Powered by Deep Web Technologies
Note: This page contains sample records for the topic "laboratory distributed active" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Laboratory Activities  

Science Conference Proceedings (OSTI)

This chapter summarizes the laboratory activities performed by PNNL’s Vadose Zone Characterization Project in support of the Tank Farm Vadose Zone Program, led by CH2M HILL Hanford Group, Inc. The results of these studies are contained in numerous reports (Lindenmeier et al. 2002; Serne et al. 2002a, 2002b, 2002c, 2002d, 2002e; Lindenmeier et al. 2003; Serne et al. 2004a, 2004b; Brown et al. 2005, 2006a, 2007; Serne et al. 2007) and have generated much of the data reported in Chapter 22 (Geochemistry-Contaminant Movement), Appendix G (Geochemistry-Contaminant Movement), and Cantrell et al. (2007, SST WMA Geochemistry Data Package – in preparation). Sediment samples and characterization results from PNNL’s Vadose Zone Characterization Project are also shared with other science and technology (S&T) research projects, such as those summarized in Chapter 12 (Associated Science Activities).

Brown, Christopher F.; Serne, R. Jeffrey

2008-01-17T23:59:59.000Z

2

Independent Activity Report, Sandia National Laboratories - September...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 2012 Independent Activity Report, Sandia National Laboratories - September 2012 September 2012 Operational Awareness Oversight of Sandia National Laboratories HIAR...

3

Independent Activity Report, Lawrence Livermore National Laboratory -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Activity Report, Lawrence Livermore National Laboratory Activity Report, Lawrence Livermore National Laboratory - October 2012 Independent Activity Report, Lawrence Livermore National Laboratory - October 2012 October 2012 Lawrence Livermore National Laboratory Site Lead Planning Activities [HIAR LLNL-2012-10-23] The purpose of this Office of Health, Safety and Security (HSS) Independent Oversight activity was to maintain site operational awareness of key nuclear safety performance areas, monitor ongoing site oversight and planning activities for Lawrence Livermore National Laboratory (LLNL) nuclear facilities, and identify and initiate coordination of future HSS oversight activities at the site, including planned HSS targeted reviews planned for Fiscal Year (FY) 2013. Independent Activity Report, Lawrence Livermore National Laboratory -

4

Independent Activity Report, Sandia National Laboratories - January...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 2012 Independent Activity Report, Sandia National Laboratories - January 2012 January 2012 Sandia National Laboratories Orientation Visit HIAR-SNL-2012-01-04 The U.S....

5

Independent Activity Report, Lawrence Livermore National Laboratory...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

February 2013 Independent Activity Report, Lawrence Livermore National Laboratory - February 2013 February 2013 Lawrence Livermore National Laboratory Operational Drill at the B332...

6

Lawrence Livermore National Laboratory: News Center Distribution  

NLE Websites -- All DOE Office Websites (Extended Search)

News > News > News Center > Receive News Releases Receive News Releases Journalists: To receive information about activities at Lawrence Livermore National Laboratory, please complete the form below. The form may also be used to submit changes in your contact information or to remove yourself from the list. If you have any questions, please contact Media Relations at (925) 422-4599 or send an e-mail message to Kirsten Sprott. Type of Request: New Addition to News Media List Change Information Delete Information Your Name Title E-Mail Address Preferred E-Mail Address Direct Business Phone Number (with area code) Business Fax Number (with area code) News Organization Street Address City State Country Zip Code f815eee8931dfda40651bfb5302ac9a7 1389471929 Type of News Services You Use:

7

Independent Activity Report, Lawrence Livermore National Laboratory -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

October 2012 October 2012 Independent Activity Report, Lawrence Livermore National Laboratory - October 2012 October 2012 Lawrence Livermore National Laboratory Site Lead Planning Activities [HIAR LLNL-2012-10-23] The purpose of this Office of Health, Safety and Security (HSS) Independent Oversight activity was to maintain site operational awareness of key nuclear safety performance areas, monitor ongoing site oversight and planning activities for Lawrence Livermore National Laboratory (LLNL) nuclear facilities, and identify and initiate coordination of future HSS oversight activities at the site, including planned HSS targeted reviews planned for Fiscal Year (FY) 2013. Independent Activity Report, Lawrence Livermore National Laboratory - October 2012 More Documents & Publications

8

Independent Activity Report, Lawrence Livermore National Laboratory...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

October 2012 Lawrence Livermore National Laboratory Site Lead Planning Activities HIAR LLNL-2012-10-23 The purpose of this Office of Health, Safety and Security (HSS) Independent...

9

Alpha spectrometric characterization of process-related particle size distributions from active particle sampling at the Los Alamos National Laboratory uranium foundry  

SciTech Connect

Uranium particles within the respirable size range pose a significant hazard to the health and safety of workers. Significant differences in the deposition and incorporation patterns of aerosols within the respirable range can be identified and integrated into sophisticated health physics models. Data characterizing the uranium particle size distribution resulting from specific foundry-related processes are needed. Using personal air sampling cascade impactors, particles collected from several foundry processes were sorted by activity median aerodynamic diameter onto various Marple substrates. After an initial gravimetric assessment of each impactor stage, the substrates were analyzed by alpha spectrometry to determine the uranium content of each stage. Alpha spectrometry provides rapid nondestructive isotopic data that can distinguish process uranium from natural sources and the degree of uranium contribution to the total accumulated particle load. In addition, the particle size bins utilized by the impactors provide adequate resolution to determine if a process particle size distribution is: lognormal, bimodal, or trimodal. Data on process uranium particle size values and distributions facilitate the development of more sophisticated and accurate models for internal dosimetry, resulting in an improved understanding of foundry worker health and safety.

Plionis, Alexander A [Los Alamos National Laboratory; Peterson, Dominic S [Los Alamos National Laboratory; Tandon, Lav [Los Alamos National Laboratory; Lamont, Stephen P [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

10

Independent Activity Report, Pacific Northwest National Laboratory -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pacific Northwest National Laboratory Pacific Northwest National Laboratory - January 2012 Independent Activity Report, Pacific Northwest National Laboratory - January 2012 January 2012 Pacific Northwest National Laboratory Orientation Visit [HIAR-PNNL-2012-01-11] The U.S. Department of Energy (DOE) Office of Enforcement and Oversight, within the Office of Health, Safety and Security (HSS), conducted an orientation visit for the HSS site lead at the Pacific Northwest National Laboratory (PNNL) and the Pacific Northwest Site Office (PNSO), Richland, WA, on January 11, 2012. The purpose of the visit was to discuss the nuclear safety oversight strategy, describe the site lead program, increase HSS personnel's operational awareness of the Lab's activities at the Radiochemical Processing Laboratory (RPL), and identify specific activities

11

Sandia National Laboratories Distributive Power Initiative (DPI)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Large Format Carbon Enhanced Large Format Carbon Enhanced VRLA Battery Test Results EESAT 2009 Funded by the Energy Storage Systems Program of the U.S. Department Of Energy (DOE/ESS) through Sandia National Laboratories (SNL) October 4 - 7, 2009 Seattle, Washington Presented by: Tom Hund Sandia National Laboratories Albuquerque, NM (505) 844-8627 tdhund@sandia.gov *Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. 2 Objective  Test Advanced Lead-Acid Battery Consortium (ALABC) technology for utility partial state of charge (PSOC) cycling applications. Utility applications may include: Wind farm energy smoothing Photovoltaic energy smoothing

12

Sandia National Laboratories Distributive Power Initiative (DPI)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Devices Devices Testing and Evaluation of Energy Storage Devices DOE Energy Storage Systems Research Program Annual Peer Review Funded by the Energy Storage Systems Program of the U.S. Department Of Energy (DOE/ESS) through Sandia National Laboratories (SNL) September 29 - 30, 2008 Washington, DC Presented by: Tom Hund, Nancy Clark and Wes Baca Sandia National Laboratories Albuquerque, NM (505) 844-8627 tdhund@sandia.gov Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. 2 Objective (FY-08 Work) Objective (FY-08 Work)  Identify and test advanced battery technology including Valve Regulated Lead-Acid, (VRLA) and Li-ion (Li-

13

Extracurricular Activities | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Extracurricular Activities Argonne Club African American Black Club Aikido Club Chess Club Chinese Association at Argonne Choral Group Engineering Golf League (AEGL) Exercise Club...

14

Sandia National Laboratories Distributive Power Initiative (DPI)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Peer Review This work was funded by the DOE Energy Storage Program November 2-3, 2006 Washington, DC Presented by: Tom Hund, Nancy Clark, David Johnson, and Wes Baca Sandia National Laboratories Albuquerque, NM (505) 844-8627 tdhund@sandia.gov *Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. 2 Introduction (Previous Work)  Sandia's Power Sources Component Development Dept. provides unbiased energy storage testing support to the DOE Energy Storage Program.  Previous work has included supercap testing on ESMA, Maxwell, and Okamura Labs devices, and battery testing on EEI Bipolar NiMH, Cyclon VRLA,

15

Sandia National Laboratories Distributive Power Initiative (DPI)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Testing and Evaluation of Testing and Evaluation of Energy Storage Devices DOE Energy Storage Systems Research Program Annual Peer Review This work was funded by the DOE Energy Storage Program September 23 - 26, 2007 San Francisco, CA Presented by: Tom Hund, Nancy Clark, David Johnson, and Wes Baca Sandia National Laboratories Albuquerque, NM (505) 844-8627 tdhund@sandia.gov *Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. 2 Introduction (FY-07 Work) Introduction (FY-07 Work) Sandia/MeadWestvaco/NorthStar Supercap and Carbon Enhanced Lead-Acid Battery Work Prepared second generation of MWV carbon for testing in NorthStar and Battery Energy batteries

16

Hanford Laboratories monthly activities report, March 1963  

SciTech Connect

This is the monthly report for the Hanford Laboratories Operation March 1963. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, operations research and synthesis, programming, and radiation protection operation are discussed.

1963-04-15T23:59:59.000Z

17

Hanford Laboratories monthly activities report, March 1964  

SciTech Connect

The monthly report for the Hanford Laboratories Operation, March 1964. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, and physics and instrumentation research, and applied mathematics operation, and programming operations are discussed.

1964-04-15T23:59:59.000Z

18

Hanford Laboratories monthly activities report, October 1963  

SciTech Connect

This is the monthly report for the Hanford Laboratories Operation, October 1963. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

1963-11-15T23:59:59.000Z

19

Hanford Laboratories monthly activities report, September 1963  

SciTech Connect

This is the monthly report for the Hanford Laboratories Operation, September 1963. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

1963-10-15T23:59:59.000Z

20

Hanford Laboratories monthly activities report, August 1963  

SciTech Connect

This is the monthly report for the Hanford Laboratories Operation, August 1963. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

1963-09-16T23:59:59.000Z

Note: This page contains sample records for the topic "laboratory distributed active" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Hanford Laboratories monthly activities report, June 1963  

SciTech Connect

This is the monthly report for the Hanford Laboratories Operation, June 1963. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

1963-07-15T23:59:59.000Z

22

Hanford Laboratories monthly activities report, April 1964  

SciTech Connect

This is the monthly report for the Hanford Laboratories Operation, April 1964. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, applied mathematics, programming operation, and radiation protection are discussed.

1964-05-15T23:59:59.000Z

23

Analysis Activities at Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory Laboratory Operated by The University of Chicago Center for Transportation Research Argonne National Laboratory Argonne National Laboratory Marianne M. Mintz Hydrogen, Fuel Cells, and Infrastructure Technologies Program Systems Analysis Workshop July 28-29, 2004 Washington, D.C. 2 ANL's Charter ANL's Charter ANL's Charter Systems analysis in Energy Systems (CTR), Decision and Information Sciences History of working in partnership with industry Analytical work has spanned the range of: Energy Supply - globally and by region Demand for transportation fuels - globally and region Assessment of vehicle technologies and fuels Economic analysis and interaction between energy prices and macro activity Life-cycle analyses of energy use and environmental impacts associated with

24

Database activities at Brookhaven National Laboratory  

SciTech Connect

Brookhaven National Laboratory is a multi-disciplinary lab in the DOE system of research laboratories. Database activities are correspondingly diverse within the restrictions imposed by the dominant relational database paradigm. The authors discuss related activities and tools used in RHIC and in the other major projects at BNL. The others are the Protein Data Bank being maintained by the Chemistry department, and a Geographical Information System (GIS)--a Superfund sponsored environmental monitoring project under development in the Office of Environmental Restoration.

Trahern, C.G.

1995-12-01T23:59:59.000Z

25

NIST Physics Laboratory: Technical Activities 2005 and 2007  

Science Conference Proceedings (OSTI)

Most Recent Technical Activities, "NIST Physics Laboratory" - NIST SP 1033. Technical Activities 2005-2007. ... Most Recent Technical Activities. ...

26

Hanford Laboratories Operation monthly activities report, June 1959  

SciTech Connect

This document provides details of activities of Hanford Laboratories Operation for the month of June 1959.

1959-07-15T23:59:59.000Z

27

A Laboratory Study of Pressure Losses in Residential Air Distribution  

NLE Websites -- All DOE Office Websites (Extended Search)

A Laboratory Study of Pressure Losses in Residential Air Distribution A Laboratory Study of Pressure Losses in Residential Air Distribution Systems Speaker(s): Bass Abushakra Date: March 7, 2002 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Duo Wang An experimental study was conducted to evaluate the pressure drop of residential air distribution system components that are either not available or poorly described in existing duct design literature. The tests were designed to imitate cases normally found in typical residential and light commercial installations. The study included three different sizes of flexible ducts, under different compression configurations, splitter boxes, supply boots, and a fresh air intake hood. The experimental tests apparatus followed ASHRAE Standard 120P - Methods of Testing to Determine Flow

28

Independent Activity Report, Sandia National Laboratories - March 2013 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sandia National Laboratories - March Sandia National Laboratories - March 2013 Independent Activity Report, Sandia National Laboratories - March 2013 March 2013 Operational Awareness Oversight of Sandia National Laboratories [HIAR SNL-2013-03-18] The purpose of this Office of Health, Safety and Security (HSS) Independent Oversight activity was to perform an operational awareness site visit to Sandia National Laboratories (SNL) to discuss Annular Core Research Reactor (ACRR) issues and improvement plan. SNL management also briefed Independent Oversight on engineered safety implementation. Independent Activity Report, Sandia National Laboratories - March 2013 More Documents & Publications Independent Activity Report, Sandia National Laboratories - April 2012 Independent Oversight Targeted Review, Sandia National Laboratories -

29

Laboratories for the 21st Century: Best Practices (Brochure): Onsite Distributed Generation Systems For Laboratories  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

L L a b o r a t o r i e s f o r t h e 2 1 s t C e n t u r y : B e s t P r a c t i c e s This combined heat and power system at the Bristol-Myers Squibb laboratory in Wallingford, Connecticut, could meet 100% of the lab's power requirement, if necessary. Bernard Blesinger / PIX 12552 ONSITE DISTRIBUTED GENERATION SYSTEMS FOR LABORATORIES Introduction Laboratories have unique requirements for lighting, ventilation, and scientific equipment with each requiring a considerable amount of energy. The reliability of that energy is very important. Laboratories must be able to conduct research without power interruptions, which can damage both equipment and experiments. Generating power and heat on site is one good way to enhance energy reliability, improve fuel utilization efficiency, reduce utility costs,

30

Independent Activity Report, Lawrence Livermore National Laboratory -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

February 2013 February 2013 Independent Activity Report, Lawrence Livermore National Laboratory - February 2013 February 2013 Lawrence Livermore National Laboratory Operational Drill at the B332 Plutonium Facility [HIAR LLNL-2013-02-27] The Livermore Site Office (LSO) and Lawrence Livermore National Security, LLC (LLNS) requested personnel from the U.S. Department of Energy (DOE) Office of Safety and Emergency Management Evaluations (HS-45) to observe an operational drill at the Plutonium Facility in Building 332 (B332). LSO and LLNS desired HS-45's participation to help determine the maturity of the operational drill program by providing independent expertise in the matter at a time when HS-45 personnel were already on site conducting an emergency management review. LLNS administered this operational drill using the DOE guidance for

31

Solar activities at Sandia National Laboratories  

SciTech Connect

The use of renewable energy technologies is typically thought of as an integral part of creating and sustaining an environment that maximizes the overall quality of life of the Earth`s present inhabitants and does not leave an undue burden on future generations. Sandia National Laboratories has been a leader in developing and deploying many of these technologies over the last two decades. A common but special aspect of all of these activities is that they are all conducted in cooperation with various types of partners. Some of these partners have an interest in seeing these systems grow in the marketplace, while others are primarily concerned with economic benefits that can come from immediate use of these renewable energy systems. This paper describes solar thermal and photovoltaic technology activities at Sandia that are intended to accelerate the commercialization of these solar systems.

Klimas, P.C.; Hasti, D.E.

1994-03-01T23:59:59.000Z

32

Independent Activity Report, Los Alamos National Laboratory ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Laboratory - November 2010 November 2010 Los Alamos National Laboratory Chemistry and Metallurgy Research Replacement Project Orientation Visit The U. S. Department...

33

Independent Activity Report, New Brunswick Laboratory - July 2012 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 2012 July 2012 Independent Activity Report, New Brunswick Laboratory - July 2012 July 2012 Operational Awareness Oversight of the New Brunswick Laboratory [HIAR NBL-2012-07-20] The purpose of this Office of Health, Safety and Security (HSS) activity was to independently review the closed corrective actions from the Office of Science, Chicago Office (CH) implementation verification review (IVR) report for the New Brunswick Laboratory (NBL), which addressed vault and vault work room safety basis controls and was completed in April 2012. Independent Activity Report, New Brunswick Laboratory - July 2012 More Documents & Publications Independent Activity Report, Argonne National Laboratory - July 2012 Independent Activity Report, New Brunswick Laboratory - November 2011

34

NIST Physics Laboratory: Technical Activities 2000  

Science Conference Proceedings (OSTI)

Most Recent Technical Activities, Technical Activities 2000 - NISTIR 6590. TECHNICAL ACTIVITIES 2000. ... Most Recent Technical Activities ...

35

Independent Activity Report, Sandia National Laboratory - February 2011 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory - February Laboratory - February 2011 Independent Activity Report, Sandia National Laboratory - February 2011 February 2011 Sandia Site Office Effectiveness Review of Sandia National Laboratory's Closure of WP&C Corrective Actions [HIAR-SNL-2011-02-18] At the request of the Sandia Site Office (SSO), the Office of Environment, Safety and Health Evaluations (HS-64) personnel participated in an SSO assessment of SNL's Activity-Level Work Planning and Control processes, procedures, and implementation by line organizations, including feedback and improvement activities and efforts to sustain the program, and line implementation improvements. Independent Activity Report, Sandia National Laboratory - February 2011 More Documents & Publications Independent Oversight Targeted Review, Sandia National Laboratories -

36

Independent Activity Report, Sandia National Laboratories - March 2013 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March March 2013 Independent Activity Report, Sandia National Laboratories - March 2013 March 2013 Operational Awareness Oversight of Sandia National Laboratories [HIAR SNL-2013-03-18] The purpose of this Office of Health, Safety and Security (HSS) Independent Oversight activity was to perform an operational awareness site visit to Sandia National Laboratories (SNL) to discuss Annular Core Research Reactor (ACRR) issues and improvement plan. SNL management also briefed Independent Oversight on engineered safety implementation. Independent Activity Report, Sandia National Laboratories - March 2013 More Documents & Publications Independent Activity Report, Sandia National Laboratories - April 2012 Independent Oversight Targeted Review, Sandia National Laboratories -

37

TA Orientation 2005 Activity 14 Evaluating Sample Laboratory Report from Laboratory Manual  

E-Print Network (OSTI)

TA Orientation 2005 Activity 14 Page 101 Evaluating Sample Laboratory Report from Laboratory Manual: 45 minutes. #12;TA Orientation 2005 Activity 14 (continued) Page 102 #12;TA Orientation 2005 Activity 14 (continued) Page 103 #12;TA Orientation 2005 Activity 14 (continued) Page 104 #12;TA Orientation

Minnesota, University of

38

Approximations to the Distributed Activation Energy Model  

E-Print Network (OSTI)

Approximations to the Distributed Activation Energy Model for Pyrolysis C.P. Please, 1 M.J. Mc, then resubmitted after minor revisions in September 2002. Abstract The Distributed Activation Energy Model (DAEM effective method for estimating kinetic parameters and the distribution of activation energies. Comparison

McGuinness, Mark

39

Onsite Distributed Generation Systems For Laboratories, Laboratories for the 21st Century: Best Practices (Brochure)  

DOE Green Energy (OSTI)

This guide provides general information on implementing onsite distributed generation systems in laboratory environments. Specific technology applications, general performance information, and cost data are provided to educate and encourage laboratory energy managers to consider onsite power generation or combined heat and power (CHP) systems for their facilities. After conducting an initial screening, energy managers are encouraged to conduct a detailed feasibility study with actual cost and performance data for technologies that look promising. Onsite distributed generation systems are small, modular, decentralized, grid-connected, or off-grid energy systems. These systems are located at or near the place where the energy is used. These systems are also known as distributed energy or distributed power systems. DG technologies are generally considered those that produce less than 20 megawatts (MW) of power. A number of technologies can be applied as effective onsite DG systems, including: (1) Diesel, natural gas, and dual-fuel reciprocating engines; (2) Combustion turbines and steam turbines; (3) Fuel cells; (4) Biomass heating; (5) Biomass combined heat and power; (6) Photovoltaics; and (7) Wind turbines. These systems can provide a number of potential benefits to an individual laboratory facility or campus, including: (1) High-quality, reliable, and potentially dispatchable power; (2) Low-cost energy and long-term utility cost assurance, especially where electricity and/or fuel costs are high; (3) Significantly reduced greenhouse gas (GHG) emissions. Typical CHP plants reduce onsite GHG by 40 to 60 percent; (4) Peak demand shaving where demand costs are high; (5) CHP where thermal energy can be used in addition to electricity; (6) The ability to meet standby power needs, especially where utility-supplied power is interrupted frequently or for long periods and where standby power is required for safety or emergencies; and (7) Use for standalone or off-grid systems where extending the grid is too expensive or impractical. Because they are installed close to the load, DG systems avoid some of the disadvantages of large, central power plants, such as transmission and distribution losses over long electric lines.

Not Available

2011-09-01T23:59:59.000Z

40

Independent Activity Report, Los Alamos National Laboratory - August 2012 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 2 Independent Activity Report, Los Alamos National Laboratory - August 2012 August 2012 Defense Nuclear Facilities Safety Board Visit and Site Lead Planning Activities at the Los Alamos National Laboratory [HIAR LANL-2012-08-16] The purpose of this Office of Health, Safety and Security (HSS) activity was to maintain site operational awareness of key nuclear safety performance areas of interest to the Defense Nuclear Facilities Safety Board (DNFSB), monitor ongoing site oversight and planning activities for Los Alamos National Laboratory (LANL) nuclear facilities, and identify and initiate coordination of future HSS oversight activities at the site. Independent Activity Report, Los Alamos National Laboratory - August 2012 More Documents & Publications

Note: This page contains sample records for the topic "laboratory distributed active" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Independent Activity Report, Lawrence Livermore National Laboratory...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Livermore National Laboratory Operational Drill at the B332 Plutonium Facility HIAR LLNL-2013-02-27 The Livermore Site Office (LSO) and Lawrence Livermore National Security,...

42

Structural health monitoring activities at National Laboratories  

Science Conference Proceedings (OSTI)

Sandia National Laboratories and Los Alamos National Laboratory have on-going programs to assess damage in structures and mechanical systems from changes in their dynamic characteristics. This paper provides a summary of how both institutes became involved with this technology, their experience in this field and the directions that their research in this area will be taking in the future.

Farrar, C.R.; Doebling, S.W. [Los Alamos National Lab., NM (United States); James, G.H.; Simmermacher, T. [Sandia National Labs., Albuquerque, NM (United States)

1997-09-01T23:59:59.000Z

43

Distributed Energy Communications & Controls, Lab Activities - Summary  

Science Conference Proceedings (OSTI)

The purpose is to develop controls for inverter-based renewable and non-renewable distributed energy systems to provide local voltage, power and power quality support for loads and the power grid. The objectives are to (1) develop adaptive controls for inverter-based distributed energy (DE) systems when there are multiple inverters on the same feeder and (2) determine the impact of high penetration high seasonal energy efficiency ratio (SEER) air conditioning (A/C) units on power systems during sub-transmission faults which can result in an A/C compressor motor stall and assess how inverter-based DE can help to mitigate the stall event. The Distributed Energy Communications & Controls Laboratory (DECC) is a unique facility for studying dynamic voltage, active power (P), non-active power (Q) and power factor control from inverter-based renewable distributed energy (DE) resources. Conventionally, inverter-based DE systems have been designed to provide constant, close to unity power factor and thus not provide any voltage support. The DECC Lab interfaces with the ORNL campus distribution system to provide actual power system testing of the controls approach. Using mathematical software tools and the DECC Lab environment, we are developing and testing local, autonomous and adaptive controls for local voltage control and P & Q control for inverter-based DE. We successfully tested our active and non-active power (P,Q) controls at the DECC laboratory along with voltage regulation controls. The new PQ control along with current limiter controls has been tested on our existing inverter test system. We have tested both non-adaptive and adaptive control modes for the PQ control. We have completed several technical papers on the approaches and results. Electric power distribution systems are experiencing outages due to a phenomenon known as fault induced delayed voltage recovery (FIDVR) due to air conditioning (A/C) compressor motor stall. Local voltage collapse from FIDVR is occurring in part because modern air-conditioner and heat pump compressor motors are much more susceptible to stalling during a voltage sag or dip than older motors. These motors can stall in less than three cycles (0.05 s) when a fault, for example, on the sub-transmission system, causes voltage on the distribution system to sag to 70% or less of nominal. We completed a new test system for A/C compressor motor stall testing at the DECC Lab. The A/C Stall test system is being used to characterize when and how compressor motors stall under low voltage and high compressor pressure conditions. However, instead of using air conditioners, we are using high efficiency heat pumps. We have gathered A/C stall characterization data for both sustained and momentary voltage sags of the test heat pump. At low enough voltage, the heat pump stalls (compressor motor stops and draws 5-6 times normal current in trying to restart) due to low inertia and low torque of the motor. For the momentary sag, we are using a fast acting contactor/switch to quickly switch from nominal to the sagged voltage in cycles.

Rizy, D Tom [ORNL

2010-01-01T23:59:59.000Z

44

Slurry spray distribution within a simulated laboratory scale spray dryer  

SciTech Connect

It was found that the distribution of liquid striking the sides of a simulated room temperature spray dryer was not significantly altered by the choice of nozles, nor by a variation in nozzle operating conditions. Instead, it was found to be a function of the spray dryer's configuration. A cocurrent flow of air down the drying cylinder, not possible with PNL's closed top, favorably altered the spray distribution by both decreasing the amount of liquid striking the interior of the cylinder from 72 to 26% of the feed supplied, and by shifting the zone of maximum impact from 1.0 to 1.7 feet from the nozzle. These findings led to the redesign of the laboratory scale spray dryer to be tested at the Savannah River Plant. The diameter of the drying chamber was increased from 5 to 8 inches, and a cocurrent flow of air was established with a closed recycle. Finally, this investigation suggested a drying scheme which offers all the advantages of spray drying without many of its limitations.

Bertone, P.C.

1979-12-20T23:59:59.000Z

45

Independent Activity Report, Los Alamos National Laboratory - August 2012 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Los Alamos National Laboratory - Los Alamos National Laboratory - August 2012 Independent Activity Report, Los Alamos National Laboratory - August 2012 August 2012 Defense Nuclear Facilities Safety Board Visit and Site Lead Planning Activities at the Los Alamos National Laboratory [HIAR LANL-2012-08-16] The purpose of this Office of Health, Safety and Security (HSS) activity was to maintain site operational awareness of key nuclear safety performance areas of interest to the Defense Nuclear Facilities Safety Board (DNFSB), monitor ongoing site oversight and planning activities for Los Alamos National Laboratory (LANL) nuclear facilities, and identify and initiate coordination of future HSS oversight activities at the site. Independent Activity Report, Los Alamos National Laboratory - August 2012

46

Independent Activity Report, Los Alamos National Laboratory - April 2010 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Activity Report, Los Alamos National Laboratory - April Activity Report, Los Alamos National Laboratory - April 2010 Independent Activity Report, Los Alamos National Laboratory - April 2010 April 2010 Los Alamos Site Office Assessment of Fire Protection Activities at the Los Alamos National Laboratory The U.S. Department of Energy Office of Independent Oversight, within the Office of Health, Safety and Security, in coordination with the Los Alamos Site Office (LASO), provided a technical expert to conduct several fire protection oversight activities, including validation of Los Alamos County's Fire Hydrant Flow Test Methodology and a review of Los Alamos National Laboratory Equivalency Request Review Process in support of LASO oversight of the contractor. Independent Activity Report, Los Alamos National Laboratory - April 2010

47

Analysis Activities at Oak Ridge National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Oak Ridge National Laboratory Oak Ridge National Laboratory David L. Greene Engineering Science and Technology Division Paul N. Leiby Environmental Sciences Division Juan Ferrada Nuclear Science and Technology Division DOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program Systems Analysis Workshop July 28-29, 2004 Washington, D.C. 2 OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY Charter * The Engineering Science and Technology Division, National Transportation Research Center conducts engineering and analytical R&D for DOE, other federal sponsors and the private sector. * The Environmental Sciences Division conducts interdisciplinary research, develops technology, and performs analyses to understand and assess responses to global and regional change, environmental stress, and resource use.

48

Analysis Activities at Pacific Northwest National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Pacific Northwest National Laboratory Pacific Northwest National Laboratory Pacific Northwest National Laboratory's Hydrogen Analysis Capabilities Marylynn Placet Manager, Energy Policy and Planning Group m.placet@pnl.gov (202) 646-5249 DOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program Systems Analysis Workshop July 28-29, 2004 Washington, D.C. U.S. Department of Energy Pacific Northwest National Laboratory 2 Charter PNNL Energy Science and Technology Directorate's Energy Mission: Secure, clean, and affordable energy systems in a carbon constrained world. PNNL Analysis Objectives/Principles: * Development of state-of-the-art analysis tools for critical policy issues (e.g., climate change, electricity grid issues) * Use of tools appropriate to the need * Objectivity; analysis based on best available,

49

Independent Activity Report, Oak Ridge National Laboratory -...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

October 2011 Operational Awareness Tour of Building 3525 Irradiated Fuels Examination Hot Cell Laboratory HIAR OR-2011-10-21 The purpose of the visit was for the Office of...

50

Independent Activity Report, Pacific Northwest National Laboratory...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 2012 January 2012 Pacific Northwest National Laboratory Orientation Visit HIAR-PNNL-2012-01-11 The U.S. Department of Energy (DOE) Office of Enforcement and Oversight,...

51

Independent Activity Report, Los Alamos National Laboratory- August 2012  

Energy.gov (U.S. Department of Energy (DOE))

Defense Nuclear Facilities Safety Board Visit and Site Lead Planning Activities at the Los Alamos National Laboratory [HIAR LANL-2012-08-16

52

NIST Physics Laboratory: Technical Activities 2008-2009  

Science Conference Proceedings (OSTI)

... and testing services, and the data evaluation activities that were carried out during fiscal years 2008 and 2009 in the NIST Physics Laboratory. ...

2010-10-05T23:59:59.000Z

53

Independent Oversight Activity Report, Los Alamos National Laboratory -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Los Alamos National Los Alamos National Laboratory - November 2013 Independent Oversight Activity Report, Los Alamos National Laboratory - November 2013 November 2013 Follow-up on the Progress and Issues in the Implementation of the Los Alamos National Laboratory Worker Exposure Assessment Process [HIAR-LANL-2013-11-26] This Independent Activity Report documents an oversight activity conducted by the Office of Health, Safety and Security's (HSS) Office of Safety and Emergency Management Evaluations on November 26, 2013, at the Los Alamos National Laboratory. The activity consisted of HSS staff reviewing progress and issues in the development and implementation of the Los Alamos National Laboratory industrial hygiene worker exposure assessment program. Independent Oversight Activity Report, Los Alamos National Laboratory -

54

Analysis Activities at National Renewable Energy Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory Laboratory DOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program Systems Analysis Workshop July 28-29, 2004 Washington, D.C. Margaret K. Mann Hydrogen Analysis Task Leader Charter * NREL's mission: NREL develops renewable energy and energy efficiency technologies and practices, advances related science and engineering, and transfers knowledge and innovations to address the nation's energy and environmental goals. * The NREL Hydrogen Analysis Group provides leadership in hydrogen production, delivery, transition, and market analysis, to increase the efficiency of hydrogen research and implementation. * The NREL Hydrogen Analysis Group has received the majority of its funding from the DOE Hydrogen Program (now HFCIT), with some funding coming from PBA and OFCVT

55

Independent Activity Report, Sandia National Laboratories - September 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 2012 Independent Activity Report, Sandia National Laboratories - September 2012 September 2012 Operational Awareness Oversight of Sandia National Laboratories [HIAR SNL-2012-09-13] The purpose of this Office of Health, Safety and Security (HSS) activity was to perform an operational awareness site visit to the Sandia Site Office (SSO) and Sandia National Laboratories (SNL) operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, primarily to discuss the Annular Core Research Reactor Facility (ACRRF) improvement plan developed by SNL in response to recent safety basis and software quality assurance concerns raised by the Defense Nuclear Facilities Safety Board (DNFSB). Independent Activity Report, Sandia National Laboratories - September 2012

56

ACDN: active content distribution network  

Science Conference Proceedings (OSTI)

A novel dynamic and active CDN architecture based on active network (ACDN) is proposed. The programmable character of active network makes it easier and quicker to configure new replica servers as well as deploy new policies on demand. A genetic algorithm ...

Yan Chen; Zeng-zhi Li; Zhi-gang Liao

2005-03-01T23:59:59.000Z

57

Independent Activity Report, Sandia National Laboratories - January 2012 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Independent Activity Report, Sandia National Laboratories - January Independent Activity Report, Sandia National Laboratories - January 2012 Independent Activity Report, Sandia National Laboratories - January 2012 January 2012 Sandia National Laboratories Orientation Visit [HIAR-SNL-2012-01-04] The U.S. Department of Energy (DOE) Office of Enforcement and Oversight, within the Office of Health, Safety and Security (HSS), conducted an orientation visit to the Sandia National Laboratories (SNL) and the Sandia Site Office (SSO), Albuquerque, NM, on January 4, 2012, for the HSS site lead. The purpose of the visit was to discuss the nuclear safety oversight strategy, describe the site lead program, increase HSS personnel's operational awareness of the Lab's activities, and identify specific activities that HSS can perform to carry out its independent oversight

58

Independent Activity Report, New Brunswick Laboratory - November 2011 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Brunswick Laboratory - November New Brunswick Laboratory - November 2011 Independent Activity Report, New Brunswick Laboratory - November 2011 November 2011 Orientation Visit to the New Brunswick Laboratory [HIAR-NBL-2011-11-21] The U.S. Department of Energy (DOE) Office of Enforcement and Oversight, within the Office of Health, Safety and Security (HSS), conducted an orientation visit to the DOE New Brunswick Laboratory (NBL) and the Office of Science Chicago Office (SC-CH) on the Argonne National Laboratory site, Argonne, IL, on November 21, 2011. The purpose of the visit was to discuss the nuclear safety oversight strategy, describe the site lead program, increase HSS personnel's operational awareness of the Lab's activities, and identify specific activities that HSS can perform to carry out its

59

Physical Oceanography Distributed Active Archive Center (PO.DAAC) |  

NLE Websites -- All DOE Office Websites (Extended Search)

Physical Oceanography Distributed Active Archive Center (PO.DAAC) Physical Oceanography Distributed Active Archive Center (PO.DAAC) Ocean Data Tools Technical Guide Map Gallery Regional Planning Feedback Ocean You are here Data.gov » Communities » Ocean » Data Physical Oceanography Distributed Active Archive Center (PO.DAAC) Dataset Summary Description PO.DAAC is an element of the Earth Observing System Data Information System (EOSDIS). PO.DAAC's primary responsibility is to provide distribution and archive support for NASA's physical oceanography missions such as TOPEX/Poseidon and SeaWinds on QuikSCAT. However, PO.DAAC additionally collaborates with other institutes to acquire complementary data products and value-added services. Tags {Oceans,"ocean dynamics","Earth observing system",EOS,navigation,"information systems",NASA,JPL,"Jet Propulsion Laboratory"}

60

Independent Activity Report, Los Alamos National Laboratory - August 2011 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Activity Report, Los Alamos National Laboratory - Activity Report, Los Alamos National Laboratory - August 2011 Independent Activity Report, Los Alamos National Laboratory - August 2011 August 2011 Assessment of the Los Alamos National Laboratory Emergency Management Program Training and Drills Functional Area [HIAR-LANL-2011-08-04] Since the 2007 Office of Health, Safety and Security (HSS) inspection of the Los Alamos National Laboratory (LANL) emergency management program, HSS personnel have conducted periodic visits to follow-up on the corrective actions taken to address the findings in the review. This 2011 assessment was conducted to continue the corrective action follow-up activities and to support the Los Alamos Site Office (LASO) Emergency Management Program Manager in accomplishing the required triennial functional area assessment.

