National Library of Energy BETA

Sample records for laboratory crd-01-098 fischer-tropsch

  1. Catalysts for Fischer-Tropsch

    SciTech Connect (OSTI)

    Srivastava, R.D. ); Rao, V.U.S.; Cinquegrane, G.; Stiegel, G.J. )

    1990-02-01

    The slurry-phase Fischer-Tropsch (F-T) process has attracted considerable attention recently. The process can make liquid fuels by reacting hydrogen-lean synthesis gas produced from modern energy-efficient gasifiers. continuing assessment of Fischer-Tropsch Synthesis (FTS) has a high priority within an indirect liquefaction program, a part of the liquid fuels program sponsored by the U.S. Department of Energy (DOE) and executed by the Pittsburgh Energy Technology Center (PETC). Funding for the indirect liquefaction program in 1990:0090 is anticipated to be about $8.5 million compared to $6.6 million in 1989 and a like amount in the year before. The studies within the program are conducted by industry, universities, national laboratories and in-house PETC research and development. This article reviews preparation and properties of iron-based catalysts, including recent patent activities and in-depth process analysis of slurry-phase FTS. The review provides an analysis of Fischer-Tropsch catalyst research and development trends and describes options to increase selectivity for iron-based catalysts in a slurry phase.

  2. Fischer-Tropsch process

    DOE Patents [OSTI]

    Dyer, Paul N.; Pierantozzi, Ronald; Withers, Howard P.

    1987-01-01

    A Fischer-Tropsch process utilizing a product selective and stable catalyst by which synthesis gas, particularly carbon-monoxide rich synthesis gas is selectively converted to higher hydrocarbons of relatively narrow carbon number range is disclosed. In general, the selective and notably stable catalyst, consist of an inert carrier first treated with a Group IV B metal compound (such as zirconium or titanium), preferably an alkoxide compound, and subsequently treated with an organic compound of a Fischer-Tropsch metal catalyst, such as cobalt, iron or ruthenium carbonyl. Reactions with air and water and calcination are specifically avoided in the catalyst preparation procedure.

  3. Fischer-Tropsch process

    SciTech Connect (OSTI)

    Haag, W.O.; Kuo, J.C.; Weisz, P.B.

    1990-03-06

    This patent describes a method for maximizing the production of diesel oil and heavier hydrocarbon oils. It comprises: contacting a suitable synthesis gas feed comprising hydrogen and carbon oxides with a fluidized or moving bed catalyst system comprising a major proportion of a Fischer-Tropsch synthesis catalyst containing a minor proportion of a zeolite catalyst having an alpha value of from 1 to about 200 and wherein the fraction of zeolite catalyst used, zeolite activity and the amount of liquid product produced are controlled in accordance with the following equation: {ital f {center dot} alpha {center dot} W} + {ital A {center dot} n} where f is the fraction of zeolite catalyst used, alpha is zeolite activity, W is the weight of liquid product per weight of total solid catalyst charge per hour, A is an average number which varies inversely with the operating temperature and n is from about 1 to 10.

  4. Research Opportunities for Fischer-Tropsch Technology

    SciTech Connect (OSTI)

    Jackson, Nancy B.

    1999-06-30

    Fischer-Tropsch synthesis was discovered in Germany in the 1920's and has been studied by every generation since that time. As technology and chemistry, in general, improved through the decades, new insights, catalysts, and technologies were added to the Fischer-Tropsch process, improving it and making it more economical with each advancement. Opportunities for improving the Fischer-Tropsch process and making it more economical still exist. This paper gives an overview of the present Fischer-Tropsch processes and offers suggestions for areas where a research investment could improve those processes. Gas-to-liquid technology, which utilizes the Fischer Tropsch process, consists of three principal steps: Production of synthesis gas (hydrogen and carbon monoxide) from natural gas, the production of liquid fuels from syngas using a Fischer-Tropsch process, and upgrading of Fischer-Tropsch fuels. Each step will be studied for opportunities for improvement and areas that are not likely to reap significant benefits without significant investment.

  5. Sasol's Fischer-Tropsch experience

    SciTech Connect (OSTI)

    Dry, M.E.

    1982-08-01

    Product slate from Fischer-Tropsch processing can be selectively varied over a wide range. Depending on the type reactor chosen and conditions of operation, either gasoline or diesel components can amount to as much as 75% of the hydrocarbons produced. Based on over 26 years of commercial experience in Fischer-Tropsch operations, Sasol has identified factors for controlling the product slate with respect to fraction produced and yields. Experience with two reactor types demonstrates their advantages and limitations while manipulation of the operating conditions has established control techniques for yields. Reactors of the low temperature fixed bed type produce products that are paraffinic and largely wax while yields from operation of higher temperature fluidized catalyst are a product that is highly olefinic and falls in the gasoline boiling range. After work up using normal refinery processing, the final products meet specifications applicable for motor fuels that are entirely compatible with crude oil products. In fact, the diesel product is superior because it has a cetane number higher than normal and a lower ring compound content.

  6. Tailored fischer-tropsch synthesis product distribution

    DOE Patents [OSTI]

    Wang, Yong; Cao, Chunshe; Li, Xiaohong Shari; Elliott, Douglas C.

    2012-06-19

    Novel methods of Fischer-Tropsch synthesis are described. It has been discovered that conducting the Fischer-Tropsch synthesis over a catalyst with a catalytically active surface layer of 35 microns or less results in a liquid hydrocarbon product with a high ratio of C.sub.5-C.sub.20:C.sub.20+. Descriptions of novel Fischer-Tropsch catalysts and reactors are also provided. Novel hydrocarbon compositions with a high ratio of C.sub.5-C.sub.20:C.sub.20+ are also described.

  7. Novel Fischer-Tropsch catalysts. [DOE patent

    DOE Patents [OSTI]

    Vollhardt, K.P.C.; Perkins, P.

    Novel compounds are described which are used as improved Fischer-Tropsch catalysts particularly for the conversion of CO + H/sub 2/ to gaseous and liquid hydrocarbons at milder conditions than with prior catalysts.

  8. Moderated ruthenium fischer-tropsch synthesis catalyst

    DOE Patents [OSTI]

    Abrevaya, Hayim (Wilmette, IL)

    1991-01-01

    The subject Fischer-Tropsch catalyst comprises moderated ruthenium on an inorganic oxide support. The preferred moderator is silicon. Preferably the moderator is effectively positioned in relationship to ruthenium particles through simultaneous placement on the support using reverse micelle impregnation.

  9. Fischer-Tropsch Wastewater Utilization

    DOE Patents [OSTI]

    Shah, Lalit S.

    2003-03-18

    The present invention is generally directed to handling the wastewater, or condensate, from a hydrocarbon synthesis reactor. More particularly, the present invention provides a process wherein the wastewater of a hydrocarbon synthesis reactor, such as a Fischer-Tropsch reactor, is sent to a gasifier and subsequently reacted with steam and oxygen at high temperatures and pressures so as to produce synthesis gas. The wastewater may also be recycled back to a slurry preparation stage, where solid combustible organic materials are pulverized and mixed with process water and the wastewater to form a slurry, after which the slurry fed to a gasifier where it is reacted with steam and oxygen at high temperatures and pressures so as to produce synthesis gas.

  10. Emissions from Trucks using Fischer-Tropsch Diesel Fuel

    SciTech Connect (OSTI)

    Paul Norton; Keith Vertin; Brent Bailey; Nigel N. Clark; Donald W. Lyons; Stephen Goguen; James Eberhardt

    1998-10-19

    The Fischer-Tropsch (F-T) catalytic conversion process can be used to synthesize diesel fuels from a variety of feedstocks, including coal, natural gas and biomass. Synthetic diesel fuels can have very low sulfur and aromatic content, and excellent autoignition characteristics. Moreover, Fischer-Tropsch diesel fuels may also be economically competitive with California B- diesel fuel if produced in large volumes. overview of Fischer-Tropsch diesel fuel production and engine emissions testing is presented. Previous engine laboratory tests indicate that F-T diesel is a promising alternative fuel because it can be used in unmodified diesel engines, and substantial exhaust emissions reductions can be realized. The authors have performed preliminary tests to assess the real-world performance of F-T diesel fuels in heavy-duty trucks. Seven White-GMC Class 8 trucks equipped with Caterpillar 10.3 liter engines were tested using F-T diesel fuel. Vehicle emissions tests were performed using West Virginia University's unique transportable chassis dynamometer. The trucks were found to perform adequately on neat F-T diesel fuel. Compared to a California diesel fuel baseline, neat F-T diesel fuel emitted about 12% lower oxides of nitrogen (NOx) and 24% lower particulate matter over a five-mile driving cycle.

