generator heater head and to the phase change salt - did not perform to expectations. The heat pipes had limited capacity to deliver sufficient heat energy to the generator and salt mass while in a charging mode, which was highly dependent on the orientation of the device (vertical versus horizontal). In addition, the TES system was only able to extract about 30 to 40% of the expected amount of energy from the phase change salt once it was fully molten. However, the use of heat pipes to transfer heat energy to and from a thermal energy storage medium is a key technical innovation, and the project team feels that the limitations of the current device could be greatly improved with further development. A detailed study of manufacturing costs using the prototype TES module as a basis indicates that meeting DOE LCOE goals with this hardware requires significant efforts. Improvement can be made by implementing aggressive cost-down initiatives in design and materials, improving system performance by boosting efficiencies, and by refining cost estimates with vendor quotes in lieu of mass-based approaches. Although the prototype did not fully demonstrate performance and realize projected cost targets, the project team believes that these challenges can be overcome. The test data showed that the performance can be significantly improved by refining the heat pipe designs. However, the project objective for phase 3 is to design and test on sun the field ready systems, the project team feels that is necessary to further refine the prototype heat pipe design in the current prototype TES system before move on to field test units, Phase 3 continuation will not be pursued.

  20. Environmental Survey preliminary report, Idaho National Engineering Laboratory, Idaho Falls, Idaho and Component Development and Integration Facility, Butte, Montana

    SciTech Connect (OSTI)

    Not Available

    1988-09-01T23:59:59.000Z

    This report presents the preliminary findings of the first phase of the Environmental Survey of the United States Department of Energy's (DOE) Idaho National Engineering Laboratory (INEL) and Component Development and Integration Facility (CDIF), conducted September 14 through October 2, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. The team includes outside experts supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the INEL and CDIF. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations' carried on at the INEL and the CDIF, and interviews with site personnel. The Survey team developed a Sampling and Analysis (S A) Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The S A Plan will be executed by the Oak Ridge National Laboratory. When completed, the S A results will be incorporated into the INEL/CDIF Survey findings for inclusion into the Environmental Survey Summary Report. 90 refs., 95 figs., 77 tabs.

  1. Soil stabilization using oil shale solid wastes: Laboratory evaluation of engineering properties

    SciTech Connect (OSTI)

    Turner, J.P.

    1991-01-01T23:59:59.000Z

    Oil shale solid wastes were evaluated for possible use as soil stabilizers. A laboratory study was conducted and consisted of the following tests on compacted samples of soil treated with water and spent oil shale: unconfined compressive strength, moisture-density relationships, wet-dry and freeze-thaw durability, and resilient modulus. Significant increases in strength, durability, and resilient modulus were obtained by treating a silty sand with combusted western oil shale. Moderate increases in strength, durability, and resilient modulus were obtained by treating a highly plastic clay with combusted western oil shale. Solid waste from eastern shale can be used for soil stabilization if limestone is added during combustion. Without limestone, eastern oil shale waste exhibits little or no cementation. The testing methods, results, and recommendations for mix design of spent shale-stabilized pavement subgrades are presented. 11 refs., 3 figs., 10 tabs.

  2. Engineering Annual Summary 1996

    SciTech Connect (OSTI)

    Dimolitsas, S.

    1997-04-30T23:59:59.000Z

    Fiscal year 1996 has been a year of significant change for the Lawrence Livermore National Laboratory (LLNL) in general and for Engineering in particular. Among these changes, the Laboratory`s national security mission was better defined, the stockpile stewardship program objectives became crisper, LLNL`s investment in high-performance computing was re-emphasized with the procurement of a $100 million supercomputer for the Laboratory`s Accelerated Strategic Computing Initiative (ASCI) program, two major Laser programs (the National Ignition Facility and Atomic Vapor Laser Isotope Separation) expanded significantly, and DOE`s human genome efforts moved to the next phase of development. In the area of business operations, LLNL`s Cost Cutting Initiative Program (CCIP) was completed and the Laboratory restructured its workforce using a Voluntary Separation Incentive Program (VSIP). Engineering similarly also saw many technical and programmatic successes, as well as changes, starting with completion of its strategic plan, significant consolidation of its facilities, restructuring of its workforce, reduction of its overhead costs, substantial transfers of staff between programs, and finally my personal arrival at Livermore. This report is the first opportunity to capture some of Engineering`s FY96 activities and accomplishments in a succinct fashion, and to relate these to our strategic plan.

  3. Research programs at the Department of Energy National Laboratories. Volume 2: Laboratory matrix

    SciTech Connect (OSTI)

    NONE

    1994-12-01T23:59:59.000Z

    For nearly fifty years, the US national laboratories, under the direction of the Department of Energy, have maintained a tradition of outstanding scientific research and innovative technological development. With the end of the Cold War, their roles have undergone profound changes. Although many of their original priorities remain--stewardship of the nation`s nuclear stockpile, for example--pressing budget constraints and new federal mandates have altered their focus. Promotion of energy efficiency, environmental restoration, human health, and technology partnerships with the goal of enhancing US economic and technological competitiveness are key new priorities. The multiprogram national laboratories offer unparalleled expertise in meeting the challenge of changing priorities. This volume aims to demonstrate each laboratory`s uniqueness in applying this expertise. It describes the laboratories` activities in eleven broad areas of research that most or all share in common. Each section of this volume is devoted to a single laboratory. Those included are: Argonne National Laboratory; Brookhaven National Laboratory; Idaho National Engineering Laboratory; Lawrence Berkeley Laboratory; Lawrence Livermore National Laboratory; Los Alamos National Laboratory; National Renewable Energy Laboratory; Oak Ridge National Laboratory; Pacific Northwest Laboratory; and Sandia National Laboratories. The information in this volume was provided by the multiprogram national laboratories and compiled at Lawrence Berkeley Laboratory.

  4. When is More Data Valuable to Human Operators? The Cognitive Engineering Laboratory (CEL) plans to conduct a microworld simulator study during the summer of 2014.

    E-Print Network [OSTI]

    When is More Data Valuable to Human Operators? The Cognitive Engineering Laboratory (CEL) plans to conduct a microworld simulator study during the summer of 2014. The objective is to evaluate human only looked at operator performance under normal operating conditions. Will having additional sensor

  5. Photovoltaic energy conversion The objective of this laboratory is for you to explore the science and engineering of the conversion of

    E-Print Network [OSTI]

    Braun, Paul

    Photovoltaic energy conversion Objective The objective of this laboratory is for you to explore the science and engineering of the conversion of light to electricity by photovoltaic devices. Preparation photovoltaic modules; reversebiased Si pin photodiode. · White light LED lamp; dc power supply; bread board

  6. In Summary: Idaho National Engineering and Environmental Laboratory Site Environmental Report for Calendar Year 1998

    SciTech Connect (OSTI)

    A. A. Luft; R. B. Evans; T. Saffle; R. G. Mitchell; D. B. Martin

    2000-06-01T23:59:59.000Z

    Scientists from the Environmental Science and Research Foundation, Lockheed Martin Idaho Technologies Company (LMITCO), the US Geological Survey, the Naval Nuclear Propulsion Program Naval Reactors Facility, Argonne National Laboratory-West, and others monitored the environment on and around the INEEL to find contaminants attributable to the INEEL. During 1998, exposures from the INEEL to the public were found to be negligible. The US Department of Energy (DOE) and LMITCO made progress in developing and implementing a site-wide Environmental Management System. This system provides an underlying structure to make the management of environmental activities at the INEEL more systematic and predictable. Pathways by which INEEL contaminants might reach people off the INEEL were monitored. These included air, precipitation, water, locally grown food (milk, lettuce, wheat, and potatoes), livestock, game animals, soil, and direct ionizing radiation. Results from samples collected to monitor these pathways often contain ''background radioactivity,'' which is radioactivity from natural sources and nuclear weapons tests carried out between 1945 and 1980. According to results obtained in 1998, radioactivity from operations at the INEEL could not be distinguished from this background radioactivity in the regions surrounding the INEEL. Because radioactivity from the INEEL was not detected by offsite environmental surveillance methods, computer models were used to estimate the radiation dose to the public. The hypothetical maximum dose to an individual from INEEL operations was calculated to be 0.08 millirem. That is 0.002 percent of an average person's annual dose of 360 millirem from natural background radiation in southeast Idaho.

  7. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs draft environmental impact statement. Volume 1, Appendix B: Idaho National Engineering Laboratory Spent Nuclear Fuel Management Program

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    The US Department of Energy (DOE) has prepared this report to assist its management in making two decisions. The first decision, which is programmatic, is to determine the management program for DOE spent nuclear fuel. The second decision is on the future direction of environmental restoration, waste management, and spent nuclear fuel management activities at the Idaho National Engineering Laboratory. Volume 1 of the EIS, which supports the programmatic decision, considers the effects of spent nuclear fuel management on the quality of the human and natural environment for planning years 1995 through 2035. DOE has derived the information and analysis results in Volume 1 from several site-specific appendixes. Volume 2 of the EIS, which supports the INEL-specific decision, describes environmental impacts for various environmental restoration, waste management, and spent nuclear fuel management alternatives for planning years 1995 through 2005. This Appendix B to Volume 1 considers the impacts on the INEL environment of the implementation of various DOE-wide spent nuclear fuel management alternatives. The Naval Nuclear Propulsion Program, which is a joint Navy/DOE program, is responsible for spent naval nuclear fuel examination at the INEL. For this appendix, naval fuel that has been examined at the Naval Reactors Facility and turned over to DOE for storage is termed naval-type fuel. This appendix evaluates the management of DOE spent nuclear fuel including naval-type fuel.

  8. Idaho National Engineering Laboratory Waste Area Groups 1-7 and 10 Technology Logic Diagram. Volume 3

    SciTech Connect (OSTI)

    O`Brien, M.C.; Meservey, R.H.; Little, M.; Ferguson, J.S.; Gilmore, M.C.

    1993-09-01T23:59:59.000Z

    The Idaho National Engineering Laboratory (INEL) Technology Logic Diagram (TLD) was developed to provide a decision support tool that relates Environmental Restoration (ER) and Waste Management (WM) problems at the INEL to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to an environmental restoration need. It is essential that follow-on engineering and system studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologies identified in this TLD and finding an optimum mix of technologies that will provide a socially acceptable balance between cost and risk to meet the site windows of opportunity. The TLD consists of three separate volumes: Volume I includes the purpose and scope of the TLD, a brief history of the INEL Waste Area Groups, and environmental problems they represent. A description of the TLD, definitions of terms, a description of the technology evaluation process, and a summary of each subelement, is presented. Volume II describes the overall layout and development of the TLD in logic diagram format. This section addresses the environmental restoration of contaminated INEL sites. Volume III (this volume) provides the Technology Evaluation Data Sheets (TEDS) for Environmental Restoration and Waste Management (EM) activities that are reference by a TEDS code number in Volume II. Each of these sheets represents a single logic trace across the TLD. These sheets contain more detail than provided for technologies in Volume II. Data sheets are arranged alphanumerically by the TEDS code number in the upper right corner of each sheet.

  9. Confirmatory radiological survey of the BORAX-V turbine building Idaho National Engineering Laboratory, Idaho Falls, Idaho

    SciTech Connect (OSTI)

    Stevens, G.H.; Coleman, R.L.; Jensen, M.K.; Pierce, G.A. [Oak Ridge National Lab., TN (US); Egidi, P.V.; Mather, S.K. [Oak Ridge Inst. for Science and Education, Grand Junction, CO (United States)

    1993-07-01T23:59:59.000Z

    An independent assessment of the remediation of the BORAX-V (Boiling Water Reactor Experiment) turbine building at the Idaho National Engineering Laboratory (INEL), Idaho Falls, Idaho, was accomplished by the Oak Ridge National Laboratory Pollutant Assessments Group (ORNL/PAG). The purpose of the assessment was to confirm the site`s compliance with applicable Department of Energy guidelines. The assessment included reviews of both the decontamination and decommissioning Plan and data provided from the pre- and post-remedial action surveys and an independent verification survey of the facility. The independent verification survey included determination of background exposure rates and soil concentrations, beta-gamma and gamma radiation scans, smears for detection of removable contamination, and direct measurements for alpha and beta-gamma radiation activity on the basement and mezzanine floors and the building`s interior and exterior walls. Soil samples were taken, and beta-gamma and gamma radiation exposure rates were measured on areas adjacent to the building. Results of measurements on building surfaces at this facility were within established contamination guidelines except for elevated beta-gamma radiation levels located on three isolated areas of the basement floor. Following remediation of these areas, ORNL/PAG reviewed the remedial action contractor`s report and agreed that remediation was effective in removing the source of the elevated direct radiation. Results of all independent soil analyses for {sup 60}Co were below the detection limit. The highest {sup 137}Cs analysis result was 4.6 pCi/g; this value is below the INEL site-specific guideline of 10 pCi/g.

  10. Environment, Safety and Health progress assessment of the Idaho National Engineering Laboratory (INEL)

    SciTech Connect (OSTI)

    Not Available

    1993-08-01T23:59:59.000Z

    The ES&H Progress Assessments are part of the Department`s continuous improvement process throughout DOE and its contractor organizations. The purpose of the INEL ES&H Progress Assessment is to provide the Department with concise independent information on the following: (1) change in culture and attitude related to ES&H activities; (2) progress and effectiveness of the ES&H corrective actions resulting from previous Tiger Team Assessments; (3) adequacy and effectiveness of the ES&H self-assessment programs of the DOE line organizations and the site management and operating contractor; and (4) effectiveness of DOE and contractor management structures, resources, and systems to effectively address ES&H problems. It is not intended that this Progress Assessment be a comprehensive compliance assessments of ES&H activities. The points of reference for assessing programs at the INEL were, for the most part, the 1991 INEL Tiger Team Assessment, the INEL Corrective Action Plan, and recent appraisals and self-assessments of INEL. Horizontal and vertical reviews of the following programmatic areas were conducted: Management: Corrective action program; self-assessment; oversight; directives, policies, and procedures; human resources management; and planning, budgeting, and resource allocation. Environment: Air quality management, surface water management, groundwater protection, and environmental radiation. Safety and Health: Construction safety, worker safety and OSHA, maintenance, packaging and transportation, site/facility safety review, and industrial hygiene.

  11. Idaho National Engineering Laboratory code assessment of the Rocky Flats transuranic waste

    SciTech Connect (OSTI)

    NONE

    1995-07-01T23:59:59.000Z

    This report is an assessment of the content codes associated with transuranic waste shipped from the Rocky Flats Plant in Golden, Colorado, to INEL. The primary objective of this document is to characterize and describe the transuranic wastes shipped to INEL from Rocky Flats by item description code (IDC). This information will aid INEL in determining if the waste meets the waste acceptance criteria (WAC) of the Waste Isolation Pilot Plant (WIPP). The waste covered by this content code assessment was shipped from Rocky Flats between 1985 and 1989. These years coincide with the dates for information available in the Rocky Flats Solid Waste Information Management System (SWIMS). The majority of waste shipped during this time was certified to the existing WIPP WAC. This waste is referred to as precertified waste. Reassessment of these precertified waste containers is necessary because of changes in the WIPP WAC. To accomplish this assessment, the analytical and process knowledge available on the various IDCs used at Rocky Flats were evaluated. Rocky Flats sources for this information include employee interviews, SWIMS, Transuranic Waste Certification Program, Transuranic Waste Inspection Procedure, Backlog Waste Baseline Books, WIPP Experimental Waste Characterization Program (headspace analysis), and other related documents, procedures, and programs. Summaries are provided of: (a) certification information, (b) waste description, (c) generation source, (d) recovery method, (e) waste packaging and handling information, (f) container preparation information, (g) assay information, (h) inspection information, (i) analytical data, and (j) RCRA characterization.

  12. Geologic processes in the RWMC area, Idaho National Engineering Laboratory: Implications for long term stability and soil erosion at the radioactive waste management complex

    SciTech Connect (OSTI)

    Hackett, W.R.; Tullis, J.A.; Smith, R.P. [and others

    1995-09-01T23:59:59.000Z

    The Radioactive Waste Management Complex (RWMC) is the disposal and storage facility for low-level radioactive waste at the Idaho National Engineering Laboratory (INEL). Transuranic waste and mixed wastes were also disposed at the RWMC until 1970. It is located in the southwestern part of the INEL about 80 km west of Idaho Falls, Idaho. The INEL occupies a portion of the Eastern Snake River Plain (ESRP), a low-relief, basalt, and sediment-floored basin within the northern Rocky Mountains and northeastern Basin and Range Province. It is a cool and semiarid, sagebrush steppe desert characterized by irregular, rolling terrain. The RWMC began disposal of INEL-generated wastes in 1952, and since 1954, wastes have been accepted from other Federal facilities. Much of the waste is buried in shallow trenches, pits, and soil vaults. Until about 1970, trenches and pits were excavated to the basalt surface, leaving no sediments between the waste and the top of the basalt. Since 1970, a layer of sediment (about 1 m) has been left between the waste and the basalt. The United States Department of Energy (DOE) has developed regulations specific to radioactive-waste disposal, including environmental standards and performance objectives. The regulation applicable to all DOE facilities is DOE Order 5820.2A (Radioactive Waste Management). An important consideration for the performance assessment of the RWMC is the long-term geomorphic stability of the site. Several investigators have identified geologic processes and events that could disrupt a radioactive waste disposal facility. Examples of these {open_quotes}geomorphic hazards{close_quotes} include changes in stream discharge, sediment load, and base level, which may result from climate change, tectonic processes, or magmatic processes. In the performance assessment, these hazards are incorporated into scenarios that may affect the future performance of the RWMC.

  13. Sorbent Testing For Solidification of Process Waste streams from the Radiochemical Engineering Development Center at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Bickford, J. [MSE Technology Applications, Inc., MT (United States); Taylor, P. [Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    2007-07-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) tasked MSE Technology Applications, Inc. (MSE) to evaluate sorbents identified by Oak Ridge National Laboratory (ORNL) to solidify the radioactive liquid organic waste from the Radiochemical Engineering Development Center (REDC) at ORNL. REDC recovers and purifies heavy elements (berkelium, californium, einsteinium, and fermium) from irradiated targets for research and industrial applications. Both organic and aqueous waste streams are discharged from REDC. The organic waste is generated from the plutonium/uranium extraction (Purex), Cleanex, and Pubex processes. The Purex waste derives from an organic-aqueous isotope separation process for plutonium and uranium fission products, the Cleanex waste derives from the removal of fission products and other impurities from the americium/curium product, and the Pubex waste is derived from the separation process of plutonium from dissolved targets. MSE had also been tasked to test a grouting formula for the aqueous waste stream that includes radioactive shielding material. The aqueous waste is a mixture of the raffinate streams from the various extraction processes plus the caustic solution that is used to dissolve the aluminum cladding from the irradiated targets. (authors)

  14. Workshop proceedings: Developing the scientific basis for long-term land management of the Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    Sperber, T.D.; Reynolds, T.D. [eds.] [Environmental Science and Research Foundation, Inc., Idaho Falls, ID (United States); Breckenridge, R.P. [ed.] [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States)

    1998-03-01T23:59:59.000Z

    Responses to a survey on the INEEL Comprehensive Facility and Land Use Plan (US DOE 1996a) indicated the need for additional discussion on environmental resources, disturbance, and land use issues on the Idaho National Engineering and Environmental Laboratory (INEEL). As a result, in September 1997, a workshop evaluated the existing scientific basis and determined future data needs for long-term land management on the INEEL. This INEEL Long-Term Land Management Workshop examined existing data on biotic, abiotic, and heritage resources and how these resources have been impacted by disturbance activities of the INEEL. Information gained from this workshop will help guide land and facility use decisions, identify data gaps, and focus future research efforts. This report summarizes background information on the INEEL and its long-term land use planning efforts, presentations and discussions at the workshop, and the existing data available at the INEEL. In this document, recommendations for future INEEL land use planning, research efforts, and future workshops are presented. The authors emphasize these are not policy statements, but comments and suggestions made by scientists and others participating in the workshop. Several appendices covering land use disturbance, legal drivers, land use assumptions and workshop participant comments, workshop participants and contributors, and the workshop agenda are also included.

  15. Preliminary delineation of natural geochemical reactions, Snake River Plain aquifer system, Idaho National Engineering Laboratory and vicinity, Idaho

    SciTech Connect (OSTI)

    Knobel, L.L.; Bartholomay, R.C.; Orr, B.R.

    1997-05-01T23:59:59.000Z

    The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, is conducting a study to determine the natural geochemistry of the Snake River Plain aquifer system at the Idaho National Engineering Laboratory (INEL), Idaho. As part of this study, a group of geochemical reactions that partially control the natural chemistry of ground water at the INEL were identified. Mineralogy of the aquifer matrix was determined using X-ray diffraction and thin-section analysis and theoretical stabilities of the minerals were used to identify potential solid-phase reactants and products of the reactions. The reactants and products that have an important contribution to the natural geochemistry include labradorite, olivine, pyroxene, smectite, calcite, ferric oxyhydroxide, and several silica phases. To further identify the reactions, analyses of 22 representative water samples from sites tapping the Snake River Plain aquifer system were used to determine the thermodynamic condition of the ground water relative to the minerals in the framework of the aquifer system. Principal reactions modifying the natural geochemical system include congruent dissolution of olivine, diopside, amorphous silica, and anhydrite; incongruent dissolution of labradorite with calcium montmorillonite as a residual product; precipitation of calcite and ferric oxyhydroxide; and oxidation of ferrous iron to ferric iron. Cation exchange reactions retard the downward movement of heavy, multivalent waste constituents where infiltration ponds are used for waste disposal.