Note: This page contains sample records for the topic "laboratory distributed active" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Analysis Activities at Lawrence Livermore National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory / Energy Security and Technology Program Jeffrey Stewart Group Leader: Applied Statistics and Economics DOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program Systems Analysis Workshop July 28-29, 2004 Washington, D.C. 2 Charter * LLNL's mission is to provide research in the areas of national and homeland security and other important areas to DOE such as Energy,Climate and Water * To conduct systems and economic modeling and analysis to determine the technical and economic characteristics of individual technologies within systems to achieve policy objectives * DOE NETL, NE,Policy,HEU; Japanese Govt, CEC, Internal 3 History * LLNL has had a systems analysis group for over 25 years supporting national security, defense, energy and environment programs

62

Independent Activity Report, Lawrence Livermore National Laboratory - March  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Activity Report, Lawrence Livermore National Laboratory Activity Report, Lawrence Livermore National Laboratory - March 2011 Independent Activity Report, Lawrence Livermore National Laboratory - March 2011 March 2011 Lawrence Livermore National Laboratory Chronic Beryllium Disease Prevention Program Effectiveness Review [HIAR-LLNL-2011-03-25] The Lawrence Livermore National Laboratory (LLNL) and the Livermore Site Office (LSO) chartered a team to conduct an effectiveness review of the issues identified with the LLNL Chronic Beryllium Disease Prevention Program (CBDPP). The team included members and observers from LLNL, LSO, the National Nuclear Security Administration (NNSA), and the Office of Health, Safety and Security (HSS). The team's final report documents the results of the effectiveness review and the actions taken by LLNL to resolve and prevent recurrence of 44

63

Independent Activity Report, Argonne National Laboratory - August 2011 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Argonne National Laboratory - August Argonne National Laboratory - August 2011 Independent Activity Report, Argonne National Laboratory - August 2011 August 2011 Orientation Visit to the Argonne National Laboratory [HIAR-ANL-2011-08-24] The U.S. Department of Energy (DOE) Office of Enforcement and Oversight, within the Office of Health, Safety and Security (HSS), conducted an orientation visit to the DOE Argonne Site Office (ASO) and the contractor-operated nuclear facilities at Argonne National Laboratory (ANL) at Argonne, Illinois on August 24, 2011. The purpose of the visit was to discuss the nuclear safety oversight strategy, describe the site lead program, increase HSS personnel's operational awareness of the site's activities, and identify specific activities that HSS can perform to carry

64

Independent Activity Report, Argonne National Laboratory - July 2012 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Argonne National Laboratory - July Argonne National Laboratory - July 2012 Independent Activity Report, Argonne National Laboratory - July 2012 July 2012 Operational Awareness Oversight of the Argonne National Laboratory Alpha-Gamma Hot Cell Facility [HIAR ANL-2012-07-20] The purpose of this Office of Health, Safety and Security (HSS) activity was to shadow the Argonne Site Office (ASO) Facility Representative (FR) performing a review of the technical safety requirements (TSRs) for the Alpha-Gamma Hot Cell Facility (AGHCF), a hazard category 2 nuclear facility. The ASO review evaluated the flow down of the TSRs into the facility documentation of surveillance procedures, datasheets, and the performance of the surveillance. Independent Activity Report, Argonne National Laboratory - July 2012

65

Independent Activity Report, Sandia National Laboratories - August 2011 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Activity Report, Sandia National Laboratories - August Activity Report, Sandia National Laboratories - August 2011 Independent Activity Report, Sandia National Laboratories - August 2011 August 2011 Sandia National Laboratories Emergency Action Levels and Associated Consequence Analyses [HIAR-SNL-2011-08-25] Personnel from the U.S. Department of Energy (DOE) Office of Health, Safety and Security (HSS), Office of Safety and Emergency Management Evaluations, met with Sandia Site Office and Sandia National Laboratories/New Mexico (SNL/NM) emergency management personnel to review the actions taken to resolve 2009 Independent Oversight findings pertaining to the emergency action levels (EALs) and the associated emergency planning hazards assessment (EPHA) consequence analyses. This review was to validate that SNL has made appropriate revisions to their EALs and that the incident

66

Independent Activity Report, Sandia National Laboratories - April 2012 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratories - April Laboratories - April 2012 Independent Activity Report, Sandia National Laboratories - April 2012 April 2012 Sandia National Laboratories Site Visit [HIAR-SNL-2012-05-02] The purpose of the Office of Health, Safety and Security (HSS) site visit activity at the Sandia National Laboratories (SNL) and the Sandia Site Office (SSO), Albuquerque, NM, was to conduct an orientation visit on April 29, 2012, for the HSS site lead, and to shadow a portion of a National Nuclear Security Administration (NNSA) review during May 1-2, 2012, at SNL of the weapon design agencies (DAs') processes for proper implementation of DOE-NA-STD-3016-2006, Hazard Analysis Reports for Nuclear Explosive Operations. Overall, in the review activities observed by HSS, NNSA appropriately followed its assessment plan.

67

Independent Activity Report, Argonne National Laboratory - July 2012 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Argonne National Laboratory - July Argonne National Laboratory - July 2012 Independent Activity Report, Argonne National Laboratory - July 2012 July 2012 Operational Awareness Oversight of the Argonne National Laboratory Alpha-Gamma Hot Cell Facility [HIAR ANL-2012-07-20] The purpose of this Office of Health, Safety and Security (HSS) activity was to shadow the Argonne Site Office (ASO) Facility Representative (FR) performing a review of the technical safety requirements (TSRs) for the Alpha-Gamma Hot Cell Facility (AGHCF), a hazard category 2 nuclear facility. The ASO review evaluated the flow down of the TSRs into the facility documentation of surveillance procedures, datasheets, and the performance of the surveillance. Independent Activity Report, Argonne National Laboratory - July 2012

68

Hanford Laboratories Operation monthly activities report, May 1959  

SciTech Connect

This is the monthly report for the Hanford Laboratories Operation, May, 1959. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, employee relations, operations research and synthesis operation, programming, radiation protection, and laboratory auxiliaries operation area discussed.

1959-06-15T23:59:59.000Z

69

Hanford Laboratories operation monthly activities report, October 1956  

SciTech Connect

This is the monthly report for the Hanford Laboratories Operation. Metallurgy, reactor fuels, physics and instrumentation, reactor technology, chemistry, separation processes, biology, financial activities, employee relations, laboratories auxiliaries, radiation protection, operation research, inventions, visits, and personnel status are discussed. This report is for October 1956.

1956-11-21T23:59:59.000Z

70

Hanford Laboratories Operation monthly activities report, January 1962  

SciTech Connect

This is the monthly report for the Hanford Laboratories Operation, January, 1962. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology financial activities, biology operation, physics and instrumentation research, employee relations, operations research and synthesis operation, programming, radiation protection, laboratory auxiliaries operation, and technical administration operation area discussed.

1962-02-15T23:59:59.000Z

71

Hanford Laboratories Operation monthly activities report, June 1961  

SciTech Connect

The monthly report for the Hanford Laboratories Operation, June 1961. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, and physics and instrumentation research, operations research and synthesis operation, programming, laboratory auxiliaries operation, and professional placement and relations practices are discussed.

1961-07-15T23:59:59.000Z

72

Hanford Laboratories Operation monthly activities report, June 1958  

SciTech Connect

This is the monthly report for the Hanford Laboratories Operation, June, 1958. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics, instrumentation research, employee relations, operations research, synthesis operation, programming, radiation protection, and laboratory auxiliaries operation are discussed.

1958-07-15T23:59:59.000Z

73

Hanford Laboratories Operation monthly activities report, December 1961  

SciTech Connect

The monthly report for the Hanford Laboratories Operation, May 1961. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, and physics and instrumentation research, operations research and synthesis operation, programming, laboratory auxiliaries operation, and technical administration operation are discussed.

1962-01-15T23:59:59.000Z

74

Hanford Laboratories Operation monthly activities report, December 1957  

SciTech Connect

This is the monthly report for the Hanford Laboratories Operation. Metallurgy, reactor fuels, physics and instrumentation, reactor technology, chemistry, separation processes, biology, financial activities, employee relations, laboratories auxiliaries, radiation protection, operation research, inventions, visits, and personnel status are discussed. This report is for December 1957.

1958-01-15T23:59:59.000Z

75

Hanford Laboratories Operation monthly activities report, May 1961  

SciTech Connect

The monthly report for the Hanford Laboratories Operation, May 1961. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, and physics and instrumentation research, operations research and synthesis operation, programming, laboratory auxiliaries operation, and professional placement and relations practices are discussed.

1961-06-15T23:59:59.000Z

76

Hanford Laboratories operation monthly activities report, November 1956  

SciTech Connect

This is the monthly report for the Hanford Laboratories Operation. Metallurgy, reactor fuels, physics and instrumentation, reactor technology, chemistry, separation processes, biology, financial activities, employee relations, laboratories auxiliaries, radiation protection, operations research, inventions, visits, and personnel status are discussed. This report is for November, 1956.

1956-12-21T23:59:59.000Z

77

Hanford Laboratories operation monthly activities report, February 1958  

SciTech Connect

This is the monthly report for the Hanford Laboratories Operation. Metallurgy, reactor fuels, physics and instrumentation, reactor technology, chemistry, separation processes, biology, financial activities, employee relations, laboratories auxiliaries, radiation protection, operation research, inventions, visits, and personnel status are discussed. This report is for February 1958.

1958-03-15T23:59:59.000Z

78

Hanford Laboratories operation monthly activities report, November 1957  

SciTech Connect

This is the monthly report for the Hanford Laboratories Operation. Metallurgy, reactor fuels, physics and instrumentation, reactor technology, chemistry, separation processes, biology, financial activities, employee relations, laboratories auxiliaries, radiation protection, operation research, inventions, visits, and personnel status are discussed. This report is for November 1957.

1957-12-15T23:59:59.000Z

79

Lawrence Livermore National Laboratory Site Lead Planning Activities, October 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

Report Number: HIAR LLNL-2012-10-23 Site: Lawrence Livermore National Laboratory Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Site Lead Planning Activities at the Lawrence Livermore National Laboratory Dates of Activity 10/23/2012 - 10/24/2012 Report Preparer: Robert Freeman Activity Description/Purpose: The purpose of this Office of Health, Safety and Security (HSS) Independent Oversight activity was to maintain site operational awareness of key nuclear safety performance areas, monitor ongoing site oversight and planning activities for Lawrence Livermore National Laboratory (LLNL) nuclear facilities, and identify and initiate coordination of future HSS oversight activities at the site, including planned HSS targeted reviews planned for Fiscal Year (FY) 2013.

80

Lawrence Livermore National Laboratory Site Lead Planning Activities, October 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report Number: HIAR LLNL-2012-10-23 Site: Lawrence Livermore National Laboratory Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Site Lead Planning Activities at the Lawrence Livermore National Laboratory Dates of Activity 10/23/2012 - 10/24/2012 Report Preparer: Robert Freeman Activity Description/Purpose: The purpose of this Office of Health, Safety and Security (HSS) Independent Oversight activity was to maintain site operational awareness of key nuclear safety performance areas, monitor ongoing site oversight and planning activities for Lawrence Livermore National Laboratory (LLNL) nuclear facilities, and identify and initiate coordination of future HSS oversight activities at the site, including planned HSS targeted reviews planned for Fiscal Year (FY) 2013.

Note: This page contains sample records for the topic "laboratory distributed active" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Hanford Laboratories Operation monthly activities report, November 1960  

SciTech Connect

This is the monthly report for the Hanford Laboratories Operation, November 1960. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

Sale, W.

1960-12-15T23:59:59.000Z

82

Hanford Laboratories Operation monthly activities report, August 1961  

SciTech Connect

This is the monthly report for the Hanford Laboratories Operation August 1961. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, operations research and synthesis, programming, and radiation protection operation are discussed.

1961-09-15T23:59:59.000Z

83

Hanford Laboratories Operation monthly activities report, February 1962  

SciTech Connect

The monthly report for the Hanford Laboratories Operation, February 1962. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, and physics and instrumentation research, operations research and synthesis operation, and programming are discussed.

1962-03-15T23:59:59.000Z

84

Hanford Laboratories Operation monthly activities report, October 1962  

SciTech Connect

This is the monthly report for the Hanford Laboratories Operation October 1962. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, operations research and synthesis, programming, and radiation protection operation are discussed.

1962-11-15T23:59:59.000Z

85

Hanford Laboratories Operation monthly activities report, September 1961  

SciTech Connect

This is the monthly report for the Hanford Laboratories Operation September 1961. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, operations research and synthesis, programming, and radiation protection operation are discussed.

1961-10-16T23:59:59.000Z

86

Hanford Laboratories Operation monthly activities report, November 1962  

SciTech Connect

This is the monthly report for the Hanford Laboratories Operation, November 1962. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

1962-12-14T23:59:59.000Z

87

Hanford Laboratories Operation monthly activities report, August 1962  

SciTech Connect

This is the monthly report for the Hanford Laboratories Operation August 1962. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, operations research and synthesis, programming, and radiation protection operation are discussed.

1962-09-14T23:59:59.000Z

88

Hanford Laboratories Operation monthly activities report, July 1959  

SciTech Connect

This is the monthly report for the Hanford Laboratories Operation, July, 1959. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

1959-08-15T23:59:59.000Z

89

Hanford Laboratories Operation monthly activities report, July 1961  

SciTech Connect

This is the monthly report for the Hanford Laboratories Operation, July 1969. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

1961-08-15T23:59:59.000Z

90

Hanford Laboratories Operation monthly activities report, April 1961  

SciTech Connect

This is the monthly report for the Hanford Laboratories Operation, April 1961. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

1961-05-15T23:59:59.000Z

91

Hanford Laboratories Operation monthly activities report, February 1961  

SciTech Connect

This is the monthly report for the Hanford Laboratories Operation, February 1961. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

1961-03-15T23:59:59.000Z

92

Hanford Laboratories Operation monthly activities report, July 1962  

SciTech Connect

This is the monthly report for the Hanford Laboratories Operation July 1962. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, operations research and synthesis, programming, and radiation protection operation are discussed.

1962-08-15T23:59:59.000Z

93

Hanford Laboratories Operation monthly activities report, May 1957  

SciTech Connect

This is the monthly report for the Hanford Laboratories Operation, May, 1957. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

1957-06-15T23:59:59.000Z

94

Hanford Laboratories Operation monthly activities report, June 1957  

SciTech Connect

This is the monthly report for the Hanford Laboratories Operation, July 1957. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

1957-07-15T23:59:59.000Z

95

Hanford Laboratories Operation monthly activities report, September 1960  

SciTech Connect

This is the monthly report for the Hanford Laboratories Operation, October, 1960. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

1960-10-15T23:59:59.000Z

96

Hanford Laboratories Operation monthly activities report, March 1962  

SciTech Connect

This is the monthly report for the Hanford Laboratories Operation March 1962. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, operations research and synthesis, programming, and radiation protection operation are discussed.

1962-04-16T23:59:59.000Z

97

Hanford Laboratories Operation monthly activities report, November 1959  

SciTech Connect

This is the monthly report for the Hanford Laboratories Operation, November 1959. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

1959-12-15T23:59:59.000Z

98

Hanford Laboratories Operation monthly activities report, September 1962  

SciTech Connect

The monthly report for the Hanford Laboratories Operation, September 1962. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, and physics and instrumentation research, operations research and synthesis operation, and programming are discussed.

1962-10-15T23:59:59.000Z

99

Hanford Laboratories Operation monthly activities report, January 1961  

SciTech Connect

This is the monthly report for the Hanford Laboratories Operation, January 1961. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

1961-02-15T23:59:59.000Z

100

Hanford Laboratories Operation monthly activities report, October 1961  

SciTech Connect

This is the monthly report for the Hanford Laboratories Operation October 1961. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, operations research and synthesis, programming, and radiation protection operation are discussed.

1961-11-15T23:59:59.000Z

Note: This page contains sample records for the topic "laboratory distributed active" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Hanford Laboratories Operation monthly activities report, June 1962  

SciTech Connect

This is the monthly report for the Hanford Laboratories Operation June 1962. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, operations research and synthesis, programming, and radiation protection operation are discussed.

1962-07-16T23:59:59.000Z

102

Radioisotopes distributed for industrial applications for Oak Ridge National Laboratory  

SciTech Connect

A brief discussion is presented of the radioisotopes distributed by ORNL, available quantities, and their main areas of industrial applications. (DLC)

Lamb, E.

1981-01-01T23:59:59.000Z

103

Independent Activity Report, Los Alamos National Laboratory - April 2013 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Activity Report, Los Alamos National Laboratory - April Activity Report, Los Alamos National Laboratory - April 2013 Independent Activity Report, Los Alamos National Laboratory - April 2013 April 2003 Coordination Meeting with National Nuclear Security Administration Los Alamos Field Office Safety Basis Review Team Leader for Transuranic Waste Facility Preliminary Documented Safety Analysis Report [HIAR-LANL-2013-04-08] The Office of Health, Safety and Security (HSS) staff visited the Los Alamos National Laboratory (LANL) to coordinate with the National Nuclear Security Administration (NNSA) Los Alamos Field Office (NA-00-LA) Safety Basis Review Team (SBRT) Leader for review of the revised preliminary documented safety analysis (PDSA) for the Transuranic Waste Facility (TWF) project. LANL is developing a revised PDSA and intends to submit it to

104

Argonne National Laboratory Annual Report of Laboratory Directed Research and Development Program Activities for FY 1994  

SciTech Connect

The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory's R and D capabilities, and further the development of its strategic initiatives. Projects are selected from proposals for creative and innovative R and D studies which are not yet eligible for timely support through normal programmatic channels. Among the aims of the projects supported by the Program are establishment of engineering proof-of-principle; assessment of design feasibility for prospective facilities; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these projects are closely associated with major strategic thrusts of the Laboratory as described in Argonne's Five-Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne as indicated in the Laboratory's LDRD Plan for FY 1994. Project summaries of research in the following areas are included: (1) Advanced Accelerator and Detector Technology; (2) X-ray Techniques for Research in Biological and Physical Science; (3) Nuclear Technology; (4) Materials Science and Technology; (5) Computational Science and Technology; (6) Biological Sciences; (7) Environmental Sciences: (8) Environmental Control and Waste Management Technology; and (9) Novel Concepts in Other Areas.

None

1995-02-25T23:59:59.000Z

105

Laboratory Directed Research and Development Program Activities for FY 2008.  

SciTech Connect

Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that maintains a primary mission focus the physical sciences, energy sciences, and life sciences, with additional expertise in environmental sciences, energy technologies, and national security. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal year 2008 budget was $531.6 million. There are about 2,800 employees, and another 4,300 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development,' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Developlnent at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. Accordingly, this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2008. BNL expended $12 million during Fiscal Year 2008 in support of 69 projects. The program has two categories, the annual Open Call LDRDs and Strategic LDRDs, which combine to meet the overall objectives of the LDRD Program. Proposals are solicited annually for review and approval concurrent with the next fiscal year, October 1. For the open call for proposals, an LDRD Selection Committee, comprised of the Associate Laboratory Directors (ALDs) for the Scientific Directorates, an equal number of scientists recommended by the Brookhaven Council, plus the Assistant Laboratory Director for Policy and Strategic Planning, review the proposals submitted in response to the solicitation. The Open Can LDRD category emphasizes innovative research concepts with limited management filtering to encourage the creativity of individual researchers. The competition is open to all BNL staff in programmatic, scientific, engineering, and technical support areas. Researchers submit their project proposals to the Assistant Laboratory Director for Policy and Strategic Planning. A portion of the LDRD budget is held for the Strategic LDRD (S-LDRD) category. Projects in this category focus on innovative R&D activities that support the strategic agenda of the Laboratory. The Laboratory Director entertains requests or articulates the need for S-LDRD funds at any time. Strategic LDRD Proposals also undergo rigorous peer review; the approach to review is tailored to the size and scope of the proposal. These Projects are driven by special opportunities, including: (1) Research project(s) in support of Laboratory strategic initiatives as defined and articulated by the Director; (2) Research project(s) in support of a Laboratory strategic hire; (3) Evolution of Program Development activities into research and development activities; and (4) ALD proposal(s) to the Director to support unique research opportunities. The goals and objectives of BNL's LDRD Program can be inferred fronl the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. We explicitly indicate that research conducted under the LDRD Program should be highly innovative, and an element of high risk as to success is acceptable. To be one of the premier DOE National Laboratories, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and d

Looney,J.P.; Fox, K.

2009-04-01T23:59:59.000Z

106

Independent Activity Report, Los Alamos National Laboratory - August 2011 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 2011 Independent Activity Report, Los Alamos National Laboratory - August 2011 August 2011 Assessment of the Los Alamos National Laboratory Emergency Management Program Training and Drills Functional Area [HIAR-LANL-2011-08-04] Since the 2007 Office of Health, Safety and Security (HSS) inspection of the Los Alamos National Laboratory (LANL) emergency management program, HSS personnel have conducted periodic visits to follow-up on the corrective actions taken to address the findings in the review. This 2011 assessment was conducted to continue the corrective action follow-up activities and to support the Los Alamos Site Office (LASO) Emergency Management Program Manager in accomplishing the required triennial functional area assessment. LANL's actions to address previous HSS and LASO findings and the

107

Validation of a Hot Water Distribution Model Using Laboratory and Field Data  

SciTech Connect

Characterizing the performance of hot water distribution systems is a critical step in developing best practice guidelines for the design and installation of high performance hot water systems. Developing and validating simulation models is critical to this effort, as well as collecting accurate input data to drive the models. In this project, the ARBI team validated the newly developed TRNSYS Type 604 pipe model against both detailed laboratory and field distribution system performance data. Validation efforts indicate that the model performs very well in handling different pipe materials, insulation cases, and varying hot water load conditions. Limitations of the model include the complexity of setting up the input file and long simulation run times. In addition to completing validation activities, this project looked at recent field hot water studies to better understand use patterns and potential behavioral changes as homeowners convert from conventional storage water heaters to gas tankless units. Based on these datasets, we conclude that the current Energy Factor test procedure overestimates typical use and underestimates the number of hot water draws. This has implications for both equipment and distribution system performance. Gas tankless water heaters were found to impact how people use hot water, but the data does not necessarily suggest an increase in usage. Further study in hot water usage and patterns is needed to better define these characteristics in different climates and home vintages.

Backman, C.; Hoeschele, M.

2013-07-01T23:59:59.000Z

108

Environmental Measurements Laboratory fiscal year 1998: Accomplishments and technical activities  

Science Conference Proceedings (OSTI)

The Environmental Measurements Laboratory (EML) is government-owned, government-operated, and programmatically under the DOE Office of Environmental Management. The Laboratory is administered by the Chicago Operations Office. EML provides program management, technical assistance and data quality assurance for measurements of radiation and radioactivity relating to environmental restoration, global nuclear nonproliferation, and other priority issues for the Department of Energy, as well as for other government, national, and international organizations. This report presents the technical activities and accomplishments of EML for Fiscal Year 1998.

Erickson, M.D.

1999-01-01T23:59:59.000Z

109

Distribution Fault Location: Update on Implementations Platforms that Support Use of Schweitzer Engineering Laboratories (SEL) Relays Data  

Science Conference Proceedings (OSTI)

This report focuses on the use of Schweitzer Engineering Laboratories (SEL) relay based data for the detection and identification of faults within the distribution system. An overview of the detection methods and the data requirements are presented. Recent updates on the status of the implementation approaches of stand-alone systems like PQView are presented. As part of this year’s activity, the project team worked with Grid Protection Alliance (GPA) to further improve its open source platform ...

2013-12-22T23:59:59.000Z

110

Independent Activity Report, Lawrence Livermore National Laboratory - March  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 2011 March 2011 Independent Activity Report, Lawrence Livermore National Laboratory - March 2011 March 2011 Lawrence Livermore National Laboratory Chronic Beryllium Disease Prevention Program Effectiveness Review [HIAR-LLNL-2011-03-25] The Lawrence Livermore National Laboratory (LLNL) and the Livermore Site Office (LSO) chartered a team to conduct an effectiveness review of the issues identified with the LLNL Chronic Beryllium Disease Prevention Program (CBDPP). The team included members and observers from LLNL, LSO, the National Nuclear Security Administration (NNSA), and the Office of Health, Safety and Security (HSS). The team's final report documents the results of the effectiveness review and the actions taken by LLNL to resolve and prevent recurrence of 44

111

Argonne National Laboratory annual report of Laboratory Directed Research and Development Program Activities FY 2009.  

Science Conference Proceedings (OSTI)

I am pleased to submit Argonne National Laboratory's Annual Report on its Laboratory Directed Research and Development (LDRD) activities for fiscal year 2009. Fiscal year 2009 saw a heightened focus by DOE and the nation on the need to develop new sources of energy. Argonne scientists are investigating many different sources of energy, including nuclear, solar, and biofuels, as well as ways to store, use, and transmit energy more safely, cleanly, and efficiently. DOE selected Argonne as the site for two new Energy Frontier Research Centers (EFRCs) - the Institute for Atom-Efficient Chemical Transformations and the Center for Electrical Energy Storage - and funded two other EFRCs to which Argonne is a major partner. The award of at least two of the EFRCs can be directly linked to early LDRD-funded efforts. LDRD has historically seeded important programs and facilities at the lab. Two of these facilities, the Advanced Photon Source and the Center for Nanoscale Materials, are now vital contributors to today's LDRD Program. New and enhanced capabilities, many of which relied on LDRD in their early stages, now help the laboratory pursue its evolving strategic goals. LDRD has, since its inception, been an invaluable resource for positioning the Laboratory to anticipate, and thus be prepared to contribute to, the future science and technology needs of DOE and the nation. During times of change, LDRD becomes all the more vital for facilitating the necessary adjustments while maintaining and enhancing the capabilities of our staff and facilities. Although I am new to the role of Laboratory Director, my immediate prior service as Deputy Laboratory Director for Programs afforded me continuous involvement in the LDRD program and its management. Therefore, I can attest that Argonne's program adhered closely to the requirements of DOE Order 413.2b and associated guidelines governing LDRD. Our LDRD program management continually strives to be more efficient. In addition to meeting all reporting requirements during fiscal year 2009, our LDRD Office continues to enhance its electronic systems to streamline the LDRD management process. You will see from the following individual project reports that Argonne's researchers have once again done a superb job pursuing projects at the forefront of their respective fields and have contributed significantly to the advancement of Argonne's strategic thrusts. This work has not only attracted follow-on sponsorship in many cases, but is also proving to be a valuable basis upon which to continue realignment of our strategic portfolio to better match the Laboratory's Strategic Plan.

Office of the Director

2010-04-09T23:59:59.000Z

112

LABORATORY DIRECTED RESEARCH AND DEVELOPMENT PROGRAM ACTIVITIES FOR FY2002.  

Science Conference Proceedings (OSTI)

Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $450 million. There are about 3,000 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 4 1 3.2A, ''Laboratory Directed Research and Development,'' January 8, 2001, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 413.2A. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL. The LDRD Annual Report contains summaries of all research activities funded during Fiscal Year 2002. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, the LDRD activities have resulted in numerous publications in various professional and scientific journals and presentations at meetings and forums. All Fy 2002 projects are listed and tabulated in the Project Funding Table. Also included in this Annual Report in Appendix A is a summary of the proposed projects for FY 2003. The BNL LDRD budget authority by DOE in FY 2002 was $7 million. The actual allocation totaled $6.7 million. The following sections in this report contain the management processes, peer review, and the portfolio's relatedness to BNL's mission, initiatives and strategic plans. Also included is a metric of success indicators.

FOX,K.J.

2002-12-31T23:59:59.000Z

113

Independent Activity Report, Los Alamos National Laboratory - April 2013 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April April 2013 Independent Activity Report, Los Alamos National Laboratory - April 2013 April 2003 Coordination Meeting with National Nuclear Security Administration Los Alamos Field Office Safety Basis Review Team Leader for Transuranic Waste Facility Preliminary Documented Safety Analysis Report [HIAR-LANL-2013-04-08] The Office of Health, Safety and Security (HSS) staff visited the Los Alamos National Laboratory (LANL) to coordinate with the National Nuclear Security Administration (NNSA) Los Alamos Field Office (NA-00-LA) Safety Basis Review Team (SBRT) Leader for review of the revised preliminary documented safety analysis (PDSA) for the Transuranic Waste Facility (TWF) project. LANL is developing a revised PDSA and intends to submit it to NA-00-LA by mid-summer 2013. HSS intends to perform a concurrent review of

114

A History of Classified Activities at Oak Ridge National Laboratory  

SciTech Connect

The facilities that became Oak Ridge National Laboratory (ORNL) were created in 1943 during the United States' super-secret World War II project to construct an atomic bomb (the Manhattan Project). During World War II and for several years thereafter, essentially all ORNL activities were classified. Now, in 2000, essentially all ORNL activities are unclassified. The major purpose of this report is to provide a brief history of ORNL's major classified activities from 1943 until the present (September 2000). This report is expected to be useful to the ORNL Classification Officer and to ORNL's Authorized Derivative Classifiers and Authorized Derivative Declassifiers in their classification review of ORNL documents, especially those documents that date from the 1940s and 1950s.

Quist, A.S.

2001-01-30T23:59:59.000Z

115

Recent geothermal reservoir engineering activities at Lawrence Berkeley Laboratory  

DOE Green Energy (OSTI)

This paper briefly describes the most recent activities in reservoir engineering for the geothermal group of Lawrence Berkeley Laboratory (LBL). The primary emphasis of the geothermal program of LBL is dedicated to reservoir engineering including theoretical investigations, the development and application of mathematical models, and field studies. The objectives of these activities are to develop and validate methods and instruments which will be utilized in the determination of the parameters of geothermal systems, and the identification and evaluation of the importance of the distinct processes which occur in reservoirs. The ultimate goal of the program is the development of state of the art technologies which characterize geothermal reservoirs and evaluate their productive capacity and longevity.

Lippmann, M.J.; Bodvarsson, G.S.; Benson, S.M.; Pruess, K.

1987-09-01T23:59:59.000Z

116

Asymptotic Approximations to the Distributed Activation Energy Model  

E-Print Network (OSTI)

Asymptotic Approximations to the Distributed Activation Energy Model M.J.McGuinness1 , E. Donskoi2 by a continuum distribution in activation energy of individual re- actions. An individual reaction is characterised by a pre-exponential coefficient and an activation energy. The distribution, usually Gaussian

McGuinness, Mark

117

Quantitative Nanostructure Characterization Using Atomic Pair Distribution Functions Obtained From Laboratory Electron Microscopes  

Science Conference Proceedings (OSTI)

Quantitatively reliable atomic pair distribution functions (PDFs) have been obtained from nanomaterials in a straightforward way from a standard laboratory transmission electron microscope (TEM). The approach looks very promising for making electron derived PDFs (ePDFs) a routine step in the characterization of nanomaterials because of the ubiquity of such TEMs in chemistry and materials laboratories. No special attachments such as energy filters were required on the microscope. The methodology for obtaining the ePDFs is described as well as some opportunities and limitations of the method.

Abeykoon M.; Billinge S.; Malliakas, C.D.; Juhas, P.; Bozin, E.S.; Kanatzidis, M.G.

2012-05-01T23:59:59.000Z

118

Independent Activity Report, Los Alamos National Laboratory- November 2010  

Energy.gov (U.S. Department of Energy (DOE))

Los Alamos National Laboratory Chemistry and Metallurgy Research Replacement Project Orientation Visit

119

Analysis of Fuel Ethanol Transportation Activity and Potential Distribution Constraints  

SciTech Connect

This paper provides an analysis of fuel ethanol transportation activity and potential distribution constraints if the total 36 billion gallons of renewable fuel use by 2022 is mandated by EPA under the Energy Independence and Security Act (EISA) of 2007. Ethanol transport by domestic truck, marine, and rail distribution systems from ethanol refineries to blending terminals is estimated using Oak Ridge National Laboratory s (ORNL s) North American Infrastructure Network Model. Most supply and demand data provided by EPA were geo-coded and using available commercial sources the transportation infrastructure network was updated. The percentage increases in ton-mile movements by rail, waterways, and highways in 2022 are estimated to be 2.8%, 0.6%, and 0.13%, respectively, compared to the corresponding 2005 total domestic flows by various modes. Overall, a significantly higher level of future ethanol demand would have minimal impacts on transportation infrastructure. However, there will be spatial impacts and a significant level of investment required because of a considerable increase in rail traffic from refineries to ethanol distribution terminals.

Das, Sujit [ORNL; Peterson, Bruce E [ORNL; Chin, Shih-Miao [ORNL

2010-01-01T23:59:59.000Z

120

Current Reactor Physics Benchmark Activities at the Idaho National Laboratory  

SciTech Connect

The International Reactor Physics Experiment Evaluation Project (IRPhEP) [1] and the International Criticality Safety Benchmark Evaluation Project (ICSBEP) [2] were established to preserve integral reactor physics and criticality experiment data for present and future research. These valuable assets provide the basis for recording, developing, and validating our integral nuclear data, and experimental and computational methods. These projects are managed through the Idaho National Laboratory (INL) and the Organisation for Economic Co-operation and Development Nuclear Energy Agency (OECD-NEA). Staff and students at the Department of Energy - Idaho (DOE-ID) and INL are engaged in the development of benchmarks to support ongoing research activities. These benchmarks include reactors or assemblies that support Next Generation Nuclear Plant (NGNP) research, space nuclear Fission Surface Power System (FSPS) design validation, and currently operational facilities in Southeastern Idaho.

John D. Bess; Margaret A. Marshall; Mackenzie L. Gorham; Joseph Christensen; James C. Turnbull; Kim Clark

2011-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "laboratory distributed active" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Heat Pipe Solar Receiver Development Activities at Sandia National Laboratories  

SciTech Connect

Over the past decade, Sandia National Laboratories has been involved in the development of receivers to transfer energy from the focus of a parabolic dish concentrator to the heater tubes of a Stirling engine. Through the isothermal evaporation and condensation of sodium. a heat-pipe receiver can efficiently transfer energy to an engine's working fluid and compensate for irregularities in the flux distribution that is delivered by the concentrator. The operation of the heat pipe is completely passive because the liquid sodium is distributed over the solar-heated surface by capillary pumping provided by a wick structure. Tests have shown that using a heat pipe can boost the system performance by twenty percent when compared to directly illuminating the engine heater tubes. Designing heat pipe solar receivers has presented several challenges. The relatively large area ({approximately}0.2 m{sup 2}) of the receiver surface makes it difficult to design a wick that can continuously provide liquid sodium to all regions of the heated surface. Selecting a wick structure with smaller pores will improve capillary pumping capabilities of the wick, but the small pores will restrict the flow of liquid and generate high pressure drops. Selecting a wick that is comprised of very tine filaments can increase the permeability of the wick and thereby reduce flow losses, however, the fine wick structure is more susceptible to corrosion and mechanical damage. This paper provides a comprehensive review of the issues encountered in the design of heat pipe solar receivers and solutions to problems that have arisen. Topics include: flow characterization in the receiver, the design of wick systems. the minimization of corrosion and dissolution of metals in sodium systems. and the prevention of mechanical failure in high porosity wick structures.

Adkins, D.R.; Andraka, C.E.; Moreno, J.B.; Moss, T.A.; Rawlinson, K.S.; Showalter, S.K.

1999-01-08T23:59:59.000Z

122

Heat Pipe Solar Receiver Development Activities at Sandia National Laboratories  

DOE Green Energy (OSTI)

Over the past decade, Sandia National Laboratories has been involved in the development of receivers to transfer energy from the focus of a parabolic dish concentrator to the heater tubes of a Stirling engine. Through the isothermal evaporation and condensation of sodium. a heat-pipe receiver can efficiently transfer energy to an engine's working fluid and compensate for irregularities in the flux distribution that is delivered by the concentrator. The operation of the heat pipe is completely passive because the liquid sodium is distributed over the solar-heated surface by capillary pumping provided by a wick structure. Tests have shown that using a heat pipe can boost the system performance by twenty percent when compared to directly illuminating the engine heater tubes. Designing heat pipe solar receivers has presented several challenges. The relatively large area ({approximately}0.2 m{sup 2}) of the receiver surface makes it difficult to design a wick that can continuously provide liquid sodium to all regions of the heated surface. Selecting a wick structure with smaller pores will improve capillary pumping capabilities of the wick, but the small pores will restrict the flow of liquid and generate high pressure drops. Selecting a wick that is comprised of very tine filaments can increase the permeability of the wick and thereby reduce flow losses, however, the fine wick structure is more susceptible to corrosion and mechanical damage. This paper provides a comprehensive review of the issues encountered in the design of heat pipe solar receivers and solutions to problems that have arisen. Topics include: flow characterization in the receiver, the design of wick systems. the minimization of corrosion and dissolution of metals in sodium systems. and the prevention of mechanical failure in high porosity wick structures.

Adkins, D.R.; Andraka, C.E.; Moreno, J.B.; Moss, T.A.; Rawlinson, K.S.; Showalter, S.K.

1999-01-08T23:59:59.000Z

123

Independent Activity Report, Lawrence Livermore National Laboratory- March 2011  

Energy.gov (U.S. Department of Energy (DOE))

Lawrence Livermore National Laboratory Chronic Beryllium Disease Prevention Program Effectiveness Review [HIAR-LLNL-2011-03-25

124

Stanford Synchrotron Radiation Laboratory activity report for 1987  

SciTech Connect

During 1987, SSRL achieved many significant advances and reached several major milestones utilizing both SPEAR and PEP as synchrotron radiation sources as described in this report. Perhaps the following two are worthy of particular mention: (1) SPEAR reached an all time high of 4,190 delivered user-shifts during calendar year 1987, highlights of the many scientific results are given; (2) during a 12 day run in December of 1987, PEP was operated in a low emittance mode (calculated emittance 6.4 nanometer-radians) at 7.1 GeV with currents up to 33 mA. A second undulator beam line on PEP was commissioned during this run and used to record many spectra showing the extremely high brightness of the radiation. PEP is now by far the highest brightness synchrotron radiation source in the world. The report is divided into the following sections: (1) laboratory operations; (2) accelerator physics programs; (3) experimental facilities; (4) engineering division; (5) conferences and workshops; (6) SSRL organization; (7) experimental progress reports; (8) active proposals; (9) SSRL experiments and proposals by institution; and (10) SSRL publications.

Robinson, S.; Cantwell, K. [eds.

1988-12-31T23:59:59.000Z

125

Independent Activity Report, Los Alamos National Laboratory- August 2011  

Energy.gov (U.S. Department of Energy (DOE))

Assessment of the Los Alamos National Laboratory Emergency Management Program Training and Drills Functional Area [HIAR-LANL-2011-08-04

126

Lawrence Livermore National Laboratory Site Lead Planning Activities...  

NLE Websites -- All DOE Office Websites (Extended Search)

Report Number: HIAR LLNL-2012-10-23 Site: Lawrence Livermore National Laboratory Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management...

127

SLAC National Accelerator Laboratory - SLAC Study Reveals Active...  

NLE Websites -- All DOE Office Websites (Extended Search)

By Glennda Chui May 22, 2013 Scientists from the Joint Center for Structural Genomics (JCSG) at SLAC National Accelerator Laboratory have determined the 3-D structure of...

128

Strategic Sequencing for State Distributed PV Policies: Program Overviews (Fact Sheet), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

report finds report finds that through strategic policy implementation, governments can successfully support renewable energy even in times when funding is limited. p r o g r a m o v e r v i e w s Strategic Sequencing for State Distributed PV Policies New analysis report aims to help state officials and policymakers expand markets for solar technologies and ultimately reduce the cost of installed solar nationwide In recent years, state and local policymakers have shown increasing interest in developing renewable energy markets to promote local economic development, increase energy security, and reduce the environmental impact of electricity production. The National Renewable Energy Laboratory's Strategic Sequencing for State Distributed PV Policies: A Quantitative Analysis of

129

Using Active Customer Participation in Managing Distribution Systems  

E-Print Network (OSTI)

#12;Smart Grid Distribution Advancement Introduction 3 #12;Smart Grid What would be new in smart grid1 Data Request Consumer Privacy Regulatory Requirements 15 #12;Distribution Operation Examples 16 #12Using Active Customer Participation in Managing Distribution Systems Visvakumar Aravinthan

Van Veen, Barry D.