  11. Opportunities for the Early Production of Fischer-Tropsch (F...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunities for the Early Production of Fischer-Tropsch (F-T) Fuels in the U.S. -- An Overview Opportunities for the Early Production of Fischer-Tropsch (F-T) Fuels in the U.S. ...

  12. Novel Fischer-Tropsch catalysts

    DOE Patents [OSTI]

    Vollhardt, Kurt P. C.; Perkins, Patrick

    1981-01-01

    Novel polymer-supported metal complexes of the formula: PS --R Me(CO).sub.n H.sub.m where: PS represents a divinylbenzene crosslinked polystyrene in which the divinylbenzene crosslinking is greater than 1% and less than about 18%; R represents a cycloalkadienyl radical of 4 through 6 carbon atoms; Me represents a Group VIII metal; CO represents a carbonyl radical; H represents hydrogen; n represents an integer varying from 0 through 3; m represents an integer varying from 0 through 2 inclusively with the further provision that 2n+m must total 18 when added to the electrons in R and Me, or n+m must total 0; are prepared by: brominating PS --H by treating same with bromine in the presence of a thallium salt in a partially or fully halogenated solvent to form PS --Br; treating said PS --Br so produced with a lithium alkyl of 1 through 12 carbon atoms in an aromatic solvent to produce PS --Li; substituting said PS-- Li so produced by reaction with a 2-cycloalkenone of 4 to 6 carbon atoms in the presence of an ether solvent and using a water work-up to form a cycloalkenylalcohol-substituted PS ; dehydrating said alcohol so produced by heating under a vacuum to produce a cycloalkadienyl-substituted PS ; reacting the cycloalkadienyl-substituted PS with metal carbonyl in the presence of a partially or fully halogenated hydrocarbon, aromatic hydrocarbon of 6 through 8 carbon atoms, ethers, or esters of 4 through 10 carbon atoms as a solvent to produce a polystyrene-supported cycloalkadienyl metal carbonyl. The novel compounds are used as improved Fischer-Tropsch catalysts particularly for the conversion of CO+H.sub.2 to gaseous and liquid hydrocarbons at milder conditions than with prior catalysts.

  13. Novel Fischer-Tropsch catalysts

    DOE Patents [OSTI]

    Vollhardt, Kurt P. C.; Perkins, Patrick

    1980-01-01

    Novel polymer-supported metal complexes of the formula: PS --R Me(CO).sub.n H.sub.m where: PS represents a divinylbenzene crosslinked polystyrene in which the divinylbenzene crosslinking is greater than 1% and less than about 18%; R represents a cycloalkadienyl radical of 4 through 6 carbon atoms; Me represents a Group VIII metal; CO represents a carbonyl radical; H represents hydrogen; n represents an integer varying from 0 through 3; m represents an integer varying from 0 through 2 inclusively with the further provision that 2n+m must total 18 when added to the electrons in R and Me, or n+m must total 0; are prepared by: brominating PS --H by treating same with bromine in the presence of a thallium salt in a partially or fully halogenated solvent to form PS --Br; treating said PS --Br so produced with a lithium alkyl of 1 through 12 carbon atoms in an aromatic solvent to produce PS --Li; substituting said PS-- Li so produced by reaction with a 2-cycloalkenone of 4 to 6 carbon atoms in the presence of an ether solvent and using a water work-up to form a cycloalkenylalcohol-substituted PS ; dehydrating said alcohol so produced by heating under a vacuum to produce a cycloalkadienyl-substituted PS ; reacting the cycloalkadienyl-substituted PS with metal carbonyl in the presence of a partially or fully halogenated hydrocarbon, aromatic hydrocarbon of 6 through 8 carbon atoms, ethers, or esters of 4 through 10 carbon atoms as a solvent to produce a polystyrene-supported cycloalkadienyl metal carbonyl. The novel compounds are used as improved Fischer-Tropsch catalysts particularly for the conversion of CO+H.sub.2 to gaseous and liquid hydrocarbons at milder conditions than with prior catalysts.

  14. Novel Fischer-Tropsch catalysts

    DOE Patents [OSTI]

    Vollhardt, Kurt P. C.; Perkins, Patrick

    1981-01-01

    Novel polymer-supported metal complexes of the formula PS -R Me(CO).sub.n H.sub.m where: PS represents a divinylbenzene crosslinked polystyrene in which the divinylbenzene crosslinking is greater than 1% and less than about 18%; R represents a cycloalkadienyl radical of 4 through 6 carbon atoms; Me represents a Group VIII metal; CO represents a carbonyl radical; H represents hydrogen; n represents an integer varying from 0 through 3; m represents an integer varying from 0 through 2 inclusively with the further provision that 2n+m must total 18 when added to the electrons in R and Me, or n+m must total 0; are prepared by: brominating PS -H by treating same with bromine in the presence of a thallium salt in a partially or fully halogenated solvent to form PS -Br; treating said PS -Br so produced with a lithium alkyl of 1 through 12 carbon atoms in an aromatic solvent to produce PS -Li; substituting said PS - Li so produced by reaction with a 2-cycloalkenone of 4 to 6 carbon atoms in the presence of an ether solvent and using a water work-up to form a cycloalkenylalcohol-substituted PS ; dehydrating said alcohol so produced by heating under a vacuum to produce a cycloalkadienyl-substituted PS ; reacting the cycloalkadienyl-substituted PS with metal carbonyl in the presence of a partially or fully halogenated hydrocarbon, aromatic hydrocarbon of 6 through 8 carbon atoms, ethers, or esters of 4 through 10 carbon atoms as a solvent to produce a polystyrene-supported cycloalkadienyl metal carbonyl. The novel compounds are used as improved Fischer-Tropsch catalysts particularly for the conversion of CO+H.sub.2 to gaseous and liquid hydrocarbons at milder conditions than with prior catalysts.

  15. Novel Attrition-Resistant Fischer Tropsch Catalyst

    SciTech Connect (OSTI)

    Weast, Logan, E.; Staats, William, R.

    2009-05-01

    There is a strong national interest in the Fischer-Tropsch synthesis process because it offers the possibility of making liquid hydrocarbon fuels from reformed natural gas or coal and biomass gasification products. This project explored a new approach that had been developed to produce active, attrition-resistant Fischer-Tropsch catalysts that are based on glass-ceramic materials and technology. This novel approach represented a promising solution to the problem of reducing or eliminating catalyst attrition and maximizing catalytic activity, thus reducing costs. The technical objective of the Phase I work was to demonstrate that glass-ceramic based catalytic materials for Fischer-Tropsch synthesis have resistance to catalytic deactivation and reduction of particle size superior to traditional supported Fischer-Tropsch catalyst materials. Additionally, these novel glass-ceramic-based materials were expected to exhibit catalytic activity similar to the traditional materials. If successfully developed, the attrition-resistant Fischer-Tropsch catalyst materials would be expected to result in significant technical, economic, and social benefits for both producers and public consumers of Fischer-Tropsch products such as liquid fuels from coal or biomass gasification. This program demonstrated the anticipated high attrition resistance of the glass-ceramic materials. However, the observed catalytic activity of the materials was not sufficient to justify further development at this time. Additional testing documented that a lack of pore volume in the glass-ceramic materials limited the amount of surface area available for catalysis and consequently limited catalytic activity. However, previous work on glass-ceramic catalysts to promote other reactions demonstrated that commercial levels of activity can be achieved, at least for those reactions. Therefore, we recommend that glass-ceramic materials be considered again as potential Fischer-Tropsch catalysts if it can be

  16. Catalyst structure and method of Fischer-Tropsch synthesis

    DOE Patents [OSTI]

    Wang, Yong; Vanderwiel, David P.; Tonkovich, Anna Lee Y.; Gao, Yufei; Baker, Eddie G.

    2004-06-15

    The present invention includes Fischer-Tropsch catalysts, reactions using Fischer-Tropsch catalysts, methods of making Fischer-Tropsch catalysts, processes of hydrogenating carbon monoxide, and fuels made using these processes. The invention provides the ability to hydrogenate carbon monoxide with low contact times, good conversion rates and low methane selectivities. In a preferred method, the catalyst is made using a metal foam support.