  16. 1996 Idaho National Engineering and Environmental Laboratory (INEEL) National Emissions Standards for Hazardous Air Pollutants (NESHAPs) -- Radionuclides. Annual report

    SciTech Connect (OSTI)

    NONE

    1997-06-01T23:59:59.000Z

    Under Section 61.94 of Title 40, Code of Federal Regulations (CFR), Part 61, Subpart H, ``National Emission Standards for Emissions of Radionuclides Other Than Radon From Department of Energy Facilities,`` each Department of Energy (DOE) facility must submit an annual report documenting compliance. This report addresses the Section 61.94 reporting requirements for operations at the Idaho National Engineering and Environmental Laboratory (INEEL) for calendar year (CY) 1996. The Idaho Operations Office of the DOE is the primary contact concerning compliance with the National Emission Standards for Hazardous Air Pollutants (NESHAPs) at the INEEL. For calendar year 1996, airborne radionuclide emissions from the INEEL operations were calculated to result in a maximum individual dose to a member of the public of 3.14E-02 mrem (3.14E-07 Sievert). This effective dose equivalent (EDE) is well below the 40 CFR 61, Subpart H, regulatory standard of 10 mrem per year (1.0E-04 Sievert per year).

  17. Idaho National Engineering Laboratory Conceptual Site Treatment Plan. Tables 8.1 and 8.2, Appendices A, B, C

    SciTech Connect (OSTI)

    Eaton, D.

    1993-10-01T23:59:59.000Z

    The US Department of Energy (DOE) is required by Section 3021(b) of the Resource Conservation and Recovery Act (RCRA), as amended by the Federal Facility Compliance Act (FFCAct), to prepare plans describing the development of treatment capacities and technologies for treating mixed waste. The FFCAct requires site treatment plans (STPs or plans) to be developed for each site at which DOE generates or stores mixed waste and submitted to the host state or the US Environmental Protection Agency (EPA) for either approval, approval with modification, or disapproval. The Idaho National Engineering Laboratory (INEL) Conceptual Site Treatment Plan (CSTP) is the preliminary version of the plan required by the FFCAct and is being provided to the State of Idaho, the EPA, and others for review. A list of the other DOE sites preparing CSTPs is included in Appendix A of this document. In addition to aiding the INEL in formulating its Final Proposed STP, this CSTP will also provide information to other DOE sites for use in identifying common technology needs and potential options for treating their wastes. The INEL CSTP is also intended to be used in conjunction with CSTPs from other sites as a basis for nationwide discussions among state regulators, the EPA, and other interested parties on treatment strategies and options, and on technical and equity issues associated with DOE`s mixed waste.

  18. Engineering Project Management Using The Engineering Cockpit

    E-Print Network [OSTI]

    Engineering Project Management Using The Engineering Cockpit A collaboration platform for project managers and engineers Thomas Moser, Richard Mordinyi, Dietmar Winkler and Stefan Biffl Christian Doppler Laboratory "Software Engineering Integration for Flexible Automation Systems" Vienna University of Technology

  19. Engineering Evaluation of Proposed Alternative Salt Transfer Method for the Molten Salt Reactor Experiement for the Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Carlberg, Jon A.; Roberts, Kenneth T.; Kollie, Thomas G.; Little, Leslie E.; Brady, Sherman D.

    2009-09-30T23:59:59.000Z

    This evaluation was performed by Pro2Serve in accordance with the Technical Specification for an Engineering Evaluation of the Proposed Alternative Salt Transfer Method for the Molten Salt Reactor Experiment at the Oak Ridge National Laboratory (BJC 2009b). The evaluators reviewed the Engineering Evaluation Work Plan for Molten Salt Reactor Experiment Residual Salt Removal, Oak Ridge National Laboratory, Oak Ridge, Tennessee (DOE 2008). The Work Plan (DOE 2008) involves installing a salt transfer probe and new drain line into the Fuel Drain Tanks and Fuel Flush Tank and connecting them to the new salt transfer line at the drain tank cell shield. The probe is to be inserted through the tank ball valve and the molten salt to the bottom of the tank. The tank would then be pressurized through the Reactive Gas Removal System to force the salt into the salt canisters. The Evaluation Team reviewed the work plan, interviewed site personnel, reviewed numerous documents on the Molten Salt Reactor (Sects. 7 and 8), and inspected the probes planned to be used for the transfer. Based on several concerns identified during this review, the team recommends not proceeding with the salt transfer via the proposed alternate salt transfer method. The major concerns identified during this evaluation are: (1) Structural integrity of the tanks - The main concern is with the corrosion that occurred during the fluorination phase of the uranium removal process. This may also apply to the salt transfer line for the Fuel Flush Tank. Corrosion Associated with Fluorination in the Oak Ridge National Laboratory Fluoride Volatility Process (Litman 1961) shows that this problem is significant. (2) Continued generation of Fluorine - Although the generation of Fluorine will be at a lower rate than experienced before the uranium removal, it will continue to be generated. This needs to be taken into consideration regardless of what actions are taken with the salt. (3) More than one phase of material - There are likely multiple phases of material in the salt (metal or compound), either suspended through the salt matrix, layered in the bottom of the tank, or both. These phases may contribute to plugging during any planned transfer. There is not enough data to know for sure. (4) Probe heat trace - The alternate transfer method does not include heat tracing of the bottom of the probe. There is a concern that this may cool the salt and other phases of materials present enough to block the flow of salt. (5) Stress-corrosion cracking - Additionally, there is a concern regarding moisture that may have been introduced into the tanks. Due to time constraints, this concern was not validated. However, if moisture was introduced into the tanks and not removed during heating the tanks before HF and F2 sparging, there would be an additional concern regarding the potential for stress-corrosion cracking of the tank walls.

  20. Observing and modeling nonlinear dynamics in an internal combustion engine Engineering Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-8088

    E-Print Network [OSTI]

    Tennessee, University of

    Observing and modeling nonlinear dynamics in an internal combustion engine C. S. Daw* Engineering motivated, nonlinear map as a model for cyclic combustion variation in spark-ignited internal combustion combustion engines can exhibit substantial cycle-to-cycle variation in combustion energy release

  1. PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE BROOKHAVEN GRAPHITE RESEARCH REACTOR ENGINEERED CAP, BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK DCN 5098-SR-07-0

    SciTech Connect (OSTI)

    Evan Harpenau

    2011-07-15T23:59:59.000Z

    The Oak Ridge Institute for Science and Education (ORISE) has reviewed the project documentation and data for the Brookhaven Graphite Research Reactor (BGRR) Engineered Cap at Brookhaven National Laboratory (BNL) in Upton, New York. The Brookhaven Science Associates (BSA) have completed removal of affected soils and performed as-left surveys by BSA associated with the BGRR Engineered Cap. Sample results have been submitted, as required, to demonstrate that remediation efforts comply with the cleanup goal of {approx}15 mrem/yr above background to a resident in 50 years (BNL 2011a).

  2. Theoretical full power correction factors as related to changes in ambient temperature, pressure and absolute humidity for aircraft turbine engines

    E-Print Network [OSTI]

    Raphael, Michel Antoun

    1969-01-01T23:59:59.000Z

    IN AMBIENT TEMPERATURE, PRESSURF. AND ABSOLUTE HUMIDITY FOR AIRCRAFT TURBINE ENGINES (August 1969) Michael Antoun Raphael B. S. (Mechanical Engineering) Texas A&M University Directed by: Professor Stanley H, Lowy ABSTRACT Power losses in aircraft gas... rated at standard atmospheric conditions (i. e, ambient temperature 69 F 3'Fend atmospheric pressure 29. 92 in. Hg. dry) . Obviously this same turbine will not be exposed to such standard conditions; therefore we have a change in power directly...

  3. Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Aamodt, Tor - Department of Electrical and Computer Engineering, University of British Columbia Aazhang, Behnaam -...

  4. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs draft environmental impact statement. Summary

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    This document analyzes at a programmatic level the potential environmental consequences over the next 40 years of alternatives related to the transportation, receipt, processing, and storage of spent nuclear fuel under the responsibility of the US Department of Energy. It also analyzes the site-specific consequences of the Idaho National Engineering Laboratory sitewide actions anticipated over the next 10 years for waste and spent nuclear fuel management and environmental restoration. For programmatic spent nuclear fuel management, this document analyzes alternatives of no action, decentralization, regionalization, centralization and the use of the plans that existed in 1992/1993 for the management of these materials. For the Idaho National Engineering Laboratory, this document analyzes alternatives of no action, ten-year plan, minimum and maximum treatment, storage, and disposal of US Department of Energy wastes.

  5. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 2, Part A

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    This document analyzes at a programmatic level the potential environmental consequences over the next 40 years of alternatives related to the transportation, receipt, processing, and storage of spent nuclear fuel under the responsibility of the US Department of Energy. It also analyzes the site-specific consequences of the Idaho National Engineering Laboratory sitewide actions anticipated over the next 10 years for waste and spent nuclear fuel management and environmental restoration. For programmatic spent nuclear fuel management this document analyzes alternatives of no action, decentralization, regionalization, centralization and the use of the plans that existed in 1992/1993 for the management of these materials. For the Idaho National Engineering Laboratory, this document analyzes alternatives of no action, ten-year plan, minimum and maximum and maximum treatment, storage, and disposal of US Department of Energy wastes.

  6. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    This document analyzes at a pregrammatic level the potential environmental consequences over the next 40 years of alternatives related to the transportation, receipt, processing, and storage of spent nuclear fuel under the responsibility of the US Department of Energy. It also analyzes the site-specific consequences of the Idaho National Engineering Laboratory sitewide actions anticipated over the next 10 years for waste and spent nuclear fuel management and environmental restoration. For pregrammatic spent nuclear fuel management, this document analyzes alternatives of no action, decentralization, regionalization, centralization and the use of the plans that existed in 1992/1993 for the management of these materials. For the Idaho National Engineering Laboratory, this document analyzes alternatives of no action, ten-year plan, minimum and maximum treatment, storage, and disposal of US Department of Energy wastes.

  7. EA-1407: Proposed TA-16 Engineering Complex Refurbishment and Consolidation at Los Alamos National Laboratory, Los Alamos, New Mexico

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal to construct and operate offices, laboratories, and shops within the U.S. Department of Energy Los Alamos National Laboratory's (LANL)...

  8. Inventory of site-derived {sup 36}Cl in the Snake River plain aquifier, Idaho National Engineering Laboratory, Idaho

    SciTech Connect (OSTI)

    Beasley, T.M.

    1995-02-01T23:59:59.000Z

    Radioactive waste management practices at the U.S. Department of Energy`s Idaho National Engineering Laboratory (INEL) in Idaho have introduced {sup 36}Cl (T{sub 1/2} = 301,000 yr) into the Snake River Plain aquifer underlying the site. The {sup 36}Cl is believed to originate from neutron activation of stable {sup 35}Cl in nuclear fuels (principally) and in reactor cooling/process water. Wastewater releases of {sup 3}H at the INEL have been documented by the site operators for the period 1952 to 1988. During this time, approximately 1.2 PBq of {sup 3}H (30,000 Ci) were introduced to the subsurface through disposal wells and seepage ponds. By sampling a number of monitoring and production wells downgradient from points of introduction, {sup 3}H movement and dispersion in the groundwater have been documented by the U.S. Geological Survey. The present report uses these historical {sup 3}H release and monitoring data to choose hydrologic parameters (matrix porosity and plume penetration depth) that produce concordance between the {sup 3}H release estimates and the inventory calculated from measurements of {sup 3}H in the subsurface. These parameters are then applied to {sup 36}Cl isopleths to generate an estimated {sup 36}Cl inventory in the subsurface. Using assumptions about irradiation times, neutron fluxes, and total fuel processed, as little as 23 g of stable chloride impurity in fuel elements would be adequate to produce the amount of {sup 36}Cl estimated to be in the groundwaters underlying the site. The highest atom concentration of {sup 36}Cl measured onsite (222x10{sup 10} atoms 1{sup -1}) corresponds to an activity level of {approximately}4 pCi 1{sup -1} and represents 0.2 percent of the U.S. Environmental Protection Agency`s (EPA) drinking water standard for this radionuclide (2000 pCi 1{sup -1}).

  9. Lawrence Livermore National Laboratory interests and capabilities for research on the ecological effects of global climatic and atmospheric change

    SciTech Connect (OSTI)

    Amthor, J.S.; Houpis, J.L.; Kercher, J.R.; Ledebuhr, A.; Miller, N.L.; Penner, J.E.; Robison, W.L.; Taylor, K.E.

    1994-09-01T23:59:59.000Z

    The Lawrence Livermore National Laboratory (LLNL) has interests and capabilities in all three types of research that must be conducted in order to understand and predict effects of global atmospheric and climatic (i.e., environmental) changes on ecological systems and their functions (ecosystem function is perhaps most conveniently defined as mass and energy exchange and storage). These three types of research are: (1) manipulative experiments with plants and ecosystems; (2) monitoring of present ecosystem, landscape, and global exchanges and pools of energy, elements, and compounds that play important roles in ecosystem function or the physical climate system, and (3) mechanistic (i.e., hierarchic and explanatory) modeling of plant and ecosystem responses to global environmental change. Specific experimental programs, monitoring plans, and modeling activities related to evaluation of ecological effects of global environmental change that are of interest to, and that can be carried out by LLNL scientists are outlined. Several projects have the distinction of integrating modeling with empirical studies resulting in an Integrated Product (a model or set of models) that DOE or any federal policy maker could use to assess ecological effects. The authors note that any scheme for evaluating ecological effects of atmospheric and climatic change should take into account exceptional or sensitive species, in particular, rare, threatened, or endangered species.

  10. Thermoelectric generators incorporating phase-change materials for waste heat recovery from engine exhaust

    DOE Patents [OSTI]

    Meisner, Gregory P; Yang, Jihui

    2014-02-11T23:59:59.000Z

    Thermoelectric devices, intended for placement in the exhaust of a hydrocarbon fuelled combustion device and particularly suited for use in the exhaust gas stream of an internal combustion engine propelling a vehicle, are described. Exhaust gas passing through the device is in thermal communication with one side of a thermoelectric module while the other side of the thermoelectric module is in thermal communication with a lower temperature environment. The heat extracted from the exhaust gasses is converted to electrical energy by the thermoelectric module. The performance of the generator is enhanced by thermally coupling the hot and cold junctions of the thermoelectric modules to phase-change materials which transform at a temperature compatible with the preferred operating temperatures of the thermoelectric modules. In a second embodiment, a plurality of thermoelectric modules, each with a preferred operating temperature and each with a uniquely-matched phase-change material may be used to compensate for the progressive lowering of the exhaust gas temperature as it traverses the length of the exhaust pipe.

  11. Climate Change and Optimal Energy Technology Department of Mechanical and Industrial Engineering, College of Engineering, University of Massachusetts, Amherst,

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Climate Change and Optimal Energy Technology R&D Policy Erin Baker Department of Mechanical of Massachusetts, Amherst, MA 01003, solak@som.umass.edu Public policy response to global climate change presents accounting for uncertainty and learning in climate change can have a large impact on optimal policy

  12. Engines

    SciTech Connect (OSTI)

    Enga, B.E.

    1981-08-25T23:59:59.000Z

    This invention relates to Stirling engines and to improved methods of operation whereby catalytic oxidation of a major proportion of the fuel takes place in the external combustor. An external combustion unit of a Stirling engine comprises a catalytic combustor having a thermally stable and oxidation resistant monolith made from and/or carrying a catalytic material and including a multiplicity of flow paths for catalytic combustion of combustible gases and injected fuel. The use of a catalytic combustor in accordance with this invention enables a Stirling or other engine fitted therewith to be used in areas such as mines and underwater installations where conventional flame combustion is impracticable or is controlled by stringent regulations.

  13. Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing Zirconia NanoparticlesSmart GrocerDepartment ofEngineer HonoredEngineering

  14. The Intelligent Systems and Control Laboratory and the Advanced Power Systems Research Center in the Department of Mechanical Engineering Engineering Mechanics at Michigan Technological University invites

    E-Print Network [OSTI]

    Endres. William J.

    and practical knowledge of how their performance varies when engines are run with biodiesel fuel blends including backpacking, hiking, camping, fishing, and both alpine and crosscountry skiing at Michigan

  15. Engineering AnteaterDrive

    E-Print Network [OSTI]

    Mease, Kenneth D.

    Rockw ell & M DEA Engineering Tower AnteaterDrive AnteaterDrive East Peltason Drive EastPeltasonDrive East Peltason Drive Anteater Parking Structure EngineeringServiceRoad Engineering Laboratory Facility Engineering Gateway Engineering Hall AIRB Calit2 Engineering Lecture Hall Campus Building Engineering Building

  16. The application of formal software engineering methods to the unattended and remote monitoring software suite at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Determan, John Clifford [Los Alamos National Laboratory; Longo, Joseph F [Los Alamos National Laboratory; Michel, Kelly D [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    The Unattended and Remote Monitoring (UNARM) system is a collection of specialized hardware and software used by the International Atomic Energy Agency (IAEA) to institute nuclear safeguards at many nuclear facilities around the world. The hardware consists of detectors, instruments, and networked computers for acquiring various forms of data, including but not limited to radiation data, global position coordinates, camera images, isotopic data, and operator declarations. The software provides two primary functions: the secure and reliable collection of this data from the instruments and the ability to perform an integrated review and analysis of the disparate data sources. Several years ago the team responsible for maintaining the software portion of the UNARM system began the process of formalizing its operations. These formal operations include a configuration management system, a change control board, an issue tracking system, and extensive formal testing, for both functionality and reliability. Functionality is tested with formal test cases chosen to fully represent the data types and methods of analysis that will be commonly encountered. Reliability is tested with iterative, concurrent testing where up to five analyses are executed simultaneously for thousands of cycles. Iterative concurrent testing helps ensure that there are no resource conflicts or leaks when multiple system components are in use simultaneously. The goal of this work is to provide a high quality, reliable product, commensurate with the criticality of the application. Testing results will be presented that demonstrate that this goal has been achieved and the impact of the introduction of a formal software engineering framework to the UNARM product will be presented.

  17. Engineering Engineering

    E-Print Network [OSTI]

    Maroncelli, Mark

    Engineering Engineering Technology & A T P E N N S T A T E 2 0 1 0 ­ 2 0 1 1 #12;2 Join us at penn state! Since 1896, Penn State has been a leader in engineering and engineering technology education varieties of engineering and engineering technology majors found anywhere in the United States. This means

  18. Summary of ground water and surface water flow and contaminant transport computer codes used at the Idaho National Engineering Laboratory (INEL). Version 1.0

    SciTech Connect (OSTI)

    Bandy, P.J.; Hall, L.F.

    1993-03-01T23:59:59.000Z

    This report presents information on computer codes for numerical and analytical models that have been used at the Idaho National Engineering Laboratory (INEL) to model ground water and surface water flow and contaminant transport. Organizations conducting modeling at the INEL include: EG&G Idaho, Inc., US Geological Survey, and Westinghouse Idaho Nuclear Company. Information concerning computer codes included in this report are: agency responsible for the modeling effort, name of the computer code, proprietor of the code (copyright holder or original author), validation and verification studies, applications of the model at INEL, the prime user of the model, computer code description, computing environment requirements, and documentation and references for the computer code.

  19. Summary of ground water and surface water flow and contaminant transport computer codes used at the Idaho National Engineering Laboratory (INEL). [Contaminant transport computer codes

    SciTech Connect (OSTI)

    Bandy, P.J.; Hall, L.F.

    1993-03-01T23:59:59.000Z

    This report presents information on computer codes for numerical and analytical models that have been used at the Idaho National Engineering Laboratory (INEL) to model ground water and surface water flow and contaminant transport. Organizations conducting modeling at the INEL include: EG G Idaho, Inc., US Geological Survey, and Westinghouse Idaho Nuclear Company. Information concerning computer codes included in this report are: agency responsible for the modeling effort, name of the computer code, proprietor of the code (copyright holder or original author), validation and verification studies, applications of the model at INEL, the prime user of the model, computer code description, computing environment requirements, and documentation and references for the computer code.

  20. Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan. Part 1: ASC software quality engineering practices, Version 2.0.

    SciTech Connect (OSTI)

    Sturtevant, Judith E.; Heaphy, Robert; Hodges, Ann Louise; Boucheron, Edward A.; Drake, Richard Roy; Minana, Molly A.; Hackney, Patricia; Forsythe, Christi A.; Schofield, Joseph Richard, Jr. (,; .); Pavlakos, Constantine James; Williamson, Charles Michael; Edwards, Harold Carter

    2006-09-01T23:59:59.000Z

    The purpose of the Sandia National Laboratories Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. The plan defines the ASC program software quality practices and provides mappings of these practices to Sandia Corporate Requirements CPR 1.3.2 and 1.3.6 and to a Department of Energy document, ASCI Software Quality Engineering: Goals, Principles, and Guidelines. This document also identifies ASC management and software project teams responsibilities in implementing the software quality practices and in assessing progress towards achieving their software quality goals.

  1. Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan part 2 mappings for the ASC software quality engineering practices, version 2.0.