130

A Distributed Active Information Model Enabling Distributed Autonomics in Complex Electronic Enviornments  

Science Conference Proceedings (OSTI)

Information modeling plays a central role in managing complexity of the distributed electronic systems. This paper proposes a nature-inspired distributed active information model (DAIM) to enable the local decision-making process, that will fundamentally ... Keywords: Distributed Information Model, Object-oriented, XML

Robin Braun; Frank Chiang

2008-11-01T23:59:59.000Z

131

Analysis Activities at Idaho National Engineering & Environmental Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering and Environmental Laboratory Engineering and Environmental Laboratory Systems Analysis Finis Southworth, PhD Department Manager Systems & Decision Science DOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program Systems Analysis Workshop July 28-29, 2004 Washington, D.C. Idaho National Engineering and Environmental Laboratory Charter Systems & Decision Science Mission: Develop and apply science-based systems, systems engineering, and decision science capabilities that result in successful projects and effective, defensible decisions Systems & Decision Science Funding: 0 2 4 6 8 10 12 $M National & Homeland Security Systems Integration and Analysis Other (YMP, Cleanup, etc.) Energy Current S&DS Funding = $18M FY04 FY03 Idaho National Engineering and Environmental Laboratory

132

Hanford Laboratories Operation monthly activities report, May 1962  

SciTech Connect

This is the monthly report for the Hanford Laboratories Operation, May, 1962. Reactor fuels, chemistry, dosimetry, separation process, reactor technology employee relations, operations research and synthesis operation, programming, and radiation protection are discussed.

1962-06-15T23:59:59.000Z

133

Laboratory Directed Research and Development Program Activities for FY 2007.  

SciTech Connect

Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal year 2007 budget was $515 million. There are about 2,600 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development', April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. In accordance this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2007. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. We explicitly indicate that research conducted under the LDRD Program should be highly innovative, and an element of high risk as to success is acceptable. In the solicitation for new proposals for Fiscal Year 2007 we especially requested innovative new projects in support of RHIC and the Light Source and any of the Strategic Initiatives listed at the LDRD web site. These included support for NSLS-II, RHIC evolving to a quantum chromo dynamics (QCD) lab, nanoscience, translational and biomedical neuroimaging, energy and, computational sciences. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL.

Newman,L.

2007-12-31T23:59:59.000Z

134

Property:EIA/861/ActivityDistribution | Open Energy Information  

Open Energy Info (EERE)

ActivityDistribution ActivityDistribution Jump to: navigation, search This is a property of type Boolean. Description: Activity Distribution Entity engages in power distribution activity (Y or N) [1] References ↑ EIA Form EIA-861 Final Data File for 2008 - F861 File Layout-2008.doc Pages using the property "EIA/861/ActivityDistribution" Showing 25 pages using this property. (previous 25) (next 25) 4 4-County Electric Power Assn + true + A A & N Electric Coop (Virginia) + true + AEP Texas Central Company + true + AEP Texas North Company + true + AGC Division of APG Inc + true + Access Energy Coop + true + Adams Electric Coop + true + Adams Electric Cooperative Inc + true + Adams Rural Electric Coop, Inc + true + Adams-Columbia Electric Coop + true + Adrian Public Utilities Comm + true +

135

Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2010.  

DOE Green Energy (OSTI)

As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selected from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.

(Office of The Director)

2012-04-25T23:59:59.000Z

136

Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2011.  

DOE Green Energy (OSTI)

As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selected from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.

(Office of The Director)

2012-04-25T23:59:59.000Z

137

Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2010.  

SciTech Connect

As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selected from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.

(Office of The Director)

2012-04-25T23:59:59.000Z

138

Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2011.  

SciTech Connect

As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selected from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.

(Office of The Director)

2012-04-25T23:59:59.000Z

139

Distributed Energy Communications & Controls, Lab Activities - Synopsis  

Science Conference Proceedings (OSTI)

Electric power distribution systems are experiencing outages due to a phenomenon known as fault induced delayed voltage recovery (FIDVR) due to air conditioning (A/C) compressor motor stall. Local voltage collapse from FIDVR is occurring in part because modern air-conditioner and heat pump compressor motors are much more susceptible to stalling during a voltage sag or dip than older motors. These motors can stall in less than three cycles (0.05 s) when a fault, for example, on the sub-transmission system, causes voltage on the distribution system to sag to 70% or less of nominal. We completed a new test system for A/C compressor motor stall testing at the DECC Lab. The A/C Stall test system is being used to characterize when and how compressor motors stall under low voltage and high compressor pressure conditions. However, instead of using air conditioners, we are using high efficiency heat pumps. We have gathered A/C stall characterization data for both sustained and momentary voltage sags of the test heat pump. At low enough voltage, the heat pump stalls (compressor motor stops and draws 5-6 times normal current in trying to restart) due to low inertia and low torque of the motor. For the momentary sag, we are using a fast acting contactor/switch to quickly switch from nominal to the sagged voltage in cycles.

Rizy, D Tom [ORNL

2010-01-01T23:59:59.000Z

140

Laboratory Directed Research and Development Program Activities for FY 2007.  

SciTech Connect

Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal year 2007 budget was $515 million. There are about 2,600 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development', April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. In accordance this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2007. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. We explicitly indicate that research conducted under the LDRD Program should be highly innovative, and an element of high risk as to success is acceptable. In the solicitation for new proposals for Fiscal Year 2007 we especially requested innovative new projects in support of RHIC and the Light Source and any of the Strategic Initiatives listed at the LDRD web site. These included support for NSLS-II, RHIC evolving to a quantum chromo dynamics (QCD) lab, nanoscience, translational and biomedical neuroimaging, energy and, computational sciences. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL.

Newman,L.

2007-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "laboratory distributed active" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

TA Orientation 2004 Activity 15a. How to Grade Student Laboratory Reports  

E-Print Network (OSTI)

TA Orientation 2004 Activity 15a. How to Grade Student Laboratory Reports Page 145 How to Grade along closely. #12;TA Orientation 2004 Activity 15a (continued) #12;TA Orientation 2004 Activity 15a (continued) #12;TA Orientation 2004 Activity 15a (continued) #12;TA Orientation 2004 Activity 15a (continued

Minnesota, University of

142

Reporting Unethical or Illegal Activity | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Activity Doing What's Right How we work is as important at the work we do High standards are more than a slogan or catch phrase - they represent the way we do business....

143

Summary of failure analysis activities at Brookhaven National Laboratory  

Science Conference Proceedings (OSTI)

Brookhaven National Laboratory has for many years conducted examinations related to the failures of nuclear materials and components. These examinations included the confirmation of root cause analyses, the determination of the causes of failure, identification of the species that accelerate corrosion, and comparison of the results of nondestructive examinations with those obtained by destructive examination. The results of those examinations, which had previously appeared in various formats (formal and informal reports, journal articles, etc.), have been collected together and summarized in the present report. The report is divided into sections according to the general subject matter (for example, corrosion, fatigue, etc.). Each section presents summaries of the information contained in specific reports and publications, all of which are fully identified as to title, authors, report number or journal reference, date of publication, and FIN number under which the work was performed.

Cowgill, M.G.; Czajkowski, C.J.; Franz, E.M.

1996-10-01T23:59:59.000Z

144

Strontium Distribution Coefficients of Basalt Core Samples from the Idaho National Engineering and Environmental Laboratory, Idaho  

Science Conference Proceedings (OSTI)

Strontium distribution coefficients (Kd's) were measured for 24 basalt core samples collected from selected sites at the Idaho National Engineering and Environmental Laboratory (INEEL). The measurements were made to help assess the variability of strontium Kd's as part of an ongoing investigation of strontium transport properties through geologic materials at the INEEL. The investigation is being conducted by the U.S. Geological Survey and Idaho State University in cooperation with the U.S. Department of Energy. Batch experiments were used to measure Kd's of basalt core samples using an aqueous solution representative of wastewater in waste-disposal ponds at the INEEL. Calculated strontium Kd's of the 24 basalt core samples ranged from 3.6{+-}1.3 to 29.4{+-}1.6 milliliters per gram. These results indicate a narrow range of variability in the strontium sorptive capacities of basalt relative to those of the sedimentary materials at the INEEL. The narrow range of the basalt Kd's can be attributed to physical and chemical properties of the basalt, and to compositional changes in the equilibrated solutions after being mixed with the basalt. The small Kd's indicate that basalt is not a major contributor in preventing the movement of strontium-90 in solution.

J. J. Colello (USGS); J. J. Rosentreter (ISU); R. C. Bartholomay (USGS); M. J. Liszewski (USGS)

1998-12-01T23:59:59.000Z

145

Pacific Northwest Laboratory monthly activities report, October 1967  

SciTech Connect

The results of a statistical study of Columbia River temperature trends were released on October 18 at the Sixth WSU Hydraulics Conference. The new John Day reservoir is under study for possible beneficial effects on flow regulation. Measurements of radioactivity in 396 children were completed at Captain Gray elementary school, Pasco, Washington on October 19, 1967. Measurements began at the Emerson elementary school in Pasco on October 24, 1967, following lectures to the teaching staff and to each of the 18 classrooms in grades 1 through 6. Computer programming was started in October to determine the frequency distribution, mean, and median values of the environmental radiation dose values calculated last month from several thousand individual adult diet records. Response or game bird hunter-employees to a request for participation in a survey of game bird kills during the current season has been disappointing in spite of several articles in the project newspapers.

Albaugh, F.W.

1967-11-01T23:59:59.000Z

146

EPRI Pre-Conference Workshop: Active Distribution System Management for Integration of Distributed Resources Research, Development a nd Demonstration Needs  

Science Conference Proceedings (OSTI)

This report documents the proceedings of the EPRI Pre-Conference Workshop: Active Distribution System Management for Integration of Distributed ResourcesResearch, Development and Demonstration Needs, held December 9, 2008. This workshop presented over 20 projects related to active distribution management for distributed energy resource (DER) integration.

2009-04-27T23:59:59.000Z

147

Merit Review of BER Activities at the DOE Laboratories | U.S. DOE Office of  

Office of Science (SC) Website

Merit Review of BER Activities at the DOE Laboratories Merit Review of BER Activities at the DOE Laboratories Biological and Environmental Research (BER) BER Home About Research Facilities Science Highlights Benefits of BER Funding Opportunities Closed Funding Opportunity Announcements (FOAs) Closed Lab Announcements Award Search Peer Review Policy Grants & Contracts Guidance Laboratory Scientific Focus Area Guidance SBIR/STTR Funding Opportunities Merit Review of BER Activities at the DOE Laboratories Biological & Environmental Research Advisory Committee (BERAC) News & Resources Contact Information Biological and Environmental Research U.S. Department of Energy SC-23/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3251 F: (301) 903-5051 E: sc.ber@science.doe.gov More Information »

148

Stanford Synchrotron Radiation Laboratory. Activity report for 1988  

SciTech Connect

For SSRL operations, 1988 was a year of stark contrasts. The first extended PEP parasitic running since the construction of our two beam lines on that storage ring took place in November and December. Four experiments discussed below, were performed and detailed operational procedures which allowed synchrotron radiation an high energy users to coexist were established. SSRL anticipates that there will be significant amounts of beam time when PEP is run again for high energy physics. On the other hand, activity on SPEAR consisted of brief parasitic running on the VUV lines in December when the ring was operated at 1.85 GeV for colliding beam experiments. There was no dedicated SPEAR running throughout the entire calendar year. This is the first time since dedicated SPEAR operation was initiated in 1980 that there was no such running. The decision was motivated by both cost and performance factors, as discussed in Section 1 of this report. Fortunately, SLAC and SSRL have reached an agreement on SPEAR and PEP dedicated time charges which eliminates the cost volatility which was so important in the cancellation of the June-July dedicated SPEAR run. As discussed in Section 2, the 3 GeV SPEAR injector construction is proceeding on budget and on schedule. The injector will overcome the difficulties associated with the SLC-era constraint of only two injections per day. SSR and SLAC have also embarked on a program to upgrade SPEAR to achieve high reliability and performance. As a consequence, SSRL`s users may anticipate a highly effective SPEAR by 1991, at the latest. At that time, SPEAR is expected to be fully dedicated to synchrotron radiation research and operated by SSRL. Also contained in this report is a discussion of the improvements to SSRL`s experimental facilities and highlights of the experiments of the past year.

Cantwell, K. [ed.

1996-01-01T23:59:59.000Z

149

Power Distribution Options for LWA Active-Antennas  

E-Print Network (OSTI)

We examine a variety of power distribution methods for use in LWA-1 with an emphasis on determining whether a bias-T should be incorporated into future designs. We recommend that serious consideration be given to supplying power to the active baluns via bias-T units. If low level 60 Hz artifacts passing through the bias-T networks do not present an insurmountable receiver design problem, we would specifically recommend their use in distributing low voltage AC (e.g. 12.6 VAC) from a central transformer. I.

Brian Hicks; Nagini Paravastu; Paul Ray

2007-01-01T23:59:59.000Z

150

Los Alamos National Laboratory ships last of high-activity drums to WIPP  

NLE Websites -- All DOE Office Websites (Extended Search)

ships last ff high-activity drums to WIPP ships last ff high-activity drums to WIPP Los Alamos National Laboratory ships last of high-activity drums to WIPP The November shipment was the final delivery this year to the Carlsbad plant, which is scheduled to undergo facility maintenance through mid-January. November 25, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

151

Analysis of background distributions of metals in the soil at Lawrence Berkeley National Laboratory  

Science Conference Proceedings (OSTI)

As part of its Resource Conservation and Recovery Act (RCRA) Corrective Action Program (CAP), the Lawrence Berkeley National Laboratory (LBNL) Environmental Restoration Program conducted an evaluation of naturally occurring metals in soils at the facility. The purpose of the evaluation was to provide a basis for determining if soils at specific locations contained elevated concentrations of metals relative to ambient conditions. Ambient conditions (sometimes referred to as 'local background') are defined as concentrations of metals in the vicinity of a site, but which are unaffected by site-related activities (Cal-EPA 1997). Local background concentrations of 17 metals were initially estimated by LBNL using data from 498 soil samples collected from borings made during the construction of 71 groundwater monitoring wells (LBNL 1995). These concentration values were estimated using the United States Environmental Protection Agency's (USEPA's) guidance that was available at that time (USEPA 1989). Since that time, many more soil samples were collected and analyzed for metals by the Environmental Restoration Program. In addition, the California Environmental Protection Agency (Cal-EPA) subsequently published a recommended approach for calculating background concentrations of metals at hazardous waste sites and permitted facilities (Cal-EPA 1997). This more recent approach differs from that recommended by the USEPA and used initially by LBNL (LBNL 2002). The purpose of the 2002 report was to apply the recommended Cal-EPA procedure to the expanded data set for metals that was available at LBNL. This revision to the 2002 report has been updated to include more rigorous tests of normality, revisions to the statistical methods used for some metals based on the results of the normality tests, and consideration of the depth-dependence of some sample results. As a result of these modifications, estimated background concentrations for some metals have been slightly revised from those presented in the original 2002 report. In cases where estimated background concentrations were reduced, site data were reviewed to assess whether significant changes to results of the RCRA CAP findings would result. This assessment indicated that no significant changes in RCRA CAP findings would result from the revisions.

Diamond, David; Baskin, David; Brown, Dennis; Lund, Loren; Najita, Julie; Javandel, Iraj

2009-03-15T23:59:59.000Z

152

Systems Studies Department FY 78 activity report. Volume 2. Systems analysis. [Sandia Laboratories, Livermore  

DOE Green Energy (OSTI)

The Systems Studies Department at Sandia Laboratories Livermore (SLL) has two primary responsibilities: to provide computational and mathematical services and to perform systems analysis studies. This document (Volume 2) describes the FY Systems Analysis highlights. The description is an unclassified overview of activities and is not complete or exhaustive. The objective of the systems analysis activities is to evaluate the relative value of alternative concepts and systems. SLL systems analysis activities reflect Sandia Laboratory programs and in 1978 consisted of study efforts in three areas: national security: evaluations of strategic, theater, and navy nuclear weapons issues; energy technology: particularly in support of Sandia's solar thermal programs; and nuclear fuel cycle physical security: a special project conducted for the Nuclear Regulatory Commission. Highlights of these activities are described in the following sections. 7 figures. (RWR)

Gold, T.S.

1979-02-01T23:59:59.000Z

153

OE's Smart Grid Activities in the Distribution System  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1/2013 1 1/2013 1 National Academy of Engineering - BMED December 2008 www.oe.energy.gov U.S. Department of Energy - 1000 Independence Ave., SW Washington, DC 20585 OE's Smart Grid Activities in the Distribution system September 2012 Patricia Hoffman Assistant Secretary December 2008 Mission  Drive Grid Modernization and Resiliency in the Energy Infrastructure  The formation of the Grid Technology Team is a recognition by DOE that we need to bring more resources to bear on grid modernization, coordinating effort from the Science programs, ARPA-E, and the other applied programs 2 December 2008 Desired Outcomes from this Workshop  Better shared understanding of the technology needs of the Distribution system  Identification of gaps in current research

154

Active Power and Nonactive Power Control of Distributed Energy Resources  

SciTech Connect

Distributed energy resources (DE) have been widely used in the power systems to supply active power, and most of the present DE resources are operated with limited or without nonactive power capability. This paper shows that with a slight modification in hardware configuration and a small boost in the power ratings, as well as proper implementation of control strategies, a DE system with a power electronics converter interface can provide active power and nonactive power simultaneously and independently. A DE can provide dynamic voltage regulation to the local bus because of its nonactive power capability. Furthermore, the proposed DE control method in this paper can effectively compensate the unbalance in the local voltage. The system requirements such as the inverter current rating and the dc voltage rating are discussed. The analysis of the system requirements to provide nonactive power shows that it is cost-effective to have DE provide voltage regulation.

Xu, Yan [ORNL; Li, Fangxing [ORNL; Rizy, D Tom [ORNL; Kueck, John D [ORNL

2008-01-01T23:59:59.000Z

155

Two-stage approach for the assessment of distributed generation capacity mixture in active distribution networks  

Science Conference Proceedings (OSTI)

Distribution networks are limited with spare capacities to integrate increased volumes of distributed generation (DG). Network constraints and congestion

D. Jayaweera; S. Islam; S. Neduvelil

2013-01-01T23:59:59.000Z

156

Energetic materials research and development activities at Sandia National Laboratories supported under DP-10 programs  

SciTech Connect

This report provides summary descriptions of Energetic Materials (EM) Research and Development activities performed at Sandia National Laboratories and funded through the Department of Energy DP-10 Program Office in FY97 and FY98. The work falls under three major focus areas: EM Chemistry, EM Characterization, and EM Phenomenological Model Development. The research supports the Sandia component mission and also Sandia's overall role as safety steward for the DOE Nuclear Weapons Complex.

Ratzel, A.C. III

1998-09-01T23:59:59.000Z

157

Strontium Distribution Coefficients of Basalt and Sediment Infill Samples from the Idaho National Engineering and Environmental Laboratory, Idaho  

Science Conference Proceedings (OSTI)

The U.S. Geological Survey and Idaho State University, in cooperation with the U.S. Department of Energy, are conducting a study to determine and evaluate strontium distribution coefficients (Kds) of subsurface materials at the Idaho National Engineering and Environmental Laboratory (INEEL). The purpose of this study is to aid in assessing the variability of strontium Kds at the INEEL as part of an ongoing investigation of chemical transport of strontium-90 in the Snake River Plain aquifer. Batch experimental techniques were used to determine Kds of six basalt core samples, five samples of sediment infill of vesicles and fractures, and six standard material samples. Analyses of data from these experiments indicate that the Kds of the sediment infill samples are significantly larger than those of the basalt samples. Quantification of such information is essential of furthering the understanding of transport processes of strontium-90 in the Snake River Plain aquifer and in similar environments.

M. N. Pace; R. C. Bartholomay (USGS); J. J. Rosentreter (ISU)

1999-07-01T23:59:59.000Z

158

International Council for Laboratory Animal Science: International activities. Institute of Laboratory Animal Resources annual report, 1993--1994  

Science Conference Proceedings (OSTI)

In late 1987, the Interagency Research Animal Committee (IRAC) requested that the Institute of Laboratory Animal Resources (ILAR), National Research Council (NRC), National Academy of Sciences, reestablish US national membership in the International Council for Laboratory Animal Science (ICLAS). The ICLAS is the only worldwide organization whose goal is to foster the humane use of animals in medical research and testing. ILAR`s Mission Statement reflects its commitment to producing highly respected documents covering a wide range of scientific issues, including databases in genetic stocks, species specific management guides, guidelines for humane care of animals, and position papers on issues affecting the future of the biological sciences. As such, ILAR is recognized nationally and internationally as an independent, scientific authority in the development of animal sciences in biomedical research.

Not Available

1994-09-01T23:59:59.000Z

159

Defense Nuclear Facilitiets Safety Board Visit and Site Lead Planning Activities at the Los Alamos National Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HSS Independent Activity Report - HSS Independent Activity Report - Rev. 1 Report Number: HIAR LANL-2012-08-16 Site: Los Alamos National Laboratory (LANL) Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for the Defense Nuclear Facilities Safety Board Visit and Site Lead Planning Activities at the Los Alamos National Laboratory Dates of Activity : 08/14/2012 - 08/16/2012 Report Preparer: Robert Freeman Activity Description/Purpose: The purpose of this Office of Health, Safety and Security (HSS) activity was to maintain site operational awareness of key nuclear safety performance areas of interest to the Defense Nuclear Facilities Safety Board (DNFSB), monitor ongoing site oversight and planning activities for Los Alamos National Laboratory (LANL) nuclear facilities, and identify and initiate

160

Defense Nuclear Facilitiets Safety Board Visit and Site Lead Planning Activities at the Los Alamos National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

HSS Independent Activity Report - HSS Independent Activity Report - Rev. 1 Report Number: HIAR LANL-2012-08-16 Site: Los Alamos National Laboratory (LANL) Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for the Defense Nuclear Facilities Safety Board Visit and Site Lead Planning Activities at the Los Alamos National Laboratory Dates of Activity : 08/14/2012 - 08/16/2012 Report Preparer: Robert Freeman Activity Description/Purpose: The purpose of this Office of Health, Safety and Security (HSS) activity was to maintain site operational awareness of key nuclear safety performance areas of interest to the Defense Nuclear Facilities Safety Board (DNFSB), monitor ongoing site oversight and planning activities for Los Alamos National Laboratory (LANL) nuclear facilities, and identify and initiate

Note: This page contains sample records for the topic "laboratory distributed active" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Protection and Control of Active Distribution Networks and Microgrids.  

E-Print Network (OSTI)

??This thesis is mainly focused on (i) modeling and control of Electronically Coupled Distributed Energy Resources (EC-DERs) under severe network imbalances and transient incidents, and… (more)

Zamani, Mohammad Amin

2012-01-01T23:59:59.000Z

162

The suitability of kinesthetic learning activities for teaching distributed algorithms  

Science Conference Proceedings (OSTI)

Kinesthetic learning is a process in which students learn by actively carrying out physical activities rather than by passively listening to lectures. Pedagogical research indicates that kinesthetic learning is a fundamental, powerful, and ubiquitous ... Keywords: active learning, concurrency, pedagogy, reasoning

Paolo A. G. Sivilotti; Scott M. Pike

2007-03-01T23:59:59.000Z

163

Management of Active Distribution Networks with High Penetration of Distributed Generation.  

E-Print Network (OSTI)

??The penetration of distributed generation and wind power in particular is expected to increase significantly over the coming years, and a huge shift in control,… (more)

Arram, Ahmed

2012-01-01T23:59:59.000Z

164

Los Alamos National Laboratory Environmental Management Activities Funded by the Recovery Act, OAS-RA-11-15  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Los Alamos National Laboratory Los Alamos National Laboratory Environmental Management Activities Funded by the Recovery Act OAS-RA-11-15 August 2011 Department of Energy Washington, DC 20585 August 25, 2011 MEMORANDUM FOR THE MANAGER, LOS ALAMOS SITE OFFICE, NATIONAL NUCLEAR SECURITY ADMINISTRATION FROM: George W. Collard Assistant Inspector General for Audits SUBJECT: INFORMATION: Audit Report on "Los Alamos National Laboratory Environmental Management Activities Funded by the Recovery Act" BACKGROUND In February 2009, the American Recovery and Reinvestment Act of 2009 (Recovery Act) was enacted. The Department of Energy's (Department) National Nuclear Security Administration (NNSA) received approximately $212 million in Recovery Act funds from the Office of

165

SEQUESTRATION OF METALS IN ACTIVE CAP MATERIALS: A LABORATORY AND NUMERICAL EVALUATION  

SciTech Connect

Active capping involves the use of capping materials that react with sediment contaminants to reduce their toxicity or bioavailability. Although several amendments have been proposed for use in active capping systems, little is known about their long-term ability to sequester metals. Recent research has shown that the active amendment apatite has potential application for metals contaminated sediments. The focus of this study was to evaluate the effectiveness of apatite in the sequestration of metal contaminants through the use of short-term laboratory column studies in conjunction with predictive, numerical modeling. A breakthrough column study was conducted using North Carolina apatite as the active amendment. Under saturated conditions, a spike solution containing elemental As, Cd, Co, Se, Pb, Zn, and a non-reactive tracer was injected into the column. A sand column was tested under similar conditions as a control. Effluent water samples were periodically collected from each column for chemical analysis. Relative to the non-reactive tracer, the breakthrough of each metal was substantially delayed by the apatite. Furthermore, breakthrough of each metal was substantially delayed by the apatite compared to the sand column. Finally, a simple 1-D, numerical model was created to qualitatively predict the long-term performance of apatite based on the findings from the column study. The results of the modeling showed that apatite could delay the breakthrough of some metals for hundreds of years under typical groundwater flow velocities.

Dixon, K.; Knox, A.

2012-02-13T23:59:59.000Z

166

New Brunswick Laboratory - Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Reports New Brunswick Laboratory Activity Reports 2012 Operational Awareness Oversight of the New Brunswick Laboratory, July 2012 Activity Reports 2011 Orientation Visit to the New...

167

Merit Review of BER Activities at the DOE Laboratories | U.S...  

Office of Science (SC) Website

Closed Funding Opportunity Announcements (FOAs) Closed Lab Announcements Award Search Peer Review Policy Grants & Contracts Guidance Laboratory Scientific Focus Area...

168

Independent Oversight Review of the Los Alamos National Laboratory Radiological Controls Activity-Level Implementation, November 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Los Alamos National Laboratory Los Alamos National Laboratory Radiological Controls Activity-Level Implementation May 2011 November 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose................................................................................................................................................ 1 2.0 Scope................................................................................................................................................... 1 3.0 Background ......................................................................................................................................... 2 4.0 Methodology ....................................................................................................................................... 3

169

Idaho National Laboratory Cultural Resource Management Office FY 2010 Activity Report  

SciTech Connect

The Idaho National Laboratory (INL) Site is home to vast numbers and a wide variety of important cultural resources representing at least a 13,500 year span of human land use in the region. As a federal agency, the Department of Energy, Idaho Operations Office (DOE-ID) has legal responsibility for the management and protection of the resources and has contracted these responsibilities to Battelle Energy Alliance (BEA). The BEA professional staff is committed to maintaining a cultural resource management program that accepts the challenge of preserving INL cultural resources in a manner reflecting their importance in local, regional, and national history. This report summarizes activities performed by the INL Cultural Resource Management Office (CRMO) staff during fiscal year 2010. This work is diverse, far-reaching and though generally confined to INL cultural resource compliance, also includes a myriad of professional and voluntary community activities. This document is intended to be informative to both internal and external stakeholders and to serve as a planning tool for future INL cultural resource management work.

Hollie K. Gilbert; Clayton F. Marler; Christina L. Olson; Brenda R. Pace; Julie Braun Williams

2011-09-01T23:59:59.000Z

170

Idaho National Laboratory Cultural Resource Management Office FY 2011 Activity Report  

SciTech Connect

The Idaho National Laboratory (INL) Site is home to vast numbers and a wide variety of important cultural resources representing at least a 13,500 year span of human land use in the region. As a federal agency, the Department of Energy, Idaho Operations Office (DOE-ID) has legal responsibility for the management and protection of the resources and has contracted these responsibilities to Battelle Energy Alliance (BEA). The BEA professional staff is committed to maintaining a cultural resource management program that accepts the challenge of preserving INL cultural resources in a manner reflecting their importance in local, regional, and national history. This report is intended as a stand-alone document that summarizes activities performed by the INL Cultural Resource Management Office (CRMO) staff during fiscal year 2011. This work is diverse, far-reaching and though generally confined to INL cultural resource compliance, also includes a myriad of professional and voluntary community activities. This document is intended to be informative to both internal and external stakeholders, serve as a planning tool for future INL cultural resource management work, and meet an agreed upon legal requirement.

Julie Braun Williams; Brenda R. Pace; Hollie K. Gilbert; Christina L. Olson

2012-09-01T23:59:59.000Z

171

Sandia Site Office Assessment of Activity-Levell Work Planning and Control at Sandia National Laboratories/New Mexico  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SNL-2011-02-18 SNL-2011-02-18 Site: Sandia National Laboratories (SNL) Subject: Office of Independent Oversight's Office of Environment, Safety and Health Evaluations Independent Activity Report for the Sandia Site Office Assessment of Activity-Level Work Planning and Control at Sandia National Laboratories /New Mexico (SNL) Dates of Activity : 02/14/2011 - 02/18/2011 Report Preparer: Patricia Williams Activity Description/Purpose: At the request of the Sandia Site Office (SSO), the Office of Environment, Safety and Health Evaluations (HS-64) personnel participated in an SSO assessment of SNL's Activity-Level Work Planning and Control processes, procedures, and implementation by line organizations, including feedback and improvement activities and efforts to sustain the

172

Lessons Learned from V-Tank Waste Remediation Activities at the Idaho National Laboratory  

SciTech Connect

The purpose of this paper is to discuss major activities and lessons learned from remediation of the V-tank waste at Idaho National Laboratory's (INL's) Test Area North (TAN) complex. Remediation activities involved the on-site treatment, solidification and disposal of over 61,000 L (16,000 gal) of radioactively hazardous V-tank waste. In July, 2006, over 98% of the V-tank waste was disposed of at the Idaho CERCLA Disposal Facility (ICDF). Disposal was accomplished using the three 38,000-L (10,000-gal) V-tanks that had stored most of the V-tank waste for over 30 years. Included in V-Tank remediation was the removal of approximately 7,650 m{sup 3} (10,000 yd{sup 3}) of contaminated soil. Plans are to treat the remaining V-tank waste off-site in early 2007, with the treated residual also disposed of at the ICDF. Disposal of the treated V-tank waste at ICDF marked a major step in completing remediation of the TAN V-tanks, a task begun in 1999 when the original Record of Decision (ROD) was published. Over this time, there have been a number of stops and starts associated with remediating this waste. Although many of these stops and starts were unavoidable, there are a number of lessons learned for the V-tank remediation that could help prevent unnecessary expenses and schedule delays in future remediation activities within the Department of Energy (DOE) complex. This paper identifies major and minor lessons learned from V-tank waste remediation efforts - those that resulted in unnecessary delays/expenses, as well as those areas that accelerated V-tank remediation efforts. (authors)

Farnsworth, R.K.; Jessmore, J.J.; Eaton, D.L.; McDannel, G.E.; Sloan, P.A.; Jantz, A.E.; Tyson, D.R. [CH2M-Washington Group Idaho -Idaho Cleanup Project-a, Idaho Falls, ID (United States); Burt, B.T. [E2 Consulting Engineers, Idaho Falls ID (United States)

2007-07-01T23:59:59.000Z

173

Property:EIA/861/ActivityBuyingDistribution | Open Energy Information  

Open Energy Info (EERE)

ActivityBuyingDistribution ActivityBuyingDistribution Jump to: navigation, search This is a property of type Boolean. Description: Activity Buying Distribution Entity buys distribution service (Y or N) [1] References ↑ EIA Form EIA-861 Final Data File for 2008 - F861 File Layout-2008.doc Pages using the property "EIA/861/ActivityBuyingDistribution" Showing 25 pages using this property. (previous 25) (next 25) A Adams-Columbia Electric Coop + true + Aguila Irrigation District + true + Appalachian Power Co + true + B Buckeye Water C&D District + true + C Calpine Power America LLC + true + Cargill Power Markets LLC + true + Carrollton Board of Public Wks + true + City & County of San Francisco (Utility Company) + true + City of Aspen, Colorado (Utility Company) + true +

174

Preliminary siting activities for new waste handling facilities at the Idaho National Engineering Laboratory  

SciTech Connect

The Idaho Waste Processing Facility, the Mixed and Low-Level Waste Treatment Facility, and the Mixed and Low-Level Waste Disposal Facility are new waste treatment, storage, and disposal facilities that have been proposed at the Idaho National Engineering Laboratory (INEL). A prime consideration in planning for such facilities is the selection of a site. Since spring of 1992, waste management personnel at the INEL have been involved in activities directed to this end. These activities have resulted in the (a) identification of generic siting criteria, considered applicable to either treatment or disposal facilities for the purpose of preliminary site evaluations and comparisons, (b) selection of six candidate locations for siting,and (c) site-specific characterization of candidate sites relative to selected siting criteria. This report describes the information gathered in the above three categories for the six candidate sites. However, a single, preferred site has not yet been identified. Such a determination requires an overall, composite ranking of the candidate sites, which accounts for the fact that the sites under consideration have different advantages and disadvantages, that no single site is superior to all the others in all the siting criteria, and that the criteria should be assigned different weighing factors depending on whether a site is to host a treatment or a disposal facility. Stakeholder input should now be solicited to help guide the final selection. This input will include (a) siting issues not already identified in the siting, work to date, and (b) relative importances of the individual siting criteria. Final site selection will not be completed until stakeholder input (from the State of Idaho, regulatory agencies, the public, etc.) in the above areas has been obtained and a strategy has been developed to make a composite ranking of all candidate sites that accounts for all the siting criteria.

Taylor, D.D.; Hoskinson, R.L.; Kingsford, C.O.; Ball, L.W.

1994-09-01T23:59:59.000Z

175

Independent Oversight Targeted Review of Activity-Level Implementation of Radiological Controls at Sandia National Laboratories, November 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Targeted Review of Targeted Review of Activity-Level Implementation of Radiological Controls at Sandia National Laboratories May 2011 November 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose................................................................................................................................................ 1 2.0 Scope................................................................................................................................................... 1 3.0 Background ......................................................................................................................................... 2

176

Trace-Element Distribution In An Active Hydrothermal System, Roosevelt Hot  

Open Energy Info (EERE)

Trace-Element Distribution In An Active Hydrothermal System, Roosevelt Hot Trace-Element Distribution In An Active Hydrothermal System, Roosevelt Hot Springs Thermal Area, Utah Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Trace-Element Distribution In An Active Hydrothermal System, Roosevelt Hot Springs Thermal Area, Utah Details Activities (3) Areas (1) Regions (0) Abstract: Chemical interaction of thermal fluids with reservoir rock in the Roosevelt Hot Springs thermal area, Utah, has resulted in the development of characteristic trace-element dispersion patterns. Multielement analyses of surface rock samples, soil samples and drill cuttings from deep exploration wells provide a three-dimensional perspective of chemical redistribution within this structurally-controlled hot-water geothermal system. Five distinctive elemental suites of chemical enrichment are

177

Summary of well-testing activities at Lawrence Berkeley Laboratory, 1975-1983  

DOE Green Energy (OSTI)

Well test data collected from various geothermal fields by the geothermal group at Lawrence Berkeley Laboratory are presented. The type of well tests conducted, the instrumentation used and the data collected are described. Experience gained through interpretation of the data has helped identify problems in test procedures and interpretative methods.

Bodvarsson, M.G.; Benson, S.M.

1983-08-01T23:59:59.000Z

178

Distributed Wind Case Study: Cross Island Farms, Wellesley Island, New York (Fact Sheet), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Distributed Wind Case Study: Cross Island Farms, Wellesley Island, New York Distributed Wind Case Study: Cross Island Farms, Wellesley Island, New York www.nrel.gov Baker and Belding installed a 10-kW Bergey Excel wind turbine in August 2011. Photo from Cross Island Farms, NREL/PIX 19923 Funding Summary * Total cost of wind turbine, including first developer: $82,000 * Total cost of wind turbine, excluding first developer: $73,000 * Total cost of solar: $40,000 * Propane generator: $8,000; including equipment, installation, and propane: $13,000 * USDA REAP grant: $20,506 (~25% of

179

A report on FY06 IPv6 deployment activities and issues at Sandia National Laboratories.  

SciTech Connect

Internet Protocol version 4 (IPv4) has been a mainstay of the both the Internet and corporate networks for delivering network packets to the desired destination. However, rapid proliferation of network appliances, evolution of corporate networks, and the expanding Internet has begun to stress the limitations of the protocol. Internet Protocol version 6 (IPv6) is the replacement protocol that overcomes the constraints of IPv4. IPv6 deployment in government network backbones has been mandated to occur by 2008. This paper explores the readiness of the Sandia National Laboratories' network backbone to support IPv6, the issues that must be addressed before a deployment begins, and recommends the next steps to take to comply with government mandates. The paper describes a joint, work effort of the Sandia National Laboratories ASC WAN project team and members of the System Analysis & Trouble Resolution and Network System Design & Implementation Departments.

Tolendino, Lawrence F.; Eldridge, John M.; Hu, Tan Chang

2006-06-01T23:59:59.000Z

180

Radiological survey support activities for the decommissioning of the Ames Laboratory Research Reactor Facility, Ames, Iowa  

SciTech Connect

At the request of the Engineering Support Division of the US Department of Energy-Chicago Operations Office and in accordance with the programmatic overview/certification responsibilities of the Department of Energy Environmental and Safety Engineering Division, the Argonne National Laboratory Radiological Survey Group conducted a series of radiological measurements and tests at the Ames Laboratory Research Reactor located in Ames, Iowa. These measurements and tests were conducted during 1980 and 1981 while the reactor building was being decontaminated and decommissioned for the purpose of returning the building to general use. The results of these evaluations are included in this report. Although the surface contamination within the reactor building could presumably be reduced to negligible levels, the potential for airborne contamination from tritiated water vapor remains. This vapor emmanates from contamination within the concrete of the building and should be monitored until such time as it is reduced to background levels. 2 references, 8 figures, 6 tables.