  17. Catalyst structure and method of fischer-tropsch synthesis

    DOE Patents [OSTI]

    Wang, Yong [Richland, WA; Vanderwiel, David P [Richland, WA; Tonkovich, Anna Lee Y [Pasco, WA; Gao, Yufei [Kennewick, WA; Baker, Eddie G [Pasco, WA

    2002-12-10

    The present invention includes Fischer-Tropsch catalysts, reactions using Fischer-Tropsch catalysts, methods of making Fischer-Tropsch catalysts, processes of hydrogenating carbon monoxide, and fuels made using these processes. The invention provides the ability to hydrogenate carbon monoxide with low contact times, good conversion rates and low methane selectivities. In a preferred method, the catalyst is made using a metal foam support.

  18. Cobalt Fischer-Tropsch catalysts having improved selectivity

    DOE Patents [OSTI]

    Miller, James G.; Rabo, Jule A.

    1989-01-01

    A cobalt Fischer-Tropsch catalyst having an improved steam treated, acid extracted LZ-210 support is taught. The new catalyst system demonstrates improved product selectivity at Fischer-Tropsch reaction conditions evidenced by lower methane production, higher C.sub.5.sup.+ yield and increased olefin production.

  19. TECHNOLOGY DEVELOPMENT FOR IRON FISCHER-TROPSCH CATALYSTS

    SciTech Connect (OSTI)

    Davis, B.H.

    1998-07-22

    The goal of the proposed work described in this Final Report was the development of iron-based Fischer-Tropsch catalysts that combined high activity, selectivity and life with physical robustness for slurry phase reactors that will produce either low-alpha or high-alpha products. The work described here has optimized the catalyst composition and pretreatment operation for a low-alpha catalyst. In parallel, work has been conducted to design a high-alpha iron catalyst that is suitable for slurry phase synthesis. Studies have been conducted to define the chemical phases present at various stages of the pretreatment and synthesis stages and to define the course of these changes. The oxidation/reduction cycles that are anticipated to occur in large, commercial reactors have been studied at the laboratory scale. Catalyst performance has been determined for catalysts synthesized in this program for activity, selectivity and aging characteristics.

  20. Reoxidation and deactivation of supported cobalt Fischer-Tropsch catalysts

    SciTech Connect (OSTI)

    Schanke, D.; Hilmen, A.M.; Bergene, E.

    1995-12-01

    The Fischer-Tropsch synthesis is an attractive possibility for conversion of natural gas into high quality liquid fuels. Due to its low water-gas shift activity, good activity/selectivity properties and relatively low price, cobalt is the choice of catalytic metal for natural gas conversion via Fischer-Tropsch synthesis. In the cobalt-catalyzed Fischer-Tropsch reaction, oxygen is mainly rejected as water. In this paper we describe the influence of water on supported cobalt catalysts. The deactivation of supported Co catalysts was studied in a fixed-bed reactor using synthesis gas feeds containing varying concentrations of water vapour.

  1. Slurry phase Fischer-Tropsch synthesis process development

    SciTech Connect (OSTI)

    Bhatt, B.L.; Tijm, P.J.A.

    1998-12-31

    Fischer-Tropsch synthesis can convert a variety of synthesis gas mixtures produced from both coal and natural gas to obtain hydrocarbons, which can be further processed to manufacture automotive fuels. As the Fischer-Tropsch reaction is highly exothermic, a slurry phase reactor offers a significant advantage over the traditional fixed bed reactor for heat management. Since 1992, Air Products and DOE have been developing the slurry phase Fischer-Tropsch synthesis process with help of a number of industrial partners. This paper discusses the evolution of the technology through four pilot plant campaigns conducted at DOE`s Alternative Fuels Development Unit in LaPorte, Texas. Key issues such as catalyst-wax separation, reactor productivity improvements, reactor temperature control, and in-situ activation are addressed.

  2. Fischer-Tropsch slurry catalysts for selective transportation fuel production

    SciTech Connect (OSTI)

    Carroll, W.E.; Cilen, N.; Withers, H.P. Jr.

    1986-01-01

    The future use of coal as a source of conventional transportation fuel will depend on the development of an economical and energy efficient liquefaction process. Technologies that have been commercially proven or that are close to commercialization include the fixed- and fluidized-bed Fischer-Tropsch (FT) synthesis, methanol synthesis (fixed-bed and slurry-phase) and the Mobil methanol-to-gasoline process. Of these technologies, the Fischer-Tropsch hydrocarbon synthesis produces the widest slate of products and has been in operation for the longest period.

  3. Technology Development for Iron Fischer-Tropsch Catalysis.

    SciTech Connect (OSTI)

    Davis, B.H.

    1997-12-16

    The goal of the proposed work is the development of iron-based Fischer-Tropsch catalysts that combined high activity, selectivity and life with physical robustness for slurry phase reactors that will produce either low-alpha or high-alpha products. The catalyst that is developed will be suitable for testing at the Advanced Fuels Development Facility at LaPorte, Texas or similar sized plant. Previous work by the offeror has produced a catalyst formulation that is 1.5 times as active as the `standard-catalyst` developed by German workers for slurry phase synthesis. The proposed work will optimize the catalyst composition and pretreatment operation for this low-alpha catalyst. In parallel, work will be conducted to design a high-alpha iron catalyst that is suitable for slurry phase synthesis. Studies will be conducted to define the chemical phases present at various stages of the pretreatment and synthesis stages and to define the course of these changes. The oxidation/reduction cycles that are anticipated to occur in large, commercial reactors will be studied at the laboratory scale. Catalyst performance will be determined for catalysts synthesized in this program for activity, selectivity and aging characteristics.

  4. Separation of catalyst from Fischer-Tropsch slurry

    SciTech Connect (OSTI)

    White, C.M.; Quiring, M.S.; Jensen, K.L.; Hickey, R.F.; Gillham, L.D.

    1998-04-01

    This paper describes a process for the separation of catalysts used in Fischer-Tropsch synthesis. The separation is accomplished by extraction in which the organic compounds in the wax are dissolved and carried away from the insoluble inorganic catalyst particles that are primarily inorganic. The purified catalyst can be upgraded by various methods.

  5. Process for upgrading wax from Fischer-Tropsch synthesis

    DOE Patents [OSTI]

    Derr, Jr., W. Rodman; Garwood, William E.; Kuo, James C.; Leib, Tiberiu M.; Nace, Donald M.; Tabak, Samuel A.

    1987-01-01

    The waxy liquid phase of an oil suspension of Fischer-Tropsch catalyst containing dissolved wax is separated out and the wax is converted by hydrocracking, dewaxing or by catalytic cracking with a low activity catalyst to provide a highly olefinic product which may be further converted to premium quality gasoline and/or distillate fuel.

  6. Process for upgrading wax from Fischer-Tropsch synthesis

    DOE Patents [OSTI]

    Derr, W.R. Jr.; Garwood, W.E.; Kuo, J.C.; Leib, T.M.; Nace, D.M.; Tabak, S.A.

    1987-08-04

    The waxy liquid phase of an oil suspension of Fischer-Tropsch catalyst containing dissolved wax is separated out and the wax is converted by hydrocracking, dewaxing or by catalytic cracking with a low activity catalyst to provide a highly olefinic product which may be further converted to premium quality gasoline and/or distillate fuel. 2 figs.

  7. Fischer-Tropsch synthesis process employing a moderated ruthenium catalyst

    DOE Patents [OSTI]

    Abrevaya, H.

    1990-07-31

    A Fischer-Tropsch type process produces hydrocarbons from carbon monoxide and hydrogen using a novel catalyst comprising moderated ruthenium on an inorganic oxide support. The preferred moderator is silicon. Preferably the moderator is effectively positioned in relationship to ruthenium particles through simultaneous placement on the support using reverse micelle impregnation. 1 fig.

  8. Simulation models and designs for advanced Fischer-Tropsch technology

    SciTech Connect (OSTI)

    Choi, G.N.; Kramer, S.J.; Tam, S.S.

    1995-12-31

    Process designs and economics were developed for three grass-roots indirect Fischer-Tropsch coal liquefaction facilities. A baseline and an alternate upgrading design were developed for a mine-mouth plant located in southern Illinois using Illinois No. 6 coal, and one for a mine-mouth plane located in Wyoming using Power River Basin coal. The alternate design used close-coupled ZSM-5 reactors to upgrade the vapor stream leaving the Fischer-Tropsch reactor. ASPEN process simulation models were developed for all three designs. These results have been reported previously. In this study, the ASPEN process simulation model was enhanced to improve the vapor/liquid equilibrium calculations for the products leaving the slurry bed Fischer-Tropsch reactors. This significantly improved the predictions for the alternate ZSM-5 upgrading design. Another model was developed for the Wyoming coal case using ZSM-5 upgrading of the Fischer-Tropsch reactor vapors. To date, this is the best indirect coal liquefaction case. Sensitivity studies showed that additional cost reductions are possible.

