Sample records for laboratory crd-01-098 fischer-tropsch

  1. Fischer-Tropsch process

    DOE Patents [OSTI]

    Dyer, Paul N. (Allentown, PA); Pierantozzi, Ronald (Orefield, PA); Withers, Howard P. (Douglassville, PA)

    1987-01-01T23:59:59.000Z

    A Fischer-Tropsch process utilizing a product selective and stable catalyst by which synthesis gas, particularly carbon-monoxide rich synthesis gas is selectively converted to higher hydrocarbons of relatively narrow carbon number range is disclosed. In general, the selective and notably stable catalyst, consist of an inert carrier first treated with a Group IV B metal compound (such as zirconium or titanium), preferably an alkoxide compound, and subsequently treated with an organic compound of a Fischer-Tropsch metal catalyst, such as cobalt, iron or ruthenium carbonyl. Reactions with air and water and calcination are specifically avoided in the catalyst preparation procedure.

  2. Development and Demonstration of Fischer-Tropsch Fueled Heavy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fischer-Tropsch Fueled Heavy-Duty Vehicles with Control Technologies for Reduced Diesel Exhaust Emissions Development and Demonstration of Fischer-Tropsch Fueled Heavy-Duty...

  3. Fischer-Tropsch wax characterization and upgrading: Final report

    SciTech Connect (OSTI)

    Shah, P.P.; Sturtevant, G.C.; Gregor, J.H.; Humbach, M.J.; Padrta, F.G.; Steigleder, K.Z.

    1988-06-06T23:59:59.000Z

    The characterization and upgrading of Fischer-Tropsch wax was studied. The focus of the program was to maximize the yield of marketable transportation fuels from the Fischer-Tropsch process. The wax was characterized using gel permeation chromatography (GPC), high resolution mass spectrometry (HRMS), infrared spectroscopy (IR), gas chromatography (GC), nuclear magnetic resonance (NMR) and various other physical analyses. Hydrocracking studies conducted in a pilot plant indicate that Fischer-Tropsch wax is an excellent feedstock. A high yield of excellent quality diesel fuel was produced with satisfactory catalyst performance at relatively mild operating conditions. Correlations for predicting key diesel fuel properties were developed and checked against actual laboratory blend data. The blending study was incorporated into an economic evaluation. Finally, it is possible to take advantage of the high quality of the Fischer-Tropsch derived distillate by blending a lower value light cycle oil (produced from a refinery FCC unit) representing a high aromatic and low cetane number. The blended stream meets diesel pool specifications (up to 60 wt % LCO addition). The value added to this blending stream further enhances the upgrading complex return. 22 refs., 39 figs., 48 tabs.

  4. Development of a Fischer-Tropsch Gasoline Process for the Steam Hydrogasification Technology

    E-Print Network [OSTI]

    Li, Yang

    2013-01-01T23:59:59.000Z

    a   two-­?stage   Fischer-­?Tropsch  reaction:  Activity  A. ,   Introduction   to   fischer-­?tropsch   technology.  Kinetic   modelling   of   Fischer-­?Tropsch   product  

  5. Tailored fischer-tropsch synthesis product distribution

    DOE Patents [OSTI]

    Wang, Yong (Richland, WA); Cao, Chunshe (Kennewick, WA); Li, Xiaohong Shari (Richland, WA); Elliott, Douglas C. (Richland, WA)

    2012-06-19T23:59:59.000Z

    Novel methods of Fischer-Tropsch synthesis are described. It has been discovered that conducting the Fischer-Tropsch synthesis over a catalyst with a catalytically active surface layer of 35 microns or less results in a liquid hydrocarbon product with a high ratio of C.sub.5-C.sub.20:C.sub.20+. Descriptions of novel Fischer-Tropsch catalysts and reactors are also provided. Novel hydrocarbon compositions with a high ratio of C.sub.5-C.sub.20:C.sub.20+ are also described.

  6. Moderated ruthenium fischer-tropsch synthesis catalyst

    DOE Patents [OSTI]

    Abrevaya, Hayim (Wilmette, IL)

    1991-01-01T23:59:59.000Z

    The subject Fischer-Tropsch catalyst comprises moderated ruthenium on an inorganic oxide support. The preferred moderator is silicon. Preferably the moderator is effectively positioned in relationship to ruthenium particles through simultaneous placement on the support using reverse micelle impregnation.

  7. Fischer-Tropsch Wastewater Utilization

    DOE Patents [OSTI]

    Shah, Lalit S. (Sugar Land, TX)

    2003-03-18T23:59:59.000Z

    The present invention is generally directed to handling the wastewater, or condensate, from a hydrocarbon synthesis reactor. More particularly, the present invention provides a process wherein the wastewater of a hydrocarbon synthesis reactor, such as a Fischer-Tropsch reactor, is sent to a gasifier and subsequently reacted with steam and oxygen at high temperatures and pressures so as to produce synthesis gas. The wastewater may also be recycled back to a slurry preparation stage, where solid combustible organic materials are pulverized and mixed with process water and the wastewater to form a slurry, after which the slurry fed to a gasifier where it is reacted with steam and oxygen at high temperatures and pressures so as to produce synthesis gas.

  8. Opportunities for the Early Production of Fischer-Tropsch (F...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for the Early Production of Fischer-Tropsch (F-T) Fuels in the U.S. -- An Overview Opportunities for the Early Production of Fischer-Tropsch (F-T) Fuels in the U.S. -- An Overview...

  9. ADDENDUM -EXXON FISCHER-TROPSCH WORK Fischer Synthesis Process

    E-Print Network [OSTI]

    Kentucky, University of

    A.1-Draft ADDENDUM - EXXON FISCHER-TROPSCH WORK Fischer Synthesis Process A patent (A.1 in several of the reviews of Fischer-Tropsch synthesis that have recently been published by Exxon workers

  10. Novel Fischer-Tropsch catalysts

    DOE Patents [OSTI]

    Vollhardt, Kurt P. C. (Kensington, CA); Perkins, Patrick (Berkeley, CA)

    1981-01-01T23:59:59.000Z

    Novel polymer-supported metal complexes of the formula PS -R Me(CO).sub.n H.sub.m where: PS represents a divinylbenzene crosslinked polystyrene in which the divinylbenzene crosslinking is greater than 1% and less than about 18%; R represents a cycloalkadienyl radical of 4 through 6 carbon atoms; Me represents a Group VIII metal; CO represents a carbonyl radical; H represents hydrogen; n represents an integer varying from 0 through 3; m represents an integer varying from 0 through 2 inclusively with the further provision that 2n+m must total 18 when added to the electrons in R and Me, or n+m must total 0; are prepared by: brominating PS -H by treating same with bromine in the presence of a thallium salt in a partially or fully halogenated solvent to form PS -Br; treating said PS -Br so produced with a lithium alkyl of 1 through 12 carbon atoms in an aromatic solvent to produce PS -Li; substituting said PS - Li so produced by reaction with a 2-cycloalkenone of 4 to 6 carbon atoms in the presence of an ether solvent and using a water work-up to form a cycloalkenylalcohol-substituted PS ; dehydrating said alcohol so produced by heating under a vacuum to produce a cycloalkadienyl-substituted PS ; reacting the cycloalkadienyl-substituted PS with metal carbonyl in the presence of a partially or fully halogenated hydrocarbon, aromatic hydrocarbon of 6 through 8 carbon atoms, ethers, or esters of 4 through 10 carbon atoms as a solvent to produce a polystyrene-supported cycloalkadienyl metal carbonyl. The novel compounds are used as improved Fischer-Tropsch catalysts particularly for the conversion of CO+H.sub.2 to gaseous and liquid hydrocarbons at milder conditions than with prior catalysts.

  11. Novel Fischer-Tropsch catalysts

    DOE Patents [OSTI]

    Vollhardt, Kurt P. C. (Kensington, CA); Perkins, Patrick (Berkeley, CA)

    1981-01-01T23:59:59.000Z

    Novel polymer-supported metal complexes of the formula: PS --R Me(CO).sub.n H.sub.m where: PS represents a divinylbenzene crosslinked polystyrene in which the divinylbenzene crosslinking is greater than 1% and less than about 18%; R represents a cycloalkadienyl radical of 4 through 6 carbon atoms; Me represents a Group VIII metal; CO represents a carbonyl radical; H represents hydrogen; n represents an integer varying from 0 through 3; m represents an integer varying from 0 through 2 inclusively with the further provision that 2n+m must total 18 when added to the electrons in R and Me, or n+m must total 0; are prepared by: brominating PS --H by treating same with bromine in the presence of a thallium salt in a partially or fully halogenated solvent to form PS --Br; treating said PS --Br so produced with a lithium alkyl of 1 through 12 carbon atoms in an aromatic solvent to produce PS --Li; substituting said PS-- Li so produced by reaction with a 2-cycloalkenone of 4 to 6 carbon atoms in the presence of an ether solvent and using a water work-up to form a cycloalkenylalcohol-substituted PS ; dehydrating said alcohol so produced by heating under a vacuum to produce a cycloalkadienyl-substituted PS ; reacting the cycloalkadienyl-substituted PS with metal carbonyl in the presence of a partially or fully halogenated hydrocarbon, aromatic hydrocarbon of 6 through 8 carbon atoms, ethers, or esters of 4 through 10 carbon atoms as a solvent to produce a polystyrene-supported cycloalkadienyl metal carbonyl. The novel compounds are used as improved Fischer-Tropsch catalysts particularly for the conversion of CO+H.sub.2 to gaseous and liquid hydrocarbons at milder conditions than with prior catalysts.

  12. Novel Fischer-Tropsch catalysts

    DOE Patents [OSTI]

    Vollhardt, Kurt P. C. (Kensington, CA); Perkins, Patrick (Berkeley, CA)

    1980-01-01T23:59:59.000Z

    Novel polymer-supported metal complexes of the formula: PS --R Me(CO).sub.n H.sub.m where: PS represents a divinylbenzene crosslinked polystyrene in which the divinylbenzene crosslinking is greater than 1% and less than about 18%; R represents a cycloalkadienyl radical of 4 through 6 carbon atoms; Me represents a Group VIII metal; CO represents a carbonyl radical; H represents hydrogen; n represents an integer varying from 0 through 3; m represents an integer varying from 0 through 2 inclusively with the further provision that 2n+m must total 18 when added to the electrons in R and Me, or n+m must total 0; are prepared by: brominating PS --H by treating same with bromine in the presence of a thallium salt in a partially or fully halogenated solvent to form PS --Br; treating said PS --Br so produced with a lithium alkyl of 1 through 12 carbon atoms in an aromatic solvent to produce PS --Li; substituting said PS-- Li so produced by reaction with a 2-cycloalkenone of 4 to 6 carbon atoms in the presence of an ether solvent and using a water work-up to form a cycloalkenylalcohol-substituted PS ; dehydrating said alcohol so produced by heating under a vacuum to produce a cycloalkadienyl-substituted PS ; reacting the cycloalkadienyl-substituted PS with metal carbonyl in the presence of a partially or fully halogenated hydrocarbon, aromatic hydrocarbon of 6 through 8 carbon atoms, ethers, or esters of 4 through 10 carbon atoms as a solvent to produce a polystyrene-supported cycloalkadienyl metal carbonyl. The novel compounds are used as improved Fischer-Tropsch catalysts particularly for the conversion of CO+H.sub.2 to gaseous and liquid hydrocarbons at milder conditions than with prior catalysts.

  13. THE MECHANISM AND KINETICS OF FISCHER-TROPSCH SYNTHESIS OVER SUPPORTED RUTHENIUM CATALYSTS

    E-Print Network [OSTI]

    Kellner, Carl Stephen

    2013-01-01T23:59:59.000Z

    R. B. , "The Fischer- Tropsch and Related Syntheses", Wiley,Anderson, R. , "The Fischer-Tropsch and Related Synthesis",Isotope Effects on Fischer-Tropsch Synthesis Over Supported

  14. Catalyst structure and method of Fischer-Tropsch synthesis

    DOE Patents [OSTI]

    Wang, Yong; Vanderwiel, David P.; Tonkovich, Anna Lee; Gao, Yufei; Baker, Eddie G.

    2004-06-15T23:59:59.000Z

    The present invention includes Fischer-Tropsch catalysts, reactions using Fischer-Tropsch catalysts, methods of making Fischer-Tropsch catalysts, processes of hydrogenating carbon monoxide, and fuels made using these processes. The invention provides the ability to hydrogenate carbon monoxide with low contact times, good conversion rates and low methane selectivities. In a preferred method, the catalyst is made using a metal foam support.

  15. Catalyst structure and method of fischer-tropsch synthesis

    DOE Patents [OSTI]

    Wang, Yong [Richland, WA; Vanderwiel, David P [Richland, WA; Tonkovich, Anna Lee Y [Pasco, WA; Gao, Yufei [Kennewick, WA; Baker, Eddie G [Pasco, WA

    2002-12-10T23:59:59.000Z

    The present invention includes Fischer-Tropsch catalysts, reactions using Fischer-Tropsch catalysts, methods of making Fischer-Tropsch catalysts, processes of hydrogenating carbon monoxide, and fuels made using these processes. The invention provides the ability to hydrogenate carbon monoxide with low contact times, good conversion rates and low methane selectivities. In a preferred method, the catalyst is made using a metal foam support.

  16. Cobalt Fischer-Tropsch catalysts having improved selectivity

    DOE Patents [OSTI]

    Miller, James G. (Pearl River, NY); Rabo, Jule A. (Armonk, NY)

    1989-01-01T23:59:59.000Z

    A cobalt Fischer-Tropsch catalyst having an improved steam treated, acid extracted LZ-210 support is taught. The new catalyst system demonstrates improved product selectivity at Fischer-Tropsch reaction conditions evidenced by lower methane production, higher C.sub.5.sup.+ yield and increased olefin production.

  17. ATTACHMENT IX Review of Air Products Fischer-Tropsch Synthesis Work

    E-Print Network [OSTI]

    Kentucky, University of

    IX.1-Draft ATTACHMENT IX Review of Air Products Fischer-Tropsch Synthesis Work During the 1980s, Air Products & Chemicals worked on several aspects of the Fischer-Tropsch synthesis. These included the development of novel Fischer-Tropsch slurry catalysts and process concepts, the design of a Fischer-Tropsch

  18. TECHNOLOGY DEVELOPMENT FOR IRON FISCHER-TROPSCH CATALYSTS

    SciTech Connect (OSTI)

    Davis, B.H.

    1998-07-22T23:59:59.000Z

    The goal of the proposed work described in this Final Report was the development of iron-based Fischer-Tropsch catalysts that combined high activity, selectivity and life with physical robustness for slurry phase reactors that will produce either low-alpha or high-alpha products. The work described here has optimized the catalyst composition and pretreatment operation for a low-alpha catalyst. In parallel, work has been conducted to design a high-alpha iron catalyst that is suitable for slurry phase synthesis. Studies have been conducted to define the chemical phases present at various stages of the pretreatment and synthesis stages and to define the course of these changes. The oxidation/reduction cycles that are anticipated to occur in large, commercial reactors have been studied at the laboratory scale. Catalyst performance has been determined for catalysts synthesized in this program for activity, selectivity and aging characteristics.

  19. OVERVIEW OF FISCHER-TROPSCH SYNTHESIS WITH COBALT CATALYSTS This review of the use of cobalt catalysts for the Fischer-Tropsch synthesis

    E-Print Network [OSTI]

    Kentucky, University of

    1-Draft OVERVIEW OF FISCHER-TROPSCH SYNTHESIS WITH COBALT CATALYSTS SUMMARY This review of the use of cobalt catalysts for the Fischer-Tropsch synthesis emphasizes results of the past thirty years for cobalt catalyst for the Fischer-Tropsch synthesis. It was demonstrated that the presence of copper, up

  20. ON THE PURPORTED FISCHER-TROPSCH ALKYLATION OF BENZENE: THE REACTION OF BENZENE WITH ALUMINUM TRICHLORIDE REVISITED

    E-Print Network [OSTI]

    Benner, Linda S.

    2014-01-01T23:59:59.000Z

    ON THE PURPORTED FISCHER-TROPSCH ALKYLATION OF BENZENE: THEOn the Purported Fischer-Tropsch Alkylation of Benzene: TheAbstract The purported Fischer-Tropsch alkylation of benzene

  1. Activation studies with promoted precipitated iron Fischer-Tropsch catalysts

    E-Print Network [OSTI]

    Manne, Rama Krishna

    1991-01-01T23:59:59.000Z

    ACTIVATION STUDIES WITH PROMOTED PRECIPITATED IRON FISCHER ? TROPSCH CATALYSTS A Thesis by RAMA KRISHNA MANNE Submitted to the Oflice of Graduate Studies of Texas A@M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE December 1991 Major Subject: Chemical Engineering ACTIVATION STUDIES WITH PROMOTED PRECIPITATED IRON FISCHER ? TROPSCH CATALYSTS A Thesis by RAMA KRISHNA MANNE Approved as to style and content by: Dragomir B. Bukur (Charr...

  2. Technology Development for Iron and Cobalt Fischer-Tropsch Catalysts Quarterly Report

    E-Print Network [OSTI]

    Kentucky, University of

    Technology Development for Iron and Cobalt Fischer-Tropsch Catalysts Quarterly Report October 1 for Fischer Tropsch synthesis with a cobalt catalyst. There was an important increase in conversion due

  3. Technology Development for Iron and Cobalt Fischer-Tropsch Catalysts Quarterly Report

    E-Print Network [OSTI]

    Kentucky, University of

    Technology Development for Iron and Cobalt Fischer-Tropsch Catalysts Quarterly Report January1 composition of precipitated iron Fischer- Tropsch (FT) catalysts has been studied. Catalyst samples taken-edge and fine structure regions while increasing the carburization temperature up to 500 C. The Fischer-Tropsch

  4. Platinum-Modulated Cobalt Nanocatalysts for Low-Temperature Aqueous-Phase Fischer-Tropsch Synthesis

    E-Print Network [OSTI]

    Li, Weixue

    Platinum-Modulated Cobalt Nanocatalysts for Low-Temperature Aqueous-Phase Fischer-Tropsch Synthesis, United States *S Supporting Information ABSTRACT: Fischer-Tropsch synthesis (FTS) is an important Fischer-Tropsch synthesis (FTS), which converts fossil fuel- based syngas to liquid fuel products over Ru

  5. CO activation pathways and the mechanism of FischerTropsch synthesis Manuel Ojeda a

    E-Print Network [OSTI]

    Iglesia, Enrique

    CO activation pathways and the mechanism of Fischer­Tropsch synthesis Manuel Ojeda a , Rahul Nabar 2010 Available online 21 May 2010 Keywords: Fischer­Tropsch synthesis Iron catalysts Cobalt catalysts details of monomer formation in Fischer­Tropsch synthesis (FTS) and of its oxy- gen rejection routes

  6. Structure and Site Evolution of Iron Oxide Catalyst Precursors during the Fischer-Tropsch Synthesis

    E-Print Network [OSTI]

    Iglesia, Enrique

    Structure and Site Evolution of Iron Oxide Catalyst Precursors during the Fischer-Tropsch Synthesis required for the Fischer-Tropsch synthesis (FTS). The local structure and oxidation state of the starting steady-state FTS turnover rates. Introduction The Fischer-Tropsch synthesis (FTS) is an attractive route

  7. Spectroscopic and Transient Kinetic Studies of Site Requirements in Iron-Catalyzed Fischer-Tropsch Synthesis

    E-Print Network [OSTI]

    Iglesia, Enrique

    Spectroscopic and Transient Kinetic Studies of Site Requirements in Iron-Catalyzed Fischer-Tropsch of the initial stages of Fischer- Tropsch synthesis (FTS) with X-ray absorption spectroscopy. Oxygen removal and selective Fischer-Tropsch synthesis cata- lysts1 after activation processes that lead to complex mixtures

  8. Potential for Coal-to-Liquids Conversion in the United States--FischerTropsch Synthesis

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    Potential for Coal-to-Liquids Conversion in the United States--Fischer­Tropsch Synthesis Tad W to be at the center of that effort. We calculate that the energy efficiency of the best existing Fischer­Tropsch (FT?'' Schweitzer said at a press conference. Here, we give a brief background of Fischer­ Tropsch (FT) synthesis

  9. DOI: 10.1002/cctc.201000319 Surface Science Studies on Cobalt FischerTropsch

    E-Print Network [OSTI]

    Goodman, Wayne

    DOI: 10.1002/cctc.201000319 Surface Science Studies on Cobalt Fischer­Tropsch Catalysts Zhou-jun Wang,[a, b] Zhen Yan,[a] Chang-jun Liu,[b] and D. W. Goodman*[a] Introduction Fischer­Tropsch (FT. Fischer­Tropsch Synthesis on Single Crystal Surfaces Research on FT synthesis on Co single crystals has

  10. FischerTropsch synthesis on a model Co/SiO2 catalyst , Zhoujun Wang a

    E-Print Network [OSTI]

    Goodman, Wayne

    Fischer­Tropsch synthesis on a model Co/SiO2 catalyst Zhen Yan a , Zhoujun Wang a , Dragomir B Keywords: Model catalyst Cobalt catalyst Silica Fischer­Tropsch synthesis a b s t r a c t A model Co/SiO2 catalyst was prepared by depositing cobalt on silica films in ultrahigh vacuum condi- tions. Fischer­Tropsch

  11. Technology Development for Iron and Cobalt Fischer-Tropsch Catalysts Quarterly Report

    E-Print Network [OSTI]

    Kentucky, University of

    Technology Development for Iron and Cobalt Fischer-Tropsch Catalysts Quarterly Report October 1 Government or any agency thereof. #12;2 Abstract CAER The effects of copper on Fischer-Tropsch activity the reduction of Fe oxides in H . Fischer-Tropsch synthesis studies using a well-studied Fe-Zn catalyst gave2

  12. Technology Development for Iron and Cobalt Fischer-Tropsch Catalysts Quarterly Report

    E-Print Network [OSTI]

    Kentucky, University of

    Technology Development for Iron and Cobalt Fischer-Tropsch Catalysts Quarterly Report July 1, 2001 Fischer-Tropsch synthesis in a CSTR was investigated. A novel method was utilized to isolate samples Fischer- Tropsch synthesis. Preliminary experiments were successful in verifying the liquid displacement

  13. BASELINE DESIGN/ECONOMICS FOR ADVANCED FISCHER-TROPSCH TECHNOLOGY

    SciTech Connect (OSTI)

    None

    1998-04-01T23:59:59.000Z

    Bechtel, along with Amoco as the main subcontractor, developed a Baseline design, two alternative designs, and computer process simulation models for indirect coal liquefaction based on advanced Fischer-Tropsch (F-T) technology for the U. S. Department of Energy's (DOE's) Federal Energy Technology Center (FETC).

  14. Process for upgrading wax from Fischer-Tropsch synthesis

    DOE Patents [OSTI]

    Derr, W.R. Jr.; Garwood, W.E.; Kuo, J.C.; Leib, T.M.; Nace, D.M.; Tabak, S.A.

    1987-08-04T23:59:59.000Z

    The waxy liquid phase of an oil suspension of Fischer-Tropsch catalyst containing dissolved wax is separated out and the wax is converted by hydrocracking, dewaxing or by catalytic cracking with a low activity catalyst to provide a highly olefinic product which may be further converted to premium quality gasoline and/or distillate fuel. 2 figs.

  15. Process for upgrading wax from Fischer-Tropsch synthesis

    DOE Patents [OSTI]

    Derr, Jr., W. Rodman (Vincentown, NJ); Garwood, William E. (Haddonfield, NJ); Kuo, James C. (Cherry Hill, NJ); Leib, Tiberiu M. (Voorhees, NJ); Nace, Donald M. (Woodbury, NJ); Tabak, Samuel A. (Wenonah, NJ)

    1987-01-01T23:59:59.000Z

    The waxy liquid phase of an oil suspension of Fischer-Tropsch catalyst containing dissolved wax is separated out and the wax is converted by hydrocracking, dewaxing or by catalytic cracking with a low activity catalyst to provide a highly olefinic product which may be further converted to premium quality gasoline and/or distillate fuel.

  16. Cobalt Fischer-Tropsch catalysts having improved selectivity

    DOE Patents [OSTI]

    Miller, James G. (Pearl River, NY); Rabo, Jule A. (Armonk, NY)

    1989-01-01T23:59:59.000Z

    The promoter(s) Mn oxide or Mn oxide and Zr oxide are added to a cobalt Fischer-Tropsch catalyst combined with the molecular sieve TC-103 or TC-123 such that the resultant catalyst demonstrates improved product selectivity, stability and catalyst life. The improved selectivity is evidenced by lower methane production, higher C5+ yield and increased olefin production.

  17. Fischer-Tropsch synthesis process employing a moderated ruthenium catalyst

    DOE Patents [OSTI]

    Abrevaya, H.

    1990-07-31T23:59:59.000Z

    A Fischer-Tropsch type process produces hydrocarbons from carbon monoxide and hydrogen using a novel catalyst comprising moderated ruthenium on an inorganic oxide support. The preferred moderator is silicon. Preferably the moderator is effectively positioned in relationship to ruthenium particles through simultaneous placement on the support using reverse micelle impregnation. 1 fig.

  18. Fischer-Tropsch synthesis process employing a moderated ruthenium catalyst

    DOE Patents [OSTI]

    Abrevaya, Hayim (Wilmette, IL)

    1990-01-01T23:59:59.000Z

    A Fischer-Tropsch type process produces hydrocarbons from carbon monoxide and hydrogen using a novel catalyst comprising moderated ruthenium on an inorganic oxide support. The preferred moderator is silicon. Preferably the moderator is effectively positioned in relationship to ruthenium particles through simultaneous placement on the support using reverse micelle impregnation.

  19. Development of a Fischer-Tropsch Gasoline Process for the Steam Hydrogasification Technology

    E-Print Network [OSTI]

    Li, Yang

    2013-01-01T23:59:59.000Z

    micro-­?structured  fixed-­?bed  reactors  for   highly  Fischer-Tropsch reactors. Fixed bed reactor: A; fluidizedreactors in commercial use: fixed bed reactor, fluidized bed

  20. Separation of catalyst from Fischer-Tropsch slurry

    DOE Patents [OSTI]

    White, C.M.; Quiring, M.S.; Jensen, K.L.; Hickey, R.F.; Gillham, L.D.

    1998-10-27T23:59:59.000Z

    In a catalytic process for converting synthesis gas including hydrogen and carbon monoxide to hydrocarbons and oxygenates by a slurry Fischer-Tropsch synthesis, the wax product along with dispersed catalyst is removed from the slurry and purified by removing substantially all of the catalyst prior to upgrading the wax and returning a portion to the Fischer-Tropsch reaction. Separation of the catalyst particles from the wax product is accomplished by dense gas and/or liquid extraction in which the organic compounds in the wax are dissolved and carried away from the insoluble inorganic catalyst particles that are primarily inorganic in nature. The purified catalyst-free wax product can be subsequently upgraded by various methods such as hydrogenation, isomerization, hydrocracking, conversion to gasoline and other products over ZSM-5 aluminosilicate zeolite, etc. The catalyst particles are returned to the Fischer-Tropsch Reactor by mixing them with a wax fraction of appropriate molecular weight, boiling point and viscosity to avoid reactor gelation. 2 figs.

  1. Separation of catalyst from Fischer-Tropsch slurry

    DOE Patents [OSTI]

    White, Curt M. (Pittsburgh, PA); Quiring, Michael S. (Katy, TX); Jensen, Karen L. (Pittsburgh, PA); Hickey, Richard F. (Bethel Park, PA); Gillham, Larry D. (Bartlesville, OK)

    1998-10-27T23:59:59.000Z

    In a catalytic process for converting synthesis gas including hydrogen and carbon monoxide to hydrocarbons and oxygenates by a slurry Fischer-Tropsch synthesis, the wax product along with dispersed catalyst is removed from the slurry and purified by removing substantially all of the catalyst prior to upgrading the wax and returning a portion to the Fischer-Tropsch reaction. Separation of the catalyst particles from the wax product is accomplished by dense gas and/or liquid extraction in which the organic compounds in the wax are dissolved and carried away from the insoluble inorganic catalyst particles that are primarily inorganic in nature. The purified catalyst free wax product can be subsequently upgraded by various methods such as hydrogenation, isomerization, hydrocracking, conversion to gasoline and other products over ZSM-5 aluminosilicate zeolite, etc. The catalyst particles are returned to the Fischer-Tropsch Reactor by slurring them with a wax fraction of appropriate molecular weight, boiling point and viscosity to avoid reactor gelation.

  2. On-Road Use of Fischer-Tropsch Diesel Blends

    SciTech Connect (OSTI)

    Nigel Clark; Mridul Gautam; Donald Lyons; Chris Atkinson; Wenwei Xie; Paul Norton; Keith Vertin; Stephen Goguen; James Eberhardt

    1999-04-26T23:59:59.000Z

    Alternative compression ignition engine fuels are of interest both to reduce emissions and to reduce U.S. petroleum fuel demand. A Malaysian Fischer-Tropsch gas-to-liquid fuel was compared with California No.2 diesel by characterizing emissions from over the road Class 8 tractors with Caterpillar 3176 engines, using a chassis dynamometer and full scale dilution tunnel. The 5-Mile route was employed as the test schedule, with a test weight of 42,000 lb. Levels of oxides of nitrogen (NO{sub x}) were reduced by an average of 12% and particulate matter (PM) by 25% for the Fischer-Tropsch fuel over the California diesel fuel. Another distillate fuel produced catalytically from Fischer-Tropsch products originally derived from natural gas by Mossgas was also compared with 49-state No.2 diesel by characterizing emissions from Detroit Diesel 6V-92 powered transit buses, three of them equipped with catalytic converters and rebuilt engines, and three without. The CBD cycle was employed as the test schedule, with a test weight of 33,050 lb. For those buses with catalytic converters and rebuilt engines, NO x was reduced by 8% and PM was reduced by 31% on average, while for those buses without, NO x was reduced by 5% and PM was reduced by 20% on average. It is concluded that advanced compression ignition fuels from non-petroleum sources can offer environmental advantages in typical line haul and city transit applications.

  3. Fischer-Tropsch synthesis catalysts based on Fe oxide precursors modified by Cu and K: structure and site requirements

    E-Print Network [OSTI]

    Iglesia, Enrique

    1 Fischer-Tropsch synthesis catalysts based on Fe oxide precursors modified by Cu and K: structure, WI 53562 The reduction, carburization, and catalytic properties of Fischer-Tropsch synthesis (FTS and the Fischer-Tropsch synthesis rates, apparently by decreasing the size of the carbide crystallites formed

  4. Calculation of Vapor-Liquid-Liquid Equilibria for the Fischer-Tropsch Reactor Effluents using Modified Peng-Robinson

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Calculation of Vapor-Liquid-Liquid Equilibria for the Fischer- Tropsch Reactor Effluents using equilibrium in Fischer­Tropsch synthesis products. A group contribution method allowing the estimation the Fischer­Tropsch method is used to produce high-molecular-weight hydrocarbons from synthesis gas (syngas

  5. Kinetically Relevant Steps and H2/D2 Isotope Effects in Fischer-Tropsch Synthesis on Fe and Co Catalysts

    E-Print Network [OSTI]

    Iglesia, Enrique

    Kinetically Relevant Steps and H2/D2 Isotope Effects in Fischer-Tropsch Synthesis on Fe and CoVed: August 4, 2010; ReVised Manuscript ReceiVed: October 3, 2010 H2/D2 isotope effects on Fischer-Tropsch by theory and experiment for the specific case of CO hydrogenation. 1. Introduction Fischer-Tropsch

  6. Selective adsorption of manganese onto cobalt for optimized Mn/Co/TiO2 FischerTropsch catalysts

    E-Print Network [OSTI]

    Regalbuto, John R.