Wynveen, R.A.; Smith, W.H.; Sholeen, C.M.; Justus, A.L.; Flynn, K.F.

1984-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "laboratory distributed active" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Summary of FY-11 Krypton Capture Activities at the Idaho National Laboratory  

SciTech Connect

This report contains a description of FY-11 Krypton capture activities utilizing physisorption techniques performed at the INL.

Mitchell R. Greenhalgh; Troy G. Garn; Kristi M. Christensen; Veronica J. Rutledge; Jack D. Law

2011-08-01T23:59:59.000Z

182

Draft Strategic Laboratory Missions Plan. Volume II  

SciTech Connect

This volume described in detail the Department`s research and technology development activities and their funding at the Department`s laboratories. It includes 166 Mission Activity Profiles, organized by major mission area, with each representing a discrete budget function called a Budget and Reporting (B & R) Code. The activities profiled here encompass the total research and technology development funding of the laboratories from the Department. Each profile includes a description of the activity and shows how the funding for that activity is distributed among the DOE laboratories as well as universities and industry. The profiles also indicate the principal laboratories for each activity, as well as which other laboratories are involved. The information in this volume is at the core of the Strategic Laboratory Mission Plan. It enables a reader to follow funds from the Department`s appropriation to a specific activity description and to specific R & D performing institutions. This information will enable the Department, along with the Laboratory Operations Board and Congress, to review the distribution of R & D performers chosen to execute the Department`s missions.

1996-03-01T23:59:59.000Z

183

Developing the Next Generation of International Safeguards and Nonproliferation Experts: Highlights of Select Activities at the National Laboratories  

Science Conference Proceedings (OSTI)

With many safeguards experts in the United States at or near retirement age, and with the growing and evolving mission of international safeguards, attracting and educating a new generation of safeguards experts is an important element of maintaining a credible and capable international safeguards system. The United States National Laboratories, with their rich experience in addressing the technical and policy challenges of international safeguards, are an important resource for attracting, educating, and training future safeguards experts. This presentation highlights some of the safeguards education and professional development activities underway at the National Laboratories. These include university outreach, summer courses, internships, mid-career transition, knowledge retention, and other projects. The presentation concludes with thoughts on the challenge of interdisciplinary education and the recruitment of individuals with the right balance of skills and backgrounds are recruited to meet tomorrow's needs.

Reed, J; Mathews, C; Kirk, B; Lynch, P; Doyle, J; Meek, E; Pepper, S; Metcalf, R

2010-03-31T23:59:59.000Z

184

Recent wind resource characterization activities at the National Renewable Energy Laboratory  

DOE Green Energy (OSTI)

The wind resource characterization team at the National Renewable Energy Laboratory (NREL) is working to improve the characterization of the wind resource in many key regions of the world. Tasks undertaken in the past year include: updates to the comprehensive meteorological and geographic data bases used in resource assessments in the US and abroad; development and validation of an automated wind resource mapping procedure; support in producing wind forecasting tools useful to utilities involved in wind energy generation; continued support for recently established wind measurement and assessment programs in the US.

Elliott, D.L.; Schwartz, M.N.

1997-07-01T23:59:59.000Z

185

The Use of Chemical and Physical Properties for Characterization of Strontium Distribution Coefficients at the Idaho National Engineering and Environmental Laboratory, Idaho  

Science Conference Proceedings (OSTI)

The U.S. Geological Survey and Idaho State University, in cooperation with the U.S. Department of Energy, conducted a study to determine strontium distribution coefficients (Kds) of surficial sediments at the Idaho National Engineering and Environmental Laboratory (INEEL). Batch experimental techniques were used to determine experimental Kds of 20 surficial-sediment samples from the INEEL. The Kds describe the distribution of a solute between the solution and solid phase. A best-fit model was obtained using a four-variable data set consisting of surface area, manganese oxide concentration, specific conductance, and pH. Application of the model to an independent split of the data resulted in an average relative error of prediction of 20 percent and a correlation coefficient of 0.921 between predicted and observed strontium Kds. Chemical and physical characteristics of the solution and sediment that could successfully predict the Kd values were identified. Prediction variable select ion was limited to variables which are either easily determined or have available tabulated characteristics. The selection criterion could circumvent the need for time- and labor-intensive laboratory experiments and provide an alternate faster method for estimating strontium Kds.

J. J. Rosentreter; R. Nieves; J. Kalivas; J. P. Rousseau; R. C. Bartholomay

1999-06-01T23:59:59.000Z

186

A report on IPv6 deployment activities and issues at Sandia National Laboratories:FY2007.  

Science Conference Proceedings (OSTI)

Internet Protocol version 4 (IPv4) has been a mainstay of the both the Internet and corporate networks for delivering network packets to the desired destination. However, rapid proliferation of network appliances, evolution of corporate networks, and the expanding Internet has begun to stress the limitations of the protocol. Internet Protocol version 6 (IPv6) is the replacement protocol that overcomes the constraints of IPv4. As the emerging Internet network protocol, SNL needs to prepare for its eventual deployment in international, national, customer, and local networks. Additionally, the United States Office of Management and Budget has mandated that IPv6 deployment in government network backbones occurs by 2008. This paper explores the readiness of the Sandia National Laboratories network backbone to support IPv6, the issues that must be addressed before a deployment begins, and recommends the next steps to take to comply with government mandates. The paper describes a joint work effort of the Sandia National Laboratories ASC WAN project team and members of the System Analysis & Trouble Resolution, the Communication & Network Systems, and Network System Design & Implementation Departments.

Tolendino, Lawrence F.; Eldridge, John M.; Hu, Tan Chang; Maestas, Joseph H.

2007-06-01T23:59:59.000Z

187

Distribution:  

Office of Legacy Management (LM)

JAN26 19% JAN26 19% Distribution: OR00 Attn: h.H.M.Roth DFMusser ITMM MMMann INS JCRyan FIw(2) Hsixele SRGustavson, Document rocm Formal file i+a@mmm bav@ ~@esiaw*cp Suppl. file 'Br & Div rf's s/health (lic.only) UNITED STATES ATOMIC ENERGY COMMISSION SPECIAL NUCLEAB MATERIAL LICENSE pursuant to the Atomic Energy Act of 1954 and Title 10, Code of Federal Regulations, Chapter 1, P&t 70, "Special Nuclear Material Reg)llatiqm," a license is hereby issued a$hortztng the licensee to rekeive and possess the special nuclear material designated below; to use such special nuclear mat&ial for the purpose(s) and at the place(s) designated below; and to transfer such material to per&s authorized to receive it in accordance with the regula,tions in said Part.

188

Ground-water characterization field activities for 1995--1996 Laboratory for Energy-Related Health Research, University of California, Davis  

SciTech Connect

This report documents ground-water characterization field activities completed from August to December 1995 and in January 1996 at the Laboratory for Energy-Related Health Research (LEHR) in Davis, California. The ground water at LEHR is one of several operable units under investigation by Pacific Northwest National Laboratory for the US Department of Energy. The purpose of this work was to further characterize the hydrogeology beneath the LEHR site, with the primary focus on ground water. The objectives were to estimate hydraulic properties for the two uppermost saturated hydrogeologic units (i.e., HSU-1 and HSU-2), and to determine distributions of contaminants of concern in these units. Activities undertaken to accomplish these objectives include well installation, geophysical logging, well development, ground-water sampling, slug testing, Westbay ground-water monitoring system installation, continuous water-level monitoring, Hydropunch installation, and surveying. Ground-water samples were collected from 61 Hydropunch locations. Analytical results from these locations and the wells indicate high chloroform concentrations trending from west/southwest to east/northeast in the lower portion of HSU-1 and in the upper and middle portions of HSU-2. The chloroform appears to originate near Landfill 2. Tritium was not found above the MCL in any of the well or Hydropunch samples. Hexavalent chromium was found at four locations with concentrations above the MCL in HSU-1 and at one location in HSU-2. One well in HSU-1 had a total chromium concentration above the MCL. Nitrate-nitrogen above the MCL was found at several Hydropunch locations in both HSU-1 and HSU-2.

Liikala, T.L.; Lanigan, D.C.; Last, G.V. [and others

1996-05-01T23:59:59.000Z

189

Environmental Survey preliminary report, Department of Energy (DOE) activities at Santa Susana Field Laboratories, Ventura County, California  

Science Conference Proceedings (OSTI)

This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) activities at the Santa Susana Field Laboratories Site (DOE/SSFL), conducted May 16 through 26, 1988. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual participants for the Survey team are being supplied by an private contractor. The objective of the survey is to identify environmental problems and areas of environmental risk associated with DOE activities at SSFL. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations performed at SSFL, and interviews with site personnel. 90 refs., 17 figs., 28 tabs.

Not Available

1989-02-01T23:59:59.000Z

190

Data base management activities for the Remedial Action Program at Oak Ridge National Laboratories (ORNL)  

Science Conference Proceedings (OSTI)

The Oak Ridge National Laboratory (ORNL) Remedial Action Program (RAP) was established in 1985 in response to state and federal regulations requiring comprehensive control over facility discharges and cleanup of contaminated sites. A computerized Data and Information Management System (DIMS) was developed for RAP to (1) provide a centralized repository for data pertinent to RAP and (2) provide support for the investigations and assessments leading to the long-term remediation of contaminated facilities and sites. The current status of DIMS and its role in supporting RAP during 1989 are described. The DIMS consists of three components: (1) the Numeric Data Base, (2) the Bibliographic Data Base, and (3) the Records Control Data Base. This report addresses all three data bases, but focuses on the contents of the Numeric Data Base. Significant progress was made last year with the geographic information system (GIS) and ARC/INFO, which can be interfaced with SAS/GRAPH to provide combined mapping and statistical graphic products. Several thematic layers of GIS data for the Oak Ridge Reservation are now available. 18 refs., 8 figs., 19 tabs.

Hook, L.A.; Voorhees, L.D.; Gentry, M.J.; Faulkner, M.A.; Shaakir-Ali, J.A.; Newman, K.A.; McCord, R.A.; Goins, L.F.; Owen, P.T.

1990-07-01T23:59:59.000Z

191

Stanford Synchrotron Radiation Laboratory 1991 activity report. Facility developments January 1991--March 1992  

SciTech Connect

SSRL is a national facility supported primarily by the Department of Energy for the utilization of synchrotron radiation for basic and applied research in the natural sciences and engineering. It is a user-oriented facility which welcomes proposals for experiments from all researchers. The synchrotron radiation is produced by the 3.5 GeV storage ring, SPEAR, located at the Stanford Linear Accelerator Center (SLAC). SPEAR is a fully dedicated synchrotron radiation facility which operates for user experiments 7 to 9 months per year. SSRL currently has 24 experimental stations on the SPEAR storage ring. There are 145 active proposals for experimental work from 81 institutions involving approximately 500 scientists. There is normally no charge for use of beam time by experimenters. This report summarizes the activity at SSRL for the period January 1, 1991 to December 31, 1991 for research. Facility development through March 1992 is included.

Cantwell, K.; St. Pierre, M. [eds.

1992-12-31T23:59:59.000Z

192

Can a Long Nanoflare Storm Explain the Observed Emission Measure Distributions in Active Region Cores?  

E-Print Network (OSTI)

All theories that attempt to explain the heating of the high temperature plasma observed in the solar corona are based on short bursts of energy. The intensities and velocities measured in the cores of quiescent active regions, however, can be steady over many hours of observation. One heating scenario that has been proposed to reconcile such observations with impulsive heating models is the "long nanoflare storm," where short duration heating events occur infrequently on many sub-resolutions strands; the emission of the strands is then averaged together to explain the observed steady structures. In this Letter, we examine the emission measure distribution predicted for such a long nanoflare storm by modeling an arcade of strands in an active region core. Comparisons of the computed emission measure distributions with recent observations indicate that that the long nanoflare storm scenario implies greater than 5 times more 1 MK emission than is actually observed for all plausible combinations of loop lengths,...

Mulu-Moore, Fana M; Warren, Harry P

2012-01-01T23:59:59.000Z

193

National Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratories Los Alamos National Laboratory (the Laboratory) is one of 17 National Laboratories in the United States and is one of the two located in New Mexico. The Laboratory has...

194

Calibration of the Lawrence Livermore National Laboratory Passive-Active Neutron Drum Shuffler for Measurement of Highly Enriched Uranium Oxide  

SciTech Connect

In partial response to a Department of Energy (DOE) request to evaluate the state of measurements of special nuclear material, Lawrence Livermore National Laboratory (LLNL) evaluated and classified all highly enriched uranium (HEU) oxide items in its inventory. Because of a lack of traceable HEU standards, no items were deemed to fit the category of well measured. A subsequent DOE-HQ sponsored survey by New Brunswick Laboratory resulted in their preparation of certified reference material (CRM) 149 [Uranium (93% Enriched) Oxide-U{sub 3}O{sub 8} Standard for Neutron Counting Measurements], a unit of which was delivered to LLNL in October of 1999. This paper describes the approach to calibration of the LLNL passive-active neutron drum (PAN) shuffler for measurement of poorly measured/unmeasured HEU oxide inventory. Included are discussions of (1) the calibration effort, including the development of the mass calibration curve; (2) the results from an axial and radial mapping of the detector response over a wide region of the PAN shuffler counting chamber, and (3) an error model for the total (systematic + random) uncertainty in the predicted mass that includes the uncertainties in calibration and sample position.

Mount, M.; Glosup, J.; Cochran, C.; Dearborn, D.; Endres, E.

2000-06-16T23:59:59.000Z

195

Oak Ridge National Laboratory Institutional Plan, FY 1997--FY 2002  

SciTech Connect

Three major initiatives are described, which are proposed to strengthen ORNL`s ability to support the missions of the Department: neutron science, functional genomics, and distributed computing at teraflop speeds. The laboratory missions, strategic plan, scientific and technical programs, enterprise activities, laboratory operations, and resource projections are also described.

NONE

1996-10-01T23:59:59.000Z

196

Historical Photographs: Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Brookhaven National Laboratory 1. Positron emitter detector (circa 1962) used to detect brain tumors at Brookhaven National Laboratory (252Kbytes) 2. Medical activities at...

197

FY 1994 annual summary report of the surveillance and maintenance activities for the Oak Ridge National Laboratory Environmental Restoration Program  

Science Conference Proceedings (OSTI)

The Oak Ridge National Laboratory (ORNL) Environmental Restoration (ER) Surveillance and Maintenance (S and M) Program was initiated to manage former waste management and environmental research sites contaminated with radioactive materials and/or hazardous chemicals. The S and M Program is responsible for managing designated sites/facilities from the end of their operating lives until final disposition or site stabilization. To effectively manage and perform the various S and M Program responsibilities, five summary-level work breakdown structure (WBS) elements have been established: S and M Preliminary Investigations, Special Projects, Routine S and M, Inactive Groundwater Wells, and Project Management. Routine S and M activities were conducted as scheduled throughout fiscal years (FY) 1994 at applicable inactive waste management (WM) and other contaminated areas. Overall, the ER S and M Program maintains 47 facilities, performs vegetation maintenance on approximately 230 acres, maintains 54 inactive tanks, and provides overall site management on over 700 acres. In addition to the routine S and M activities, detailed site inspections were conducted at established frequencies on appropriate sites in the ER S and M Program. This document provides a summary of the FY 1994 ORNL ER S and M Program accomplishments.

Not Available

1994-11-01T23:59:59.000Z

198

Instantaneous Active and Nonactive Power Control of Distributed Energy Resources with Current Limiter  

SciTech Connect

Abstract -- Distributed energy resources (DER) with a power electronics inverter interface can provide both active power and nonactive power simultaneously and independently. A decoupled control algorithm of active power and nonactive power is developed based on the instantaneous active power and nonactive power theory. A current limiter is combined to the control algorithm, and it ensures that the inverter is not overloaded. During the normal system operation, the active power has higher priority over the nonactive power so that the energy from a DER can be fully transferred to the grid. Within the inverter s capability, nonactive power is provided to the grid as required. With this control algorithm, the inverter s capabilities are taken full advantage at all times, both in terms of functionality as well as making use of its full KVA rating. Through the algorithm, the inverter s active power and nonactive power are controlled directly, simultaneously, and independently. Several experimental results fully demonstrate the validity and effectiveness of this new control algorithm. As evidenced by the fast dynamic response that results, a DER system with the control algorithm can provide full services to the grid in both steady state and during transient events.

Xu, Yan [ORNL; Li, Huijuan [ORNL; Rizy, D Tom [ORNL; Li, Fangxing [ORNL; Kueck, John D [ORNL

2010-01-01T23:59:59.000Z

199

CAN A LONG NANOFLARE STORM EXPLAIN THE OBSERVED EMISSION MEASURE DISTRIBUTIONS IN ACTIVE REGION CORES?  

Science Conference Proceedings (OSTI)

All theories that attempt to explain the heating of the high-temperature plasma observed in the solar corona are based on short bursts of energy. The intensities and velocities measured in the cores of quiescent active regions, however, can be steady over many hours of observation. One heating scenario that has been proposed to reconcile such observations with impulsive heating models is the 'long nanoflare storm', where short-duration heating events occur infrequently on many sub-resolution strands; the emission of the strands is then averaged together to explain the observed steady structures. In this Letter, we examine the emission measure distribution predicted for such a long nanoflare storm by modeling an arcade of strands in an active region core. Comparisons of the computed emission measure distributions with recent observations indicate that the long nanoflare storm scenario implies greater than five times more 1 MK emission than is actually observed for all plausible combinations of loop lengths, heating rates, and abundances. We conjecture that if the plasma had 'super coronal' abundances, the model may be able to match the observations at low temperatures.

Mulu-Moore, Fana M.; Winebarger, Amy R. [NASA Marshall Space Flight Center, VP 62, Huntsville, AL 35812 (United States); Warren, Harry P., E-mail: fanamariam.mulumoore@nasa.gov [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States)

2011-11-20T23:59:59.000Z

200

Sandia National Laboratories - Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Reports Sandia National Laboratories Review Reports 2013 Review of the Sandia Site Office Quality Assurance Assessment of the Manzano Nuclear Operations, January 2013 Activity...

Note: This page contains sample records for the topic "laboratory distributed active" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Lawrence Livermore National Laboratory - Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Review Reports 2013 Independent Oversight Review of the Fire Protection Program at Lawrence Livermore National Laboratory, September 2013 Independent Oversight Review of Preparedness for Severe Natural Phenomena Events at the Lawrence Livermore National Laboratory, July 2013 Activity Reports 2013 Lawrence Livermore National Laboratory Operational Drill at the B332 Plutonium Facility, February 2013 Activity Reports 2012 Lawrence Livermore National Laboratory Site Lead Planning Activities, October 2012 Review Reports 2011 Review of Integrated Safety Management System Effectiveness at the Livermore Site Office, October 2011 Review of Integrated Safety Management System Effectiveness at Lawrence Livermore National Laboratory, September 2011

202

Argonne National Laboratory High Energy Physics Division semiannual report of research activities, January 1, 1989--June 30, 1989  

Science Conference Proceedings (OSTI)

This paper discuss the following areas on High Energy Physics at Argonne National Laboratory: experimental program; theory program; experimental facilities research; accelerator research and development; and SSC detector research and development.

Not Available

1989-01-01T23:59:59.000Z

203

Argonne National Laboratory, High Energy Physics Division, semiannual report of research activities, July 1, 1989--December 31, 1989  

Science Conference Proceedings (OSTI)

This report discusses research being conducted at the Argonne National Laboratory in the following areas: Experimental High Energy Physics; Theoretical High Energy Physics; Experimental Facilities Research; Accelerator Research and Development; and SSC Detector Research and Development.

Not Available

1989-01-01T23:59:59.000Z

204

Argonne National Laboratory - Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Reports Reports Argonne National Laboratory Activity Reports 2012 Operational Awareness Oversight of the Argonne National Laboratory Alpha-Gamma Hot Cell Facility, July 2012 Review Reports 2011 Review of the Argonne National Laboratory Alpha-Gamma Hot Cell Facility Readiness Assessment (Implementation Verification Review Sections), November 2011 Nuclear Safety Enforcement Regulatory Assistance Review of UChicago Argonne, LLC at the Argonne National Laboratory, October 3, 2011 Activity Reports 2011 Orientation Visit to the Argonne National Laboratory, August 2011 Review Reports 2005 Independent Oversight Inspection of Environment, Safety and Health Programs at Argonne National Laboratory, Summary Report, Vol. 1, May, 2005 Independent Oversight Inspection of Environment, Safety, and Health Programs at the Argonne National Laboratory, Technical Appendices, Volume II, May 2005

205

DECODING SPECTRAL ENERGY DISTRIBUTIONS OF DUST-OBSCURED STARBURST-ACTIVE GALACTIC NUCLEUS  

SciTech Connect

We present BayeSED, a general purpose tool for Bayesian analysis of spectral energy distributions (SEDs) using pre-existing model SED libraries or their linear combinations. The artificial neural networks, principal component analysis, and multimodal-nested sampling (MultiNest) techniques are employed to allow the highly efficient sampling of posterior distribution and the calculation of Bayesian evidence. As a demonstration, we apply this tool to a sample of hyperluminous infrared galaxies (HLIRGs). The Bayesian evidence obtained for a pure starburst, a pure active galactic nucleus (AGN), and a linear combination of starburst+AGN models show that the starburst+AGN model has the highest evidence for all galaxies in this sample. The Bayesian evidence for the three models and the estimated contributions of starbursts and AGNs to infrared luminosity show that HLIRGs can be classified into two groups: one dominated by starbursts and the other dominated by AGNs. Other parameters and corresponding uncertainties about starbursts and AGNs are also estimated using the model with the highest Bayesian evidence. We find that the starburst region of the HLIRGs dominated by starbursts tends to be more compact and has a higher fraction of OB stars than that of HLIRGs dominated by AGNs. Meanwhile, the AGN torus of the HLIRGs dominated by AGNs tends to be more dusty than that of HLIRGs dominated by starbursts. These results are consistent with previous researches, but need to be tested further with larger samples. Overall, we believe that BayeSED could be a reliable and efficient tool for exploring the nature of complex systems such as dust-obscured starburst-AGN composite systems by decoding their SEDs.

Han Yunkun; Han Zhanwen, E-mail: hanyk@ynao.ac.cn [National Astronomical Observatories/Yunnan Observatory, Chinese Academy of Sciences, Beijing 100012 (China)

2012-04-20T23:59:59.000Z

206

Laboratory Reagents  

SciTech Connect

Replaced by WMH-310, Section 4.17. This document outlined the basic methodology for preparing laboratory reagents used in the 222-S Standards Laboratory. Included were general guidelines for drying, weighing, transferring, dissolving, and diluting techniques common when preparing laboratory reagents and standards. Appendix A contained some of the reagents prepared by the laboratory.

CARLSON, D.D.

1999-10-08T23:59:59.000Z

207

Distribution Category:  

Office of Legacy Management (LM)

- - Distribution Category: Remedial Action and Decommissioning Program (UC-70A) DOE/EV-0005/48 ANL-OHS/HP-84-104 ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue Argonne, Illinois 60439 FORMERLY UTILIZED MXD/AEC SITES REMEDIAL ACTION PROGRAM RADIOLOGICAL SURVEY OF THE HARSHAW CHEMICAL COMPANY CLEVELAND. OHIO Prepared by R. A. Wynveen Associate Division Director, OHS W. H. Smith Senior Health Physicist C. M. Sholeen Health Physicist A. L. Justus Health Physicist K. F. Flynn Health Physicist Radiological Survey Group Health Physics Section Occupational Health and Safety Division April 1984 Work Performed under Budget Activity DOE KN-03-60-40 and ANL 73706 iii PREFACE AND EXECUTIVE SUMMARY This is one in a series of reports resulting from a program initiated

208

Mobile Energy Laboratory Procedures  

SciTech Connect

Pacific Northwest Laboratory (PNL) has been tasked to plan and implement a framework for measuring and analyzing the efficiency of on-site energy conversion, distribution, and end-use application on federal facilities as part of its overall technical support to the US Department of Energy (DOE) Federal Energy Management Program (FEMP). The Mobile Energy Laboratory (MEL) Procedures establish guidelines for specific activities performed by PNL staff. PNL provided sophisticated energy monitoring, auditing, and analysis equipment for on-site evaluation of energy use efficiency. Specially trained engineers and technicians were provided to conduct tests in a safe and efficient manner with the assistance of host facility staff and contractors. Reports were produced to describe test procedures, results, and suggested courses of action. These reports may be used to justify changes in operating procedures, maintenance efforts, system designs, or energy-using equipment. The MEL capabilities can subsequently be used to assess the results of energy conservation projects. These procedures recognize the need for centralized NM administration, test procedure development, operator training, and technical oversight. This need is evidenced by increasing requests fbr MEL use and the economies available by having trained, full-time MEL operators and near continuous MEL operation. DOE will assign new equipment and upgrade existing equipment as new capabilities are developed. The equipment and trained technicians will be made available to federal agencies that provide funding for the direct costs associated with MEL use.

Armstrong, P.R.; Batishko, C.R.; Dittmer, A.L.; Hadley, D.L.; Stoops, J.L.

1993-09-01T23:59:59.000Z

209

High-Temperature Superconducting Magnets for NMR and MRI: R&D Activities at the MIT Francis Bitter Magnet Laboratory  

E-Print Network (OSTI)

This paper describes the NMR/MRI magnets that are currently being developed at the MIT Francis Bitter Magnet Laboratory: 1) a 1.3 GHz NMR magnet; 2) a compact NMR magnet assembled from YBCO annuli; and 3) a persistent-mode, ...

Iwasa, Yukikazu

210

Final Environmental Assessment for the Proposed Consolidation of Certain Dynamic Experimentation Activities at the Two-Mile Mesa Complex Los Alamos National Laboratory, Los Alamos, New Mexico  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

47 47 Final Environmental Assessment for the Proposed Consolidation of Certain Dynamic Experimentation Activities at the Two-Mile Mesa Complex Los Alamos National Laboratory, Los Alamos, New Mexico November 3, 2003 Department of Energy National Nuclear Security Administration Los Alamos Site Office Environmental Assessment for the Proposed DX Division Strategic Facility Plan at LANL DOE LASO November 3, 2003 iii Contents Acronyms and Terms................................................................................................................................vii Executive Summary ...................................................................................................................................xi 1.0 Purpose and Need

211

NGSI student activities in open source information analysis in support of the training program of the U.S. DOE laboratories for the entry into force of the additional protocol  

Science Conference Proceedings (OSTI)

In 2008 a joint team from Los Alamos National Laboratory (LANL) and Brookhaven National Laboratory (BNL) consisting of specialists in training of IAEA inspectors in the use of complementary access activities formulated a training program to prepare the U.S. Doe laboratories for the entry into force of the Additional Protocol. As a major part of the support of the activity, LANL summer interns provided open source information analysis to the LANL-BNL mock inspection team. They were a part of the Next Generation Safeguards Initiative's (NGSI) summer intern program aimed at producing the next generation of safeguards specialists. This paper describes how they used open source information to 'backstop' the LANL-BNL team's effort to construct meaningful Additional Protocol Complementary Access training scenarios for each of the three DOE laboratories, Lawrence Livermore National Laboratory, Idaho National Laboratory, and Oak Ridge National Laboratory.

Sandoval, M Analisa [Los Alamos National Laboratory; Uribe, Eva C [Los Alamos National Laboratory; Sandoval, Marisa N [Los Alamos National Laboratory; Boyer, Brian D [Los Alamos National Laboratory; Stevens, Rebecca S [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

212

3D Temperature distribution and numerical modeling of heat transfers in an active fault zone: Eugene Island 330, Offshore Louisiana.  

E-Print Network (OSTI)

temperature distributions by using some of the most commonly recorded data in modern oil field exploration sensitive to the movement of strong seismic events such as oil/water and gas/oil contacts on the scale for the dynamics of active oil fields. Here, Plio- Pleistocene sandstone reservoirs are supplied with mature

Guerin, Gilles

213

An active islanding detection method for small-scale distributed generators  

Science Conference Proceedings (OSTI)

This paper proposes a new islanding detection method for use in a small-scale, grid-interconnected distributed generator system. The proposed islanding detection method is based on voltage fluctuation injection, which can be obtained through high-impedance ... Keywords: correlation factor, distributed generator, islanding detection, voltage fluctuation injection

Wen-Yeau Chang

2008-06-01T23:59:59.000Z

214

Laboratory Testing of Bulk Vitrified Low-Activity Waste Forms to Support the 2005 Integrated Disposal Facility Performance Assessment  

Science Conference Proceedings (OSTI)

The purpose of this report is to document the results from laboratory testing of the bulk vitri-fied (BV) waste form that was conducted in support of the 2005 integrated disposal facility (IDF) performance assessment (PA). Laboratory testing provides a majority of the key input data re-quired to assess the long-term performance of the BV waste package with the STORM code. Test data from three principal methods, as described by McGrail et al. (2000a; 2003a), are dis-cussed in this testing report including the single-pass flow-through test (SPFT) and product con-sistency test (PCT). Each of these test methods focuses on different aspects of the glass corrosion process. See McGrail et al. (2000a; 2003a) for additional details regarding these test methods and their use in evaluating long-term glass performance. In addition to evaluating the long-term glass performance, this report discusses the results and methods used to provided a recommended best estimate of the soluble fraction of 99Tc that can be leached from the engineer-ing-scale BV waste package. These laboratory tests are part of a continuum of testing that is aimed at improving the performance of the BV waste package.

Pierce, Eric M.; McGrail, B. Peter; Bagaasen, Larry M.; Rodriguez, Elsa A.; Wellman, Dawn M.; Geiszler, Keith N.; Baum, Steven R.; Reed, Lunde R.; Crum, Jarrod V.; Schaef, Herbert T.

2006-06-30T23:59:59.000Z

215

Independent Oversight Activity Report for Follow-up on the Progress and Issues in the Implementation of the Los Alamos National Laboratory Worker Exposurre Assessment Process, November 26, 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report Number: HIAR LANL-2013-11-26 Site: Los Alamos National Laboratory Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Follow-up on the Progress and Issues in the Implementation of the Los Alamos National Laboratory Worker Exposure Assessment Process Dates of Activity : 11/26/2013 Report Preparer: James Lockridge, Certified Industrial Hygienist Activity Description/Purpose: This activity reviewed progress and issues in the development and implementation of the Los Alamos National Laboratory (LANL) industrial hygiene (IH) worker exposure assessment program. LANL Worker Exposure Program: 10 Code of Federal Regulation (CFR) 851 requires LANL to assess worker

216

Evidence for departure from a power-law flare size distribution for a small solar active region  

E-Print Network (OSTI)

Active region 11029 was a small, highly flare-productive solar active region observed at a time of extremely low solar activity. The region produced only small flares: the largest of the $>70$ Geostationary Observational Environmental Satellite (GOES) events for the region has a peak 1--$8{\\AA}$ flux of $2.2\\times 10^{-6} {\\rm W} {\\rm m}^{-2}$ (GOES C2.2). The background-subtracted GOES peak-flux distribution suggests departure from power-law behavior above $10^{-6} {\\rm W} {\\rm m}^{-2}$, and a Bayesian model comparison strongly favors a power-law plus rollover model for the distribution over a simple power-law model. The departure from the power law is attributed to this small active region having a finite amount of energy. The rate of flaring in the region varies with time, becoming very high for two days coinciding with the onset of an increase in complexity of the photospheric magnetic field. The observed waiting-time distribution for events is consistent with a piecewise-constant Poisson model. These res...

Wheatland, M S

2010-01-01T23:59:59.000Z

217

Argonne National Laboratory's Accelerator Experimental Infrastructure  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerator Experimental Infrastructure Argonne National Laboratory is somewhat unique among the Office of Science National Laboratories in that it possesses active accelerator...

218

The Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

existing programs in climate change science and infrastructure. The Laboratory has a 15- year history in climate change science. The Climate, Ocean and Sea Ice Modeling (COSIM)...

219

1Oak Ridge National Laboratory Science & Technology Highlights  

E-Print Network (OSTI)

, distributed energy resource interfaces, flexible ac transmission systems, and high-voltage dc systems. Already- tion into energy-related careers. Activities include an annual student meeting in Washington, D.C1Oak Ridge National Laboratory Science & Technology Highlights Published by ORNL's Energy

220

Performance Analysis of Positive-feedback-based Active Anti-islanding Schemes for Inverter-Based Distributed Generators  

SciTech Connect

Recently proposed positive-feedback-based anti-islanding schemes (AI) are highly effective in preventing islanding without causing any degradation in power quality. This paper aims to analyze the performance of these schemes quantitatively in the context of the dynamic models of inverter-based distributed generators (DG). In this study, the characteristics of these active anti-islanding methods are discussed and design guidelines are derived.

Du, Pengwei; Aponte, Erick E.; Nelson, J. Keith

2010-06-14T23:59:59.000Z

Note: This page contains sample records for the topic "laboratory distributed active" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Epoxy Based Nanodielectric with Homogeneously Distributed ...  

Electricity Transmission Advanced Materials Epoxy Based Nanodielectric with Homogeneously Distributed Nanoparticles Oak Ridge National Laboratory. Contact ...

222

Potential for Distributed and Central Electrolysis to Provide Grid Support Services (Fact Sheet), Hydrogen and Fuel Cell Technical Highlights (HFCTH), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

658 * July 2012 658 * July 2012 Potential for Distributed and Central Electrolysis to Provide Grid Support Services Project: Renewable Electrolysis Integrated System Development and Testing NREL Team: Kevin Harrison, Marc Mann, Danny Terlip, and Mike Peters Accomplishment: NREL operated both commercially available low-temperature electrolyzer technologies (PEM and alkaline) to evaluate their response to commands to increase and decrease stack power that shorten frequency disturbances on an alternating current (AC) mini-grid (Figure 1). Results show that both the PEM and alkaline electrolyzers are capable of adding or removing stack power to provide sub-second response that reduced the duration of frequency disturbances. Context: Management of distributed power systems is expected to become more commonplace as grids and devices

223

Electricity Transmission and Distribution Technologies ...  

Electricity Transmission and Distribution Technologies Available for Licensing U.S. Department of Energy (DOE) laboratories and participating research ...

224

Special Distribution  

Office of Legacy Management (LM)

Special Distribution Special Distribution Issued: December 1977 ',, Radiological Survey and Decontamination of the Former Main Technical Area (TA-1) at Los Alamos, New Mexico Compiled by A. John Ahlquist Alan K. Stoker Linda K. Trocki c laboratory of, the University of California LOS ALAMOS, NEW MEXICO 87545 An Alfirmdve Action/Equal Opportunity Employer ..-_- .-- .--.-. c T -,--... _ _._-r..l __,.. - .-,_.. ..- _._ -- .--. " . . _ . - . c- - . . . _ -. . _ . - . - . _ - - n - _ _~ ~_. __ _ ~~_ --..&e+ L.';; CONTENTS ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .._____ 1 EXECUTIVE SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .._... _._ 2 I. BACKGROUND .............................................. 15

225

Wildlife at Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Wildlife at Brookhaven Wildlife Protection The Laboratory has precautions in place to protect on-site habitats and natural resources. Activities to eliminate or minimize negative...

226

about Savannah River National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Tritium Effects on Materials In an effort to ensure the safety of the nation's nuclear weapons stockpile, the Savannah River National Laboratory (SRNL) maintains an active role in...

227

The effects of practice distribution upon the regional oscillatory activity in visuomotor learning  

E-Print Network (OSTI)

the difference between a changing foreground stimulus and a constant background stimu- lus. Participants were seated in front of a 17” monitor (resolution of 800 Ś 600 pixels), at a distance of approximately 1 m. The foreground stimulus consisted of a green... of the distributed training group were presented with a commer- cial radio play via standard headphones (Technics Stereo Headphones RP-F550). Participants were instructed to pay attention to the radio play and press a button each time a particular character...

Studer, Bettina; Koeneke, Susan; Blum, Julia; Jancke, Lutz

2010-01-22T23:59:59.000Z

228

Study of Generalized Parton Distributions and Deeply Virtual Compton Scattering on the nucleon with the CLAS and CLAS12 detectors at the Jefferson Laboratory  

SciTech Connect

The exclusive leptoproduction of a real photon is considered to be the "cleanest" way to access the Generalized Parton Distribution (GPD). This process is called Deeply Virtual Compton Scattering (DVCS) lN {yields} lN{gamma} , and is sensitive to all the four GPDs. Measuring the DVCS cross section is one of the main goals of this thesis. In this thesis, we present the work performed to extract on a wide phase-space the DVCS cross-section from the JLab data at a beam energy of 6 GeV.

Baptiste Guegan

2012-11-01T23:59:59.000Z

229

Data Sharing Report for the Quantification of Removable Activity in Various Surveillance and Maintenance Facilities at the Oak Ridge National Laboratory Oak Ridge TN  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) Oak Ridge Office of Environmental Management (OR-EM) requested that Oak Ridge Associated Universities (ORAU), working under the Oak Ridge Institute for Science and Education (ORISE) contract, provide technical and independent waste management planning support using American Recovery and Reinvestment Act (ARRA) funds. Specifically, DOE OR-EM requested that ORAU plan and implement a sampling and analysis campaign targeting potential removable radiological contamination that may be transferrable to future personal protective equipment (PPE) and contamination control materials—collectively referred to as PPE throughout the remainder of this report—used in certain URS|CH2M Oak Ridge, LLC (UCOR) Surveillance and Maintenance (S&M) Project facilities at the Oak Ridge National Laboratory (ORNL). Routine surveys in Bldgs. 3001, 3005, 3010, 3028, 3029, 3038, 3042, 3517, 4507, and 7500 continuously generate PPE. The waste is comprised of Tyvek coveralls, gloves, booties, Herculite, and other materials used to prevent worker exposure or the spread of contamination during routine maintenance and monitoring activities. This report describes the effort to collect and quantify removable activity that may be used by the ORNL S&M Project team to develop radiation instrumentation “screening criteria.” Material potentially containing removable activity was collected on smears, including both masselin large-area wipes (LAWs) and standard paper smears, and analyzed for site-related constituents (SRCs) in an analytical laboratory. The screening criteria, if approved, may be used to expedite waste disposition of relatively clean PPE. The ultimate objectives of this effort were to: 1) determine whether screening criteria can be developed for these facilities, and 2) provide process knowledge information for future site planners. The screening criteria, if calculated, must be formally approved by Federal Facility Agreement parties prior to use for ORNL S&M Project PPE disposal at the Environmental Management Waste Management Facility (EMWMF). ORAU executed the approved sampling and analysis plan (SAP) (DOE 2013) while closely coordinating with ORNL S&M Project personnel and using guidelines outlined in the Waste Handling Plan for Surveillance and Maintenance Activities at the Oak Ridge National Laboratory, DOE/OR/01-2565&D2 (WHP) (DOE 2012). WHP guidelines were followed because the PPE waste targeted by this SAP is consistent with that addressed under the approved Waste Lot (WL) 108.1 profile for disposal at EMWMF—this PPE is a “future waste stream” as defined in the WHP. The SAP presents sampling strategy and methodology, sample selection guidelines, and analytical guidelines and requirements necessary for characterizing future ORNL S&M Project PPE waste. This report presents a review of the sample and analysis methods including data quality objectives (DQOs), required deviations from the original design, summary of field activities, radiation measurement data, analytical laboratory results, a brief presentation of results, and process knowledge summaries.