  9. Cobalt Fischer-Tropsch catalysts having improved selectivity

    DOE Patents [OSTI]

    Miller, James G.; Rabo, Jule A.

    1989-01-01

    The promoter(s) Mn oxide or Mn oxide and Zr oxide are added to a cobalt Fischer-Tropsch catalyst combined with the molecular sieve TC-103 or TC-123 such that the resultant catalyst demonstrates improved product selectivity, stability and catalyst life. The improved selectivity is evidenced by lower methane production, higher C5+ yield and increased olefin production.

  10. BASELINE DESIGN/ECONOMICS FOR ADVANCED FISCHER-TROPSCH TECHNOLOGY

    SciTech Connect (OSTI)

    1998-04-01

    Bechtel, along with Amoco as the main subcontractor, developed a Baseline design, two alternative designs, and computer process simulation models for indirect coal liquefaction based on advanced Fischer-Tropsch (F-T) technology for the U. S. Department of Energy's (DOE's) Federal Energy Technology Center (FETC).

  11. Fischer-Tropsch synthesis process employing a moderated ruthenium catalyst

    DOE Patents [OSTI]

    Abrevaya, Hayim (Wilmette, IL)

    1990-01-01

    A Fischer-Tropsch type process produces hydrocarbons from carbon monoxide and hydrogen using a novel catalyst comprising moderated ruthenium on an inorganic oxide support. The preferred moderator is silicon. Preferably the moderator is effectively positioned in relationship to ruthenium particles through simultaneous placement on the support using reverse micelle impregnation.

  12. HEFA and Fischer-Tropsch Jet Fuel Cost Analyses | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HEFA and Fischer-Tropsch Jet Fuel Cost Analyses HEFA and Fischer-Tropsch Jet Fuel Cost Analyses This is a presentation from the November 27, 2012, Sustainable Alternative Fuels Cost Workshop given by Robert Malina, MIT. malina_caafi_workshop.pdf (23.86 MB) More Documents & Publications February GBTL Webinar Opportunities for the Early Production of Fischer-Tropsch (F-T) Fuels in the U.S. -- An Overview Application of Synthetic Diesel Fuels

  13. Compression-ignition fuel properties of Fischer-Tropsch syncrude

    SciTech Connect (OSTI)

    Suppes, G.J.; Terry, J.G.; Burkhart, M.L.; Cupps, M.P.

    1998-05-01

    Fischer-Tropsch conversion of natural gas to liquid hydrocarbon fuel typically includes Fischer-Tropsch synthesis followed by refining (hydrocracking and distillation) of the syncrude into mostly diesel or kerosene with some naphtha (a feedstock for gasoline production). Refining is assumed necessary, possibly overlooking the exception fuel qualities of syncrude for more direct utilization as a compression-ignition (CI) fuel. This paper evaluates cetane number, viscosity, cloud-point, and pour-point properties of syncrude and blends of syncrude with blend stocks such as ethanol and diethyl ether. The results show that blends comprised primarily of syncrude are potentially good CI fuels, with pour-point temperature depression being the largest development obstacle. The resulting blends may provide a much-needed and affordable alternative CI fuel. Particularly good market opportunities exist with Environmental Policy Act (EPACT) applications.

  14. On-Road Use of Fischer-Tropsch Diesel Blends

    SciTech Connect (OSTI)

    Nigel Clark; Mridul Gautam; Donald Lyons; Chris Atkinson; Wenwei Xie; Paul Norton; Keith Vertin; Stephen Goguen; James Eberhardt

    1999-04-26

    Alternative compression ignition engine fuels are of interest both to reduce emissions and to reduce U.S. petroleum fuel demand. A Malaysian Fischer-Tropsch gas-to-liquid fuel was compared with California No.2 diesel by characterizing emissions from over the road Class 8 tractors with Caterpillar 3176 engines, using a chassis dynamometer and full scale dilution tunnel. The 5-Mile route was employed as the test schedule, with a test weight of 42,000 lb. Levels of oxides of nitrogen (NO{sub x}) were reduced by an average of 12% and particulate matter (PM) by 25% for the Fischer-Tropsch fuel over the California diesel fuel. Another distillate fuel produced catalytically from Fischer-Tropsch products originally derived from natural gas by Mossgas was also compared with 49-state No.2 diesel by characterizing emissions from Detroit Diesel 6V-92 powered transit buses, three of them equipped with catalytic converters and rebuilt engines, and three without. The CBD cycle was employed as the test schedule, with a test weight of 33,050 lb. For those buses with catalytic converters and rebuilt engines, NO x was reduced by 8% and PM was reduced by 31% on average, while for those buses without, NO x was reduced by 5% and PM was reduced by 20% on average. It is concluded that advanced compression ignition fuels from non-petroleum sources can offer environmental advantages in typical line haul and city transit applications.

  15. Separation of catalyst from Fischer-Tropsch slurry

    DOE Patents [OSTI]

    White, Curt M.; Quiring, Michael S.; Jensen, Karen L.; Hickey, Richard F.; Gillham, Larry D.

    1998-10-27

    In a catalytic process for converting synthesis gas including hydrogen and carbon monoxide to hydrocarbons and oxygenates by a slurry Fischer-Tropsch synthesis, the wax product along with dispersed catalyst is removed from the slurry and purified by removing substantially all of the catalyst prior to upgrading the wax and returning a portion to the Fischer-Tropsch reaction. Separation of the catalyst particles from the wax product is accomplished by dense gas and/or liquid extraction in which the organic compounds in the wax are dissolved and carried away from the insoluble inorganic catalyst particles that are primarily inorganic in nature. The purified catalyst free wax product can be subsequently upgraded by various methods such as hydrogenation, isomerization, hydrocracking, conversion to gasoline and other products over ZSM-5 aluminosilicate zeolite, etc. The catalyst particles are returned to the Fischer-Tropsch Reactor by slurring them with a wax fraction of appropriate molecular weight, boiling point and viscosity to avoid reactor gelation.

  16. Separation of catalyst from Fischer-Tropsch slurry

    DOE Patents [OSTI]

    White, C.M.; Quiring, M.S.; Jensen, K.L.; Hickey, R.F.; Gillham, L.D.

    1998-10-27

    In a catalytic process for converting synthesis gas including hydrogen and carbon monoxide to hydrocarbons and oxygenates by a slurry Fischer-Tropsch synthesis, the wax product along with dispersed catalyst is removed from the slurry and purified by removing substantially all of the catalyst prior to upgrading the wax and returning a portion to the Fischer-Tropsch reaction. Separation of the catalyst particles from the wax product is accomplished by dense gas and/or liquid extraction in which the organic compounds in the wax are dissolved and carried away from the insoluble inorganic catalyst particles that are primarily inorganic in nature. The purified catalyst-free wax product can be subsequently upgraded by various methods such as hydrogenation, isomerization, hydrocracking, conversion to gasoline and other products over ZSM-5 aluminosilicate zeolite, etc. The catalyst particles are returned to the Fischer-Tropsch Reactor by mixing them with a wax fraction of appropriate molecular weight, boiling point and viscosity to avoid reactor gelation. 2 figs.