    Selective adsorption of manganese onto cobalt for optimized Mn/Co/TiO2 Fischer­Tropsch catalysts promotion Fischer­Tropsch Strong Electrostatic Adsorption a b s t r a c t The Strong Electrostatic Adsorption (SEA) method was applied to the rational design of a promoted Co catalyst for Fischer­Tropsch (FT

  7. Characterization of new Co and Ru on -WC catalysts for Fischer-Tropsch reaction. Influence of the carbide surface state.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Characterization of new Co and Ru on -WC catalysts for Fischer-Tropsch reaction. Influence.griboval@univ-lille1.fr Abstract An investigation of the performances in Fischer-Tropsch reaction of 1wt% M/WC(X) (M of this natural gas induces a renewed interest for the Fischer-Tropsch reaction which is one of the major routes

  8. Characterization of new Co and Ru on -WC catalysts for Fischer-Tropsch reaction. Influence of the carbide surface state.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Characterization of new Co and Ru on -WC catalysts for Fischer-Tropsch reaction. Influence.griboval@univ-lille1.fr Abstract An investigation of the performances in Fischer-Tropsch reaction of 1wt% M/WC(X) (M wild resources crude oil. Valorization of this natural gas induces a renewed interest for the Fischer-Tropsch

  9. Pathways for CO2 formation and conversion during FischerTropsch synthesis on iron-based catalysts

    E-Print Network [OSTI]

    Iglesia, Enrique

    Pathways for CO2 formation and conversion during Fischer±Tropsch synthesis on iron-based catalysts and formation pathways during Fischer±Tropsch synthesis (FTS) on a co-precipitated Fe±Zn catalyst promoted becomes rapid at WGS reaction equilibrium. KEY WORDS: CO2 formation; Fischer±Tropsch synthesis; iron

  10. Applied Catalysis A: General 219 (2001) 215222 Structural analysis of unpromoted Fe-based FischerTropsch

    E-Print Network [OSTI]

    Iglesia, Enrique

    2001-01-01T23:59:59.000Z

    Applied Catalysis A: General 219 (2001) 215­222 Structural analysis of unpromoted Fe-based Fischer­Tropsch by Mössbauer emission and X-ray absorption spectroscopies after use in the Fischer­Tropsch synthesis (FTS reactant mixture. © 2001 Elsevier Science B.V. All rights reserved. Keywords: Fischer­Tropsch synthesis; X

  11. FISCHER-TROPSCH FUELS PRODUCTION AND DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    Stephen P. Bergin

    2003-04-23T23:59:59.000Z

    This project has two primary purposes: (1) Build a small-footprint (SFP) fuel production plant to prove the feasibility of this relatively transportable technology on an intermediate scale (i.e. between laboratory-bench and commercial capacity) and produce as much as 150,000 gallons of hydrogen-saturated Fischer-Tropsch (FT) diesel fuel; and (2) Use the virtually sulfur-free fuel produced to demonstrate (over a period of at least six months) that it can not only be used in existing diesel engines, but that it also can enable significantly increased effectiveness and life of the next-generation exhaust-after-treatment emission control systems that are currently under development and that will be required for future diesel engines. Furthermore, a well-to-wheels economic analysis will be performed to characterize the overall costs and benefits that would be associated with the actual commercial production, distribution and use of such FT diesel fuel made by the process under consideration, from the currently underutilized (or entirely un-used) energy resources targeted, primarily natural gas that is stranded, sub-quality, off-shore, etc. During the first year of the project, which is the subject of this report, there have been two significant areas of progress: (1) Most of the preparatory work required to build the SFP fuel-production plant has been completed, and (2) Relationships have been established, and necessary project coordination has been started, with the half dozen project-partner organizations that will have a role in the fuel demonstration and evaluation phase of the project. Additional project tasks directly related to the State of Alaska have also been added to the project. These include: A study of underutilized potential Alaska energy resources that could contribute to domestic diesel and distillate fuel production by providing input energy for future commercial-size SFP fuel production plants; Demonstration of the use of the product fuel in a heavy-duty diesel vehicle during the Alaska winter; a comparative study of the cold-starting characteristics of FT and conventional diesel fuel; and demonstration of the use of the fuel to generate electricity for rural Alaskan villages using both a diesel generator set, and a reformer-equipped fuel cell.

  12. Supported fischer-tropsch catalyst and method of making the catalyst

    DOE Patents [OSTI]

    Dyer, Paul N. (Allentown, PA); Pierantozzi, Ronald (Orefield, PA); Withers, Howard P. (Douglassville, PA)

    1987-01-01T23:59:59.000Z

    A Fischer-Tropsch catalyst and a method of making the catalyst for a Fischer-Tropsch process utilizing the catalyst by which synthesis gas, particularly carbon-monoxide rich synthesis gas, is selectively converted to higher hydrocarbons of relatively narrow carbon number range is disclosed. In general, the selective and notably stable catalyst, consist of an inert carrier first treated with a Group IV B metal compound (such as zirconium or titanium), preferably an alkoxide compound, and subsequently treated with an organic compound of a Fischer-Tropsch metal catalyst, such as cobalt, iron or ruthenium carbonyl. Reactions with air and water and calcination are specifically avoided in the catalyst preparation procedure.

  13. Spray drying and attrition behavior of iron catalysts for slurry phase Fischer-Tropsch synthesis

    E-Print Network [OSTI]

    Carreto Vazquez, Victor Hugo

    2004-11-15T23:59:59.000Z

    This thesis describes results of a study aimed at developing and evaluating attrition resistant iron catalysts prepared by spray drying technique. These catalysts are intended for Fischer-Tropsch (F-T) synthesis in a slurry bubble column reactor...

  14. Hydrodynamics of bubble columns with application to Fischer-Tropsch synthesis

    E-Print Network [OSTI]

    Raphael, Matheo Lue

    1988-01-01T23:59:59.000Z

    HYDRODYNAMICS OF BUBBLE COLUMNS AYITH APPLICATION TO FISCHER-TROPSCH SYNTHESIS A Thesis by- MATHEO LUE RAPHAEL Submitted to the Graduate College of Texas ARM University in partial fulfillment of the requirement for the degree of MASTER... OF SCIENCE May 1988 Major Subject: Chemical Engineering HYDRODYNAMICS OF BUBBLE COLUMNS WITH APPLICATION TO FISCHER-TROPSCH SYNTHESIS A Thesis by iAIATHEO LUE RAPHAEL Approved as to style and content by: D. B. Bukur Chairman of Com 'ttee) M. T. za...

  15. Fischer-Tropsch synthesis in the slurry phase on iron catalysts

    E-Print Network [OSTI]

    Brown, Russell Floyd

    1986-01-01T23:59:59.000Z

    FISCHER-TROPSCH SYNTHESIS IN THE SLURRY PHASE ON IRON CATALYSTS A Thesis by RUSSELL FLOYD BROWN Submitted to the Graduate College Texas ARM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE August 1986... Major Subject: Chemical Engineering FISCHER-TROPSCH SYNTHESIS IN THE SLURRY PHASE ON IRON CATALYSTS A Thesis by RUSSELL FLOYD BROWN Approved as to style and content by: Dragomir B. Bukur (Chairman of Committee) A med Gadalla (Member) Michael P...

  16. Iron on mixed zirconia-titania substrate Fischer-Tropsch catalyst and method of making same

    DOE Patents [OSTI]

    Dyer, Paul N. (Allentown, PA); Nordquist, Andrew F. (Whitehall, PA); Pierantozzi, Ronald (Macungie, PA)

    1986-01-01T23:59:59.000Z

    A Fischer-Tropsch catalyst comprising iron co-deposited with or deposited on particles comprising a mixture of zirconia and titania, preferably formed by co-precipitation of compounds convertible to zirconia and titania, such as zirconium and titanium alkoxide. The invention also comprises the method of making this catalyst and an improved Fischer-Tropsch reaction process in which the catalyst is utilized.

  17. Control of metal dispersion and structure by changes in the solid-state chemistry of supported cobalt FischerTropsch catalysts

    E-Print Network [OSTI]

    Iglesia, Enrique

    cobalt Fischer­Tropsch catalysts Stuart L. Soleda,Ã, Enrique Iglesiaa,b , Rocco A. Fiatoa , Joseph E, USA Controlling preparation variables in supported cobalt Fischer­Tropsch catalysts has a dramatic. These approaches can lead to optimal Fischer­Tropsch catalysts with high activity and C5þ selectivity, good

  18. KINETICS OF SLURRY PHASE FISCHER-TROPSCH SYNTHESIS

    SciTech Connect (OSTI)

    Dragomir B. Bukur; Gilbert F. Froment; Lech Nowicki; Jiang Wang; Wen-Ping Ma

    2003-09-29T23:59:59.000Z

    This report covers the first year of this three-year research grant under the University Coal Research program. The overall objective of this project is to develop a comprehensive kinetic model for slurry phase Fischer-Tropsch synthesis on iron catalysts. This model will be validated with experimental data obtained in a stirred tank slurry reactor (STSR) over a wide range of process conditions. The model will be able to predict concentrations of all reactants and major product species (H{sup 2}O, CO{sub 2}, linear 1- and 2-olefins, and linear paraffins) as a function of reaction conditions in the STSR. During the reporting period we have completed one STSR test with precipitated iron catalyst obtained from Ruhrchemie AG (Oberhausen-Holten, Germany). This catalyst was initially in commercial fixed bed reactors at Sasol in South Africa. The catalyst was tested at 13 different sets of process conditions, and had experienced a moderate deactivation during the first 500 h of testing (decrease in conversion from 56% to 50% at baseline process conditions). The second STSR test has been initiated and after 270 h on stream, the catalyst was tested at 6 different sets of process conditions.

  19. KINETICS OF SLURRY PHASE FISCHER-TROPSCH SYNTHESIS

    SciTech Connect (OSTI)

    Dragomir B. Bukur

    2004-09-29T23:59:59.000Z

    This report covers the second year of this three-year research grant under the University Coal Research program. The overall objective of this project is to develop a comprehensive kinetic model for slurry phase Fischer-Tropsch synthesis on iron catalysts. This model will be validated with experimental data obtained in a stirred tank slurry reactor (STSR) over a wide range of process conditions. The model will be able to predict concentrations of all reactants and major product species (H{sub 2}O, CO{sub 2}, linear 1- and 2-olefins, and linear paraffins) as a function of reaction conditions in the STSR. During the second year of the project we completed the STSR test SB-26203 (275-343 h on stream), which was initiated during the first year of the project, and another STSR test (SB-28603 lasting 341 h). Since the inception of the project we completed 3 STSR tests, and evaluated catalyst under 25 different sets of process conditions. A precipitated iron catalyst obtained from Ruhrchemie AG (Oberhausen-Holten, Germany) was used in all tests. This catalyst was used initially in commercial fixed bed reactors at Sasol in South Africa. Also, during the second year we performed a qualitative analysis of experimental data from all three STSR tests. Effects of process conditions (reaction temperature, pressure, feed composition and gas space velocity) on water-gas-shift (WGS) activity and hydrocarbon product distribution have been determined.

  20. ATTRITION RESISTANT IRON-BASED FISCHER-TROPSCH CATALYSTS

    SciTech Connect (OSTI)

    K. Jothimurugesan; James G. Goodwin, Jr.; Santosh K. Gangwal

    1999-10-01T23:59:59.000Z

    Fischer-Tropsch (FT) synthesis to convert syngas (CO + H{sub 2}) derived from natural gas or coal to liquid fuels and wax is a well-established technology. For low H{sub 2} to CO ratio syngas produced from CO{sub 2} reforming of natural gas or from gasification of coal, the use of Fe catalysts is attractive because of their high water gas shift activity in addition to their high FT activity. Fe catalysts are also attractive due to their low cost and low methane selectivity. Because of the highly exothermic nature of the FT reaction, there has been a recent move away from fixed-bed reactors toward the development of slurry bubble column reactors (SBCRs) that employ 30 to 90 {micro}m catalyst particles suspended in a waxy liquid for efficient heat removal. However, the use of FeFT catalysts in an SBCR has been problematic due to severe catalyst attrition resulting in fines that plug the filter employed to separate the catalyst from the waxy product. Fe catalysts can undergo attrition in SBCRs not only due to vigorous movement and collisions but also due to phase changes that occur during activation and reaction.

  1. Fischer-Tropsch synthesis over a fused iron catalyst in a three phase slurry reactor

    E-Print Network [OSTI]

    Buck, Henry J

    1986-01-01T23:59:59.000Z

    FISCHER-TROPSCH SWi'THESIS OVER A FUSED IRON CATALYST IN A THREE PHASE SLURRY REACTOR A Thesis by HENRY J. BUCK III Submitted to the Graduate College at Texas ASM University in partial fulfillment of the requirements for the degree of MASTER... an (Head of Department) G. Anthony (Member) M. T. Longn er (Member) May ]986 ABSTRACT Fischer-Tropsch Synthesis Over Fused Iron Catalyst In a Three Phase Slurry Reactor (May 1986) Henry J. Buck III, B. S. , Old Dominion University; M. S. , Texas...

  2. A study of Fischer-Tropsch model compounds reacting over ZSM-5

    E-Print Network [OSTI]

    Riley, Mark Garner

    1984-01-01T23:59:59.000Z

    A STUDY OF FISCHER-TROPSCH MODEL COMPOUNDS REACTING OVER ZSM-5 A Thesis by MARK GARNER RILEY Submitted to the Graduate College of Texas A8tM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August... 1984 Major Subject: Chemical Engineering A STUDY OF FISCHER-TROPSCH MODEL COMPOUNDS REACTING OVER ZSM-5 A Thesis by MARK GARNER RILEY Approved as to style and content by: ayford G. Anthony (Chai man) Aydin german (Me ber) William Rundell...

  3. The upgrading of Fischer-Tropsch liquids over ZSM-5 using model compounds

    E-Print Network [OSTI]

    Smith, David Duane

    1982-01-01T23:59:59.000Z

    THE UPGRADING OF FISCHER-TROPSCH LIQUIDS OVER ZSN-5 USING NODEL CONPOUNDS A Thesis by DAVID DUANE SNITH Submitted to the Graouate College of Texas A&N University in partial fulfillment of the requirement for the degree of NASTER OF SCIENCE... August 1982 Najor Subgect: Chemical Engineering THE UPGRADING OF FISCHER-TROPSCH LI{}UID OVER ZSN-5 USING NODEL CONPOUNDS A Thesis by DAVID DUAHE SMITH Approved as to style and content by C i f Committee Nember Nember Nember Bead of Department...

  4. The limiting mutual diffusion coefficients of Fischer-Tropsch synthesis products in near-critical hydrocarbons

    E-Print Network [OSTI]

    Noel, James Michael

    1994-01-01T23:59:59.000Z

    The Fischer-Tropsch synthesis (FTS) is used to convert synthesis gas into petroleum products such as gasoline and diesel fuel. It was developed in Germany during WW 11 as an alternative fuel source during the fuel embargo and is still used as a...

  5. Simulation of Fischer-Tropsch Fixed-Bed Reactor in Different Reaction Media

    E-Print Network [OSTI]

    Bani Nasser, Laial Ahmad

    2013-11-04T23:59:59.000Z

    The continuous increase in the global demand for a cleaner energy source has instigated much interest in converting natural gas to ultra-clean fuels and value-added chemicals. Fischer-Tropsch synthesis (FTS) is a key technology for converting syngas...

  6. Fischer-Tropsch Database Calculations Conversions: CO, H2, and Syngas

    E-Print Network [OSTI]

    Kentucky, University of

    Fischer-Tropsch Database Calculations Conversions: CO, H2, and Syngas f in out in n n n = - 100 n contraction (%) #12;Syngas ratio (H2:CO): sr H in CO in n n = 2 _ _ n: (mols per hour) sr: Syngas ratio Rates active metal (g) r: Rate (mols / hr / g metal) #12;Rate Syngas: syngas H COr r r= +2 r syngas: Syngas

  7. KINETICS OF SLURRY PHASE FISCHER-TROPSCH SYNTHESIS

    SciTech Connect (OSTI)

    Dragomir B. Bukur; Gilbert F. Froment; Tomasz Olewski

    2006-09-29T23:59:59.000Z

    This report covers the fourth year of a research project conducted under the University Coal Research Program. The overall objective of this project is to develop a comprehensive kinetic model for slurry-phase Fischer-Tropsch synthesis (FTS) employing iron-based catalysts. This model will be validated with experimental data obtained in a stirred-tank slurry reactor (STSR) over a wide range of process conditions. The model will be able to predict molar flow rates and concentrations of all reactants and major product species (water, carbon dioxide, linear 1- and 2-olefins, and linear paraffins) as a function of reaction conditions in the STSR. During the fourth year of the project, an analysis of experimental data collected during the second year of this project was performed. Kinetic parameters were estimated utilizing product distributions from 27 mass balances. During the reporting period two kinetic models were employed: a comprehensive kinetic model of Dr. Li and co-workers (Yang et al., 2003) and a hydrocarbon selectivity model of Van der Laan and Beenackers (1998, 1999) The kinetic model of Yang et al. (2003) has 24 parameters (20 parameters for hydrocarbon formation, and 4 parameters for the water-gas-shift (WGS) reaction). Kinetic parameters for the WGS reaction and FTS synthesis were estimated first separately, and then simultaneously. The estimation of these kinetic parameters employed the Levenberg-Marquardt (LM) method and the trust-region reflective Newton large-scale (LS) method. A genetic algorithm (GA) was incorporated into estimation of parameters for FTS reaction to provide initial estimates of model parameters. All reaction rate constants and activation energies were found to be positive, but at the 95% confidence level the intervals were large. Agreement between predicted and experimental reaction rates has been fair to good. Light hydrocarbons are predicted fairly accurately, whereas the model underpredicts values of higher molecular weight hydrocarbons. Van der Laan and Beenackers hydrocarbon selectivity model provides a very good fit of the experimental data for hydrocarbons up to about C{sub 20}. However, the experimental data shows higher paraffin formation rates in C{sub 12}-C{sub 25} region which is likely due to hydrocracking or other secondary reactions. The model accurately captures the observed experimental trends of decreasing olefin to paraffin ratio and increasing {alpha} (chain growth length) with increase in chain length.

  8. KINETICS OF SLURRY PHASE FISCHER-TROPSCH SYSTHESIS

    SciTech Connect (OSTI)

    Dragomir B. Bukur; Gilbert F. Froment; Tomasz Olewski

    2005-09-29T23:59:59.000Z

    This report covers the third year of this research grant under the University Coal Research program. The overall objective of this project is to develop a comprehensive kinetic model for slurry phase Fischer-Tropsch synthesis (FTS) on iron catalysts. This model will be validated with experimental data obtained in a stirred tank slurry reactor (STSR) over a wide range of process conditions. The model will be able to predict molar flow rates and concentrations of all reactants and major product species (H{sub 2}O, CO{sub 2}, linear 1- and 2-olefins, and linear paraffins) as a function of reaction conditions in the STSR. During the reporting period we utilized experimental data from the STSR, that were obtained during the first two years of the project, to perform vapor-liquid equilibrium (VLE) calculations and estimate kinetic parameters. We used a modified Peng-Robinson (PR) equation of state (EOS) with estimated values of binary interaction coefficients for the VLE calculations. Calculated vapor phase compositions were in excellent agreement with experimental values from the STSR under reaction conditions. Occasional discrepancies (for some of the experimental data) between calculated and experimental values of the liquid phase composition were ascribed to experimental errors. The VLE calculations show that the vapor and the liquid are in thermodynamic equilibrium under reaction conditions. Also, we have successfully applied the Levenberg-Marquardt method (Marquardt, 1963) to estimate parameters of a kinetic model proposed earlier by Lox and Froment (1993b) for FTS on an iron catalyst. This kinetic model is well suited for initial studies where the main goal is to learn techniques for parameter estimation and statistical analysis of estimated values of model parameters. It predicts that the chain growth parameter ({alpha}) and olefin to paraffin ratio are independent of carbon number, whereas our experimental data show that they vary with the carbon number. Predicted molar flow rates of inorganic species, n-paraffins and total olefins were generally not in good agreement with the corresponding experimental values. In the future we'll use kinetic models based on non-constant value of {alpha}.

  9. Slurry phase Fischer-Tropsch synthesis: Cobalt plus a water-gas shift catalyst

    SciTech Connect (OSTI)

    Yates, I.C.; Satterfield, C.N.

    1988-01-01T23:59:59.000Z

    This report details experiments performed on three different copper-based catalysts: Cu/Cr[sub 2]O[sub 3], Cu/MnO/Cr[sub 2]O[sub 3] and Cu/ZnO/Al[sub 2]O[sub 3]. Of these three catalysts, the Cu/ZnO/Al[sub 2]O[sub 3] exhibits the greatest stability when slurried in octacosane. More than 1000 hours-on-stream indicate that the catalyst activity is not detrimentally affected by high pressure, high H[sub 2]/CO ratio, or the presence of alkenes. All of these are necessary stability characteristics for the water-gas shift catalyst, if it is to be used in combination with a cobalt Fischer-Tropsch catalyst. A review of documented reduction procedures for cobalt-based Fischer-Tropsch catalysts is presented.

  10. Incorporation of catalytic dehydrogenation into fischer-tropsch synthesis to significantly reduce carbon dioxide emissions

    DOE Patents [OSTI]

    Huffman, Gerald P.

    2012-11-13T23:59:59.000Z

    A new method of producing liquid transportation fuels from coal and other hydrocarbons that significantly reduces carbon dioxide emissions by combining Fischer-Tropsch synthesis with catalytic dehydrogenation is claimed. Catalytic dehydrogenation (CDH) of the gaseous products (C1-C4) of Fischer-Tropsch synthesis (FTS) can produce large quantities of hydrogen while converting the carbon to multi-walled carbon nanotubes (MWCNT). Incorporation of CDH into a FTS-CDH plant converting coal to liquid fuels can eliminate all or most of the CO.sub.2 emissions from the water-gas shift (WGS) reaction that is currently used to elevate the H.sub.2 level of coal-derived syngas for FTS. Additionally, the FTS-CDH process saves large amounts of water used by the WGS reaction and produces a valuable by-product, MWCNT.

  11. Fischer-Tropsch studies with catalyst-sprayed tube wall reactors

    SciTech Connect (OSTI)

    Zarochak, M.F.; Pennline, H.W.; Schehl, R.R.

    1982-08-01T23:59:59.000Z

    A summary of Fischer-Tropsch studies in bench-scale tube wall reactors using flame-sprayed catalysts is presented. Preliminary studies were conducted with various flame-sprayed catalysts, after which taconite was chosen as the prime candidate for more extensive evaluation. Results from several life tests with promoted and unpromoted taconite are reported, along with a data base that discusses the effects of various process variables on catalyst activity and product selectivity.

  12. Processes and catalysts for conducting Fischer-Tropsch synthesis in a slurry bubble column reactor

    DOE Patents [OSTI]

    Singleton, A.H.; Oukaci, R.; Goodwin, J.G.

    1999-08-17T23:59:59.000Z

    Processes and catalysts are disclosed for conducting Fischer-Tropsch synthesis in a slurry bubble column reactor (SBCR). One aspect of the invention involves the use of cobalt catalysts without noble metal promotion in an SBCR. Another aspect involves using palladium promoted cobalt catalysts in an SBCR. Methods for preparing noble metal promoted catalysts via totally aqueous impregnation and procedures for producing attrition resistant catalysts are also provided. 1 fig.

  13. Processes and catalysts for conducting fischer-tropsch synthesis in a slurry bubble column reactor

    DOE Patents [OSTI]

    Singleton, Alan H. (Marshall Township, Allegheny County, PA); Oukaci, Rachid (Allison Park, PA); Goodwin, James G. (Cranberry Township, PA)

    1999-01-01T23:59:59.000Z

    Processes and catalysts for conducting Fischer-Tropsch synthesis in a slurry bubble column reactor (SBCR). One aspect of the invention involves the use of cobalt catalysts without noble metal promotion in an SBCR. Another aspect involves using palladium promoted cobalt catalysts in an SBCR. Methods for preparing noble metal promoted catalysts via totally aqueous impregnation and procedures for producing attrition resistant catalysts are also provided.

  14. PROGRESS TOWARDS MODELING OF FISCHER TROPSCH SYNTHESIS IN A SLURRY BUBBLE COLUMN REACTOR

    SciTech Connect (OSTI)

    Donna Post Guillen; Tami Grimmett; Anastasia M. Gandrik; Steven P. Antal

    2010-11-01T23:59:59.000Z

    The Hybrid Energy Systems Testing (HYTEST) Laboratory is being established at the Idaho National Laboratory to develop and test hybrid energy systems with the principal objective to safeguard U.S. Energy Security by reducing dependence on foreign petroleum. A central component of the HYTEST is the slurry bubble column reactor (SBCR) in which the gas-to-liquid reactions will be performed to synthesize transportation fuels using the Fischer Tropsch (FT) process. SBCRs are cylindrical vessels in which gaseous reactants (for example, synthesis gas or syngas) is sparged into a slurry of liquid reaction products and finely dispersed catalyst particles. The catalyst particles are suspended in the slurry by the rising gas bubbles and serve to promote the chemical reaction that converts syngas to a spectrum of longer chain hydrocarbon products, which can be upgraded to gasoline, diesel or jet fuel. These SBCRs operate in the churn-turbulent flow regime which is characterized by complex hydrodynamics, coupled with reacting flow chemistry and heat transfer, that effect reactor performance. The purpose of this work is to develop a computational multiphase fluid dynamic (CMFD) model to aid in understanding the physico-chemical processes occurring in the SBCR. Our team is developing a robust methodology to couple reaction kinetics and mass transfer into a four-field model (consisting of the bulk liquid, small bubbles, large bubbles and solid catalyst particles) that includes twelve species: (1) CO reactant, (2) H2 reactant, (3) hydrocarbon product, and (4) H2O product in small bubbles, large bubbles, and the bulk fluid. Properties of the hydrocarbon product were specified by vapor liquid equilibrium calculations. The absorption and kinetic models, specifically changes in species concentrations, have been incorporated into the mass continuity equation. The reaction rate is determined based on the macrokinetic model for a cobalt catalyst developed by Yates and Satterfield [1]. The model includes heat generation due to the exothermic chemical reaction, as well as heat removal from a constant temperature heat exchanger. Results of the CMFD simulations (similar to those shown in Figure 1) will be presented.

  15. Synthesis of octane enhancers during slurry-phase Fischer-Tropsch

    SciTech Connect (OSTI)

    Marcelin, G.

    1992-09-24T23:59:59.000Z

    The objective of this project is to investigate three possible routes to the formation of ethers, in particular methyl tert-butyl (MTBE), during slurry phase Fischer-Tropsch reaction. The three reaction schemes to be investigated are: addition of i-butylene during the formation of methanol and/or higher alcohols directly from CO and H[sub 2] during slurry-phase Fischer-Tropsch; addition of i-butylene to FT liquid products including alcohols in a slurry-phase reactor containing an MTBE or other acid catalyst; and addition of methanol to slurry phase FT synthesis making iso-olefins. During the seventh quarter we continued the shake down experiments for the SBCR and conducted an initial aborted run. We have also re-started experiments on Scheme 1, i.e., the addition of iso-butylene during CO hydrogenation. Using a dual bed arrangement, we have demonstrated the synthesis of MTBE from syngas and iso-butylene.

  16. Development and process evaluation of improved Fischer-Tropsch slurry catalysts. Final report

    SciTech Connect (OSTI)

    Bukur, D.B.; Mukesh, D.; Patel, S.A.; Zimmerman, W.H.; Rosynek, M.P. [Texas A& M Univ., College Station, TX (United States); Kellogg, L.J. [Air Products and Chemicals, Inc., Allentown, PA (United States)

    1990-04-01T23:59:59.000Z

    This report describes results of a study aimed at developing and evaluating improved catalysts for a slurry Fischer-Tropsch (FT) process for converting synthesis gas to high quality transportation fuels (gasoline and distillate). The improvements in catalyst performance were sought by studying effects of pretreatment conditions, promoters and binders/supports. A total of 20 different, iron based, catalysts were evaluated in 58 fixed bed reactor tests and 10 slurry reactor tests. The major accomplishments and conclusions are summarized below. The pretreatment conditions (temperature, duration and the nature of reducing gas) have significant effect on catalyst performance (activity, selectivity and stability) during Fischer-Tropsch synthesis. One of precipitated unsupported catalysts had hydrocarbon selectivity similar to Mobil`s I-B catalyst in high wax mode operation, and had not experienced any loss in activity during 460 hours of testing under variable process conditions in a slurry reactor. The effect of promoters (copper and potassium) on catalyst performance during FT synthesis has been studied in a systematic way. It was found that potassium promotion increases activities of the FT and water-gas-shift (WGS) reactions, the average molecular weight of hydrocarbon products, and suppresses the olefin hydrogenation and isomerization reactions. The addition of binders/supports (silica or alumina) to precipitated Fe/Cu/K catalysts, decreased their activity but improved their stability and hydrocarbon selectivity. The performance of catalysts of this type was very promising and additional studies are recommended to evaluate their potential for use in commercial slurry reactors.

  17. Iron Aerogel and Xerogel Catalysts for Fischer-Tropsch Synthesis of Diesel Fuel

    SciTech Connect (OSTI)

    Bali, S.; Huggins, F; Huffman, G; Ernst, R; Pugmire, R; Eyring, E

    2009-01-01T23:59:59.000Z

    Iron aerogels, potassium-doped iron aerogels, and potassium-doped iron xerogels have been synthesized and characterized and their catalytic activity in the Fischer-Tropsch (F-T) reaction has been studied. Iron aerogels and xerogels were synthesized by polycondensation of an ethanolic solution of iron(III) chloride hexahydrate with propylene oxide which acts as a proton scavenger for the initiation of hydrolysis and polycondensation. Potassium was incorporated in the iron aerogel and iron xerogel by adding aqueous K{sub 2}CO{sub 3} to the ethanolic solutions of the Fe(III) precursor prior to addition of propylene oxide. Fischer-Tropsch activities of the catalysts were tested in a fixed bed reactor at a pressure of 100 psi with a H{sub 2}:CO ratio of 2:1. Iron aerogels were found to be active for F-T synthesis, and their F-T activities increased on addition of a K containing promoter. Moessbauer spectroscopic data are consistent with an open, nonrigid iron(III) aerogel structure progressing to an iron carbide/metallic iron catalyst via agglomeration as the F-T synthesis proceeds in the course of a 35 h fixed bed reaction test.

  18. Separation of Fischer-Tropsch Wax from Catalyst Using Near-Critical Fluid Extraction: Analysis of Process

    E-Print Network [OSTI]

    Kilpatrick, Peter K.

    the flowsheet contained only one product recovery unit. Self-sufficiency was obtained with multiple recovery for the recovery of heavy normal paraffins from a Fischer-Tropsch slurry reactor has been analyzed. Process extraction temperatures and higher slurry flowrates, but had several attractive features such as lower vapor

  19. Subtask 3.4 - Fischer - Tropsch Fuels Development

    SciTech Connect (OSTI)

    Joshua Strege; Anthony Snyder; Jason Laumb; Joshua Stanislowski; Michael Swanson

    2012-05-01T23:59:59.000Z

    Under Subtask 3.4, the Energy & Environmental Research Center (EERC) examined the opportunities and challenges facing Fischerâ??Tropsch (FT) technology in the United States today. Work was completed in two distinct budget periods (BPs). In BP1, the EERC examined the technical feasibility of using modern warm-gas cleanup techniques for FT synthesis. FT synthesis is typically done using more expensive and complex cold-gas sweetening. Warm-gas cleanup could greatly reduce capital and operating costs, making FT synthesis more attractive for domestic fuel production. Syngas was generated from a variety of coal and biomass types; cleaned of sulfur, moisture, and condensables; and then passed over a pilot-scale FT catalyst bed. Laboratory and modeling work done in support of the pilot-scale effort suggested that the catalyst was performing suboptimally with warm-gas cleanup. Long-term trends showed that the catalyst was also quickly deactivating. In BP3, the EERC compared FT catalyst results using warm-gas cleanup to results using cold-gas sweetening. A gas-sweetening absorption system (GSAS) was designed, modeled, and constructed to sweeten syngas between the gasifier and the pilot-scale FT reactor. Results verified that the catalyst performed much better with gas sweetening than it had with warm-gas cleanup. The catalyst also showed no signs of rapid deactivation when the GSAS was running. Laboratory tests in support of this effort verified that the catalyst had deactivated quickly in BP1 because of exposure to syngas, not because of any design flaw with the pilot-scale FT reactor itself. Based on these results, the EERC concludes that the two biggest issues with using syngas treated with warm-gas cleanup for FT synthesis are high concentrations of CO{sub 2} and volatile organic matter. Other catalysts tested by the EERC may be more tolerant of CO{sub 2}, but volatile matter removal is critical to ensuring long-term FT catalyst operation. This subtask was funded through the EERCâ??U.S. Department of Energy (DOE) Joint Program on Research and Development for Fossil Energy-Related Resources Cooperative Agreement No. DE-FC26-08NT43291. Nonfederal funding for BP1 was provided by the North Dakota Industrial Commissionâ??s (NDIC) Renewable Energy Council.