King, David A

2013-12-12T23:59:59.000Z

230

Observations of the Behavior and Distribution of Fish in Relation to the Columbia River Navigation Channel and Channel Maintenance Activities  

SciTech Connect

This report is a compilation of 7 studies conducted for the U.S. Army Corps of Engineers between 1995 and 1998 which used hydroacoustic methods to study the behavior of migrating salmon in response to navigation channel maintenance activities in the lower Columbia River near river mile 45. Differences between daytime and nighttime behavior and fish densities were noted. Comparisons were made of fish distribution across the river (in the channel, channel margin or near shore) and fish depth upstream and downstream of dikes, dredges, and pile driving areas.

Carlson, Thomas J.; Ploskey, Gene R.; Johnson, R. L.; Mueller, Robert P.; Weiland, Mark A.; Johnson, P. N.

2001-10-19T23:59:59.000Z

231

Citrus limonoids and flavonoids: extraction, antioxidant activity and effects on hamster plasma cholesterol distribution  

E-Print Network (OSTI)

Four in vitro models were used to measure the antioxidant activity of 11 citrus phytochemicals. The citrus limonoids and bergapten showed very weak antioxidant activity. The flavonoids demonstrated mild, to moderate, to strong antioxidant activity. In addition to some other commonly accepted structural features our data indicated that the hydroxyl group in position 6 of ring A could also increase the antioxidant activity of flavonoids. Compared with the active flavonoids, limonoids are highly oxygenated triterpenoids, with fewer hydroxyl groups to stabilize unpaired electrons (or scavenge free radicals). Bergapten lacks a hydroxyl group. This is the first report on the antioxidant activity of limonoids and neoeriocitrin. A feeding study using Syrian hamsters was followed to determine the effect of citrus limonoids and flavonoids on plasma cholesterol. Hamsters fed with limonin, limonin 17-Beta-D-glucopyranoside and grapefruit pulp significantly inhibited the increase of LDL/HDL-cholesterol (36.6%, 52.9% and 57% respectively) compared with the basal control (65.8%) and the pectin control (70%). Furthermore, hamsters fed with limonin had significantly larger LDL particle size (21.21 nm) compared with the control group (19.96 nm). Further studies demonstrated that LDLs from hamsters fed with limonin and limonin 17-Beta-D-glucopyranoside were less susceptible to oxidation. These data suggest that limonin, limonin 17-Beta-D-glucopyranoside and grapefruit pulp have potential inhibitory effects against atherogenesis. Supercritical CO2 (SC-CO2) was attempted to extract limonoids from grapefruit seeds and molasses. Limonin aglycone was successfully extracted with SC-CO2 directly from grapefruit seeds with the yield of 6.3 mg/g seeds at 48.3 MPa, 50?C and 60 min with CO2 top feeding; and the limonin glucoside was extracted using SC-CO2 and ethanol as co-solvent from the defatted seeds with the yield of 0.73 mg/g seeds at 42 MPa, 52?C, 45% ethanol (XEth=0.45) and 40 min with CO2 top feeding; and limonin glucoside also was extracted using SC-CO2 and ethanol with the yield of 0.61mg/g grapefruit molasses at 48.3 MPa, 50?C and 10% ethanol (XEth=0.1), 40 min with CO2 top feeding. CO2 flow rate was around~5 l/min in experiments. The results demonstrated SC-CO2 extraction of limonoids from citrus juice industry byproducts has practical significance for future commercial production.

Yu, Jun

2004-08-01T23:59:59.000Z

232

Standard Rates, Budget Office, Brookhaven National Laboratory...  

NLE Websites -- All DOE Office Websites (Extended Search)

Standard Rates Standard Rates for Brookhaven National Laboratory is available in PDF file formats. This file contains rates for Distributed Technical Services, Scientific Devices...

233

Sandia Laboratories energy programs  

DOE Green Energy (OSTI)

As one of the multiprogram laboratories of the Energy Research and Development Administration, Sandia Laboratories applies its resources to a number of nationally important programs. About 75 percent of these resources are applied to research and development for national security programs having to do primarily with nuclear weapons--the principal responsibility of the Laboratories. The remaining 25 percent are applied to energy programs and energy-related activities, particularly those requiring resources that are also used in nuclear weapon and other national security programs. Examples of such energy programs and activities are research into nuclear fusion, protection of nuclear materials from theft or diversion, and the disposal of radioactive waste. A number of technologies and disciplines developed for the weapon program are immediately applicable for the development of various energy sources. Instruments developed to detect, measure, and record the detonation of nuclear devices underground, now being used to support the development of in-situ processing of coal and oil shale, are examples. The purpose of this report is to provide an overview of these and other energy programs being conducted by these laboratories in the development of economical and environmentally acceptable alternative energy sources. Energy programs are undertaken when they require capabilities used at the Laboratories for the weapon program, and when they have no adverse effect upon that primary mission. The parallel operation of weapon and energy activities allows optimum use of facilities and other resources.

Lundergan, C.D.; Mead, P.L.; Gillespie, R.S. (eds.)

1977-03-01T23:59:59.000Z

234

Laboratory Access | Sample Preparation Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

Access Access Planning Ahead Planning Ahead Please complete the Beam Time Request (BTR) and Support Request forms thourgh the User Portal. Thorough chemical and sample information must be included in your BTR. Support Request forms include a list of collaborators that require laboratory access and your group's laboratory equipment requests. Researcher safety is taken seriously at SLAC. Please remember that radioactive materials, nanomaterials, and biohazardous materials have additional safety requirements. Refer to the SSRL or LCLS Safety Offices for further guidance. Upon Arrival Upon Arrival Once you arrive you must complete training and access forms before accessing the Sample Preparation Laboratories (SPL). All Sample Prep Lab doors are locked with access key codes. Once your SPL

235

Infrared Thermography Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Infrared Thermography Laboratory Infrared Thermography Laboratory The Infrared Thermography Laboratory (IRLab) conducts detailed laboratory experiments on the thermal performance of windows and other insulated systems. During a typical experiment, a specimen is placed between two environmental chambers that simulate a long, cold night during winter. Besides generating informative thermal images, the experiments collect several types of quantitative data with high spatial resolution that are useful for understanding subtle details in the thermal performance and for validating computer simulations of heat and fluid flows. Thermography experiments in the IRLab use an infrared imager to produce qualitative thermal images, or thermograms, that help provide a visual interpretation of how heat is flowing through the specimen. The infrared thermograms are also taken and postprocessed to extract numerical data to perform quantitative thermography that produces a database of the distribution of surface temperatures on the warm side of various specimen. A traversing system is also used to measure the distribution of air temperatures and velocities near the specimen. Research results are presented at various technical conferences -- see our schedule of upcoming conferences. Technical papers on infrared thermography are available for downloading. The IRLab contains a machine tool shop area that supports fabrication efforts in the Building Technologies Department. Other types of research, such as Non-Destructive Evaluation, are also conducted in the IRLab.

236

Smart Grid Integration Laboratory  

Science Conference Proceedings (OSTI)

The initial federal funding for the Colorado State University Smart Grid Integration Laboratory is through a Congressionally Directed Project (CDP), DE-OE0000070 Smart Grid Integration Laboratory. The original program requested in three one-year increments for staff acquisition, curriculum development, and instrumentation â?? all which will benefit the Laboratory. This report focuses on the initial phase of staff acquisition which was directed and administered by DOE NETL/ West Virginia under Project Officer Tom George. Using this CDP funding, we have developed the leadership and intellectual capacity for the SGIC. This was accomplished by investing (hiring) a core team of Smart Grid Systems engineering faculty focused on education, research, and innovation of a secure and smart grid infrastructure. The Smart Grid Integration Laboratory will be housed with the separately funded Integrid Laboratory as part of CSUâ??s overall Smart Grid Integration Center (SGIC). The period of performance of this grant was 10/1/2009 to 9/30/2011 which included one no cost extension due to time delays in faculty hiring. The Smart Grid Integration Laboratoryâ??s focus is to build foundations to help graduate and undergraduates acquire systems engineering knowledge; conduct innovative research; and team externally with grid smart organizations. Using the results of the separately funded Smart Grid Workforce Education Workshop (May 2009) sponsored by the City of Fort Collins, Northern Colorado Clean Energy Cluster, Colorado State University Continuing Education, Spirae, and Siemens has been used to guide the hiring of faculty, program curriculum and education plan. This project develops faculty leaders with the intellectual capacity to inspire its students to become leaders that substantially contribute to the development and maintenance of Smart Grid infrastructure through topics such as: (1) Distributed energy systems modeling and control; (2) Energy and power conversion; (3) Simulation of electrical power distribution system that integrates significant quantities of renewable and distributed energy resources; (4) System dynamic modeling that considers end-user behavior, economics, security and regulatory frameworks; (5) Best practices for energy management IT control solutions for effective distributed energy integration (including security with the underlying physical power systems); (6) Experimental verification of effects of various arrangements of renewable generation, distributed generation and user load types along with conventional generation and transmission. Understanding the core technologies for enabling them to be used in an integrated fashion within a distribution network remains is a benefit to the future energy paradigm and future and present energy engineers.

Wade Troxell

2011-09-30T23:59:59.000Z

237

Operational Awareness Oversight of Sandia National Laboratories...  

NLE Websites -- All DOE Office Websites (Extended Search)

Awareness Oversight of Sandia National Laboratories Dates of Activity : 03182013-03202013 Report Preparer: William Macon Activity DescriptionPurpose: The purpose of this...

238

National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Homesteading on the Pajarito Plateau Homesteading on the Pajarito Plateau topic of inaugural lecture at Los Alamos National Laboratory January 4, 2013 Lecture series begins yearlong commemoration of 70th anniversary LOS ALAMOS, NEW MEXICO, Jan. 3, 2013-In commemoration of its 70th anniversary, Los Alamos National Laboratory kicks off a yearlong lecture series on Wednesday, Jan. 9, at 5:30 p.m. with a presentation about homesteading on the Pajarito Plateau at the Bradbury Science Museum, 1350 Central Avenue, Los Alamos. - 2 - The inaugural lecture is based on a book by local writers Dorothy Hoard, Judy Machen and Ellen McGehee about the area's settlement between 1887 and 1942. On hikes across the Pajarito Plateau, Hoard envisioned the Los Alamos area before modern roads and bridges made transportation much easier. The trails she walked

239

Department of Energy National Laboratories  

Idaho National Laboratory SLAC National Accelerator Laboratory Department of Energy National Laboratories. Laboratory or Facility Website ...

240

Laboratory Studies of Processing of Carbonaceous Aerosols by Atmospheric Oxidants/Hygroscopicity and CCN Activity of Secondary & Processed Primary Organic Aerosols  

Science Conference Proceedings (OSTI)

The atmosphere is composed of a complex mixture of gases and suspended microscopic aerosol particles. The ability of these particles to take up water (hygroscopicity) and to act as nuclei for cloud droplet formation significantly impacts aerosol light scattering and absorption, and cloud formation, thereby influencing air quality, visibility, and climate in important ways. A substantial, yet poorly characterized component of the atmospheric aerosol is organic matter. Its major sources are direct emissions from combustion processes, which are referred to as primary organic aerosol (POA), or in situ processes in which volatile organic compounds (VOCs) are oxidized in the atmosphere to low volatility reaction products that subsequent condense to form particles that are referred to as secondary organic aerosol (SOA). POA and VOCs are emitted to the atmosphere from both anthropogenic and natural (biogenic) sources. The overall goal of this experimental research project was to conduct laboratory studies under simulated atmospheric conditions to investigate the effects of the chemical composition of organic aerosol particles on their hygroscopicity and cloud condensation nucleation (CCN) activity, in order to develop quantitative relationships that could be used to more accurately incorporate aerosol-cloud interactions into regional and global atmospheric models. More specifically, the project aimed to determine the products, mechanisms, and rates of chemical reactions involved in the processing of organic aerosol particles by atmospheric oxidants and to investigate the relationships between the chemical composition of organic particles (as represented by molecule sizes and the specific functional groups that are present) and the hygroscopicity and CCN activity of oxidized POA and SOA formed from the oxidation of the major classes of anthropogenic and biogenic VOCs that are emitted to the atmosphere, as well as model hydrocarbons. The general approach for this project was to carry out reactions of representative anthropogenic and biogenic VOCs and organic particles with ozone (O3), and hydroxyl (OH), nitrate (NO3), and chlorine (Cl) radicals, which are the major atmospheric oxidants, under simulated atmospheric conditions in large-volume environmental chambers. A combination of on-line and off-line analytical techniques were used to monitor the chemical and physical properties of the particles including their hygroscopicity and CCN activity. The results of the studies were used to (1) improve scientific understanding of the relationships between the chemical composition of organic particles and their hygroscopicity and CCN activity, (2) develop an improved molecular level theoretical framework for describing these relationships, and (3) establish a large database that is being used to develop parameterizations relating organic aerosol chemical properties and SOA sources to particle hygroscopicity and CCN activity for use in regional and global atmospheric air quality and climate models.

Ziemann, P.J.; Arey, J.; Atkinson, R.; Kreidenweis, S.M.; Petters, M.D.

2012-06-13T23:59:59.000Z

Note: This page contains sample records for the topic "laboratory distributed active" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Building Technologies Office: National Laboratories Supporting Building  

NLE Websites -- All DOE Office Websites (Extended Search)

National Laboratories National Laboratories Supporting Building America to someone by E-mail Share Building Technologies Office: National Laboratories Supporting Building America on Facebook Tweet about Building Technologies Office: National Laboratories Supporting Building America on Twitter Bookmark Building Technologies Office: National Laboratories Supporting Building America on Google Bookmark Building Technologies Office: National Laboratories Supporting Building America on Delicious Rank Building Technologies Office: National Laboratories Supporting Building America on Digg Find More places to share Building Technologies Office: National Laboratories Supporting Building America on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America

242

Oversight Reports - Los Alamos National Laboratory | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Los Alamos National Laboratory Los Alamos National Laboratory Oversight Reports - Los Alamos National Laboratory January 18, 2013 Independent Oversight Review, Los Alamos National Laboratory - January 2013 Review of the Los Alamos National Laboratory Corrective Action Effectiveness Review January 14, 2013 Independent Oversight Review, Los Alamos National Laboratory - January 2013 Review of the Los Alamos National Laboratory Weapons Engineering Tritium Facility Tritium Gas Containment Vital Safety System October 2, 2012 Independent Activity Report, Los Alamos National Laboratory - August 2012 Defense Nuclear Facilities Safety Board Visit and Site Lead Planning Activities at the Los Alamos National Laboratory [HIAR LANL-2012-08-16] August 24, 2012 Independent Activity Report, Los Alamos National Laboratory - July 2012

243

Sandia National Laboratories Distributive Power Initiative (DPI...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Benjamin L. Schenkman (505) 284-5883 BLSCHEN@SANDIA.GOV September 2008 ABMAS Battery Management System for USCG National Distress System Applications Annual DOE Peer Review...

244

Sandia National Laboratories Distributive Power Initiative (DPI...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 Large Format Carbon Enhanced VRLA Battery Test Results EESAT 2009 Funded by the Energy Storage Systems Program of the U.S. Department Of Energy (DOEESS) through Sandia National...

245

Sandia National Laboratories Distributive Power Initiative (DPI...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 Objective (FY-08 Work) Objective (FY-08 Work) Identify and test advanced battery technology including Valve Regulated Lead-Acid, (VRLA) and Li-ion (Li- FePO 4 ) for...

246

Sandia National Laboratories Distributive Power Initiative (DPI)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Benjamin L. Schenkman Benjamin L. Schenkman (505) 284-5883 BLSCHEN@SANDIA.GOV September 2008 ABMAS Battery Management System for USCG National Distress System Applications Annual DOE Peer Review National Distress System (NDS) Problem National Distress System (NDS) Problem  Supplying Fuel to the propane generators is expensive especially when the fuel has to be chartered by helicopter. NDS Background NDS Background  365/7/24 distress communication coverage  Remote Locations (Majority in Alaska)  VHF-FM system powered by Battery, PV and USCG owned propane generators  Fuel for the Generator is delivered by helicopter or car if possible Fuel/Battery Tradeoff Fuel/Battery Tradeoff Good charge acceptance Efficient generator operation Good charge acceptance Efficient generator

247

Implementing waste minimization at an active plutonium processing facility: Successes and progress at technical area (TA) -55 of the Los Alamos National Laboratory  

SciTech Connect

The Los Alamos National Laboratory has ongoing national security missions that necessitate increased plutonium processing. The bulk of this activity occurs at Technical Area -55 (TA-55), the nations only operable plutonium facility. TA-55 has developed and demonstrated a number of technologies that significantly minimize waste generation in plutonium processing (supercritical CO{sub 2}, Mg(OH){sub 2} precipitation, supercritical H{sub 2}O oxidation, WAND), disposition of excess fissile materials (hydride-dehydride, electrolytic decontamination), disposition of historical waste inventories (salt distillation), and Decontamination & Decommissioning (D&D) of closed nuclear facilities (electrolytic decontamination). Furthermore, TA-55 is in the process of developing additional waste minimization technologies (molten salt oxidation, nitric acid recycle, americium extraction) that will significantly reduce ongoing waste generation rates and allow volume reduction of existing waste streams. Cost savings from reduction in waste volumes to be managed and disposed far exceed development and deployment costs in every case. Waste minimization is also important because it reduces occupational exposure to ionizing radiation, risks of transportation accidents, and transfer of burdens from current nuclear operations to future generations.

Balkey, J.J.; Robinson, M.A.; Boak, J.

1997-12-01T23:59:59.000Z

248

Virtual Laboratories  

E-Print Network (OSTI)

At the frontier of most areas in science, computer simulations play a central role. The traditional division of natural science into experimental and theoretical investigations is now completely outdated. Instead, theory, simulation, and experimentation form three equally essential aspects, each with its own unique flavor and challenges. Yet, education in computational science is still lagging far behind, and the number of text books in this area is minuscule compared to the many text books on theoretical and experimental science. As a result, many researchers still carry out simulations in a haphazard way, without properly setting up the computational equivalent of a well equipped laboratory. The art of creating such a virtual laboratory, while providing proper extensibility and documentation, is still in its infancy. A new approach is described here, Open Knowledge, as an extension of the notion of Open Source software. Besides open source code, manuals, and primers, an open knowledge project provides simulated dialogues between code developers, thus sharing not only the code, but also the motivations behind the code.

Piet Hut

2006-10-07T23:59:59.000Z

249

Idaho National Laboratory - Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Reports Reports Idaho National Laboratory Review Reports 2013 Review of Radiation Protection Program Implementation at the Advanced Mixed Waste Treatment Project of the Idaho Site, April 2013 Review of the Facility Representative Program at the Idaho Site, March 2013 Activity Reports 2013 Accident Investigation at the Idaho National Laboratory Engineering Demonstration Facility, February 2013 Review Reports 2012 Review of Radiation Protection Program Implementation at the Idaho Site, November 2012 Assessment of Nuclear Safety Culture at the Idaho Cleanup Project Sodium Bearing Waste Treatment Project, November 2012 Review of Site Preparedness for Severe Natural Phenomena Events at the Idaho National Laboratory, July 2012 Review of the Sodium Bearing Waste Treatment Project - Integrated Waste Treatment Unit Federal Operational Readiness Review, June 2012

250

Energy Systems Integration Laboratory (Fact Sheet)  

Science Conference Proceedings (OSTI)

This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Energy Systems Integration Laboratory at the Energy Systems Integration Facility. The Energy Systems Integration Laboratory at NREL's Energy Systems Integration Facility (ESIF) provides a flexible, renewable-ready platform for research, development, and testing of state-of-the-art hydrogen-based and other energy storage systems. The main focus of the laboratory is assessment of the technical readiness, performance characterization, and research to help industry move these systems towards optimal renewable-based production and efficient utilization of hydrogen. Research conducted in the Energy Systems Integration Laboratory will advance engineering knowledge and market deployment of hydrogen technologies to support a growing need for versatile distributed electricity generation, applications in microgrids, energy storage for renewables integration, and home and station-based hydrogen vehicle fueling. Research activities are targeted to improve the technical readiness of the following: (1) Low and high temperature electrolyzers, reformers and fuel cells; (2) Mechanical and electrochemical compression systems; (3) Hydrogen storage; (4) Hydrogen vehicle refueling; and (5) Internal combustion or turbine technology for electricity production. Examples of experiments include: (1) Close- and direct-coupling of renewable energy sources (PV and wind) to electrolyzers; (2) Performance and efficiency validation of electrolyzers, fuel cells, and compressors; (3) Reliability and durability tracking and prediction; (4) Equipment modeling and validation testing; (5) Internal combustion or turbine technology for electricity production; and (6) Safety and code compliance.

Not Available

2011-10-01T23:59:59.000Z

251

NREL: Electric Infrastructure Systems Research - Distributed...  

NLE Websites -- All DOE Office Websites (Extended Search)

the distributed power industry in the development and testing of distributed power systems. Researchers use state-of-the-art laboratories and outdoor test beds to characterize...

252

ARGONNE NATIONAL LABORATORY  

NLE Websites -- All DOE Office Websites (Extended Search)

Empirical Empirical performance modeling of GPU kernels using active learning 1 Prasanna Balaprakash 2 , Karl Rupp 2 , Azamat Mametjanov 2 , Robert B. Gramacy 3 , Paul D. Hovland 2 , Stefan M. Wild 2 Mathematics and Computer Science Division Preprint ANL/MCS-P4097-0713 July 2013 1 Support for this work was provided through the SciDAC program funded by U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research, under Contract No. DE-AC02-06CH11357. 2 Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, USA 3 Booth School of Business, University of Chicago Empirical performance modeling of GPU kernels using active learning Prasanna Balaprakash 1 , Karl Rupp 1 , Azamat Mametjanov 1 Robert B. Gramacy 2 , Paul D. Hovland 1 , Stefan M. Wild 1 Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439

253

Update on Calibration of the Lawrence Livermore National Laboratory Passive-Active Neutron Drum Shuffler for Measurement of Highly Enriched Uranium Oxide  

SciTech Connect

In October of 1999, Lawrence Livermore National Laboratory (LLNL) began an effort to calibrate the LLNL passive-active neutron (PAN) drum shuffler for measurement of highly enriched uranium (HEU) oxide. A single unit of certified reference material (CRM) 149 [Uranium (93% Enriched) Oxide - U{sub 3}O{sub 8} Standard for Neutron Counting Measurements] was used to (1) develop a mass calibration curve for HEU oxide in the nominal range of 393 g to 3144 g {sup 235}U, and (2) perform a detailed axial and radial mapping of the detector response over a wide region of the PAN shuffler counting chamber. Results from these efforts were reported at the Institute of Nuclear Materials Management 41st Annual Meeting in July 2000. This paper describes subsequent efforts by LLNL to use a unit of CRM 146 [Uranium Isotopic Standard for Gamma Spectrometry Measurements] in consort with Monte Carlo simulations of the PAN shuffler response to CRM 149 and CRM 146 units and a selected set of containers with CRM 149-equivalent U{sub 3}O{sub 8} to (1) extend the low range of the reported mass calibration curve to 10 g {sup 235}U, (2) evaluate the effect of U{sub 3}O{sub 8} density (2.4 g/cm{sup 3} to 4.8 g/cm{sup 3}) and container size (5.24 cm to 12.17 cm inside diameter and 6.35 cm to 17.72 cm inside height) on the PAN shuffler response, and (3) develop mass calibration curves for U{sub 3}O{sub 8} enriched to 20.1 wt% {sup 235}U and 52.5 wt% {sup 235}U.

Mount, M; O' Connell, W; Cochran, C; Rinard, P; Dearborn, D; Endres, E

2002-05-17T23:59:59.000Z

254

Calibration of the Lawrence Livermore National Laboratory Passive-Active Neutron Drum Shuffler for Measurement of Highly Enriched Uranium in Mixed Oxide  

SciTech Connect

As a follow-on to the Lawrence Livermore National Laboratory (LLNL) effort to calibrate the LLNL passive-active neutron drum (PAN) shuffler for measurement of highly enriched uranium (HEU) oxide, a method has been developed to extend the use of the PAN shuffler to the measurement of HEU in mixed uranium-plutonium (U-Pu) oxide. This method uses the current LLNL HEU oxide calibration algorithms, appropriately corrected for the mixed U-Pu oxide assay time, and recently developed PuO{sub 2} calibration algorithms to yield the mass of {sup 235}U present via differences between the expected count rate for the PuO{sub 2} and the measured count rate of the mixed U-Pu oxide. This paper describes the LLNL effort to use PAN shuffler measurements of units of certified reference material (CRM) 149 [uranium (93% Enriched) Oxide - U{sub 3}O{sub 8} Standard for Neutron Counting Measurements] and CRM 146 [Uranium Isotopic Standard for Gamma Spectrometry Measurements] and a selected set of LLNL PuO{sub 2}-bearing containers in consort with Monte Carlo simulations of the PAN shuffler response to each to (1) establish and validate a correction to the HEU calibration algorithm for the mixed U-Pu oxide assay time, (2) develop a PuO{sub 2} calibration algorithm that includes the effect of PuO{sub 2} density (2.4 g/cm{sup 3} to 4.8 g/cm{sup 3}) and container size (8.57 cm to 9.88 cm inside diameter and 9.60 cm to 13.29 cm inside height) on the PAN shuffler response, and (3) develop and validate the method for establishing the mass of {sup 235}U present in an unknown of mixed U-Pu oxide.

Mount, M; O' Connell, W; Cochran, C; Rinard, P; Dearborn, D; Endres, E

2002-05-23T23:59:59.000Z

255

Oversight Reports - Lawrence Livermore National Laboratory | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Oversight Reports - Lawrence Livermore National Laboratory October 2, 2013 Independent Oversight Review, Lawrence Livermore National Laboratory - September 2013 Review of the Fire Protection Program at Lawrence Livermore National Laboratory July 19, 2013 Independent Oversight Review, Lawrence Livermore National Laboratory - July 2013 Review of Preparedness for Severe Natural Phenomena Events at the Lawrence Livermore National Laboratory April 12, 2013 Independent Activity Report, Lawrence Livermore National Laboratory - February 2013 Lawrence Livermore National Laboratory Operational Drill at the B332 Plutonium Facility [HIAR LLNL-2013-02-27] December 18, 2012 Independent Activity Report, Lawrence Livermore National Laboratory -

256

Oversight Reports - Argonne National Laboratory | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Argonne National Laboratory Argonne National Laboratory Oversight Reports - Argonne National Laboratory August 24, 2012 Independent Activity Report, Argonne National Laboratory - July 2012 Operational Awareness Oversight of the Argonne National Laboratory Alpha-Gamma Hot Cell Facility [HIAR ANL-2012-07-20] November 17, 2011 Independent Oversight Review, Argonne National Laboratory - November 2011 Review of the Argonne National Laboratory Alpha-Gamma Hot Cell Facility Readiness Assessment (Implementation Verification Review Sections) September 28, 2011 Independent Activity Report, Argonne National Laboratory - August 2011 Orientation Visit to the Argonne National Laboratory [HIAR-ANL-2011-08-24] June 21, 2005 Independent Oversight Inspection, Argonne National Laboratory, Volume 1 - May 2005

257

Oversight Reports - Sandia National Laboratories | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oversight Reports - Sandia National Laboratories Oversight Reports - Sandia National Laboratories Oversight Reports - Sandia National Laboratories March 28, 2013 Independent Activity Report, Sandia National Laboratories - March 2013 Operational Awareness Oversight of Sandia National Laboratories [HIAR SNL-2013-03-18] January 25, 2013 Independent Oversight Review, Sandia Site Office - January 2013 Review of the Sandia Site Office Quality Assurance Assessment of the Manzano Nuclear Operations October 2, 2012 Independent Activity Report, Sandia National Laboratories - September 2012 Operational Awareness Oversight of Sandia National Laboratories [HIAR SNL-2012-09-13] May 18, 2012 Independent Activity Report, Sandia National Laboratories - April 2012 Sandia National Laboratories Site Visit [HIAR-SNL-2012-05-02]

258

Strategic Laboratory Leadership Program | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Erik Gottschalk (F); Devin Hodge (A); Jeff Chamberlain (A); Brad Ullrick (A); Bill Rainey (J). Image courtesy of Argonne National Laboratory. Strategic Laboratory Leadership...

259

Discrete, 3D distributed, linear imaging methods of electric neuronal activity. Part 1: exact, zero error localization  

E-Print Network (OSTI)

This paper deals with the EEG/MEG neuroimaging problem: given measurements of scalp electric potential differences (EEG: electroencephalogram) and extracranial magnetic fields (MEG: magnetoencephalogram), find the 3D distribution of the generating electric neuronal activity. This problem has no unique solution. Only particular solutions with "good" localization properties are of interest, since neuroimaging is concerned with the localization of brain function. In this paper, a general family of linear imaging methods with exact, zero error localization to point-test sources is presented. One particular member of this family is sLORETA (standardized low resolution brain electromagnetic tomography; Pascual-Marqui, Methods Find. Exp. Clin. Pharmacol. 2002, 24D:5-12; http://www.unizh.ch/keyinst/NewLORETA/sLORETA/sLORETA-Math01.pdf). It is shown here that sLORETA has no localization bias in the presence of measurement and biological noise. Another member of this family, denoted as eLORETA (exact low resolution brain electromagnetic tomography; Pascual-Marqui 2005: http://www.research-projects.unizh.ch/p6990.htm), is a genuine inverse solution (not merely a linear imaging method) with exact, zero error localization in the presence of measurement and structured biological noise. The general family of imaging methods is further extended to include data-dependent (adaptive) quasi-linear imaging methods, also with the exact, zero error localization property.

Roberto D. Pascual-Marqui

2007-10-17T23:59:59.000Z

260

Analytical laboratory quality audits  

SciTech Connect

Analytical Laboratory Quality Audits are designed to improve laboratory performance. The success of the audit, as for many activities, is based on adequate preparation, precise performance, well documented and insightful reporting, and productive follow-up. Adequate preparation starts with definition of the purpose, scope, and authority for the audit and the primary standards against which the laboratory quality program will be tested. The scope and technical processes involved lead to determining the needed audit team resources. Contact is made with the auditee and a formal audit plan is developed, approved and sent to the auditee laboratory management. Review of the auditee's quality manual, key procedures and historical information during preparation leads to better checklist development and more efficient and effective use of the limited time for data gathering during the audit itself. The audit begins with the opening meeting that sets the stage for the interactions between the audit team and the laboratory staff. Arrangements are worked out for the necessary interviews and examination of processes and records. The information developed during the audit is recorded on the checklists. Laboratory management is kept informed of issues during the audit so there are no surprises at the closing meeting. The audit report documents whether the management control systems are effective. In addition to findings of nonconformance, positive reinforcement of exemplary practices provides balance and fairness. Audit closure begins with receipt and evaluation of proposed corrective actions from the nonconformances identified in the audit report. After corrective actions are accepted, their implementation is verified. Upon closure of the corrective actions, the audit is officially closed.

Kelley, William D.

2001-06-11T23:59:59.000Z

Note: This page contains sample records for the topic "laboratory distributed active" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Oversight Reports - Pacific Northwest National Laboratory | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oversight Reports - Pacific Northwest National Laboratory Oversight Reports - Pacific Northwest National Laboratory Oversight Reports - Pacific Northwest National Laboratory September 9, 2013 Independent Oversight Review, Pacific Northwest National Laboratory - September 2013 Review of the Fire Protection Program at Pacific Northwest National Laboratory and the Fire Suppression System at the Radiochemical Processing Laboratory October 31, 2012 Independent Oversight Review, Pacific Northwest National Laboratory - October 2012 Review of the Department of Energy Office of Science Assessment of the Pacific Northwest National Laboratory Radiochemical Processing Laboratory Criticality Alarm System January 30, 2012 Independent Activity Report, Pacific Northwest National Laboratory - January 2012 Pacific Northwest National Laboratory Orientation Visit

262

Independent Oversight Activity Report for Catholic University of America Vitreous State Laboratory Tour and Discussion of Experiments Conducted in Support of Hanford Site Waste Treatment and Immobilization Plant Select Systems Design, November 18, 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report Number: HIAR-VSL-2013-11-18 Site: Catholic University of America - Vitreous State Laboratory (VSL) Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Catholic University of America Vitreous State Laboratory Tour and Discussion of Experiments Conducted in Support of Hanford Site Waste Treatment and Immobilization Plant Select Systems Design Date of Activity : 11/18/13 Report Preparer: James O. Low Activity Description/Purpose: Bechtel National, Inc. (BNI) is the contractor responsible for the design and construction of the Hanford Site Waste Treatment and Immobilization Plant (WTP) for the U.S. Department of Energy (DOE) Office of River Protection. BNI is

263

PPL: distribution transformer | The Better Buildings Alliance  

NLE Websites -- All DOE Office Websites (Extended Search)

Plug & Process Loads » Install a Plug & Process Loads » Install a distribution transformer that will reduce energy use by more than 15% using the distribution transformer specification Activities Technology Solutions Teams Lighting & Electrical Space Conditioning Plug & Process Loads Food Service Refrigeration Laboratories Energy Management & Information Systems Public Sector Teams Market Solutions Teams Install a distribution transformer that will reduce energy use by more than 15% using the distribution transformer specification The Plug & Process Loads team developed a low-voltage, dry-type distribution transformer specification that outlines energy-related product requirements. Purchasers can use this document to procure high-efficiency, high-quality products from manufacturers. The specification is unique, as

264

ARGONNE NATIONAL LABORATORY is....  

NLE Websites -- All DOE Office Websites (Extended Search)

Scattering June 12-18, 2010 - Argonne National Laboratory June 19-26, 2010 - Oak Ridge National Laboratory Argonne National Laboratory is a U.S. Department of Energy laboratory...

265

State Laboratory Contacts IL  

Science Conference Proceedings (OSTI)

State Laboratory Contact Information IL. Idaho. ... State of Iowa Metrology Laboratory Ellsworth Community College 1100 College Ave. ...

2013-11-07T23:59:59.000Z

266

THE HALO OCCUPATION DISTRIBUTION OF X-RAY-BRIGHT ACTIVE GALACTIC NUCLEI: A COMPARISON WITH LUMINOUS QUASARS  

SciTech Connect

We perform halo occupation distribution (HOD) modeling of the projected two-point correlation function (2PCF) of high-redshift (z {approx} 1.2) X-ray-bright active galactic nuclei (AGNs) in the XMM-COSMOS field measured by Allevato et al. The HOD parameterization is based on low-luminosity AGNs in cosmological simulations. At the median redshift of z {approx} 1.2, we derive a median mass of 1.02{sub -0.23}{sup +0.21} Multiplication-Sign 10{sup 13} h{sup -1} M{sub sun} for halos hosting central AGNs and an upper limit of {approx}10% on the AGN satellite fraction. Our modeling results indicate (at the 2.5{sigma} level) that X-ray AGNs reside in more massive halos compared to more bolometrically luminous, optically selected quasars at similar redshift. The modeling also yields constraints on the duty cycle of the X-ray AGN, and we find that at z {approx} 1.2 the average duration of the X-ray AGN phase is two orders of magnitude longer than that of the quasar phase. Our inferred mean occupation function of X-ray AGNs is similar to recent empirical measurements with a group catalog and suggests that AGN halo occupancy increases with increasing halo mass. We project the XMM-COSMOS 2PCF measurements to forecast the required survey parameters needed in future AGN clustering studies to enable higher precision HOD constraints and determinations of key physical parameters like the satellite fraction and duty cycle. We find that N {sup 2}/A {approx} 5 Multiplication-Sign 10{sup 6} deg{sup -2} (with N the number of AGNs in a survey area of A deg{sup 2}) is sufficient to constrain the HOD parameters at the 10% level, which is easily achievable by upcoming and proposed X-ray surveys.

Richardson, Jonathan [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60605 (United States); Chatterjee, Suchetana; Myers, Adam D. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82072 (United States); Zheng Zheng [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Hickox, Ryan, E-mail: jonathan.richardson@uchicago.edu, E-mail: schatte1@uwyo.edu [Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755 (United States)

2013-09-10T23:59:59.000Z

267

Energy Storage Laboratory (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Energy Storage Laboratory at the Energy Systems Integration Facility. At NREL's Energy Storage Laboratory in the Energy Systems Integration Facility (ESIF), research focuses on the integration of energy storage systems (both stationary and vehicle-mounted) and interconnection with the utility grid. Focusing on battery technologies, but also hosting ultra-capacitors and other electrical energy storage technologies, the laboratory will provide all resources necessary to develop, test, and prove energy storage system performance and compatibility with distributed energy systems. The laboratory will also provide robust vehicle testing capability, including a drive-in environmental chamber, which can accommodate commercial-sized hybrid, electric, biodiesel, ethanol, compressed natural gas, and hydrogen fueled vehicles. The Energy Storage Laboratory is designed to ensure personnel and equipment safety when testing hazardous battery systems or other energy storage technologies. Closely coupled with the research electrical distribution bus at ESIF, the Energy Storage Laboratory will offer megawatt-scale power testing capability as well as advanced hardware-in-the-loop and model-in-the-loop simulation capabilities. Some application scenarios are: The following types of tests - Performance, Efficiency, Safety, Model validation, and Long duration reliability. (2) Performed on the following equipment types - (a) Vehicle batteries (both charging and discharging V2G); (b) Stationary batteries; (c) power conversion equipment for energy storage; (d) ultra- and super-capacitor systems; and (e) DC systems, such as commercial microgrids.