  17. Subtask 3.4 - Fischer - Tropsch Fuels Development

    SciTech Connect (OSTI)

    Strege, Joshua; Snyder, Anthony; Laumb, Jason; Stanislowski, Joshua; Swanson, Michael

    2012-05-01

    Under Subtask 3.4, the Energy & Environmental Research Center (EERC) examined the opportunities and challenges facing FischerTropsch (FT) technology in the United States today. Work was completed in two distinct budget periods (BPs). In BP1, the EERC examined the technical feasibility of using modern warm-gas cleanup techniques for FT synthesis. FT synthesis is typically done using more expensive and complex cold-gas sweetening. Warm-gas cleanup could greatly reduce capital and operating costs, making FT synthesis more attractive for domestic fuel production. Syngas was generated from a variety of coal and biomass types; cleaned of sulfur, moisture, and condensables; and then passed over a pilot-scale FT catalyst bed. Laboratory and modeling work done in support of the pilot-scale effort suggested that the catalyst was performing suboptimally with warm-gas cleanup. Long-term trends showed that the catalyst was also quickly deactivating. In BP3, the EERC compared FT catalyst results using warm-gas cleanup to results using cold-gas sweetening. A gas-sweetening absorption system (GSAS) was designed, modeled, and constructed to sweeten syngas between the gasifier and the pilot-scale FT reactor. Results verified that the catalyst performed much better with gas sweetening than it had with warm-gas cleanup. The catalyst also showed no signs of rapid deactivation when the GSAS was running. Laboratory tests in support of this effort verified that the catalyst had deactivated quickly in BP1 because of exposure to syngas, not because of any design flaw with the pilot-scale FT reactor itself. Based on these results, the EERC concludes that the two biggest issues with using syngas treated with warm-gas cleanup for FT synthesis are high concentrations of CO{sub 2} and volatile organic matter. Other catalysts tested by the EERC may be more tolerant of CO{sub 2}, but volatile matter removal is critical to ensuring long-term FT catalyst operation. This subtask was funded through

  18. FISCHER-TROPSCH FUELS PRODUCTION AND DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    Stephen P. Bergin

    2003-04-23

    This project has two primary purposes: (1) Build a small-footprint (SFP) fuel production plant to prove the feasibility of this relatively transportable technology on an intermediate scale (i.e. between laboratory-bench and commercial capacity) and produce as much as 150,000 gallons of hydrogen-saturated Fischer-Tropsch (FT) diesel fuel; and (2) Use the virtually sulfur-free fuel produced to demonstrate (over a period of at least six months) that it can not only be used in existing diesel engines, but that it also can enable significantly increased effectiveness and life of the next-generation exhaust-after-treatment emission control systems that are currently under development and that will be required for future diesel engines. Furthermore, a well-to-wheels economic analysis will be performed to characterize the overall costs and benefits that would be associated with the actual commercial production, distribution and use of such FT diesel fuel made by the process under consideration, from the currently underutilized (or entirely un-used) energy resources targeted, primarily natural gas that is stranded, sub-quality, off-shore, etc. During the first year of the project, which is the subject of this report, there have been two significant areas of progress: (1) Most of the preparatory work required to build the SFP fuel-production plant has been completed, and (2) Relationships have been established, and necessary project coordination has been started, with the half dozen project-partner organizations that will have a role in the fuel demonstration and evaluation phase of the project. Additional project tasks directly related to the State of Alaska have also been added to the project. These include: A study of underutilized potential Alaska energy resources that could contribute to domestic diesel and distillate fuel production by providing input energy for future commercial-size SFP fuel production plants; Demonstration of the use of the product fuel in a heavy

  19. DEVELOPMENT OF PRECIPITATED IRON FISCHER-TROPSCH CATALYSTS

    SciTech Connect (OSTI)

    Dr. Dragomir B. Bukur; Dr. X. Lang; Dr. S. Chokkaram; Dr. L. Nowicki; G. Wei; Dr. Y. Ding; Dr. B. Reddy; Dr. S. Xiao

    1999-07-22

    Despite the current worldwide oil glut, the US will ultimately require large-scale production of liquid (transportation) fuels from coal. Slurry phase Fischer-Tropsch (F-T) technology, with its versatile product slate, may be expected to play a major role in production of transportation fuels via indirect coal liquefaction. Some of the F-T catalysts synthesized and tested at Texas A and M University under DOE Contract No. DE-AC22-89PC89868 were more active than any other known catalysts developed for maximizing production of high molecular weight hydrocarbons (waxes). The objectives of the present contract were to demonstrate repeatability of catalyst performance and reproducibility of preparation procedures of two of these catalysts on a laboratory scale. Improvements in the catalyst performance were attempted through the use of: (a) higher reaction pressure and gas space velocity to maximize the reactor productivity; (b) modifications in catalyst preparation steps; and (c) different pretreatment procedures. Repeatability of catalyst performance and reproducibility of catalyst synthesis procedure have been successfully demonstrated in stirred tank slurry reactor tests. Reactor space-time-yield was increased up to 48% by increasing reaction pressure from 1.48 MPa to 2.17 MPa, while maintaining the gas contact time and synthesis gas conversion at a constant value. Use of calcination temperatures above 300 C, additional CaO promoter, and/or potassium silicate as the source of potassium promoter, instead of potassium bicarbonate, did not result in improved catalyst performance. By using different catalyst activation procedures they were able to increase substantially the catalyst activity, while maintaining low methane and gaseous hydrocarbon selectivities. Catalyst productivity in runs SA-0946 and SA-2186 was 0.71 and 0.86 gHC/g-Fe/h, respectively, and this represents 45-75% improvement in productivity relative to that achieved in Rheinpreussen's demonstration plant

  20. Baseline design/economics for advanced Fischer-Tropsch technology

    SciTech Connect (OSTI)

    Not Available

    1992-04-27

    The objectives of the study are to: Develop a baseline design for indirect liquefaction using advanced Fischer-Tropsch (F-T) technology. Prepare the capital and operating costs for the baseline design. Develop a process flowsheet simulation (PFS) model. The baseline design, the economic analysis, and the computer model will be the major research planning tools that Pittsburgh Energy Technology Center will use to plan, guide, and evaluate its ongoing and future research and commercialization programs relating to indirect coal liquefaction for the manufacture of synthetic liquid fuels from coal.

  1. TECHNOLOGY DEVELOPMENT FOR IRON AND COBALT FISCHER-TROPSCH CATALYSTS

    SciTech Connect (OSTI)

    Burtron H. Davis

    1999-01-30

    The effects of copper on Fischer-Tropsch activity, selectivity and water-gas shift activity were studied over a wide range of syngas conversion. Three catalyst compositions were prepared for this study: (a) 100Fe/4.6Si/1.4K, (b) 100Fe/4.6Si/0.10Cu/1.4K and (c) 100Fe/4.6Si/2.0Cu/1.4K. The results are reported in Task 2. The literature review for cobalt catalysts is approximately 90% complete. Due to the size of the document, it has been submitted as a separate report labeled Task 6.

  2. Nitrided iron catalysts for the Fischer-Tropsch synthesis in the eighties

    SciTech Connect (OSTI)

    Anderson, R.B.

    1980-01-01

    A survey covers the preparation and structure of nitrided iron catalysts and their activity, selectivity, and stability for the reaction of synthesis gas in comparison with iron catalysts pretreated by various other methods, as measured in laboratory reactors; a comparison of product distributions obtained in fluidized-bed, slurry, and oil-circulation fixed bed pilot plants with nitrided catalysts and by the Kellogg entrained catalyst process SASOL, which uses a reduced iron catalyst; and possible methods for refining the Fischer-Tropsch products from nitrided iron catalysts for producing gasoline, including bauxite treatment, the Mobil process for converting oxygenates to high-octane gasoline and C/sub 3/-C/sub 4/ olefins, and an alkylation-polymerization process for converting the C/sub 3/-C/sub 4/ fraction to high-octane blending stocks.

  3. Supported fischer-tropsch catalyst and method of making the catalyst

    DOE Patents [OSTI]

    Dyer, Paul N.; Pierantozzi, Ronald; Withers, Howard P.

    1987-01-01

    A Fischer-Tropsch catalyst and a method of making the catalyst for a Fischer-Tropsch process utilizing the catalyst by which synthesis gas, particularly carbon-monoxide rich synthesis gas, is selectively converted to higher hydrocarbons of relatively narrow carbon number range is disclosed. In general, the selective and notably stable catalyst, consist of an inert carrier first treated with a Group IV B metal compound (such as zirconium or titanium), preferably an alkoxide compound, and subsequently treated with an organic compound of a Fischer-Tropsch metal catalyst, such as cobalt, iron or ruthenium carbonyl. Reactions with air and water and calcination are specifically avoided in the catalyst preparation procedure.

  4. Iron on mixed zirconia-titania substrate Fischer-Tropsch catalyst and method of making same

    DOE Patents [OSTI]

    Dyer, Paul N.; Nordquist, Andrew F.; Pierantozzi, Ronald

    1986-01-01

    A Fischer-Tropsch catalyst comprising iron co-deposited with or deposited on particles comprising a mixture of zirconia and titania, preferably formed by co-precipitation of compounds convertible to zirconia and titania, such as zirconium and titanium alkoxide. The invention also comprises the method of making this catalyst and an improved Fischer-Tropsch reaction process in which the catalyst is utilized.