  20. Monetization of Nigeria coal by conversion to hydrocarbon fuels through Fischer-Tropsch process

    SciTech Connect (OSTI)

    Oguejiofor, G.C. [Nnamdi Azikiwe University, Awka (Nigeria). Dept. of Chemical Engineering

    2008-07-01T23:59:59.000Z

    Given the instability of crude oil prices and the disruptions in crude oil supply chains, this article offers a complementing investment proposal through diversification of Nigeria's energy source and dependence. Therefore, the following issues were examined and reported: A comparative survey of coal and hydrocarbon reserve bases in Nigeria was undertaken and presented. An excursion into the economic, environmental, and technological justifications for the proposed diversification and roll-back to coal-based resource was also undertaken and presented. The technology available for coal beneficiation for environmental pollution control was reviewed and reported. The Fischer-Tropsch synthesis and its advances into Sasol's slurry phase distillate process were reviewed. Specifically, the adoption of Sasol's advanced synthol process and the slurry phase distillate process were recommended as ways of processing the products of coal gasification. The article concludes by discussing all the above-mentioned issues with regard to value addition as a means of wealth creation and investment.

  1. Platinum-Modulated Cobalt Nanocatalysts for Low-Temperature Aqueous-Phase Fischer Tropsch Synthesis

    SciTech Connect (OSTI)

    Wang, Hang [Peking University; Zhou, Wu [ORNL; Liu, JinXun [Dalian Institute of Chemical Physics; Si, Rui [Brookhaven National Laboratory (BNL); Sun, Geng [Peking University; Zhong, Mengqi [Peking University; Su, Haiyan [Peking University; Zhao, Huabo [Peking University; Rodrigues, Jose [Brookhaven National Laboratory (BNL); Pennycook, Stephen J [ORNL; Idrobo Tapia, Juan C [ORNL; Li, Weixue [Dalian Institute of Chemical Physics; Kou, Yuan [Peking University; Ma, Ding [Peking University

    2013-01-01T23:59:59.000Z

    Fischer Tropsch synthesis (FTS) is an important catalytic process for liquid fuel generation, which converts coal/shale gas/biomass-derived syngas (a mixture of CO and H2) to oil. While FTS is thermodynamically favored at low temperature, it is desirable to develop a new catalytic system that could allow working at a relatively low reaction temperature. In this article, we present a one-step hydrogenation reduction route for the synthesis of Pt Co nanoparticles (NPs) which were found to be excellent catalysts for aqueous-phase FTS at 433 K. Coupling with atomic-resolution scanning transmission electron microscopy (STEM) and theoretical calculations, the outstanding activity is rationalized by the formation of Co overlayer structures on Pt NPs or Pt Co alloy NPs. The improved energetics and kinetics from the change of the transition states imposed by the lattice mismatch between the two metals are concluded to be the key factors responsible for the dramatically improved FTS performance.

  2. Activation and promotion studies in a mixed slurry reactor with an iron-manganese Fischer-Tropsch catalyst

    SciTech Connect (OSTI)

    Pennline, H.W.; Zarochak, M.F.; Stencel, J.M.; Diehl, J.R.

    1987-03-01T23:59:59.000Z

    Synthesis gas was reacted over a coprecipitated iron-manganese Fischer-Tropsch catalyst in a slurry reactor. The effect of various activation parameters - temperature, pressure, and gas composition - on subsequent catalyst activity and product selectivity was investigated. The gas composition had the most dramatic effect on the catalyst activation and the ensuing synthesis gas conversion. The effect of potassium promotion on catalyst activity and product selectivity was also studied in slurry reactor tests.

  3. DEVELOPMENT OF A COMPUTATIONAL MULTIPHASE FLOW MODEL FOR FISCHER TROPSCH SYNTHESIS IN A SLURRY BUBBLE COLUMN REACTOR

    SciTech Connect (OSTI)

    Donna Post Guillen; Tami Grimmett; Anastasia M. Gribik; Steven P. Antal

    2010-09-01T23:59:59.000Z

    The Hybrid Energy Systems Testing (HYTEST) Laboratory is being established at the Idaho National Laboratory to develop and test hybrid energy systems with the principal objective to safeguard U.S. Energy Security by reducing dependence on foreign petroleum. A central component of the HYTEST is the slurry bubble column reactor (SBCR) in which the gas-to-liquid reactions will be performed to synthesize transportation fuels using the Fischer Tropsch (FT) process. SBCRs are cylindrical vessels in which gaseous reactants (for example, synthesis gas or syngas) is sparged into a slurry of liquid reaction products and finely dispersed catalyst particles. The catalyst particles are suspended in the slurry by the rising gas bubbles and serve to promote the chemical reaction that converts syngas to a spectrum of longer chain hydrocarbon products, which can be upgraded to gasoline, diesel or jet fuel. These SBCRs operate in the churn-turbulent flow regime which is characterized by complex hydrodynamics, coupled with reacting flow chemistry and heat transfer, that effect reactor performance. The purpose of this work is to develop a computational multiphase fluid dynamic (CMFD) model to aid in understanding the physico-chemical processes occurring in the SBCR. Our team is developing a robust methodology to couple reaction kinetics and mass transfer into a four-field model (consisting of the bulk liquid, small bubbles, large bubbles and solid catalyst particles) that includes twelve species: (1) CO reactant, (2) H2 reactant, (3) hydrocarbon product, and (4) H2O product in small bubbles, large bubbles, and the bulk fluid. Properties of the hydrocarbon product were specified by vapor liquid equilibrium calculations. The absorption and kinetic models, specifically changes in species concentrations, have been incorporated into the mass continuity equation. The reaction rate is determined based on the macrokinetic model for a cobalt catalyst developed by Yates and Satterfield [1]. The model includes heat generation due to the exothermic chemical reaction, as well as heat removal from a constant temperature heat exchanger. Results of the CMFD simulations (similar to those shown in Figure 1) will be presented.

  4. ULTRA-CLEAN FISCHER-TROPSCH FUELS PRODUCTION AND DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    Steve Bergin

    2003-10-17T23:59:59.000Z

    The Syntroleum plant is mechanically complete and currently undergoing start-up. The fuel production and demonstration plan is near completion. The study on the impact of small footprint plant (SFP) fuel on engine performance is about half-completed. Cold start testing has been completed. Preparations have been completed for testing the fuel in diesel electric generators in Alaska. Preparations are in progress for testing the fuel in bus fleets at Denali National Park and the Washington Metropolitan Transit Authority. The experiments and analyses conducted during this project show that Fischer-Tropsch (FT) gas-to-liquid diesel fuel can easily be used in a diesel engine with little to no modifications. Additionally, based on the results and discussion presented, further improvements in performance and emissions can be realized by configuring the engine to take advantage of FT diesel fuel's properties. The FT fuel also shows excellent cold start properties and enabled the engine tested to start at more the ten degrees than traditional fuels would allow. This plant produced through this project will produce large amounts of FT fuel. This will allow the fuel to be tested extensively, in current, prototype, and advanced diesel engines. The fuel may also contribute to the nation's energy security. The military has expressed interest in testing the fuel in aircraft and ground vehicles.

  5. Attrition resistant catalysts for slurry-phase Fischer-Tropsch process

    SciTech Connect (OSTI)

    K. Jothimurugesan

    1999-11-01T23:59:59.000Z

    The Fischer-Tropsch (F-T) reaction provides a way of converting coal-derived synthesis gas (CO+H{sub 2}) to liquid fuels. Since the reaction is highly exothermic, one of the major problems in control of the reaction is heat removal. Recent work has shown that the use of slurry bubble column reactors (SBCRs) can largely solve this problem. Iron-based (Fe) catalysts are preferred catalysts for F-T because they are relatively inexpensive and possess reasonable activity for F-T synthesis (FTS). Their most advantages trait is their high water-gas shift (WGS) activity compared to their competitor, namely cobalt. This enables Fe F-T catalysts to process low H{sub 2}/CO ratio synthesis gas without an external shift reaction step. However, a serious problem with the use of Fe catalysts in a SBCR is their tendency to undergo attrition. This can cause fouling/plugging of downstream filters and equipment, make the separation of catalyst from the oil/wax product very difficult if not impossible, an d result in a steady loss of catalyst from the reactor. The objectives of this research were to develop a better understanding of the parameters affecting attrition of Fe F-T catalysts suitable for use in SBCRs and to incorporate this understanding into the design of novel Fe catalysts having superior attrition resistance.

  6. Baseline design/economics for advanced Fischer-Tropsch technology. Quarterly report, January--March 1992

    SciTech Connect (OSTI)

    Not Available

    1992-09-01T23:59:59.000Z

    The objectives of the study are to: Develop a baseline design for indirect liquefaction using advanced Fischer-Tropsch (F-T) technology. Prepare the capital and operating costs for the baseline design. Develop a process flow sheet simulation (PFS) model. This report summarizes the activities completed during the period December 23, 1992 through March 15, 1992. In Task 1, Baseline Design and Alternates, the following activities related to the tradeoff studies were completed: approach and basis; oxygen purity; F-T reactor pressure; wax yield; autothermal reformer; hydrocarbons (C{sub 3}/C{sub 4}s) recovery; and hydrogenrecovery. In Task 3, Engineering Design Criteria, activities were initiated to support the process tradeoff studies in Task I and to develop the environmental strategy for the Illinois site. The work completed to date consists of the development of the F-T reactor yield correlation from the Mobil dam and a brief review of the environmental strategy prepared for the same site in the direct liquefaction baseline study.Some work has also been done in establishing site-related criteria, in establishing the maximum vessel diameter for train sizing and in coping with the low H{sub 2}/CO ratio from the Shell gasifier. In Task 7, Project Management and Administration, the following activities were completed: the subcontract agreement between Amoco and Bechtel was negotiated; a first technical progress meeting was held at the Bechtel office in February; and the final Project Management Plan was approved by PETC and issued in March 1992.

  7. Incorporation of catalytic dehydrogenation into Fischer-Tropsch synthesis to lower carbon dioxide emissions

    DOE Patents [OSTI]

    Huffman, Gerald P

    2012-09-18T23:59:59.000Z

    A method for producing liquid fuels includes the steps of gasifying a starting material selected from a group consisting of coal, biomass, carbon nanotubes and mixtures thereof to produce a syngas, subjecting that syngas to Fischer-Tropsch synthesis (FTS) to produce a hyrdrocarbon product stream, separating that hydrocarbon product stream into C1-C4 hydrocarbons and C5+ hydrocarbons to be used as liquid fuels and subjecting the C1-C4 hydrocarbons to catalytic dehydrogenation (CDH) to produce hydrogen and carbon nanotubes. The hydrogen produced by CDH is recycled to be mixed with the syngas incident to the FTS reactor in order to raise the hydrogen to carbon monoxide ratio of the syngas to values of 2 or higher, which is required to produce liquid hydrocarbon fuels. This is accomplished with little or no production of carbon dioxide, a greenhouse gas. The carbon is captured in the form of a potentially valuable by-product, multi-walled carbon nanotubes (MWNT), while huge emissions of carbon dioxide are avoided and very large quantities of water employed for the water-gas shift in traditional FTS systems are saved.

  8. Synthesis of octane enhancer during slurry-phase Fischer-Tropsch. Quarterly technical progress report No. 4, July 1, 1991--September 30, 1991

    SciTech Connect (OSTI)

    Marcelin, G.

    1991-12-15T23:59:59.000Z

    The objective of this project is to investigate three possible routes to the formation of ethers, in particular methyl tert-butyl ether (MTBE), during slurry phase Fischer-Tropsch reaction. The three reaction schemes to be investigated are: Addition of isobutylene during the formation of methanol and/or higher alcohols directly from CO and H{sub 2} during slurry-phase Fischer-Tropsch. Addition of isobutylene to FT liquid products including alcohols in a slurry-phase reactor containing an MTBE or other acid catalyst. Addition of methanol to slurry phase FT synthesis making iso-olefins.

  9. Synthesis of octane enhancers during slurry-phase Fischer-Tropsch. Quarterly technical progress report No. 5, October 1, 1991--December 31, 1991

    SciTech Connect (OSTI)

    Marcelin, G.

    1992-06-10T23:59:59.000Z

    The objective of this project is to investigate three possible routes to the formation of ethers, in particular methyl tert-butyl ether (MTBE), during slurry phase Fischer-Tropsch reaction. The three reaction schemes to be investigated are: Addition of isobutylene during the formation of methanol and/or higher alcohols directly from CO and H{sub 2} during slurry-phase Fischer-Tropsch. Addition of isobutylene to FT liquid products including alcohols in a slurry-phase reactor containing an MTBE or other acid catalyst. Addition of methanol to slurry phase FT synthesis making iso-olefins.

  10. Synthesis of octane enhancers during slurry-phase Fischer-Tropsch. Quarterly technical progress report No. 3, April 1, 1991--June 30, 1991

    SciTech Connect (OSTI)

    Marcelin, G.

    1991-10-15T23:59:59.000Z

    The objective of this project is to investigate three possible routes to the formation of ethers, in particular methyl tert-butytl ether (MTBE), during slurry phase Fischer-Tropsch reaction. The three reaction schemes to be investigated are: (1) Addition of isobutylene during the formation of methanol and/or higher alcohols directly from CO and H{sub 2} during slurry-phase Fischer-Tropsch; (2) addition of isobutylene to FT liquid products including alcohols in a slurry-phase reactor containing an MTBE or other acid catalyst; and, (3) addition of methanol to slurry phase FT synthesis making iso-olefins.

  11. Separation of Fischer-Tropsch Wax Products from Ultrafine Iron Catalyst Particles

    SciTech Connect (OSTI)

    James K. Neathery; Gary Jacobs; Amitava Sarkar; Burtron H. Davis

    2005-09-30T23:59:59.000Z

    In this reporting period, a study of ultra-fine iron catalyst filtration was initiated to study the behavior of ultra-fine particles during the separation of Fischer-Tropsch Synthesis (FTS) liquids filtration. The overall focus of the program is with slurry-phase FTS in slurry bubble column reactor systems. Hydrocarbon products must be separated from catalyst particles before being removed from the reactor system. An efficient wax product/catalyst separation system is a key factor for optimizing operating costs for iron-based slurry-phase FTS. Previous work has focused on catalyst particle attrition and the formation of ultra-fine iron carbide and/or carbon particles. With the current study, we are investigating how the filtration properties are affected by these chemical and physical changes of the catalyst slurry during activation/synthesis. The change of particle size during the slurry-phase FTS has monitored by withdrawing catalyst sample at different TOS. The measurement of dimension of the HRTEM images of samples showed a tremendous growth of the particles. Carbon rims of thickness 3-6 nm around the particles were observed. This growth in particle size was not due to carbon deposition on the catalyst. A conceptual design and operating philosophy was developed for an integrated wax filtration system for a 4 liter slurry bubble column reactor to be used in Phase II of this research program. The system will utilize a primary inertial hydroclone followed by a Pall Accusep cross-flow membrane. Provisions for cleaned permeate back-pulsing will be included to as a flux maintenance measure.

  12. Synthesis of octane enhancers during slurry-phase Fischer-Tropsch. [801Methyl tert-butyl ether

    SciTech Connect (OSTI)

    Marcelin, G.

    1992-06-24T23:59:59.000Z

    The objective of this project is to investigate three possible routes to the formation of ethers, in particular methyl tert-butyl ether (MTBE), during slurry phase Fischer-Tropsch reaction. The three reaction schemes to be investigated are: (1) Addition of isobutylene during the formation of methanol and/or higher alcohols directly from CO and H{sub 2} during slurry-phase Fischer-Tropsch. (2) Addition of isobutylene to FT liquid products including alcohols in a slurry-phase reactor containing an MTBE or other acid catalyst. (3) Addition of methanol to slurry phase FT synthesis making iso-olefins. During the sixth quarter we completed the construction of the slurry bubble column reactor (SBCR), conducted initial shake-down experiments in a cold-flow mode, and finalized the selection process of the acid catalysts for conversion of syngas-produced alcohols and isobutylene to MTBE (scheme 2). Tasks 3, 4, and 5 are awaiting complete implementation of the SBCR system.

  13. Effect of surface modification by chelating agents on Fischer-Tropsch performance of Co/SiO2 catalysts

    SciTech Connect (OSTI)

    Bambal, Ashish S. [WVU; Kyugler, Edwin L. [WVU; Gardner, Todd H. [U.S. DOE; Dadyburjor, Dady B. [WVU

    2013-01-01T23:59:59.000Z

    The silica support of a Co-based catalyst for Fischer?Tropsch (FT) synthesis was modified by the chelating agents (CAs) nitrilotriacetic acid (NTA) and ethylenediaminetetraacetic acid (EDTA). After the modification, characterization of the fresh and spent catalysts shows reduced crystallite sizes, a better-dispersed Co3O4 phase on the calcined samples, and increased metal dispersions for the reduced samples. The CA-modified catalysts display higher CO conversions, product yields, reaction rates, and rate constants. The improved FT performance of CA-modified catalysts is attributed to the formation of stable complexes with Co. The superior performance of the EDTA-modified catalyst in comparison to the NTA-modified catalyst is due to the higher affinity of the former for complex formation with Co ions. 1. INTRODUCTION Fischer?Tropsch (FT) synthesis has been recognized as one of the most promising technologies for the conversion of coal, natural gas, and biomass-derived syngas into liquid fuels and chemicals.1 Limited oil reserves, energy supply security concerns, carbon credits,1 pollution abatement laws, and, most notably, uncertainty about fuel prices have increased the prospect of commercializing the FT process. Catalysts that are typically used for FT synthesis include supported Co or Fe. Cobased catalysts have the advantage of higher syngas conversion, more high-

  14. Ultra-clean Fischer-Tropsch (F-T) Fuels Production and Demonstration Project

    SciTech Connect (OSTI)

    Stephen P. Bergin

    2006-06-30T23:59:59.000Z

    The objective of the DOE-NETL Fischer-Tropsch (F-T) Production and Demonstration Program was to produce and evaluate F-T fuel derived from domestic natural gas. The project had two primary phases: (1) fuel production of ultra-clean diesel transportation fuels from domestic fossil resources; and (2) demonstration and performance testing of these fuels in engines. The project also included a well-to-wheels economic analysis and a feasibility study of small-footprint F-T plants (SFPs) for remote locations such as rural Alaska. During the fuel production phase, ICRC partnered and cost-shared with Syntroleum Corporation to complete the mechanical design, construction, and operation of a modular SFP that converts natural gas, via F-T and hydro-processing reactions, into hydrogensaturated diesel fuel. Construction of the Tulsa, Oklahoma plant started in August 2002 and culminated in the production of over 100,000 gallons of F-T diesel fuel (S-2) through 2004, specifically for this project. That fuel formed the basis of extensive demonstrations and evaluations that followed. The ultra-clean F-T fuels produced had virtually no sulfur (less than 1 ppm) and were of the highest quality in terms of ignition quality, saturation content, backend volatility, etc. Lubricity concerns were investigated to verify that commercially available lubricity additive treatment would be adequate to protect fuel injection system components. In the fuel demonstration and testing phase, two separate bus fleets were utilized. The Washington DC Metropolitan Area Transit Authority (WMATA) and Denali National Park bus fleets were used because they represented nearly opposite ends of several spectra, including: climate, topography, engine load factor, mean distance between stops, and composition of normally used conventional diesel fuel. Fuel evaluations in addition to bus fleet demonstrations included: bus fleet emission measurements; F-T fuel cold weather performance; controlled engine dynamometer lab evaluation; cold-start test-cell evaluations; overall feasibility, economics, and efficiency of SFP fuel production; and an economic analysis. Two unexpected issues that arose during the project were further studied and resolved: variations in NOx emissions were accounted for and fuel-injection nozzle fouling issues were traced to the non-combustible (ash) content of the engine oil, not the F-T fuel. The F-T fuel domestically produced and evaluated in this effort appears to be a good replacement candidate for petroleum-based transportation fuels. However, in order for domestic F-T fuels to become a viable cost-comparable alternative to petroleum fuels, the F-T fuels will need to be produced from abundant U.S. domestic resources such as coal and biomass, rather than stranded natural gas.

  15. Slurry phase Fischer-Tropsch synthesis: Cobalt plus a water-gas shift catalyst. [Quarterly] report, June 30, 1988--September 30, 1988

    SciTech Connect (OSTI)

    Yates, I.C.; Satterfield, C.N.

    1988-12-31T23:59:59.000Z

    This report details experiments performed on three different copper-based catalysts: Cu/Cr{sub 2}O{sub 3}, Cu/MnO/Cr{sub 2}O{sub 3} and Cu/ZnO/Al{sub 2}O{sub 3}. Of these three catalysts, the Cu/ZnO/Al{sub 2}O{sub 3} exhibits the greatest stability when slurried in octacosane. More than 1000 hours-on-stream indicate that the catalyst activity is not detrimentally affected by high pressure, high H{sub 2}/CO ratio, or the presence of alkenes. All of these are necessary stability characteristics for the water-gas shift catalyst, if it is to be used in combination with a cobalt Fischer-Tropsch catalyst. A review of documented reduction procedures for cobalt-based Fischer-Tropsch catalysts is presented.

  16. Incorporation of Reaction Kinetics into a Multiphase, Hydrodynamic Model of a Fischer Tropsch Slurry Bubble Column Reactor

    SciTech Connect (OSTI)

    Donna Guillen, PhD; Anastasia Gribik; Daniel Ginosar, PhD; Steven P. Antal, PhD

    2008-11-01T23:59:59.000Z

    This paper describes the development of a computational multiphase fluid dynamics (CMFD) model of the Fischer Tropsch (FT) process in a Slurry Bubble Column Reactor (SBCR). The CMFD model is fundamentally based which allows it to be applied to different industrial processes and reactor geometries. The NPHASE CMFD solver [1] is used as the robust computational platform. Results from the CMFD model include gas distribution, species concentration profiles, and local temperatures within the SBCR. This type of model can provide valuable information for process design, operations and troubleshooting of FT plants. An ensemble-averaged, turbulent, multi-fluid solution algorithm for the multiphase, reacting flow with heat transfer was employed. Mechanistic models applicable to churn turbulent flow have been developed to provide a fundamentally based closure set for the equations. In this four-field model formulation, two of the fields are used to track the gas phase (i.e., small spherical and large slug/cap bubbles), and the other two fields are used for the liquid and catalyst particles. Reaction kinetics for a cobalt catalyst is based upon values reported in the published literature. An initial, reaction kinetics model has been developed and exercised to demonstrate viability of the overall solution scheme. The model will continue to be developed with improved physics added in stages.

  17. Mathematical modeling of Fischer-Tropsch synthesis in an industrial slurry bubble column - article no. A 23

    SciTech Connect (OSTI)

    Nasim Hooshyar; Shohreh Fatemi; Mohammad Rahmani [University of Tehran (Iran)

    2009-07-01T23:59:59.000Z

    The increase in society's need for fuels and decrease in crude oil resources are important reasons to make more interest for both academic and industry in converting gas to liquids. Fischer-Tropsch synthesis is one of the most attractive methods of Gas-to-Liquids (GTL) processes and the reactor in which, this reaction occurs, is the heart of this process. This work deals with modeling of a commercial size slurry bubble column reactor by two different models, i.e. single bubble class model (SBCM) and double bubble class model (DBCM). The reactor is assumed to work in a churn-turbulent flow regime and the reaction kinetic is a Langmuir-Hinshelwood type. Cobalt-based catalyst is used for this study as it plays an important role in preparing heavy cuts and the higher yield of the liquid products. Parameter sensitivity analysis was carried out for different conditions such as catalyst concentration, superficial gas velocity, H{sub 2} over CO ratio, and column diameter. The results of the SBCM and DBCM revealed that there is no significant difference between single and double bubble class models in terms of temperature, concentration and conversion profiles in the reactor, so the simpler SBCM with less number of model parameters can be a good and reliable model of choice for analyzing the slurry bubble column reactors.

  18. Synthesis of octane enhancers during slurry-phase Fischer-Tropsch. Quarterly technical progress report No. 6, January 1, 1992--March 31, 1992

    SciTech Connect (OSTI)

    Marcelin, G.

    1992-06-24T23:59:59.000Z

    The objective of this project is to investigate three possible routes to the formation of ethers, in particular methyl tert-butyl ether (MTBE), during slurry phase Fischer-Tropsch reaction. The three reaction schemes to be investigated are: (1) Addition of isobutylene during the formation of methanol and/or higher alcohols directly from CO and H{sub 2} during slurry-phase Fischer-Tropsch. (2) Addition of isobutylene to FT liquid products including alcohols in a slurry-phase reactor containing an MTBE or other acid catalyst. (3) Addition of methanol to slurry phase FT synthesis making iso-olefins. During the sixth quarter we completed the construction of the slurry bubble column reactor (SBCR), conducted initial shake-down experiments in a cold-flow mode, and finalized the selection process of the acid catalysts for conversion of syngas-produced alcohols and isobutylene to MTBE (scheme 2). Tasks 3, 4, and 5 are awaiting complete implementation of the SBCR system.

  19. Synthesis of octane enhancers during slurry-phase Fischer-Tropsch. Quarterly technical progress report No. 7, April 1, 1992--June 30, 1992

    SciTech Connect (OSTI)

    Marcelin, G.

    1992-09-24T23:59:59.000Z

    The objective of this project is to investigate three possible routes to the formation of ethers, in particular methyl tert-butyl (MTBE), during slurry phase Fischer-Tropsch reaction. The three reaction schemes to be investigated are: addition of i-butylene during the formation of methanol and/or higher alcohols directly from CO and H{sub 2} during slurry-phase Fischer-Tropsch; addition of i-butylene to FT liquid products including alcohols in a slurry-phase reactor containing an MTBE or other acid catalyst; and addition of methanol to slurry phase FT synthesis making iso-olefins. During the seventh quarter we continued the shake down experiments for the SBCR and conducted an initial aborted run. We have also re-started experiments on Scheme 1, i.e., the addition of iso-butylene during CO hydrogenation. Using a dual bed arrangement, we have demonstrated the synthesis of MTBE from syngas and iso-butylene.

  20. Shape-selective catalysts for Fischer-Tropsch chemistry : iron-containing particulate catalysts. Activity report : January 1, 2001 - December 31, 2004.

    SciTech Connect (OSTI)

    Cronauer, D.; Chemical Engineering

    2006-05-12T23:59:59.000Z

    Argonne National Laboratory is carrying out a research program to create, prepare, and evaluate catalysts to promote Fischer-Tropsch (FT) chemistry--specifically, the reaction of hydrogen with carbon monoxide to form long-chain hydrocarbons. In addition to needing high activity, it is desirable that the catalysts have high selectivity and stability with respect to both mechanical strength and aging properties. It is desired that selectivity be directed toward producing diesel fraction components and avoiding excess yields of both light hydrocarbons and heavy waxes. The goal is to produce shape-selective catalysts that have the potential to limit the formation of longchain products and yet retain the active metal sites in a protected 'cage'. This cage also restricts their loss by attrition during use in slurry-bed reactors. The first stage of this program was to prepare and evaluate iron-containing particulate catalysts. This activity report centers upon this first stage of experimentation with particulate FT catalysts. (For reference, a second experimental stage is under way to prepare and evaluate active FT catalysts formed by atomic-layer deposition [ALD] of active components on supported membranes.) To date, experimentation has centered upon the evaluation of a sample of iron-based, spray-dried catalyst prepared by B.H. Davis of the Center of Applied Energy Research (CAER) and samples of his catalyst onto which inorganic 'shells' were deposited. The reference CAER catalyst contained a high level of dispersed fine particles, a portion of which was removed by differential settling. Reaction conditions have been established using a FT laboratory unit such that reasonable levels of CO conversion can be achieved, where therefore a valid catalyst comparison can be made. A wide range of catalytic activities was observed with SiO{sub 2}-coated FT catalysts. Two techniques were used for SiO{sub 2}coating. The first involved a caustic precipitation of SiO{sub 2} from an organo-silicate onto the CAER catalyst. The second was the acidic precipitation of an organo-silicate with aging to form fractal particles that were then deposited onto the CAER catalyst. Several resulting FT catalysts were as active as the coarse catalyst on which they were prepared. The most active ones were those with the least amount of coating, namely about 2.2 wt% SiO{sub 2}. In the case of the latter acid technique, the use of HCl and HNO{sub 3} was much more effective than that of H{sub 2}SO{sub 4}. Scanning electron microscopy (SEM) was used to observe and analyze as-received and treated FT catalysts. It was observed that (1) spherical particles of CAER FT catalyst were made up of agglomerates of particles that were, in turn, also agglomerates; (2) the spray drying process of CAER apparently concentrated the Si precursor at the surface during drying; (3) while SEM pointed out broad differences in the appearance of the prepared catalyst particles, there was little indication that the catalysts were being uniformly coated with a cage-like protective surface, with perhaps the exception of HNO{sub 3}-precipitated catalyst; and (4) there was only a limited penetration of carbon (i.e., CO) into the FT catalyst during the conditioning and FT reaction steps.

  1. Shape-selective catalysts for Fischer-Tropsch chemistry : atomic layer deposition of active catalytic metals. Activity report : January 1, 2005 - September 30, 2005.

    SciTech Connect (OSTI)

    Cronauer, D. C. (Chemical Sciences and Engineering Division)

    2011-04-15T23:59:59.000Z

    Argonne National Laboratory is carrying out a research program to create, prepare, and evaluate catalysts to promote Fischer-Tropsch (FT) chemistry - specifically, the reaction of hydrogen with carbon monoxide to form long-chain hydrocarbons. In addition to needing high activity, it is desirable that the catalysts have high selectivity and stability with respect to both mechanical strength and aging properties. The broad goal is to produce diesel fraction components and avoiding excess yields of both light hydrocarbons and heavy waxes. Originally the goal was to prepare shape-selective catalysts that would limit the formation of long-chain products and yet retain the active metal sites in a protected 'cage.' Such catalysts were prepared with silica-containing fractal cages. The activity was essentially the same as that of catalysts without the cages. We are currently awaiting follow-up experiments to determine the attrition strength of these catalysts. A second experimental stage was undertaken to prepare and evaluate active FT catalysts formed by atomic-layer deposition [ALD] of active components on supported membranes and particulate supports. The concept was that of depositing active metals (i.e. ruthenium, iron or cobalt) upon membranes with well defined flow channels of small diameter and length such that the catalytic activity and product molecular weight distribution could be controlled. In order to rapidly evaluate the catalytic membranes, the ALD coating processes were performed in an 'exploratory mode' in which ALD procedures from the literature appropriate for coating flat surfaces were applied to the high surface area membranes. Consequently, the Fe and Ru loadings in the membranes were likely to be smaller than those expected for complete monolayer coverage. In addition, there was likely to be significant variation in the Fe and Ru loading among the membranes due to difficulties in nucleating these materials on the aluminum oxide surfaces. The first series of experiments using coated membranes demonstrated that the technology needed further improvement. Specifically, observed catalytic FT activity was low. This low activity appeared to be due to: (1) low available surface area, (2) atomic deposition techniques that needed improvements, and (3) insufficient preconditioning of the catalyst surface prior to FT testing. Therefore, experimentation was expanded to the use of particulate silica supports having defined channels and reasonably high surface area. This later experimentation will be discussed in the next progress report. Subsequently, we plan to evaluate membranes after the ALD techniques are improved with a careful study to control and quantify the Fe and Ru loadings. The preconditioning of these surfaces will also be further developed. (A number of improvements have been made with particulate supports; they will be discussed in the subsequent report.) In support of the above, there was an opportunity to undertake a short study of cobalt/promoter/support interaction using the Advanced Photon Source (APS) of Argonne. Five catalysts and a reference cobalt oxide were characterized during a temperature programmed EXAFS/XANES experimental study with the combined effort of Argonne and the Center for Applied Energy Research (CAER) of the University of Kentucky. This project was completed, and it resulted in an extensive understanding of the preconditioning step of reducing Co-containing FT catalysts. A copy of the resulting manuscript has been submitted and accepted for publication. A similar project was undertaken with iron-containing FT catalysts; the data is currently being studied.