Not Available

2011-10-01T23:59:59.000Z

268

Laboratory Shuttle Bus Routes  

NLE Websites -- All DOE Office Websites (Extended Search)

Rear bike rack image Rear bike rack image The Laboratory provides shuttle bus services, contracted through MV Transportation Services. Routes run throughout its 200-acre facility, downtown Berkeley, local off-site facilities, UC Campus, Downtown Berkeley BART, and Rockridge BART stations. Shuttles offer free wifi onboard. Riders are asked to adhere to riding instructions. Active shuttle stops are marked with this sign: Bus sign image Shuttles run Monday through Friday, except Laboratory holidays. There is no weekend service. Special service for tours, group travel, etc. is available for a fee. All shuttles are equipped with Nextbus which uses GPS technology to enable riders to obtain real-time information on bus arrivals. Contact Bus Services at busservices@lbl.gov or 510-486-4165 to provide

269

Los Alamos National Laboratory - Enforcement Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

National Security, LLC related to Glovebox Activities at TA-55 and Chemistry and Metallurgy Research Facilities at the Los Alamos National Laboratory, January 4, 2008...

270

Pacific Northwest Natioinal Laboratory Orientation Visit, January...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PNNL-2012-01-11 Site: Pacific Northwest National Laboratory Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for...

271

Commissioning a materials research laboratory  

DOE Green Energy (OSTI)

This presentation covers the process of commissioning a new 150,000 sq. ft. research facility at Sandia National Laboratories. The laboratory being constructed is a showcase of modern design methods being built at a construction cost of less than $180 per sq. ft. This is possible in part because of the total commissioning activities that are being utilized for this project. The laboratory's unique approach to commissioning will be presented in this paper. The process will be followed through from the conceptual stage on into the actual construction portion of the laboratory. Lessons learned and cost effectiveness will be presented in a manner that will be usable for others making commissioning related decisions. Commissioning activities at every stage of the design will be presented along with the attributed benefits. Attendees will hear answers to the what, when, who, and why questions associated with commissioning of this exciting project.

SAVAGE,GERALD A.

2000-03-28T23:59:59.000Z

272

Independent Oversight Targeted Review, Sandia National Laboratories -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Targeted Review, Sandia National Laboratories Targeted Review, Sandia National Laboratories - November 2013 Independent Oversight Targeted Review, Sandia National Laboratories - November 2013 December 2013 Targeted Review of Activity-Level Implementation of Radiological Controls at Sandia National Laboratories This report documents the results of an independent oversight targeted review of radiological protection program activity-level implementation for Sandia National Laboratories (SNL), Technical Area V facilities. SNL is managed by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, under contract to the Department of Energy (DOE) and is overseen by the National Nuclear Security Administration and its Sandia Field Office. This targeted review was performed at SNL September 23-27,

273

Lab Spotlight: Sandia National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Sandia National Laboratories Sandia National Laboratories Illustration of integrated circuit Figure 1. An application-specific integrated circuit being developed for advanced artificial retinas. Click on image to enlarge. Microscale Enablers More advanced artificial retinas are relying on miniaturized electronics for processing incoming images and activating the corresponding electrodes to communicate with retinal cells and ultimately the brain. The goal of these devices, being developed through a U.S. Department of Energy (DOE) collaboration, is to continually improve their visual resolution so that implanted individuals eventually will be able to read large print, recognize faces, and move about without aid. Sandia National Laboratories' expertise in the development, fabrication, and production

274

Idaho National Laboratory’s Greenhouse Gas FY08 Baseline  

Science Conference Proceedings (OSTI)

A greenhouse gas (GHG) inventory is a systematic attempt to account for the production and release of certain gasses generated by an institution from various emission sources. The gasses of interest are those which have become identified by climate science as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during fiscal year (FY) 2008 by Idaho National Laboratory (INL), a Department of Energy (DOE)-sponsored entity, located in southeastern Idaho. Concern about the environmental impact of GHGs has grown in recent years. This, together with a desire to decrease harmful environmental impacts, would be enough to encourage the calculation of a baseline estimate of total GHGs generated at INL. Additionally, INL has a desire to see how its emissions compare with similar institutions, including other DOE national laboratories. Executive Order 13514 requires that federal agencies and institutions document reductions in GHG emissions in the future, and such documentation will require knowledge of a baseline against which reductions can be measured. INL's FY08 GHG inventory was calculated according to methodologies identified in federal GHG guidance documents using operational control boundaries. It measures emissions generated in three Scopes: (1) INL emissions produced directly by stationary or mobile combustion and by fugitive emissions, (2) the share of emissions generated by entities from which INL purchased electrical power, and (3) indirect or shared emissions generated by outsourced activities that benefit INL (occur outside INL's organizational boundaries but are a consequence of INL's activities). This inventory found that INL generated a total of 113,049 MT of CO2-equivalent emissions during FY08. The following conclusions were made from looking at the results of the individual contributors to INL's baseline GHG inventory: (1) Electricity (including the associated transmission and distribution losses) is the largest contributor to INL's GHG inventory, with over 50% of the CO2e emissions; (2) Other sources with high emissions were stationary combustion (facility fuels), waste disposal (including fugitive emissions from the onsite landfill and contracted disposal), mobile combustion (fleet fuels), employee commuting, and business air travel; and (3) Sources with low emissions were wastewater treatment (onsite and contracted), fugitive emissions from refrigerants, and business ground travel (in personal and rental vehicles). This report details the methods behind quantifying INL's GHG inventory and discusses lessons learned on better practices by which information important to tracking GHGs can be tracked and recorded. It is important to note that because this report differentiates between those portions of INL that are managed and operated by the Battelle Energy Alliance (BEA) and those managed by other contractors, it includes only that large proportion of Laboratory activities overseen by BEA. It is assumed that other contractors will provide similar reporting for those activities they manage, where appropriate.

Jennifer D. Morton

2011-06-01T23:59:59.000Z

275

Research programs at the Department of Energy National Laboratories. Volume 2: Laboratory matrix  

Science Conference Proceedings (OSTI)

For nearly fifty years, the US national laboratories, under the direction of the Department of Energy, have maintained a tradition of outstanding scientific research and innovative technological development. With the end of the Cold War, their roles have undergone profound changes. Although many of their original priorities remain--stewardship of the nation`s nuclear stockpile, for example--pressing budget constraints and new federal mandates have altered their focus. Promotion of energy efficiency, environmental restoration, human health, and technology partnerships with the goal of enhancing US economic and technological competitiveness are key new priorities. The multiprogram national laboratories offer unparalleled expertise in meeting the challenge of changing priorities. This volume aims to demonstrate each laboratory`s uniqueness in applying this expertise. It describes the laboratories` activities in eleven broad areas of research that most or all share in common. Each section of this volume is devoted to a single laboratory. Those included are: Argonne National Laboratory; Brookhaven National Laboratory; Idaho National Engineering Laboratory; Lawrence Berkeley Laboratory; Lawrence Livermore National Laboratory; Los Alamos National Laboratory; National Renewable Energy Laboratory; Oak Ridge National Laboratory; Pacific Northwest Laboratory; and Sandia National Laboratories. The information in this volume was provided by the multiprogram national laboratories and compiled at Lawrence Berkeley Laboratory.

NONE

1994-12-01T23:59:59.000Z

276

Microelectronics at Sandia Laboratories  

SciTech Connect

The microelectronics capability at Sandia Laboratories spans the complete range of component activity from initial design to final assembly into subsystems and systems. Highly reliable, radiation-tolerant devices and integrated circuits can be designed, fabricated, and incorporated into printed circuit assemblies or into thick- or thin-film hybrid microcircuits. Sandia has an experienced staff, exceptional facilities and aggressive on-going programs in all these areas. The authors can marshall a broad range of skills and capabilities to attack and solve problems in design, fabrication, assembly, or production. Key facilities, programs, and capabilities in the Sandia microelectronics effort are discussed in more detail in this booklet.

Spencer, W.J.; Gregory, B.L.; Franzak, E.G.; Hood, J.A.

1975-12-31T23:59:59.000Z

277

Laboratory Equipment & Supplies | Sample Preparation Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

Equipment & Supplies Equipment & Supplies John Bargar, SSRL Scientist Equipment is available to serve disciplines from biology to material science. All laboratories contain the following standard laboratory equipment: pH meters with standard buffers, analytical balances, microcentrifuges, vortex mixers, ultrasonic cleaning baths, magnetic stirrers, hot plates, and glassware. Most laboratories offer ice machines and cold rooms. Specialty storage areas for samples include a -80 freezer, argon and nitrogen glove boxes, radiation contamination areas, inert atmosphere chambers, and cold rooms. For specific information please see: Equipment Inventory Checkout Equipment & Supplies To view equipment inventory by laboratory, refer to the following pages: Biology Chemistry & Material Science Laboratory 1 Inventory

278

BATT Fabrication Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Scientist working in battery lab BATT Fabrication Laboratory The BATT Fab Lab (Batteries for Advanced Transportation Technologies Fabrication Laboratory) conducts battery cell...

279

BROOKHAVEN NATIONAL LABORATORY - Energy  

Laboratory Plan FY 2010-2019 June2,2010 BROOKHAVEN NATIONAL LABORATORY Accelerating Innovation Alane for Hydrogen Storage and Delivery June 2012

280

ARM - Laboratory Partners  

NLE Websites -- All DOE Office Websites (Extended Search)

Archive Data Management Facility Data Quality Program Engineering Support External Data Center Laboratory Partners Nine DOE national laboratories share the responsibility of...

Note: This page contains sample records for the topic "laboratory distributed active" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Sandia National Laboratories: Locations  

NLE Websites -- All DOE Office Websites (Extended Search)

around the world. Sandia's executive management offices and larger laboratory complex are located in Albuquerque, New Mexico. Our second principal laboratory is located...

282

EML: Environmental Measurements Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Security and Privacy Notices History of the Environmental Measurements Laboratory The Manhattan ProjectAtomic Energy Commission (1942 1975) Our Laboratory traces its roots...

283

Lawrence Livermore National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Lawrence Livermore National Laboratory Lawrence Livermore National Laboratorys (LLNL) primary mission is research and development in support of national security. As a...

284

Enforcement Letter, Lawrence Livermore National Laboratory- June 2, 2005  

Energy.gov (U.S. Department of Energy (DOE))

Enforcement Letter Issued to Lawrence Livermore National Laboratory for Quality Assurance Deficiencies related to Weapon Activities, June 2, 2005

285

Energy Storage Laboratory (Fact Sheet)  

SciTech Connect

This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Energy Storage Laboratory at the Energy Systems Integration Facility. At NREL's Energy Storage Laboratory in the Energy Systems Integration Facility (ESIF), research focuses on the integration of energy storage systems (both stationary and vehicle-mounted) and interconnection with the utility grid. Focusing on battery technologies, but also hosting ultra-capacitors and other electrical energy storage technologies, the laboratory will provide all resources necessary to develop, test, and prove energy storage system performance and compatibility with distributed energy systems. The laboratory will also provide robust vehicle testing capability, including a drive-in environmental chamber, which can accommodate commercial-sized hybrid, electric, biodiesel, ethanol, compressed natural gas, and hydrogen fueled vehicles. The Energy Storage Laboratory is designed to ensure personnel and equipment safety when testing hazardous battery systems or other energy storage technologies. Closely coupled with the research electrical distribution bus at ESIF, the Energy Storage Laboratory will offer megawatt-scale power testing capability as well as advanced hardware-in-the-loop and model-in-the-loop simulation capabilities. Some application scenarios are: The following types of tests - Performance, Efficiency, Safety, Model validation, and Long duration reliability. (2) Performed on the following equipment types - (a) Vehicle batteries (both charging and discharging V2G); (b) Stationary batteries; (c) power conversion equipment for energy storage; (d) ultra- and super-capacitor systems; and (e) DC systems, such as commercial microgrids.

2011-10-01T23:59:59.000Z

286

Oak Ridge National Laboratory - Laboratory Directed Research...  

NLE Websites -- All DOE Office Websites (Extended Search)

Seed Money Fund Overview The Seed Money Fund of the ORNL LDRD program supports innovative ideas that have the potential of enhancing the Laboratory's core scientific and technical...

287

About Berkeley Lab: Laboratory Director, Associate Laboratory...  

NLE Websites -- All DOE Office Websites (Extended Search)

2009, replacing former laboratory Director Steve Chu, who was sworn in as U.S. Energy Secretary. Before becoming interim director, Alivisatos was the deputy director of Berkeley...

288

Sandia National Laboratories: Research: Laboratory Directed Research...  

NLE Websites -- All DOE Office Websites (Extended Search)

Encouraging creative research to innovate solutions for our nation's greatest challenges. National laboratories have been entrusted with the role of serving as incubators for...

289

Annual Report Alfvn Laboratory  

E-Print Network (OSTI)

is plasma research using small-scale laboratory experiments, where low-density plasmas are generated

Haviland, David

290

National Renewable Energy Laboratory  

E-Print Network (OSTI)

National Renewable Energy Laboratory Innovation for Our Energy Future ponsorship Format Reversed Color:White rtical Format Reversed-A ertical Format Reversed-B National Renewable Energy Laboratory National Renewable Energy Laboratory Innovation for Our Energy Future National Renewable Energy Laboratory

291

Laboratory Management (Quality) Systems  

Science Conference Proceedings (OSTI)

Laboratory Management (Quality) Systems. NISTIR 7028 Type Evaluation Quality Manual Template. This NISTIR has been ...

2012-05-02T23:59:59.000Z

292

State Laboratory Contacts AC  

Science Conference Proceedings (OSTI)

State Laboratory Contact Information AC. Alabama. Mailing Address, ... PDF. Alaska. Mailing Address, Contact Information. Alaska ...

2013-08-01T23:59:59.000Z

293

Nuclear Magnetic Resonance Laboratory  

Science Conference Proceedings (OSTI)

Nuclear Magnetic Resonance Laboratory. ... A 600 MHz Nuclear Magnetic Resonance Spectrometer. Analytical Data Compilation Reference Materials. ...

2012-10-01T23:59:59.000Z

294

Smart Power Laboratory (Fact Sheet)  

Science Conference Proceedings (OSTI)

This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Smart Power Laboratory at the Energy Systems Integration Facility. Research at NREL's Smart Power Laboratory in the Energy Systems Integration Facility (ESIF) focuses on the development and integration of smart technologies including the integration of distributed and renewable energy resources through power electronics and smart energy management for building applications. The 5,300 sq. ft. laboratory is designed to be highly flexible and configurable, essential for a large variety of smart power applications that range from developing advanced inverters and power converters to testing residential and commercial scale meters and control technologies. Some application scenarios are: (1) Development of power converters for integration of distributed and renewable energy resources; (2) Development of advanced controls for smart power electronics; (3) Testing prototype and commercially available power converters for electrical interconnection and performance, advanced functionality, long duration reliability and safety; and (4) Hardware-in-loop development and testing of power electronics systems in smart distribution grid models.

Not Available

2011-10-01T23:59:59.000Z

295

Department of Energy National Laboratories  

Office of Science laboratory National Nuclear Security Administration laboratory Office of Fossil Energy laboratory Office of Energy Efficiency and ...

296

National Laboratories - Energy Innovation Portal  

Name Address City, State; Ames Laboratory: Ames Laboratory: Ames, IA: Argonne National Laboratory: 9700 S. Cass Avenue: Argonne, IL: Brookhaven ...

297

A Report on the Activities, Publications, and Pending Research of DHS/DOD Sponsored Post-doctoral Research Associate at Los Alamos National Laboratory  

Science Conference Proceedings (OSTI)

Since beginning at Los Alamos National Laboratory in February of 2012, I have been working as a DHS./DNDO Postdoctoral Research Associate under the mentorship of Lav Tandon and Khalil Spencer (NA-22 and mass spectrometry). The focus of my efforts, in addition to pursuing needed training and qualifications, has been the application of various instrumental approaches (e.g. Thermal Ionization Mass Spectrometry; TIMS) to a range of systems of interest in materials characterization and nuclear forensics. Research to be pursued in the coming months shall include the continued use of such approaches to advance current methods for: modified total evaporation, monitoring critical minor isotope systems, and chronometry. Each of the above points will be discussed.

Stanley, Floyd E. [Los Alamos National Laboratory; Tandon, Lav [Los Alamos National Laboratory

2012-04-26T23:59:59.000Z

298

Manufacturing Laboratory (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Manufacturing Laboratory at the Energy Systems Integration Facility. The Manufacturing Laboratory at NREL's Energy Systems Integration Facility (ESIF) focuses on developing methods and technologies that will assist manufacturers of hydrogen and fuel cell technologies, as well as other renewable energy technologies, to scale up their manufacturing capabilities to volumes that meet DOE and industry targets. Specifically, the manufacturing activity is currently focused on developing and validating quality control techniques to assist manufacturers of low temperature and high temperature fuel cells in the transition from low to high volume production methods for cells and stacks. Capabilities include initial proof-of-concept studies through prototype system development and in-line validation. Existing diagnostic capabilities address a wide range of materials, including polymer films, carbon and catalyst coatings, carbon fiber papers and wovens, and multi-layer assemblies of these materials, as well as ceramic-based materials in pre- or post-fired forms. Work leading to the development of non-contact, non-destructive techniques to measure critical dimensional and functional properties of fuel cell and other materials, and validation of those techniques on the continuous processing line. This work will be supported by materials provided by our partners. Looking forward, the equipment in the laboratory is set up to be modified and extended to provide processing capabilities such as coating, casting, and deposition of functional layers, as well as associated processes such as drying or curing. In addition, continuous processes are used for components of organic and thin film photovoltaics (PV) as well as battery technologies, so synergies with these important areas will be explored.

Not Available

2011-10-01T23:59:59.000Z

299

National Laboratories - Energy Innovation Portal  

Name Address City, State; Ames Laboratory: Ames Laboratory: Ames, IA: Argonne National Laboratory: 9700 S. Cass Avenue: Argonne, IL: Brookhaven National Laboratory

300

COMPUTER SYSTEMS LABORATORY STANFORD ELECTRONICS LABORATORIES  

E-Print Network (OSTI)

of Data 2.1 Performance and Utilization Data 2.2 Failure Data 5 5 6 3. Preliminary Analysis 3.1 Load Profiles 3.2 Failure Profiles 7 3.3 Analysis and Discussion of Preliminary Results Some ReliabilityCOMPUTER SYSTEMS LABORATORY I I STANFORD ELECTRONICS LABORATORIES DEPARTMENT OF ElECTRiCAl

Stanford University

Note: This page contains sample records for the topic "laboratory distributed active" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Site Environmental Report for 2010 Sandia National Laboratories, California.  

SciTech Connect

Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, manages and operates the laboratory for the Department of Energy's National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office administers the contract and oversees contractor operations at the site. This Site Environmental Report for 2010 was prepared in accordance with DOE Order 231.1A (DOE 2004a). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2010. General site and environmental program information is also included. The Site Environmental Report is divided into ten chapters. Chapter 1, the Executive Summary, highlights compliance and monitoring results obtained in 2010. Chapter 2 provides a brief introduction to SNL/CA and the existing environment found on site. Chapter 3 summarizes SNL/CA's compliance activities with the major environmental requirements applicable to site operations. Chapter 4 presents information on environmental management, performance measures, and environmental programs. Chapter 5 presents the results of monitoring and surveillance activities in 2010. Chapter 6 discusses quality assurance. Chapters 7 through 9 provide supporting information for the report and Chapter 10 is the report distribution list.

Larsen, Barbara L.

2011-06-01T23:59:59.000Z

302

Site environmental report for 2009 : Sandia National Laboratories, California.  

SciTech Connect

Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2009 was prepared in accordance with DOE Order 231.1A (DOE 2004a). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2009. General site and environmental program information is also included. The Site Environmental Report is divided into ten chapters. Chapter 1, the Executive Summary, highlights compliance and monitoring results obtained in 2009. Chapter 2 provides a brief introduction to SNL/CA and the existing environment found on site. Chapter 3 summarizes SNL/CA's compliance activities with the major environmental requirements applicable to site operations. Chapter 4 presents information on environmental management, performance measures, and environmental programs. Chapter 5 presents the results of monitoring and surveillance activities in 2009. Chapter 6 discusses quality assurance. Chapters 7 through 9 provide supporting information for the report and Chapter 10 is the report distribution list.

Larsen, Barbara L.

2010-06-01T23:59:59.000Z

303

CERTS Microgrid Laboratory Test Bed  

NLE Websites -- All DOE Office Websites (Extended Search)

CERTS Microgrid Laboratory Test Bed CERTS Microgrid Laboratory Test Bed Title CERTS Microgrid Laboratory Test Bed Publication Type Journal Article LBNL Report Number LBNL-3553E Year of Publication 2011 Authors Lasseter, Robert H., Joseph H. Eto, Ben Schenkman, John Stevens, Harry T. Volkommer, David Klapp, Ed Linton, Hector Hurtado, and Joyashree Roy Journal IEEE Transactions on Power Delivery Volume 26 Start Page 325 Issue 1 Date Published 01/2011 Keywords distributed energy resources (der) Abstract CERTS Microgrid concept captures the emerging potential of distributed generation using a system approach. CERTS views generation and associated loads as a subsystem or a "microgrid". The sources can operate in parallel to the grid or can operate in island, providing UPS services. The system can disconnect from the utility during large events (i.e. faults, voltage collapses), but may also intentionally disconnect when the quality of power from the grid falls below certain standards. CERTS Microgrid concepts were demonstrated at a full-scale test bed built near Columbus, Ohio and operated by American Electric Power. The testing fully confirmed earlier research that had been conducted initially through analytical simulations, then through laboratory emulations, and finally through factory acceptance testing of individual microgrid components. The islanding and resynchronization method met all Institute of Electrical and Electronics Engineers Standard 1547 and power quality requirements. The electrical protection system was able to distinguish between normal and faulted operation. The controls were found to be robust under all conditions, including difficult motor starts and high impedance faults. Keywords: CHP, UPS, distributed generation, intentional islanding, inverters, microgrid, CERTS, power vs. frequency droop, voltage droop.

304

Categorical Exclusion Determinations: New Brunswick Laboratory | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Brunswick Laboratory New Brunswick Laboratory Categorical Exclusion Determinations: New Brunswick Laboratory Categorical Exclusion Determinations issued by New Brunswick Laboratory. DOCUMENTS AVAILABLE FOR DOWNLOAD June 8, 2012 CX-008816: Categorical Exclusion Determination Renovations and Maintenance Activities for Buildings, Structures, Infrastructures and Equipment CX(s) Applied: B1.3, 61.4, 61.5, B1.11, B1.15, B1.16, B1.17, 81.22, B1.27, 62.1, B2.2, B2.3, 62.5 Date: 06/08/2012 Location(s): Illinois Offices(s): New Brunswick Laboratory June 8, 2012 CX-008817: Categorical Exclusion Determination Indoor Bench Scale Research Projects and Conventional Laboratory Operations CX(s) Applied: B3.6 Date: 06/08/2012 Location(s): Illinois Offices(s): New Brunswick Laboratory December 10, 2009

305

Laser Spark Distribution and Ignition System  

Laser Spark Distribution and Ignition System Opportunity The Department of Energy’s National Energy Technology Laboratory (NETL) is seeking licensing partners ...

306

Ultrahigh-Temperature Distributed Wireless Sensors  

NLE Websites -- All DOE Office Websites (Extended Search)

Ultrahigh-Temperature Distributed Wireless Sensors Description The U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is working in cooperation with Prime...

307

Leading Testing Laboratories  

Science Conference Proceedings (OSTI)

... Fax: 86-20-6196-8925 E-Mail: york.li@ledtestlab.com Send E-Mail to Laboratory: Leading Testing Laboratories ... [22/S14] EPA Integral LED Lamps v ...

2013-09-06T23:59:59.000Z

308

Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

AOCS provides a Laboratory Proficiency Program (LPP). Formerly the Smalley Check Sample Program LPP is a collaborative proficiency testing service for oil and fat related commodities, oilseeds, oilseed meals, and edible fats. Laboratory Proficiency Testing

309

Mound Laboratory: Analytical Capability  

SciTech Connect

The Monsanto Research Corporation, Mound Laboratory Analytical Capability report is intended to fulfill a customer need for basic information concerning Mound Laboratory's analytical instrumentation and techniques.

Hendrickson, E. L.

1955-03-01T23:59:59.000Z

310

State Laboratory Contacts DH  

Science Conference Proceedings (OSTI)

State Laboratory Contact Information DH. District of Columbia. ... Lab Closed See State Director's List. No Certificate. Delaware. ...

2013-10-24T23:59:59.000Z

311

Lisheng Safety Laboratory  

Science Conference Proceedings (OSTI)

Lisheng Safety Laboratory. NVLAP Lab Code: 200882-0. Address and Contact Information: Electronic & Lighting (Xiamen) Co. Ltd. No. ...

2013-09-27T23:59:59.000Z

312

State Laboratory Contacts M  

Science Conference Proceedings (OSTI)

... Maine Department of Agriculture Metrology Laboratory Div. QA&R 28 Station House Road Augusta, ME 04333, 333 Cony Rd. ...

2013-09-25T23:59:59.000Z

313

Price Sound Laboratory  

Science Conference Proceedings (OSTI)

Price Sound Laboratory. NVLAP Lab Code: 200874-0. Address and Contact Information: 638 RALEIGH STREET WINNIPEG ...

2013-10-31T23:59:59.000Z

314

Savannah River National Laboratory  

At a glance Remote Electrical Throw Device Engineers at the Savannah River National Laboratory ... sufficient manufacturing capacity, established dist ...

315

Engineering Laboratory Homepage  

Science Conference Proceedings (OSTI)

... and InfrastructureDisaster-Resilient Buildings, Infrastructure, and ... of the Manufacturing Engineering Laboratory. ... Net-Zero Energy Residential Test ...

2013-08-12T23:59:59.000Z

316

National Renewable Energy Laboratory  

National Renewable Energy Laboratory Technology Transfer Marine Corps Taps NREL to Help Replace Aging Steam Plant with Efficient Biomass Cogeneration

317

Laboratory Coordinating Council  

Science Conference Proceedings (OSTI)

The nation's network of DOE Laboratories and Facilities hold an extensive store of research and development expertise and unique equipment developed for their various missions. The Laboratory Coordinating Council (LCC) gives US industry access to a ``virtual'' laboratory that can be tailored to meet the specific requirements of almost any research project. Established in 1995, the LCC responds to the major process industries' R and D needs with the capabilities of 16 DOE Laboratories and Facilities.

Chum, H.

1998-12-21T23:59:59.000Z

318

Cytogenetic Biodosimetry Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Cytogenetic Biodosimetry Laboratory Cytogenetic Biodosimetry Laboratory Blood samples are shipped at room temperature to the laboratory. White blood cells, lymphocytes, are cultured under sterile conditions in an incubator for 48 hours using a standard growth medium. Culture tubes are centrifuged, and cells are re-suspended in a weak salt solution, which allows the chromosomes to separate and spread evenly on slides.

319

Division of Laboratory Sciences  

E-Print Network (OSTI)

#12;#12;Division of Laboratory Sciences U.S. Department of Health and Human Services Centers and Prevention National Center for Environmental Health Division of Laboratory Sciences Atlanta, Georgia 30341're also working in concert with state public health laboratories, providing training, proficiency testing

320

Power Systems Integration Laboratory (Fact Sheet)  

Science Conference Proceedings (OSTI)

This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Power Systems Integration Laboratory at the Energy Systems Integration Facility. At NREL's Power Systems Integration Laboratory in the Energy Systems Integration Facility (ESIF), research focuses on developing and testing large-scale distributed energy systems for grid-connected, stand-alone, and microgrid applications. The laboratory can accommodate large power system components such as inverters for photovoltaic (PV) and wind systems, diesel and natural gas generators, battery packs, microgrid interconnection switchgear, and vehicles. Closely coupled with the research electrical distribution bus at the ESIF, the Power Systems Integration Laboratory will offer power testing capability of megawatt-scale DC and AC power systems, as well as advanced hardware-in-the-loop and model-in-the-loop simulation capabilities. Thermal heating and cooling loops and fuel also allow testing of combined heating/cooling and power systems (CHP).

Not Available

2011-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "laboratory distributed active" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Low radiative efficiency accretion at work in active galactic nuclei: the nuclear spectral energy distribution of NGC4565  

E-Print Network (OSTI)

We derive the spectral energy distribution (SED) of the nucleus of the Seyfert galaxy NGC4565. Despite its classification as a Seyfert2, the nuclear source is substantially unabsorbed. The absorption we find from Chandra data (N_H=2.5 X 10^21 cm^-2) is consistent with that produced by material in the galactic disk of the host galaxy. HST images show a nuclear unresolved source in all of the available observations, from the near-IR H band to the optical U band. The SED is completely different from that of Seyfert galaxies and QSO, as it appears basically ``flat'' in the IR-optical region, with a small drop-off in the U-band. The location of the object in diagnostic planes for low luminosity AGNs excludes a jet origin for the optical nucleus, and its extremely low Eddington ratio L_o/L_Edd indicates that the radiation we observe is most likely produced in a radiatively inefficient accretion flow (RIAF). This would make NGC4565 the first AGN in which an ADAF-like process is identified in the optical. We find that the relatively high [OIII] flux observed from the ground cannot be all produced in the nucleus. Therefore, an extended NLR must exist in this object. This may be interpreted in the framework of two different scenarios: i) the radiation from ADAFs is sufficient to give rise to high ionization emission-line regions through photoionization, or ii) the nuclear source has recently ``turned-off'', switching from a high-efficiency accretion regime to the present low-efficiency state.

M. Chiaberge; R. Gilli; F. D. Macchetto; W. B. Sparks

2006-01-27T23:59:59.000Z

322

Argonne Tribology Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Tribology Laboratory Tribology Laboratory CemeCon coating chamber CemeCon coating chamber Engineers in Argonne's Tribology Laboratory conduct research on advanced tribological systems (surface engineered materials, lubricants, fuels, and fuel/lubricant additives) for use in aggressive environments (for example, where two surfaces are rubbing together). The Laboratory is equipped with a full range of coating development, friction and wear testing, and characterization facilities. Evaluation of Coatings and Systems The Tribology Laboratory evaluates high performance coatings primarily intended to protect engine-component surfaces that undergo sliding and rolling contact in advanced transportation systems. Also tested are systems powered by diesel and gasoline engines, as well as

323

Leadership | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Message from the Director Board of Governors Organization Chart Argonne Distinguished Fellows Emeritus Scientists & Engineers History Discoveries Prime Contract Contact Us Leadership Argonne integrates world-class science, engineering, and user facilities to deliver innovative research and technologies. We create new knowledge that addresses the scientific and societal needs of our nation. Eric D. Isaacs Eric D. Isaacs, Director, Argonne National Laboratory Director, Argonne National Laboratory Argonne National Laboratory Eric D. Isaacs, a prominent University of Chicago physicist, is President of UChicago Argonne, LLC, and Director of Argonne National Laboratory. Mark Peters Mark Peters, Deputy Lab Director for Programs Deputy Laboratory Director for Programs

324

Supplement analysis for continued operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore. Volume 2: Comment response document  

Science Conference Proceedings (OSTI)

The US Department of Energy (DOE), prepared a draft Supplement Analysis (SA) for Continued Operation of Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories, Livermore (SNL-L), in accordance with DOE`s requirements for implementation of the National Environmental Policy Act of 1969 (NEPA) (10 Code of Federal Regulations [CFR] Part 1021.314). It considers whether the Final Environmental Impact Statement and Environmental Impact Report for Continued Operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore (1992 EIS/EIR) should be supplement3ed, whether a new environmental impact statement (EIS) should be prepared, or no further NEPA documentation is required. The SA examines the current project and program plans and proposals for LLNL and SNL-L, operations to identify new or modified projects or operations or new information for the period from 1998 to 2002 that was not considered in the 1992 EIS/EIR. When such changes, modifications, and information are identified, they are examined to determine whether they could be considered substantial or significant in reference to the 1992 proposed action and the 1993 Record of Decision (ROD). DOE released the draft SA to the public to obtain stakeholder comments and to consider those comments in the preparation of the final SA. DOE distributed copies of the draft SA to those who were known to have an interest in LLNL or SNL-L activities in addition to those who requested a copy. In response to comments received, DOE prepared this Comment Response Document.

NONE

1999-03-01T23:59:59.000Z

325

Laboratory Computing Resource Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Computing DOE Logo Computing DOE Logo Search BIO ... Search Argonne Home > BIO home > Laboratory Computing Resource Center BIO Home Page About BIO News Releases Research Publications People Contact Us Organization Chart Site Index Inside BIO BIO Safety About Argonne Argonne National Laboratory Logo Laboratory Computing Resource Center In 2002 Argonne National Laboratory established the Laboratory Computing Project to enable and promote the use of high-performance computing (HPC) across the Laboratory in support of its varied research missions. The Laboratory Computing Resource Center (LCRC) was established, and in April 2003 LCRC began full operations with Argonne’s first teraflops computing cluster, Jazz. In 2010 Jazz was replaced by Fusion, with a peak performance of 30 teraflops (and still growing). We just acquired Blues which will a performance of 100 teraflops.

326

Savannah River Laboratory monthly report, February 1992  

Science Conference Proceedings (OSTI)

This report is a progress report for the Savannah River Laboratory for the month of February 1992. The progress and activities in six categories were described in the report. The categories are reactor, tritium, separations, environmental, waste management, and general. Each category described numerous and varied activities. Some examples of these activities described are such things as radiation monitoring, maintenance, modifications, and remedial action.

Ferrell, J.M. [comp.; Ice, L.W. [ed.

1992-02-01T23:59:59.000Z

327

Environmental Molecular Sciences Laboratory Annual Report: Fiscal Year 2006  

Science Conference Proceedings (OSTI)

This report describes the activities and research performed at the Environmental Molecular Sciences Laboratory, a Department of Energy national scientific user facility at Pacific Northwest National Laboratory, during Fiscal Year 2006.

Foster, Nancy S.; Showalter, Mary Ann

2007-03-23T23:59:59.000Z

328

Lawrence Berkeley National Laboratory  

calculations is based on the power spectral density (PSD) distribution of the sur-face height. The major problem of measurement of a PSD distribution ...

329

Emergency Information | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Lab Status via Twitter Delayed Start or Cancellation of Business Hours Winter Road Closings Winter Weather FAQs Westgate Alternate Routes Reporting Illegal/Unethical Activity Working Remotely Extracurricular Activities Library Alumni Emergency Information Current Status: Laboratory Operations are normal. All employees should report to work for their assigned shifts. Employees should check this page for information in the event of an operational emergency or other change in operations at Argonne. Non-emergency information and directions for employees will be posted here by laboratory senior management, the U.S. Department of Energy and emergency responders. The Argonne Info Line at (630) 252-INFO (630-252-4636) is also updated when severe weather affects Argonne operations.

330

Remedial site evaluation report for the waste area grouping 10 wells associated with the new hydrofracture facility at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 2: Field activities and well summaries  

Science Conference Proceedings (OSTI)

Four hydrofracture sites at the Oak Ridge National Laboratory (ORNL) were used for development, demonstration, and disposal from 1959 to 1984. More than 10 million gal of waste grout mix was disposed of via hydrofracture. Various types of wells were installed to monitor the hydrofracture operations. The primary goal of this remedial investigation was to gather information about the wells in order to recommend the type and best method of final disposition for the wells. Evaluations were performed to determine the integrity of well castings, confirm construction details for each well, evaluate the extent of contamination, assist in planning for future activities, and determine the suitability of the wells for future temporary site monitoring.

NONE

1996-08-01T23:59:59.000Z

331

Containment & Surveillance Systems Laboratory (CSSL) | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Containment & Surveillance Systems Laboratory Containment & Surveillance Systems Laboratory May 30, 2013 The Containment and Surveillance Systems Laboratory is an arm of the highly acclaimed ORNL Safeguards Technology Integration Center. This lab is used to evaluate and develop custom technology, as well as integrate, mock up, and stage equipment for evaluation deployments for a variety of containment and surveillance applications. Activities in this lab focus on integrating technology for sealing, monitoring, and tracking nuclear material in a variety of environments. It is well suited for developing, integrating, and deploying active and passive tamper-indicating devices and enclosures, unattended and remote monitoring systems, and wired and wireless attribute-monitoring systems. Applications

332

Electrochemical Characterization Laboratory (Fact Sheet)  

Science Conference Proceedings (OSTI)

This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Electrochemical Characterization Laboratory at the Energy Systems Integration Facility. The research focus at the Electrochemical Characterization Laboratory at NREL's Energy Systems Integration Facility (ESIF) is evaluating the electrochemical properties of novel materials synthesized by various techniques and understanding and delineating the reaction mechanisms to provide practical solutions to PEMFCs commercialization issues of cost, performance and durability. It is also involved in the development of new tools and techniques for electrochemical characterization. The laboratory concentrates on the development and characterization of new materials for PEMFCs such as electrocatalysts, catalyst supports in terms of electrochemical activity, electrochemical surface area and corrosion/durability. The impact of impurities and/or contaminants on the catalyst activity is also under study. Experiments that can be performed include: (1) Determination and benchmarking of novel electrocatalyst activity; (2) Determination of electrochemical surface area; (3) Determination of electrocatalyst and support corrosion resistance and durability; (4) Synthesis and characterization of novel electrocatalyst; (5) Determination of fundamental electrochemical parameters; and (6) Estimation of electrocatalyst utilization.

Not Available

2011-10-01T23:59:59.000Z

333

Going green earns Laboratory gold  

NLE Websites -- All DOE Office Websites (Extended Search)

Going green earns Laboratory gold Going green earns Laboratory gold The Laboratory's newest facility is its first to achieve both the Leadership in Energy and Environmental Design...

334

Vehicle Technologies Office: National Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

National Laboratories to someone by E-mail Share Vehicle Technologies Office: National Laboratories on Facebook Tweet about Vehicle Technologies Office: National Laboratories on...

335

Laboratory program helps small businesses  

NLE Websites -- All DOE Office Websites (Extended Search)

Lab helps small businesses Laboratory program helps small businesses The free program, run jointly by Los Alamos and Sandia National Laboratories, leverages the laboratories'...

336

Distributed H{sub 2} Supply for Fuel Cell Utility Vehicles Year 6 - Activity 3.5 - Development fo a National Center for Hydrogen Technology  

Science Conference Proceedings (OSTI)

The Energy & Environmental Research Center (EERC) has developed a high-pressure hydrogen production system that reforms a liquid organic feedstock and water at operating pressures up to 800 bar (~12,000 psig). The advantages of this system include the elimination of energy-intensive hydrogen compression, a smaller process footprint, and the elimination of gaseous or liquid hydrogen transport. This system could also potentially enable distributed hydrogen production from centralized coal. Processes have been investigated to gasify coal and then convert the syngas into alcohol or alkanes. These alcohols and alkanes could then be easily transported in bulk to distributed high-pressure water-reforming (HPWR)-based systems to deliver hydrogen economically. The intent of this activity was to utilize the EERC’s existing HPWR hydrogen production process, previously designed and constructed in a prior project phase, as a basis to improve operational and production performance of an existing demonstration unit. Parameters to be pursued included higher hydrogen delivery pressure, higher hydrogen production rates, and the ability to refill within a 5-minute time frame.