  5. Development and Demonstration of Fischer-Tropsch Fueled Heavy-Duty Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with Control Technologies for Reduced Diesel Exhaust Emissions | Department of Energy Fischer-Tropsch Fueled Heavy-Duty Vehicles with Control Technologies for Reduced Diesel Exhaust Emissions Development and Demonstration of Fischer-Tropsch Fueled Heavy-Duty Vehicles with Control Technologies for Reduced Diesel Exhaust Emissions 2003 DEER Conference Presentation: Ricardo Inc., Chicago Technical Center 2003_deer_may.pdf (657.25 KB) More Documents & Publications Opportunities for the Early

  6. Innovative Gasification to Produce Fischer-Tropsch Jet and Diesel Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovative Gasification to Produce Fischer- Tropsch Jet and Diesel Fuel March 23, 2015 Jerod Smeenk Frontline BioEnergy, LLC This presentation does not contain any proprietary, confidential, or otherwise restricted information 1 Acronyms and definitions * BP - budget period (i.e., project phase) * BPD - barrel per day * BTL - biomass-to-liquids * F-76 - military spec diesel fuel * FT - Fischer-Tropsch process * IE - independent engineer engaged by the DOE to monitor and review project details *

  7. Fischer-Tropsch synthesis in supercritical reaction media

    SciTech Connect (OSTI)

    Subramaniam, B.

    1995-05-01

    The goal of the proposed research is to develop novel reactor operating strategies for the catalytic conversion of syngas to transportation grade fuels and oxygenates using near-critical (nc) fluids as reaction media. This will be achieved through systematic investigations aimed at a better fundamental understanding of the physical and chemical rate processes underlying catalytic syngas conversion in nc reaction media. Syngas conversion to fuels and fuel additives on Fe catalysts (Fischer-Tropsch synthesis) was investigated. Specific objectives are to investigate the effects of various nc media, their flow rates and operating pressure on syngas conversion, reactor temperature profiles, product selectivity and catalyst activity in trickle-bed reactors. Solvents that exhibit gas to liquid-like densities with relatively moderate pressure changes (from 25 to 60 bars) at typical syngas conversion temperatures (in the 220-280{degree}C range) will be chosen as reaction media.

  8. Fischer-Tropsch synthesis in supercritical reaction media

    SciTech Connect (OSTI)

    Subramaniam, B.; Bochniak, D.; Snavely, K.

    1993-04-01

    The reactor configuration has been modified to handle tows both in the upflow and downflow directions. For comparison to bubble column operation, an upflow mode of operation will be used. For comparison to trickle-bed operation, a downflow mode will be employed. Thus, this modification allows the most flexibility for studying the effects of liquid and supercritical reaction media on the Fischer-Tropsch synthesis reaction and permits comparisons of our experimental results with previous work. A stainless steel reactor tube was ordered. This unit along with three other pieces of tubing (greater than 1/4in. i. d.) are to be sent to Alon Processing Co. for alonizing (passivating) the internal surface. This process had been employed by Huff and Satterfield (1983) to ensure that the stainless steel surfaces are catalytically inert at high temperatures (> 200[degree]C).

  9. Predict carbonation rate on iron Fischer-Tropsch catalyst

    SciTech Connect (OSTI)

    Dry, M.E.

    1980-02-01

    An experimental study of the coking rate in 5 cm ID fluidized-bed reactors, in which the feed gas composition, the total pressure, and the fresh feed/recycle gas ratios were varied over wide ranges, showed a strong correlation between the carbon deposition rate and the ratio of carbon monoxide partial pressure to the square of the hydrogen partial pressure at the reactor inlet over a wide gas-composition range. At a given fresh gas composition, the combination rate varied inversely with the total pressure of the system. Coking decreased as the moles of CO + CO/sub 2/ converted to hydrocarbon increased. A Fischer-Tropsch reaction scheme is proposed and is used to derive a rate expression for catalyst carbonation that was approximately confirmed.

  10. Product evaluation of Fischer-Tropsch derived fuels

    SciTech Connect (OSTI)

    Marano, J.J.; Rogers, S.; Choi, G.N.; Kramer, S.J.

    1994-12-31

    The Clean Air Act Amendments (CAAA) of 1990 have placed stringent requirements on the quality of transportation fuels. Most petroleum refiners are scrambling to meet provisions of the Amendments to be implemented between 1995 and 2000. These requirements will also have significant implications for the production of alternative fuels. These have been examined for Fischer-Tropsch (F-T) derived fuels. This analysis was conducted in conjunction with the U.S. Department of Energy (DOE) sponsored project, Baseline Design/Economics for Advanced Fischer-Tropsch Technology, conducted by Bechtel and Amoco. The goal of this study was to develop a baseline design for indirect liquefaction of Illinois No. 6 coal using gasification, syngas conversion in slurry reactors with iron catalysts, and conventional refinery upgrading of the F-T derived hydrocarbon liquids. One alternative case using ZSM-5 upgrading technology was also considered. This study included complete capital and operating cost estimates for the processes. To perform economic analyses for the different design cases, the products from the liquefaction plant had to be valued relative to conventional transportation fuels. This task was accomplished by developing a Linear Programming (LP) model for a typical midwest refinery, and then feeding the F-T liquids to the refinery. In this way, the breakeven value determined for these materials is indicative of the price they could command if available in the marketplace. Inputs to the LP model include: refinery size, configuration, feedstocks, products, specifications, prices, and operating and capital recovery costs. The model was set up to be representative of conditions anticipated for the turn of the century. This required inclusion of fuel specifications from the CAAA of 1990 which have or will come into force by the year 2000.

  11. Diesel production from Fischer-Tropsch: the past, the present, and new concepts

    SciTech Connect (OSTI)

    Dieter Leckel

    2009-05-15

    Fischer-Tropsch synthesis is technically classified into two categories, the high-temperature Fischer-Tropsch (HTFT) and the low-temperature Fischer-Tropsch (LTFT) processes. The criterion for this classification is the operating temperature of the synthesis, which ranges between 310-340{sup o}C for the HTFT process and 210-260{sup o}C for the LTFT process. A Fischer-Tropsch facility can be divided into roughly three sections, synthesis gas (syngas) generation, FT synthesis, and refining of the synthetic crude (syncrude). Fischer-Tropsch refineries differ regarding the product upgrading, and both transportation fuels and chemicals can be produced. Regarding the FT refinery history, the configuration of each refinery also reflects the requirements of the fuel specification at that time. This paper gives a condensed overview of how Fischer-Tropsch facilities changed during the last 70 years and focuses in particular on the diesel fuel produced. Some conceptual flow schemes are additionally presented with emphasis on the combined upgrading of the high boiling part of the FT product spectrum with liquids derived from coal pyrolysis. 52 refs., 14 figs., 12 tabs.

  12. KINETICS OF SLURRY PHASE FISCHER-TROPSCH SYNTHESIS

    SciTech Connect (OSTI)

    Dragomir B. Bukur

    2004-09-29

    This report covers the second year of this three-year research grant under the University Coal Research program. The overall objective of this project is to develop a comprehensive kinetic model for slurry phase Fischer-Tropsch synthesis on iron catalysts. This model will be validated with experimental data obtained in a stirred tank slurry reactor (STSR) over a wide range of process conditions. The model will be able to predict concentrations of all reactants and major product species (H{sub 2}O, CO{sub 2}, linear 1- and 2-olefins, and linear paraffins) as a function of reaction conditions in the STSR. During the second year of the project we completed the STSR test SB-26203 (275-343 h on stream), which was initiated during the first year of the project, and another STSR test (SB-28603 lasting 341 h). Since the inception of the project we completed 3 STSR tests, and evaluated catalyst under 25 different sets of process conditions. A precipitated iron catalyst obtained from Ruhrchemie AG (Oberhausen-Holten, Germany) was used in all tests. This catalyst was used initially in commercial fixed bed reactors at Sasol in South Africa. Also, during the second year we performed a qualitative analysis of experimental data from all three STSR tests. Effects of process conditions (reaction temperature, pressure, feed composition and gas space velocity) on water-gas-shift (WGS) activity and hydrocarbon product distribution have been determined.

  13. Intensified Fischer-Tropsch Synthesis Process with Microchannel Catalytic Reactors

    SciTech Connect (OSTI)

    Cao, Chunshe; Hu, Jianli; Li, Shari; Wilcox, Wayne A.; Wang, Yong

    2009-02-28

    A microchannel catalytic reactor with improved heat and mass transport has been used for Fischer-Tropsch synthesis to produce fuels and chemicals. This type of novel reactor takes advantages of highly active and selective catalysts with increased site density so that the FT synthesis process can be intensified. It was demonstrated that this microchannel reactor based process can be carried out at gas hourly space velocity (GHSV) as high as 60,000 hr-1 to achieve greater than 60% of one-pass CO conversion while maintaining low methane selectivity (<10%) and high chain growth probability(>0.9). Such superior FT synthesis performance has not ever been reported in the prior open literatures. The overall productivity to heavy hydrocarbons has been significantly improved over the conventional reactor technology. In this study, performance data were obtained in a wide range of pressure (10atm-35atm) and hydrogen to carbon monoxide ratio (1-2.5). The catalytic system was characterized by BET, scanning electron microcopy (SEM), transmission electron microcopy(TEM), and H2 chemisorption. A three dimensional pseudo-homogeneous model were used to simulate temperature profiles in the exothermic reaction system in order to optimize the reactor design and intensify the synthesis process. Intraparticle non-isothermal characteristics are also analyzed for the FT synthesis catalyst.