  2. KINETIC MODELING OF A FISCHER-TROPSCH REACTION OVER A COBALT CATALYST IN A SLURRY BUBBLE COLUMN REACTOR FOR INCORPORATION INTO A COMPUTATIONAL MULTIPHASE FLUID DYNAMICS MODEL

    SciTech Connect (OSTI)

    Anastasia Gribik; Doona Guillen, PhD; Daniel Ginosar, PhD

    2008-09-01T23:59:59.000Z

    Currently multi-tubular fixed bed reactors, fluidized bed reactors, and slurry bubble column reactors (SBCRs) are used in commercial Fischer Tropsch (FT) synthesis. There are a number of advantages of the SBCR compared to fixed and fluidized bed reactors. The main advantage of the SBCR is that temperature control and heat recovery are more easily achieved. The SBCR is a multiphase chemical reactor where a synthesis gas, comprised mainly of H2 and CO, is bubbled through a liquid hydrocarbon wax containing solid catalyst particles to produce specialty chemicals, lubricants, or fuels. The FT synthesis reaction is the polymerization of methylene groups [-(CH2)-] forming mainly linear alkanes and alkenes, ranging from methane to high molecular weight waxes. The Idaho National Laboratory is developing a computational multiphase fluid dynamics (CMFD) model of the FT process in a SBCR. This paper discusses the incorporation of absorption and reaction kinetics into the current hydrodynamic model. A phased approach for incorporation of the reaction kinetics into a CMFD model is presented here. Initially, a simple kinetic model is coupled to the hydrodynamic model, with increasing levels of complexity added in stages. The first phase of the model includes incorporation of the absorption of gas species from both large and small bubbles into the bulk liquid phase. The driving force for the gas across the gas liquid interface into the bulk liquid is dependent upon the interfacial gas concentration in both small and large bubbles. However, because it is difficult to measure the concentration at the gas-liquid interface, coefficients for convective mass transfer have been developed for the overall driving force between the bulk concentrations in the gas and liquid phases. It is assumed that there are no temperature effects from mass transfer of the gas phases to the bulk liquid phase, since there are only small amounts of dissolved gas in the liquid phase. The product from the incorporation of absorption is the steady state concentration profile of the absorbed gas species in the bulk liquid phase. The second phase of the model incorporates a simplified macrokinetic model to the mass balance equation in the CMFD code. Initially, the model assumes that the catalyst particles are sufficiently small such that external and internal mass and heat transfer are not rate limiting. The model is developed utilizing the macrokinetic rate expression developed by Yates and Satterfield (1991). Initially, the model assumes that the only species formed other than water in the FT reaction is C27H56. Change in moles of the reacting species and the resulting temperature of the catalyst and fluid phases is solved simultaneously. The macrokinetic model is solved in conjunction with the species transport equations in a separate module which is incorporated into the CMFD code.

  3. EA-1642-S1: Small-Scale Pilot Plant for the Gasification of Coal and Coal-Biomass Blends and Conversion of Derived Syngas to Liquid Fuels via Fischer-Tropsch Synthesis, Lexington, KY

    Broader source: Energy.gov [DOE]

    This draft Supplemental Environmental Assessment (SEA) analyzes the potential environmental impacts of DOE’s proposed action of providing cost-shared funding for the University of Kentucky (UK) Center for Applied Energy Research (CAER) Small-Scale Pilot Plant for the Gasification of Coal and Coal-Biomass Blends and Conversion of Derived Syngas to Liquid Fuels via Fischer-Tropsch Synthesis project and of the No-Action Alternative.

  4. Influence of gas feed composition and pressure on the catalytic conversion of CO{sub 2} to hydrocarbons using a traditional cobalt-based Fischer-Tropsch catalyst

    SciTech Connect (OSTI)

    Robert W. Dorner; Dennis R. Hardy; Frederick W. Williams; Burtron H. Davis; Heather D. Willauer [Naval Research Laboratory, Washington, DC (United States). Navy Technology Center for Safety and Survivability Branch

    2009-08-15T23:59:59.000Z

    The hydrogenation of CO{sub 2} using a traditional Fischer-Tropsch Co-Pt/Al{sub 2}O{sub 3} catalyst for the production of valuable hydrocarbon materials is investigated. The ability to direct product distribution was measured as a function of different feed gas ratios of H{sub 2} and CO{sub 2} (3:1, 2:1, and 1:1) as well as operating pressures (ranging from 450 to 150 psig). As the feed gas ratio was changed from 3:1 to 2:1 and 1:1, the production distribution shifted from methane toward higher chain hydrocarbons. This change in feed gas ratio is believed to lower the methanation ability of Co in favor of chain growth, with possibly two different active sites for methane and C2-C4 products. Furthermore, with decreasing pressure, the methane conversion drops slightly in favor of C{sub 2}-C{sub 4} paraffins. Even though under certain reaction conditions product distribution can be shifted slightly away from the formation of methane, the catalyst studied behaves like a methanation catalyst in the hydrogenation of CO{sub 2}. 36 refs., 2 figs., 4 tabs.

  5. Analysis of Nitro-Polycyclic Aromatic Hydrocarbons in Conventional Diesel and Fischer--Tropsch Diesel Fuel Emissions Using Electron Monochromator-Mass Spectrometry

    SciTech Connect (OSTI)

    Havey, C. D.; McCormick, R. L.; Hayes, R. R.; Dane, A. J.; Voorhees, K. J.

    2006-01-01T23:59:59.000Z

    The presence of nitro-polycyclic aromatic hydrocarbons (NPAHs) in diesel fuel emissions has been studied for a number of years predominantly because of their contribution to the overall health and environmental risks associated with these emissions. Electron monochromator-mass spectrometry (EM-MS) is a highly selective and sensitive method for detection of NPAHs in complex matrixes, such as diesel emissions. Here, EM-MS was used to compare the levels of NPAHs in fuel emissions from conventional (petroleum) diesel, ultra-low sulfur/low-aromatic content diesel, Fischer-Tropsch synthetic diesel, and conventional diesel/synthetic diesel blend. The largest quantities of NPAHs were detected in the conventional diesel fuel emissions, while the ultra-low sulfur diesel and synthetic diesel fuel demonstrated a more than 50% reduction of NPAH quantities when compared to the conventional diesel fuel emissions. The emissions from the blend of conventional diesel with 30% synthetic diesel fuel also demonstrated a more than 30% reduction of the NPAH content when compared to the conventional diesel fuel emissions. In addition, a correlation was made between the aromatic content of the different fuel types and NPAH quantities and between the nitrogen oxides emissions from the different fuel types and NPAH quantities. The EM-MS system demonstrated high selectivity and sensitivity for detection of the NPAHs in the emissions with minimal sample cleanup required.

  6. Six-flow operations for catalyst development in Fischer-Tropsch synthesis: Bridging the gap between high-throughput experimentation and extensive product evaluation

    SciTech Connect (OSTI)

    Sartipi, Sina, E-mail: S.Sartipi@tudelft.nl, E-mail: J.Gascon@tudelft.nl; Jansma, Harrie; Bosma, Duco; Boshuizen, Bart; Makkee, Michiel; Gascon, Jorge, E-mail: S.Sartipi@tudelft.nl, E-mail: J.Gascon@tudelft.nl; Kapteijn, Freek [Department of Chemical Engineering, Catalysis Engineering, Delft University of Technology, Julianalaan 136, 2628 BL Delft (Netherlands)] [Department of Chemical Engineering, Catalysis Engineering, Delft University of Technology, Julianalaan 136, 2628 BL Delft (Netherlands)

    2013-12-15T23:59:59.000Z

    Design and operation of a “six-flow fixed-bed microreactor” setup for Fischer-Tropsch synthesis (FTS) is described. The unit consists of feed and mixing, flow division, reaction, separation, and analysis sections. The reactor system is made of five heating blocks with individual temperature controllers, assuring an identical isothermal zone of at least 10 cm along six fixed-bed microreactor inserts (4?mm inner diameter). Such a lab-scale setup allows running six experiments in parallel, under equal feed composition, reaction temperature, and conditions of separation and analysis equipment. It permits separate collection of wax and liquid samples (from each flow line), allowing operation with high productivities of C5+ hydrocarbons. The latter is crucial for a complete understanding of FTS product compositions and will represent an advantage over high-throughput setups with more than ten flows where such instrumental considerations lead to elevated equipment volume, cost, and operation complexity. The identical performance (of the six flows) under similar reaction conditions was assured by testing a same catalyst batch, loaded in all microreactors.

  7. Performance characterization of CNTs and ?-Al{sub 2}O{sub 3} supported cobalt catalysts in Fischer-Tropsch reaction

    SciTech Connect (OSTI)

    Ali, Sardar, E-mail: alikhan-635@yahoo.com [Centralized Analytical Laboratory, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia); Zabidi, Noor Asmawati Mohd, E-mail: noorasmawati-mzabidi@petronas.com.my [Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia); Subbarao, Duvvuri, E-mail: duvvuri-subbarao@petronas.com.my [Department of Chemical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2014-10-24T23:59:59.000Z

    Catalysts were prepared via a wet impregnation method. Different physicochemical properties of the samples were revealed by transmission electron microscope (TEM), temperature programmed reduction (H{sub 2}-TPR) and carbon dioxide desorption (CO{sub 2}-desorption). Fischer-Tropsch reaction (FTS) was carried out in a fixed-bed microreactor at 220°C and 1 atm, with H{sub 2}/CO?=?2v/v and space velocity, SV of 12L/g.h for 5 h. Various characterization techniques revealed that there was a stronger interaction between Co and Al{sub 2}O{sub 3} support compared to that of CNTs support. CNTs support increased the reducibility and decreased Co particle size. A significant increase in % CO conversion and FTS reaction rate was observed over CNTs support compared to that of Co/Al{sub 2}O{sub 3}. Co/CNTs resulted in higher C{sub 5+} hydrocarbons selectivity compared to that of Co/Al{sub 2}O{sub 3} catalyst. CNTs are a better support for Co compared to Al{sub 2}O{sub 3}.

  8. Assessment of fuel-cycle energy use and greenhouse gas emissions for Fischer-Tropsch diesel from coal and cellulosic biomass.

    SciTech Connect (OSTI)

    Xie, X.; Wang, M.; Han, J. (Energy Systems)

    2011-04-01T23:59:59.000Z

    This study expands and uses the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model to assess the effects of carbon capture and storage (CCS) technology and cellulosic biomass and coal cofeeding in Fischer-Tropsch (FT) plants on energy use and greenhouse gas (GHG) emissions of FT diesel (FTD). To demonstrate the influence of the coproduct credit methods on FTD life-cycle analysis (LCA) results, two allocation methods based on the energy value and the market revenue of different products and a hybrid method are employed. With the energy-based allocation method, fossil energy use of FTD is less than that of petroleum diesel, and GHG emissions of FTD could be close to zero or even less than zero with CCS when forest residue accounts for 55% or more of the total dry mass input to FTD plants. Without CCS, GHG emissions are reduced to a level equivalent to that from petroleum diesel plants when forest residue accounts for 61% of the total dry mass input. Moreover, we show that coproduct method selection is crucial for LCA results of FTD when a large amount of coproducts is produced.

  9. Determination of the Effect of Coal/Biomass-Derived Syngas Contaminants on the Performance of Fischer-Tropsch and Water-Gas-Shift Catalysts

    SciTech Connect (OSTI)

    Trembly, Jason; Cooper, Matthew; Farmer, Justin; Turk, Brian; Gupta, Raghubir

    2010-12-31T23:59:59.000Z

    Today, nearly all liquid fuels and commodity chemicals are produced from non-renewable resources such as crude oil and natural gas. Because of increasing scrutiny of carbon dioxide (CO{sub 2}) emissions produced using traditional fossil-fuel resources, the utilization of alternative feedstocks for the production of power, hydrogen, value-added chemicals, and high-quality hydrocarbon fuels such as diesel and substitute natural gas (SNG) is critical to meeting the rapidly growing energy needs of modern society. Coal and biomass are particularly attractive as alternative feedstocks because of the abundant reserves of these resources worldwide. The strategy of co-gasification of coal/biomass (CB) mixtures to produce syngas for synthesis of Fischer-Tropsch (FT) fuels offers distinct advantages over gasification of either coal or biomass alone. Co-feeding coal with biomass offers the opportunity to exploit economies of scale that are difficult to achieve in biomass gasification, while the addition of biomass to the coal gasifier feed leverages proven coal gasification technology and allows CO{sub 2} credit benefits. Syngas generated from CB mixtures will have a unique contaminant composition because coal and biomass possess different concentrations and types of contaminants, and the final syngas composition is also strongly influenced by the gasification technology used. Syngas cleanup for gasification of CB mixtures will need to address this unique contaminant composition to support downstream processing and equipment. To investigate the impact of CB gasification on the production of transportation fuels by FT synthesis, RTI International conducted thermodynamic studies to identify trace contaminants that will react with water-gas-shift and FT catalysts and built several automated microreactor systems to investigate the effect of single components and the synergistic effects of multiple contaminants on water-gas-shift and FT catalyst performance. The contaminants investigated were sodium chloride (NaCl), potassium chloride (KCl), hydrogen sulfide (H{sub 2}S), carbonyl sulfide (COS), ammonia (NH{sub 3}), and combinations thereof. This report details the thermodynamic studies and the individual and multi-contaminant results from this testing program.

  10. Sensitivity of Fischer-Tropsch Synthesis and Water-Gas Shift Catalysts to Poisons from High-Temperature High-Pressure Entrained-Flow (EF) Oxygen-Blown Gasifier Gasification of Coal/Biomass Mixtures

    SciTech Connect (OSTI)

    Burton Davis; Gary Jacobs; Wenping Ma; Dennis Sparks; Khalid Azzam; Janet Chakkamadathil Mohandas; Wilson Shafer; Venkat Ramana Rao Pendyala

    2011-09-30T23:59:59.000Z

    There has been a recent shift in interest in converting not only natural gas and coal derived syngas to Fischer-Tropsch synthesis products, but also converting biomass-derived syngas, as well as syngas derived from coal and biomass mixtures. As such, conventional catalysts based on iron and cobalt may not be suitable without proper development. This is because, while ash, sulfur compounds, traces of metals, halide compounds, and nitrogen-containing chemicals will likely be lower in concentration in syngas derived from mixtures of coal and biomass (i.e., using entrained-flow oxygen-blown gasifier gasification gasification) than solely from coal, other compounds may actually be increased. Of particular concern are compounds containing alkali chemicals like the chlorides of sodium and potassium. In the first year, University of Kentucky Center for Applied Energy Research (UK-CAER) researchers completed a number of tasks aimed at evaluating the sensitivity of cobalt and iron-based Fischer-Tropsch synthesis (FT) catalysts and a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to alkali halides. This included the preparation of large batches of 0.5%Pt-25%Co/Al{sub 2}O{sub 3} and 100Fe: 5.1Si: 3.0K: 2.0Cu (high alpha) catalysts that were split up among the four different entities participating in the overall project; the testing of the catalysts under clean FT and WGS conditions; the testing of the Fe-Cr WGS catalyst under conditions of co-feeding NaCl and KCl; and the construction and start-up of the continuously stirred tank reactors (CSTRs) for poisoning investigations. In the second and third years, researchers from the University of Kentucky Center for Applied Energy Research (UK-CAER) continued the project by evaluating the sensitivity of a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to a number of different compounds, including KHCO{sub 3}, NaHCO{sub 3}, HCl, HBr, HF, H{sub 2}S, NH{sub 3}, and a combination of H{sub 2}S and NH{sub 3}. Cobalt and iron-based Fischer-Tropsch synthesis (FT) catalysts were also subjected to a number of the same compounds in order to evaluate their sensitivities at different concentration levels of added contaminant.

  11. Impact of Contaminants Present in Coal-Biomass Derived Synthesis Gas on Water-gas Shift and Fischer-Tropsch Synthesis Catalysts

    SciTech Connect (OSTI)

    Gokhan Alptekin

    2012-09-30T23:59:59.000Z

    Co-gasification of biomass and coal in large-scale, Integrated Gasification Combined Cycle (IGCC) plants increases the efficiency and reduces the environmental impact of making synthesis gas ("syngas") that can be used in Coal-Biomass-to-Liquids (CBTL) processes for producing transportation fuels. However, the water-gas shift (WGS) and Fischer-Tropsch synthesis (FTS) catalysts used in these processes may be poisoned by multiple contaminants found in coal-biomass derived syngas; sulfur species, trace toxic metals, halides, nitrogen species, the vapors of alkali metals and their salts (e.g., KCl and NaCl), ammonia, and phosphorous. Thus, it is essential to develop a fundamental understanding of poisoning/inhibition mechanisms before investing in the development of any costly mitigation technologies. We therefore investigated the impact of potential contaminants (H{sub 2}S, NH{sub 3}, HCN, AsH{sub 3}, PH{sub 3}, HCl, NaCl, KCl, AS{sub 3}, NH{sub 4}NO{sub 3}, NH{sub 4}OH, KNO{sub 3}, HBr, HF, and HNO{sub 3}) on the performance and lifetime of commercially available and generic (prepared in-house) WGS and FT catalysts; ferrochrome-based high-temperature WGS catalyst (HT-WGS, Shiftmax 120�, Süd-Chemie), low-temperature Cu/ZnO-based WGS catalyst (LT-WGS, Shiftmax 230�, Süd-Chemie), and iron- and cobalt-based Fischer-Trospch synthesis catalysts (Fe-FT & Co-FT, UK-CAER). In this project, TDA Research, Inc. collaborated with a team at the University of Kentucky Center for Applied Energy Research (UK-CAER) led by Dr. Burt Davis. We first conducted a detailed thermodynamic analysis. The three primary mechanisms whereby the contaminants may deactivate the catalyst are condensation, deposition, and reaction. AsH{sub 3}, PH{sub 3}, H{sub 2}S, HCl, NH{sub 3} and HCN were found to have a major impact on the Fe-FT catalyst by producing reaction products, while NaCl, KCl and PH{sub 3} produce trace amounts of deposition products. The impact of the contaminants on the activity, selectivity, and deactivation rates (lifetime) of the catalysts was determined in bench-scale tests. Most of the contaminants appeared to adsorb onto (or react with) the HT- and LT-WGS catalysts were they were co-fed with the syngas: � 4.5 ppmv AsH{sub 3} or 1 ppmv PH{sub 3} in the syngas impacted the selectivity and CO conversion of both catalysts; � H{sub 2}S slowly degraded both WGS catalysts; - A binary mixture of H{sub 2}S (60 ppmv) and NH{sub 3} (38 ppmv) impacted the activity of the LT-WGS catalyst, but not the HT-WGS catalyst � Moderate levels of NH{sub 3} (100 ppmv) or HCN (10 ppmv) had no impact � NaCl or KCl had essentially no effect on the HT-WGS catalyst, but the activity of the LT-WGS catalyst decreased very slowly Long-term experiments on the Co-FT catalyst at 260 and 270 °C showed that all of the contaminants impacted it to some extent with the exception of NaCl and HF. Irrespective of its source (e.g., NH{sub 3}, KNO{sub 3}, or HNO{sub 3}), ammonia suppressed the activity of the Co-FT catalyst to a moderate degree. There was essentially no impact the Fe-FT catalyst when up to 100 ppmw halide compounds (NaCl and KCl), or up to 40 ppmw alkali bicarbonates (NaHCO{sub 3} and KHCO{sub 3}). After testing, BET analysis showed that the surface areas, and pore volumes and diameters of both WGS catalysts decreased during both single and binary H2S and NH3 tests, which was attributed to sintering and pore filling by the impurities. The HT-WGS catalyst was evaluated with XRD after testing in syngas that contained 1 ppmv PH{sub 3}, or 2 ppmv H{sub 2}S, or both H{sub 2}S (60 ppmv) and NH{sub 3} (38 ppmv). The peaks became sharper during testing, which was indicative of crystal growth and sintering, but no new phases were detected. After LT-WGS tests (3-33 ppmv NH{sub 3} and/or 0-88 ppmv H{sub 2}S) there were a few new phases that appeared, including sulfides. The fresh Fe-FT catalyst was nanocrystalline and amorphous. ICP-AA spectroscopy and other methods (e.g., chromatography) were used to analyze for

  12. Improved Fischer-Tropsch Slurry Reactors

    SciTech Connect (OSTI)

    Andrew Lucero

    2009-03-20T23:59:59.000Z

    The conversion of synthesis gas to hydrocarbons or alcohols involves highly exothermic reactions. Temperature control is a critical issue in these reactors for a number of reasons. Runaway reactions can be a serious safety issue, even raising the possibility of an explosion. Catalyst deactivation rates tend to increase with temperature, particularly of there are hot spots in the reactor. For alcohol synthesis, temperature control is essential because it has a large effect on the selectivity of the catalysts toward desired products. For example, for molybdenum disulfide catalysts unwanted side products such as methane, ethane, and propane are produced in much greater quantities if the temperature increases outside an ideal range. Slurry reactors are widely regarded as an efficient design for these reactions. In a slurry reactor a solid catalyst is suspended in an inert hydrocarbon liquid, synthesis gas is sparged into the bottom of the reactor, un-reacted synthesis gas and light boiling range products are removed as a gas stream, and heavy boiling range products are removed as a liquid stream. This configuration has several positive effects for synthesis gas reactions including: essentially isothermal operation, small catalyst particles to reduce heat and mass transfer effects, capability to remove heat rapidly through liquid vaporization, and improved flexibility on catalyst design through physical mixtures in addition to use of compositions that cannot be pelletized. Disadvantages include additional mass transfer resistance, potential for significant back-mixing on both the liquid and gas phases, and bubble coalescence. In 2001 a multiyear project was proposed to develop improved FT slurry reactors. The planned focus of the work was to improve the reactors by improving mass transfer while considering heat transfer issues. During the first year of the project the work was started and several concepts were developed to prepare for bench-scale testing. PowerEnerCat was unable to raise their cash contribution for the project, and the work was stopped. This report summarizes some of the progress of the project and the concepts that were intended for experimental tests.

  13. An Overview of the Biomass Scenario Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cost from the National Renewable Energy Laboratory (NREL) at www.nrel.govpublications. o Fischer-Tropsch o Methanol to Gasoline o Catalytic Pyrolysis o Fermentation o Aqueous...

  14. IMPROVED IRON CATALYSTS FOR SLURRY PHASE FISCHER-TROPSCH SYNTHESIS

    SciTech Connect (OSTI)

    Dr. Dragomir B. Bukur; Dr. Lech Nowicki; Victor Carreto-Vazquez; Dr. Wen-Ping Ma

    2001-11-28T23:59:59.000Z

    PureVision Technology, Inc. (PureVision) of Fort Lupton, Colorado is developing a process for the conversion of lignocellulosic biomass into fuel-grade ethanol and specialty chemicals in order to enhance national energy security, rural economies, and environmental quality. Lignocellulosic-containing plants are those types of biomass that include wood, agricultural residues, and paper wastes. Lignocellulose is composed of the biopolymers cellulose, hemicellulose, and lignin. Cellulose, a polymer of glucose, is the component in lignocellulose that has potential for the production of fuel-grade ethanol by direct fermentation of the glucose. However, enzymatic hydrolysis of lignocellulose and raw cellulose into glucose is hindered by the presence of lignin. The cellulase enzyme, which hydrolyzes cellulose to glucose, becomes irreversibly bound to lignin. This requires using the enzyme in reagent quantities rather than in catalytic concentration. The extensive use of this enzyme is expensive and adversely affects the economics of ethanol production. PureVision has approached this problem by developing a biomass fractionator to pretreat the lignocellulose to yield a highly pure cellulose fraction. The biomass fractionator is based on sequentially treating the biomass with hot water, hot alkaline solutions, and polishing the cellulose fraction with a wet alkaline oxidation step. In September 2001 PureVision and Western Research Institute (WRI) initiated a jointly sponsored research project with the U.S. Department of Energy (DOE) to evaluate their pretreatment technology, develop an understanding of the chemistry, and provide the data required to design and fabricate a one- to two-ton/day pilot-scale unit. The efforts during the first year of this program completed the design, fabrication, and shakedown of a bench-scale reactor system and evaluated the fractionation of corn stover. The results from the evaluation of corn stover have shown that water hydrolysis prior to alkaline hydrolysis may be beneficial in removing hemicellulose and lignin from the feedstock. In addition, alkaline hydrolysis has been shown to remove a significant portion of the hemicellulose and lignin. The resulting cellulose can be exposed to a finishing step with wet alkaline oxidation to remove the remaining lignin. The final product is a highly pure cellulose fraction containing less than 1% of the native lignin with an overall yield in excess of 85% of the native cellulose. This report summarizes the results from the first year's effort to move the technology to commercialization.

  15. Attrition resistant Fischer-Tropsch catalyst and support

    DOE Patents [OSTI]

    Singleton, Alan H.; Oukaci, Rachid; Goodwin, James G.

    2004-05-25T23:59:59.000Z

    A catalyst support having improved attrition resistance and a catalyst produced therefrom. The catalyst support is produced by a method comprising the step of treating calcined .gamma.-alumina having no catalytic material added thereto with an acidic aqueous solution having an acidity level effective for increasing the attrition resistance of the calcined .gamma.-alumina.

  16. Nel (2004), “Clean Coal Conversion Options using Fischer-Tropsch

    E-Print Network [OSTI]

    Andre ? P. Steynberg; Herman G. Nel

    facilities producing these products individually. There may be good strategic reasons to use clean coal

  17. CX-001328: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Fischer Tropsch LaboratoryCX(s) Applied: B3.6Date: 03/17/2010Location(s): Pittsburgh, PennsylvaniaOffice(s): Fossil Energy, National Energy Technology Laboratory

  18. CX-009372: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Small Scale Coal-Biomass to Liquids Using Highly Selective Fischer-Tropsch Synthesis CX(s) Applied: A9 Date: 09/17/2012 Location(s): California Offices(s): National Energy Technology Laboratory

  19. CX-002358: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Fischer-Tropsch Fuels DevelopmentCX(s) Applied: B3.6Date: 05/10/2010Location(s): Grand Forks, North DakotaOffice(s): Fossil Energy, National Energy Technology Laboratory

  20. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01T23:59:59.000Z

    Cellulosic ethanol Fischer-Tropsch diesel Hydrogen-treatedfrom syngas, known as Fischer-Tropsch, is well understood.Guo (2010) Making Fischer- Tropsch Fuels and Electricity

  1. Development and Application of Advanced Models for Steam Hydrogasification: Process Design and Economic Evaluation

    E-Print Network [OSTI]

    Lu, Xiaoming

    2012-01-01T23:59:59.000Z

    AP, Dry ME, eds. , Fischer-Tropsch Technology: Studies infor Production of Synthetic Fischer Tropsch Diesel: SpecificFG, Steigleder KZ. Fischer–Tropsch wax characterization and

  2. ANNUAL REPORT OCTOBER 1, 1979-SEPTEMBER 30, 1980 CHEMISTRY AND MORPHOLOGY OF COAL LIQUEFACTION

    E-Print Network [OSTI]

    Heinemann, Heinz

    2013-01-01T23:59:59.000Z

    problem with conventional Fischer-Tropsch synthesis b1 thatby conventional Fischer-Tropsch synthesis. Two approaches toas supports for Fischer-Tropsch catalysts. Published studies

  3. California’s Energy Future: The View to 2050 - Summary Report

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01T23:59:59.000Z

    Cellulosic ethanol Fischer-Tropsch diesel Hydrogen-treatedfrom syngas, known as Fischer-Tropsch, is well understood.Guo (2010) Making Fischer- Tropsch Fuels and Electricity

  4. HYDROCARBON FORMATION ON POLYMER-SUPPORTED COBALT

    E-Print Network [OSTI]

    Benner, Linda S.

    2013-01-01T23:59:59.000Z

    encountered in Fischer-Tropsch catalysis by heterogeneousthe on polystyrene" Fischer~Tropsch catalysts activityty 3 and 5 in the Fischer~Tropsch. reaction. The conditions

  5. MATERIALS AND MOLECULAR RESEARCH DIVISION, ANNUAL REPORT 1976

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01T23:59:59.000Z

    of Soluable Fischer- Tropsch Catalysts . . . . . . 9.AND EVALUATION OF SOLUABLE FISCHER-TROPSCH CATALYSTS J. L.methanation and Fischer- Tropsch synthesis of hydrocarbons.

  6. SYNTHESES AND REACTIONS OF POLYMER-BOUND MOLYBDENUM COMPLEXES AND HYDROGENOLYSES OF AN ALKYNYL COBALT CARBONYL CLUSTER

    E-Print Network [OSTI]

    Frommer, Jane Elizabeth

    2013-01-01T23:59:59.000Z

    E.L.Muetterties Fischer-Tropsch Chemistry, see J.Stein,Interest in Fischer-Tropsch hydrocarbon synthesis ispatterns in Fischer-Tropsch catalysis. Hydrogenations of

  7. SURFACE AND ADSORBATE STRUCTURAL STUDIES BY PHOTOEMISSION IN THE hV = 50-500 eV RANGE

    E-Print Network [OSTI]

    Shirley, D.A.

    2010-01-01T23:59:59.000Z

    First, consider Fischer-Tropsch synthesis. The desiredmaterial ingre­ dients for Fischer-Tropsch synthesis are allsubsequent fate in It a Fischer-Tropsch reactor depends on

  8. MATERIALS AND MOLECULAR RESEARCH DIVISION ANNUAL REPORT 1979

    E-Print Network [OSTI]

    Authors, Various

    2013-01-01T23:59:59.000Z

    Ruthenium Cluster Complexes as Catalysts for Fischer-TropschImmobi- lized Homogeneous Fischer-Tropsch Catalyst," J. Am.of Fischer- Tropsch Intermediates . . . . . . . . . . . . .

  9. Transportation and its Infrastructure

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    methyl esters (DME) and Fischer-Tropsch liquids, as well astransport fuels using Fischer-Tropsch or other conversionconcluded that biodiesel, Fischer-Tropsch synthetic kerosene

  10. Investigation of the Effect of In-Situ Catalyst on the Steam Hydrogasification of Biomass

    E-Print Network [OSTI]

    FAN, XIN

    2012-01-01T23:59:59.000Z

    DME, synthetic gasoline, Fischer-Tropsch diesel fuels. Firstgas is fed into a Fischer-Tropsch Reactor (FTR) to beproduction in the Fischer-Tropsch reactions. Steam

  11. Triple Oxygen Isotope Measurement of Nitrate to Analyze Impact of Aircraft Emissions

    E-Print Network [OSTI]

    Chan, Sharleen

    present trends of Fischer-Tropsch synthesis. Appl.Catal. ,at Figure 3: Overview of Fischer-Tropsch process. Carbonand undergoes the Fischer Tropsch process through catalysts

  12. Oscillatory Flame Response in Acoustically Coupled Fuel Droplet Combustion

    E-Print Network [OSTI]

    Sevilla Esparza, Cristhian Israel

    2013-01-01T23:59:59.000Z

    Stavinoha. Properties of Fischer-Tropsch (FT) blends for useof fuels derived through Fischer Tropsch (FT) synthesis, afrom coal via the Fischer-Tropsch process, or “FT” fuel,

  13. METHANE-PRODUCING HYDROGENOLYSIS OF (n5 -CYCLOPENTADIENYL) - (TRIPHENYLPHOSPHINE)DIMETHYLCOBALT(III). AN AUTOCATALYTIC MECHANISM INVOLVING A BINUCLEAR METAL DIHYDRIDE/METAL DIALKYL REACTION AS A CRITICAL STEP

    E-Print Network [OSTI]

    Janowicz, Andrew H.

    2014-01-01T23:59:59.000Z

    processes such as the Fischer-Tropsch reaction may involveand the (heterogeneous) Fischer~Tropsch reaction requires

  14. Adsorption and dissociation of CO on Fe(110) from first principles

    E-Print Network [OSTI]

    Carter, Emily A.

    catalysis and Fischer­Tropsch synthesis. Fe is used as a catalyst in the Fischer­Tropsch process [1] due

  15. Charge Transfer and Catalysis at the Metal-Support Interface

    E-Print Network [OSTI]

    Baker, Lawrence Robert

    2012-01-01T23:59:59.000Z

    of C=O bond activation is FischerTropsch synthesis for theas the feedstock for FischerTropsch synthesis, the net

  16. The Potential for Renewable Energy Sources in Ausilio Bauen

    E-Print Network [OSTI]

    .................................................................................................................. 20 Fischer-Tropsch Kerosene Global Biomass Fischer-Tropsch Fuel Chains...................................................... 39 Fisher Tropsch Quantitative Analys

  17. Transport impacts on atmosphere and climate: Aviation

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    processes, e.g. from the Fischer–Tropsch process, and lastlyfeedstock via the Fischer–Tropsch process, reduces fuel

  18. Development of a Fischer-Tropsch Gasoline Process for the Steam Hydrogasification Technology

    E-Print Network [OSTI]

    Li, Yang

    2013-01-01T23:59:59.000Z

    distributions.  Applied  Catalysis  A:  General,  1999.  Tropsch  reactors.  Applied  Catalysis  A:  General,  Tropsch   process.  Applied  Catalysis  A:  General,  

  19. ULTRA-CLEAN FISCHER-TROPSCH FUELS PRODUCTION AND DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    Steve Bergin

    2004-10-18T23:59:59.000Z

    The Report Abstract provides summaries of the past year's activities relating to each of the main project objectives. Some of the objectives will be expanded on in greater detail further down in the report. The following objectives have their own addition sections in the report: SFP Construction and Fuel Production, Impact of SFP Fuel on Engine Performance, Fleet Testing at WMATA and Denali National Park, Demonstration of Clean Diesel Fuels in Diesel Electric Generators in Alaska, and Economic Analysis. ICRC provided overall project organization and budget management for the project. ICRC held meetings with various project participants. ICRC presented at the Department of Energy's annual project review meeting. The plant began producing fuel in October 2004. The first delivery of finished fuel was made in March of 2004 after the initial start-up period.