    SciTech Connect (OSTI)

    Heaphy, Robert; Sturtevant, Judith E.; Hodges, Ann Louise; Boucheron, Edward A.; Drake, Richard Roy; Minana, Molly A.; Hackney, Patricia; Forsythe, Christi A.; Schofield, Joseph Richard, Jr. (,; .); Pavlakos, Constantine James; Williamson, Charles Michael; Edwards, Harold Carter

    2006-09-01T23:59:59.000Z

    The purpose of the Sandia National Laboratories Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. The plan defines the ASC program software quality practices and provides mappings of these practices to Sandia Corporate Requirements CPR001.3.2 and CPR001.3.6 and to a Department of Energy document, ''ASCI Software Quality Engineering: Goals, Principles, and Guidelines''. This document also identifies ASC management and software project teams' responsibilities in implementing the software quality practices and in assessing progress towards achieving their software quality goals.

  2. Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing Zirconia NanoparticlesSmart GrocerDepartment ofEngineer Honored

  3. Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home It is Partnershipsn eEngineering

  4. University , Engineering

    E-Print Network [OSTI]

    Zakharov, Leonid E.

    , Princeton Plasma Physics Laboratory Presented at Seminar of Department of Nuclear Engineering Massachusetts{AC020{76{CHO{3073. Leonid E. Zakharov, Department of Nuclear Engineering, MIT , Feb.26, 2001, Cambridge acting on the guide wall. This design concept opens opportunities for nuclear engineers and technologists

  5. Influence of system architecture changes on organizational work flow and application to Geared turbofan engines

    E-Print Network [OSTI]

    James, Denman H. (Denman Halsted)

    2011-01-01T23:59:59.000Z

    The design and development of a gas turbine engine for aircraft applications is a highly integrated process, and requires the integration of efforts of large numbers of individuals from many design specialties. If the ...

  6. Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan. Part 1 : ASC software quality engineering practices version 1.0.

    SciTech Connect (OSTI)

    Minana, Molly A.; Sturtevant, Judith E.; Heaphy, Robert; Hodges, Ann Louise; Boucheron, Edward A.; Drake, Richard Roy; Forsythe, Christi A.; Schofield, Joseph Richard, Jr.; Pavlakos, Constantine James; Williamson, Charles Michael; Edwards, Harold Carter

    2005-01-01T23:59:59.000Z

    The purpose of the Sandia National Laboratories (SNL) Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. Quality is defined in DOE/AL Quality Criteria (QC-1) as conformance to customer requirements and expectations. This quality plan defines the ASC program software quality practices and provides mappings of these practices to the SNL Corporate Process Requirements (CPR 1.3.2 and CPR 1.3.6) and the Department of Energy (DOE) document, ASCI Software Quality Engineering: Goals, Principles, and Guidelines (GP&G). This quality plan identifies ASC management and software project teams' responsibilities for cost-effective software engineering quality practices. The SNL ASC Software Quality Plan establishes the signatories commitment to improving software products by applying cost-effective software engineering quality practices. This document explains the project teams opportunities for tailoring and implementing the practices; enumerates the practices that compose the development of SNL ASC's software products; and includes a sample assessment checklist that was developed based upon the practices in this document.

  7. ENGINEERING ENGINEERING

    E-Print Network [OSTI]

    Farritor, Shane

    million for Air Force project · Biological Systems Engineering uses MRI machine to further tissue studies: Engineering Extraordinary Students Enjoy a selection of stories about some of the amazing students® ENGINEERING NEBRASKA@ ENGINEERING EXTRAORDINARY STUDENTS AlSO INSIDE: BSEN INNOVATES WITH MRI

  8. Individualism Submerged: Climate Change and the Perils of an Engineered Environment

    E-Print Network [OSTI]

    Chepaitis, Daniel J.; Panagakis, Andrea K.

    2010-01-01T23:59:59.000Z

    Change Adaptation .. 1. Geoengineering andadaptation mechanisms. 1. Geoengineering as Adaptation toClimate System Geoengineering generally encompasses

  9. Intern experience with the Environmental Laboratory of the U.S. Army Engineer Waterways Experiment Station: an internship report

    E-Print Network [OSTI]

    Truitt, Clifford Lee, 1948-

    2013-03-13T23:59:59.000Z

    Experiment Station. May 1987. Clifford Lee Truitt, BS, Florida Institute of Technology; M.Eng., Texas A&M University Co-chairmen of Advisory Committee: Dr. John B. Herbich Dr. Edward J. Rhomberg This report describes an internship completed by the author... the author managed and executed a complete, comprehensive engineering pro? ject examining the feasibility of an innovative dredged material dis? posal technique. The Indiana Harbor project provided an opportunity to function as a member of a large inter...

  10. College of Engineering EGR Engineering

    E-Print Network [OSTI]

    MacAdam, Keith

    College of Engineering EGR Engineering KEY: # = new course * = course changed = course dropped University of Kentucky 2013-2014 Undergraduate Bulletin 1 EGR 101 INTRODUCTION TO ENGINEERING. (4) This course introduces the engineering profession and the skills and expectations required for success

  11. 2.672 Projects Laboratory, Spring 2004

    E-Print Network [OSTI]

    Cheng, Wai Kong

    Engineering laboratory subject for mechanical engineering juniors and seniors. Major emphasis on interplay between analytical and experimental methods in solution of research and development problems. Communication (written ...

  12. Opportunities with Laboratories under the Chicago Office

    Broader source: Energy.gov (indexed) [DOE]

    Laboratories under the Chicago Office 1 Princeton Plasma Physics Laboratory 1. Mechanical Engineering Services; Larry Dudek; 188,000 2. Phone system; William Bryan; 300,000 3....

  13. Laboratories to Explore and Expand VLBACHANDRA

    E-Print Network [OSTI]

    Institute of Technology Idaho National Engineering Laboratory Lawrence Livermore National Laboratory is general agreement that the next large machine should, at least, be one that allows the scientific

  14. Initial performance assessment of the disposal of spent nuclear fuel and high-level waste stored at Idaho National Engineering Laboratory. Volume 1, Methodology and results

    SciTech Connect (OSTI)

    Rechard, R.P. [ed.

    1993-12-01T23:59:59.000Z

    This performance assessment characterized plausible treatment options conceived by the Idaho National Engineering Laboratory (INEL) for its spent fuel and high-level radioactive waste and then modeled the performance of the resulting waste forms in two hypothetical, deep, geologic repositories: one in bedded salt and the other in granite. The results of the performance assessment are intended to help guide INEL in its study of how to prepare wastes and spent fuel for eventual permanent disposal. This assessment was part of the Waste Management Technology Development Program designed to help the US Department of Energy develop and demonstrate the capability to dispose of its nuclear waste. Although numerous caveats must be placed on the results, the general findings were as follows: Though the waste form behavior depended upon the repository type, all current and proposed waste forms provided acceptable behavior in the salt and granite repositories.

  15. Safety analysis report for packaging for the Idaho National Engineering Laboratory TRA Type 1 Shipping Container and TRA Type 2 Shipping Capsule

    SciTech Connect (OSTI)

    Havlovick, B.J.

    1992-07-27T23:59:59.000Z

    The TRA Type I Shipping Container and TRA Type II Shipping Capsule were designed and fabricated at the Idaho National Engineering Laboratory as special form containers for the transport of non-fissile radioisotopes and fissile radioisotopes in exempt quantities. The Type I container measures 0.75 in. outside diameter and 3.000 in long. The Type II capsule is 0.495 in. outside diameter 2.000 in. long. The container and capsule were tested and evaluated to determine their compliance with Title 49 Code of Federal Regulations 173, which governs packages for special form radioactive material. This report is based upon those tests and evaluations. The results of those tests and evaluations demonstrate the container and capsule are in full compliance with the special form shipping container regulations of 49 CFR 173.

  16. Sandia National Laboratories Advanced Simulation and Computing (ASC) : appraisal method for the implementation of the ASC software quality engineering practices: Version 1.0.

    SciTech Connect (OSTI)

    Turgeon, Jennifer; Minana, Molly A.

    2008-02-01T23:59:59.000Z

    This document provides a guide to the process of conducting software appraisals under the Sandia National Laboratories (SNL) ASC Program. The goal of this document is to describe a common methodology for planning, conducting, and reporting results of software appraisals thereby enabling: development of an objective baseline on implementation of the software quality engineering (SQE) practices identified in the ASC Software Quality Plan across the ASC Program; feedback from project teams on SQE opportunities for improvement; identification of strengths and opportunities for improvement for individual project teams; guidance to the ASC Program on the focus of future SQE activities Document contents include process descriptions, templates to promote consistent conduct of appraisals, and an explanation of the relationship of this procedure to the SNL ASC software program.

  17. Materials and process engineering projects for the Sandia National Laboratories/Newly Independent States Industrial Partnering Program. Volume 1

    SciTech Connect (OSTI)

    Zanner, F.J.; Moffatt, W.C.

    1995-07-01T23:59:59.000Z

    In July, 1994, a team of materials specialists from Sandia and U S Industry traveled to Russia and the Ukraine to select and fund projects in materials and process technology in support of the Newly Independent States/Industrial Partnering Program (NIS/IPP). All of the projects are collaborations with scientists and Engineers at NIS Institutes. Each project is scheduled to last one year, and the deliverables are formatted to supply US Industry with information which will enable rational decisions to be made regarding the commercial value of these technologies. This work is an unedited interim compilation of the deliverables received to date.

  18. Materials and process engineering projects for the Sandia National Laboratories/Newly Independent States Industrial Partnering Program. Volume 2

    SciTech Connect (OSTI)

    Zanner, F.J.; Moffatt, W.C.

    1995-07-01T23:59:59.000Z

    In July, 1994, a team of materials specialists from Sandia and US. Industry traveled to Russia and the Ukraine to select and fund projects in materials and process technology in support of the Newly Independent States/Industrial Partnering Program (NIS/IPP). All of the projects are collaborations with scientists and Engineers at NIS Institutes. Each project is scheduled to last one year, and the deliverables are formatted to supply US. Industry with information which will enable rational decisions to be made regarding the commercial value of these technologies. This work is an unedited interim compilation of the deliverables received to date.

  19. Nuclear Science and Engineering | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Science Engineering SHARE Nuclear Science and Engineering The Nuclear Science and Engineering Directorate (NSED) at Oak Ridge National Laboratory (ORNL) is committed to...

  20. Abstracts and parameter index database for reports pertaining to the unsaturated zone and surface water-ground water interactions at the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Bloomsburg, G.; Finnie, J.; Horn, D.; King, B.; Liou, J. [Idaho Univ., Moscow, ID (United States)

    1993-05-01T23:59:59.000Z

    This report is a product generated by faculty at the University of Idaho in support of research and development projects on Unsaturated Zone Contamination and Transport Processes, and on Surface Water-Groundwater Interactions and Regional Groundwater Flow at the Idaho National Engineering Laboratory. These projects are managed by the State of Idaho`s INEL Oversight Program under a grant from the US Department of Energy. In particular, this report meets project objectives to produce a site-wide summary of hydrological information based on a literature search and review of field, laboratory and modeling studies at INEL, including a cross-referenced index to site-specific physical, chemical, mineralogic, geologic and hydrologic parameters determined from these studies. This report includes abstracts of 149 reports with hydrological information. For reports which focus on hydrological issues, the abstracts are taken directly from those reports; for reports dealing with a variety of issues beside hydrology, the abstracts were generated by the University of Idaho authors concentrating on hydrology-related issues. Each abstract is followed by a ``Data`` section which identifies types of technical information included in a given report, such as information on parameters or chemistry, mineralogy, stream flows, water levels. The ``Data`` section does not include actual values or data.

  1. The Use of Chemical and Physical Properties for Characterization of Strontium Distribution Coefficients at the Idaho National Engineering and Environmental Laboratory, Idaho

    SciTech Connect (OSTI)

    J. J. Rosentreter; R. Nieves; J. Kalivas; J. P. Rousseau; R. C. Bartholomay

    1999-06-01T23:59:59.000Z

    The U.S. Geological Survey and Idaho State University, in cooperation with the U.S. Department of Energy, conducted a study to determine strontium distribution coefficients (Kds) of surficial sediments at the Idaho National Engineering and Environmental Laboratory (INEEL). Batch experimental techniques were used to determine experimental Kds of 20 surficial-sediment samples from the INEEL. The Kds describe the distribution of a solute between the solution and solid phase. A best-fit model was obtained using a four-variable data set consisting of surface area, manganese oxide concentration, specific conductance, and pH. Application of the model to an independent split of the data resulted in an average relative error of prediction of 20 percent and a correlation coefficient of 0.921 between predicted and observed strontium Kds. Chemical and physical characteristics of the solution and sediment that could successfully predict the Kd values were identified. Prediction variable select ion was limited to variables which are either easily determined or have available tabulated characteristics. The selection criterion could circumvent the need for time- and labor-intensive laboratory experiments and provide an alternate faster method for estimating strontium Kds.

  2. EnginEEring ZonE "The Engineering Zone

    E-Print Network [OSTI]

    Tobar, Michael

    EnginEEring ZonE "The Engineering Zone will push the limits in collaborative learning and research, and empower people to change the world. "Winthrop Professor John Dell Dean, Faculty of Engineering, Computing and Mathematics #12;2 | nEw CEntury Campaign ­ EnginEEring ZonE #12;nEw CEntury Campaign ­ EnginEEring ZonE | 3

  3. Idaho National Laboratory Advanced Test Reactor Probabilistic Risk Assessment

    Broader source: Energy.gov [DOE]

    Presenter: Bentley Harwood, Advanced Test Reactor Nuclear Safety Engineer Battelle Energy Alliance Idaho National Laboratory

  4. The role of the DOE weapons laboratories in a changing national security environment: CNSS papers No. 8, April 1988

    SciTech Connect (OSTI)

    Hecker, S.S.

    1988-01-01T23:59:59.000Z

    The contributions of the Department of Energy (DOE) nuclear weapons laboratories to the nation's security are reviewed in testimony before the Subcommittee on Procurement and Military Nuclear Systems of the House Armed Services Committee. Also presented are contributions that technology will make in maintaining the strategic balance through deterrence, treaty verification, and a sound nuclear weapons complex as the nation prepares for significant arms control initiatives. The DOE nuclear weapons laboratories can contribute to the broader context of national security, one that recognizes that military strength can be maintained over the long term only if it is built upon the foundations of economic strength and energy security. 9 refs.

  5. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01T23:59:59.000Z

    This report contains health and safety information relating to the chemicals that have been identified in the mixed waste streams at the Waste Treatment Facility at the Idaho National Engineering Laboratory. Information is summarized in two summary sections--one for health considerations and one for safety considerations. Detailed health and safety information is presented in material safety data sheets (MSDSs) for each chemical.

  6. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory. Part 2, Chemical constituents

    SciTech Connect (OSTI)

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01T23:59:59.000Z

    This report contains health and safety information relating to the chemicals that have been identified in the mixed waste streams at the Waste Treatment Facility at the Idaho National Engineering Laboratory. Information is summarized in two summary sections--one for health considerations and one for safety considerations. Detailed health and safety information is presented in material safety data sheets (MSDSs) for each chemical.

  7. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory. Part 1, Waste streams and treatment technologies

    SciTech Connect (OSTI)

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01T23:59:59.000Z

    This report describes health and safety concerns associated with the Mixed and Low-level Waste Treatment Facility at the Idaho National Engineering Laboratory. Various hazards are described such as fire, electrical, explosions, reactivity, temperature, and radiation hazards, as well as the potential for accidental spills, exposure to toxic materials, and other general safety concerns.

  8. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01T23:59:59.000Z

    This report describes health and safety concerns associated with the Mixed and Low-level Waste Treatment Facility at the Idaho National Engineering Laboratory. Various hazards are described such as fire, electrical, explosions, reactivity, temperature, and radiation hazards, as well as the potential for accidental spills, exposure to toxic materials, and other general safety concerns.

  9. Audit of Bus Service Subsidies at the Idaho National Engineering Laboratory, WR-B-97-02

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: Scope ChangeL-01-06 Audit Report:820West Virginia S.Resources,

  10. Idaho National Laboratory

    ScienceCinema (OSTI)

    McCarthy, Kathy

    2013-05-28T23:59:59.000Z

    INL is the leading laboratory for nuclear R&D. Nuclear engineer Dr. Kathy McCarthy talks aobut the work there and the long-term benefits it will provide.

  11. Baseline radionuclide concentrations in soils and vegetation around the proposed Weapons Engineering Tritium Facility and the Weapons Subsystems Laboratory at TA-16

    SciTech Connect (OSTI)

    Fresquez, P.R.; Ennis, M.

    1995-09-01T23:59:59.000Z

    A preoperational environmental survey is required by the Department of Energy (DOE) for all federally funded research facilities that have the potential to cause adverse impacts on the environment. Therefore, in accordance with DOE Order 5400.1, an environmental survey was conducted over the proposed sites of the Weapons Engineering Tritium Facility (WETF) and the Weapons Subsystems Laboratory (WSL) at Los Alamos National Laboratory (LANL) at TA-16. Baseline concentrations of tritium ({sup 3}H), plutonium ({sup 238}Pu and {sup 239}Pu) and total uranium were measured in soils, vegetation (pine needles and oak leaves) and ground litter. Tritium was also measured from air samples, while cesium ({sup 137}Cs) was measured in soils. The mean concentration of airborne tritiated water during 1987 was 3.9 pCi/m{sup 3}. Although the mean annual concentration of {sup 3}H in soil moisture at the 0--5 cm (2 in) soil depth was measured at 0.6 pCi/mL, a better background level, based on long-term regional data, was considered to be 2.6 pCi/mL. Mean values for {sup 137}Cs, {sup 218}Pu, {sup 239}Pu, and total uranium in soils collected from the 0--5 cm depth were 1.08 pCi/g, 0.0014 pCi/g, 0.0325 pCi/g, and 4.01 {micro}g/g, respectively. Ponderosa pine (Pinus ponderosa) needles contained higher values of {sup 238}Pu, {sup 239}Pu, and total uranium than did leaves collected from gambel`s oak (Quercus gambelii). In contrast, leaves collected from gambel`s oak contained higher levels of {sup 137}Cs than what pine needles did.

  12. Civil, Architectural, and Environmental Engineering Department of Civil, Architectural, and Environmental Engineering

    E-Print Network [OSTI]

    Heller, Barbara

    Civil, Architectural, and Environmental Engineering Department of Civil, Architectural of Architectural Engineering Master of Construction Engineering and Management Master of Environmental Engineering, Architectural, and Environmental Engineering Research Facilities Research facilities include laboratories

  13. College of Engineering EE Electrical Engineering

    E-Print Network [OSTI]

    MacAdam, Keith

    College of Engineering EE Electrical Engineering KEY: # = new course * = course changed = course dropped University of Kentucky 2013-2014 Undergraduate Bulletin 1 EE 101 CREATIVITY AND DESIGN IN ELECTRICAL AND COMPUTER ENGINEERING. (3

  14. Nutrients, pesticides, surfactants, and trace metals in ground water from the Howe and Mud Lake areas upgradient from the Idaho National Engineering Laboratory, Idaho

    SciTech Connect (OSTI)

    Edwards, D.D.; Bartholomay, R.C.; Bennett, C.M.

    1990-10-01T23:59:59.000Z

    Reconnaissance-level sampling for selected nutrients, pesticides, and surfactants in ground water upgradient from the Idaho National Engineering Laboratory was conducted during June 1989. Water samples collected from eight irrigation wells, five domestic or livestock wells, and two irrigation canals were analyzed for nutrients, herbicides, insecticides and polychlorinated compounds, and surfactants. In addition to the above constituents, water samples from one irrigation well, one domestic well, and one irrigation canal were analyzed for arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver. Concentrations of nitrite plus nitrate as nitrogen ranged from less than the reporting to 6.10 mg/L (milligrams per liter), and orthophosphate concentrations as phosphorus ranged from less than the reporting level to 0.070 mg/L (micrograms per liter). Concentrations of 2,4-D in two water samples were 0.1 {mu}g/L and 0.10 {mu}g/L. Water samples analyzed for 15 other herbicides, 10 carbamate insecticides, 11 organophosphorus insecticides, and 15 organochlorine insecticides, gross polychlorinated biphenyls, and gross polychlorinated naphthalenes all had concentration below their reporting levels. Concentrations of surfactants ranged from 0.02 to 0.35 mg/L. Arsenic, barium, chromium, selenium, and silver concentrations exceeded reporting levels in most of the samples. 19 refs., 1 fig., 19 tabs.

  15. Validation Work to Support the Idaho National Engineering and Environmental Laboratory Calculational Burnup Methodology Using Shippingport Light Water Breeder Reactor (LWBR) Spent Fuel Assay Data

    SciTech Connect (OSTI)

    J. W. Sterbentz

    1999-08-01T23:59:59.000Z

    Six uranium isotopes and fourteen fission product isotopes were calculated on a mass basis at end-of-life (EOL) conditions for three fuel rods from different Light Water Breeder Reactor (LWBR) measurements. The three fuel rods evaluated here were taken from an LWBR seed module, a standard blanket module, and a reflector (Type IV) module. The calculated results were derived using a depletion methodology previously employed to evaluate many of the radionuclide inventories for spent nuclear fuels at the Idaho National Engineering and Environmental Laboratory. The primary goal of the calculational task was to further support the validation of this particular calculational methodology and its application to diverse reactor types and fuels. Result comparisons between the calculated and measured mass concentrations in the three rods indicate good agreement for the three major uranium isotopes (U-233, U-234, U-235) with differences of less than 20%. For the seed and standard blanket rod, the U-233 and U-234 differences were within 5% of the measured values (these two isotopes alone represent greater than 97% of the EOL total uranium mass). For the major krypton and xenon fission product isotopes, differences of less than 20% and less than 30% were observed, respectively. In general, good agreement was obtained for nearly all the measured isotopes. For these isotopes exhibiting significant differences, possible explanations are discussed in terms of measurement uncertainty, complex transmutations, etc.