Almlie, Jay

2012-04-15T23:59:59.000Z

337

Renewable and Distributed Systems Integration Peer Review  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 4 Denver Marriott West Golden, Colorado AGENDA Tuesday, November 2, 2010 8:00 am Registration and Continental Breakfast 9:00 am-9:10 am Welcome Dr. Robert Hawsey, Associate Laboratory Director for Renewable Electricity and End Use Systems, US DOE-National Renewable Energy Laboratory 9:10 am-9:25 am Overview of Smart Grid Program Eric Lightner, U.S. Department of Energy 9:25 am-9:40 am Overview of Smart Grid Research and Development Activities Dan Ton, U.S. Department of Energy Moderator - Merrill Smith, U.S. Department of Energy 9:40 am-10:10 am University of Hawaii Renewable and Distributed Systems Jay Griffin, University of Hawaii 10:10 am-10:40 am Demonstration of a Coordinated and Integrated System Dennis Sumner, City of Fort Collins

338

Guenter Conzelmann | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Guenter Conzelmann Guenter Conzelmann Guenter Conzelmann Director - Center for Energy, Environmental, and Economic Systems Analysis Guenter Conzelmann is the Director of the Center for Energy, Environmental, and Economic Systems Analysis in the Decision & Information Sciences Division at Argonne National Laboratory. His research focuses on the development and application of modeling and simulation tools to study strategic energy and power sector issues, including energy efficiency of buildings, renewable energy integration, advanced conventional energy, smart grid implementation, and environmental impacts of energy production. Mr. Conzelmann is also leading Argonne's Wind Power Technologies and Analysis Program and is actively engaged in Argonne's Smart Grid activities. He is the author/co-author of numerous publications,

339

FY 2005 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Congressional Budget Congressional Budget Request Laboratory Tables Preliminary Department of Energy FY 2005 Congressional Budget Request Office of Management, Budget and Evaluation/CFO February 2004 Laboratory Tables Preliminary Department of Energy Department of Energy FY 2005 Congressional Budget FY 2005 Congressional Budget Request Request Office of Management, Budget and Evaluation/CFO February 2004 Laboratory Tables Laboratory Tables Printed with soy ink on recycled paper Preliminary Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. include both the discretionary and mandatory funding in the budget. balances, deferrals, rescissions, or other adjustments appropria ted as offsets to the DOE appropriations by the Congress.

340

Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

checking the document effective date on the PS Training website. Brookhaven National Laboratory Photon Sciences Directorate Subject: Photon Sciences TECH PROC LN2 Manual Fill...

Note: This page contains sample records for the topic "laboratory distributed active" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

reminder to persons whose area will be inspected (i.e. Cognizant Space Managers) Brookhaven National Laboratory Photon Sciences Directorate Subject: ENVIRONMENTAL, SAFETY AND...

342

Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

current version by checking the document effective date on the PS Training website. Brookhaven National Laboratory Photon Sciences Directorate Subject: Photon Sciences ELEC PPE -...

343

Pacific Northwest National Laboratory  

NLE Websites -- All DOE Office Websites

Pacific Northwest National Laboratory Skip to Main Content U.S. Department of Energy Search PNNL Search PNNL Home About Research Publications Jobs News Contacts Featured Research...

344

NATIONAL ENERGY TECHNOLOGY LABORATORY  

NLE Websites -- All DOE Office Websites (Extended Search)

NATIONAL ENERGY TECHNOLOGY LABORATORY In 2011, the Office of Fossil Energy evaluated the realized and estimated benefits provided by its programs. Implemented by NETL, these...

345

News | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

News Argo exascale architecture Click on image to enlarge. Designing a new operating system for exascale architectures Full Story Argonne National Laboratory has been awarded a...

346

Los Alamos National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

participants to respond to simulated hazardous materials emergencies involving a rail car, a clandestine laboratory, various modes of transportation, industrial piping...

347

Los Alamos National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 - Hours after a disaster declaration by Los Alamos County, Los Alamos National Laboratory officials on Friday described "millions" of dollars in damage to environmental...

348

Hollings Marine Laboratory Homepage  

Science Conference Proceedings (OSTI)

... The Hollings Marine Laboratory (HML) is a ... the Nation's coastal environmental- and health-related problems ... s National Ocean Service, the National ...

2013-08-19T23:59:59.000Z

349

ARGONNE NATIONAL LABORATORY  

NLE Websites -- All DOE Office Websites (Extended Search)

National Laboratory wild@mcs.anl.gov ABSTRACT Code optimization in the high-performance computing realm has traditionally focused on reducing execution time. The problem, in...

350

Oak Ridge National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Oak Ridge National Laboratory Search Go Find People Contact Site Index Comments Home News News Releases Story Tips Features Contacts ORNL Review Magazine ORNL in the News...

351

Shared Intellect * Shared Laboratories...  

NLE Websites -- All DOE Office Websites (Extended Search)

VOLUME 3, ISSUE 3 NETL-RUA 2013 SPRING MEETING: Growth Through Collaboration National Energy Technology Laboratory - Regional University Alliance (NETL-RUA) members joined...

352

GASIFICATION FOR DISTRIBUTED GENERATION  

DOE Green Energy (OSTI)

A recent emphasis in gasification technology development has been directed toward reduced-scale gasifier systems for distributed generation at remote sites. The domestic distributed power generation market over the next decade is expected to be 5-6 gigawatts per year. The global increase is expected at 20 gigawatts over the next decade. The economics of gasification for distributed power generation are significantly improved when fuel transport is minimized. Until recently, gasification technology has been synonymous with coal conversion. Presently, however, interest centers on providing clean-burning fuel to remote sites that are not necessarily near coal supplies but have sufficient alternative carbonaceous material to feed a small gasifier. Gasifiers up to 50 MW are of current interest, with emphasis on those of 5-MW generating capacity. Internal combustion engines offer a more robust system for utilizing the fuel gas, while fuel cells and microturbines offer higher electric conversion efficiencies. The initial focus of this multiyear effort was on internal combustion engines and microturbines as more realistic near-term options for distributed generation. In this project, we studied emerging gasification technologies that can provide gas from regionally available feedstock as fuel to power generators under 30 MW in a distributed generation setting. Larger-scale gasification, primarily coal-fed, has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries. Commercial-scale gasification activities are under way at 113 sites in 22 countries in North and South America, Europe, Asia, Africa, and Australia, according to the Gasification Technologies Council. Gasification studies were carried out on alfalfa, black liquor (a high-sodium waste from the pulp industry), cow manure, and willow on the laboratory scale and on alfalfa, black liquor, and willow on the bench scale. Initial parametric tests evaluated through reactivity and product composition were carried out on thermogravimetric analysis (TGA) equipment. These tests were evaluated and then followed by bench-scale studies at 1123 K using an integrated bench-scale fluidized-bed gasifier (IBG) which can be operated in the semicontinuous batch mode. Products from tests were solid (ash), liquid (tar), and gas. Tar was separated on an open chromatographic column. Analysis of the gas product was carried out using on-line Fourier transform infrared spectroscopy (FT-IR). For selected tests, gas was collected periodically and analyzed using a refinery gas analyzer GC (gas chromatograph). The solid product was not extensively analyzed. This report is a part of a search into emerging gasification technologies that can provide power under 30 MW in a distributed generation setting. Larger-scale gasification has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries, and it is probable that scaled-down applications for use in remote areas will become viable. The appendix to this report contains a list, description, and sources of currently available gasification technologies that could be or are being commercially applied for distributed generation. This list was gathered from current sources and provides information about the supplier, the relative size range, and the status of the technology.

Ronald C. Timpe; Michael D. Mann; Darren D. Schmidt

2000-05-01T23:59:59.000Z

353

Idaho National Laboratory’s FY09 & FY10 Greenhouse Gas Report  

Science Conference Proceedings (OSTI)

A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during fiscal year (FY) 2009 and 2010 by Idaho National Laboratory (INL), a Department of Energy (DOE)-sponsored entity, located in southeastern Idaho. In recent years, concern has grown about the environmental impact of GHGs. This, together with a desire to decrease harmful environmental impacts, would be enough to encourage the calculation of an inventory of the total GHGs generated at INL. Additionally, INL has a desire to see how its emissions compare with similar institutions, including other DOE national laboratories. Executive Order 13514 requires that federal agencies and institutions document reductions in GHG emissions. INL's GHG inventory was calculated according to methodologies identified in federal GHG guidance documents using operational control boundaries. It measures emissions generated in three scopes: (1) INL emissions produced directly by stationary or mobile combustion and by fugitive emissions, (2) the share of emissions generated by entities from which INL purchased electrical power, and (3) indirect or shared emissions generated by outsourced activities that benefit INL (occur outside INL's organizational boundaries, but are a consequence of INL's activities). This inventory found that INL generated 103,590 and 102,413 MT of CO2-equivalent emissions during FY09 and FY10, respectively. The following conclusions were made from looking at the results of the individual contributors to INL's FY09 and FY10 GHG inventories: (1) Electricity (including the associated transmission and distribution losses) is the largest contributor to INL's GHG inventory, with over 50% of the CO2e emissions; (2) Other sources with high emissions were stationary combustion (facility fuels), waste disposal (including fugitive emissions from the onsite landfill and contracted disposal), mobile combustion (fleet fuels), employee commuting, and business air travel; and (3) Sources with low emissions were wastewater treatment (onsite and contracted), fugitive emissions from refrigerants, and business ground travel (in personal and rental vehicles). This report details the methods behind quantifying INL's GHG inventory and discusses lessons learned on better practices by which information important to tracking GHGs can be tracked and recorded. It is important to note that because this report differentiates between those portions of INL that are managed and operated by the Battelle Energy Alliance (BEA) and those managed by other contractors, it includes only that large proportion of Laboratory activities overseen by BEA. It is assumed that other contractors will provide similar reporting for those activities they manage, where appropriate.

Jennifer D. Morton

2011-06-01T23:59:59.000Z

354

Fumonisin Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing service for B1, B2, B3,and total Fumonisin in corn meal samples. Fumonisin Laboratory Proficiency Testing Program Laboratory Proficiency Program (LPP) aocs applicants certified chemist chemists Lab laboratories Laboratory methods

355

Material Measurement Laboratory Professional Research ...  

Science Conference Proceedings (OSTI)

... at the NIST, Gaithersburg Laboratories in Gaithersburg ... NIST Hollings Marine Laboratory (HML) in ... sponsoring institution of higher education and be ...

2013-05-26T23:59:59.000Z

356

FY 2010 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory Tables Laboratory Tables Preliminary May 2009 Office of Chief Financial Officer FY 2010 Congressional Budget Request Laboratory Tables Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Printed with soy ink on recycled paper Laboratory / Facility Index FY 2010 Congressional Budget Page 1 of 3 (Dollars In Thousands) 2:08:56PM Department Of Energy 5/4/2009 Page Number FY 2008 Appropriation FY 2009 Appropriation FY 2010 Request Laboratory Table 1 1 $1,200

357

SANDIA NATIONAL LABORATORIES  

NLE Websites -- All DOE Office Websites (Extended Search)

Impacts on Sandia and the Nation Impacts on Sandia and the Nation 2 SANDIA NATIONAL LABORATORIES 3 LDRD Impacts on Sandia and the Nation For further information, contact: Wendy R. Cieslak Senior Manager, Science, Technology, and Engineering Strategic Initiatives wrciesl@sandia.gov (505) 844-8633 or Henry R. Westrich LDRD Program Manager hrwestr@sandia.gov 505-844-9092 LDRD Impacts on Sandia and the Nation ABOUT THE COVER: Images from some of the case studies in this brochure: a near-UV light- emitting diode (LED), a cell membrane, a NISAC model, synthetic aperture radar (SAR) image of Washington, D.C. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT 4 SANDIA NATIONAL LABORATORIES 5 LDRD Impacts on Sandia and the Nation Sandia National Laboratories' Laboratory Directed Research and Development (LDRD) Program:

358

Laboratory Protection Division, Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Points of Contact Points of Contact Organization Chart (pdf) Groups Emergency Services Emergency Management Security Operations BNL Site Access Main Gate Access Forms Welcome to the... Laboratory Protection Division (LP) Mission Statement: To serve and protect Brookhaven National Laboratory's staff, guests, and interests from the undesirable consequences of unwanted events by providing preparedness, assessment, engineering, and immediate response services for all types of security and non-security related emergencies. Protect DOE special nuclear materials, classified matter, sensitive information, and property against theft, diversion, or destruction; prevent the sabotage of programs that could result in significant scientific or financial impact; prevent the malevolent release of hazardous materials including radiological, chemical, and infectious agents or other criminal acts protecting people, property, and national security, providing a safe and secure environment for employees, the public, and the environment.

359

Los Alamos National Laboratory solar program  

DOE Green Energy (OSTI)

Progress is reported for passive solar tasks performed at the Los Alamos National Laboratory during FY 1982. Results on test cell experiments for the 1981-1982 winter are reported, as are Class A performance monitoring, passive cooling, both residential and commercial economic cooling assessments, and thermal effects of distributed mass in passive buildings.

Reisfeld, S.K.; Neeper, D.A.

1982-01-01T23:59:59.000Z

360

Department of Energy Laboratory Accreditation Program Administration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NOT MEASUREMENT NOT MEASUREMENT SENSITIVE DOE-STD-1111-2013 July 2013 DOE STANDARD DEPARTMENT OF ENERGY LABORATORY ACCREDITATION PROGRAM ADMINISTRATION U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1111-2013 This document is available on the Department of Energy Office of Health, Safety and Security Approved DOE Technical Standards Web Site at www.hss.energy.gov/nuclearsafety/ns/techstds/ ii DOE-STD-1111-2013 FOREWORD The Department of Energy (DOE) implemented the DOE Laboratory Accreditation Program (DOELAP) for external dosimetry in 1987 and for radiobioassay in 1998. DOELAP strives to maintain and improve the competency of dose measurement laboratories through performance

Note: This page contains sample records for the topic "laboratory distributed active" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

DATA RECOVERY EFFORTS AT IDAHO NATIONAL LABORATORY, OAK RIDGE NATIONAL LABORATORY, AND SAVANNAH RIVER NATIONAL LABORATORY  

SciTech Connect

Abstract was already submitted. Could not find the previous number. Would be fine with attaching/update of old number. Abstract Below: Modern nuclear facilities will have significant process monitoring capability for their operators. These systems will also be used for domestic safeguards applications, which has led to research over new diversion-detection algorithms. Curiously missing from these efforts are verification and validation data sets. A tri-laboratory project to locate the existing data sets and recover their data has yielded three major potential sources of data. The first is recovery of the process monitoring data of the Idaho Chemical Processing Plant, which now has a distributable package for algorithm developers. The second data set is extensive sampling and process data from Savannah River National Laboratory’s F- and H-canyon sites. Finally, high fidelity data from the start-up tests at the Barnwell Reprocessing Facility is in recovery. This paper details the data sets and compares their relative attributes.

Richard Metcalf; Saleem Salaymeh; Michael Ehinger

2010-07-01T23:59:59.000Z

362

Operational Awareness Oversight of the Argonne National Laboratory...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report for Operational Awareness Oversight of the Argonne National Laboratory Alpha-Gamma Hot Cell Facility Dates of Activity : 07172012 - 07202012 Report Preparer: Joseph P....

363

Lawrence Livermore National Laboratory Operational Drill at the...  

NLE Websites -- All DOE Office Websites (Extended Search)

HSS Independent Activity Report - Rev. 0 Report Number: HIAR LLNL-2013-02-27 Site: Lawrence Livermore National Laboratory (LLNL) Subject: Office of Enforcement and Oversight's...

364

A Review of OLED Research at Naval Research Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Division at Naval Research Laboratory. Her research is focused on organic light emitting diode (OLED) material and devices. She will discuss the research activities at Naval...

365

Energy Systems High Pressure Test Laboratory (Fact Sheet), NREL...  

NLE Websites -- All DOE Office Websites (Extended Search)

with energy storage activities such as ultra- capacitors, super conducting magnetic flywheel and mechanical energy storage systems laboratories for an integrated approach to...

366

Operational Awareness Oversight of the New Brunswick Laboratory...  

NLE Websites -- All DOE Office Websites (Extended Search)

HSS Independent Activity Report - Rev. 0 Report Number: HIAR NBL-2012-07-20 Site: New Brunswick Laboratory Subject: Office of Enforcement and Oversight's Office of Safety and...

367

Operational Awareness Oversight of the New Brunswick Laboratory...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NBL-2012-07-20 Site: New Brunswick Laboratory Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Operational...

368

Orientation Visit to the New Brunswick Laboratory, November 2011  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NBL-2011-11-21 Site: New Brunswick Laboratory Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for the...

369

Sandia National Laboratories Emergency Action Levels and Associated...  

NLE Websites -- All DOE Office Websites (Extended Search)

New Mexico Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for the Sandia National Laboratories...

370

Analysis Activities at Sandia National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

concepts - Carbon sequestration in Southwest Regional Partnership - Nuclear-to-H 2 via thermochemical * Planned (funded LDRD projects) - California H 2 Highway Blueprint...

371

SURVEY OF FISHERY ACTIVITIES Marine Biological Laboratory  

E-Print Network (OSTI)

Jeppson ­ c. 498-5444 Craig Hansen (Chinook FD) ­ c 945-3834 Rodney Dresbach (Flathead-West Valley) c 406

372

NOAA Air Resources Laboratory Quarterly Activity Report  

E-Print Network (OSTI)

by the MDNR, and hand-over to the landlord (NNSA) for completion of remedies and all associated monitoring-00276 page 4 of 53 Unresolved Issues 1. NNSA acceptance of long-term stewardship responsibilities needs and all remediation efforts completed or implementation begun. NNSA will then be expected to take over

373

NIST Physics Laboratory: Technical Activities 2001  

Science Conference Proceedings (OSTI)

... atomic physics, optical technology, ionizing radiation measurements, time and frequency measurements, quantum physics, fundamental constants ...

374

NIST Physics Laboratory: Technical Activities 2002  

Science Conference Proceedings (OSTI)

... atomic physics, optical technology, ionizing radiation measurements, time and frequency measurements, quantum physics, fundamental constants ...

375

NOAA Air Resources Laboratory Quarterly Activity Report  

E-Print Network (OSTI)

Start. Wis- senschaftsministerin Prof. Dr. Johan- Windenergie europĂ€isch studieren UniversitĂ€t erhĂ€lt Delft University of Technology koordinierte Masterstudiengang zur Windenergie ergĂ€nzt die enge Zusam Windenergiesysteme und Offshore-Windenergietechnik. Das ein- fĂŒhrende Semester absolvieren alle Stu- dierenden an der

376

Sandia National Laboratories Carbon Activation Process  

development as a hybrid power source for ... layer capacitors, while storing high levels of electrical ... Previous methods utilized high temperatures, ...

377

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3, 2010 3, 2010 CX-002242: Categorical Exclusion Determination Micro-X-Ray Diffraction Laboratory CX(s) Applied: B3.6 Date: 05/13/2010 Location(s): Pittsburgh, Pennsylvania Office(s): Fossil Energy, National Energy Technology Laboratory May 13, 2010 CX-002241: Categorical Exclusion Determination Maximizing Alternative Fuel Use and Distribution in Colorado CX(s) Applied: B5.1 Date: 05/13/2010 Location(s): Aurora, Colorado Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 13, 2010 CX-002240: Categorical Exclusion Determination Heavy Oil Viscous Pressure-Volume Temperature (PVT) - Houston CX(s) Applied: B3.6 Date: 05/13/2010 Location(s): Houston, Texas Office(s): Fossil Energy, National Energy Technology Laboratory May 13, 2010 CX-002238: Categorical Exclusion Determination

378

Savannah River National Laboratory  

O that are associated with steam reforming/ water gas shift reactions. Perovskite materials (ABO 3 ... established distribution networks, ...

379

Savannah River National Laboratory  

At a glance Additive Manufacturing (3D Printing): Selectively Printed Conductive Pathways ... sufficient manufacturing capacity, established distribution

380

BNL-52351-2003 Brookhaven National Laboratory's  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 Brookhaven National Laboratory's Annual Report of Laboratory Directed Research & Development Program Activities For FY 2003 Director's Office BROOKHAVEN NATIONAL LABORATORY BROOKHAVEN SCIENCE ASSOCIATES UNITED STATES DEPARTMENT OF ENERGY UPTON, NEW YORK 1 1973-5000 UNDER CONTRACT NO. DE-AC02-98CH10886 December 2003 Acknowledgments The Laboratory Directed Research and Development (LDRD) Program is managed by Leonard Newman, who serves as the Scientific Director, and by Kevin Fox, Special Assistant to the Assistant Laboratory Director for Finance (ALDF). Preparation of the FY 2003 report was coordinated and edited by Leonard Newman and Kevin Fox, who wish to thank D.J. Greco, Regina Paquette, and Maria Ohlsen for their assistance in organizing, typing, and proofing

Note: This page contains sample records for the topic "laboratory distributed active" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

BNL-52351-2004 Brookhaven National Laboratory's  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 Brookhaven National Laboratory's Annual Report of Laboratory Directed Research & Development Program Activities For FY 2004 Director's Office BROOKHAVEN NATIONAL LABORATORY BROOKHAVEN SCIENCE ASSOCIATES UNITED STATES DEPARTMENT OF ENERGY UPTON, NEW YORK 11973-5000 UNDER CONTRACT NO. DE-AC02-98CH10886 December 2004 Acknowledgments The Laboratory Directed Research and Development (LDRD) Program is managed by Leonard Newman, who serves as the Scientific Director, and by Kevin Fox, Special Assistant to the Assistant Laboratory Director for Finance (ALDF). Preparation of the FY 2004 report was coordinated and edited by Leonard Newman and Kevin Fox, who wish to thank D.J. Greco, Regina Paquette, and Maria Ohlsen for their assistance in organizing, typing, and proofing

382

Sandia National Laboratories Orientation Visit, January 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1-04 1-04 Site: Sandia National Laboratories Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for the Orientation Visit to the Sandia National Laboratories Dates of Activity : 01/04/2012 Report Preparer: Joseph P. Drago Activity Description/Purpose: The U.S. Department of Energy (DOE) Office of Enforcement and Oversight, within the Office of Health, Safety and Security (HSS), conducted an orientation visit to the Sandia National Laboratories (SNL) and the Sandia Site Office (SSO), Albuquerque, NM, on January 4, 2012, for the HSS site lead. The purpose of the visit was to discuss the nuclear safety oversight strategy, describe the site lead program, increase HSS personnel's operational awareness of the Lab's activities,

383

Safeguards Laboratory (SL) | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Safeguards Laboratory Safeguards Laboratory May 30, 2013 The Safeguards Laboratory is a Department of Energy user facility equipped with a comprehensive set of field-deployable instrumentation for safeguards system development and personnel training. Mock-ups using industrial equipment and reference nuclear materials simulate real-world conditions for training, testing, and evaluations. The lab's openness and availability to the private sector enable development of new technologies that combat the proliferation of weapons of mass destruction. Applications Training and International Outreach Nondestructive Analysis Measurements Instrument Evaluations Integrated Safeguards Methodologies Measurement Technique Development Specifications Gamma and X-ray detection systems Handheld survey instruments

384

Vehicle Research Laboratory - FEERC  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Research Laboratory Vehicle Research Laboratory Expertise The overall FEERC team has been developed to encompass the many disciplines necessary for world-class fuels, engines, and emissions-related research, with experimental, analytical, and modeling capabilities. Staff members specialize in areas including combustion and thermodynamics, emissions measurements, analytical chemistry, catalysis, sensors and diagnostics, dynamometer cell operations, engine controls and control theory. FEERC engineers have many years of experience in vehicle research, chassis laboratory development and operation, and have developed specialized systems and methods for vehicle R&D. Selected Vehicle Research Topics In-use investigation of Lean NOx Traps (LNTs). Vehicle fuel economy features such as lean operation GDI engines,

385

Sonication standard laboratory module  

DOE Patents (OSTI)

A standard laboratory module for automatically producing a solution of cominants from a soil sample. A sonication tip agitates a solution containing the soil sample in a beaker while a stepper motor rotates the sample. An aspirator tube, connected to a vacuum, draws the upper layer of solution from the beaker through a filter and into another beaker. This beaker can thereafter be removed for analysis of the solution. The standard laboratory module encloses an embedded controller providing process control, status feedback information and maintenance procedures for the equipment and operations within the standard laboratory module.

Beugelsdijk, Tony (Los Alamos, NM); Hollen, Robert M. (Los Alamos, NM); Erkkila, Tracy H. (Los Alamos, NM); Bronisz, Lawrence E. (Los Alamos, NM); Roybal, Jeffrey E. (Santa Fe, NM); Clark, Michael Leon (Menan, ID)

1999-01-01T23:59:59.000Z

386

National Energy Technology Laboratory Accomplishments FY 2004  

NLE Websites -- All DOE Office Websites (Extended Search)

NETL Accomplishments FY 2004 NETL Accomplishments FY 2004 2 MESSAGE FROM THE DIRECTOR It is my pleasure to present the National Energy Technology Laboratory's (NETL's) Accomplishments Report for fiscal year 2004. The report responds to the Government Performance and Results Act of 1993 by describing how NETL has spent taxpayer funds. It emphasizes the results of NETL's activities-not the activities themselves. It demonstrates that NETL has upheld the trust of the American taxpayer and has wisely used taxpayer funds to achieve meaningful results that benefit the country. This laboratory has been evolving for nearly 100 years. What was once a small experimental laboratory near downtown Pittsburgh, is now a major research laboratory with facilities in four states-Alaska, Oklahoma, Pennsylvania, and

387

Nanomaterials Safety Implementation Plan, Ames Laboratory | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nanomaterials Safety Implementation Plan, Ames Laboratory Nanomaterials Safety Implementation Plan, Ames Laboratory Nanomaterials Safety Implementation Plan, Ames Laboratory Ames Laboratory has limited activities involving nanomaterials. Potential hazards associated with nanomaterials work are addressed through the Laboratory's Integrated Safety Management System (ISMS) and specifically the Readiness Review process. Readiness Review provides the identification and evaluation of potential hazards and establishes effective control mechanisms to ensure protection of the employee and the environment. To date, hazards associated with projects involving nanomaterials have been determined to be amenable to conventional controls such as ventilation and use of personal protective equipment. The Laboratory recognizes that nanotechnology is an emerging field and that

388

FY 2006 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory Tables Laboratory Tables Preliminary Department of Energy FY 2006 Congressional Budget Request Office of Management, Budget and Evaluation/CFO February 2005 Laboratory Tables Preliminary Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Laboratory / Facility Index FY 2006 Congressional Budget Page 1 of 3 (Dollars In Thousands) 3:43:16PM Department Of Energy 1/27/2005 Page Number FY 2004 Comp/Approp FY 2005 Comp/Approp

389

Fy 2009 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory Tables Laboratory Tables Preliminary February 2008 Office of Chief Financial Officer Department of Energy FY 2009 Congressional Budget Request Laboratory Tables Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Printed with soy ink on recycled paper Laboratory / Facility Index FY 2009 Congressional Budget Page 1 of 3 (Dollars In Thousands) 8:59:25AM Department Of Energy 1/30/2008 Page Number FY 2007 Appropriation FY 2008 Appropriation FY 2009

390

Savannah River National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Savannah River National Laboratory Savannah River National Laboratory srnl.doe.gov SRNL is a DOE National Laboratory operated by Savannah River Nuclear Solutions. At a glance Additive Manufacturing (3D Printing): Selectively Printed Conductive Pathways Researchers at the Savannah River National Laboratory (SRNL) have developed a rapid prototype conductive material that can be used for electrical shielding or circuit fabrication. Background Several rapid prototype technologies currently exist. A few of the technologies produce metallic parts, but the majority produce nonconductive parts made from various grades of plastic. In all of these technologies however, only conductive material or nonconductive material can be used within one part created. There is no known option for 3D printing conductive material for

391

Los Alamos National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

remembers former director Harold remembers former director Harold Agnew September 30, 2013 Manhattan Project pioneer was LANL director from 1970-1979 LOS ALAMOS, N.M., Sept. 30, 2013-Los Alamos National Laboratory Director Charlie McMillan today remembered Harold Agnew as a national treasure who transformed the Laboratory into what it is in the 21st century. "His contributions to the Laboratory made us the institution we are today," McMillan said. "It was his vision - decades ago - that recognized that national security science - 2 - brings value to a broad spectrum of breakthroughs. Los Alamos and the nation will be forever in Harold's debt." Agnew died at home on Sunday, Sept. 29, his family announced. He was the third director of Los Alamos National Laboratory, succeeding Robert

392

FY 2007 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory tables Laboratory tables preliminary Department of Energy FY 2007 Congressional Budget Request February 2006 Printed with soy ink on recycled paper Office of Chief Financial Officer Laboratory tables preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Laboratory / Facility Index FY 2007 Congressional Budget Page 1 of 3 (Dollars In Thousands) 12:10:40PM Department Of Energy 1/31/2006 Page Number FY 2005 Appropriation FY 2006 Appropriation FY 2007

393

Los Alamos National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

employees receive Pollution Prevention employees receive Pollution Prevention Awards April 23, 2013 Protecting environment, saving taxpayer dollars LOS ALAMOS, N.M., April 23, 2013-Nearly 400 Los Alamos National Laboratory employees on 47 teams received Pollution Prevention awards for protecting the environment and saving taxpayers more than $8 million. The employees were recognized at the Laboratory's annual Pollution Prevention Awards ceremony on Monday (April 22), Earth Day. "The Pollution Prevention Awards are the result of people taking the initiative to improve their own operations," said Pat Gallagher of the Laboratory's Environmental - 2 - Stewardship group. "These are clever, innovative, homegrown and home-owned ideas that save the Laboratory and taxpayers millions of dollars each year while reducing

394

FY 2011 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory Tables Laboratory Tables Department of Energy FY 2011 Congressional Budget Request DOE/CF-0055 March 2010 Office of Chief Financial Officer Laboratory Tables Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Department of Energy FY 2011 Congressional Budget Request DOE/CF-0055 Laboratory / Facility Index FY 2011 Congressional Budget Page 1 of 3 (Dollars In Thousands) 6:24:57AM Department Of Energy 1/29/2010 Page

395

FY 2008 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory Table Laboratory Table Preliminary Department of Energy FY 2008 Congressional Budget Request February 2007 Office of Chief Financial Officer Laboratory Table Preliminary Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Laboratory / Facility Index FY 2008 Congressional Budget Page 1 of 3 (Dollars In Thousands) 6:51:02AM Department Of Energy 2/1/2007 Page Number FY 2006 Appropriation FY 2007 Request FY 2008 Request

396

Brookhaven National Laboratory, Office  

NLE Websites -- All DOE Office Websites (Extended Search)

of 2006 the Office of Educational Programs (OEP) at the U.S. Department of Energy's Brookhaven National Laboratory launched the Open Space Stewardship Program as part of its Green...

397

Los Alamos National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

to 150 million over five years LOS ALAMOS, N.M., May 14, 2013-Los Alamos National Laboratory has awarded a master task order agreement in which three small businesses will...

398

Los Alamos National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

to 400 million over five years LOS ALAMOS, N.M., Sept. 23, 2013-Los Alamos National Laboratory has awarded master task order agreements to three small businesses for environmental...

399

Laboratory announces 2008 Fellows  

NLE Websites -- All DOE Office Websites (Extended Search)

Kurt E. Sickafus recognized for contributions. December 4, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as...

400

Alamos National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Economic development in Northern New Mexico focus of new podcast from Los Alamos National Laboratory November 25, 2013 Podcast part of Lab's new multi-channel effort to better...

Note: This page contains sample records for the topic "laboratory distributed active" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Lawrence Berkeley Laboratory 1993 Site Environmental Report  

SciTech Connect

This annual Site Environmental Report summarizes Lawrence Berkeley Laboratory`s (LBL`s) environmental activities in calendar year (CY) 1993. The purpose of this report is to characterize site environmental management performance, confirm compliance status with environmental standards and requirements, and highlight significant programs and efforts. Its format and content are consistent with the requirements of the US Department of Energy (DOE) Order 5400.1, General Environmental Protection Program.

1994-05-01T23:59:59.000Z

402

Lawrence Berkeley Laboratory 1994 site environmental report  

SciTech Connect

The 1994 Site Environmental Report summarizes environmental activities at Lawrence Berkeley Laboratory (LBL) for the calendar year (CY) 1994. The report strives to present environmental data in a manner that characterizes the performance and compliance status of the Laboratory`s environmental management programs when measured against regulatory standards and DOE requirements. The report also discusses significant highlight and planning efforts of these programs. The format and content of the report are consistent with the requirements of the U.S. Department of Energy (DOE) Order 5400.1, General Environmental Protection Program.

NONE

1995-05-01T23:59:59.000Z

403

ASHRAE's Living Laboratory  

SciTech Connect

ASHRAE recently remodeled its headquarters building in Atlanta with the intention of making the building a LEED Gold building. As part of that renovation the building was enhanced with additional sensors and monitoring equipment to allow it to serve as a Living Laboratory for use by members and the general public to study the detailed energy use and performance of buildings. This article provides an overview of the Living Laboratory and its capabilities.

Jarnagin, Ronald E.; Brambley, Michael R.

2008-10-01T23:59:59.000Z

404

CERTS Microgrid Laboratory Test Bed  

E-Print Network (OSTI)

emerging potential of distributed generation using a systemKeywords: CHP, UPS, distributed generation, intentionalmanagement systems, distributed generation, and modeling

Lasseter, R. H.

2010-01-01T23:59:59.000Z

405

National Renewable Energy Laboratory: 35 Years of Innovation (Brochure)  

SciTech Connect

This brochure about NREL is a national version that can be distributed to visitors and any other interested parties. It provides general information about laboratory, its mission, and operations.

Not Available

2012-11-01T23:59:59.000Z

406

Distributed computing at the SSCL  

SciTech Connect

The rapid increase in the availability of high performance, cost- effective RISC/UNIX workstations has been both a blessing and a curse. The blessing of having extremely powerful computing engines available on the desk top is well-known to many users. The user has tremendous freedom, flexibility, and control of his environment. That freedom can, however, become the curse of distributed computing. The user must become a system manager to some extent, he must worry about backups, maintenance, upgrades, etc. Traditionally these activities have been the responsibility of a central computing group. The central computing group, however, may find that it can no linger provide all of the traditional services. With the plethora of workstations now found on so many desktops throughout the entire campus or lab, the central computing group may be swamped by support requests. This talk will address several of these computer support and management issues by discussing the approach taken at the Superconducting Super Collider Laboratory. In addition, a brief review of the future directions of commercial products for distributed computing and management will be given.

Cormell, L.; White, R.

1993-05-01T23:59:59.000Z

407

Materials Preparation Center | Ames Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Preparation Center Materials Preparation Center Materials Preparation Center The Materials Preparation Center (MPC) is a U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences & Engineering specialized research center located at the Ames Laboratory. MPC operations are primarily funded by the Materials Discovery, Design, & Synthesis team's Synthesis & Processing Science core research activity. MPC is recognized throughout the worldwide research community for its unique capabilities in purification, preparation, and characterization of: Rare earth metals [learn about rare earths] Single crystal growth Metal Powders/Atomization Alkaline-earth metals [learn more, wikipedia] External Link Icon Refractory metal [learn more, wikipedia] External Link Icon

408

Equitable distribution  

Science Conference Proceedings (OSTI)

The problem of distributing available resources occurs in a great variety of networks, each with peculiarities of its own. Coal from mines has to be distributed to central dumps and to small yards. Ice cream must be distributed only to refrigerated stores ...

John A. Gosden

1963-05-01T23:59:59.000Z

409

MEDICAL LABORATORY SCIENCES The role of the medical laboratory  

E-Print Network (OSTI)

in Medical Laboratory Sciences and are eligible to sit for national certification examinations. Admission website, wichita.edu/chp under Medical Laboratory Sciences. The application requires a completed

410

Sandia National Laboratories: Sandia National Laboratories: Missions:  

NLE Websites -- All DOE Office Websites (Extended Search)

About Nuclear Weapons at Sandia About Nuclear Weapons at Sandia Weapons Researcher World-class scientists and engineers come to Sandia to conduct breakthrough research in nuclear weapons. Sandia designs more than 6,300 parts of a modern nuclear weapon's 6,500 components. Our state-of-the-art laboratories facilitate large-scale testing and computer simulation. Sandia's work is of the highest consequence and those doing the work face awesome responsibilities. Unlike other national labs, which focus on the physics package, Sandia's work is to weaponize the physics package. Sandia must ensure that the other 95% of the weapon's parts work perfectly at every point of contact with the delivery systems. This requires the broadest competencies in engineering, with a deep science foundation. At the core of Sandia's nuclear weapons program is warhead systems

411

Contact Us | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Contact Us Contact Us Address and phone Argonne National Laboratory 9700 S. Cass Avenue Lemont, IL 60439. Phone: 630/252-2000 For members of the news media News releases online Argonne media contacts For collaboration opportunities For information on joint research or licensing of Argonne technologies and inventions, please contact Technology Development and Commercialization. For student appointments Please see Student and Faculty Opportunities For additional assistance contact DEP_webMaster@anl.gov For job openings or to submit a resume Please see Employment Opportunities For additional assistance contact hrmaster@anl.gov For Argonne retirees and former employees Please keep your contact information current. We may need periodic contact with former Argonne employees (e.g., distributing royalty checks, receiving

412

Sustainability Report: National Renewable Energy Laboratory (NREL) 2003 -- 2004  

DOE Green Energy (OSTI)

The National Renewable Energy Laboratory's (NREL) Sustainability Report for 2003-2004 highlights the Laboratory's comprehensive sustainability activities. These efforts demonstrate NREL's progress toward achieving overall sustainability goals. Sustainability is an inherent centerpiece of the Laboratory's work. NREL's mission--to develop renewable energy and energy efficiency technologies and practices and transfer knowledge and innovations to address the nation's energy and environmental goals--is synergistic with sustainability. The Laboratory formalized its sustainability activities in 2000, building on earlier ideas--this report summarizes the status of activities in water use, energy use, new construction, green power, transportation, recycling, environmentally preferable purchasing, greenhouse gas emissions, and environmental management.

Not Available

2004-09-01T23:59:59.000Z

413

Information Technology Laboratory Newsletter  

Science Conference Proceedings (OSTI)

... Software Reference Library and is distributed as NIST Special Database 28. ... the award for his role as senior advisor to the CIO Council, providing ...