  20. Data base for fused-iron catalyst in the Fischer-Tropsch reaction

    SciTech Connect (OSTI)

    Batchelder, R.F.; Pennline, H.W.; Schehl, R.R.

    1982-04-01T23:59:59.000Z

    Various tests were conducted with a promoted, fused-iron catalyst. Hydrogen and carbon monoxide mixtures of different ratios with or without light olefin additives were reacted in a gradientless, mixed reactor. Process and catalyst parameters investigated were temperature (250 to 325/sup 0/C), pressure (100 to 600 psig), H/sub 2/:CO synthesis gas ratio (1/1 to 4/1), and catalyst particle size. Results from these experiments have been presented graphically, and observations have been discussed.

  1. Fischer-Tropsch electrochemical CO[sub 2] reduction to fuels and chemicals

    SciTech Connect (OSTI)

    Schwartz, M.; Vercauteren, M.E.; Sammells, A.F. (Eltron Research, Inc., Boulder, CO (United States))

    1994-11-01T23:59:59.000Z

    This investigation was directed toward the rational selection of cathode electrocatalysts compatible with promoting carbon dioxide reduction at practical rates to commercially significant fuels and chemicals. Work performed identified electrocatalyst sites, incorporated into gas-diffusion electrodes, demonstrating high activity toward promoting both CO[sub 2] reduction to adsorbed CO and subsequent electron transfer leading to final reaction products. The feature of electrocatalysis identified was in its apparent ability to maintain a high coverage of adsorbed CO intermediate species at reaction sites available for further reduction to products. Carbon dioxide reduction proceeded at significantly lower overpotentials and higher rates and faradaic efficiencies than previously found to this time at unit-activity copper.

  2. advanced fischer-tropsch technology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quarterly Report Fossil Fuels Websites Summary: 40308 University of Kentucky Research Foundation 201 Kinkead Hall Lexington, KY 40506 University of Chemical Engineering...

  3. The limiting mutual diffusion coefficients of Fischer-Tropsch synthesis products in near-critical hydrocarbons 

    E-Print Network [OSTI]

    Noel, James Michael

    1994-01-01T23:59:59.000Z

    is the molecular diffusivity of the organic in the supercritical fluid. However, data for diffusivities in supercritical fluids are scarce. Because diffusion coefficients cannot be determined a priofi, it is necessary to measure them. We have utilized the Taylor...

  4. Separation of Fischer-Tropsch Wax from Catalyst by Supercritical Extraction

    SciTech Connect (OSTI)

    Mark C. Thies; Patrick C. Joyce

    1998-04-30T23:59:59.000Z

    Further progress in achieving the objectives of the project was made in the period of January I to March 31, 1998. The direct numerical simulation of particle removal process in turbulent gas flows was completed. Variations of particle trajectories are studied. It is shown that the near wall vortices profoundly affect the particle removal process in turbulent boundary layer flows. Experimental data for transport and deposition of fibrous particles in the aerosol wind tunnel was obtained. The measured deposition velocity for irregular fibrous particles is compared with the empirical correlation and the available data for glass fibers and discussed. Additional progress on the sublayer model for evaluating the particle deposition and resuspension in turbulent flows was made.

  5. Separation of Fischer-Tropsch Wax from Catalyst by Supercritical Extraction

    SciTech Connect (OSTI)

    Mark C. Thies; Patrick C. Joyce

    1998-01-31T23:59:59.000Z

    Further progress in achieving the objectives of the project was made in the period of January I to March 31, 1998. The direct numerical simulation of particle removal process in turbulent gas flows was completed. Variations of particle trajectories are studied. It is shown that the near wall vortices profoundly affect the particle removal process in turbulent boundary layer flows. Experimental data for transport and deposition of fibrous particles in the aerosol wind tunnel was obtained. The measured deposition velocity for irregular fibrous particles is compared with the empirical correlation and the available data for glass fibers and discussed. Additional progress on the sublayer model for evaluating the particle deposition and resuspension in turbulent flows was made.

  6. Ultra-Clean Fischer-Tropsch Fuels Production and Demonstration Project

    SciTech Connect (OSTI)

    Steve Bergin

    2005-10-14T23:59:59.000Z

    The Report Abstract provides summaries of the past year's activities relating to each of the main project objectives. Some of the objectives will be expanded on in greater detail further down in the report. The following objectives have their own addition sections in the report: Dynamometer Durability Testing, the Denali Bus Fleet Demonstration, Bus Fleet Demonstrations Emissions Analysis, Impact of SFP Fuel on Engine Performance, Emissions Analysis, Feasibility Study of SFPs for Rural Alaska, and Cold Weather Testing of Ultra Clean Fuel.

  7. Reducing fischer-tropsch catalyst attrition losses in high agitation reaction systems

    DOE Patents [OSTI]

    Singleton, Alan H. (Baden, PA); Oukaci, Rachid (Gibsonia, PA); Goodwin, James G. (Cranberry Township, PA)

    2001-01-01T23:59:59.000Z

    A method for reducing catalyst attrition losses in hydrocarbon synthesis processes conducted in high agitation reaction systems; a method of producing an attrition-resistant catalyst; a catalyst produced by such method; a method of producing an attrition-resistant catalyst support; and a catalyst support produced by such method. The inventive method of reducing catalyst attrition losses comprises the step of reacting a synthesis gas in a high agitation reaction system in the presence of a catalyst. In one aspect, the catalyst preferably comprises a .gamma.-alumina support including an amount of titanium effective for increasing the attrition resistance of the catalyst. In another aspect, the catalyst preferably comprises a .gamma.-alumina support which has been treated, after calcination, with an acidic, aqueous solution. The acidic aqueous solution preferably has a pH of not more than about 5. In another aspect, the catalyst preferably comprises cobalt on a .gamma.-alumina support wherein the cobalt has been applied to the .gamma.-alumina support by totally aqueous, incipient wetness-type impregnation. In another aspect, the catalyst preferably comprises cobalt on a .gamma.-alumina support with an amount of a lanthana promoter effective for increasing the attrition resistance of the catalyst. In another aspect, the catalyst preferably comprises a .gamma.-alumina support produced from boehmite having a crystallite size, in the 021 plane, in the range of from about 30 to about 55 .ANG.ngstrons. In another aspect, the inventive method of producing an attrition-resistant catalyst comprises the step of treating a .gamma.-alumina support, after calcination of and before adding catalytic material to the support, with an acidic solution effective for increasing the attrition resistance of the catalyst. In another aspect, the inventive method of producing an attrition-resistant catalyst support comprises the step of treating calcined .gamma.-alumina with an acidic, aqueous solution effective for increasing the attrition resistance of the .gamma.-alumina.

  8. Fischer-Tropsch activity for non-promoted cobalt-on-alumina catalysts

    DOE Patents [OSTI]

    Singleton, Alan H. (Baden, PA); Oukaci, Rachid (Gibsonia, PA); Goodwin, James G. (Gibsonia, PA)

    2001-01-01T23:59:59.000Z

    Cobalt catalysts, and processes employing these inventive catalysts, for hydrocarbon synthesis. The inventive catalyst comprises cobalt on an alumina support and is not promoted with any noble or near noble metals. In one aspect of the invention, the alumina support preferably includes a dopant in an amount effective for increasing the activity of the inventive catalyst. The dopant is preferably a titanium dopant. In another aspect of the invention, the cobalt catalyst is preferably reduced in the presence of hydrogen at a water vapor partial pressure effective to increase the activity of the cobalt catalyst for hydrocarbon synthesis. The water vapor partial pressure is preferably in the range of from 0 to about 0.1 atmospheres.

  9. Processes and palladium-promoted catalysts for conducting Fischer-Tropsch synthesis

    DOE Patents [OSTI]

    Singleton, Alan H. (Baden, PA); Oukaci, Rachid (Gibsonia, PA); Goodwin, James G. (Cranberry Township, PA)

    2000-01-01T23:59:59.000Z

    A process for hydrocarbon synthesis comprising the step of reacting a synthesis gas in the presence of a cobalt catalyst promoted with palladium.

  10. Safety and Techno-Economic Analysis of Solvent Selection for Supercritical Fischer-Tropsch Synthesis Reactors

    E-Print Network [OSTI]

    Hamad, Natalie

    2012-02-14T23:59:59.000Z

    Fisher-Tropsch Synthesis is a primary pathway for gas-to-liquid technology. In order to overcome commercial problems associated with reaction and transport phenomena, the use of supercritical solvents has been proposed to increase chemical...

  11. Development of a Fischer-Tropsch Gasoline Process for the Steam Hydrogasification Technology

    E-Print Network [OSTI]

    Li, Yang

    2013-01-01T23:59:59.000Z

    aromatics production from syngas. Mo/HZSM-5 catalyst hadwith CO 2 containing syngas mixture. The product liquid isfor   biomass-­?derived  syngas,  2003,  DTIC  Document.  

  12. Opportunities for the Early Production of Fischer-Tropsch (F-T) Fuels in

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartmentGas and Oil ResearchEnergyOnHSS IndependentEnergylargethe

  13. HEFA and Fischer-Tropsch Jet Fuel Cost Analyses | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12 OPAMGeneralGuiding Documents and Links GuidingTank(HARDI)

  14. Development and Demonstration of Fischer-Tropsch Fueled Heavy-Duty Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S H I E LGeothermalEnergy Aaandwith Control

  15. Innovative Gasification to Produce Fischer-Tropsch Jet and Diesel Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovementINDIANManagement1,InnovativeDepartment

  16. A BRIEF HISTORY OF INDUSTRIAL CATALYSIS

    E-Print Network [OSTI]

    Heinemann, Heinz

    2013-01-01T23:59:59.000Z

    in a solvent, and the Fischer-Tropsch process involving theWorld War II, and a Fischer-Tropsch plant was built in South50) Conventional iron-type Fischer-Tropsch catalysts are

  17. Resource Limits and Conversion Efficiency with Implications for Climate Change

    E-Print Network [OSTI]

    Croft, Gregory Donald

    2009-01-01T23:59:59.000Z

    3.3 Fischer-Tropsch Synthesis of Liquid Fuels . 3.3.1Conversion in the U.S. – Fischer-Tropsch Synthesis, NaturalConversion in the U.S. – Fischer-Tropsch Synthesis, Natural

  18. MATERIALS AND MOLECULAR RESEARCH DIVISION Annual Report 1977.

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    2. Studies of Fischer-Tropsch Synthesis on Supportedthat discrete metal Fischer-Tropsch synthesis are iron,o t:. Z. STUDIES OF FISCHER-TROPSCH SYNTHESIS ON SUPPORTED

  19. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    for production of Fischer Tropsch liquids and power viaFAME) and biomass-derived Fischer-Tropsch diesel (BFTD, andBD3 Between BD3 and Fischer-Tropsch Low-GWI FT Diesel Diesel

  20. ORGANIC GEOCHEMICAL STUDIES. I. MOLECULAR CRITERIA FOR HYDROCARBON GENESIS

    E-Print Network [OSTI]

    McCarthy, Eugene D.; Calvin, Kevin

    2008-01-01T23:59:59.000Z

    at present. I The Fischer-Tropsch reaction has beenof petrol.eum. (The Fischer-Tropsch reaction is a catalyticcharacterised in the Fischer-Tropsch Z s reaction product.

  1. Porous Core-Shell Nanostructures for Catalytic Applications

    E-Print Network [OSTI]

    Ewers, Trevor David

    2012-01-01T23:59:59.000Z

    132] R. B. Anderson. The Fischer-Tropsch Synthesis. Academicas a potential Fischer-Tropsch catalyst was addressed.use Cu@CoO has for Fischer-Tropsch catalysis. Synthesis

  2. HETEROGENEOUS CATALYSIS RESEARCH MEETING

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    production of SNG or Fischer-Tropsch products Therefore, abe trying to obtain from Fischer-Tropsch synthesis? Answer:intermediates in Fischer-Tropsch synthesis? Answer: It was

  3. October 2005 Gasification-Based Fuels and Electricity Production from

    E-Print Network [OSTI]

    ................................................. 15 3.2.1 Synthesis of Fischer-Tropsch Fuels.4 FISCHER-TROPSCH FUELS PRODUCTION, and production cost estimates for gasification-based thermochemical conversion of switchgrass into Fischer-Tropsch

  4. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander; Sperling, Daniel

    2007-01-01T23:59:59.000Z

    for production of Fischer Tropsch liquids and power viahigher value is for Fischer-Tropsch liquids. See Section 4.cellulosic ethanol and Fischer-Tropsch diesel fuel from wood

  5. MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1981

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01T23:59:59.000Z

    Isotope Effects on Fischer-Tropsch Synthesis over SupportedSe'iactivity of Iron Fischer-Tropsch Catalysts," LBL-13578.On the Purported Fischer-Tropsch Alkylation of Benzene: The

  6. Operation of a steam hydro-gasifier in a fluidized bed reactor

    E-Print Network [OSTI]

    Park, Chan Seung; Norbeck, Joseph N.

    2008-01-01T23:59:59.000Z

    is fed into a Fischer-Tropsch reactor under conditionsExothermic heat from the Fischer-Tropsch reaction can becan be subjected to a Fischer-Tropsch process to produce

  7. Greenhouse Gas Emissions from Aviation and Marine Transportation: Mitigation Potential and Policies

    E-Print Network [OSTI]

    McCollum, David L; Gould, Gregory; Greene, David L

    2010-01-01T23:59:59.000Z

    finished jet fuel product. 13. Fischer-Tropsch synthesis ofwinglets/. ] 38. Fischer-Tropsch synthesis of transportationfuel (HRJ) 12 and Fischer-Tropsch (FT) fuels. 13 A plant- or

  8. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander E.; Sperling, Dan

    2007-01-01T23:59:59.000Z

    for production of Fischer Tropsch liquids and power viaBD3 Between BD3 and Fischer-Tropsch Low-GWI FT Diesel DieselFAME) and biomass-derived Fischer-Tropsch diesel (BFTD, and

  9. The Development of a Hydrothermal Method for Slurry Feedstock Preparation for Gasification Technology

    E-Print Network [OSTI]

    He, Wei

    2011-01-01T23:59:59.000Z

    Inc. Dry, M.E. , The fischer-tropsch process - commercialBiomass Conversion to Fischer- Tropsch Products. Energy &heavy oil residuals and Fischer-Tropsch oils. Pyrolysis and

  10. Development of a Sorption Enhanced Steam Hydrogasification Process for In-situ Carbon Dioxide (CO2) Removal and Enhanced Synthetic Fuel Production

    E-Print Network [OSTI]

    Liu, Zhongzhe

    2013-01-01T23:59:59.000Z

    en.wikipedia.org/wiki/Fischer–Tropsch_ process 35. HamelinckSteynberg AP, Dry ME. Fischer-Tropsch Technology. Elsevier1980. 39. De Klerk A. Fischer-Tropsch Refining. University

  11. HYDROGENATION OF CO AND CO ON CLEAN RHODIUM AND IRON FOILS. CORRELATIONS OF REACTIVITIES AND SURFACE COMPOSITIONS

    E-Print Network [OSTI]

    Dwyer, D.

    2011-01-01T23:59:59.000Z

    R. B. Anderson, The Fischer- Tropsch and Related Syntheses (carbons are called the Fischer-Tropsch reaction named afterwere produced by the Fischer-Tropsch reaction because of the

  12. ISHHC XIII International Symposium on the Relations between Homogeneous and Heterogeneous Catalysis

    E-Print Network [OSTI]

    Somorjai Ed., G.A.

    2007-01-01T23:59:59.000Z

    size e?ect in the Fischer-Tropsch synthesis. ” Stud. Surf.E. Rytter, A. Holmen ”Fischer-Tropsch synthesis over ?-Al 2Rytter, A. Holmen ”Fischer-Tropsch synthesis on Co supported

  13. MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1980

    E-Print Network [OSTI]

    Searcy, Alan W.

    2010-01-01T23:59:59.000Z

    and E. L. Muetterties, Fischer-Tropsch Chemistry: StructureIntermediates Involved in Fischer-Tropsch Syn­ thesis OverH2/D2 Isotope Effects on Fischer-Tropsch Syn­ thesis Over

  14. HYDROGENOLYSIS OF A SUB-BITUMINOUS COAL WITH MOLTEN ZINC CHLORIDE SOLUTIONS

    E-Print Network [OSTI]

    Holten, R.R.

    2010-01-01T23:59:59.000Z

    of char and gases. The Fischer-Tropsch process is an exampleprocess economics, the Fischer-Tropsch process has not beenevaluations for a Fischer-Tropsch plant in the United

  15. C-O Bond Activation and C-C Bond Formation Paths in Catalytic CO Hydrogenation

    E-Print Network [OSTI]

    Loveless, Brett

    2012-01-01T23:59:59.000Z

    Anderson, The Fischer-Tropsch and Related Synthesis, Wiley,Anderson, The Fischer-Tropsch and Related Synthesis, Wiley,C-C bond formation paths in Fischer-Tropsch synthesis are

  16. Influence of the cobalt particle size in the CO hydrogenation reaction studied by in situ X-ray absorption spectroscopy

    E-Print Network [OSTI]

    Herranz, Tirma

    2010-01-01T23:59:59.000Z

    Cobalt, nanoparticles, Fischer-Tropsch, X-ray absorption (oxides [5] and Fischer-Tropsch (FT) synthesis [6,7]. Itswhich is inactive for Fischer-Tropsch synthesis. This oxide

  17. Solar energy storage through the homogeneous electrocatalytic reduction of carbon dioxide : photoelectrochemical and photovoltaic approaches

    E-Print Network [OSTI]

    Sathrum, Aaron John

    2011-01-01T23:59:59.000Z

    953-996. Klerk, A. d. Fischer-Tropsch Fuels Refinery Design.further upgraded with Fischer–Tropsch processes for highlyto liquid fuels via Fischer–Tropsch technology. 19 A

  18. MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1978

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    3. Studies of Fischer-Tropsch Synthesis on Supported6. An Immobilized Homogeneous Fischer-Tropsch Catalyst 7.hydrocarbons during Fischer-Tropsch synthesis. 3, S1lJDIES

  19. Feasibility of Steam Hydrogasification of Microalgae for Production of Synthetic Fuels

    E-Print Network [OSTI]

    Suemanotham, Amornrat

    2014-01-01T23:59:59.000Z

    Park, Production of Fischer–Tropsch fuels and electricitythe production of FischerTropsch (FT) fuel derived fromCERT technology for Fischer–Tropsch (FT) liquid fuel and co–

  20. Life Cycle Analysis of the Production of Aviation Fuels Using the CE-CERT Process

    E-Print Network [OSTI]

    Hu, Sangran

    2012-01-01T23:59:59.000Z

    methane reformer FTR: Fischer-Tropsch reactor LCA: life3–8, 17 Mark E. Dry, The Fischer–Tropsch process: 1950–2000,From the internet, Fischer–Tropsch process Wikipedia site:

  1. The Development of Warm Gas Cleanup Technologies for the Removal of Sulfur Containing Species from Steam Hydrogasification

    E-Print Network [OSTI]

    Luo, Qian

    2012-01-01T23:59:59.000Z

    2003. 25. M.E Dry, The Fischer-Tropsch synthesis. Catalysis,a precipitated iron Fischer–Tropsch catalyst— A pilot plantfrom biomass via Fischer-Tropsch synthesis: new insights in

  2. Emissions and in-cylinder combustion characteristics of Fischer-Tropsch and conventional diesel fuels in a modern CI engine

    E-Print Network [OSTI]

    Sappok, Alexander G. (Alexander Georg)

    2006-01-01T23:59:59.000Z

    Increasingly stringent emissions regulations, rising oil prices, and an increased focus on environmental awareness are driving the search for clean, alternative fuels. Derived from natural gas, coal, and even biomass ...

  3. Fischer-Tropsch synthesis in supercritical reaction media. [Quarterly] progress report, July 1, 1993--September 30, 1993

    SciTech Connect (OSTI)

    Subramaniam, B.

    1993-10-01T23:59:59.000Z

    Figure 1 shows the physical appearance of the reactor and analytical units. The feed preparation section consists of a mass flow controller for syngas introduction, the BPLC pump for n-hexane introduction, preheaters, check valves, static mixer, and safety head has been completed. The stainless steel reactor was fabricated and was alonized to passivate the stainless steel surface. The fluidized sand bath surrounding the reactor was fabricated in house. Aluminum oxide (120 mesh) will be used as the fluidized medium. Stepping-motor-driven micrometering (Autoclave{reg_sign}) valves have been installed for pressure control of the reactor and of the syngas feed stream. The sample transfer lines connected to the gas sampling valves in the GC will be routed inside the valve oven and out through the front top of the GC, where they will be connected with the heated sample transfer lines from the reactor. The sample outlet line will be routed through a cold trap operated at 20{degrees}C or lower and the gases from the cold trap will be exhausted to the roof vent. The reactor unit is versatile and permits us to investigate the effect(s) of any of the following variables on syngas conversion, selectivity and reaction rate maintenance: (1) pressure (25--70) bars, (2) syngas flowrate (30--150) cc/min/g{center_dot}cat, (3) syngas ratio (H{sub 2}/CO of 0.5, 1.0 or 2.0) (4) ratio of syngas to reaction media (0.2--5.0), (5) catalyst type (Fe or Co), (6) direction of cocurrent flow (upflow or downflow), (7) cosolvent effects (such as n-pentane), and (8) sulfur content (1--50 mg{center_dot}/g{center_dot}Fe). Based on a literature review (Pennline et al., 1987; Baltrus et al., 1989; Bukur et al., 1990), the pretreatment of Fe catalysts will be performed with flowing CO at low pressure ({approximately}1 atm) and high temperatures ({approximately}280{degrees}C).

  4. Fischer-Tropsch Fuels from Coal and Biomass Thomas G. Kreutz, Eric D. Larson, Guangjian Liu, Robert H. Williams

    E-Print Network [OSTI]

    ...................................................................................................................................8 2.2.2 Biomass as feedstock

  5. A Low-Carbon Fuel Standard for California Part 2: Policy Analysis

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    Dry, M. E. 2002. The Fischer-Tropsch process: 1950-2000.gasification and Fischer Tropsch (FT) processes yields a CO

  6. Kinetic Consequences of Chemisorbed Oxygen Atoms during Methane Oxidation on Group VIII Metal Clusters

    E-Print Network [OSTI]

    Chin, Ya Huei

    2011-01-01T23:59:59.000Z

    reactants in methanol and Fischer-Tropsch syntheses. 1,2 H 2hydrodesulfurization, 2,3 and Fischer- Tropsch 4 reactions.

  7. TEMPERATURE-PROGRAMMED DESORPTION AND REACTION OF CO AND H2 ON ALUMINA-SUPPORTED RUTHENIUM CATALYST

    E-Print Network [OSTI]

    Low, Gordon Gongngai

    2011-01-01T23:59:59.000Z

    and R. Anderson, "The Fischer-Tropsch Related Synthesis",carbide theory of Fischer and Tropsch postulated that thereactions are still (Fischer-Tropsch synthesis) from CO and

  8. Icarus 150, 323337 (2001) doi:10.1006/icar.2001.6589, available online at http://www.idealibrary.com on

    E-Print Network [OSTI]

    Rhoads, James

    2001-01-01T23:59:59.000Z

    the thermodynamic possibility for nebular Fischer­Tropsch type (FTT) synthesis of condensed hydrocarbons

  9. Experimental investigation of single carbon compounds under hydrothermal conditions

    E-Print Network [OSTI]

    Rhoads, James

    reactant during the abiotic synthesis of reduced carbon compounds via Fischer­Tropsch-type processes

  10. Synthesis and characterization of iron-impregnated porous carbon spheres prepared by ultrasonic spray pyrolysis

    E-Print Network [OSTI]

    Suslick, Kenneth S.

    applications for iron nanoparticles include Fischer­Tropsch catalysts, oxygen reduction catalysts in fuel cells

  11. Planetary and Space Science ] (

    E-Print Network [OSTI]

    Atreya, Sushil

    the serpentinization process followed by Fischer­Tropsch catalysis. The time-averaged predicted emission rate

  12. XIII.1-Draft ATTACHMENT XIII

    E-Print Network [OSTI]

    Kentucky, University of

    XIII.1-Draft ATTACHMENT XIII Review of Fischer-Tropsch Work by Statoil Three patents on Fischer-Tropsch that the common Fischer-Tropsch (FT) catalysts are nickel, cobalt and iron. Nickel is considered to be active recognize that others have used various combinations of metals for Fischer-Tropsch Synthesis (FTS

  13. Transportable Heavy Duty Emissions Testing Laboratory and Research Program

    SciTech Connect (OSTI)

    David Lyons

    2008-03-31T23:59:59.000Z

    The objective of this program was to quantify the emissions from heavy-duty vehicles operating on alternative fuels or advanced fuel blends, often with novel engine technology or aftertreatment. In the first year of the program West Virginia University (WVU) researchers determined that a transportable chassis dynamometer emissions measurement approach was required so that fleets of trucks and buses did not need to be ferried across the nation to a fixed facility. A Transportable Heavy-Duty Vehicle Emissions Testing Laboratory (Translab) was designed, constructed and verified. This laboratory consisted of a chassis dynamometer semi-trailer and an analytic trailer housing a full scale exhaust dilution tunnel and sampling system which mimicked closely the system described in the Code of Federal Regulations for engine certification. The Translab was first used to quantify emissions from natural gas and methanol fueled transit buses, and a second Translab unit was constructed to satisfy research demand. Subsequent emissions measurement was performed on trucks and buses using ethanol, Fischer-Tropsch fuel, and biodiesel. A medium-duty chassis dynamometer was also designed and constructed to facilitate research on delivery vehicles in the 10,000 to 20,000lb range. The Translab participated in major programs to evaluate low-sulfur diesel in conjunction with passively regenerating exhaust particulate filtration technology, and substantial reductions in particulate matter were recorded. The researchers also participated in programs to evaluate emissions from advanced natural gas engines with closed loop feedback control. These natural gas engines showed substantially reduced levels of oxides of nitrogen. For all of the trucks and buses characterized, the levels of carbon monoxide, oxides of nitrogen, hydrocarbons, carbon dioxide and particulate matter were quantified, and in many cases non-regulated species such as aldehydes were also sampled. Particle size was also quantified during selected studies. A laboratory was established at WVU to provide for studies which supported and augmented the Translab research, and to provide for development of superior emissions measurement systems. This laboratory research focused on engine control and fuel sulfur issues. In recent years, as engine and aftertreatment technologies advanced, emissions levels were reduced such that they were at or below the Translab detectable limits, and in the same time frame the US Environmental Protection Agency required improved measurement methodologies for engine emissions certification. To remain current and relevant, the researchers designed a new Translab analytic system, housed in a container which can be transported on a semi-trailer. The new system's dilution tunnel flow was designed to use a subsonic venturi with closed loop control of blower speed, and the secondary dilution and particulate matter filter capture were designed to follow new EPA engine certification procedures. A further contribution of the program has been the development of techniques for creating heavy-duty vehicle test schedules, and the creation of schedules to mimic a variety of truck and bus vocations.

  14. Synthesis of octane enhancers during slurry-phase Fischer-Tropsch. Quarterly technical progress report No. 9, October 1, 1992--December 31, 1992

    SciTech Connect (OSTI)

    Marcelin, G.

    1993-06-30T23:59:59.000Z

    Figure 7 summarizes the carbon selectivities observed towards the main products. During Period IV, the main products observed were the heavy hydrocarbons, with selectivity for MTBE being less than 3--5%. The only time that high MTBE selectivity was noted was during period III, when the i-butylene feed was shut-off. The large amounts of heavy products and the low selectivity to MTBE were surprising in view of our previous experiments in the gas phase and the high methanol-to-i-butylene ratio used in these runs. In the gas-phase and with methanol/i-butylene = 0.5, over 95% selectivity to MTBE was observed with this catalyst at this temperature. The higher level of methanol used here would be expected to further improve the MTBE selectivity. Perhaps one reason for the poor MTBE selectivity relates to the relative solubilities of the reactants in the Synfluid changing the effective methanol/i-butylene ratio. Figure 8 shows the relative molar concentration of i-butylene during Period III. At 180 minutes, the gas supply of that reactant was shut-off, yet the analyses show that i-butylene continued to elute from the reactor for at least an additional 2 hours. It seems reasonable that the i-butylene is highly soluble in the Synfluid since they are both nonpolar hydrocarbons. Likewise, one would expect the methanol to not be quite as soluble and thus the methanol/i-butylene ratio in the liquid medium may be very low, favoring the oligomerization of i-butylene. Indeed, the only time that MTBE selectivity was high was after the i-butylene supply was shut-off. We intend to quantify these solubilities in future experiments.

  15. Synthesis of octane enhancers during slurry-phase Fischer-Tropsch. Quarterly technical progress report No. 8, July 1, 1992--September 30, 1992

    SciTech Connect (OSTI)

    Marcelin, G.

    1993-07-07T23:59:59.000Z

    The initial work on the synthesis of MTBE during CO hydrogenation shows that MTBE cannot be formed directly on metal sites and likely requires the presence of an acid site. However, MTBE can be made successfully when an acid site, provided by the zeolites, is present in the vicinity of the methanol-synthesis metal sites. When i-butylene was added during CO hydrogenation over a composite catalyst consisting of Li-Pd/SiO{sub 2} and a hydrogen-zeolite, MTBE was formed in measurable amounts. The major by-product of this reaction scheme was isobutane and the dimer of i-butylene. In general, ZSM-5 was found to be superior to LZ210-12 HY zeolite. CO hydrogenation over a bifunctional PdNaY catalyst shows that branched hydrocarbons as well as MEOH can be made successfully at the same time. Addition of i-butylene over this catalyst only (i.e. without other zeolite) results in the formation of trace amounts of MTBE.

  16. This is an author-deposited version published in: http://oatao.univ-toulouse.fr/ Eprints ID: 6175

    E-Print Network [OSTI]

    Mailhes, Corinne

    and "Biomass To Fischer­Tropsch Liquids". For those processes, the gas produced by gasification, called syngas), H2:CO ratio close from the expected synthesis reactionsstoechiometricratio(2for Fischer­Tropsch, 3

  17. Heterogeneous Catalysis DOI: 10.1002/anie.201304610

    E-Print Network [OSTI]

    Iglesia, Enrique

    and Selectivity of Fischer­ Tropsch Synthesis on Ruthenium Catalysts** David D. Hibbitts, Brett T. Loveless, Matthew Neurock,* and Enrique Iglesia* Ru and Co catalyze Fischer­Tropsch synthesis (FTS) with high rates

  18. Biomass & Bioenergy, 2010, 34(7), 923-930, doi:10.1016/j.biombioe.2010.01.039. EEEnnneeerrrgggyyy rrreeeqqquuuiiirrreeemmmeeennnttt fffooorrr fffiiinnneee gggrrriiinnndddiiinnnggg ooofff tttooorrrrrreeefffiiieeeddd wwwooooooddd

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    followed by Fischer­Tropsch synthesis is of particular interest [4] and [5]. It allows producing diesel at the moment to improve the yield of the Fischer­Tropsch [6] and [7]. Such thermo-chemical treatments require

  19. Alteration, HFSE mineralisation and hydrocarbon formation in peralkaline igneous systems

    E-Print Network [OSTI]

    Long, Bernard

    hydrothermal alteration to produce hydrocarbons via a Fischer­Tropsch synthesis. As a result, hydrocarbons alteration; Abiogenic hydrocarbons; Fischer­Tropsch; HFSE mineralization; Strange Lake Lithos 91 (2006) 19

  20. Definition Is it real?

    E-Print Network [OSTI]

    Boisvert, Jeff

    ) are derived through the liquefaction of methane using the Fischer­ Tropsch process. This involves steam (low yield) or by gasification followed by a Fischer­Tropsch process (high yield). -- #12

  1. advanced-fuels-synthesis-index | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fuels synthesis, and for characterization of the range of products and product quality. Fischer-Tropsch fuels synthesis The Fischer-Tropsch (F-T) reaction converts a mixture of...