  14. KINETICS OF SLURRY PHASE FISCHER-TROPSCH SYNTHESIS

    SciTech Connect (OSTI)

    Dragomir B. Bukur; Gilbert F. Froment; Lech Nowicki; Jiang Wang; Wen-Ping Ma

    2003-09-29

    This report covers the first year of this three-year research grant under the University Coal Research program. The overall objective of this project is to develop a comprehensive kinetic model for slurry phase Fischer-Tropsch synthesis on iron catalysts. This model will be validated with experimental data obtained in a stirred tank slurry reactor (STSR) over a wide range of process conditions. The model will be able to predict concentrations of all reactants and major product species (H{sup 2}O, CO{sub 2}, linear 1- and 2-olefins, and linear paraffins) as a function of reaction conditions in the STSR. During the reporting period we have completed one STSR test with precipitated iron catalyst obtained from Ruhrchemie AG (Oberhausen-Holten, Germany). This catalyst was initially in commercial fixed bed reactors at Sasol in South Africa. The catalyst was tested at 13 different sets of process conditions, and had experienced a moderate deactivation during the first 500 h of testing (decrease in conversion from 56% to 50% at baseline process conditions). The second STSR test has been initiated and after 270 h on stream, the catalyst was tested at 6 different sets of process conditions.

  15. TECHNOLOGY DEVELOPMENT FOR IRON AND COBALT FISCHER-TROPSCH CATALYSTS

    SciTech Connect (OSTI)

    Burtron H. Davis

    1999-04-30

    The impact of activation procedure on the phase composition of precipitated iron Fischer-Tropsch (FT) catalysts has been studied. Catalyst samples taken during activation and FT synthesis have been characterized by Moessbauer spectroscopy. Formation of iron carbide is necessary for high FT activity. Hydrogen activation of precipitated iron catalysts results in reduction to predominantly metallic iron and Fe{sub 3}O{sub 4}. Metallic iron is not stable under FT 3 4 conditions and is rapidly converted to {epsilon}{prime}-Fe{sub 2.2}C. Activation with carbon monoxide or syngas 2.2 with low hydrogen partial pressure reduces catalysts to {chi}-Fe{sub 5}C{sub 2} and a small amount of 5 2 superparamagnetic carbide. Exposure to FT conditions partially oxidizes iron carbide to Fe{sub 3}O{sub 4}; however, catalysts promoted with potassium or potassium and copper maintain a constant carbide content and activity after the initial oxidation. An unpromoted iron catalyst which was activated with carbon monoxide to produce 94% {chi}-Fe{sub 5}C{sub 2}, deactivated rapidly as the carbide was oxidized to Fe{sub 3}O{sub 4}. No difference in activity, stability or deactivation rate was found for {chi}-Fe{sub 5}C{sub 2} and {epsilon}{prime}-Fe{sub 2.2}C.

  16. ATTRITION RESISTANT IRON-BASED FISCHER-TROPSCH CATALYSTS

    SciTech Connect (OSTI)

    K. Jothimurugesan; James G. Goodwin, Jr.; Santosh K. Gangwal

    1999-10-01

    Fischer-Tropsch (FT) synthesis to convert syngas (CO + H{sub 2}) derived from natural gas or coal to liquid fuels and wax is a well-established technology. For low H{sub 2} to CO ratio syngas produced from CO{sub 2} reforming of natural gas or from gasification of coal, the use of Fe catalysts is attractive because of their high water gas shift activity in addition to their high FT activity. Fe catalysts are also attractive due to their low cost and low methane selectivity. Because of the highly exothermic nature of the FT reaction, there has been a recent move away from fixed-bed reactors toward the development of slurry bubble column reactors (SBCRs) that employ 30 to 90 {micro}m catalyst particles suspended in a waxy liquid for efficient heat removal. However, the use of FeFT catalysts in an SBCR has been problematic due to severe catalyst attrition resulting in fines that plug the filter employed to separate the catalyst from the waxy product. Fe catalysts can undergo attrition in SBCRs not only due to vigorous movement and collisions but also due to phase changes that occur during activation and reaction.

  17. Romania program targets methanol and Fischer-Tropsch research

    SciTech Connect (OSTI)

    Not Available

    1987-03-01

    Currently, the chemical organic industry, the petrochemical and engine fuels industry in Romania are entirely based on hydrocarbons from oil. To reduce the oil dependence of this sector and to ensure the stipulated growth rate of 8-9%, research and development programs have been set up with a view to the diversification of raw materials. In research on hydrocarbons from alcohol conversion, three process variants are known, i.e. olefins from methanol, gasolines from methanol and a combined gasolines and aromatic hydrocarbons from methanol. The Romanian process of methanol conversion to hydrocarbons is very flexible, with all the variants mentioned being carried out in the same plant by modifying the catalysts. In research on hydrocarbons from synthesis gas a modern process is being developed for gasification of brown coal in a fluidized bed, under pressure, in the presence of oxygen and water vapors. In the field of carbon oxide hydrogenation, studies have been carried out on selective Fischer-Tropsch processes in which the reaction products are high value hydrocarbon fractions.

  18. Process for upgrading wax from Fischer-Tropsch synthesis

    SciTech Connect (OSTI)

    Derr, W.R. Jr.; Garwood, W.E.; Kuo, J.C.; Leib, T.M.; Nace, D.M.; Tabak, S.A.

    1987-08-04

    A processor is described for converting synthesis gas to liquid hydrocarbons comprising the steps of: (a) charging the synthesis gas to a Fischer-Tropsch synthesis conversion zone containing a catalyst providing CO reducing characteristics to produce a waxy hydrocarbon liquid; (b) separating hydrocarbon wax from the waxy liquid; (c) catalytically cracking the wax in a fluidized bed of acid crystalline zeolite at cracking temperature under process conditions requiring a supply of heat to effect cracking, producing olefinic liquid hydrocarbon crackate in the gasoline and distillate boiling range along with olefinic light gas; (d) recovering distillate range hydrocarbons from the liquid crackate; (e) further converting the olefinic gasoline range hydrocarbon crackate and olefinic light gas under oligomerization conditions in contact with a shape selective medium pore acid oligomerization catalyst to upgrade at least a portion of the olefinic crackate and olefinic light gas to distillate range hydrocarbon product and producing by-product light fuel gas; (f) separating the light fuel gas from step (e) and passing the light fuel gas to cracking step (c) to supply heat.

  19. Opportunities for the Early Production of Fischer-Tropsch (F-T) Fuels in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the U.S. -- An Overview | Department of Energy for the Early Production of Fischer-Tropsch (F-T) Fuels in the U.S. -- An Overview Opportunities for the Early Production of Fischer-Tropsch (F-T) Fuels in the U.S. -- An Overview 2002 DEER Conference Presentation: U.S. Department of Energy 2002_deer_shen.pdf (79.74 KB) More Documents & Publications Coal-Derived Liquids to Enable HCCI Technology Advanced Fuels in HDV Applications

  20. ATTRITION RESISTANT IRON-BASED FISCHER-TROPSCH CATALYSTS

    SciTech Connect (OSTI)

    James G. Goodwin, Jr.; James J. Spivey; K. Jothimurugesan; Santosh K. Gangwal

    1999-03-29

    The Fischer-Tropsch (F-T) reaction provides a way of converting coal-derived synthesis gas (CO+H{sub 2}) to liquid fuels. Since the reaction is highly exothermic, one of the major problems in control of the reaction is heat removal. Recent work has shown that the use of slurry bubble column reactors (SBCRs) can largely solve this problem. Iron-based (Fe) catalysts are preferred catalysts for F-T when using low CO/H2 ratio synthesis gases derived from modern coal gasifiers. This is because in addition to reasonable F-T activity, the F-T catalysts also possess high water gas shift (WGS) activity. However, a serious problem with the use of Fe catalysts in a SBCR is their tendency to undergo attrition. This can cause fouling/plugging of downstream filters and equipment, making the separation of catalyst from the oil/wax product very difficult if not impossible, and results in a steady loss of catalyst from the reactor. The objectives of this research are to develop a better understanding of the parameters affecting attrition resistance of Fe F-T catalysts suitable for use in SBCRs and to incorporate this understanding into the design of novel Fe catalysts having superior attrition resistance. Catalyst preparations will be based on the use of spray drying and will be scalable using commercially available equipment. The research will employ among other measurements, attrition testing and F-T synthesis, including long duration slurry reactor runs in order to ascertain the degree of success of the various preparations. The goal is to develop an Fe catalyst which can be used in a SBCR having only an internal filter for separation of the catalyst from the liquid product, without sacrificing F-T activity and selectivity. The effect of silica addition via coprecipitation and as a binder to a doubly promoted Fischer-Tropsch synthesis iron catalyst (100 Fe/5 Cu/4.2 K) was studied. The catalysts were prepared by coprecipitation, followed by binder addition and drying in a 1 m

  1. Attrition Resistant Iron-Based Fischer-Tropsch Catalysts.

    SciTech Connect (OSTI)

    Jothimurugesan, K.; Goodwin, J.S.; Spivey, J.J.; Gangwal, S.K.