2013-05-02T23:59:59.000Z

414

SANDIA NATIONAL LABORATORIES  

NLE Websites -- All DOE Office Websites (Extended Search)

sources geographically close to where power is consumed. This project pursues a smart-grid design, based on local microgrids that are highly endowed with sensors distributed...

415

Distribution Integrity Management Plant (DIMP)  

SciTech Connect

This document is the distribution integrity management plan (Plan) for the Los Alamos National Laboratory (LANL) Natural Gas Distribution System. This Plan meets the requirements of 49 CFR Part 192, Subpart P Distribution Integrity Management Programs (DIMP) for the LANL Natural Gas Distribution System. This Plan was developed by reviewing records and interviewing LANL personnel. The records consist of the design, construction, operation and maintenance for the LANL Natural Gas Distribution System. The records system for the LANL Natural Gas Distribution System is limited, so the majority of information is based on the judgment of LANL employees; the maintenance crew, the Corrosion Specialist and the Utilities and Infrastructure (UI) Civil Team Leader. The records used in this report are: Pipeline and Hazardous Materials Safety Administration (PHMSA) 7100.1-1, Report of Main and Service Line Inspection, Natural Gas Leak Survey, Gas Leak Response Report, Gas Leak and Repair Report, and Pipe-to-Soil Recordings. The specific elements of knowledge of the infrastructure used to evaluate each threat and prioritize risks are listed in Sections 6 and 7, Threat Evaluation and Risk Prioritization respectively. This Plan addresses additional information needed and a method for gaining that data over time through normal activities. The processes used for the initial assessment of Threat Evaluation and Risk Prioritization are the methods found in the Simple, Handy Risk-based Integrity Management Plan (SHRIMP{trademark}) software package developed by the American Pipeline and Gas Agency (APGA) Security and Integrity Foundation (SIF). SHRIMP{trademark} uses an index model developed by the consultants and advisors of the SIF. Threat assessment is performed using questions developed by the Gas Piping Technology Company (GPTC) as modified and added to by the SHRIMP{trademark} advisors. This Plan is required to be reviewed every 5 years to be continually refined and improved. Records for all piping system installed after the effective date of this Plan will be captured and retained in the UI records documentation system. Primary Utility Asbuilts are maintained by Utilities Mapping (UMAP) and additional records are maintained on the N drive. Engineering Change Notices (ECNs) are stored on the N drive under configuration management and kept up by Utilities and Infrastructure Division Office (UI-DO). Records include, at a minimum, the location where new piping and appurtenances are installed and the material of which they are constructed.

Gonzales, Jerome F. [Los Alamos National Laboratory

2012-05-07T23:59:59.000Z

416

Energy Systems High Pressure Test Laboratory (Fact Sheet)  

Science Conference Proceedings (OSTI)

This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Energy Systems High Pressure Test Laboratory at the Energy Systems Integration Facility. The purpose of the Energy Systems High Pressure Test Laboratory at NREL's Energy Systems Integration Facility (ESIF) is to provide space where high pressure hydrogen components can be safely tested. High pressure hydrogen storage is an integral part of energy storage technology for use in fuel cell and in other distributed energy scenarios designed to effectively utilize the variability inherent with renewable energy sources. The high pressure storage laboratory is co-located with energy storage activities such as ultra-capacitors, super conducting magnetic flywheel and mechanical energy storage systems laboratories for an integrated approach to system development and demonstration. Hazards associated with hydrogen storage at pressures up to 10,000 psi include oxygen displacement, combustion, explosion, and pressurization of room air due to fast release and physical hazards associated with burst failure modes. A critical understanding of component failure modes is essential in developing reliable, robust designs that will minimize failure risk beyond the end of service life. Development of test protocol for accelerated life testing to accurately scale to real world operating conditions is essential for developing regulations, codes and standards required for safe operation. NREL works closely with industry partners in providing support of advanced hydrogen technologies. Innovative approaches to product design will accelerate commercialization into new markets. NREL works with all phases of the product design life cycle from early prototype development to final certification testing. High pressure tests are performed on hydrogen components, primarily for the validation of developing new codes and standards for high pressure hydrogen applications. The following types of tests can be performed: Performance, Component and system level efficiency, Strength of materials and hydrogen compatibility, Safety demonstration, Model validation, and Life cycle reliability.

Not Available

2011-10-01T23:59:59.000Z

417

60 years of great science [Oak Ridge National Laboratory  

Science Conference Proceedings (OSTI)

This issue highlights Oak Ridge National Laboratory's contributions in more than 30 areas of research and related activities during the past 60 years and provides glimpses of current activities that are carrying on this heritage.

None

2003-01-01T23:59:59.000Z

418

Tritium laboratory with multiple purposes at NIPNE Magurele Romania  

Science Conference Proceedings (OSTI)

The Tritium Laboratory from NIPNE (Romania)) is part of Radioisotope Research and Production Center. The Tritium Laboratory has been in operation since 1960, and carries out R and D activities involving tritium sources in gaseous, liquids and solid state, provides specialized service to CANDU NPP Cernavoda (Romania)), and provides tritium assay services to internal and external customers. The paper presents the activities and perspectives of Tritium Laboratory and its performances in accordance with Quality System Management. (authors)

Matei, L.; Postolache, C. [Horia Hulubei, National Inst. for Physics and Nuclear Engineering NIPNE, 407 Atomistilor street, 077125 Magurele Ilfov (Romania)

2008-07-15T23:59:59.000Z

419

FY 2012 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 5 Department of Energy FY 2012 Congressional Budget Request Laboratory Tables y Preliminary February 2012 Office of Chief Financial Officer DOE/CF-0065 Department of Energy FY 2012 Congressional Budget Request Laboratory Tables P li i Preliminary h b d i d i hi d h l l f b d h i f h The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. February 2012 Office of Chief Financial Officer Printed with soy ink on recycled paper Laboratory / Facility Index FY 2012 Congressional Budget

420

Laboratory disputes citizens' lawsuit  

NLE Websites -- All DOE Office Websites (Extended Search)

Lab disputes ctizens' lawsuit Lab disputes ctizens' lawsuit Laboratory disputes citizens' lawsuit Lab officials expressed surprise to a lawsuit alleging noncompliance with the federal Clean Water Act filed today by citizens groups. February 7, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Contact James E. Rickman

Note: This page contains sample records for the topic "laboratory distributed active" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

FY 2013 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 8 Department of Energy FY 2013 Congressional Budget Request Laboratory Tables y Preliminary February 2012 Office of Chief Financial Officer DOE/CF-0078 Department of Energy FY 2013 Congressional Budget Request Laboratory Tables P li i Preliminary h b d i d i hi d h l l f b d h i f h The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. February 2012 Office of Chief Financial Officer Printed with soy ink on recycled paper Laboratory / Facility Index FY 2013 Congressional Budget

422

Alamos National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

record neutron beam at Los record neutron beam at Los Alamos National Laboratory July 10, 2012 New method has potential to advance materials measurement LOS ALAMOS, New Mexico, July 10, 2012-Using a one-of-a-kind laser system at Los Alamos National Laboratory, scientists have created the largest neutron beam ever made by a short-pulse laser, breaking a world record. Neutron beams are usually made with particle accelerators or nuclear reactors and are commonly used in a wide variety of scientific research, particularly in advanced materials science. Using the TRIDENT laser, a unique and powerful 200 trillion-watt short-pulse laser, scientists from Los Alamos, the Technical University of Darmstadt, Germany, and Sandia National Laboratories focus high-intensity light on an ultra-thin plastic sheet

423

IDAHO NATIONAL LABORATORY  

NLE Websites -- All DOE Office Websites (Extended Search)

History of the Idaho National Laboratory (INL) History of the Idaho National Laboratory (INL) You are here: DOE-ID Home > Inside ID > Brief History Site History The Idaho National Laboratory (INL), an 890-square-mile section of desert in southeast Idaho, was established in 1949 as the National Reactor Testing Station. Initially, the missions at the INL were the development of civilian and defense nuclear reactor technologies and management of spent nuclear fuel. Fifty-two reactors—most of them first-of-a-kind—were built, including the Navy’s first prototype nuclear propulsion plant. Of the 52 reactors, three remain in operation at the site. In 1951, the INL achieved one of the most significant scientific accomplishments of the century—the first use of nuclear fission to produce a usable quantity of electricity at the Experimental Breeder Reactor No.

424

National Energy Technology Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Design Standards for the NETL Logo Design Standards for the NETL Logo May 2013 The Logo Display of the NETL logo is critical because this symbol represents who we are - it's our signature. Consistent application of the logo is crucial to the success of our identity. As the primary identifier of the National Energy Technology Laboratory, it is essential that the logo's appearance is consistent throughout all of the Laboratory's communications. Over time, consistent and repeated use of the logo will establish a strengthened visual identity for the laboratory. To ensure consistency it is critical for every user of the logo, regardless of personal preference, to use it in accordance with the guidelines that follow. The height of the NETL logo is .75 times the length, a 3 by 4 ratio. This relationship is always the same, regardless of

425

Advanced Hydride Laboratory  

DOE Green Energy (OSTI)

Metal hydrides have been used at the Savannah River Tritium Facilities since 1984. However, the most extensive application of metal hydride technology at the Savannah River Site is being planned for the Replacement Tritium Facility, a $140 million facility schedules for completion in 1990 and startup in 1991. In the new facility, metal hydride technology will be used to store, separate, isotopically purify, pump, and compress hydrogen isotopes. In support of the Replacement Tritium Facility, a $3.2 million, cold,'' process demonstration facility, the Advanced Hydride Laboratory began operation in November of 1987. The purpose of the Advanced Hydride Laboratory is to demonstrate the Replacement Tritium Facility's metal hydride technology by integrating the various unit operations into an overall process. This paper will describe the Advanced Hydride Laboratory, its role and its impact on the application of metal hydride technology to tritium handling.

Motyka, T.

1989-01-01T23:59:59.000Z

426

LANL: Materials Science Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science Laboratory (MSL) is Materials Science Laboratory (MSL) is an interdisciplinary facility dedicated to research on current materials and those of future interest. It is a 56,000 square-foot modern facility that can be easily reconfigured to accom- modate new processes and operations. It compris- es 27 laboratories, 15 support rooms, and 60 offices. The MSL supports many distinct materi- als research topics, grouped into four focus areas: mechanical behavior, materials processing, syn- thesis, and characterization. Research within the MSL supports programs of national interest in defense, energy, and the basic sciences. The MSL is a non-classified area in the Materials Science Complex in close proximity to classified and other non-classified materials research facilities. The Materials Science

427

SANDIA NATIONAL LABORATORIES  

NLE Websites -- All DOE Office Websites (Extended Search)

NATIONAL LABORATORIES NATIONAL LABORATORIES SF 6432-CS (10-98) SECTION II STANDARD TERMS & CONDITIONS FOR COMMERCIAL SERVICES PROCURED ON A FIRM FIXED PRICE OR FIXED RATE BASIS THE FOLLOWING CLAUSES APPLY TO THIS CONTRACT AS INDICATED UNLESS SPECIFICALLY DELETED, OR EXCEPT TO THE EXTENT THEY ARE SPECIFICALLY SUPPLEMENTED OR AMENDED IN WRITING IN THE SIGNATURE PAGE OR SECTION I. CS10 - DEFINITIONS The following terms shall have the meanings set forth below for all purposes of this contract. (a) GOVERNMENT means the United States of America and includes the U.S. Department of Energy (DOE) or any duly authorized representative thereof. (b) SANDIA means Sandia National Laboratories, operated by Sandia Corporation under Contract No. DE-ACO4-94AL-85000 with the U.S. Department of Energy.

428

Distribution Screening for Distributed Generation  

Science Conference Proceedings (OSTI)

As the deployment of renewable distributed generation increases, the need for traditional energy providers to interact with these resources increases. Detailed modeling and simulation of the distribution and distributed resources is a critical element to better analyze, understand and predict these interactions. EPRI has developed a tool for such analysis called OpenDSS. In addition, as part of the renewable integration program an applet was created for screening distributed generation (DG). This report ...

2009-12-23T23:59:59.000Z

429

Computing Frontier: Distributed Computing  

NLE Websites -- All DOE Office Websites (Extended Search)

Computing Computing Frontier: Distributed Computing and Facility Infrastructures Conveners: Kenneth Bloom 1 , Richard Gerber 2 1 Department of Physics and Astronomy, University of Nebraska-Lincoln 2 National Energy Research Scientific Computing Center (NERSC), Lawrence Berkeley National Laboratory 1.1 Introduction The field of particle physics has become increasingly reliant on large-scale computing resources to address the challenges of analyzing large datasets, completing specialized computations and simulations, and allowing for wide-spread participation of large groups of researchers. For a variety of reasons, these resources have become more distributed over a large geographic area, and some resources are highly specialized computing machines. In this report for the Snowmass Computing Frontier Study, we consider several questions about distributed computing

430

Distributed Wind Market Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

Distributed Wind Market Distributed Wind Market Applications T. Forsyth and I. Baring-Gould Technical Report NREL/TP-500-39851 November 2007 NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute * Battelle Contract No. DE-AC36-99-GO10337 Technical Report NREL/TP-500-39851 November 2007 Distributed Wind Market Applications T. Forsyth and I. Baring-Gould Prepared under Task No. WER6.7502 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

431

National Laboratories - EERE Commercialization Office  

National Laboratories. The U.S. Department of Energy's (DOE) national laboratories play an important role in the development and commercialization of ...

432

Leadership Development | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

include work-life balance, stress management and innovative solutions to career and gender issues. Photo Gallery: Strategic Laboratory Leadership Program Strategic Laboratory...

433

Biology Department - Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Deborah Stoner-Ma Brookhaven National Laboratory From: -5132011 Currently at: Stony Brook University Director of Chemical Laboratories Department of Chemistry Stony Brook...

434

CERTS Microgrid Laboratory Test Bed  

E-Print Network (OSTI)

and John Stevens are with Sandia National Laboratories,of the Technical Staff at Sandia National Labs in the Energybefore taking a job with Sandia National Laboratories and

Lasseter, R. H.

2010-01-01T23:59:59.000Z

435

Lawrence Wos | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Emeritus Lawrence Wos Larry Wos is an emeritus scientist in the Mathematics and Computer Science Division at Argonne National Laboratory; he joined the laboratory in February 1957....

436

Boulder Laboratories Building 1 Renovation  

Science Conference Proceedings (OSTI)

... fresh air for modern laboratory work, electrical ... of Building 1 at the NIST Boulder laboratories. ... conservation of water, energy, and construction ...

2012-02-13T23:59:59.000Z

437

DOE Laboratory Accreditation Program - Library  

NLE Websites -- All DOE Office Websites (Extended Search)

Library DOE Laboratory Accreditation Program DOELAP Regulatory Basis 10 CFR 835.402, Individual Monitoring, as amended DOELAP Program Administration DOE-STD 1111-98, DOE Laboratory...

438

Community Relations, Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Tour group Tour Program Meet the scientists who make the research at Brookhaven National Laboratory happen Brookhaven National Laboratory offers the unique opportunity for...

439

National Laboratories - EERE Commercialization Office  

National Laboratories. The U.S. Department of Energy's (DOE) national laboratories play an important role in the development and commercialization of new energy ...

440

Vehicle Technologies Office: National Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

National Laboratories Several of the U.S. Department of Energy (DOE) national laboratories host multidisciplinary transportation research centers. A wide-range of cutting-edge...

Note: This page contains sample records for the topic "laboratory distributed active" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

CERTS Microgrid Laboratory Test Bed  

NLE Websites -- All DOE Office Websites (Extended Search)

CERTS Microgrid Laboratory Test Bed Title CERTS Microgrid Laboratory Test Bed Publication Type Report Year of Publication 2010 Authors Lasseter, Robert H., Joseph H. Eto, Ben...

442

Lawrence Livermore National Laboratory (LLNL):  

NLE Websites -- All DOE Office Websites (Extended Search)

IPO Fact Sheet Strategic Diversity Program Lawrence Livermore National Laboratory (LLNL) works with other national laboratories to coordinate and integrate programmatic...

443

Science @WIPP: Underground Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

WIPP WIPP Underground Laboratory Double Beta Decay Dark Matter Biology Repository Science Renewable Energy Underground Laboratory The deep geologic repository at WIPP provides an ideal environment for experiments in many scientific disciplines, including particle astrophysics, waste repository science, mining technology, low radiation dose physics, fissile materials accountability and transparency, and deep geophysics. The designation of the Carlsbad Department of Energy office as a "field" office has allowed WIPP to offer its mine operations infrastructure and space in the underground to researchers requiring a deep underground setting with dry conditions and very low levels of naturally occurring radioactive materials. Please contact Roger Nelson, chief scientist of the Department of

444

National Energy Technology Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

CRTD-80 CRTD-80 National Energy Technology Laboratory Final Report Carbon Sequestration Project Review Meeting Greater Pittsburgh International Airport Hyatt Hotel September 26-29, 2005 Volume I: Meeting Summary and Recommendations José D. Figueroa NETL Project Manager and Meeting Coordinator D:\Project Files\EPD\RDS Sequestration Project Review Task\Volume 1\ASME Final Version Nov 28 2005\2005 Carbon Sequestration Project Review Meeting Final 11292005.doc National Energy Technology Laboratory Final Report Carbon Sequestration Project Review Meeting Greater Pittsburgh International Airport Hyatt Hotel September 26-29, 2005 Volume I: Meeting Summary and Recommendations José D. Figueroa NETL Project Manager and Meeting Coordinator

445

Sandia National Laboratories (SNL)  

National Nuclear Security Administration (NNSA)

Sandia National Laboratories (SNL) Sandia National Laboratories (SNL) Current Projects with the Russian Federation Project Title: Development of Models of Energy Transfer in Nanostructured Materials. Russian Institute: Institute for Problems in Mechanical Engineering, Russian Academy of Sciences (IPME RAS), St. Petersburg. Brief Description: To develop modeling approaches and simulations to examine energy transport and transfer in materials with structural features at the nanoscale. Tasks include developing such a model for thin crystal structures subjected to short duration laser excitation, and using atomic-scale simulations to evaluate microscopic expressions for stress and heat flux in crystals containing defects such as vacancies, dislocations and bi-material interfaces.

446

activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Detecting Things We Cannot See: Learning the Concepts of Control and Detecting Things We Cannot See: Learning the Concepts of Control and Variable in an Experiment Submitted by Anita Brook-Dupree, 1996 TRAC teacher at Fermilab, Teacher, Alternative Middle Years School, Philadelphia, PA. Particle physicists at Fermilab in Batavia, Illinois are faced with the problem of detecting the presence of sub-atomic particles they cannot see. During my summer as a TRAC teacher at Fermilab, I tried to think of ways to teach middle school students about things we cannot see. I want to thank my nine-year-old daughter Gia for the idea for the following activity. I was lamenting that I could not come up with ideas of how to relate the work of Fermilab scientists to anything that my students would understand. Then I was reminded by my daughter, that when I brought her to school on the

447

Hardware Development of a Laboratory-Scale Microgrid Phase 2: Operation and Control of a Two-Inverter Microgrid  

SciTech Connect

This report summarizes the activities of the second year of a three-year project to develop control software for microsource distributed generation systems. In this phase, a laboratory-scale microgrid was expanded to include: (1) Two emulated distributed resources; (2) Static switchgear to allow rapid disconnection and reconnection; (3) Electronic synchronizing circuitry to enable transient-free grid interconnection; (4) Control software for dynamically varying the frequency and voltage controller structures; and (5) Power measurement instrumentation for capturing transient waveforms at the interconnect during switching events.

Illindala, M. S.; Piagi, P.; Zhang, H.; Venkataramanan, G.; Lasseter, R. H.

2004-03-01T23:59:59.000Z

448

Accelerator Laboratory AGN-201M Nuclear Reactor Laboratory  

E-Print Network (OSTI)

Laboratory Nuclear Power Institute (NPI) Nuclear Science Center (1MW Triga Reactor) (NSC) Nuclear SecurityAccelerator Laboratory AGN-201M Nuclear Reactor Laboratory Center for Large-scale Scientific Simulations (CLASS) Fuel Cycle and Materials Laboratory (FCML) Institute for National Security, Education

449

The Guide to Brookhaven National Laboratory (BNL)  

NLE Websites -- All DOE Office Websites (Extended Search)

Guide to Brookhaven National Laboratory (BNL) Guide to Brookhaven National Laboratory (BNL) Print Friendly Document Because you are not running javascript or allowing active scripting, some features on this page my not work. >> Enable Javascript << Welcome to Brookhaven National Laboratory. Established in 1947 on Long Island, at Upton, N.Y., BNL is a multi-program national laboratory operated by Brookhaven Science Associates for the U.S. Department of Energy (DOE). Seven Nobel Prizes have been awarded for discoveries made at the Lab. BNL has a staff of approximately 3,000 scientists, engineers, technicians, and support staff and more than 4,000 guest researchers annually. To support DOE's missions, BNL carries out forefront basic and applied research with the cooperation and appropriate involvement of our scientific

450

NREL: Solar Radiation Research - Optical Metrology Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Optical Metrology Laboratory Optical Metrology Laboratory Photo of a laser and a spectral irradiance calibration system used to create lamp-detector alignment. Researchers use a spectral irradiance calibration alignment jig and a laser beam to align a calibration source and test unit. The NREL Optical Metrology Laboratory ensures that optical radiation resource measurement equipment is calibrated to national or international standards to ensure the quality and traceability of data. NREL considers optical radiation to range from 250 nm to 2,500 nm and to include the ultraviolet (250-400 nm), visible (400-750 nm), near infrared (750-1,100 nm), and shortwave infrared (1,100-2,500 nm) ranges. Activities The Optical Metrology Laboratory provides National Institute of Standards and Technology-traceable measurements for:

451

BNL-52351-2007 Laboratory Directed  

NLE Websites -- All DOE Office Websites (Extended Search)

BNL-52351-2007 BNL-52351-2007 Laboratory Directed Research & Development Program Activities For FY 2007 Annual Report BROOKHAVEN NATIONAL LABORATORY BROOKHAVEN SCIENCE ASSOCIATES UPTON, NEW YORK 11973-5000 UNDER CONTRACT NO. DE-AC02-98CH10886 UNITED STATES DEPARTMENT OF ENERGY December 2007 Acknowledgments The Laboratory Directed Research and Development (LDRD) Program is managed by Leonard Newman, who serves as the Scientific Director, and by Kevin Fox, Special Assistant to the Assistant Laboratory Director for Finance (ALDF). Preparation of the FY 2007 report was coordinated and edited by Leonard Newman who wishes to thank Sabrina Parrish for her assistance in organizing, typing, and proofing the document. A special thank you is also

452

ARGONNE NATIONAL LABORATORY  

NLE Websites -- All DOE Office Websites (Extended Search)

L e m o n t , I l l i n o i s ENVIRONMENTAL RADIOACTIVITY AT ARGONNE NATIONAL LABORATORY R e p o r t f o r t h e Y e a r 1954 W r i t t e n by J. Sedlet E x p e r i m e n t a l w...

453

Pacific Northwest National Laboratory  

E-Print Network (OSTI)

Science. Technology. Innovation. PNNL-SA-34741 Pacific Northwest National Laboratory (PNNL) is addressing cognition and learning to the development of student- centered, scenario-based training. PNNL's Pachelbel (PNNL) has developed a cognitive-based, student-centered approach to training that is being applied

454

Laboratories for the 21st Century | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratories for the 21st Century Laboratories for the 21st Century Laboratories for the 21st Century October 8, 2013 - 10:18am Addthis Laboratories for the 21st Century (Labs21) is a voluntary partnership program dedicated to improving the environmental performance of U.S. laboratories. The program is a joint initiative between the U.S. Department of Energy and U.S. Environmental Protection Agency. On average, U.S. laboratories use far more energy and water per square foot than office buildings and other facilities. This is due to the energy-intensive nature of laboratory activities as well as intensive ventilation and other requirements addressing health and safety. The Labs21 guiding principle centers on a whole building approach. Adopting this approach allows laboratories to improve efficiency for the entire

455

Radiological Contamination Control Training for Laboratory Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

06-97 06-97 February 1997 CHANGE NOTICE NO. 1 March 2002 Reaffirmation with Errata August 2002 DOE HANDBOOK RADIOLOGICAL CONTAMINATION CONTROL TRAINING FOR LABORATORY RESEARCH U.S. Department of Energy FSC 6910 Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. Reaffirmation with Errata DOE-HDBK-1106-97 Radiological Contamination Control for Laboratory Research

456

ISO 14001 IMPLEMENTATION AT A NATIONAL LABORATORY.  

SciTech Connect

After a tumultuous year discovering serious lapses in environment, safety and health management at Brookhaven National Laboratory, the Department of Energy established a new management contract. It called for implementation of an IS0 14001 Environmental Management System and registration of key facilities. Brookhaven Science Associates, the managing contractor for the Laboratory, designed and developed a three-year project to change culture and achieve the goals of the contract. The focus of its efforts were to use IS0 14001 to integrate environmental stewardship into all facets of the Laboratory's mission, and manage its programs in a manner that protected the ecosystem and public health. A large multidisciplinary National Laboratory with over 3,000 employees and 4,000 visiting scientists annually posed significant challenges for IS0 14001 implementation. Activities with environmental impacts varied from regulated industrial waste generation, to soil activation from particle accelerator operations, to radioactive groundwater contamination from research reactors. A project management approach was taken to ensure project completion on schedule and within budget. The major work units for the Environmental Management System Project were as follows: Institutional EMS Program Requirements, Communications, Training, Laboratory-wide Implementation, and Program Assessments. To minimize costs and incorporate lessons learned before full-scale deployment throughout the Laboratory, a pilot process was employed at three facilities. Brookhaven National Laboratory has completed its second year of the project in the summer of 2000, successfully registering nine facilities and self-declaring conformance in all remaining facilities. Project controls, including tracking and reporting progress against a model, have been critical to the successful implementation. Costs summaries are lower than initial estimates, but as expected legal requirements, training, and assessments are key cost centers. Successes to date include the pilot process, heightened employee awareness, registration of the first DOE National Laboratory facility, line ownership of the program, and senior management commitment.

BRIGGS,S.L.K.

2001-06-01T23:59:59.000Z

457

Distribution Workshop  

Energy.gov (U.S. Department of Energy (DOE))

On September 24-26, 2012, the GTT presented a workshop on grid integration on the distribution system at the Sheraton Crystal City near Washington, DC.

458

Renewable Energy Research Laboratory University of Massachusetts, Amherst  

E-Print Network (OSTI)

Distributions Figure 3­ Wind Speed Distribution, March 1, 2008 ­ May 31, 2008. August 21, 2008 Renewable Energy Average Wind Speeds, 30 m, March 1, 2008 ­ May 31, 2008. August 21, 2008 Renewable Energy Research Energy Research Laboratory Page 20 University of Massachusetts, Amherst Amherst, MA 01003 Wind Rose Data

Massachusetts at Amherst, University of

459

Bio-Derived Liquids to Hydrogen Distributed Reforming Targets...  

NLE Websites -- All DOE Office Websites (Extended Search)

Group includes individuals from DOE, the national laboratories, industry, and academia. Corn Stover Harvest Bio-Derived Liquids Reforming Distributed reforming of biomass derived...

460

Neutron Imaging Reveals Lithium Distribution - ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

imaging instrument at Oak Ridge National Laboratory's High Flux Isotope Reactor (HFIR) have successfully mapped the three-dimensional spatial distribution of lithium...

Note: This page contains sample records for the topic "laboratory distributed active" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Measuring the Raindrop Size Distribution, ARM's Efforts at Darwin...  

NLE Websites -- All DOE Office Websites (Extended Search)

Measuring the Raindrop Size Distribution, ARM's Efforts at Darwin and SGP Bartholomew, Mary Jane Brookhaven National Laboratory Category: Instruments ARM has purchased two impact...

462

Assessing Cloud Spatial and Vertical Distribution with Infrared...  

NLE Websites -- All DOE Office Websites (Extended Search)

Cloud Spatial and Vertical Distribution with Infrared Cloud Analyzer I. Genkova and C. N. Long Pacific Northwest National Laboratory Richland, Washington T. Besnard ATMOS SARL Le...

463

Evolution of droplet size distribution and autoconversion parameteriza...  

NLE Websites -- All DOE Office Websites (Extended Search)

Evolution of droplet size distribution and autoconversion parameterization in turbulent clouds McGraw, Robert Brookhaven National Laboratory Liu, Yangang Brookhaven National...

464

Argonne's Laboratory computing center - 2007 annual report.  

Science Conference Proceedings (OSTI)

Argonne National Laboratory founded the Laboratory Computing Resource Center (LCRC) in the spring of 2002 to help meet pressing program needs for computational modeling, simulation, and analysis. The guiding mission is to provide critical computing resources that accelerate the development of high-performance computing expertise, applications, and computations to meet the Laboratory's challenging science and engineering missions. In September 2002 the LCRC deployed a 350-node computing cluster from Linux NetworX to address Laboratory needs for mid-range supercomputing. This cluster, named 'Jazz', achieved over a teraflop of computing power (1012 floating-point calculations per second) on standard tests, making it the Laboratory's first terascale computing system and one of the 50 fastest computers in the world at the time. Jazz was made available to early users in November 2002 while the system was undergoing development and configuration. In April 2003, Jazz was officially made available for production operation. Since then, the Jazz user community has grown steadily. By the end of fiscal year 2007, there were over 60 active projects representing a wide cross-section of Laboratory expertise, including work in biosciences, chemistry, climate, computer science, engineering applications, environmental science, geoscience, information science, materials science, mathematics, nanoscience, nuclear engineering, and physics. Most important, many projects have achieved results that would have been unobtainable without such a computing resource. The LCRC continues to foster growth in the computational science and engineering capability and quality at the Laboratory. Specific goals include expansion of the use of Jazz to new disciplines and Laboratory initiatives, teaming with Laboratory infrastructure providers to offer more scientific data management capabilities, expanding Argonne staff use of national computing facilities, and improving the scientific reach and performance of Argonne's computational applications. Furthermore, recognizing that Jazz is fully subscribed, with considerable unmet demand, the LCRC has framed a 'path forward' for additional computing resources.

Bair, R.; Pieper, G. W.

2008-05-28T23:59:59.000Z

465

from Savannah River National Laboratory  

Issue: Depleted uranium present in shallow soils and sediments at Lawrence Livermore National Laboratory Site 300.

466

Safety Environmental Laboratories & Consulting Inc.  

Science Conference Proceedings (OSTI)

Safety Environmental Laboratories & Consulting Inc. NVLAP Lab Code: 200873-0. Address and Contact Information: 989 ...

2013-09-27T23:59:59.000Z

467

Biometrics Identity Management Agency Laboratory  

Science Conference Proceedings (OSTI)

Biometrics Identity Management Agency Laboratory. NVLAP Lab Code: 200933-0. Address and Contact Information: 1000 ...

2013-08-09T23:59:59.000Z

468

NIST: Physical Measurement Laboratory - Research ...  

Science Conference Proceedings (OSTI)

... Fellowships: SURFing the Physical Measurement Laboratory ... Optical, Radiation, and Chemical Physics. ... involves PML's Quantum Physics Division. ...

2010-10-05T23:59:59.000Z

469

DOE - Office of Legacy Management -- Argonne National Laboratory - West -  

Office of Legacy Management (LM)

Argonne National Laboratory - West Argonne National Laboratory - West - 014 FUSRAP Considered Sites Site: Argonne National Laboratory - West (014) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: The primary mission of the Argonne National Laboratory-West was to support liquid metal reactor research and development for the Department of EnergyÂżs Integral Fast Reactor Program, but the program was terminated. Activities at the Laboratory now include technology development for spent nuclear fuel and waste treatment, reactor and fuel cycle safety, and facility decommissioning. The decommissioning and other clean up is being

470

Brookhaven National Laboratory - Long Island Regional Science...  

Office of Science (SC) Website

Plasma Physics Laboratory SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility Laboratory Policy and Evaluation Safety, Security and...

471

Lawrence Berkeley National Laboratory Regional Science Bowl ...  

Office of Science (SC) Website

Plasma Physics Laboratory SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility Laboratory Policy and Evaluation Safety, Security and...

472

Sandia National Laboratories Albuquerque | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

Laboratories, the laboratories responsible for the development, testing, and production of specialized nonnuclear components. Laboratories: The NNSA Sandia National...

473

Estimating Reliability of Critical Distribution System Components  

Science Conference Proceedings (OSTI)

EPRI has been developing methods for distribution planning since 1992. At that time, research directed at the concept of distributed resources begun by EPRI, Pacific Gas & Electric, and the National Renewable Energy Laboratory led to further consideration of distribution planning in general. More recently this analysis has raised the issue of aging of the distribution infrastructure and how to optimize maintenance and replacement of aging systems. This report discusses: 1) research into the prediction of...

2003-01-30T23:59:59.000Z

474

CERTS Microgrid Laboratory Test Bed  

E-Print Network (OSTI)

Eto. 2002. Integration of Distributed Energy Resources: Thesite. In this context, distributed energy resources – smallelectric power. The distributed energy resources portfolio

ETO, J.

2010-01-01T23:59:59.000Z

475

CERTS Microgrid Laboratory Test Bed  

E-Print Network (OSTI)

Paper on Integration of Distributed Energy Resources: Thesite. In this context, distributed energy resources – smallelectric power. The distributed energy resources portfolio

Eto, Joe

2009-01-01T23:59:59.000Z

476

S ARGONNE NATIONAL LABORATORY  

NLE Websites -- All DOE Office Websites (Extended Search)

ARGONNE NATIONAL LABORATORY ARGONNE NATIONAL LABORATORY 19 ON CLOSED SHEIIS IN NUCLEI. II Maria G. Mayer April., 1949 Feenberg (1) ' (2) and Nordlkeim (3) have used the spins and magnetic moments of the even-odd nuclei to determine the angular momentum of the eigenfunction of the odd particle. The tabulations given by them indi- cate that spin orbit coupling favors the state of higher total angular momentum, If - strong spin.orbit coupling' increasing with angular mom- entum is assumed, a level assignment encounters a very few contradictions. with experimental facts and requires no major crossing of the levels from those of a square well potential. The magic numbers O, 82, and 126 occur at the' place of the spin-orbit splitting of levels of high angular momen- tum, Table 1 contains in column two in order

477

Safety | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety Safety Biosafety Safety Safety is integral to Argonne's scientific research and engineering technology mission. As a leading U.S. Department of Energy multi-program research laboratory, our obligation to the American people demands that we conduct our research and operations safely and responsibly. As a recognized leader in safety, we are committed to making ethical decisions that provide a safe and healthful workplace and a positive presence within the larger Chicagoland community. Argonne's Integrated Safety Management program is the foundation of the laboratory's ongoing effort to provide a safe and productive environment for employees, users, other site personnel, visitors and the public. Related Sites U.S. Department of Energy Lessons Learned Featured Media

478

Transportation | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Transportation From modeling and simulation programs to advanced electric powertrains, engines, biofuels, lubricants, and batteries, Argonne's transportation research is vital to the development of next-generation vehicles. Revolutionary advances in transportation are critical to reducing our nation's petroleum consumption and the environmental impact of our vehicles. Some of the most exciting new vehicle technologies are being ushered along by research conducted at Argonne National Laboratory. Our Transportation Technology R&D Center (TTRDC) brings together scientists and engineers from many disciplines across the laboratory to work with the U.S. Department of Energy (DOE), automakers and other industrial partners. Our goal is to put new transportation technologies on the road that improve

479

National Renewable Energy Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

RENEWABLE ENERGY RENEWABLE ENERGY AND ENERGY EFFICIENCY SCIENCE PROJECTS 1 SCIENCE PROECTS IN RENEWABLE ENERGY AND ENERGY EFFICIENCY A guide for Secondary School Teachers Authors and Acknowledgements: This second edition was produced at the National Renewable Energy Laboratory (NREL), through the laboratory's Office of Education Programs, under the leadership of the Manager, Dr. Cynthia Howell and guidance of the Program Coordinators, Matt Kuhn and Linda Lung. The contents are the result of contributions by a select group of teacher researchers that were invited to NREL as part of the Department of Energy's Teacher Research Programs. During the summers between 2003 and 2007, fifty four secondary pre-service and experienced teachers came to NREL to do real research in

480

Infrared Thermography Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Scientists measuring sample at IR Thermography lab Scientists measuring sample at IR Thermography lab Infrared Thermography Laboratory In the Infrared Thermography Laboratory (IRLab), researchers test the thermal performance of windows and other insulated systems. Test specimens are placed between chambers that simulate different climate conditions, including household room temperature versus extreme winter cold with high exterior wind speed. Using an infrared imaging system, the IRLab produces calibrated quantitative thermal images, or surface temperature maps, of the specimens in heat transfer experiments. This high resolution non-contact surface temperature data help researchers understand details of thermal performance and validate computer simulations of heat and fluid flow, as well as provide a powerful visualization of detailed thermal features in

Note: This page contains sample records for the topic "laboratory distributed active" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

National Laboratory National Laboratory Standard Procurement Forms An Acrobat Reader is needed to display these documents How to get an Acrobat Reader Date Form (Link to PDF) Title GSA Library of Standard Government Forms ANL Forms Repository PARIS Enrollment/Change Status Forms Argonne Terms & Conditions (headmark list) Suspect/Counterfeit Parts December 9, 2010 Poster PD-154 Appendix A - ARRA Supplement Previous Revisions: August 17,2010 August 7, 2009 Whistleblower Protection Poster Under Recovery Act January 24, 2013 ANL-71-COM Argonne Terms and Conditions for Commercial Items Previous Revisions: May 10, 2012 January 5, 2012 July 11, 2011 April 14, 2011 March 1, 2011 December 7, 2010 August 13, 2010 June 15, 2010 January 18, 2010 December 22, 2009 April 2, 2009

482

Los Alamos National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

May 14, 2013 May 14, 2013 Value of up to $150 million over five years LOS ALAMOS, N.M., May 14, 2013-Los Alamos National Laboratory has awarded a master task order agreement in which three small businesses will compete for environmental work worth up to $150 million over five years. The businesses each have offices in northern New Mexico. The agreement is for technical services for the Laboratory's Environmental Programs directorate and includes work such as environmental engineering design, regulatory support, risk assessment and reporting. - 2 - The companies chosen are Terranear PMC, Navarro Research and Engineering, Inc., and Adelante Consulting, Inc. The agreement is for three years with two additional one- year options. Task orders under this agreement will be competitively bid among the

483

Oak Ridge National Laboratory Waste Management Plan  

Science Conference Proceedings (OSTI)

The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented.

Not Available

1992-12-01T23:59:59.000Z