  2. A Novel Paradigm in Greenhouse Gas Mitigation

    E-Print Network [OSTI]

    Azad, Abdul-Majeed

    of valuable organic compounds, including synthetic fuels by Fischer­Tropsch process. Thus, the technique effect, carbon dioxide, water vapor, Fischer­Tropsch synthe- sis, iron, magnetite, maghemite, fuel cells

  3. FIRST BERKELEY CATALYSIS AND SURFACE SCIENCE CONFERENCE JULY 1980

    E-Print Network [OSTI]

    Authors, Various

    2013-01-01T23:59:59.000Z

    as 1913. Then in 19Z6 Fischer and Tropsch published theirThe Technology of the Fischer-Tropsch Process vii Friday,in potentially modifying Fischer-Tropsch reactions is

  4. Solar fuels : integration of molecular catalysts with p-type semiconductor photocathode

    E-Print Network [OSTI]

    Kumar, Bhupendra

    2012-01-01T23:59:59.000Z

    transportation fuels (via Fischer-Tropsch synthesis). p-typebe fed into the Fischer-Tropsch process to make syntheticformation by the Fischer-Tröpsch process) the Re complex

  5. Resource Limits and Conversion Efficiency with Implications for Climate Change

    E-Print Network [OSTI]

    Croft, Gregory Donald

    2009-01-01T23:59:59.000Z

    coals, which is an advantage for Fischer-Tropsch synthesis, but the ash content presents a waste disposal

  6. Development and Application of Advanced Models for Steam Hydrogasification: Process Design and Economic Evaluation

    E-Print Network [OSTI]

    Lu, Xiaoming

    2012-01-01T23:59:59.000Z

    simulation model of a Battelle biomass-based gasification, Fischer–Tropsch liquefaction and combined-cycle power plant.

  7. Catalysis Today 160 (2011) 228233 Contents lists available at ScienceDirect

    E-Print Network [OSTI]

    Li, Weixue

    2011-01-01T23:59:59.000Z

    with a little sulfur/(poly) aromatics and high cetane number can be obtained via Fischer­Tropsch synthesis (FTS

  8. Adsorption and diffusion energetics of hydrogen atoms on Fe(1 1 0) from first principles

    E-Print Network [OSTI]

    Carter, Emily A.

    as a reactant in Fe-catalyzed ammonia synthesis [1], the Fischer­Tropsch reaction [2] (and many others

  9. One-pot synthesis of alcohols from olefins catalyzed by rhodium and ruthenium Joseph Zakzeski, Hae Ryun Lee, Yi Ling Leung, Alexis T. Bell *

    E-Print Network [OSTI]

    Bell, Alexis

    of alkenes obtained as products of Fischer­Tropsch synthesis. Since the hydroformylation of propene to n

  10. Mechanistic Aspects and Reaction Pathways for Oxidative Coupling of Methane on Mn/Na2WO4/SiO2 Catalysts

    E-Print Network [OSTI]

    Iglesia, Enrique

    required in indirect routes involving CH4 reforming and Fischer­Tropsch synthesis,3 while producing light

  11. Catalysis Today 215 (2013) 3642 Contents lists available at SciVerse ScienceDirect

    E-Print Network [OSTI]

    Li, Weixue

    2013-01-01T23:59:59.000Z

    with gasification of coal and Fischer­Tropsch synthesis [8,9]. In addition, methanation is one of the simplest

  12. Journal of Molecular Catalysis A: Chemical 312 (2009) 717 Contents lists available at ScienceDirect

    E-Print Network [OSTI]

    2009-01-01T23:59:59.000Z

    ) and hydrodenitrogenation (HDN) processes and also exhibit high activity for methanation and for the Fischer­Tropsch

  13. Journal of Molecular Catalysis A: Chemical 163 (2000) 189204 Catalytic reaction rates in thermodynamically non-ideal systems

    E-Print Network [OSTI]

    Iglesia, Enrique

    2000-01-01T23:59:59.000Z

    of the liquid. A similar treatment shows that the presence of liquid products in three-phase Fischer­Tropsch

  14. Mid-infrared study of the molecular structure variability of insoluble organic matter from primitive chondrites

    E-Print Network [OSTI]

    concerning the location and chemical processes of the synthesis of the IOM. In the 1970s, Fischer­Tropsch

  15. This journal is c The Royal Society of Chemistry 2013 Chem. Soc. Rev., 2013, 42, 2357--2387 2357 Cite this: Chem. Soc. Rev., 2013,

    E-Print Network [OSTI]

    the Sabatier reaction, combined with carbon monoxide to make hydrocarbon fuels by the Fischer­Tropsch process

  16. A tribute to Tom Ziegler Biographical sketch --From Copenhagen to Calgary

    E-Print Network [OSTI]

    Ziegler, Tom

    with research on solid oxide fuel cells (SOFC) and Fischer­Tropsch synthesis, again with substantial support

  17. Experimental Investigation of the Low Temperature Oxidation of the Five Isomers of Hexane

    E-Print Network [OSTI]

    Boyer, Edmond

    are present in conventional fuels derived from petroleum (1) and Fischer­Tropsch fuels (2). The oxidation of n

  18. Planetary and Space Science 54 (2006) 15521562 On the discovery of CO nighttime emissions on Titan by Cassini/VIMS

    E-Print Network [OSTI]

    Atreya, Sushil

    2006-01-01T23:59:59.000Z

    followed by Fischer­Tropsch catalysis. The time-averaged predicted emission rate of methane-rich surface

  19. Methane activation on ruthenium: the nature of the surface intermediates T.V. Choudhary and D.W. Goodman*

    E-Print Network [OSTI]

    Goodman, Wayne

    ,7]; following this step the syn-gas is con- verted to hydrocarbons directly via Fischer­Tropsch catalysis [8

  20. The adsorption and desorption of CO on the W,,111... surface S. Y. Lee, Y.-D. Kim, T. S. Yang, J.-H. Boo, S. C. Park, and S. B. Leea)

    E-Print Network [OSTI]

    Boo, Jin-Hyo

    such as the Fischer­Tropsch synthesis and the exhaust gas purification, but also as part of the core knowledge

  1. ASTROBIOLOGY Volume 2, Number 4, 2002

    E-Print Network [OSTI]

    - phiphilic molecules are thought to be products of Fischer­Tropsch reactions catalyzed by metal or mineral

  2. Quantum mechanicalrapid prototyping applied to methane activation Richard P. Muller, Dean M. Philipp, and William A. Goddard III

    E-Print Network [OSTI]

    Goddard III, William A.

    hydrogen), an energy-intensive, very high temperature ð$850 CÞ process. Fischer­Tropsch chemistry [1

  3. This journal is The Royal Society of Chemistry 2014 Chem. Commun., 2014, 50, 6267--6269 | 6267 Cite this: Chem. Commun., 2014,

    E-Print Network [OSTI]

    Baik, Mu-Hyun

    for technical applications such as the Fischer­Tropsch process,7­9 which has gained renewed prominence

  4. Journal of Catalysis 206, 202217 (2002) doi:10.1006/jcat.2001.3506, available online at http://www.idealibrary.com on

    E-Print Network [OSTI]

    Iglesia, Enrique

    2002-01-01T23:59:59.000Z

    ://www.idealibrary.com on Promoted Iron-Based Catalysts for the Fischer­Tropsch Synthesis: Design, Synthesis, Site Densities crystallites. The effects of promoters on reduction/carburization be- havior, on Fischer­Tropsch synthesis (FTS an attractive complement to Co-based catalysts for the Fischer­Tropsch synthesis (FTS). 1 To whom correspondence

  5. Catalysis Today 181 (2012) 7581 Contents lists available at ScienceDirect

    E-Print Network [OSTI]

    Goodman, Wayne

    2012-01-01T23:59:59.000Z

    homepage: www.elsevier.com/locate/cattod Particle size effects in Fischer­Tropsch synthesis by cobalt Zhou particle size effect of Co catalysts in Fischer­Tropsch (FT) synthesis, a series of Co/SiO2 model catalysts to syngas (a CO/H2 mixture) and then converted to hydrocarbons by Fischer­Tropsch (FT) synthesis

  6. Journal of Catalysis 211, 422433 (2002) doi:10.1006/jcat.2002.3749

    E-Print Network [OSTI]

    Iglesia, Enrique

    2002-01-01T23:59:59.000Z

    of Water on Rate and Selectivity for the Fischer­Tropsch Synthesis on Cobalt-Based Catalysts Sundaram, 2002; accepted July 15, 2002 Water, the primary oxygen-containing product in Co-catalyzed Fischer­Tropsch during Fischer­Tropsch synthesis reactions. These spectro- scopic studies also suggest that neither CO

  7. New insight into the ZnO sulfidation reaction:mechanism and kinetics modeling of the ZnS outward growth

    E-Print Network [OSTI]

    Boyer, Edmond

    are commonly used for the final desulfurization of synthesis gas in Fischer­Tropsch based XTL processes, Fischer­Tropsch based XTL processes (X = Biomass, Coal, or Gas) comprise a first step of feed gasification at reaching the required specifications,2,3 the syngas undergoes the Fischer­Tropsch reaction in order

  8. This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research

    E-Print Network [OSTI]

    Goodman, Wayne

    journal homepage: www.elsevier.com/locate/cattod Silica-supported rhodium-cobalt catalysts for Fischer­Tropsch: Cobalt catalyst Bimetallic catalyst Gold Rhodium Silver Silica Fischer­Tropsch Temperature catalyst on the Fischer­Tropsch (FT) syn- thesis were studied. Both Au and Rh showed a promoting effect

  9. Catalysis Letters Vol. 77, No. 4, 2001 197 Effects of Zn, Cu, and K promoters on the structure

    E-Print Network [OSTI]

    Iglesia, Enrique

    and on the reduction, carburization, and catalytic behavior of iron-based Fischer­Tropsch synthesis catalysts Senzi Li, and catalytic behavior of Fe­Zn and Fe oxides used as precursors to Fischer­Tropsch synthesis (FTS) catalysts­Zn oxide precursors. KEY WORDS: Fischer­Tropsch synthesis; promoters; iron; carbide; copper; potassium

  10. Structural and electronic properties of cobalt carbide Co2C and its surface stability: Density functional theory study

    E-Print Network [OSTI]

    Li, Weixue

    in Fischer­Tropsch syn- thesis, which agrees well with experimental findings. The density of states (DOSs­14], dehydrogenation [15], hydrogenolysis [16, 17] and Fischer­Tropsch synthesis (FTS) [18­22] etc., approaching activity of cobalt, iron and iron carbide in Fischer­Tropsch synthesis (FTS)[24­43], relative little

  11. Performance Characteristics of Coal-to-Liquids (CTL) Diesel...

    Broader source: Energy.gov (indexed) [DOE]

    cooler LP EGR valve Adapted from MTZ 69, 2008 Products Product Upgrading FT Synthesis Syngas Production Carbon + Hydrogen Source Fischer-Tropsch (FT) Technology Gasification (Low...

  12. coal to sng | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    this development is similar to that in syngas-based exothermic catalytic synthesis of methanol, as well as Fischer-Tropsch synthesis. Methanation is a commercially proven...

  13. HCCI in a Variable Compression Ratio Engine: Effects of Engine...

    Broader source: Energy.gov (indexed) [DOE]

    Dv,0.5 Combustion Chamber Photo Combustion Chamber Photo Test Fuels Test Fuels Diesel Fuel (Typical US) Gasoline (Pump Grade 87 RON) Fischer Tropsch Naphtha Blends of...

  14. Biofuel Boundaries: Estimating the Medium-Term Supply Potential of Domestic Biofuels

    E-Print Network [OSTI]

    Jones, Andrew; O'Hare, Michael; Farrell, Alexander

    2007-01-01T23:59:59.000Z

    pathways, such as gasification. However, the current studysuch as MSW, the gasification to Fischer- Tropsch fuelof research on biomass gasification to FT-fuels compared to

  15. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from electron microscopy to identify the chemical species present for an iron-based Fischer-Tropsch synthesis catalyst and to image their distribution on the nanoscale. When...

  16. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    diverse number of systems and chemical processes ranging from catalysts developments for Fischer-Tropsch synthesis applications, nanoscience, development of dense membrane systems...

  17. EA-1642: Final Environmental Assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EA-1642: Final Environmental Assessment Design and Construction of an Early Lead Mini Fischer-Tropsch Refinery at the University of Kentucky Center for Applied Energy Research...

  18. June 3, 2014 Webinar - Features, Events, and Processes: Practical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Development and Selection of Scenarios More Documents & Publications HEFA and Fischer-Tropsch Jet Fuel Cost Analyses Proceedings of 3rd USGerman Workshop on Salt...

  19. Platinum Nanoclusters Out-Perform Single Crystals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gas, a reactant involved in many important industrial catalytic processes, including the Fischer-Tropsch process for making liquid hydrocarbons, the oxidation process in...

  20. Oxidation reactions on neutral cobalt oxide clusters: experimental and theoretical studies

    E-Print Network [OSTI]

    Rocca, Jorge J.

    oxidation,24­41 nitrogen monoxide reduction and oxidation,24,36a,42­44 and Fischer­Tropsch reactions.45

  1. U.S. Department of Energy Selects First Round of Small-Scale...

    Broader source: Energy.gov (indexed) [DOE]

    in Wisconsin Rapids, Wisconsin, and proposes to take wood wastes and convert it to Fischer-Tropsch diesel fuel. NewPage Corporation of Miamisburg, Ohio, recently acquired...

  2. project information | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systems NT0005988 Coal Fuels Alliance: Design and Construction of Early Lead Mini Fischer-Tropsch Refinery University of Kentucky Center for Applied Energy Research (CAER)...

  3. Biomass 2014 Breakout Speaker Biographies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    combined-cycle power systems, compact processors for fuel cells, carbon capture, Fischer-Tropsch (FT) synthesis, higher alcohol synthesis, hydrogen production, low-grade...

  4. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01T23:59:59.000Z

    the biomass and coal to “syngas” (a mixture of hydrogen andfor making fuels from syngas, known as Fischer-Tropsch, is

  5. California’s Energy Future: The View to 2050 - Summary Report

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01T23:59:59.000Z

    the biomass and coal to “syngas” (a mixture of hydrogen andfor making fuels from syngas, known as Fischer-Tropsch, is

  6. STATEMENT OF CONSIDERATIONS REQUEST BY HEADWATERS TECHNOLOGY...

    Broader source: Energy.gov (indexed) [DOE]

    a cooperative agreement for the performance of work entitled, "Production and Optimization of Coal-Derived High Hydrogen Content Fischer-Tropsch Liquids". The purpose of the...

  7. Development of alternative fuels from coal-derived syngas. Quarterly status report No. 6, January 1--March 31, 1992

    SciTech Connect (OSTI)

    Brown, D.M.

    1992-05-19T23:59:59.000Z

    The overall objectives of this program are to investigate potential technologies for the conversion of coal-derived synthesis gas to oxygenated fuels, hydrocarbon fuels, fuel intermediates, and octane enhancers; and to demonstrate the most promising technologies at DOE`s LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). BASF continues to have difficulties in scaling-up the new isobutanol synthesis catalyst developed in Air Products` laboratories. Investigations are proceeding, but the proposed operation at LaPorte in April is now postponed. DOE has accepted a proposal to demonstrate Liquid Phase Shift (LPS) chemistry at LaPorte as an alternative to isobutanol. There are two principal reasons for carrying out this run. First, following the extensive modifications at the site, operation on a relatively ``benign`` system is needed before we start on Fischer-Tropsch technology in July. Second, use of shift catalyst in a slurry reactor will enable DOE`s program on coal-based Fischer-Tropsch to encompass commercially available cobalt catalysts-up to now they have been limited to iron-based catalysts which have varying degrees of shift activity. In addition, DOE is supportive of continued fuel testing of LaPorte methanol-tests of MIOO at Detroit Diesel have been going particularly well. LPS offers the opportunity to produce methanol as the catalyst, in the absence of steam, is active for methanol synthesis.

  8. Development of alternative fuels from coal-derived syngas

    SciTech Connect (OSTI)

    Brown, D.M.

    1992-05-19T23:59:59.000Z

    The overall objectives of this program are to investigate potential technologies for the conversion of coal-derived synthesis gas to oxygenated fuels, hydrocarbon fuels, fuel intermediates, and octane enhancers; and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). BASF continues to have difficulties in scaling-up the new isobutanol synthesis catalyst developed in Air Products' laboratories. Investigations are proceeding, but the proposed operation at LaPorte in April is now postponed. DOE has accepted a proposal to demonstrate Liquid Phase Shift (LPS) chemistry at LaPorte as an alternative to isobutanol. There are two principal reasons for carrying out this run. First, following the extensive modifications at the site, operation on a relatively benign'' system is needed before we start on Fischer-Tropsch technology in July. Second, use of shift catalyst in a slurry reactor will enable DOE's program on coal-based Fischer-Tropsch to encompass commercially available cobalt catalysts-up to now they have been limited to iron-based catalysts which have varying degrees of shift activity. In addition, DOE is supportive of continued fuel testing of LaPorte methanol-tests of MIOO at Detroit Diesel have been going particularly well. LPS offers the opportunity to produce methanol as the catalyst, in the absence of steam, is active for methanol synthesis.

  9. Atmos. Chem. Phys., 14, 1123, 2014 www.atmos-chem-phys.net/14/11/2014/

    E-Print Network [OSTI]

    Meskhidze, Nicholas

    in aircraft particulate emissions due to the use of Fischer­Tropsch fuels A. J. Beyersdorf1, M. T. Timko2,*, L feedstocks using the Fischer­Tropsch (FT) process, and 50 % blends of both fuels were tested in the CFM-56

  10. DOE studies on coal-to-liquids

    SciTech Connect (OSTI)

    NONE

    2007-07-01T23:59:59.000Z

    The US DOE National Energy Technology Laboratory has issued reports that examine the feasibility of coal-to-liquids (CTL) facilities, both general and site specific, which are available at www.netl.gov/energy-analyses/ref-shelf.html. The US Department of Defence has been investigating use of Fischer-Tropsch fuels. Congress is considering various CTL proposals while the private sector is building pilot plants and performing feasibility studies for proposed plants. The article includes a table listing 14 coal-to-liquids plants under consideration. The private sector has formed the coal-to-liquids coalition (www.futurecoalfuels.org). The article mentions other CTL projects in South Africa, China, Indonesia, the Philippines and New Zealand. 1 tab.

  11. Sandia National Laboratories: Geomechanics Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    including studies of coupled effects Extrapolation of laboratory measurements to field conditions In situ stress measurements and evaluation of in situ boundary conditions...

  12. Hydrogen Production from Methane Using Oxygen-permeable Ceramic Membranes

    E-Print Network [OSTI]

    Faraji, Sedigheh

    2010-06-08T23:59:59.000Z

    in the production of both fuel-cell quality hydrogen and ultra-clean liquid fuels (Fischer-Tropsch Synthesis), which are easier to transport and store than natural gas [6, 7]. The Fischer-Tropsch process has received significant attention in the quest to produce...:1 ratio of H2:CO which is beneficial to Fischer–Tropsch process and methanol synthesis [4]. Also, this reaction is exothermic which can reduce the overall hydrogen production plant cost [5]. CH4 + ½ O2 ? CO + 2 H2...

  13. SULI at Ames Laboratory

    SciTech Connect (OSTI)

    None

    2011-01-01T23:59:59.000Z

    A video snapshot of the Science Undergraduate Laboratory Internship (SULI) program at Ames Laboratory.

  14. 1 Copyright 2013 by ASME Proceedings of the ASME Fluids Engineering Summer Meeting

    E-Print Network [OSTI]

    Ghajar, Afshin J.

    of coal slurry to produce synthetic fuels during the Fischer-Tropsch process. Vertical vibration Reactors (BCRs) including aeration of organic organisms in bio-reactors, hydrogenation of coal-slurries

  15. The Prospects for Coal-To-Liquid Conversion: A General Equilibrium Analysis

    E-Print Network [OSTI]

    Chen, Y.-H. Henry

    We investigate the economics of coal-to-liquid (CTL) conversion, a polygeneration technology that produces liquid fuels, chemicals, and electricity by coal gasification and Fischer-Tropsch process. CTL is more expensive ...

  16. NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form

    Broader source: Energy.gov (indexed) [DOE]

    - 103111 Grand Forks, ND Fischer-Tropsch Fuels Development Construction of a cold-syngas cleanup reactor for the FT portion of the overall project that is designed to use...

  17. Effect of engine operating parameters and fuel characteristics on diesel engine emissions

    E-Print Network [OSTI]

    Acar, Joseph, 1977-

    2005-01-01T23:59:59.000Z

    To examine the effects of using synthetic Fischer-Tropsch (FT) diesel fuel in a modern compression ignition engine, experiments were conducted on a MY 2002 Cummins 5.9 L diesel engine outfitted with high pressure, common ...

  18. Yosemite Waters Vehicle Evaluation Report: Final Results

    SciTech Connect (OSTI)

    Eudy, L.; Barnitt, R.; Alleman, T. L.

    2005-08-01T23:59:59.000Z

    Document details the evaluation of Fischer-Tropsch diesel, a gas-to-liquid fuel, in medium-duty delivery vehicles at Yosemite Waters. The study was conducted by NREL at the company's Fullerton, California, bottling headquarters.

  19. Coal liquefaction and gas conversion: Proceedings. Volume 2

    SciTech Connect (OSTI)

    Not Available

    1993-12-31T23:59:59.000Z

    Volume II contains papers presented at the following sessions: Indirect Liquefaction (oxygenated fuels); and Indirect Liquefaction (Fischer-Tropsch technology). Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  20. CALIFORNIA ALTERNATIVE FUELS MARKET ASSESSMENT

    E-Print Network [OSTI]

    , Contract Manager Ray Tuvell, Manager EMERGING FUELS & TECHNOLOGY OFFICE Rosella Shapiro, Deputy Director gas, propane, ethanol, electricity, alternative diesel fuels such as biodiesel and Fischer Tropsch, natural gas vehicles, propane vehicles, electric vehicles, ethanol fuel, E-85, biodiesel, Fischer

  1. Appendix A

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Fischer-Tropsch gas-to-liquids process. 12 Includes liquids produced from kerogen (oil shale, not to be confused with tight oil (shale oil)). 13 Includes production of crude oil...

  2. Appendix A

    Gasoline and Diesel Fuel Update (EIA)

    specific gravity than the crude oil processed. 5 Includes pyrolysis oils, biomass-derived Fischer-Tropsch liquids, and renewable feedstocks used for the on-site production of...

  3. EA-1642: Finding of No Significant Impact | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EA-1642: Finding of No Significant Impact Design and Construction of an Early Lead Mini-Fischer-Tropsch Refinery at the University of Kentucky Center for Applied Energy Research...

  4. Chemical and Physical Properties of Nanomaterials for Model Catalytic Systems and Smart Polymer Membranes

    E-Print Network [OSTI]

    Skiles, Stephanie Lyn

    2014-10-24T23:59:59.000Z

    and deactivated during the Fischer-Tropsch reaction. In the bimetallic system, the electronic effect of metal alloying was investigated using X-ray photoelectron spectroscopy. The stable alloy was surface enriched with copper. The promotion effect of copper...

  5. 2008 CAMD Users Meeting Schedule

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Campos, Chemical Engineering, LSU, "A XANES and Activity Study of Mn-Promoted Fe-based Fischer-Tropsch Catalysts" 10:45 - 11:00 - Peter Jacobson, Department of Physics, Tulane...

  6. cbf-g-index | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The objective of this project is to advance the design and construction of a mini Fischer-Tropsch refinery. Coal Fuels Alliance: Design and Construction of Early Lead Mini...

  7. major-test-partners | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Coal and CoalBiomass Blends and Conversion of Derived Syngas to Liquid Fuels Via Fischer-Tropsch Synthesis Coal Fuels Alliance: Design and Construction of Early Lead Mini...

  8. CX-011112: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Innovative Gasification to Produce Fischer-Tropsch Jet and Diesel Fuel CX(s) Applied: A9 Date: 08/15/2013 Location(s): Iowa Offices(s): Golden Field Office

  9. 2010 CAMD Users Meeting Schedule

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - 9:00 - Andrew Campos, LSU CHEM. ENG, A XANES and Activity Study of Mn Promoted Fe-based Fischer-Tropsch Catalyst 9:00 - 9:15 - Shane Stadler, LSU PHYSICS, MCD at the CAMD VLSPGM...

  10. Development of a Thermodynamic Model for Fluids Confined in Spherical Pores

    E-Print Network [OSTI]

    D'Lima, Michelle Lynn

    2014-07-18T23:59:59.000Z

    . Warrag1 applied an equation of state for 2 fluids confined in cylindrical pores, developed by Travalloni et al2, to investigate possible fluid condensation inside the pores of the catalysts employed in the Fischer Tropsch synthesis, as part...

  11. Microsoft Word - 12.18.13 NEPA UK FT DSEA draft DearReaderLtr...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Coal and Coal-Biomass Blends and Conversion of Derived Syngas to Liquid Fuels via Fischer-Tropsch Synthesis Project, Lexington, Kentucky (DOEEA-1642S). DOE prepared this...

  12. Demonstration & Market Transformation Peer Review Break-Out Presentati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transformation AOP Frontline BioEnergy, LLC (IA) Innovative Gasification to Produce Fischer- Tropsch Jet and Diesel Fuel Diesel, jet iPilots iPilots Mercurius (WA) Renewable...

  13. USS Previous Speakers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    71814 Bing Yang ANL-MSD In-situ characterization of Co1-xPtx bimetallic clusters for Fischer-Tropsch synthesis 71114 Sanja Tepavcevic ANL-CNM Nanostructured Layered Cathode...

  14. Nano Sensor Networks for Tailored Operation of Highly Efficient Gas-To-Liquid Fuels Catalysts

    E-Print Network [OSTI]

    New South Wales, University of

    such as methane. Selectivity refers to the ratio of highly useful hydrocarbons to the total product output and intermediates for the pro- duction of other petrochemicals. Fischer-Tropsch (FT) synthesis is the main process

  15. Study of factors affecting syngas quality and their interactions in fluidized bed gasification of lignite coal

    E-Print Network [OSTI]

    Spiteri, Raymond J.

    by optimization of the response surface of each index. Ó 2012 Elsevier Ltd. All rights reserved. 1. Introduction in specialized downstream units such as clean fuel combustion, pro- duction of Fischer­Tropsch liquids, and fuel cells, plus a

  16. Laboratory Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PM toLED Lighting5-15TradeLaboratories

  17. Laboratory Directors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLSLaboratory Directors Laboratory Directors A

  18. Laboratory Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,sand CERN 73-11 Laboratory I |

  19. F-T process using an iron on mixed zirconia-titania supported catalyst

    DOE Patents [OSTI]

    Dyer, Paul N. (Allentown, PA); Nordquist, Andrew F. (Whitehall, PA); Pierantozzi, Ronald (Macungie, PA)

    1987-01-01T23:59:59.000Z

    A Fischer-Tropsch catalyst comprising iron co-deposited with or deposited on particles comprising a mixture of zirconia and titania, preferably formed by co-precipitation of compounds convertible to zirconia and titania, such as zirconium and titanium alkoxide. The invention also comprises the method of making this catalyst and an improved Fischer-Tropsch reaction process in which the catalyst is utilized.

  20. Laboratory Waste | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLSLaboratory Directors LaboratoryPlanning

  1. Geoscience Laboratory | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental AssessmentsGeoffrey CampbelllongApplyingGeorge T.Geoscience Laboratory

  2. Sandia National Laboratories: Photovoltaics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PV Facilities On November 10, 2010, in Photovoltaic System Evaluation Laboratory Distributed Energy Technologies Laboratory Microsystems and Engineering Sciences Applications...

  3. Sandia National Laboratories: Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory (PSEL) National Supervisory Control and Data Acquisition (SCADA) Test Bed Center for Integrated Nanotechnologies (CINT) Distributed Energy Technologies Laboratory...

  4. Environmental | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environmental Management Program at the Ames Laboratory includes Waste Management, Pollution Prevention, Recycling, Cultural Resources, and the Laboratory's Environmental...

  5. Sandia National Laboratories: Nuclear Energy Systems Laboratory...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory (NESL) Transient Nuclear Fuels Testing Radiation Effects Sciences Solar Electric Propulsion Nuclear Energy Safety Technologies Experimental Testing...

  6. Sandia National Laboratories: Nuclear Energy Systems Laboratory...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory (NESL) Transient Nuclear Fuels Testing Radiation Effects Sciences Solar Electric Propulsion Nuclear Energy Safety Technologies Experimental Testing Phenomenological...

  7. Ames Laboratory Ames, Iowa Argonne National Laboratory Argonne...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory Los Alamos, New Mexico National Energy Technology Laboratory Morgantown, West Virginia Pittsburgh, Pennsylvania Albany, Oregon National Renewable Energy Laboratory...

  8. Sandia National Laboratories: IRED

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SMART Grid, Solar Sandia National Laboratories, the Electric Power Research Institute (EPRI) and European Distributed Energies Research Laboratories (DERlab) have organized a...

  9. National Renewable Energy Laboratory

    E-Print Network [OSTI]

    National Renewable Energy Laboratory Innovation for Our Energy Future ponsorship Format Reversed Color:White rtical Format Reversed-A ertical Format Reversed-B National Renewable Energy Laboratory National Renewable Energy Laboratory Innovation for Our Energy Future National Renewable Energy Laboratory

  10. Sandia National Laboratories: Sandia National Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Hosted by Sandia National Laboratories and the Electric Power Research Institute (EPRI) Inverter reliability drives project life cycle costs and plant performance. This...

  11. Argonne National Laboratory | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory Slip sliding away Graphene and diamonds prove a slippery combination Read More ACT-SO winners Argonne mentors students for the next generation of...

  12. Materials Design Laboratory | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Design Laboratory, scheduled for completion in FY 2020, is designed to meet U.S. Green Building Council Leadership in Energy and Environmental Design (LEED) Gold...

  13. Pacific Northwest National Laboratory

    E-Print Network [OSTI]

    Pacific Northwest National Laboratory Operated by Battelle for the U.S. Department of Energy Northwest National Laboratory (PNNL) operated by Battelle Memorial Institute. Battelle has a unique contract

  14. Argonne National Laboratory's Nondestructive

    E-Print Network [OSTI]

    Kemner, Ken

    Argonne National Laboratory's Nondestructive Evaluation Technologies NDE #12;Over45yearsexperienceinNondestructiveEvaluation... Argonne National Laboratory's world-renowned researchers have a proven the safe operationof advanced nuclear reactors. Argonne's World-Class Nondestructive Evaluation

  15. Mentoring | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    As one of the largest laboratories in the nation for science and engineering research, Argonne National Laboratory is home to some of the most prolific and well-renowned scientists...

  16. Naval Civil Engineering Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Naval Civil Engineering Laboratory Personnel from the Power Systems Department have participated in numerous distribution equipment research, development, demonstration, testing,...

  17. Employment at National Laboratories

    SciTech Connect (OSTI)

    E. S. Peterson; C. A. Allen

    2007-04-01T23:59:59.000Z

    Scientists enter the National Laboratory System for many different reasons. For some, faculty positions are scarce, so they take staff-scientist position at national laboratories (i.e. Pacific Northwest, Idaho, Los Alamos, and Brookhaven). Many plan to work at the National Laboratory for 5 to 7 years and then seek an academic post. For many (these authors included), before they know it it’s 15 or 20 years later and they never seriously considered leaving the laboratory system.

  18. Sandia National Laboratories: Photovoltaic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Computational Modeling & Simulation, Energy, Facilities, News, News & Events, Photovoltaic, Photovoltaic Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar...

  19. LABORATORY NEW HIRE NOTICE: LABORATORY DELAYED OPENING OR CLOSURE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LABORATORY NEW HIRE NOTICE: LABORATORY DELAYED OPENING OR CLOSURE DUE TO INCLEAMENT WEATHER During the winter months, the Los Alamos National Laboratory (LANL) may at times...

  20. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In this issue's cover story, "Rethinking the Unthinkable," Houston T. Hawkins, a retired Air Force colonel and a Laboratory senior fellow, points out that since Vladimir Putin...

  1. Sandia National Laboratories: AMI

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manufacturing Initiative (AMI) is a multiple-year, 3-way collaboration among TPI Composites, Iowa State University, and Sandia National Laboratories. The goal of this...

  2. Sandia National Laboratories: Photovoltaics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2013 Inverter Reliability Workshop On May 31, 2013, in Hosted by Sandia National Laboratories and the Electric Power Research Institute (EPRI) Inverter reliability drives project...

  3. Sandia National Laboratories: photovoltaic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    photovoltaic Microsystems Enabled Photovoltaics (MEPV) On April 14, 2011, in About MEPV Flexible MEPV MEPV Publications MEPV Awards Researchers at Sandia National Laboratories are...

  4. News | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Researchers from Argonne National Laboratory modeled several scenarios to add more solar power to the electric grid, using real-world data from the southwestern power...

  5. Sandia National Laboratories: SPI

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conference, the Department of Energy (DOE), the Electric Power Research Instisute (EPRI), Sandia National Laboratories, ... Last Updated: September 10, 2012 Go To Top ...

  6. Sandia National Laboratories: Workshops

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geoscience, Climate and Consequence Effect at Sandia National Laboratories presented on "Hydraulic Fracturing: Role of Government-Sponsored R&D." Marianne's presentation was part...

  7. nfang | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Laboratory Research Projects: Chemical Analysis of Nanodomains Education: Ph.D., the University of British Columbia, Canada, 2006 B.S. from Xiamen University, China, 1998...