  16. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 2, Part B

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    Two types of projects in the spent nuclear fuel and environmental restoration and waste management activities at the Idaho National Engineering Laboratory (INEL) are described. These are: foreseeable proposed projects where some funding for preliminary planning and/or conceptual design may already be authorized, but detailed design or planning will not begin until the Department of Energy (DOE) has determined that the requirements of the National Environmental Policy Act process for the project have been completed; planned or ongoing projects not yet completed but whose National Environmental Policy Act documentation is already completed or is expected to be completed before the Record of Decision for this Envirorunental Impact Statement (EIS) is issued. The section on project summaries describe the projects (both foreseeable proposed and ongoing).They provide specific information necessary to analyze the environmental impacts of these projects. Chapter 3 describes which alternative(s) each project supports. Summaries are included for (a) spent nuclear fuel projects, (b) environmental remediation projects, (c) the decontamination and decommissioning of surplus INEL facilities, (d) the construction, upgrade, or replacement of existing waste management facilities, (e) infrastructure projects supporting waste management activities, and (f) research and development projects supporting waste management activities.

  17. User`s Guide: Database of literature pertaining to the unsaturated zone and surface water-ground water interactions at the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Hall, L.F.

    1993-05-01T23:59:59.000Z

    Since its beginnings in 1949, hydrogeologic investigations at the Idaho National Engineering Laboratory (INEL) have resulted in an extensive collection of technical publications providing information concerning ground water hydraulics and contaminant transport within the unsaturated zone. Funding has been provided by the Department of Energy through the Department of Energy Idaho Field Office in a grant to compile an INEL-wide summary of unsaturated zone studies based on a literature search. University of Idaho researchers are conducting a review of technical documents produced at or pertaining to the INEL, which present or discuss processes in the unsaturated zone and surface water-ground water interactions. Results of this review are being compiled as an electronic database. Fields are available in this database for document title and associated identification number, author, source, abstract, and summary of information (including types of data and parameters). AskSam{reg_sign}, a text-based database system, was chosen. WordPerfect 5.1{copyright} is being used as a text-editor to input data records into askSam.

  18. Idaho National Engineering Laboratory Conceptual Site Treatment Plan. Sections 1 through 8, Tables 2-1 through 6-1, Figures 1 and 2

    SciTech Connect (OSTI)

    Eaton, D.

    1993-10-01T23:59:59.000Z

    The US Department of Energy (DOE) is required by Section 3021(b) of the Resource Conservation and Recovery Act (RCRA), as amended by the Federal Facility Compliance Act (FFCAct), to prepare plans describing the development of treatment capacities and technologies for treating mixed waste. The FFCAct requires site treatment plans (STPs or plans) to be developed for each site at which DOE generates or stores mixed waste and submitted to the host state or the US Environmental Protection Agency (EPA) for either approval, approval with modification, or disapproval. The Idaho National Engineering Laboratory (INEL) Conceptual Site Treatment Plan (CSTP) is the preliminary version of the plan required by the FFCAct and is being provided to the State of Idaho, the EPA, and others for review. A list of the other DOE sites preparing CSTPs is included in Appendix A of this document. In addition to aiding the INEL in formulating its Final Proposed STP, this CSTP will also provide information to other DOE sites for use in identifying common technology needs and potential options for treating their wastes. The INEL CSTP is also intended to be used in conjunction with CSTPs from other sites as a basis for nationwide discussions among state regulators, the EPA, and other interested parties on treatment strategies and options, and on technical and equity issues associated with DOE`s mixed waste.

  19. NREL Demonstrates Game-Changing Air Conditioner Technology (Fact Sheet), Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National Nuclearover two yearsNP UserReportTesting of DEVAP

  20. Mechanical Engineering Department technical review

    SciTech Connect (OSTI)

    Carr, R.B.; Abrahamson, L.; Denney, R.M.; Dubois, B.E (eds.) [eds.

    1982-01-01T23:59:59.000Z

    Technical achievements and publication abstracts related to research in the following Divisions of Lawrence Livermore Laboratory are reported in this biannual review: Nuclear Fuel Engineering; Nuclear Explosives Engineering; Weapons Engineering; Energy Systems Engineering; Engineering Sciences; Magnetic Fusion Engineering; and Material Fabrication. (LCL)

  1. NREL: Systems Engineering - Workshops

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Workshops The Wind Energy Systems Engineering Workshop is a biennial workshop that invites speakers from academia, industry, and international research laboratories to discuss...

  2. E-Print Network 3.0 - analysis laboratory application Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mechanics... machines, and refined electromechanical systems. Laboratory report writing; error analysis; engineering... : 1. Operation of laboratory facilities 2. Data acquisition...

  3. Migration: An engine for social change The movement of people into societies that offer a better way of life is a more powerful driver of cultural

    E-Print Network [OSTI]

    Richerson, Peter J.

    Migration: An engine for social change The movement of people into societies that offer a better way of life is a more powerful driver of cultural evolution than conflict and conquest, say Peter effect on how societies evolve cul- turally because it is selective. People move to societies

  4. Improvements, Evaluation, and Application of 1D Vetem Inversion and Development and Application of 3D Vetem Inversion to Waste Pits at The Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    Weng Cho Chew

    2004-10-27T23:59:59.000Z

    The project aim was the improvement, evaluation, and application of one dimensional (1D) inversion and development and application of three dimensional (3D) inversion to processing of data collected at waste pits at the Idaho National Engineering and Environmental Laboratory. The inversion methods were intended mainly for the Very Early Time Electromagnetic (VETEM) system which was designed to improve the state-of-the-art of electromagnetic imaging of the shallow (0 to about 5m) subsurface through electrically conductive soils.

  5. Chlorofluorocarbons, Sulfur Hexafluoride, and Dissolved Permanent Gases in Ground Water from Selected Sites In and Near the Idaho National Engineering and Environmental Laboratory, Idaho, 1994 - 1997

    SciTech Connect (OSTI)

    Busenberg, E.; Plummer, L.N.; Bartholomay, R.C.; Wayland, J.E.

    1998-08-01T23:59:59.000Z

    From July 1994 through May 1997, the U.S. Geological Survey, in cooperations with the Department of Energy, sampled 86 wells completed in the Snake River Plain aquifer at and near the Idaho National Engineering and Environmental Laboratory (INEEL). The wells were sampled for a variety of constituents including one- and two-carbon halocarbons. Concentrations of dichlorodifluoromethane (CFC-12), trichlorofluoromethane (CFC-11), and trichlorotrifluororoethane (CFC-113) were determined. The data will be used to evaluate the ages of ground waters at INEEL. The ages of the ground water will be used to determine recharge rates, residence time, and travel time of water in the Snake River Plain aquifer in and near INEEL. The chromatograms of 139 ground waters are presented showing a large number of halomethanes, haloethanes, and haloethenes present in the ground waters underlying the INEEL. The chromatograms can be used to qualitatively evaluate a large number of contaminants at parts per trillion to parts per billion concentrations. The data can be used to study temporal and spatial distribution of contaminants in the Snake River Plain aquifer. Representative compressed chromatograms for all ground waters sampled in this study are available on two 3.5-inch high density computer disks. The data and the program required to decompress the data can be obtained from the U.S. Geological Survey office at Idaho Falls, Idaho. Sulfur hexafluoride (SF6) concentrations were measured in selected wells to determine the feasibility of using this environmental tracer as an age dating tool of ground water. Concentrations of dissolved nitrogen, argon, carbon dioxide, oxygen, and methane were measured in 79 ground waters. Concentrations of dissolved permanent gases are tabulated and will be used to evaluate the temperature of recharge of ground water in and near the INEEL.

  6. Preliminary engineering report waste area grouping 5, Old Hydrofracture Facility Tanks content removal project, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1996-06-01T23:59:59.000Z

    The Superfund Amendments and Reauthorization Act of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) requires a Federal Facilities Agreement (FFA) for federal facilities placed on the National Priorities List. The Oak Ridge Reservation was placed on that list on December 21, 1989, and the agreement was signed in November 1991 by the U.S. Department of Energy (DOE) Oak Ridge Operations Office, the U.S. Environmental Protection Agency (EPA) Region IV, and the Tennessee Department of Environment and Conservation (TDEC). The effective date of the FFA is January 1, 1992. One objective of the FFA is to ensure that liquid low-level waste (LLLW) tanks that are removed from service are evaluated and remediated through the CERCLA process. Five inactive LLLW tanks, designated T-1, T-2, T-3, T-4, and T-9, located at the Old Hydrofracture (OHF) Facility in the Melton Valley area of Oak Ridge National Laboratory (ORNL) have been evaluated and are now entering the remediation phase. As a precursor to final remediation, this project will remove the current liquid and sludge contents of each of the five tanks (System Requirements Document, Appendix A). It was concluded in the Engineering Evaluation/Cost Analysis [EE/CA] for the Old Hydrofracture Facility Tanks (DOE 1996) that sluicing and pumping the contaminated liquid and sludge from the five OHF tanks was the preferred removal action. Evaluation indicated that this alternative meets the removal action objective and can be effective, implementable, and cost-effective. Sluicing and removing the tank contents was selected because this action uses (1) applicable experience, (2) the latest information about technologies and techniques for removing the wastes from the tanks, and (3) activities that are currently acceptable for storage of transuranic (TRU) mixed waste.

  7. Initial performance assessment of the disposal of spent nuclear fuel and high-level waste stored at Idaho National Engineering Laboratory. Volume 2: Appendices

    SciTech Connect (OSTI)

    Rechard, R.P. [ed.

    1993-12-01T23:59:59.000Z

    This performance assessment characterized plausible treatment options conceived by the Idaho National Engineering Laboratory (INEL) for its spent fuel and high-level radioactive waste and then modeled the performance of the resulting waste forms in two hypothetical, deep, geologic repositories: one in bedded salt and the other in granite. The results of the performance assessment are intended to help guide INEL in its study of how to prepare wastes and spent fuel for eventual permanent disposal. This assessment was part of the Waste Management Technology Development Program designed to help the US Department of Energy develop and demonstrate the capability to dispose of its nuclear waste, as mandated by the Nuclear Waste Policy Act of 1982. The waste forms comprised about 700 metric tons of initial heavy metal (or equivalent units) stored at the INEL: graphite spent fuel, experimental low enriched and highly enriched spent fuel, and high-level waste generated during reprocessing of some spent fuel. Five different waste treatment options were studied; in the analysis, the options and resulting waste forms were analyzed separately and in combination as five waste disposal groups. When the waste forms were studied in combination, the repository was assumed to also contain vitrified high-level waste from three DOE sites for a common basis of comparison and to simulate the impact of the INEL waste forms on a moderate-sized repository, The performance of the waste form was assessed within the context of a whole disposal system, using the U.S. Environmental Protection Agency`s Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes, 40 CFR 191, promulgated in 1985. Though the waste form behavior depended upon the repository type, all current and proposed waste forms provided acceptable behavior in the salt and granite repositories.

  8. High Level Waste Tank Farm Replacement Project for the Idaho Chemical Processing Plant at the Idaho National Engineering Laboratory. Environmental Assessment

    SciTech Connect (OSTI)

    Not Available

    1993-06-01T23:59:59.000Z

    The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0831, for the construction and operation of the High-Level Waste Tank Farm Replacement (HLWTFR) Project for the Idaho Chemical Processing Plant located at the Idaho National Engineering Laboratory (INEL). The HLWTFR Project as originally proposed by the DOE and as analyzed in this EA included: (1) replacement of five high-level liquid waste storage tanks with four new tanks and (2) the upgrading of existing tank relief piping and high-level liquid waste transfer systems. As a result of the April 1992 decision to discontinue the reprocessing of spent nuclear fuel at INEL, DOE believes that it is unlikely that the tank replacement aspect of the project will be needed in the near term. Therefore, DOE is not proposing to proceed with the replacement of the tanks as described in this-EA. The DOE`s instant decision involves only the proposed upgrades aspect of the project described in this EA. The upgrades are needed to comply with Resource Conservation and Recovery Act, the Idaho Hazardous Waste Management Act requirements, and the Department`s obligations pursuant to the Federal Facilities Compliance Agreement and Consent Order among the Environmental Protection Agency, DOE, and the State of Idaho. The environmental impacts of the proposed upgrades are adequately covered and are bounded by the analysis in this EA. If DOE later proposes to proceed with the tank replacement aspect of the project as described in the EA or as modified, it will undertake appropriate further review pursuant to the National Environmental Policy Act.

  9. Mathematics and Engineering Communications Laboratory

    E-Print Network [OSTI]

    Alajaji, Fady

    of the probability of codeword error (PCE) for the simplest scenario of the QBC which is the additive first-order Markov noise channel. Numerical results for PCE are provided for more general QBC models and the GEC or symbol error process, and then a formula for the probability of codeword error (PCE) under bounded

  10. Visual Engineering | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption by sectorlongUpdatesValley winsVideoVisitor Tours at Visual

  11. Sandia National Laboratories: engineering science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia, NRELdeep-waterbiofuelssituationstransmission andengineering

  12. Sandia National Laboratories: solar engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbineredox-activeNational Solar Thermal Test Facility Onengineering

  13. Sandia National Laboratories: systems engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbineredox-activeNational Solar Thermalsslsstudyengineering

  14. Sandia National Laboratories: Systems Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted for US

  15. Sandia National Laboratories: Cardinal Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0Energy AdvancedEnergy Commission Linde,CapabilitiesCarderock

  16. Sandia National Laboratories: Engine Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0EnergySandiaConsortiumActMicrogrid SPIDERSCombustion Direct

  17. Mobile Energy Laboratory Procedures

    SciTech Connect (OSTI)

    Armstrong, P.R.; Batishko, C.R.; Dittmer, A.L.; Hadley, D.L.; Stoops, J.L.

    1993-09-01T23:59:59.000Z

    Pacific Northwest Laboratory (PNL) has been tasked to plan and implement a framework for measuring and analyzing the efficiency of on-site energy conversion, distribution, and end-use application on federal facilities as part of its overall technical support to the US Department of Energy (DOE) Federal Energy Management Program (FEMP). The Mobile Energy Laboratory (MEL) Procedures establish guidelines for specific activities performed by PNL staff. PNL provided sophisticated energy monitoring, auditing, and analysis equipment for on-site evaluation of energy use efficiency. Specially trained engineers and technicians were provided to conduct tests in a safe and efficient manner with the assistance of host facility staff and contractors. Reports were produced to describe test procedures, results, and suggested courses of action. These reports may be used to justify changes in operating procedures, maintenance efforts, system designs, or energy-using equipment. The MEL capabilities can subsequently be used to assess the results of energy conservation projects. These procedures recognize the need for centralized NM administration, test procedure development, operator training, and technical oversight. This need is evidenced by increasing requests fbr MEL use and the economies available by having trained, full-time MEL operators and near continuous MEL operation. DOE will assign new equipment and upgrade existing equipment as new capabilities are developed. The equipment and trained technicians will be made available to federal agencies that provide funding for the direct costs associated with MEL use.

  18. Electrical and Computer Engineering -Graduate Post Graduate Activities Detail & History

    E-Print Network [OSTI]

    Lipson, Michal

    Propulsion Laboratory Associate Engineer Pasadena CA MENG LG Electronics Research Engineer Seoul SOUTH KOREA Baltimore MD MENG Northrop Grumman Electronics Engineer Baltimore MD MENG Oracle Software Developer Redwood

  19. ORNL seeks to enhance tiny engine performance for military |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    seeks to enhance tiny engine performance for military Oak Ridge National Laboratory engineers are trying to improve efficiency and performance in tiny engines in remote-controlled...

  20. Advanced Engine Development | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Engine Development High-performance computing accelerates advanced engine development July 11, 2014 Oak Ridge National Laboratory's (ORNL's) Dean Edwards and a...

  1. College of Engineering ME Mechanical Engineering

    E-Print Network [OSTI]

    MacAdam, Keith

    330, MA 214, and engineering standing. ME 330 FLUID MECHANICS. (3) Introduction to the physical through pipes and around bodies. Application and design of fluid handling systems. Prereq: EngineeringCollege of Engineering ME Mechanical Engineering KEY: # = new course * = course changed = course

  2. College of Engineering CME Chemical Engineering

    E-Print Network [OSTI]

    MacAdam, Keith

    of fluid handling systems. Prereq: Engineering standing, CME 200, 320, CME 199, and MA 214. CME 395 SPECIALCollege of Engineering CME Chemical Engineering KEY: # = new course * = course changed = course dropped University of Kentucky 2013-2014 Undergraduate Bulletin 1 CME 006 THE ENGINEERING PROFESSION

  3. Engineering Technician

    Broader source: Energy.gov [DOE]

    Alternate Title(s):Civil Engineering Technician; Electrical Engineering Technician; Mechanical Engineering Technician; Environmental Engineering Technician

  4. Undergraduate Engineering

    E-Print Network [OSTI]

    Bristol, University of

    , spacecraft, Formula 1 or wind power, then this is the course for you. Our degrees focus on the technical material that interests you from the start, ensuring theoretical ideas are set clearly in a practical Laboratory for Advanced Dynamic Engineering (BLADE) ­ fantastic world-class facilities for cutting

  5. Mechanical & Industrial Engineering

    E-Print Network [OSTI]

    Mountziaris, T. J.

    Mechanical & Industrial Engineering 1 Welcome MIE Industrial Advisory Board May 5th, 2011 #12;Mechanical & Industrial Engineering 2 IAB 2010-2011 · David K. Anderson ­ Alden Research Laboratory, Inc went on for three weeks Mechanical & Industrial Engineering 6 #12;Reza Shahbazian Yassar Mechanical

  6. Mechanical engineering Department Seminar

    E-Print Network [OSTI]

    Mechanical engineering Department Seminar Domitilla Del Vecchio Department of Mechanical. A near future is envisioned in which re- engineered bacteria will turn waste into energy and kill cancer, she joined the Department of Mechanical Engineering and the Laboratory for Information and Decision

  7. Fire Protection for Laboratories Using Chemicals

    Broader source: Energy.gov (indexed) [DOE]

    Protection Engineer Fire Protection Engineering Pacific Northwest National Laboratory Phone 509-371-7902; Cell 509-308-7658 Fax 509-371-7890 andrew.minister@pnnl.gov Questions?...

  8. Using Explicit and Machine-Understandable Engineering Knowledge for Defect Detection in Automation Systems Engineering

    E-Print Network [OSTI]

    Systems Engineering Olga Kovalenko and Thomas Moser Christian Doppler Laboratory for Software Engineering automation systems, e.g. mechanical engineering, electrical engineering and software engineering. Experts of efforts from different types of experts, e.g. software engineers, technical engineers and domain experts

  9. Oversight Reports - Los Alamos National Laboratory | Department...

    Broader source: Energy.gov (indexed) [DOE]

    May 2011 Safety System Oversight Assessment of the Los Alamos National Laboratory Weapons Engineering Tritium Facility Tritium Gas Handling System February 8, 2011 Independent...

  10. Sandia National Laboratories: About Sandia: Leadership: President...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    engineering and production activities. In his 34 years at Sandia National Laboratories, Bruce has held several positions. From 2010 to 2011, Bruce served as director of Center...

  11. Enterprise Assessments Review, Los Alamos National Laboratory...

    Energy Savers [EERE]

    - November 2014 November 2014 Review of the Los Alamos National Laboratory Weapons Engineering Tritium Facility Fire Suppression System The Department of Energy Office of...

  12. @ work' video segment features Robotic Software Engineer

    ScienceCinema (OSTI)

    Idaho National Laboratory

    2010-01-08T23:59:59.000Z

    @ work highlights Idaho National Laboratory employees and the jobs they perform.This segment features Robotic Software Engineer Miles Walton.

  13. Pacific Northwest Laboratory annual report for 1982 to the DOE Office of the Assistant Secretary for Environmental Protection, Safety and Emergency Preparedness. Part 5. Environmental and occupational protection, assessment, and engineering

    SciTech Connect (OSTI)

    Bair, W.J.

    1983-02-01T23:59:59.000Z

    Part 5 of the 1982 Annual Report to the Department of Energy's Office of Environmental Protection, Safety and Emergency Preparedness presents Pacific Northwest Laboratory's progress on work performed for the Office of Environmental Programs, Office of Operational Safety, and the Office of Nuclear Safety. The report is in three sections, introduced by blue divider pages, corresponding to the program elements: Technology Impacts, Environmental and Safety Engineering, Operational and Environmental Safety. In each section, articles describe progress made during FY 1982 on individual projects, as identified by the Field Task Proposal/Agreement. Authors of these articles represent a broad spectrum of capabilities derived from various segments of the Laboratory, reflecting the interdisciplinary nature of the work.

  14. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 1, Appendix D, Part B: Naval spent nuclear fuel management

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    This volume contains the following attachments: transportation of Naval spent nuclear fuel; description of Naval spent nuclear receipt and handling at the Expended Core Facility at the Idaho National Engineering Laboratory; comparison of storage in new water pools versus dry container storage; description of storage of Naval spent nuclear fuel at servicing locations; description of receipt, handling, and examination of Naval spent nuclear fuel at alternate DOE facilities; analysis of normal operations and accident conditions; and comparison of the Naval spent nuclear fuel storage environmental assessment and this environmental impact statement.