  8. Sandia National Laboratories: Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories on a new concentrated solar power (CSP) installation with thermal energy storage. The CSP storage project combines Areva's modular Compact Linear Fresnel...

  9. Sandia National Laboratories: publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories, August 2010. 2009 Adrian R. Chavez, Position Paper: Protecting Process Control Systems against Lifecycle Attacks Using Trust Anchors Sandia National ... Page 1...

  10. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the first results of joint work by scientists from Lawrence Berkeley, Pacific Northwest, Savannah River, and Los Alamos national laboratories at the Savannah River Site to model...

  11. Sandia National Laboratories: Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Center for SCADA Security Assets On August 25, 2011, in Sandia established its SCADA Security Development Laboratory in 1998. Its purpose was to analyze vulnerabilities in...

  12. Sandia National Laboratories: solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interactive Tour Operated by Sandia National Laboratories for the U.S. Department of Energy (DOE), the National Solar Thermal Test Facility (NSTTF) is the only test facility...

  13. National Laboratory Photovoltaics Research

    Broader source: Energy.gov [DOE]

    DOE supports photovoltaic (PV) research and development and facilities at its national laboratories to accelerate progress toward achieving the SunShot Initiative's technological and economic...

  14. Sandia National Laboratories: Geothermal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geothermal Sandia Wins DOE Geothermal Technologies Office Funding Award On December 15, 2014, in Advanced Materials Laboratory, Capabilities, Energy, Facilities, Geothermal,...

  15. Sandia National Laboratories: PV

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2014 Sandia Corporation | Questions & Comments | Privacy & Security U.S. Department of Energy National Nuclear Security Administration Sandia National Laboratories is a...

  16. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    23, 2013-Nearly 400 Los Alamos National Laboratory employees on 47 teams received Pollution Prevention awards for protecting the environment and saving taxpayers more than 8...

  17. Sandia National Laboratories: HRSAM

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and the National Renewable Energy Laboratory (NREL) announce the publication of two new Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) reports on...

  18. Sandia National Laboratories: Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Testing Center (PV RTC), Photovoltaic Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar Newsletter, SunShot, Systems Analysis A research team that included...

  19. Sandia National Laboratories: NASA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratories (partnering with Northrup Grumman Aerospace Systems and the University of Michigan) has developed a solar electric propulsion concept capable of a wide...

  20. Facilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Some of the nation's most powerful and sophisticated facilities for energy research Argonne National Laboratory is home to some of the nation's most powerful and sophisticated...

  1. ARGONNE NATIONAL LABORATORY May

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARGONNE NATIONAL LABORATORY May 9, 1994 Light Source Note: LS234 Comparison of the APS and UGIMAG Helmholtz Coil Systems David W. Carnegie Accelerator Systems Division Advanced...

  2. Licensing | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (TDC) Division negotiates and manages license agreements on behalf of UChicago Argonne, LLC, which operates Argonne National Laboratory for the U.S. Department of Energy....

  3. Procurement | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Procurement More than 150 attend second joint Argonne-Fermilab small business fairSeptember 2, 2014 On Thursday, Aug. 28, Illinois' two national laboratories - Argonne and Fermi...

  4. Exercise Design Laboratory

    Broader source: Energy.gov [DOE]

    The Emergency Operations Training Academy (EOTA), NA 40.2, Readiness and Training, Albuquerque, NM is pleased to announce the EXR231, Exercise Design Laboratory course

  5. Sandia National Laboratories: Partnership

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Armstrong using deep level optical spectroscopy to investigate defects in the m-plane GaN. Jim is a professor ... Vermont and Sandia National Laboratories Announce Energy...

  6. 1MIT Lincoln Laboratory MIT Lincoln Laboratory

    E-Print Network [OSTI]

    Clancy, Ted

    · About the Laboratory ­ Overview ­ Research Areas ­ Demographics · The MQP program ­ Logistics Primary Field Sites White Sands Missile Range Socorro, New Mexico Reagan Test Site Kwajalein, Marshall ­ Demographics · The MQP program ­ Logistics ­ Admission ­ Summer & Full-time Employment · Past Projects #12;9MIT

  7. Laboratory Director PRINCETON PLASMA PHYSICS LABORATORY

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    .C. Zarnstorff Deputy Director for Operations A.B. Cohen Laboratory Management Council Research Council Associate Diagnostics D.W. Johnson Electrical Systems C. Neumeyer Lab Astrophysics M. Yamada, H. Ji Projects: MRX, MRI Science Education A. Post-Zwicker Quality Assurance J.A. Malsbury Tech. Transfer Patents & Publications L

  8. Commercial Fisheries Biological Laboratory

    E-Print Network [OSTI]

    , and tidal estuaries with bottom types ranging from soft mud to hard sand and rock. The Laboratory has grown research laboratories, an experimental shell- fish hatchery, administrative offices, a combined library freezer, and quick freezer. The library is limited to publications that have a direct bearing on current

  9. LABORATORY I: GEOMETRIC OPTICS

    E-Print Network [OSTI]

    Minnesota, University of

    Lab I - 1 LABORATORY I: GEOMETRIC OPTICS In this lab, you will solve several problems related to the formation of optical images. Most of us have a great deal of experience with the formation of optical images this laboratory, you should be able to: · Describe features of real optical systems in terms of ray diagrams

  10. Technical Report Computer Laboratory

    E-Print Network [OSTI]

    Haddadi, Hamed

    the opportunity to consider a physical attack, with very little to lose. We thus set out to analyse the deviceTechnical Report Number 592 Computer Laboratory UCAM-CL-TR-592 ISSN 1476-2986 Unwrapping J. Murdoch Technical reports published by the University of Cambridge Computer Laboratory are freely

  11. Reservoir Characterization Research Laboratory

    E-Print Network [OSTI]

    Texas at Austin, University of

    Reservoir Characterization Research Laboratory for Carbonate Studies Executive Summary for 2014 Outcrop and Subsurface Characterization of Carbonate Reservoirs for Improved Recovery of Remaining/Al 0.00 0.02 0.04 Eagle Ford Fm #12;#12; Reservoir Characterization Research Laboratory Research Plans

  12. Carbon Characterization Laboratory Report

    SciTech Connect (OSTI)

    David Swank; William Windes; D.C. Haggard; David Rohrbaugh; Karen Moore

    2009-03-01T23:59:59.000Z

    The newly completed Idaho National Laboratory (INL) Carbon Characterization Laboratory (CCL) is located in Lab-C20 of the Idaho National Laboratory Research Center. This laboratory was established under the Next Generation Nuclear Plant (NGNP) Project to support graphite research and development activities. The CCL is designed to characterize and test carbon-based materials such as graphite, carbon-carbon composites, and silicon-carbide composite materials. The laboratory is fully prepared to measure material properties for nonirradiated carbon-based materials. Plans to establish the laboratory as a radiological facility within the next year are definitive. This laboratory will be modified to accommodate irradiated materials, after which it can be used to perform material property measurements on both irradiated and nonirradiated carbon-based material. Instruments, fixtures, and methods are in place for preirradiation measurements of bulk density, thermal diffusivity, coefficient of thermal expansion, elastic modulus, Young’s modulus, Shear modulus, Poisson ratio, and electrical resistivity. The measurement protocol consists of functional validation, calibration, and automated data acquisition.

  13. Sonication standard laboratory module

    DOE Patents [OSTI]

    Beugelsdijk, Tony (Los Alamos, NM); Hollen, Robert M. (Los Alamos, NM); Erkkila, Tracy H. (Los Alamos, NM); Bronisz, Lawrence E. (Los Alamos, NM); Roybal, Jeffrey E. (Santa Fe, NM); Clark, Michael Leon (Menan, ID)

    1999-01-01T23:59:59.000Z

    A standard laboratory module for automatically producing a solution of cominants from a soil sample. A sonication tip agitates a solution containing the soil sample in a beaker while a stepper motor rotates the sample. An aspirator tube, connected to a vacuum, draws the upper layer of solution from the beaker through a filter and into another beaker. This beaker can thereafter be removed for analysis of the solution. The standard laboratory module encloses an embedded controller providing process control, status feedback information and maintenance procedures for the equipment and operations within the standard laboratory module.

  14. Reservoir CharacterizationReservoir Characterization Research LaboratoryResearch Laboratory

    E-Print Network [OSTI]

    Texas at Austin, University of

    Reservoir CharacterizationReservoir Characterization Research LaboratoryResearch Laboratory at Austin Austin, Texas 78713Austin, Texas 78713--89248924 #12;Reservoir Characterization Research Laboratory for Carbonate Studies Research Plans for 2012 Outcrop and Subsurface Characterization of Carbonate

  15. Sandia National Laboratories: EFRC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    region where sunlight is most concentrated and to which ... Overview On November 11, 2010, in Sandia National Laboratories is home to one of the 46 multi-million dollar Energy...

  16. Sandia National Laboratories: Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, Wind Energy ALBUQUERQUE, N.M. - Sandia National Laboratories and Kirtland Air Force Base may soon share a wind farm that will provide as much as one-third of the...

  17. Brookhaven National Laboratory

    Broader source: Energy.gov [DOE]

    Site OverviewThe Brookhaven National Laboratory (BNL) was established in 1947 by the Atomic Energy Commission (AEC) (predecessor to U.S. Department of Energy [DOE]). Formerly Camp Upton, a U.S....

  18. Sandia National Laboratories: Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10, 2012, in Images Videos Energy Storage Image Gallery Energy Storage B-Roll Videos Battery Abuse Testing Laboratory (BATLab) Abuse Testing B-Roll BatLab 894 B-Roll Cell...

  19. Biosafety | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Biosafety Biosafety Links Biosafety Contacts Biosafety Office Argonne National Laboratory 9700 S. Cass Ave. Bldg. 202, Room B333 Argonne, IL 60439 USA 630-252-5191 Committee...

  20. Safety | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Argonne National Laboratory and the U.S. Department of Energy (DOE) are very concerned about the well-being of all employees. Students at the undergraduate and graduate...

  1. Idaho National Laboratory

    ScienceCinema (OSTI)

    McCarthy, Kathy

    2013-05-28T23:59:59.000Z

    INL is the leading laboratory for nuclear R&D. Nuclear engineer Dr. Kathy McCarthy talks aobut the work there and the long-term benefits it will provide.

  2. Argonne National Laboratory

    Broader source: Energy.gov [DOE]

    HISTORYThe Argonne National Laboratory (ANL) site is approximately 27 miles southwest of downtown Chicago in DuPage County, Illinois.  The 1,500 acre ANL site is completely surrounded by the 2,240...

  3. Laboratory Equipment & Supplies | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLSLaboratory Directors Laboratory Directors

  4. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-04-30T23:59:59.000Z

    To establish Department of Energy (DOE) requirements for laboratory directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation

  5. Los Alamos National Laboratory Institutes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    research interests are important to the Laboratory. Sponsoring, partnering with, and funding university professors and students in areas that are important to meet Laboratory...

  6. Materials Characterization Laboratory (Fact Sheet), NREL (National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Characterization Laboratory may include: * PEMFC industry * Certification laboratories * Universities * Other National laboratories Contact Us If you are interested in...

  7. EARLY ENTRANCE CO-PRODUCTION PLANT - DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS

    SciTech Connect (OSTI)

    Unknown

    2003-01-01T23:59:59.000Z

    Waste Processors Management, Inc. (WMPI), along with its subcontractors Texaco Power & Gasification (now ChevronTexaco), SASOL Technology Ltd., and Nexant Inc. entered into a Cooperative Agreement DE-FC26-00NT40693 with the U. S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) to assess the technoeconomic viability of building an Early Entrance Co-Production Plant (EECP) in the United States to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co-product. The EECP design includes recovery and gasification of low-cost coal waste (culm) from physical coal cleaning operations and will assess blends of the culm with coal or petroleum coke. The project has three phases. Phase I is the concept definition and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase II is an experimental testing program designed to validate the coal waste mixture gasification performance. Phase III updates the original EECP design based on results from Phase II, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 barrel per day (BPD) coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania. The current report covers the period performance from July 1, 2002 through September 30, 2002.

  8. [98e]-Catalytic reforming of gasoline and diesel fuel

    SciTech Connect (OSTI)

    Pereira, C.; Wilkenhoener, R.; Ahmed, S.; Krumpelt, M.

    2000-02-29T23:59:59.000Z

    Argonne National Laboratory is developing a fuel processor for converting liquid hydrocarbon fuels to a hydrogen-rich product suitable for a polymer electrolyte fuel cell stack. The processor uses an autothermal reformer to convert the feed to a mixture of hydrogen, carbon dioxide, carbon monoxide and water with trace quantities of other components. The carbon monoxide in the product gas is then converted to carbon dioxide in water-gas shift and preferential oxidation reactors. Fuels that have been tested include standard and low-sulfur gasoline and diesel fuel, and Fischer-Tropsch fuels. Iso-octane and n-hexadecane were also examined as surrogates for gasoline and diesel, respectively. Complete conversion of gasoline was achieved at 750 C in a microreactor over a novel catalyst developed at Argonne. Diesel fuel was completely converted at 850 C over this same catalyst. Product streams contained greater than 60% hydrogen on a dry, nitrogen-free basis with iso-octane, gasoline, and n-hexadecane. For a diesel fuel, product streams contained >50% hydrogen on a dry, nitrogen-free basis. The catalyst activity did not significantly decrease over >16 hours operation with the diesel fuel feed. Coke formation was not observed. The carbon monoxide fraction of the product gas could be reduced to as low as 1% on a dry, nitrogen-free basis when the water-gas shift reactors were used in tandem with the reformer.

  9. Mobility chains analysis of technologies for passenger cars and light duty vehicles fueled with biofuels : application of the Greet model to project the role of biomass in America's energy future (RBAEF) project.

    SciTech Connect (OSTI)

    Wu, M.; Wu, Y.; Wang, M; Energy Systems

    2008-01-31T23:59:59.000Z

    The Role of Biomass in America's Energy Future (RBAEF) is a multi-institution, multiple-sponsor research project. The primary focus of the project is to analyze and assess the potential of transportation fuels derived from cellulosic biomass in the years 2015 to 2030. For this project, researchers at Dartmouth College and Princeton University designed and simulated an advanced fermentation process to produce fuel ethanol/protein, a thermochemical process to produce Fischer-Tropsch diesel (FTD) and dimethyl ether (DME), and a combined heat and power plant to co-produce steam and electricity using the ASPEN Plus{trademark} model. With support from the U.S. Department of Energy (DOE), Argonne National Laboratory (ANL) conducted, for the RBAEF project, a mobility chains or well-to-wheels (WTW) analysis using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed at ANL. The mobility chains analysis was intended to estimate the energy consumption and emissions associated with the use of different production biofuels in light-duty vehicle technologies.

  10. The development of precipitated iron catalysts with improved stability

    SciTech Connect (OSTI)

    Not Available

    1990-01-01T23:59:59.000Z

    The goal of this program is to identify the chemical principles governing the deactivation of precipitated iron catalysts during Fischer-Tropsch synthesis and to use these chemical principles in the design of catalysts suitable for slurry reactors. This report covers testing an iron catalyst. During the last quarter, a new precipitated iron catalyst was prepared and tested in the slurry autoclave reactor at various conditions. This catalyst did not noticeably deactivate during 1250 hours of testing. This quarter, the test was extended to include performance evaluations at different conversion levels ranging from 35 to 88% at 265 and 275{degree}C. The conversion levels were varied by changing the feed rate. The catalytic performance at different conversion intervals was then integrated to approximately predict performance in a bubble column reactor. The run was shut down at the end of 1996 hours because of a 24-hour-power outage. When the power was back on, the run was restarted from room temperature. Catalytic performance during the first 300 hours after the restart-up was monitored. Overall product distributions are being tabulated as analytical laboratory data are obtained. 34 figs., 3 tabs.

  11. EARLY ENTRANCE CO-PRODUCTION PLANT-DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS

    SciTech Connect (OSTI)

    Unknown

    2002-07-01T23:59:59.000Z

    Waste Processors Management, Inc. (WMPI), along with its subcontractors entered into a Cooperative Agreement with the US Department of Energy (DOE) and the National Energy Technology Laboratory (NETL) to assess the techno-economic viability of building an Early Entrance Co-Production Plant (EECP) in the US to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co-product. The EECP design includes recovery and gasification of low-cost coal waste (culm) from physical coal cleaning operations and will assess blends of the culm with coal or petroleum coke. The project has three phases. Phase 1 is the concept definition and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase 2 is an experimental testing program designed to validate the coal waste mixture gasification performance. Phase 3 updates the original EECP design based on results from Phase 2, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 barrel per day (BPD) coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania. The current report covers the period performance from April 1, 2002 through June 30, 2002.

  12. Method of inducing surface ensembles on a metal catalyst

    DOE Patents [OSTI]

    Miller, S.S.

    1987-10-02T23:59:59.000Z

    A method of inducing surface ensembles on a transition metal catalyst used in the conversion of a reactant gas or gas mixture, such as carbon monoxide and hydrogen into hydrocarbons (the Fischer-Tropsch reaction) is disclosed which comprises adding a Lewis base to the syngas (CO + H/sub 2/) mixture before reaction takes place. The formation of surface ensembles in this manner restricts the number and types of reaction pathways which will be utilized, thus greatly narrowing the product distribution and maximizing the efficiency of the Fischer-Tropsch reaction. Similarly, amines may also be produced by the conversion of reactant gas or gases, such as nitrogen, hydrogen, or hydrocarbon constituents.

  13. Method of inducing surface ensembles on a metal catalyst

    DOE Patents [OSTI]

    Miller, Steven S. (Morgantown, WV)

    1989-01-01T23:59:59.000Z

    A method of inducing surface ensembles on a transition metal catalyst used in the conversion of a reactant gas or gas mixture, such as carbon monoxide and hydrogen into hydrocarbons (the Fischer-Tropsch reaction) is disclosed which comprises adding a Lewis base to the syngas (CO+H.sub.2) mixture before reaction takes place. The formation of surface ensembles in this manner restricts the number and types of reaction pathways which will be utilized, thus greatly narrowing the product distribution and maximizing the efficiency of the Fischer-Tropsch reaction. Similarly, amines may also be produced by the conversion of reactant gas or gases, such as nitrogen, hydrogen, or hydrocarbon constituents.

  14. Advanced Hydride Laboratory

    SciTech Connect (OSTI)

    Motyka, T.

    1989-01-01T23:59:59.000Z

    Metal hydrides have been used at the Savannah River Tritium Facilities since 1984. However, the most extensive application of metal hydride technology at the Savannah River Site is being planned for the Replacement Tritium Facility, a $140 million facility schedules for completion in 1990 and startup in 1991. In the new facility, metal hydride technology will be used to store, separate, isotopically purify, pump, and compress hydrogen isotopes. In support of the Replacement Tritium Facility, a $3.2 million, cold,'' process demonstration facility, the Advanced Hydride Laboratory began operation in November of 1987. The purpose of the Advanced Hydride Laboratory is to demonstrate the Replacement Tritium Facility's metal hydride technology by integrating the various unit operations into an overall process. This paper will describe the Advanced Hydride Laboratory, its role and its impact on the application of metal hydride technology to tritium handling.

  15. Advanced Hydride Laboratory

    SciTech Connect (OSTI)

    Motyka, T.

    1989-12-31T23:59:59.000Z

    Metal hydrides have been used at the Savannah River Tritium Facilities since 1984. However, the most extensive application of metal hydride technology at the Savannah River Site is being planned for the Replacement Tritium Facility, a $140 million facility schedules for completion in 1990 and startup in 1991. In the new facility, metal hydride technology will be used to store, separate, isotopically purify, pump, and compress hydrogen isotopes. In support of the Replacement Tritium Facility, a $3.2 million, ``cold,`` process demonstration facility, the Advanced Hydride Laboratory began operation in November of 1987. The purpose of the Advanced Hydride Laboratory is to demonstrate the Replacement Tritium Facility`s metal hydride technology by integrating the various unit operations into an overall process. This paper will describe the Advanced Hydride Laboratory, its role and its impact on the application of metal hydride technology to tritium handling.

  16. Digital Technology Group Computer Laboratory

    E-Print Network [OSTI]

    Cambridge, University of

    Digital Technology Group 1/20 Computer Laboratory Digital Technology Group Computer Laboratory William R Carson Building on the presentation by Francisco Monteiro Matlab #12;Digital Technology Group 2/20 Computer Laboratory Digital Technology Group Computer Laboratory The product: MATLAB® - The Language

  17. National Voluntary Laboratory Accreditation Program

    E-Print Network [OSTI]

    procedure lists all the items Handbook 150 requires be covered in a management review. The records do and Management Reviews #12;National Voluntary Laboratory Accreditation Program Pre-assessment... · A laboratory;National Voluntary Laboratory Accreditation Program Pre-assessment... · A laboratory's management review

  18. Laboratory, Valles Caldera sponsor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,sand CERN 73-11 LaboratoryLaboratory,

  19. LABORATORY III POTENTIAL ENERGY

    E-Print Network [OSTI]

    Minnesota, University of

    LABORATORY III POTENTIAL ENERGY Lab III - 1 In previous problems, you have been introduced to the concepts of kinetic energy, which is associated with the motion of an object, and internal energy, which is associated with the internal structure of a system. In this section, you work with another form of energy

  20. Pacific Northwest National Laboratory

    E-Print Network [OSTI]

    Science. Technology. Innovation. PNNL-SA-34741 Pacific Northwest National Laboratory (PNNL) is addressing cognition and learning to the development of student- centered, scenario-based training. PNNL's Pachelbel (PNNL) has developed a cognitive-based, student-centered approach to training that is being applied

  1. Technical Report Computer Laboratory

    E-Print Network [OSTI]

    Haddadi, Hamed

    for criminal activity. One general attack route to breach the security is to carry out physical attack afterTechnical Report Number 829 Computer Laboratory UCAM-CL-TR-829 ISSN 1476-2986 Microelectronic report is based on a dissertation submitted January 2009 by the author for the degree of Doctor

  2. Radiochemical Radiochemical Processing Laboratory

    E-Print Network [OSTI]

    in development, scale- up and deployment of first-of-a-kind processes to solve environmental problems in the fundamental chemistry of 4 RPL: RadiochemicalProcessingLaboratory Researchers design, build and operate small-scale-liquid suspensions. Developing Radiochemical Processes at All Scales Among the key features of the RPL are extensive

  3. Energy Systems Laboratory Groundbreaking

    ScienceCinema (OSTI)

    Hill, David; Otter, C.L.; Simpson, Mike; Rogers, J.W.;

    2013-05-28T23:59:59.000Z

    INL recently broke ground for a research facility that will house research programs for bioenergy, advanced battery systems, and new hybrid energy systems that integrate renewable, fossil and nuclear energy sources. Here's video from the groundbreaking ceremony for INL's new Energy Systems Laboratory. You can learn more about CAES research at http://www.facebook.com/idahonationallaboratory.

  4. National Laboratory Contacts

    Broader source: Energy.gov [DOE]

    Several of the U.S. Department of Energy (DOE) national laboratories host multidisciplinary transportation research centers. A wide-range of cutting-edge transportation research occurs at these facilities, funded by both DOE and cooperative research and development agreements (CRADAs) with industry

  5. LABORATORY IV OSCILLATIONS

    E-Print Network [OSTI]

    Minnesota, University of

    some of these laboratory problems before your lecturer addresses this material. It is very important, a stopwatch, a balance, a set of weights, and a computer with a video analysis application written in Lab with basic physics principles, show how you get an equation that gives the solution to the problem for each

  6. Nevis Laboratories Columbia University

    E-Print Network [OSTI]

    Detector 27 4 Data Selection 40 5 Majorana Neutrino Search Results 75 6 General Neutrino Search Results 79#12; Nevis Laboratories Columbia University Physics Department Irvington­on­Hudson, New York Search for an O(100 GeV ) Mass Right­Handed Electron Neutrino at the HERA Electron­Proton Collider Using the ZEUS

  7. ECOLOGY LABORATORY BIOLOGY 341

    E-Print Network [OSTI]

    Vonessen, Nikolaus

    Page 1 ECOLOGY LABORATORY BIOLOGY 341 Fall Semester 2008 Bighorn Sheep Rams at Bison Range National ecological data; and 3) oral and written communication skills. Thus, these ecology labs, and statistical analyses appropriate for ecological data. A major goal of this class will be for you to gain

  8. Laboratory for Atmospheric and

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    . Along with this growth came a new building on campus and a new name: the Laboratory for Atmospheric of the Sun to the outermost fringes of the solar system. With LASP's continuing operations role in the planet traditional and stable approach based on federal agency funding of research grant

  9. FUTURE LOGISTICS LIVING LABORATORY

    E-Print Network [OSTI]

    Heiser, Gernot

    FUTURE LOGISTICS LIVING LABORATORY Delivering Innovation The Future Logistics Living Lab that will provide logistics solutions for the future. The Living Lab is a demonstration, exhibition and work space by a group of logistics companies, research organisations, universities, and IT providers that includes NICTA

  10. Radiochemical Radiochemical Processing Laboratory

    E-Print Network [OSTI]

    -cycle applications. These proficiencies include extensive experience with U.S. Department of Energy tank waste.S. Department of Energy Hanford Site in south-central Washington State, the Radiochemical Processing Laboratory) thermogravimetric and calorimetric analysis microscopy (visible light, SEM, TEM, AFM) gas and thermal ionization

  11. Remote Sensing Laboratory - RSL

    ScienceCinema (OSTI)

    None

    2015-01-09T23:59:59.000Z

    One of the primary resources supporting homeland security is the Remote Sensing Laboratory, or RSL. The Laboratory creates advanced technologies for emergency response operations, radiological incident response, and other remote sensing activities. RSL emergency response teams are on call 24-hours a day, and maintain the capability to deploy domestically and internationally in response to threats involving the loss, theft, or release of nuclear or radioactive material. Such incidents might include Nuclear Power Plant accidents, terrorist incidents involving nuclear or radiological materials, NASA launches, and transportation accidents involving nuclear materials. Working with the US Department of Homeland Security, RSL personnel equip, maintain, and conduct training on the mobile detection deployment unit, to provide nuclear radiological security at major national events such as the super bowl, the Indianapolis 500, New Year's Eve celebrations, presidential inaugurations, international meetings and conferences, just about any event where large numbers of people will gather.

  12. Remote Sensing Laboratory - RSL

    SciTech Connect (OSTI)

    None

    2014-11-06T23:59:59.000Z

    One of the primary resources supporting homeland security is the Remote Sensing Laboratory, or RSL. The Laboratory creates advanced technologies for emergency response operations, radiological incident response, and other remote sensing activities. RSL emergency response teams are on call 24-hours a day, and maintain the capability to deploy domestically and internationally in response to threats involving the loss, theft, or release of nuclear or radioactive material. Such incidents might include Nuclear Power Plant accidents, terrorist incidents involving nuclear or radiological materials, NASA launches, and transportation accidents involving nuclear materials. Working with the US Department of Homeland Security, RSL personnel equip, maintain, and conduct training on the mobile detection deployment unit, to provide nuclear radiological security at major national events such as the super bowl, the Indianapolis 500, New Year's Eve celebrations, presidential inaugurations, international meetings and conferences, just about any event where large numbers of people will gather.

  13. Princeton Plasma Physics Laboratory:

    SciTech Connect (OSTI)

    Phillips, C.A. (ed.)

    1986-01-01T23:59:59.000Z

    This paper discusses progress on experiments at the Princeton Plasma Physics Laboratory. The projects and areas discussed are: Principal Parameters Achieved in Experimental Devices, Tokamak Fusion Test Reactor, Princeton Large Torus, Princeton Beta Experiment, S-1 Spheromak, Current-Drive Experiment, X-ray Laser Studies, Theoretical Division, Tokamak Modeling, Spacecraft Glow Experiment, Compact Ignition Tokamak, Engineering Department, Project Planning and Safety Office, Quality Assurance and Reliability, and Administrative Operations.

  14. Smart Grid Integration Laboratory

    SciTech Connect (OSTI)

    Wade Troxell

    2011-09-30T23:59:59.000Z

    The initial federal funding for the Colorado State University Smart Grid Integration Laboratory is through a Congressionally Directed Project (CDP), DE-OE0000070 Smart Grid Integration Laboratory. The original program requested in three one-year increments for staff acquisition, curriculum development, and instrumentation â?? all which will benefit the Laboratory. This report focuses on the initial phase of staff acquisition which was directed and administered by DOE NETL/ West Virginia under Project Officer Tom George. Using this CDP funding, we have developed the leadership and intellectual capacity for the SGIC. This was accomplished by investing (hiring) a core team of Smart Grid Systems engineering faculty focused on education, research, and innovation of a secure and smart grid infrastructure. The Smart Grid Integration Laboratory will be housed with the separately funded Integrid Laboratory as part of CSUâ??s overall Smart Grid Integration Center (SGIC). The period of performance of this grant was 10/1/2009 to 9/30/2011 which included one no cost extension due to time delays in faculty hiring. The Smart Grid Integration Laboratoryâ??s focus is to build foundations to help graduate and undergraduates acquire systems engineering knowledge; conduct innovative research; and team externally with grid smart organizations. Using the results of the separately funded Smart Grid Workforce Education Workshop (May 2009) sponsored by the City of Fort Collins, Northern Colorado Clean Energy Cluster, Colorado State University Continuing Education, Spirae, and Siemens has been used to guide the hiring of faculty, program curriculum and education plan. This project develops faculty leaders with the intellectual capacity to inspire its students to become leaders that substantially contribute to the development and maintenance of Smart Grid infrastructure through topics such as: (1) Distributed energy systems modeling and control; (2) Energy and power conversion; (3) Simulation of electrical power distribution system that integrates significant quantities of renewable and distributed energy resources; (4) System dynamic modeling that considers end-user behavior, economics, security and regulatory frameworks; (5) Best practices for energy management IT control solutions for effective distributed energy integration (including security with the underlying physical power systems); (6) Experimental verification of effects of various arrangements of renewable generation, distributed generation and user load types along with conventional generation and transmission. Understanding the core technologies for enabling them to be used in an integrated fashion within a distribution network remains is a benefit to the future energy paradigm and future and present energy engineers.

  15. Laboratories to Explore, Explain VLBACHANDRA

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory Sandia National Laboratory Stone and Webster The Boeing Company on FIRE and fusion science accessible and up to date. A steady stream of about 150 visitors per week log

  16. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-01-08T23:59:59.000Z

    To establish the Department's, including the NNSA's, requirements for laboratory-directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation. Cancels DOE O 413.2. Canceled by DOE O 413.2B.

  17. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-04-19T23:59:59.000Z

    The Order establishes DOE requirements and responsibilities for laboratory directed research and development while providing laboratory directors with broad flexibility for program implementation. Cancels DOE O 413.2A. Admin Chg 1, 1-31-11.

  18. Laboratory compaction of cohesionless sands

    E-Print Network [OSTI]

    Delphia, John Girard

    1998-01-01T23:59:59.000Z

    on the maximum dry unit weight during compaction. Three different laboratory compaction methods were used: 1) Standard Proctor', 2) Modified Proctor; and 3) Vibrating hammer. The effects of the grain size distribution, particle shape and laboratory compaction...

  19. Internship Opportunities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Undergraduate Laboratory Internship Community College Internships Cooperative Education Student Research Participation Program Lee Teng Fellowship Temporary Employment...

  20. CERTS Microgrid Laboratory Test Bed

    E-Print Network [OSTI]

    Lasseter, R. H.

    2010-01-01T23:59:59.000Z

    Roy, Nancy Jo Lewis, “CERTS Microgrid Laboratory Test Bed Report:Appendix K,” http://certs.lbl.gov/CERTS_P_

  1. Sandia National Laboratories: Systems Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic, Photovoltaic Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar Newsletter, Systems Analysis The PV Performance Modeling Collaborative (PVPMC)...

  2. Sandia National Laboratories: Phenomenological Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory (NESL) Transient Nuclear Fuels Testing Radiation Effects Sciences Solar Electric Propulsion Nuclear Energy Safety Technologies Experimental Testing...

  3. Sandia National Laboratories: photovoltaic analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Computational Modeling & Simulation, Energy, Facilities, News, News & Events, Photovoltaic, Photovoltaic Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar...

  4. Created: July, 2014 Laboratory Safety Design Guide Section 3 Laboratory Ventilation

    E-Print Network [OSTI]

    Queitsch, Christine

    Created: July, 2014 Laboratory Safety Design Guide Section 3 ­ Laboratory Ventilation 3-1 Section 3 LABORATORY VENTILATION Contents A. Scope .................................................................................................................3-2 B. General Laboratory Ventilation

  5. Humidity requirements in WSCF Laboratories

    SciTech Connect (OSTI)

    Evans, R.A.