  15. EA-0874: Low-level Waste Drum Staging Building at Weapons Engineering Tritium Facility, TA-16 Los Alamos National Laboratory, Los Alamos, New Mexico

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to place a 3 meter (m) by 4.5 m prefabricated storage building (transportainer) adjacent to the existing Weapons Engineering Tritium...

  16. Sorbent Testing for the Solidification of Organic Process Waste streams from the Radiochemical Engineering Development Center at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Bickford, J.; Foote, M. [MSE Technology Applications, Inc., Montana (United States); Taylor, P. [Oak Ridge National Laboratory, Oak Ridge, Tennessee (United States)

    2008-07-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) has tasked MSE Technology Applications, Inc. (MSE) with evaluating various sorbents to solidify the radioactive liquid organic waste from the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory (ORNL). REDC recovers and purifies heavy elements (berkelium, californium, einsteinium, and fermium) from irradiated targets for research and industrial applications. Both aqueous and organic waste streams are discharged from REDC. Organic waste is generated from the plutonium/uranium extraction (PUREX), Cleanex, and Pubex processes.1 The PUREX waste derives from an organic-aqueous isotope separation process for plutonium and uranium fission products, the Cleanex waste derives from the removal of fission products and other impurities from the americium/curium product, and the Pubex waste is derived from the separation process of plutonium from dissolved targets. An aqueous waste stream is also produced from these separation processes. MSE has been tasked to test a grouting formula for the aqueous waste stream that includes specially formulated radioactive shielding materials developed by Science and Technology Applications, LLC. This paper will focus on the sorbent testing work. Based on work performed at Savannah River Site (SRS) (Refs. 1, 2), ORNL tested and evaluated three sorbents capable of solidifying the PUREX, Pubex, and Cleanex waste streams and a composite of the three organic waste streams: Imbiber Beads{sup R} IMB230301 (Imbiber Beads), Nochar A610 Petro Bond, and Petroset II Granular{sup TM} (Petroset II-G). Surrogates of the PUREX, Pubex, Cleanex, and a composite organic waste were used for the bench-scale testing. Recommendations resulting from the ORNL testing included follow-on testing by MSE for two of the three sorbents: Nochar Petro Bond and Petroset II-G. MSE recommended that another clay sorbent, Organoclay BM-QT-199, be added to the test sequence. The sorbent/surrogate combinations were tested at bench scale, 19-liter (L) [5-gallon (gal)] bucket scale, and 208-L (55-gal) drum scale. The testing performed by MSE will help ORNL select the right solidification materials and wasteform generation methods for the design of a new treatment facility. The results could also be used to help demonstrate that ORNL could meet the waste acceptance criteria for the ultimate disposal site for the waste-forms. The organics will be solidified as transuranic waste for disposal at the Waste Isolation Pilot Plant, and the aqueous waste stream will be grouted and disposed of at the Nevada Test Site as low-level waste if real waste testing indicates similar results to the surrogate testing. The objective of this work was to identify a sorbent capable of solidifying PUREX, Pubex, and Cleanex organic wastes individually and a composite of the three organic waste streams. The sorbent and surrogate combinations must also be compatible with processing equipment and maintain stability under a variety of conditions that could occur during storage/shipment of the solidified wastes. (authors)

  17. Sandia National Laboratories: Climate change

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducation Programs:CRF ResearchersPhysicsFacilitySecurity Water

  18. Russell Furr Laboratory Safety &

    E-Print Network [OSTI]

    Russell Furr Director 8/20/13 Laboratory Safety & Compliance #12;#12;Research Safety Full Time Students Part- Time #12; Organizational Changes Office of Research Safety Research Safety Advisors Safety Culture Survey Fire Marshal Inspections Laboratory Plans Review New Research Safety Initiatives

  19. Engineering Electrical &

    E-Print Network [OSTI]

    Hickman, Mark

    Computer Engineering Electrical & Electronic Engineering Mechatronics Engineering Mechanical Engineering Civil Engineering Natural Resources Engineering Forest Engineering Chemical & Process Engineering ELECTIVE 2 Required Engineering Intermediate Year 2011 Eight Required Courses Chart: 120 points College

  20. Engineering Electrical &

    E-Print Network [OSTI]

    Hickman, Mark

    Computer Engineering Electrical & Electronic Engineering Mechatronics Engineering Mechanical Engineering Civil Engineering Natural Resources Engineering Forest Engineering Chemical & Process Engineering ELECTIVE 2 Required Engineering Intermediate Year 2012 Eight Required Courses Chart: 120 points College

  1. Julie N. Howat & Colin S. Howat Kurata Thermodynamics Laboratory

    E-Print Network [OSTI]

    Howat, Colin S. "Chip"

    at KTL Kurata Thermodynamics Laboratory Department of Chemical & Petroleum Engineering UniversityJulie N. Howat & Colin S. Howat Kurata Thermodynamics Laboratory Department of Chemical & Petroleum Total Pressure Method , xsat #12;Kurata Thermodynamics Laboratory Department of Chemical & Petroleum

  2. This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. XX, NO. YY 1

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    fully edited. Content may change prior to final publication. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING electrocardiogram (ECG) remains an important problem for the biomedical engineering community. Despite of the rich. Sameni is with the Biomedical Signal and Image Processing Lab- oratory (BiSIPL), School of Electrical

  3. BIOMEDICAL ENGINEERING 2012-2014 CATALOG

    E-Print Network [OSTI]

    Texas at Austin, University of

    Chemistry I.........................1 BME 335, Engineering Probability and Statistics...................3 Chemistry I..............................................3 PHY 103N, Engineering Physics II LaboratoryBIOMEDICAL ENGINEERING 2012-2014 CATALOG Suggested Arrangement of Courses for Eight Semester

  4. Engineering Engineering Education

    E-Print Network [OSTI]

    Simaan, Nabil

    E School of Engineering Engineering Education in a University Setting 292 Degree Programs in Engineering 294 Special Programs 296 Honors 298 Academic Regulations 300 Courses of Study 305 Engineering of Engineering is the largest and oldest private engineering school in the South. Classes offering engineering

  5. Computer Engineering Curriculum Notes

    E-Print Network [OSTI]

    Mather, Patrick T.

    1 Computer Engineering Curriculum Notes 2013-2014 Technical Electives Students fulfill 15 credits be assigned to either group A or group B as determined by Computer Engineering program committee. Every year the computer engineering program committee will review the list and may make change(s). Group A (at least 6

  6. Congratulations to Dr. Wolan, Associate Professor in Chemical Engineering and the team of students who placed as finalists in the prestigious 2010 Oak Ridge National Laboratory Global

    E-Print Network [OSTI]

    Arslan, HĂĽseyin

    who placed as finalists in the prestigious 2010 Oak Ridge National Laboratory Global Venture Challenge Awards held in Oak Ridge, Tennessee on March 25-26, 2010. The USF project was submitted by Dr. Wolan into jet fuel. The project was among an elite group of 15 projects named as semi-finalist for the Oak Ridge

  7. AERONAUTICS The Guggenheim Aeronautical Laboratory, the Krmn

    E-Print Network [OSTI]

    Greer, Julia R.

    . Physics of Fluids. Fluid dynamics as a discipline is as much a part of physics as of engineering. PhysicsAERONAUTICS The Guggenheim Aeronautical Laboratory, the Kármán Laboratory of Fluid Mechanics the broad field known as aeronautics and space engineering. Areas of Research Aeronautics has evolved

  8. Mathematics and Engineering

    E-Print Network [OSTI]

    Linder, Tamás

    Mathematics and Engineering Applied Mechanics Computing and Communications Control systems require sophisticated mathematical models and analysis. This unique engineering program meets, but they possess the mathematical skills and insights needed to succeed in the ever changing workplace. The program

  9. INL '@work' Nuclear Engineer

    ScienceCinema (OSTI)

    McLean, Heather

    2013-05-28T23:59:59.000Z

    Heather MacLean talks about her job as a Nuclear Engineer for Idaho National Laboratory. For more information about INL careers, visit http://www.facebook.com/idahonationallaboratory.

  10. Laboratory Directed Research and Development FY2010 Annual Report

    SciTech Connect (OSTI)

    Jackson, K J

    2011-03-22T23:59:59.000Z

    A premier applied-science laboratory, Lawrence Livermore National Laboratory (LLNL) has at its core a primary national security mission - to ensure the safety, security, and reliability of the nation's nuclear weapons stockpile without nuclear testing, and to prevent and counter the spread and use of weapons of mass destruction: nuclear, chemical, and biological. The Laboratory uses the scientific and engineering expertise and facilities developed for its primary mission to pursue advanced technologies to meet other important national security needs - homeland defense, military operations, and missile defense, for example - that evolve in response to emerging threats. For broader national needs, LLNL executes programs in energy security, climate change and long-term energy needs, environmental assessment and management, bioscience and technology to improve human health, and for breakthroughs in fundamental science and technology. With this multidisciplinary expertise, the Laboratory serves as a science and technology resource to the U.S. government and as a partner with industry and academia. This annual report discusses the following topics: (1) Advanced Sensors and Instrumentation; (2) Biological Sciences; (3) Chemistry; (4) Earth and Space Sciences; (5) Energy Supply and Use; (6) Engineering and Manufacturing Processes; (7) Materials Science and Technology; Mathematics and Computing Science; (8) Nuclear Science and Engineering; and (9) Physics.

  11. San Pedro Bay Delta, in Southern California Shore and Shore Use Changes During Past 1-1/2 Centuries from a Coastal Engineering Perspective

    E-Print Network [OSTI]

    Wiegel, Robert L.

    2009-01-01T23:59:59.000Z

    Port, Coastal and Ocean Engineering, ASCE, Vol. 120, No.4,Port, Coastal, and Ocean Engineering, ASCE, Vol. 117, No.6,Port, Coastal, and Ocean Engineering, Vol. 122, No.4, July/

  12. Achieving High-Effiency Clean Ccombustion in Diesel Engines

    Broader source: Energy.gov (indexed) [DOE]

    Achieving High-Efficiency Clean Combustion in Diesel Engines Robert M. Wagner, C. Scott Sluder, John M. Storey, Sam A. Lewis Oak Ridge National Laboratory Diesel Engine Emissions...

  13. Advanced Reciprocating Engine Systems (ARES) R&D - Presentation...

    Broader source: Energy.gov (indexed) [DOE]

    Reciprocating Engine Systems (ARES) R&D - Presentation by Argonne National Laboratory, June 2011 Advanced Reciprocating Engine Systems (ARES) R&D - Presentation by Argonne National...

  14. Development and Demonstration of a Prototype Omnivorous Engine

    Broader source: Energy.gov (indexed) [DOE]

    of a Prototype Omnivorous Engine Christopher Cooney, Thomas Wallner, Steve McConnell Argonne National Laboratory DEER 2009 - Directions in Engine - Efficiency and Emissions...

  15. Science & Engineering Engineering Databases

    E-Print Network [OSTI]

    Hampton, Randy

    -present. Good for computers, electronics, biomedical, control, electrical and ocean engineering, physics9/09 DK,DS Science & Engineering Library Engineering Databases How to search the engineering initials Special features: Limit to peer-reviewed journals Compendex [Engineering Index] 1884-present

  16. Princeton Plasma Physics Laboratory:

    SciTech Connect (OSTI)

    Phillips, C.A. (ed.)

    1986-01-01T23:59:59.000Z

    This paper discusses progress on experiments at the Princeton Plasma Physics Laboratory. The projects and areas discussed are: Principal Parameters Achieved in Experimental Devices, Tokamak Fusion Test Reactor, Princeton Large Torus, Princeton Beta Experiment, S-1 Spheromak, Current-Drive Experiment, X-ray Laser Studies, Theoretical Division, Tokamak Modeling, Spacecraft Glow Experiment, Compact Ignition Tokamak, Engineering Department, Project Planning and Safety Office, Quality Assurance and Reliability, and Administrative Operations.

  17. Storage and disposition of weapons usable fissile materials (FMD) PEIS: Blending of U-233 to {lt}12% or {lt}5% enrichment at the Idaho National Engineering Laboratory. Data report, Draft: Version 1

    SciTech Connect (OSTI)

    Shaber, E.L.

    1995-08-01T23:59:59.000Z

    Uranium-233 (U-233), a uranium isotope, is a fissionable material capable of fueling nuclear reactors or being utilized in the manufacturing of nuclear weapons. As such, it is controlled as a special nuclear material. The Idaho National Engineering Laboratory (INEL) and Oak Ridge National Laboratory (ORNL) currently store the Department of Energy`s (DOE`s) supply of unirradiated U-233 fuel materials. Irradiated U-233 is covered by the national spent nuclear fuel (SNF) program and is not in the scope of this report. The U-233 stored at ORNL is relatively pure uranium oxide in the form of powder or monolithic solids. This material is currently stored in stainless steel canisters of variable lengths measuring about 3 inches in diameter. The ORNL material enrichment varies with some material containing considerable amounts of U-235. The INEL material is fuel from the Light Water Breeder Reactor (LWBR) Program and consists of enriched uranium and thorium oxides in zircaloy cladding. The DOE inventory of U-233 contains trace quantities of U-232, and daughter products from the decay of U-232 and U-233, resulting in increased radioactivity over time. These increased levels of radioactivity generally result in the need for special handling considerations.

  18. Evaluation of Quality-Assurance/Quality-Control Data Collected by the U.S. Geological Survey from Wells and Springs between the Southern Boundary of the Idaho National Engineering and Environmental Laboratory and the Hagerman Area, Idaho, 1989 through 1995

    SciTech Connect (OSTI)

    Williams, L.M.; Bartholomay, R.C.; Campbell, L.J.

    1998-10-01T23:59:59.000Z

    The U.S. Geological (USGS) and the Idaho Department of Water Resources, in cooperation with the U.S. Department of Energy, collected and analyzed water samples to monitor the water quality of the Snake River Plain aquifer from the southern boundary of the Idaho National Engineering and Environmental Laboratory to the Hagerman area, Idaho. Concurrently, replicate samples and blank samples were collected and analyzed as part of the quality-assurance/quality-control program. Samples were analyzed from inorganic constituents, gross radioactivity and radionuclides, organic constituents, and stable isotopes. To evaluate the precision of field and laboratory methods, analytical results of the water-quality and replicate samples were compared statistically for equivalence on the basis of the precision associated with each result. Statistical comparisons of the data indicated that 95 percent of the results of the replicate pairs were equivalent. Blank-sample analytical results indicated th at the inorganic blank water and volatile organic compound blank water from the USGS National Water Quality Laboratory and the distilled water from the Idaho Department of Water Resources were suitable for blanks; blank water from other sources was not. Equipment-blank analytical results were evaluated to determine if a bias had been introduced and possible sources of bias. Most equipment blanks were analyzed for trace elements and volatile organic compounds; chloroform was found in one equipment blank. Two of the equipment blanks were prepared after collection and analyses of the water-quality samples to determine whether contamination had been introduced during the sampling process. Results of one blank indicated that a hose used to divert water away from pumps and electrical equipment had contaminated the samples with some volatile organic compounds. Results of the other equipment blank, from the apparatus used to filter dissolved organic carbon samples, indicated that the filtering apparatus did not affect water-quality samples.

  19. Laboratory or Service Center Name Web Presence or Contact Details Keywords Agri-genomics Laboratory http://agl.tamu.edu/

    E-Print Network [OSTI]

    Behmer, Spencer T.

    irradiation, Food safety, Dosimetry plans Tick Research Laboratory http://ticsys.tamu.edu/ Ticks, Pest Control Improvement Laboratory http://cottonimprovementlab.tamu.edu/ Cotton, Crop Imrovement, Fiber Quality Food Engineering Laboratory http://baen.tamu.edu/foodengineering/FEngr/F Engr.html Food Engineering, Food Storage

  20. 33engineering EnginEEring and

    E-Print Network [OSTI]

    Wagner, Stephan

    33engineering EnginEEring and ThE builT EnvironmEnT www.wits.ac.za/ebe #12;34 guide for applicants 2015 The study of Engineering Career opportunities for engineers are limitless and extend beyond the formal engineering sector. A career in engineering requires special talents ­ engineers need

  1. Cleaner, More Efficient Diesel Engines

    ScienceCinema (OSTI)

    Musculus, Mark

    2014-02-26T23:59:59.000Z

    Mark Musculus, an engine combustion scientist at Sandia National Laboratories, led a study that outlines the science base for auto and engine manufacturers to build the next generation of cleaner, more efficient engines using low-temperature combustion. Here, Musculus discusses the work at Sandia's Combustion Research Facility.

  2. Cleaner, More Efficient Diesel Engines

    SciTech Connect (OSTI)

    Musculus, Mark

    2013-08-13T23:59:59.000Z

    Mark Musculus, an engine combustion scientist at Sandia National Laboratories, led a study that outlines the science base for auto and engine manufacturers to build the next generation of cleaner, more efficient engines using low-temperature combustion. Here, Musculus discusses the work at Sandia's Combustion Research Facility.

  3. Vanderbilt Department of Biomedical Engineering

    E-Print Network [OSTI]

    Bordenstein, Seth

    Vanderbilt Department of Biomedical Engineering #12;bio-inspired therapeutics and nanomedicine possible. true cutting-edge engineering With the Biomedical Modeling Laboratory, the Surgical Navigation of Biomedical Engineering offers courses of study leading to the B.E., M.E., M.S., and Ph.D. degrees. Our

  4. Maximizing Power Output in Homogeneous Charge Compression Ignition (HCCI) Engines and Enabling Effective Control of Combustion Timing

    E-Print Network [OSTI]

    Saxena, Samveg

    2011-01-01T23:59:59.000Z

    Ford Motor Company, “Diesel Engine Aftertreatment: How FordNational Laboratory, “Engine Combustion Network”, http://High Power Output without Engine Knock and with Ultra-Low

  5. Sandia National Laboratories: Geomechanics Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science: Latest News and Events Earth Science: Facilities and Equipment Bureau of Land Management Fossil Energy Liquid Natural Gas (LNG) Clean Coal Geomechanics Laboratory User...

  6. College of Engineering ENGINEERING

    E-Print Network [OSTI]

    Mayfield, John

    College of Engineering CYCLONE ENGINEERING RESEARCH `SENSING SKIN' MAKES WIND ENERGY MORE COST of Science and Technology. All rights reserved. Sarah A. Rajala Dean of Engineering James and Katherine Melsa: The College of Engineering is dedicated to advancing alternative energy, including wind energy. Researchers

  7. Air Force Research Laboratory Placement: Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson

    E-Print Network [OSTI]

    Alpay, S. Pamir

    Air Force Research Laboratory Placement: Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Dayton OH Discipline(s): Materials science/engineering, chemical. Description: We are looking for a qualified candidate to join our team at the Air Force Research Laboratory

  8. College of Engineering College of Engineering

    E-Print Network [OSTI]

    Collett Jr., Jeffrey L.

    College of Engineering College of Engineering Office in Engineering Building, Room 202 (970) 491 UNDERGRADUATE MAJORS Biomedical Engineering Chemical and Biological Engineering Civil Engineering Computer Engineering Electrical Engineering Engineering Science Environmental Engineering Mechanical Engineering

  9. MICROSYSTEMS LABORATORIES

    E-Print Network [OSTI]

    Culpepper, Martin L.

    15 nm MICROSYSTEMS TECHNOLOGY LABORATORIES ANNUAL RESEARCH REPORT 2014 MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MA AUGUST 2014 #12;MTL Annual Research Report 2014 Director JesĂşs A. del Alamo Project........................................................................ 47 Energy: Photovoltaics, Energy Harvesting, Batteries, Fuel Cells

  10. Pre-Approved1 Engineering Electives for Biological Engineering (NOTE: Technical Electives Engineering Electives Bioengineering Electives)2

    E-Print Network [OSTI]

    Lawrence, Rick L.

    Probability and Statistics I [F] 3 EIND 434 Project and Engineering Management [F] 3 EMAT 252 Materials Science Laboratory [F,S] 1 EMAT 452 Adv. Engineering Materials [on demand] 3 EMEC 321 Thermodynamics II [FPre-Approved1 Engineering Electives for Biological Engineering (NOTE: Technical Electives

  11. Power Systems Integration Laboratory (Fact Sheet), NREL (National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from fundamental research to applications engineering. Partners at the ESIF's Power Systems Integration Laboratory may include: * Manufacturers of distributed generation and...

  12. Energy Systems Sensor Laboratory (Fact Sheet), NREL (National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from fundamental research to applications engineering. Partners at the ESIF's Energy Systems Sensor Laboratory may include: * Hydrogen sensor manufacturers * Codes and standards...

  13. Fermilab Engineering Manual Appendices Revision 1.0

    E-Print Network [OSTI]

    Quigg, Chris

    Fermilab Engineering Manual Appendices Revision 1.0 Page 1 FERMI NATIONAL ACCELERATOR LABORATORY:__________________________ DATE:_________ REVISION NO.________ REVISION ISSUE DATE:____________ #12;Fermilab Engineering Manual ..................................... 166 #12;Fermilab Engineering Manual Appendices Revision 1.0 Page 3 A. REQUIREMENTS AND SPECIFICATIONS

  14. Los Alamos National Laboratory A National Science Laboratory

    SciTech Connect (OSTI)

    Chadwick, Mark B. [Los Alamos National Laboratory

    2012-07-20T23:59:59.000Z

    Our mission as a DOE national security science laboratory is to develop and apply science, technology, and engineering solutions that: (1) Ensure the safety, security, and reliability of the US nuclear deterrent; (2) Protect against the nuclear threat; and (3) Solve Energy Security and other emerging national security challenges.

  15. Lawrence E. Carlson Professor of Mechanical Engineering

    E-Print Network [OSTI]

    Carlson, Lawrence E.

    Education, American Society of Mechanical Engineers, pp. 31-33. Solar Stirling Engine 2Cam Rock ClimbingPortfolio Lawrence E. Carlson Professor of Mechanical Engineering Founding Co-Director, Integrated Teaching and Learning Program and Laboratory University of Colorado at Boulder #12;ENGINEERING EDUCATION

  16. BEE 473. Watershed Engineering Fall Semester 2007

    E-Print Network [OSTI]

    Walter, M.Todd

    Engineering requirements for Engineering Laboratory and Design Elective Prerequisites: Fluid Mechanics (eBEE 473. Watershed Engineering Fall Semester 2007 Credit: 3 hours Catalogue description representative of real-life engineering problems and will involve as much hands-on experience as possible. Some

  17. Sandia National Laboratories' Stanley Atcitty Wins Presidential...

    Office of Environmental Management (EM)

    for Scientists and Engineers July 24, 2012 - 11:27am Addthis Dr. Stanley Atcitty, an energy storage systems researcher at Sandia National Laboratories, has been named a winner...

  18. Photovoltaic technology development at Sandia National Laboratories

    SciTech Connect (OSTI)

    NONE

    1981-12-31T23:59:59.000Z

    This report describes the following investigations being pursued under photovoltaic technology development at Sandia National Laboratories: photovoltaic systems technology; concentrator technology; concentrator arrays and tracking structures; concentrator solar cell development; system engineering; subsystem development; and test and applications.

  19. University of Illinois at Urbana-Champaign, Materials Research Laboratory progress report for FY 1992

    SciTech Connect (OSTI)

    Not Available

    1992-07-01T23:59:59.000Z

    This interdisciplinary laboratory in the College of Engineering support research in areas of condensed matter physics, solid state chemistry, and materials science. These research programs are developed with the assistance of faculty, students, and research associates in the departments of Physics, Materials Science and Engineering, chemistry, Chemical Engineering, Electrical Engineering, Mechanical Engineering, and Nuclear Engineering.

  20. Study on a two-piston type Stirling engine MELSE II -- Analysis of engine performance --

    SciTech Connect (OSTI)

    Azotsu, A.; Tanaka, A.; Yamada, Y.; Yamashita, I.; Yanagihara, S.

    1984-08-01T23:59:59.000Z

    This paper describes the results of performance test data of the two-piston type laboratory research Stirling engine MELSE II. On the basis of the experimental data, the effects of the working gas species and the phase difference between the two pistons on engine performance are discussed and made clear. As working gases, helium, neon and argon were used. Phase difference was changed from 60 to 150 degrees. These effects appear mainly as the distinctions of the pressure drop loss and the mean working gas temperature in the expansion cylinder, and depend significantly on the engine speed. In addition, the pressure difference between the two cylinders and the temperature distribution of the expansion cylinder wall have been measured, and their behaviors are clarified in relation to the effects mentioned just above.

  1. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs, Draft Environmental Impact Statement. Volume 1, Appendix D: Part A, Naval Spent Nuclear Fuel Management

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    Volume 1 to the Department of Energy`s Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Management Programs Environmental Impact Statement evaluates a range of alternatives for managing naval spent nuclear fuel expected to be removed from US Navy nuclear-powered vessels and prototype reactors through the year 2035. The Environmental Impact Statement (EIS) considers a range of alternatives for examining and storing naval spent nuclear fuel, including alternatives that terminate examination and involve storage close to the refueling or defueling site. The EIS covers the potential environmental impacts of each alternative, as well as cost impacts and impacts to the Naval Nuclear Propulsion Program mission. This Appendix covers aspects of the alternatives that involve managing naval spent nuclear fuel at four naval shipyards and the Naval Nuclear Propulsion Program Kesselring Site in West Milton, New York. This Appendix also covers the impacts of alternatives that involve examining naval spent nuclear fuel at the Expended Core Facility in Idaho and the potential impacts of constructing and operating an inspection facility at any of the Department of Energy (DOE) facilities considered in the EIS. This Appendix also considers the impacts of the alternative involving limited spent nuclear fuel examinations at Puget Sound Naval Shipyard. This Appendix does not address the impacts associated with storing naval spent nuclear fuel after it has been inspected and transferred to DOE facilities. These impacts are addressed in separate appendices for each DOE site.

  2. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 1, Appendix C, Savannah River Site Spent Nuclear Fuel Mangement Program

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    The US Department of Energy (DOE) is engaged in two related decision making processes concerning: (1) the transportation, receipt, processing, and storage of spent nuclear fuel (SNF) at the DOE Idaho National Engineering Laboratory (INEL) which will focus on the next 10 years; and (2) programmatic decisions on future spent nuclear fuel management which will emphasize the next 40 years. DOE is analyzing the environmental consequences of these spent nuclear fuel management actions in this two-volume Environmental Impact Statement (EIS). Volume 1 supports broad programmatic decisions that will have applicability across the DOE complex and describes in detail the purpose and need for this DOE action. Volume 2 is specific to actions at the INEL. This document, which limits its discussion to the Savannah River Site (SRS) spent nuclear fuel management program, supports Volume 1 of the EIS. Following the introduction, Chapter 2 contains background information related to the SRS and the framework of environmental regulations pertinent to spent nuclear fuel management. Chapter 3 identifies spent nuclear fuel management alternatives that DOE could implement at the SRS, and summarizes their potential environmental consequences. Chapter 4 describes the existing environmental resources of the SRS that spent nuclear fuel activities could affect. Chapter 5 analyzes in detail the environmental consequences of each spent nuclear fuel management alternative and describes cumulative impacts. The chapter also contains information on unavoidable adverse impacts, commitment of resources, short-term use of the environment and mitigation measures.

  3. Chlorine-36 in Water, Snow, and Mid-Latitude Glacial Ice of North America: Meteoric and Weapons-Tests Production in the Vicinity of the Idaho National Engineering and Environmental Laboratory, Idaho

    SciTech Connect (OSTI)

    L. DeWayne; J. R. Green (USGS); S. Vogt, P. Sharma (Purdue University); S. K. Frape (University of Waterloo); S. N. Davis (University of Arizona); G. L. Cottrell (USGS)

    1999-01-01T23:59:59.000Z

    Measurements of chlorine-36 (36Cl) were made for 64 water, snow, and glacial-ice and -runoff samples to determine the meteoric and weapons-tests-produced concentrations and fluxes of this radionuclide at mid-latitudes in North America. The results will facilitate the use of 36Cl as a hydrogeologic tracer at the Idaho National Engineering and Environmental Laboratory (INEEL). This information was used to estimate meteoric and weapons-tests contributions of this nuclide to environmental inventories at and near the INEEL. The data presented in this report suggest a meteoric source 36Cl for environmental samples collected in southeastern Idaho and western Wyoming if the concentration is less than 1 x 10 7 atoms/L. Additionally, concentrations in water, snow, or glacial ice between 1 x 10 7 and 1 x 10 8 atoms/L may be indicative of a weapons-tests component from peak 36Cl production in the late 1950s. Chlorine-36 concentrations between 1 x 10 8 and 1 x 10 9 atoms/L may be representative of re-suspension of weapons-tests fallout airborne disposal of 36Cl from the INTEC, or evapotranspiration. It was concluded from the water, snow, and glacial data presented here that concentrations of 36Cl measured in environmental samples at the INEEL larger than 1 x 10 9 atoms/L can be attributed to waste-disposal practices.

  4. Heavy element radionuclides (Pu, Np, U) and {sup 137}Cs in soils collected from the Idaho National Engineering and Environmental Laboratory and other sites in Idaho, Montana, and Wyoming

    SciTech Connect (OSTI)

    Beasley, T.M.; Rivera, W. Jr. [Dept. of Energy, New York, NY (United States). Environmental Measurements Lab.; Kelley, J.M.; Bond, L.A. [Pacific Northwest National Lab., Richland, WA (United States); Liszewski, M.J. [Bureau of Reclamation (United States); Orlandini, K.A. [Argonne National Lab., IL (United States)

    1998-10-01T23:59:59.000Z

    The isotopic composition of Pu in soils on and near the Idaho National Engineering and Environmental Laboratory (INEEL) has been determined in order to apportion the sources of the Pu into those derived from stratospheric fallout, regional fallout from the Nevada Test Site (NTS), and facilities on the INEEL site. Soils collected offsite in Idaho, Montana, and Wyoming were collected to further characterize NTS fallout in the region. In addition, measurements of {sup 237}Np and {sup 137}Cs were used to further identify the source of the Pu from airborne emissions at the Idaho Chemical Processing Plant (ICPP) or fugitive releases from the Subsurface Disposal Area (SDA) in the Radioactive Waste Management Complex (RWMC). There is convincing evidence from this study that {sup 241}Am, in excess of that expected from weapons-grade Pu, constituted a part of the buried waste at the SDA that has subsequently been released to the environment. Measurements of {sup 236}U in waters from the Snake River Plain aquifer and a soil core near the ICPP suggest that this radionuclide may be a unique interrogator of airborne releases from the ICPP. Neptunium-237 and {sup 238}Pu activities in INEEL soils suggest that airborne releases of Pu from the ICPP, over its operating history, may have recently been overestimated.

  5. Chemical and Isotopic Composition and Gas Concentrations of Ground Water and Surface Water from Selected Sites At and Near the Idaho National Engineering and Environmental Laboratory, Idaho, 1994-97

    SciTech Connect (OSTI)

    E. Busenberg; L. N. Plummer; M. W. Doughten; P. K. Widman; R. C. Bartholomay (USGS)

    2000-05-30T23:59:59.000Z

    >From May 1994 through May 1997, the US Geological Survey, in cooperation with the US Department of Energy, collected water samples from 86 wells completed in the Snake River Plain aquifer at and near the Idaho National Engineering and Environmental Laboratory. The samples were analyzed for a variety of chemical constituents including all major elements and 22 trace elements. Concentrations of scandium, yttrium, and the lanthanide series were measured in samples from 11 wells and 1 hot spring. The data will be used to determine the fraction of young water in the ground water. The fraction of young water must be known to calculate the ages of ground water using chlorofluorocarbons. The concentrations of the isotopes deuterium, oxygen-18, carbon-13, carbon-14, and tritium were measured in many ground water, surface-water and spring samples. The isotopic composition will provide clues to the origin and sources of water in the Snake River Plain aquifer. Concentrations ! of helium-3 , helium-4, total helium, and neon were measured in most groundwater samples, and the results will be used to determine the recharge temperature, and to date the ground waters.

  6. Sandia National Laboratories: Sandia Cyber Engineering Research Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik SpoerkeSolarCybernetics:2PIntroduction of Prof. DavidfacilityAtomic(CERL)

  7. ENVIRONMENTAL ENGINEERING

    E-Print Network [OSTI]

    Walter, M.Todd

    ENVIRONMENTAL ENGINEERING UNDERGRADUATE HANDBOOK Cornell University Department of Biological and Environmental Engineering School of Civil and Environmental Engineering enve.cornell.edu 2013-2014 #12;Environmental Engineering 2013-2014 1 UNDERGRADUATE HANDBOOK FOR ENVIRONMENTAL ENGINEERING MISSION STATEMENT

  8. Creating the laboratory`s future; A strategy for Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    NONE

    1997-09-01T23:59:59.000Z

    ``Creating The Laboratory`s Future`` describes Livermore`s roles and responsibilities as a Department of Energy (DOE) national laboratory and sets the foundation for decisions about the Laboratory`s programs and operations. It summarizes Livermore`s near-term strategy, which builds on recent Lab achievements and world events affecting their future. It also discusses their programmatic and operational emphases and highlights program areas that the authors believe can grow through application of Lab science and technology. Creating the Laboratory`s Future reflects their very strong focus on national security, important changes in the character of their national security work, major efforts are under way to overhaul their administrative and operational systems, and the continuing challenge of achieving national consensus on the role of the government in energy, environment, and the biosciences.

  9. Princeton Plasma Physics Laboratory

    SciTech Connect (OSTI)

    Not Available

    1990-01-01T23:59:59.000Z

    This report discusses the following topics: principal parameters achieved in experimental devices fiscal year 1990; tokamak fusion test reactor; compact ignition tokamak; Princeton beta experiment- modification; current drive experiment-upgrade; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma processing: deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for fiscal year 1990; graduate education; plasma physics; graduate education: plasma science and technology; science education program; and Princeton Plasma Physics Laboratory reports fiscal year 1990.

  10. Sandia National Laboratories: MASK

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS ExhibitIowaLos Alamos National LaboratoryEngineersMASK

  11. Sandia National Laboratories: MD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS ExhibitIowaLos Alamos National LaboratoryEngineersMASKMD CINT

  12. Sandia National Laboratories: MEMS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS ExhibitIowaLos Alamos National LaboratoryEngineersMASKMD

  13. Sandia National Laboratories: MEPV

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS ExhibitIowaLos Alamos National LaboratoryEngineersMASKMDMEPV

  14. ARM - Engineering Change Request & Engineering Change Order Guidelines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcal Documentation DataDatastreamswacrspeccmaskcopolDatastreamsxsacrslrAlaskaDefensive

  15. Idaho National Laboratory/Nuclear Power Industry Strategic Plan for Light Water Reactor Research and Development An Industry-Government Partnership to Address Climate Change and Energy Security

    SciTech Connect (OSTI)

    Electric Power Research

    2007-11-01T23:59:59.000Z

    The dual issues of energy security and climate change mitigation are driving a renewed debate over how to best provide safe, secure, reliable and environmentally responsible electricity to our nation. The combination of growing energy demand and aging electricity generation infrastructure suggests major new capacity additions will be required in the years ahead.

  16. Smart Grid Integration Laboratory

    SciTech Connect (OSTI)

    Wade Troxell

    2011-09-30T23:59:59.000Z

    The initial federal funding for the Colorado State University Smart Grid Integration Laboratory is through a Congressionally Directed Project (CDP), DE-OE0000070 Smart Grid Integration Laboratory. The original program requested in three one-year increments for staff acquisition, curriculum development, and instrumentation â?? all which will benefit the Laboratory. This report focuses on the initial phase of staff acquisition which was directed and administered by DOE NETL/ West Virginia under Project Officer Tom George. Using this CDP funding, we have developed the leadership and intellectual capacity for the SGIC. This was accomplished by investing (hiring) a core team of Smart Grid Systems engineering faculty focused on education, research, and innovation of a secure and smart grid infrastructure. The Smart Grid Integration Laboratory will be housed with the separately funded Integrid Laboratory as part of CSUâ??s overall Smart Grid Integration Center (SGIC). The period of performance of this grant was 10/1/2009 to 9/30/2011 which included one no cost extension due to time delays in faculty hiring. The Smart Grid Integration Laboratoryâ??s focus is to build foundations to help graduate and undergraduates acquire systems engineering knowledge; conduct innovative research; and team externally with grid smart organizations. Using the results of the separately funded Smart Grid Workforce Education Workshop (May 2009) sponsored by the City of Fort Collins, Northern Colorado Clean Energy Cluster, Colorado State University Continuing Education, Spirae, and Siemens has been used to guide the hiring of faculty, program curriculum and education plan. This project develops faculty leaders with the intellectual capacity to inspire its students to become leaders that substantially contribute to the development and maintenance of Smart Grid infrastructure through topics such as: (1) Distributed energy systems modeling and control; (2) Energy and power conversion; (3) Simulation of electrical power distribution system that integrates significant quantities of renewable and distributed energy resources; (4) System dynamic modeling that considers end-user behavior, economics, security and regulatory frameworks; (5) Best practices for energy management IT control solutions for effective distributed energy integration (including security with the underlying physical power systems); (6) Experimental verification of effects of various arrangements of renewable generation, distributed generation and user load types along with conventional generation and transmission. Understanding the core technologies for enabling them to be used in an integrated fashion within a distribution network remains is a benefit to the future energy paradigm and future and present energy engineers.

  17. Introduction Systems Engineering Fundamentals ENGINEERING

    E-Print Network [OSTI]

    Rhoads, James

    Introduction Systems Engineering Fundamentals i SYSTEMS ENGINEERING FUNDAMENTALS January 2001;Systems Engineering Fundamentals Introduction ii #12;Introduction Systems Engineering Fundamentals iii ............................................................................................................................................. iv PART 1. INTRODUCTION Chapter 1. Introduction to Systems Engineering Management

  18. The Graduate School BME Biomedical Engineering

    E-Print Network [OSTI]

    MacAdam, Keith

    The Graduate School BME Biomedical Engineering KEY: # = new course * = course changed = course;orconsentofinstructor. BME 501 FOUNDATIONS OF BIOMEDICAL ENGINEERING. (3 579.) BME 599 TOPICS IN BIOMEDICAL ENGINEERING (Subtitle required). (3) An interdisciplinary course

  19. Laboratories are Needed to Explore, Explain VLBACHANDRA

    E-Print Network [OSTI]

    Georgia Institute of Technology Idaho National Engineering Laboratory Lawrence Livermore National to Two DEMOs Fourth Phase Scientific Feasibility Burning Demo Engineering Base Electric Power Feasibility Three Large Tokamaks Tokamak Experimental Reactor LHD, W 7X JT-60 U JET TFTR Scientific Foundation

  20. Key facts about Argonne National Laboratory

    E-Print Network [OSTI]

    Kemner, Ken

    Key facts about Argonne National Laboratory Argonne National Laboratory occupies 1,500 wooded acres in southeast DuPage County near Chicago. Mission Argonne's mission is to apply a unique blend of world needs of our nation. Argonne conducts R&D in many areas of basic and applied science and engineering

  1. Statistical Sciences Group, Los Alamos National Laboratory,

    E-Print Network [OSTI]

    Wolfe, Patrick J.

    Luke Bornn CCS-6, Statistical Sciences Group, Los Alamos National Laboratory, MS F600, Los Alamos, NM 87545 Charles R. Farrar1 e-mail: farrar@lanl.gov Gyuhae Park Kevin Farinholt The Engineering Institute, Los Alamos National Laboratory, MS T006, Los Alamos, NM 87545 Structural Health Monitoring

  2. Using Web-Based Technology in Laboratory

    E-Print Network [OSTI]

    Plotkin, Joshua B.

    Using Web-Based Technology in Laboratory Instruction to Reduce Costs RITA M. POWELL,1 HELEN curriculum while reducing their costs through the application of web-based teaching tools. The project.interscience. wiley.com.); DOI 10.1002/cae.10029 Keywords: engineering education; laboratory materials; World Wide Web

  3. Forces on laboratory model dredge cutterhead

    E-Print Network [OSTI]

    Young, Dustin Ray

    2010-07-14T23:59:59.000Z

    FORCES ON LABORATORY MODEL DREDGE CUTTERHEAD A Thesis by DUSTIN RAY YOUNG Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE December 2009 Major Subject: Ocean Engineering FORCES ON LABORATORY MODEL DREDGE CUTTERHEAD A Thesis by DUSTIN RAY YOUNG Submitted to the Office of Graduate Studies...

  4. Systems Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systems Engineering Systems Engineering is a holistic engineering discipline that provides systems analysis, systems integration, decision analysis, and systems science products...

  5. Mechanical Engineer

    Broader source: Energy.gov [DOE]

    This position is located in the Facilities Engineering (TESF) organization of Substation Engineering (TES) within the Engineering and Technical Services (TE) organization of the Transmission (T)...

  6. SULI at Ames Laboratory

    SciTech Connect (OSTI)

    None

    2011-01-01T23:59:59.000Z

    A video snapshot of the Science Undergraduate Laboratory Internship (SULI) program at Ames Laboratory.

  7. Pre-Approved1 Chemical Engineering Technical Electives (NOTE: Technical Electives Engineering Electives Bioengineering Electives)2

    E-Print Network [OSTI]

    Lawrence, Rick L.

    & Design [S] 3 EIND 354 Engr Probability and Statistics I [F] 3 EIND 434 Project and Engineering Management [F] 3 EMAT 252 Materials Science Laboratory [F,S] 1 EMAT 452 Adv. Engineering Materials [on demand] 3Pre-Approved1 Chemical Engineering Technical Electives (NOTE: Technical Electives Engineering

  8. Final environmental impact statement for the construction and operation of an independent spent fuel storage installation to store the Three Mile Island Unit 2 spent fuel at the Idaho National Engineering and Environmental Laboratory. Docket Number 72-20

    SciTech Connect (OSTI)

    NONE

    1998-03-01T23:59:59.000Z

    This Final Environmental Impact Statement (FEIS) contains an assessment of the potential environmental impacts of the construction and operation of an Independent Spent Fuel Storage Installation (ISFSI) for the Three Mile Island Unit 2 (TMI-2) fuel debris at the Idaho National Engineering and Environmental laboratory (INEEL). US Department of Energy-Idaho Operations Office (DOE-ID) is proposing to design, construct, and operate at the Idaho Chemical Processing Plant (ICPP). The TMI-2 fuel debris would be removed from wet storage, transported to the ISFSI, and placed in storage modules on a concrete basemat. As part of its overall spent nuclear fuel (SNF) management program, the US DOE has prepared a final programmatic environmental impact statement (EIS) that provides an overview of the spent fuel management proposed for INEEL, including the construction and operation of the TMI-2 ISFSI. In addition, DOE-ID has prepared an environmental assessment (EA) to describe the environmental impacts associated with the stabilization of the storage pool and the construction/operation of the ISFSI at the ICPP. As provided in NRC`s NEPA procedures, a FEIS of another Federal agency may be adopted in whole or in part in accordance with the procedures outlined in 40 CFR 1506.3 of the regulations of the Council on Environmental Quality (CEQ). Under 40 CFR 1506.3(b), if the actions covered by the original EIS and the proposed action are substantially the same, the agency adopting another agency`s statement is not required to recirculate it except as a final statement. The NRC has determined that its proposed action is substantially the same as actions considered in DOE`s environmental documents referenced above and, therefore, has elected to adopt the DOE documents as the NRC FEIS.