    1994-10-01T23:59:59.000Z

    The purpose of this paper is to develop and document a position on Relative Humidity (RH) requirements in the WSCF Laboratories. A current survey of equipment vendors for Organic, Inorganic and Radiochemical laboratories indicate that 25% - 80% relative humidity may meet the environmental requirements for safe operation and protection of all the laboratory equipment.

  6. Manufacturing Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Manufacturing Laboratory at the Energy Systems Integration Facility. The Manufacturing Laboratory at NREL's Energy Systems Integration Facility (ESIF) focuses on developing methods and technologies that will assist manufacturers of hydrogen and fuel cell technologies, as well as other renewable energy technologies, to scale up their manufacturing capabilities to volumes that meet DOE and industry targets. Specifically, the manufacturing activity is currently focused on developing and validating quality control techniques to assist manufacturers of low temperature and high temperature fuel cells in the transition from low to high volume production methods for cells and stacks. Capabilities include initial proof-of-concept studies through prototype system development and in-line validation. Existing diagnostic capabilities address a wide range of materials, including polymer films, carbon and catalyst coatings, carbon fiber papers and wovens, and multi-layer assemblies of these materials, as well as ceramic-based materials in pre- or post-fired forms. Work leading to the development of non-contact, non-destructive techniques to measure critical dimensional and functional properties of fuel cell and other materials, and validation of those techniques on the continuous processing line. This work will be supported by materials provided by our partners. Looking forward, the equipment in the laboratory is set up to be modified and extended to provide processing capabilities such as coating, casting, and deposition of functional layers, as well as associated processes such as drying or curing. In addition, continuous processes are used for components of organic and thin film photovoltaics (PV) as well as battery technologies, so synergies with these important areas will be explored.

  7. Purdue Hydrogen Systems Laboratory

    SciTech Connect (OSTI)

    Jay P Gore; Robert Kramer; Timothee L Pourpoint; P. V. Ramachandran; Arvind Varma; Yuan Zheng

    2011-12-28T23:59:59.000Z

    The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up. Efforts continued to explore existing catalytic methods involving nano catalysts for capture of CO2 from the fermentation process.

  8. Princeton Plasma Physics Laboratory

    SciTech Connect (OSTI)

    Not Available

    1990-01-01T23:59:59.000Z

    This report discusses the following topics: principal parameters achieved in experimental devices fiscal year 1990; tokamak fusion test reactor; compact ignition tokamak; Princeton beta experiment- modification; current drive experiment-upgrade; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma processing: deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for fiscal year 1990; graduate education; plasma physics; graduate education: plasma science and technology; science education program; and Princeton Plasma Physics Laboratory reports fiscal year 1990.

  9. gangh | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., Decembergangh Ames Laboratory Profile Gang Han

  10. garberc | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., Decembergangh Ames Laboratory Profile Gang

  11. jbobbitt | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , (Energy Informationjbobbitt Ames Laboratory Profile

  12. jboschen | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , (Energy Informationjbobbitt Ames Laboratory

  13. kmbryden | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , (Energy9 Evaluation of thekmbryden Ames Laboratory

  14. nalms | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , (Energy97 UpperJointmoveLINQnalms Ames Laboratory

  15. rluyendi | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, ,Development ofrluyendi Ames Laboratory Profile Rudi

  16. rmalmq | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, ,Development ofrluyendi Ames Laboratory Profile

  17. rodgers | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, ,Development ofrluyendi Ames Laboratory

  18. rofox | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, ,Development ofrluyendi Ames LaboratoryComparisons

  19. seliger | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, ,Development1 Comparison ofseliger Ames Laboratory

  20. FY 2008 Laboratory Table

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Department of.pdf6-OPAMDepartment ofAppropriationBudgetLaboratory Table

  1. FY 2011 Laboratory Table

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Department of.pdf6-OPAMDepartment6 FY 2007 FY 2008State71Laboratory

  2. Laboratory Organization Chart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLSLaboratory Directors Laboratory

  3. Laboratory announces 2008 Fellows

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLSLaboratory Directors LaboratoryPlanningR&DLab

  4. Laboratory Shuttle Bus Routes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,sand CERN 73-11 Laboratory IRear bike

  5. Laboratory disputes citizens' lawsuit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,sand CERN 73-11 Laboratory IRearLab

  6. Sandia National Laboratories: Agreements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratorySoftware100 ResilientHistory ViewAgreements

  7. Sandia National Laboratories: Careers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratorySoftware100 ResilientHistory

  8. Sandia National Laboratories: Locations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratorySoftware100LifeAnnouncementsLocations

  9. Lawrence Livermore National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu,IntelligenceYou are hereNews item slideshowLaboratory

  10. amdavis | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhatY-12Zero Energyamdavis Ames Laboratory Profile

  11. andresg | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhatY-12Zero Energyamdavis Amesandresg Ames Laboratory

  12. cbenetti | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., ..., ,+ . :, ,. .,3cbenetti Ames Laboratory

  13. constant | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., ..., ,+ . :,2013constant Ames Laboratory Profile

  14. Independent Oversight Review, Los Alamos National Laboratory...

    Energy Savers [EERE]

    National Laboratory - November 2013 Independent Oversight Review, Los Alamos National Laboratory - November 2013 November 2013 Review of the Los Alamos National Laboratory...

  15. National Laboratory Liaisons | Department of Energy

    Office of Environmental Management (EM)

    Laboratory Liaisons National Laboratory Liaisons The following U.S. Department of Energy national laboratory liaisons serve as primary contacts for the Federal Energy...

  16. Independent Oversight Review, Argonne National Laboratory - November...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Argonne National Laboratory - November 2011 Independent Oversight Review, Argonne National Laboratory - November 2011 November 2011 Review of the Argonne National Laboratory...

  17. Creating the laboratory`s future; A strategy for Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    NONE

    1997-09-01T23:59:59.000Z

    ``Creating The Laboratory`s Future`` describes Livermore`s roles and responsibilities as a Department of Energy (DOE) national laboratory and sets the foundation for decisions about the Laboratory`s programs and operations. It summarizes Livermore`s near-term strategy, which builds on recent Lab achievements and world events affecting their future. It also discusses their programmatic and operational emphases and highlights program areas that the authors believe can grow through application of Lab science and technology. Creating the Laboratory`s Future reflects their very strong focus on national security, important changes in the character of their national security work, major efforts are under way to overhaul their administrative and operational systems, and the continuing challenge of achieving national consensus on the role of the government in energy, environment, and the biosciences.

  18. Sandia National Laboratories: Sandia Battery Abuse Testing Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Battery Abuse Testing Laboratory Sandia Transportation-Energy Research Project Funded as a Part of DOE's "EV Everywhere" Funding Program On January 21, 2014, in...

  19. Sandia National Laboratories: Grand Challenge Laboratory-Directed...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grand Challenge Laboratory-Directed Research and Development project Recent Sandia Secure, Scalable Microgrid Advanced Controls Research Accomplishments On March 3, 2015, in...

  20. A review of life-cycle analysis studies on liquid biofuel systems for the transport sector

    E-Print Network [OSTI]

    " liquid biofuels (biodiesel and sugar/starch bioethanol) and potential "future" liquid biofuels (Fischer-Tropsch fu- els, dimethyl ether, and cellulosic bioethanol) are included. Striking features of the LCAs, SVO) from rapeseed · Bioethanol (E100, E85, E10, ethyl tetrabutyl ether or ETBE) from grains or seeds

  1. William W. Hay Railroad Engineering Seminar Freight Railroad Energy

    E-Print Network [OSTI]

    Barkan, Christopher P.L.

    fuel & alternatives (Btu's per gallon) Biodiesel, Fischer-Tropsch syn fuel & DME Liquefied natural.2008 Billion US gallons = 27.258 Billion liters of diesel fuel equivalent * Ton-mile statistics from US DOT (importance v difficulties) North American freight RRs (defining characteristics) Energy density of diesel

  2. Modelling of a solar-powered supercritical water biomass gasifier Laurance A Watson1

    E-Print Network [OSTI]

    the waste heat (steam) of a downstream Fischer- Tropsch process. An intermediate heat exchange unitModelling of a solar-powered supercritical water biomass gasifier Laurance A Watson1 , John D Pye2 exercise to design a solar supercritical water gasification (SCWG) reactor. A formative reactor concept

  3. Neutrons for Catalysis: A Workshop on Neutron Scattering Techniques for Studies in Catalysis

    E-Print Network [OSTI]

    Pennycook, Steve

    -EM Fischer Tropsch Catalysis on Fe- or Co-catalysts, ,,CTL" Coal to Liquids ­ ,a rough (?) analogy #12;Peter Albers, AQ-EM Carbonaceous Deposits on Catalysts #12;Peter Albers, AQ-EM IINS on Coked Catalysts from Industrial Plants High-temperature and low-temperature cokes deposited on catalysts during

  4. Synthesis, static, and reactive characterization of supported organometallics. Progress report

    SciTech Connect (OSTI)

    Brenner, A.

    1982-11-23T23:59:59.000Z

    The following areas relating to the development of catalysts derived from supported organometallics were studied: carbonyl complexes on alumina, hydrogenation of benzene, H/sub 2/-D/sub 2/ exchange, photolysis of Mo(CO)/sub 6/ alumina, and W activity for Fischer-Tropsch synthesis. 6 figures, 6 tables. (DLC)

  5. Using mobile distributed pyrolysis facilities to deliver a forest residue resource for bio-fuel production

    E-Print Network [OSTI]

    Victoria, University of

    be used to synthesise petrol or diesel via Fischer-Tropsch reactions, or produce hydrogen via water gas shift reactions. Alternatively, the bio-oil product of fast pyrolysis may be upgraded to produce petrol that the minimum cost of petrol and diesel production is 0.86 $ litre-1 when a bio-oil feedstock is upgraded

  6. Process for producing dimethyl ether from synthesis gas

    DOE Patents [OSTI]

    Pierantozzi, R.

    1985-06-04T23:59:59.000Z

    This invention pertains to a Fischer Tropsch process for converting synthesis gas to an oxygenated hydrocarbon with particular emphasis on dimethyl ether. Synthesis gas comprising carbon monoxide and hydrogen are converted to dimethyl ether by carrying out the reaction in the presence of an alkali metal-manganese-iron carbonyl cluster incorporated onto a zirconia-alumina support.

  7. Microemulsion impregnated catalyst composite and use thereof in a synthesis gas conversion process

    DOE Patents [OSTI]

    Abrevaya, Hayim (Chicago, IL); Targos, William M. (Palatine, IL)

    1987-01-01T23:59:59.000Z

    A catalyst composition for synthesis gas conversion comprising a ruthenium metal component deposited on a support carrier wherein the average metal particle size is less than about 100 A. The method of manufacture of the composition via a reverse micelle impregnation technique and the use of the composition in a Fischer-Tropsch conversion process is also disclosed.

  8. Process for producing dimethyl ether form synthesis gas

    DOE Patents [OSTI]

    Pierantozzi, Ronald (Macungie, PA)

    1985-01-01T23:59:59.000Z

    This invention pertains to a Fischer Tropsch process for converting synthesis gas to an oxygenated hydrocarbon with particular emphasis on dimethyl ether. Synthesis gas comprising carbon monoxide and hydrogen are converted to dimethyl ether by carrying out the reaction in the presence of an alkali metal-manganese-iron carbonyl cluster incorporated onto a zirconia-alumina support.

  9. Journal of Catalysis 248 (2007) 165174 www.elsevier.com/locate/jcat

    E-Print Network [OSTI]

    Regalbuto, John R.

    2007-01-01T23:59:59.000Z

    of reactions, including water­gas shift (WGS) [9­11], steam reforming of ethanol [12], Fischer­Tropsch [13, which potentially affects the preparation of Fisher­Tropsch and other catalysts. Uptake versus p; Fisher­Tropsch synthesis 1. Introduction In an effort to help "turn the art of catalyst preparation

  10. Microemulsion impregnated catalyst composite and use thereof in a synthesis gas conversion process

    DOE Patents [OSTI]

    Abrevaya, H.; Targos, W.M.

    1987-12-22T23:59:59.000Z

    A catalyst composition is described for synthesis gas conversion comprising a ruthenium metal component deposited on a support carrier wherein the average metal particle size is less than about 100 A. The method of manufacture of the composition via a reverse micelle impregnation technique and the use of the composition in a Fischer-Tropsch conversion process is also disclosed.

  11. Attrition resistant bulk iron catalysts and processes for preparing and using same

    DOE Patents [OSTI]

    Jothimurugesan, Kandaswamy (Ponca City, OK); Goodwin, Jr., James G. (Clemson, SC); Gangwal, Santosh K. (Cary, NC)

    2007-08-21T23:59:59.000Z

    An attrition resistant precipitated bulk iron catalyst is prepared from iron oxide precursor and a binder by spray drying. The catalysts are preferably used in carbon monoxide hydrogenation processes such as Fischer-Tropsch synthesis. These catalysts are suitable for use in fluidized-bed reactors, transport reactors and, especially, slurry bubble column reactors.

  12. Exergy Analysis of a GTL Process Based on Low-Temperature Slurry F-T Reactor Technology with a Cobalt Catalyst

    E-Print Network [OSTI]

    Kjelstrup, Signe

    and Hans Tropsch; their aim was to use a mixture of CO and H2 (referred to as synthesis gas, syngas) to produce hydrocarbons, chemicals, and liquid fuels. The production of syngas was achieved by coal into syngas and, then, Fischer-Tropsch synthesis of syngas into synthetic liquid fuels. A first plant

  13. U.S. Department of Energy Office of Fossil Energy

    E-Print Network [OSTI]

    Program Past Present Future Syngas Production Emphasis on H2 Production GTL · Platform Technology) Process Overview Air Separation Syngas Generation Fischer- Tropsch Synthesis (F-T)(Carbon Monoxide + Hydrogen) Air Oxygen Jet Fuel, Diesel, Naphtha Syngas Natural Gas +/- Steam About 40% of Capital Cost

  14. Jeudi 3 octobre 2013 Renewable energies in the service of humanity

    E-Print Network [OSTI]

    Canet, Léonie

    : FUTUROL #12;Syngas Generation Upgrading Fischer- Tropsch Synthesis Syngas Final products Waxes H2 CO + H2 free good cetane index Syngas Hydrocarbons Carbon and hydrogen sources CxHyOz + O2 + H2O CO + H2 n(-CH2

  15. Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Dogliani, Harold O [Los Alamos National Laboratory

    2011-01-19T23:59:59.000Z

    The purpose of the briefing is to describe general laboratory technical capabilities to be used for various groups such as military cadets or university faculty/students and post docs to recruit into a variety of Los Alamos programs. Discussed are: (1) development and application of high leverage science to enable effeictive, predictable and reliability outcomes; (2) deter, detect, characterize, reverse and prevent the proliferation of weapons of mass destruction and their use by adversaries and terrorists; (3) modeling and simulation to define complex processes, predict outcomes, and develop effective prevention, response, and remediation strategies; (4) energetic materials and hydrodynamic testing to develop materials for precise delivery of focused energy; (5) materials cience focused on fundamental understanding of materials behaviors, their quantum-molecular properties, and their dynamic responses, and (6) bio-science to rapidly detect and characterize pathogens, to develop vaccines and prophylactic remedies, and to develop attribution forensics.

  16. National Renewable Energy Laboratory's Energy Systems Integration...

    Energy Savers [EERE]

    National Renewable Energy Laboratory's Energy Systems Integration Facility Overview National Renewable Energy Laboratory's Energy Systems Integration Facility Overview This...

  17. Argonne National Laboratory Scientists Invent Breakthrough Technique...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Argonne National Laboratory Scientists Invent Breakthrough Technique in Nanotechnology Argonne National Laboratory Scientists Invent Breakthrough Technique in Nanotechnology March...

  18. Sandia National Laboratories: wind manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at the Wind Energy Manufacturing Laboratory-a joint effort of researchers from TPI Composites, a Scottsdale, Arizona-based company that operates a turbine blade factory in...

  19. Two Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    event in Albuquerque LOS ALAMOS, N.M., March 26, 2015-Los Alamos National Laboratory's Nuclear Material Control and Accountability Group and the Quality and Performance...

  20. Sandia National Laboratories: Sandia partnerships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, News, Partnership, Renewable Energy, Wind Energy Researchers at the Wind Energy Manufacturing Laboratory-a joint effort of researchers from TPI Composites, a Scottsdale,...

  1. GUIDELINES FOR SAFE LABORATORY PRACTICES

    E-Print Network [OSTI]

    Haller, Gary L.

    University's Chemical Hygiene Plan (CHP). The CHP was written to comply with the Occupational Safety in Laboratories (29 CFR 1910.1450)). The CHP is the most detailed

  2. Sandia National Laboratories: Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10, 2012, in Concentrating Solar Power, EC, National Solar Thermal Test Facility, Renewable Energy Dr. David Danielson visited Sandia National Laboratories and toured the National...

  3. Smart Grid | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Researchers from Argonne National Laboratory modeled several scenarios to add more solar power to the electric grid, using real-world data from the southwestern power...

  4. Sandia National Laboratories: System Impacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Hosted by Sandia National Laboratories and the Electric Power Research Institute (EPRI) Inverter reliability drives project life cycle costs and plant performance. This...

  5. Sandia National Laboratories: Inverter Reliability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Hosted by Sandia National Laboratories and the Electric Power Research Institute (EPRI) Inverter reliability drives project life cycle costs and plant performance. This...

  6. Sandia National Laboratories: Component Reliability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Hosted by Sandia National Laboratories and the Electric Power Research Institute (EPRI) Inverter reliability drives project life cycle costs and plant performance. This...

  7. Sandia National Laboratories: Carbon Capture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from improved climate models to performance models for underground waste storage to 3D printing and digital rock physics. Marianne Walck (Director ... Federal Laboratory...

  8. Paul Kearns | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at the Golden Field Office, Golden, Colorado, and manager of the National Renewable and Environmental Laboratory and Solar Energy Research Institute (SERI) Area Office. Closer to...

  9. Sandia National Laboratories: Solar Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, Solar, Solar Newsletter A team from Sandia National Laboratories' (SNL) National Solar Thermal Test Facility (NSTTF) recently won a first place Excellence Award in the...

  10. Sandia National Laboratories: Energy Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    States. I&C systems monitor the safe, reliable and secure generation and delivery of electricity and could have potential cyber vulnerabilities. At Sandia National Laboratories,...

  11. Sandia National Laboratories: solar power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interactive Tour Operated by Sandia National Laboratories for the U.S. Department of Energy (DOE), the National Solar Thermal Test Facility (NSTTF) is the only test facility...

  12. Thomas Wallner | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Omnivorous Engine Argonne National Laboratory's Omnivorous Engine Browse by Topic Energy Energy efficiency Vehicles Alternative fuels Automotive engineering Biofuels Diesel Fuel...

  13. Aymeric Rousseau | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    School in La Rochelle, France in 1997. After working for PSA Peugeot Citroen in the Hybrid Electric Vehicle research department, he joined Argonne National Laboratory in 1999...

  14. Sandia National Laboratories: Solar Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Concentrating Solar Power, Customers & Partners, Energy, News, Partnership, Renewable Energy, Solar Areva Solar is collaborating with Sandia National Laboratories on a new...

  15. Sandia National Laboratories: Solar Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interactive Tour Operated by Sandia National Laboratories for the U.S. Department of Energy (DOE), the National Solar Thermal Test Facility (NSTTF) is the only test facility...

  16. Sandia National Laboratories: Solar Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air Force Research Laboratory Testing On August 17, 2012, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, Renewable Energy, Solar...

  17. Sandia National Laboratories: Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News, News & Events, Photovoltaic, Photovoltaic Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar Newsletter, SunShot Sandia's Kenneth Armijo (in the...

  18. Sandia National Laboratories: Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2014, in Computational Modeling & Simulation, Energy, News, News & Events, Partnership, Renewable Energy, Water Power Sandia and the National Renewable Energy Laboratory (NREL)...

  19. Sandia National Laboratories: Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sales On February 25, 2015, in Energy, News, News & Events, Partnership, Photovoltaic, Renewable Energy, Solar, Systems Analysis A Lawrence Berkeley National Laboratory (LBNL)...

  20. Sandia National Laboratories: Solar Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2014 Sandia Corporation | Questions & Comments | Privacy & Security U.S. Department of Energy National Nuclear Security Administration Sandia National Laboratories is a...

  1. Sandia National Laboratories: Semiconductor Revolution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratories and Chief Scientist of the Energy Frontier Research Center for Solid-State Lighting Science Date: March 31, 2010 Event: Lecture at Albuquerque Academy...

  2. Beyond Laboratories, Beyond Being Green

    Broader source: Energy.gov (indexed) [DOE]

    and Construction of High Performance, Low Energy Laboratories What is Labs21? * Genesis: Ann Arbor, Michigan ESPC * A joint EPADOE partnership program to improve the energy and...

  3. Sandia National Laboratories: thermal management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    management 2013 Inverter Reliability Workshop On May 31, 2013, in Hosted by Sandia National Laboratories and the Electric Power Research Institute (EPRI) Inverter reliability...

  4. Sandia National Laboratories: Solar Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Testing Center (PV RTC), Photovoltaic Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar Newsletter, SunShot, Systems Analysis A research team that included...

  5. Sandia National Laboratories: Solar Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News & Events, Photovoltaic, Photovoltaic Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar Newsletter, SunShot Sandia's Kenneth Armijo (in the Photovoltaic &...

  6. News Room | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Room Argonne Associate Laboratory Director for Energy and Global Security Mark Peters, left, signs a memorandum of understanding with Nadya Bliss, director of the Global...

  7. Media Contacts | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Media Contacts Christopher J. Kramer Argonne National Laboratory Christopher J. Kramer is the manager of media relations and external affairs for Argonne. Contact him at...

  8. Internal Applicants | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory Argonne Login Service Please log in to continue Username * Enter your ANL domain account username. Password * Enter the password that accompanies your...

  9. Ray Bair | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    science, computational and laboratory research Large scale applications of high performance computing and communications News FLC awards researchers for transfer of engine...

  10. Sandia National Laboratories: Carbon Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (SO2), nitrous oxides (NOx), mercury, and fine particulate matter. Carbon dioxide (CO2) is always a byproduct of combustion. ... Geomechanics Laboratory On April 7, 2011,...

  11. Sandia National Laboratories: advanced materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory, Concentrating Solar Power, Energy, Energy Storage, Facilities, National Solar Thermal Test Facility, News, News & Events, Renewable Energy, Solar, Systems Engineering...

  12. Sandia National Laboratories: Solar Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MEPV Publications MEPV Awards Researchers at Sandia National Laboratories are pioneering solar photovoltaic (PV) technologies that are cheaper to produce and easier to install...

  13. Sandia National Laboratories: News & Events

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic, Photovoltaic Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar Newsletter, SunShot The state of the art in PV system monitoring is relatively...

  14. Sandia National Laboratories: materials technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Researchers Win CSP:ELEMENTS Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy Storage, Facilities, National...

  15. Preventing Laboratory FiresPreventing Laboratory Fires AgendaAgenda

    E-Print Network [OSTI]

    Farritor, Shane

    June 2006fire June 2006 #12;Hamilton HallHamilton Hall September 1992September 1992 Explosion Rm. 619Behlen Explosion 2002Explosion 2002 Explosion in ventilationExplosion in ventilation hood, no fire orhood, no firePreventing Laboratory FiresPreventing Laboratory Fires #12;AgendaAgenda Flash over VideoFlash over

  16. COMPARATIVE MEDICINE LABORATORY ANIMAL FACILITIES

    E-Print Network [OSTI]

    Krovi, Venkat

    5.A.6 COMPARATIVE MEDICINE LABORATORY ANIMAL FACILITIES STANDARD OPERATING PROCEDURE for REPORTING PHYSICAL PLANT AND ENVIRONMENTAL CONDITIONS ABNORMALITIES AT THE COMPARATIVE MEDICINE LABORATORY ANIMAL investigator to keep her/him informed of the progress or resolution of the problem. #12;

  17. User Manual Frick Chemistry Laboratory

    E-Print Network [OSTI]

    Torquato, Salvatore

    the atrium connects the laboratory wing with the administrative offices. This provides a light-filled space to make the new Frick Chemistry Laboratory (and the surrounding natural sciences neighborhood) one technologies that reduce energy demand and con- serve water. The design and construction teams have implemented

  18. Hybrid & Hydrogen Vehicle Research Laboratory

    E-Print Network [OSTI]

    Lee, Dongwon

    Hybrid & Hydrogen Vehicle Research Laboratory www.vss.psu.edu/hhvrl Joel R. Anstrom, Director 201 The Pennsylvania Transportation Institute Hybrid and Hydrogen Vehicle Research Laboratory will contribute to the advancement of hybrid and hydrogen vehicle technology to promote the emerging hydrogen economy by providing

  19. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-04-19T23:59:59.000Z

    The order establishes DOE requirements for laboratory directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation. Cancels DOE O 413.3A. Admin Chg 1, dated 1-31-11, cancels DOE O 413.3B. Certified 7-14-2011.

  20. National Voluntary Laboratory Accreditation Program

    E-Print Network [OSTI]

    National Voluntary Laboratory Accreditation Program NVLAP Assessor Training NIST Handbook 150 ISO/IEC ­ September 24, 2013 2 ISO/IEC 17025:2005 #12;National Voluntary Laboratory Accreditation Program General or electronic documentation of facts or events Sources: ISO /IEC Directives, Part 2, 2004 ISO/IEC 17000

  1. Statistical Laboratory & Department of Statistics

    E-Print Network [OSTI]

    by the American Statistical Association. Dean Isaacson and Mark Kaiser were instrumental in garnering a NationalStatistical Laboratory & Department of Statistics Annual Report July 1, 2002 to June 30, 2003 IOWA Chair of the Department of Statistics and Director of the Statistical Laboratory in November, 2002. Dean

  2. Optical Characterization Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Optical Characterization Laboratory at the Energy Systems Integration Facility. The Optical Characterization Laboratory at NREL's Energy Systems Integration Facility (ESIF) conducts optical characterization of large solar concentration devices. Concentration solar power (CSP) mirror panels and concentrating solar systems are tested with an emphasis is on measurement of parabolic trough mirror panels. The Optical Characterization Laboratory provides state-of-the-art characterization and testing capabilities for assessing the optical surface quality and optical performance for various CSP technologies including parabolic troughs, linear Fresnel, dishes, and heliostats.

  3. Statistical Laboratory & Department of Statistics

    E-Print Network [OSTI]

    Statistical Laboratory & Department of Statistics Annual Report July 1, 2005 to December 31, 2006...............................................33 Statistical Computing Section ......................................34 CSSM and statistical methodology in the nutritional sciences. We were also very pleased to secure a permanent lecturer

  4. Laboratory and New Mexico Consortium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    USDA awards 1 million eor e. coli research by Los Alamos National Laboratory and New Mexico Consortium February 29, 2012 LOS ALAMOS, New Mexico, February 29, 2012-Researchers from...

  5. Laboratories to Explore, Explain VLBACHANDRA

    E-Print Network [OSTI]

    National Laboratory Stone and Webster The Boeing Company University of Illinois University of Wisconsin #12 accessible and up to date. A steady stream of about 150 visitors per week log on to the FIRE web site since

  6. Laboratories to Explore, Explain VLBACHANDRA

    E-Print Network [OSTI]

    Laboratory Stone and Webster The Boeing Company University of Illinois University of Wisconsin #12;NSO to date. A steady stream of about 150 visitors per week log on to the FIRE web site since the site

  7. Laboratories to Explore, Explain VLBACHANDRA

    E-Print Network [OSTI]

    Laboratory Stone and Webster The Boeing Company University of Illinois University of Wisconsin #12;NSO visitors per week logs on to the FIRE web site since the site was initiated in early July, 1999. #12

  8. Strategic Technology JET PROPULSION LABORATORY

    E-Print Network [OSTI]

    Waliser, Duane E.

    Strategic Technology Directions JET PROPULSION LABORATORY National Aeronautics and Space Administration 2 0 0 9 #12;© 2009 California Institute of Technology. Government sponsorship acknowledged. #12;Strategic Technology Directions 2009 offers a distillation of technologies, their links to space missions

  9. Welcome to the Ames Laboratory

    ScienceCinema (OSTI)

    King, Alex

    2013-03-01T23:59:59.000Z

    Alex King, director of The Ames Laboratory, discusses the state of the Lab for 2011, the goals of the Lab and the importance of the research taking place here.

  10. Brookhaven National Laboratory Number: Revision

    E-Print Network [OSTI]

    Ohta, Shigemi

    NATIONAL LABORATORY LASER CONTROLLED AREA STANDARD OPERATING PROCEDURE (SOP) This document defines LASER OPERATIONS Operation Maintenance Service Specific Operation Fiber Optics LASER SYSTEM HAZARD the safety management program for the laser system listed below. All American National Standard Institute

  11. 3M Corporation Abbott Laboratories

    E-Print Network [OSTI]

    Napier, Terrence

    . Agilent Technologies, Inc. Air Products Foundation Alaska Airlines Albemarle Corporation Alcoa Foundation Energy Group, Inc. Corning Incorporated Foundation Crayola, LLC Deloitte Foundation Delta Air Lines3M Corporation Abbott Laboratories Adage Capital Management, LP Adams Electric Cooperative, Inc

  12. Laboratory Experiments and their Applicability 

    E-Print Network [OSTI]

    Steinhaus, Thomas; Jahn, Wolfram

    2007-11-14T23:59:59.000Z

    In conjunction with the Dalmarnock Fire Tests a series of laboratory tests have been conducted at the BRE Centre for Fire Safety Engineering at the University of Edinburgh (UoE) in support of the large scale tests. These ...

  13. Contact Us | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Us Address and phone Argonne National Laboratory 9700 S. Cass Avenue Lemont, IL 60439. Phone: 630252-2000 For members of the news media News releases online Argonne media...

  14. Welcome to the Ames Laboratory

    SciTech Connect (OSTI)

    King, Alex

    2012-01-01T23:59:59.000Z

    Alex King, director of The Ames Laboratory, discusses the state of the Lab for 2011, the goals of the Lab and the importance of the research taking place here.

  15. Laboratory directed research and development

    SciTech Connect (OSTI)

    Not Available

    1991-11-15T23:59:59.000Z

    The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory's R D capabilities, and further the development of its strategic initiatives. Among the aims of the projects supported by the Program are establishment of engineering proof-of-principle''; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these project are closely associated with major strategic thrusts of the Laboratory as described in Argonne's Five Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne. Areas of emphasis are (1) advanced accelerator and detector technology, (2) x-ray techniques in biological and physical sciences, (3) advanced reactor technology, (4) materials science, computational science, biological sciences and environmental sciences. Individual reports summarizing the purpose, approach, and results of projects are presented.

  16. PHYSICS 122 LABORATORY (Winter, 2014)

    E-Print Network [OSTI]

    Yoo, S. J. Ben

    - 1 - PHYSICS 122 LABORATORY (Winter, 2014) COURSE GOALS 1. Learn how) 3. W. R. Leo, Techniques for Nuclear and Particle Physics Experiments, Springer Noise (Tyson ­ Mitchell) Continuous-Wave Nuclear Magnetic Resonance (Chiang

  17. PHYSICS 122 LABORATORY (Winter, 2015)

    E-Print Network [OSTI]

    Yoo, S. J. Ben

    - 1 - PHYSICS 122 LABORATORY (Winter, 2015) COURSE GOALS 1. Learn how for Nuclear and Particle Physics Experiments, Springer-Verlag, 2nd edition. (UCD Library call) Continuous-Wave Nuclear Magnetic Resonance (Chiang - Stenger) Pulsed Nuclear Magnetic

  18. with Oak Ridge National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an industry or university through other means-we are committed to outcomes that create win-win opportunities for the external organization as well as the laboratory. We welcome...

  19. Gallium Safety in the Laboratory

    SciTech Connect (OSTI)

    Cadwallader, L.C.

    2003-05-07T23:59:59.000Z

    A university laboratory experiment for the US Department of Energy magnetic fusion research program required a simulant for liquid lithium. The simulant choices were narrowed to liquid gallium and galinstan (Ga-In-Sn) alloy. Safety information on liquid gallium and galinstan were compiled, and the choice was made to use galinstan. A laboratory safety walkthrough was performed in the fall of 2002 to support the galinstan experiment. The experiment has been operating successfully since early 2002.

  20. Laborlandschaft : redesigning the industrial laboratory module

    E-Print Network [OSTI]

    Farley, Alexander H. (Alexander Hamilton)

    2014-01-01T23:59:59.000Z

    This thesis proposes to redesign the industrial pharmaceutical laboratory typology by rethinking the composition of the laboratory module; the smallest functional sub-unit of the laboratory type. The design for this thesis ...