  9. NuclearScienceandEngineeringLaboratory Sustainable

    E-Print Network [OSTI]

    Beex, A. A. "Louis"

    computational and visualization tools for application in nuclear power, nuclear security, nonproliferation innovative devices for application in nuclear power, nuclear security and safeguards, and radiation diagnosis of nuclear power to the electric grid. In the nuclear security, nonproliferation, and safeguards areas, ongoi

  10. R. Krishnamoorthy Precision Engineering Research Laboratory,

    E-Print Network [OSTI]

    -process dressing (ELID), a metal-bonded grinding wheel is dressed as a result of anodic dissolution. In this paper-20 \\xm bronze bonded diamond grinding wheel used to machine silicon carbide. A practical implementation-bonded diamond grinding wheel was initially dressed and was then used to blanchard-grind sili- con carbide

  11. Publications Materials Science and Engineering Laboratory

    E-Print Network [OSTI]

    -destructive measure- ment scheme to actively monitor hydrogen content in steel pipelines, Proc. QNDE 2007, AIP for hydrogen pipelines, NIST IR 6649 (2007) Siewert TA, Smith R, Merritt J, Advanced welding and joiningColskey JD, Siewert TA, Crack tip opening angle optical measurement methods in five pipeline steels, Engi

  12. Lawrence Berkeley National Laboratory Engineering Division Office

    E-Print Network [OSTI]

    /4867399 DMAttia@lbl.gov Administrative Staff Glenda Fish Division Office Administrator 510/4867123 GJFish

  13. Course 28123 Chemical/Biochemical Engineering Laboratory

    E-Print Network [OSTI]

    Simaan, Nabil

    and solid extraction, organic synthesis, fixed bed enzyme reactor, solids handling, combustion/ high, filtration, drying in a tunnel, spray drying, fluidization and fluidized bed drying, distillation, absorption

  14. Mechanical Engineering Industrial Energy Systems Laboratory

    E-Print Network [OSTI]

    Candea, George

    of District Heating and Cooling with an Electro-Thermal Energy Storage System Master Thesis ANURAG KUMAR of the district energy systems is performed and modifications are proposed in a district heating network. Based thermodynamic cycle, ETES suffers from the irreversibilities and excess thermal energy is required to dispose

  15. An Engineering Approach to Laboratory Ergonomics

    E-Print Network [OSTI]

    Pollard, Martin J.

    2010-01-01T23:59:59.000Z

    E L b Lab t furniture & design Ergonomics i Martin PollardEnvironment Goals • The ergonomics p g problem at LBNL/JGI •in the context of an ergonomics program • Review examples of

  16. Physical Sciences and Engineering | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch Welcome to theNews & Blog »

  17. Physical Sciences and Engineering | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    awards More Argonne named in several DOE Energy Frontier Research Center awards More Solar panel manufacturing is greener in Europe than China, study says More Microscopy...

  18. Sandia National Laboratories: Careers: Aerospace Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducation Programs:CRF Researchers answer AlanCarbon ManagementAerospace

  19. Sandia National Laboratories: Careers: Electrical Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducation Programs:CRF Researchers answerCareers Cybersecurity

  20. Sandia National Laboratories: Careers: Mechanical Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducation Programs:CRF Researchers answerCareersInstituteMechanical

  1. Sandia National Laboratories: Careers: Nuclear Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducation Programs:CRF Researchers

  2. Sandia National Laboratories: Careers: Systems Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducation Programs:CRF ResearchersPhysics WaterOtherCo-ops: HowSystems

  3. Applied Process Engineering Laboratory | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT Biomass Facility JumpvolcanicPhase 1Processes ofTurbineProcess

  4. Institute for Molecular Engineering | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area.Portaldefault Sign InReactionResearch Center4n

  5. Sandia National Laboratories: fuel-efficient engine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia,evaluating

  6. Sandia National Laboratories: materials science and engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbine bladelifetime is the cumulative time underpowerscience

  7. Emeritus Scientists and Engineers | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing Zirconia Nanoparticles asSecond stage of theEMI SIGTrends in US Vehicle

  8. Sandia National Laboratories: Science Technology Engineering and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErikGroundbreaking Work on CriegeeElectronicsAssociationScaled

  9. Facilties & Engineering Services | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home It isGasERP SubmitScienceasthe

  10. Materials Engineering Research Facility | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fund LasDubey selectedContract Research MaterialMaterials

  11. Sandia National Laboratories: Engine Combustion Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0EnergySandiaConsortiumActMicrogrid SPIDERSCombustion

  12. Sandia National Laboratories: Engine Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0EnergySandiaConsortiumActMicrogrid

  13. Sandia National Laboratories: Engineering Alternative Fuel with

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0EnergySandiaConsortiumActMicrogridCyanobacteria

  14. Sandia National Laboratories: Internal Combustion Engine Division

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS Exhibit atVehicleEnergy

  15. Sandia National Laboratories: International Tokamak Engineering Reactor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS Exhibit atVehicleEnergyPolydotsMicro

  16. Mechanical engineering COLLEGE of ENGINEERING

    E-Print Network [OSTI]

    Berdichevsky, Victor

    . Mechanical engineering is a broad, versatile and creative discipline concerned with conversion of energyMechanical engineering COLLEGE of ENGINEERING DepartmentofMechanicalEngineering CollegeofEngineering 5050AnthonyWayneDrive Detroit,MI48202 College of engineering t Educating future engineers for 80 years

  17. College of Engineering College of Engineering

    E-Print Network [OSTI]

    College of Engineering _______________ 2.7 Page 1 College of Engineering Office in Engineering Siller, Associate Dean UNDERGRADUATE MAJORS Biomedical Engineering Chemical and Biological Engineering Civil Engineering Computer Engineering Electrical Engineering Engineering Science Environmental

  18. Alternative futures for the Department of Energy National Laboratories

    SciTech Connect (OSTI)

    Not Available

    1995-02-01T23:59:59.000Z

    This Task Force was asked to propose alternate futures for the Department of Energy laboratories noted in the report. The authors` intensive ten months` study revealed multiple missions and sub-missions--traditional missions and new missions--programs and projects--each with factors of merit. They respectively suggest that the essence of what the Department, and particularly the laboratories, should and do stand for: the energy agenda. Under the overarching energy agenda--the labs serving the energy opportunities--they comment on their national security role, the all important energy role, all related environmental roles, the science and engineering underpinning for all the above, a focused economic role, and conclude with governance/organization change recommendations.

  19. Laboratory directed research and development

    SciTech Connect (OSTI)

    Not Available

    1991-11-15T23:59:59.000Z

    The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory's R D capabilities, and further the development of its strategic initiatives. Among the aims of the projects supported by the Program are establishment of engineering proof-of-principle''; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these project are closely associated with major strategic thrusts of the Laboratory as described in Argonne's Five Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne. Areas of emphasis are (1) advanced accelerator and detector technology, (2) x-ray techniques in biological and physical sciences, (3) advanced reactor technology, (4) materials science, computational science, biological sciences and environmental sciences. Individual reports summarizing the purpose, approach, and results of projects are presented.

  20. Laboratory Directed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocs space controlAppraisal Process Laboratory

  1. Laboratory Directors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocs space controlAppraisalLaboratory Directors

  2. Laboratory modeling of hydraulic dredges and design of dredge carriage for laboratory facility

    E-Print Network [OSTI]

    Glover, Gordon Jason

    2002-01-01T23:59:59.000Z

    of hydraulic dredge equipment have proven useful for obtaining qualitative results. The new Coastal Engineering Laboratory at Texas A&M University is equipped with model dredge testing facilities ideal for performing such experiments. The tow/dredge carriage...

  3. Purdue Hydrogen Systems Laboratory

    SciTech Connect (OSTI)

    Jay P Gore; Robert Kramer; Timothee L Pourpoint; P. V. Ramachandran; Arvind Varma; Yuan Zheng

    2011-12-28T23:59:59.000Z

    The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up. Efforts continued to explore existing catalytic methods involving nano catalysts for capture of CO2 from the fermentation process.

  4. ENGINEERING 12 SPRING 2008 PHYSICAL SYSTEMS ANALYSIS

    E-Print Network [OSTI]

    Moreshet, Tali

    on the primary and secondary coils. #12;ENGINEERING 12, SPRING 2008 2/3 LABORATORY 1 One of the most commonENGINEERING 12 SPRING 2008 PHYSICAL SYSTEMS ANALYSIS LABORATORY 1: TRANSFORMERS Objectives or counterclockwise). In the following discussion the subscript 1 will be used for the primary coil and the subscript

  5. Engineering Prestigious

    E-Print Network [OSTI]

    Saskatchewan, University of

    Engineering Studious Prestigious Adventurous Curious Ambitious Ingenious #12;TheCollegeof Engineering We are committed to innovation in all aspects of engineering education and research. We deliver an accredited professional education program that effectively prepares our students to become engineering

  6. Hazard Analysis for the Pretreatment Engineering Platform (PEP)

    SciTech Connect (OSTI)

    Sullivan, Robin S.; Geeting, John GH; Lawrence, Wesley E.; Young, Jonathan

    2008-07-10T23:59:59.000Z

    The Pretreatment Engineering Platform (PEP) is designed to perform a demonstration on an engineering scale to confirm the Hanford Waste Treatment Plant Pretreatment Facility (PTF) leaching and filtration process equipment design and sludge treatment process. The system will use scaled prototypic equipment to demonstrate sludge water wash, caustic leaching, oxidative leaching, and filtration. Unit operations to be tested include pumping, solids washing, chemical reagent addition and blending, heating, cooling, leaching, filtration, and filter cleaning. In addition, the PEP will evaluate potential design changes to the ultrafiltration process system equipment to potentially enhance leaching and filtration performance as well as overall pretreatment throughput. The skid-mounted system will be installed and operated in the Processing Development Laboratory-West at Pacific Northwest National Laboratory (PNNL) in Richland, Washington.

  7. Nuclear Engineering Nuclear Criticality Safety

    E-Print Network [OSTI]

    Kemner, Ken

    Nuclear Engineering Nuclear Criticality Safety The Nuclear Engineering Division (NE) of Argonne National Laboratory is experienced in performing criticality safety and shielding evaluations for nuclear, and neutron spectra. The NE nuclear criticality safety (NCS) capabilities are based on a staff with decades

  8. Department of Chemical Engineering Thermal and Flow Engineering Laboratory

    E-Print Network [OSTI]

    Zevenhoven, Ron

    : theoretical stages 12.4 McCabe-Thiele procedure II: minimum reflux, minimum number of stages 12.5 Condensers.6 Concentrated solutions; distillation 14. Extraction and leaching 14.1 Liquid-liquid extraction 14.2 Equilibrium 14.3 Equilibrium stages 14.4 Solid-liquid extraction (leaching) 15. Membranes 15.1 Overview, membrane

  9. Relationship of inquiry-based learning elements on changes in middle school students' science, technology, engineering, and mathematics (stem) beliefs and interests

    E-Print Network [OSTI]

    Degenhart, Heather Shannon

    2009-05-15T23:59:59.000Z

    characteristic of this classroom.” STEM interest change explained 55% of the variation in middle school students’ STEM belief change. Analyses indicated NSF Fellows and teachers affected the rate at which middle school students’ STEM beliefs and interests changed...

  10. Submission of manuscript to Energy and Buildings A thermal model for Phase Change Materials in a building roof for a

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Submission of manuscript to Energy and Buildings A thermal model for Phase Change Materials: Stéphane GUICHARD Physics and Mathematical Engineering Laboratory for Energy and Environment (PIMENT in "Energy and Buildings 70 (2014) http://www.sciencedirect.com/science/article/pii/ S0378778813007962" DOI

  11. Diesel Engine Idling Test

    SciTech Connect (OSTI)

    Larry Zirker; James Francfort; Jordon Fielding

    2006-02-01T23:59:59.000Z

    In support of the Department of Energy’s FreedomCAR and Vehicle Technology Program Office goal to minimize diesel engine idling and reduce the consumption of millions of gallons of diesel fuel consumed during heavy vehicle idling periods, the Idaho National Laboratory (INL) conducted tests to characterize diesel engine wear rates caused by extended periods of idling. INL idled two fleet buses equipped with Detroit Diesel Series 50 engines, each for 1,000 hours. Engine wear metals were characterized from weekly oil analysis samples and destructive filter analyses. Full-flow and the bypass filter cartridges were removed at four stages of the testing and sent to an oil analysis laboratory for destructive analysis to ascertain the metals captured in the filters and to establish wear rate trends. Weekly samples were sent to two independent oil analysis laboratories. Concurrent with the filter analysis, a comprehensive array of other laboratory tests ascertained the condition of the oil, wear particle types, and ferrous particles. Extensive ferrogram testing physically showed the concentration of iron particles and associated debris in the oil. The tests results did not show the dramatic results anticipated but did show wear trends. New West Technologies, LLC, a DOE support company, supplied technical support and data analysis throughout the idle test.

  12. College of Engineering & Engineering Technology

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    Specialist -Tech Services Coordinator Dean Promod Vohra Mechanical Engineering Pradip Majumdar, ChairCollege of Engineering & Engineering Technology COMPUTER OPERATIONS -Manager -LAN Support -Senior Systems Engineer -Clerical Position OFFICE OF SPONSORED PROJECTS -Research Development Specialist

  13. National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleetEngineeringAnnual ReportNational Lab Day -

  14. National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleetEngineeringAnnual ReportNational Lab Day -draws more

  15. Laboratory Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011 CERN 73-11 Laboratory I | Nuclear

  16. Major Challenges To Engineering Education for Sustainable Development: What Has to Change to Make it Creative, Effective, and Acceptable to the Established Disciplines

    E-Print Network [OSTI]

    Ashford, Nicholas

    2004-01-01T23:59:59.000Z

    Scholars and professionals committed to fostering sustainable development have urged a re-examination of the curriculum and the restructuring of research in engineering-focused institutions of higher learning. The focus ...

  17. Terry Fuller Engineering

    E-Print Network [OSTI]

    Gelfond, Michael

    Terry Fuller Petroleum Engineering Research Building Terry Fuller Petroleum Engineering Research Building Construction Engineering and Engineering Technology Construction Engineering and Engineering Technology Industrial Engineering Industrial Engineering Engineering Center Engineering Center Computer

  18. National Laboratory Impact Initiative

    Broader source: Energy.gov [DOE]

    The National Laboratory Impact Initiative supports the relationship between the Office of Energy Efficiency & Renewable Energy and the national laboratory enterprise.  The national laboratories...

  19. College of Engineering and Science ENGINEERING

    E-Print Network [OSTI]

    Stuart, Steven J.

    College of Engineering and Science COLLEGE OF ENGINEERING AND SCIENCE The College of Engineering and Science offers advanced degrees in Automotive Engineering, Bioengineering, Biosystems Engineering, Chemi- cal Engineering, Chemistry, Civil Engineering, Computer Engineering, Computer Science, Digital

  20. College of Engineering and Science ENGINEERING

    E-Print Network [OSTI]

    Stuart, Steven J.

    College of Engineering and Science COLLEGE OF ENGINEERING AND SCIENCE The College of Engineering and Science offers advanced degrees in Automotive Engineering, Bio- engineering, Biosystems Engineering, Chemical En- gineering, Chemistry, Civil Engineering, Computer Engineering, Computer Science, Digital

  1. College of Engineering and Science ENGINEERING

    E-Print Network [OSTI]

    Stuart, Steven J.

    58 College of Engineering and Science 58 COLLEGE OF ENGINEERING AND SCIENCE The College of Engineering and Science offers advanced degrees in Automotive Engineering, Bioengineering, Biosystems Engineering, Chemi- cal Engineering, Chemistry, Civil Engineering, Computer Engineering, Computer Science

  2. College of Engineering and Science ENGINEERING

    E-Print Network [OSTI]

    Stuart, Steven J.

    35 College of Engineering and Science COLLEGE OF ENGINEERING AND SCIENCE The College of Engineering and Science offers advanced degrees in Automotive Engineering, Bioengineering, Biosystems Engineering, Chemi- cal Engineering, Chemistry, Civil Engineering, Computer Engineering, Computer Science, Digital

  3. College of Engineering and Science ENGINEERING

    E-Print Network [OSTI]

    Bolding, M. Chad

    College of Engineering and Science COLLEGE OF ENGINEERING AND SCIENCE The College of Engineering and Science offers advanced degrees in Automotive Engineering, Bioengineering, Biosystems Engineering, Chemical Engineering, Chemistry, Civil Engineering, Com- puter Engineering, Computer Science, Digital Pro

  4. College of Engineering and Science ENGINEERING

    E-Print Network [OSTI]

    Stuart, Steven J.

    35 College of Engineering and Science COLLEGE OF ENGINEERING AND SCIENCE The College of Engineering and Science offers advanced degrees in Automotive Engineering, Bio- engineering, Biosystems Engineering, Chemical En- gineering, Chemistry, Civil Engineering, Computer Engineering, Computer Science, Digital

  5. Mechanical and Manufacturing Engineering Petroleum Engineering Minor

    E-Print Network [OSTI]

    Calgary, University of

    of Chemical and Petroleum Engineering for their petroleum engineering minor. As well, mechanical engineeringMechanical and Manufacturing Engineering Petroleum Engineering Minor The Department of Mechanical and Manufacturing Engineering offers a minor in petroleum engineering within the mechanical engineering major

  6. Tribology Laboratory | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatusButlerTransportation From919-660-2694Tribology Laboratory

  7. Laboratory Events | Brookhaven National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocs space controlAppraisalLaboratoryGet the tools you

  8. Geoscience Laboratory | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor'sshort version)UnveilsGeorgeGeoscience Laboratory

  9. Engineering Virtualized Services Elvira Albert

    E-Print Network [OSTI]

    Johnsen, Einar Broch

    Engineering Virtualized Services Elvira Albert Complutense University of Madrid, Spain elvira project FP7-610582 ENVISAGE: Engineering Virtualized Services (http://www.envisage-project.eu). level of an application-level service at the expense of potentially changing its cost profile. In traditional engineering

  10. ENGINEERING TECHNOLOGY Engineering Technology

    E-Print Network [OSTI]

    : business administration, energy management, wind farm management, automation and controls, aircraft, Mechatronics Technology, and Renewable Energy Technology. Career Opportunities Graduates of four students must talk to their advisor about transferring their courses over for WSU credit. Laboratory

  11. U.S. Department of Energy Idaho National Engineering and Environmental...

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Program Final...

  12. Introduction Engineering

    E-Print Network [OSTI]

    Banbara, Mutsunori

    Environmental Engineering A study to create a social living space rich in amenity, convenience, and harmony with environment. Civil Engineering Engineering of Human Safety Engineering of Environmental Symbiosis A study34 Introduction Guide Entrance Life Career Inquiries Engineering Graduate School/ Faculty

  13. Renewable Energy Research Laboratory, UMass Amherst www.ceere.org/rerl

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Renewable Energy Research Laboratory, UMass Amherst www.ceere.org/rerl 1 Small Wind PowerSmall Wind Sally Wright, PE Staff Engineer Renewable Energy Research Laboratory University of Massachusetts, Amherst A Presentation to Co-op Power Sally Wright, PE Staff Engineer Renewable Energy Research Laboratory

  14. Environmental | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environmental Management Program at the Ames Laboratory includes Waste Management, Pollution Prevention, Recycling, Cultural Resources, and the Laboratory's Environmental...

  15. Argonne's Laboratory computing center - 2007 annual report.

    SciTech Connect (OSTI)

    Bair, R.; Pieper, G. W.

    2008-05-28T23:59:59.000Z

    Argonne National Laboratory founded the Laboratory Computing Resource Center (LCRC) in the spring of 2002 to help meet pressing program needs for computational modeling, simulation, and analysis. The guiding mission is to provide critical computing resources that accelerate the development of high-performance computing expertise, applications, and computations to meet the Laboratory's challenging science and engineering missions. In September 2002 the LCRC deployed a 350-node computing cluster from Linux NetworX to address Laboratory needs for mid-range supercomputing. This cluster, named 'Jazz', achieved over a teraflop of computing power (1012 floating-point calculations per second) on standard tests, making it the Laboratory's first terascale computing system and one of the 50 fastest computers in the world at the time. Jazz was made available to early users in November 2002 while the system was undergoing development and configuration. In April 2003, Jazz was officially made available for production operation. Since then, the Jazz user community has grown steadily. By the end of fiscal year 2007, there were over 60 active projects representing a wide cross-section of Laboratory expertise, including work in biosciences, chemistry, climate, computer science, engineering applications, environmental science, geoscience, information science, materials science, mathematics, nanoscience, nuclear engineering, and physics. Most important, many projects have achieved results that would have been unobtainable without such a computing resource. The LCRC continues to foster growth in the computational science and engineering capability and quality at the Laboratory. Specific goals include expansion of the use of Jazz to new disciplines and Laboratory initiatives, teaming with Laboratory infrastructure providers to offer more scientific data management capabilities, expanding Argonne staff use of national computing facilities, and improving the scientific reach and performance of Argonne's computational applications. Furthermore, recognizing that Jazz is fully subscribed, with considerable unmet demand, the LCRC has framed a 'path forward' for additional computing resources.

  16. Laboratory Directed Research and Development FY2011 Annual Report

    SciTech Connect (OSTI)

    Craig, W; Sketchley, J; Kotta, P

    2012-03-22T23:59:59.000Z

    A premier applied-science laboratory, Lawrence Livermore National Laboratory (LLNL) has earned the reputation as a leader in providing science and technology solutions to the most pressing national and global security problems. The LDRD Program, established by Congress at all DOE national laboratories in 1991, is LLNL's most important single resource for fostering excellent science and technology for today's needs and tomorrow's challenges. The LDRD internally directed research and development funding at LLNL enables high-risk, potentially high-payoff projects at the forefront of science and technology. The LDRD Program at Livermore serves to: (1) Support the Laboratory's missions, strategic plan, and foundational science; (2) Maintain the Laboratory's science and technology vitality; (3) Promote recruiting and retention; (4) Pursue collaborations; (5) Generate intellectual property; and (6) Strengthen the U.S. economy. Myriad LDRD projects over the years have made important contributions to every facet of the Laboratory's mission and strategic plan, including its commitment to nuclear, global, and energy and environmental security, as well as cutting-edge science and technology and engineering in high-energy-density matter, high-performance computing and simulation, materials and chemistry at the extremes, information systems, measurements and experimental science, and energy manipulation. A summary of each project was submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to DOE/NNSA and LLNL mission areas, the technical progress achieved in FY11, and a list of publications that resulted from the research. The projects are: (1) Nuclear Threat Reduction; (2) Biosecurity; (3) High-Performance Computing and Simulation; (4) Intelligence; (5) Cybersecurity; (6) Energy Security; (7) Carbon Capture; (8) Material Properties, Theory, and Design; (9) Radiochemistry; (10) High-Energy-Density Science; (11) Laser Inertial-Fusion Energy; (12) Advanced Laser Optical Systems and Applications; (12) Space Security; (13) Stockpile Stewardship Science; (14) National Security; (15) Alternative Energy; and (16) Climatic Change.

  17. CONTENT KNOWLEDGE (Declarative Knowledge and Technical Skills): Students will demonstrate a broad knowledge of fundamental and applied engineering subjects: fluid

    E-Print Network [OSTI]

    Fernandez, Eduardo

    engineering systems in the multi- disciplinary field of ocean engineering. In EOC 4804 (Ocean Engineering the engineering skills gained through coursework in engineering mathematics, ocean engineering laboratory, programming in c, fabrication of ocean engineering systems, ocean and environmental data analysis the students

  18. Terry Fuller Engineering

    E-Print Network [OSTI]

    Gelfond, Michael

    Terry Fuller Petroleum Engineering Research Building Terry Fuller Petroleum Engineering Research Marsha Sharp Center for Student Athletics Construction Engineering and Engineering Technology Construction Engineering and Engineering Technology Industrial Engineering Industrial Engineering Engineering

  19. FACULTY OF ENGINEERING ANNIVERSARY GALA

    E-Print Network [OSTI]

    Thompson, Michael

    have changed. Computing knowledge is now carried around on a stick. Hybrid cars are replacing and Harriet and the Ed Sullivan show. And, of course, there were the cars ... De soto, Impala, Rambler combustion engines and all electric cars are on the horizon. The faculty of engineering has changed too

  20. Idaho National Laboratory (INL) Sitewide Institutional Controls Plan

    SciTech Connect (OSTI)

    W. L. Jolley

    2006-07-27T23:59:59.000Z

    On November 9, 2002, the U.S. Environmental Protection Agency (EPA), the U.S. Department of Energy (DOE), and the Idaho Department of Environmental Quality approved the Record of Decision Experimental Breeder Reactor-I/Boiling Water Reactor Experiment Area and Miscellaneous Sites, which requires a Sitewide Institutional Controls Plan for the then Idaho National Engineering and Environmental Laboratory (now known as the Idaho National Laboratory). This document, first issued in June 2004, fulfilled that requirement. The revision is needed to provide an update as remedial actions are completed and new areas of concern are found. This Sitewide Institutional Controls Plan is based on guidance in the May 3, 1999, EPA Region 10 Final Policy on the Use of Institutional Controls at Federal Facilities; the September 29, 2000, EPA guidance Institutional Controls: A Site Manager's Guide to Identifying, Evaluating, and Selecting Institutional Controls at Superfund and RCRA Corrective Action Cleanups; and the April 9, 2003, DOE Policy 454.1, "Use of Institutional Controls." These policies establish measures that ensure short- and long-term effectiveness of institutional controls that protect human health and the environment at federal facility sites undergoing remedial action pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and/or corrective action pursuant to the Resource Conservation and Recovery Act (RCRA). The site-specific institutional controls currently in place at the Idaho National Laboratory are documented in this Sitewide Institutional Controls Plan. This plan is being updated, along with the Idaho National Engineering and Environmental Laboratory Comprehensive Facilities and Land Use Plan, to reflect the progress of remedial activities and changes in CERCLA sites.

  1. ENGINEERING UNDERGRADUATE

    E-Print Network [OSTI]

    Walter, M.Todd

    ENGINEERING UNDERGRADUATE HANDBOOK Fall 2013 #12;Name: ____________________________________________________ E-mail: ____________________________________________________ College of Engineering Cornell University ABET Accredited Programs for 2013­14 ABET (Accreditation Board for Engineering and Technology

  2. Engineering Why engineering at Sussex?

    E-Print Network [OSTI]

    Sussex, University of

    (Hons) in Automotive Engineering (with an industrial placement year) BEng (Hons) in Automotive Engineering BEng (Hons) in Automotive Engineering (with an industrial placement year) MEng (Hons) in Computer Engineering MEng (Hons) in Computer Engineering (with an industrial placement year) BEng (Hons) in Computer

  3. Biological Engineering Electives Biosystems Engineering

    E-Print Network [OSTI]

    Hill, Jeffrey E.

    -Solid Mechanics (3) EGM 4853 Bio-Fluid Mechanics (3) ENV Environmental Engineering Courses CWR Civil EngineeringBiological Engineering Electives Biosystems Engineering Departmental Electives: (Choose at least one of the following) ABE 4034 Remote Sensing in Engineering: Science, Sensor & Applications (3) ABE

  4. College of Engineering Engineering in

    E-Print Network [OSTI]

    Lin, Zhiqun

    optics · Nuclear technologies · High-performance materials #12;College of Engineering ... and of the 21stCollege of Engineering Engineering in Social Context Jonathan Wickert Dean of Engineering #12;College of Engineering Game changers of the 20th century ... · Electrification · Automobile · Airplane

  5. NOAA Helps the Construction Sector Build for a Changing Climate The construction industry is comprised of a wide range of business involved in engineering standards,

    E-Print Network [OSTI]

    is comprised of a wide range of business involved in engineering standards, building design is needed to protect a building foundation from frost. In the past, standard foundation depths were inturn developed new insulation standards for protecting building foundations from frost. This resulted

  6. Some Simple Principles in the Collection of Engineering and Quality Assurance Whether data are to be used to monitor process stability/performance or to guide changes

    E-Print Network [OSTI]

    Vardeman, Stephen B.

    Some Simple Principles in the Collection of Engineering and Quality Assurance Data Whether data. (For example, a blanket "take a 10% sample" rule will sometimes over-sample and sometimes under presentation quality displays. 6. In order to be useful in indicating sources of variation in a data set, care

  7. Maximizing Power Output in Homogeneous Charge Compression Ignition (HCCI) Engines and Enabling Effective Control of Combustion Timing

    E-Print Network [OSTI]

    Saxena, Samveg

    2011-01-01T23:59:59.000Z

    National Laboratory, “Engine Combustion Network”, http://Experimental study of biogas combustion characteristics andmechanisms of HCCI combustion”, “HCCI and CAI engines for

  8. Science & Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Technology Delivering basic and applied science discoveries and innovating engineering R&D is the hallmark of the Science and Engineering division in support of INL's...

  9. Interdisciplinary Engineer

    Broader source: Energy.gov [DOE]

    This position is located in the Transmission Engineering (TEL) organization of Engineering and Technical Services (TE), Transmission Services (T), Bonneville Power Administration (BPA). In this...

  10. Faculty of Engineering & Design Civil Engineering

    E-Print Network [OSTI]

    Burton, Geoffrey R.

    (Hons) Mechanical Engineering Employed on a one year placement at RES On-Site Wood Energy, Bristol Gain confidenceFaculty of Engineering & Design Civil Engineering Chemical Engineering Electronic & Electrical Engineering Integrated Mechanical & Electrical Engineering Mechanical Engineering Industrial Placements #12

  11. ORNL Fuels, Engines, and Emissions Research Center (FEERC)

    SciTech Connect (OSTI)

    None

    2013-04-12T23:59:59.000Z

    This video highlights the Vehicle Research Laboratory's capabilities at the Fuels, Engines, and Emissions Research Center (FEERC). FEERC is a Department of Energy user facility located at the Oak Ridge National Laboratory.

  12. ORNL Fuels, Engines, and Emissions Research Center (FEERC)

    ScienceCinema (OSTI)

    None

    2014-06-26T23:59:59.000Z

    This video highlights the Vehicle Research Laboratory's capabilities at the Fuels, Engines, and Emissions Research Center (FEERC). FEERC is a Department of Energy user facility located at the Oak Ridge National Laboratory.

  13. College of Engineering Mechanical Engineering

    E-Print Network [OSTI]

    Dyer, Bill

    College of Engineering Mechanical Engineering Core 2.0 Completion Checklist Mechanical Engineering Science IN CHMY 141 (CHEM 131) 6 Research and Creative Experience R EMEC 489R & EMEC 499 R (ME 404R & ME

  14. C O N TA C T > Lee Ann Ciarlette | 630.252.4835 | leeann@anl.gov | Nuclear Engineering Division | students.ne.anl.gov Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439 November 2012

    E-Print Network [OSTI]

    Kemner, Ken

    C O N TA C T > Lee Ann Ciarlette | 630.252.4835 | leeann@anl.gov | Nuclear Engineering Division of Massachuse s Lowell · University of Michigan · University of Michigan, Ann Arbor · University of Missouri

  15. Overview of Fuels, Engines, and Emissions Research at ORNL

    E-Print Network [OSTI]

    Overview of Fuels, Engines, and Emissions Research at ORNL Johney Green, Jr., Ph.D. Fuels, Engines NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY Globalization · Increasingly, the engineering environment · Engineering tasks easily "off-shored" - Routine, easily documented activities - Far removed from customer

  16. Paola Cappellaro Assistant Professor of Nuclear Science and Engineering

    E-Print Network [OSTI]

    Chen, Sow-Hsin

    Paola Cappellaro Assistant Professor of Nuclear Science and Engineering.S./M.S.) in Nuclear Engineering, 100/100 Summa cum Laude. ­ M.S. Thesis on "Neutron spectra of Nuclear Science and Engineering Quantum Engineering Group at the Research Laboratory

  17. DOE's Idaho National Lab Issues Request for Proposals for Engineering...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy's Idaho National Laboratory today issued a Request for Proposals (RFP) for engineering services in support of development of NGNP. This RFP is for pre-conceptual...

  18. Meet Doug Hoenig, new Facilities and Engineering Services manager...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Meet Doug Hoenig, new Facilities and Engineering Services manager Although managing the buildings and grounds at Ames Laboratory presents some challenges, they won't begin to...

  19. American Society of Mechanical Engineers/Savannah River National...

    Broader source: Energy.gov (indexed) [DOE]

    American Society of Mechanical EngineersSavannah River National Laboratory (ASMESRNL) Materials and Components for Hydrogen Infrastructure Codes and Standards Workshop and the...

  20. Vehicle Technologies Office Merit Review 2014: Engine Friction Reduction Technologies

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about engine friction...

  1. ELECTRICAL ENGINEERING TECHNOLOGY PROGRAM EET 105 ELECTRICAL SYSTEMS

    E-Print Network [OSTI]

    Lozano-Nieto, Albert

    ELECTRICAL ENGINEERING TECHNOLOGY PROGRAM EET 105 ­ ELECTRICAL SYSTEMS LABORATORY EXPERIENCES will become familiar with solar cells as photovoltaic energy converters. Secondly, students will practice

  2. Emission Performance of Modern Diesel Engines Fueled with Biodiesel

    Broader source: Energy.gov (indexed) [DOE]

    Emission Performance of Modern Diesel Engines Fueled with Biodiesel Aaron Williams, Jonathan Burton, Xin He and Robert L. McCormick National Renewable Energy Laboratory October 5,...

  3. Characterization of Pre-Commercial Gasoline Engine ParticulatesThrough...

    Broader source: Energy.gov (indexed) [DOE]

    Pre-commercial Gasoline Engine Particulates Through Advanced Aerosol Methods Alla Zelenyuk, Paul Reitz, Mark Stewart Pacific Northwest National Laboratory Paul Loeper, Cory Adam,...

  4. advanced engineering preliminary: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    two laboratory modules and additional spaces at a level 4,850 feet underground for physics, biology, engineering, and Earth science experiments. On the same level, the...

  5. Department of Mechanical Engineering Fall 2011 Heavy Duty Diesel Engine Friction Reduction

    E-Print Network [OSTI]

    Demirel, Melik C.

    PENNSTATE Department of Mechanical Engineering Fall 2011 Heavy Duty Diesel Engine Friction the friction losses of a heavy duty diesel engine. In addition, a tear down procedure needed to be created needs Discussed test cell configuration with Diesel Combustion & Emissions Laboratory Performed

  6. Ocean Engineering at UNH THE OCEAN ENGINEERING program at UNH provides students with hands-on

    E-Print Network [OSTI]

    Pringle, James "Jamie"

    -on opportunities for research in ocean renewable energy, remotely operated vehicles, ocean mapping, ocean acousticsOcean Engineering at UNH THE OCEAN ENGINEERING program at UNH provides students with hands, and coastal processes. The Jere A. Chase Ocean Engineering Laboratory is equipped with state

  7. Graduate Programs in Mechanical Engineering The Department of Mechanical Engineering offers

    E-Print Network [OSTI]

    -Fluid Sciences (including Alternative Fuels and Fuel Safety; Bio-Fluids and Bio-Heat Transfer; Computational and Engineering (including Composites; Nano- and Bio-Composites; Nanotechnology); Energy and Thermal the Nanotechnology Laboratory, the Nanocomposites and Biocomposites Laboratory, the Biodynamics Laboratory, the Bio

  8. LABORATORY VI ELECTRICITY FROM MAGNETISM

    E-Print Network [OSTI]

    Minnesota, University of

    LABORATORY VI ELECTRICITY FROM MAGNETISM Lab VI - 1 In the previous problems you explored by electric currents. This lab will carry that investigation one step further, determining how changing magnetic fields can give rise to electric currents. This is the effect that allows the generation

  9. ENVIRONMENTAL ENGINEERING

    E-Print Network [OSTI]

    engineering covers a wide range of critical services, from designing water and wastewater treatment facilitiesENVIRONMENTAL ENGINEERING www.cee.pdx.edu What do environmental engineers do? Civil and Environmental Engineering (CEE) is an exciting, challenging, and dynamic field that is critical to our quality

  10. Shockwave Engine: Wave Disk Engine

    SciTech Connect (OSTI)

    None

    2010-01-14T23:59:59.000Z

    Broad Funding Opportunity Announcement Project: MSU is developing a new engine for use in hybrid automobiles that could significantly reduce fuel waste and improve engine efficiency. In a traditional internal combustion engine, air and fuel are ignited, creating high-temperature and high-pressure gases which expand rapidly. This expansion of gases forces the engine’s pistons to pump and powers the car. MSU’s engine has no pistons. It uses the combustion of air and fuel to build up pressure within the engine, generating a shockwave that blasts hot gas exhaust into the blades of the engine’s rotors causing them to turn, which generates electricity. MSU’s redesigned engine would be the size of a cooking pot and contain fewer moving parts—reducing the weight of the engine by 30%. It would also enable a vehicle that could use 60% of its fuel for propulsion.

  11. Materials Design Laboratory Concepts | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    engineering ---Hybrid & electric vehicles -Energy sources --Nuclear energy -Energy usage --Energy storage ---Batteries --Smart Grid Environment -Biology --Environmental...

  12. USC Viterbi School of Engineering

    E-Print Network [OSTI]

    Southern California, University of

    ); Chemical Engineering (Nanotechnology); Chemical Engineering (Petroleum Engineer- ing); Chemical Engineering (Biochemical Engineering); Biomedical (Electrical Engineer- ing); Biomedical (Mechanical Engineering); Chemical Engineering; Chemical Engineer- ing (Biochemical Engineering); Chemical Engineering (Environmental Engineering

  13. Renewable Energy and Climate Change

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Energy and Climate Change Symposium in Honor of 2009 and 2010 ACS Fellows in the Industrial and Engineering Chemistry Division Helena Chum, NREL Research Fellow August...

  14. programs in climate change

    E-Print Network [OSTI]

    existing programs in climate change science and infrastructure. The Laboratory has a 15- year history in climate change science. The Climate, Ocean and Sea Ice Modeling (COSIM) project develops and maintains advanced numerical models of the ocean, sea ice, and ice sheets for use in global climate change

  15. E-Print Network 3.0 - alcon laboratories ma60 Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sample search results for: alcon laboratories ma60 Page: << < 1 2 3 4 5 > >> 1 Chemical Engineering Research Support 2007 Abitibi-Consolidated Inc. Summary: Agriculture &...

  16. Faculty of Engineering Aerospace Engineering

    E-Print Network [OSTI]

    Faculty of Engineering Aerospace Engineering Canada's aerospace industry is one of the largest. One of the key factors that will continue this success is a steady stream of engineering talent.uwindsor.ca/mame Rigorous, Enriching Programs Our new Aerospace Engineering program at Windsor is an optional stream within

  17. College of Engineering Industrial Engineering

    E-Print Network [OSTI]

    Dyer, Bill

    College of Engineering Industrial Engineering Core 2.0 Completion Checklist Industrial Engineering) 6 Research and Creative Experience R EIND 499R (I&ME 444 R and I&ME 445 R) Note: Courses completed Social Sciences; * EGEN 310 (ENGR 310), Multidisciplinary Engineering Design, may be substituted

  18. FACULTY OF ENGINEERING SPRING Engineering

    E-Print Network [OSTI]

    Fabry, Frederic

    mentorship and guidance for students and professors with creative ideas, The Macdonald Engineering BuildingFACULTY OF ENGINEERING SPRING 2012 Dean's Faculty of Engineering Innovation and entrepreneurship get major boost M cGill Engineering has long recognized the value of entrepreneurship in building

  19. FY08 Engineering Research and Technology Report

    SciTech Connect (OSTI)

    Minichino, C; McNichols, D

    2009-02-24T23:59:59.000Z

    This report summarizes the core research, development, and technology accomplishments in Lawrence Livermore National Laboratory's Engineering Directorate for FY2008. These efforts exemplify Engineering's more than 50-year history of developing and applying the technologies needed to support the Laboratory's national security missions. A partner in every major program and project at the Laboratory throughout its existence, Engineering has prepared for this role with a skilled workforce and technical resources developed through both internal and external venues. These accomplishments embody Engineering's mission: 'Enable program success today and ensure the Laboratory's vitality tomorrow.' Engineering's mission is carried out through basic research and technology development. Research is the vehicle for creating competencies that are cutting-edge, or require discovery-class groundwork to be fully understood. Our technology efforts are discipline-oriented, preparing research breakthroughs for broader application to a variety of Laboratory needs. The term commonly used for technology-based projects is 'reduction to practice.' As we pursue this two-pronged approach, an enormous range of technological capabilities result. This report combines our work in research and technology into one volume, organized into thematic technical areas: Engineering Modeling and Simulation; Measurement Technologies; Micro/Nano-Devices and Structures; Engineering Systems for Knowledge and Inference; and Energy Manipulation. Our investments in these areas serve not only known programmatic requirements of today and tomorrow, but also anticipate the breakthrough engineering innovations that will be needed in the future.

  20. Laboratory Directed Research and Development Annual Report for 2009

    SciTech Connect (OSTI)

    Hughes, Pamela J.

    2010-03-31T23:59:59.000Z

    This report documents progress made on all LDRD-funded projects during fiscal year 2009. As a US Department of Energy (DOE) Office of Science (SC) national laboratory, Pacific Northwest National Laboratory (PNNL) has an enduring mission to bring molecular and environmental sciences and engineering strengths to bear on DOE missions and national needs. Their vision is to be recognized worldwide and valued nationally for leadership in accelerating the discovery and deployment of solutions to challenges in energy, national security, and the environment. To achieve this mission and vision, they provide distinctive, world-leading science and technology in: (1) the design and scalable synthesis of materials and chemicals; (2) climate change science and emissions management; (3) efficient and secure electricity management from generation to end use; and (4) signature discovery and exploitation for threat detection and reduction. PNNL leadership also extends to operating EMSL: the Environmental Molecular Sciences Laboratory, a national scientific user facility dedicated to providing itnegrated experimental and computational resources for discovery and technological innovation in the environmental molecular sciences.