    1997-09-22

    The Fischer-Tropsch (F-T) reaction provides a way of converting coal-derived synthesis gas (CO and H{sub 2}) to liquid fuels. Since the reaction is highly exothermic, one of the major problems in control of the reaction is heat removal. Recent work has shown that the use of slurry bubble column reactors (SBCRs) can largely solve this problem. Iron-based (Fe) catalysts are preferred catalysts for F-T when using low CO/H{sub 2} ratio synthesis gases derived from modern coal gasifiers. This is because in addition to reasonable F-T activity, the F-T catalysts also possess high water gas shift (WGS) activity. However, a serious problem with the use of Fe catalysts in a SBCR is their tendency to undergo attrition. This can cause fouling/plugging of downstream filters and equipment, making the separation of catalyst from the oil/wax product very difficult if not impossible, and results in a steady loss of catalyst from the reactor. The objectives of this research are to develop a better understanding of the parameters affecting attrition resistance of Fe F-T catalysts suitable for use in SBCRs and to incorporate this understanding into the design of novel Fe catalysts having superior attrition resistance. Catalyst preparations will be based on the use of spray drying and will be scalable using commercially available equipment. The research will employ among other measurements, attrition testing and F-T synthesis, including long duration slurry reactor runs in order to ascertain the degree of success of the various preparations. The goal is to develop an Fe catalyst which can be used in a SBCR having only an internal filter for separation of the catalyst from the liquid product, without sacrificing F-T activity and selectivity.

  2. Fischer-Tropsch synthesis in supercritical fluids. Final report

    SciTech Connect (OSTI)

    Akgerman, A.; Bukur, D.B.

    1998-12-31

    The objective of this study was to investigate Fischer-Tropsch Synthesis (FTS) in the supercritical phase employing a commercial precipitated iron catalysts. As the supercritical fluid the authors used propane and n-hexane. The catalyst had a nominal composition of 100 Fe/5 Cu/4.2 K/25 SiO{sub 2} on mass basis and was used in a fixed bed reactor under both normal (conventional) and supercritical conditions. Experimental data were obtained at different temperatures (235 C, 250 C, and 260 C) and synthesis gas feed compositions (H{sub 2}/CO molar feed ratio of 0.67, 1.0 and 2.0) in both modes of operation under steady state conditions. The authors compared the performance of the precipitated iron catalyst in the supercritical phase, with the data obtained in gas phase (fixed bed reactor) and slurry phase (STS reactor). Comparisons were made in terms of bulk catalyst activity and various aspects of product selectivity (e.g. lumped hydrocarbon distribution and olefin content as a function of carbon number). In order to gain better understanding of the role of intraparticle mass transfer during FTS under conventional or supercritical conditions, the authors have measured diffusivities of representative hydrocarbon products in supercritical fluids, as well as their effective diffusion rates into the pores of catalyst at the reaction conditions. They constructed a Taylor dispersion apparatus to measure diffusion coefficients of hydrocarbon products of FTS in sub and supercritical ethane, propane, and hexane. In addition, they developed a tracer response technique to measure the effective diffusivities in the catalyst pores at the same conditions. Based on these results they have developed an equation for prediction of diffusion in supercritical fluids, which is based on the rough hard sphere theory.

  3. Slurry phase Fischer-Tropsch synthesis: Cobalt plus a water-gas shift catalyst

    SciTech Connect (OSTI)

    Yates, I.C.; Chanenchuk, C.A.; Satterfield, C.N.

    1989-01-01

    Most of this quarter has been devoted to design, construction and installation of a new external catalyst reduction unit. In this report, methods of reducing cobalt-based Fischer-Tropsch catalysts are reviewed, in an effort to develop an understanding of the important parameters which affect the reduction of cobalt catalysts. Design considerations for the external reduction unit are also presented.

  4. KINETICS OF SLURRY PHASE FISCHER-TROPSCH SYSTHESIS

    SciTech Connect (OSTI)

    Dragomir B. Bukur; Gilbert F. Froment; Tomasz Olewski

    2005-09-29

    This report covers the third year of this research grant under the University Coal Research program. The overall objective of this project is to develop a comprehensive kinetic model for slurry phase Fischer-Tropsch synthesis (FTS) on iron catalysts. This model will be validated with experimental data obtained in a stirred tank slurry reactor (STSR) over a wide range of process conditions. The model will be able to predict molar flow rates and concentrations of all reactants and major product species (H{sub 2}O, CO{sub 2}, linear 1- and 2-olefins, and linear paraffins) as a function of reaction conditions in the STSR. During the reporting period we utilized experimental data from the STSR, that were obtained during the first two years of the project, to perform vapor-liquid equilibrium (VLE) calculations and estimate kinetic parameters. We used a modified Peng-Robinson (PR) equation of state (EOS) with estimated values of binary interaction coefficients for the VLE calculations. Calculated vapor phase compositions were in excellent agreement with experimental values from the STSR under reaction conditions. Occasional discrepancies (for some of the experimental data) between calculated and experimental values of the liquid phase composition were ascribed to experimental errors. The VLE calculations show that the vapor and the liquid are in thermodynamic equilibrium under reaction conditions. Also, we have successfully applied the Levenberg-Marquardt method (Marquardt, 1963) to estimate parameters of a kinetic model proposed earlier by Lox and Froment (1993b) for FTS on an iron catalyst. This kinetic model is well suited for initial studies where the main goal is to learn techniques for parameter estimation and statistical analysis of estimated values of model parameters. It predicts that the chain growth parameter ({alpha}) and olefin to paraffin ratio are independent of carbon number, whereas our experimental data show that they vary with the carbon number

  5. KINETICS OF SLURRY PHASE FISCHER-TROPSCH SYNTHESIS

    SciTech Connect (OSTI)

    Dragomir B. Bukur; Gilbert F. Froment; Tomasz Olewski

    2006-09-29

    This report covers the fourth year of a research project conducted under the University Coal Research Program. The overall objective of this project is to develop a comprehensive kinetic model for slurry-phase Fischer-Tropsch synthesis (FTS) employing iron-based catalysts. This model will be validated with experimental data obtained in a stirred-tank slurry reactor (STSR) over a wide range of process conditions. The model will be able to predict molar flow rates and concentrations of all reactants and major product species (water, carbon dioxide, linear 1- and 2-olefins, and linear paraffins) as a function of reaction conditions in the STSR. During the fourth year of the project, an analysis of experimental data collected during the second year of this project was performed. Kinetic parameters were estimated utilizing product distributions from 27 mass balances. During the reporting period two kinetic models were employed: a comprehensive kinetic model of Dr. Li and co-workers (Yang et al., 2003) and a hydrocarbon selectivity model of Van der Laan and Beenackers (1998, 1999) The kinetic model of Yang et al. (2003) has 24 parameters (20 parameters for hydrocarbon formation, and 4 parameters for the water-gas-shift (WGS) reaction). Kinetic parameters for the WGS reaction and FTS synthesis were estimated first separately, and then simultaneously. The estimation of these kinetic parameters employed the Levenberg-Marquardt (LM) method and the trust-region reflective Newton large-scale (LS) method. A genetic algorithm (GA) was incorporated into estimation of parameters for FTS reaction to provide initial estimates of model parameters. All reaction rate constants and activation energies were found to be positive, but at the 95% confidence level the intervals were large. Agreement between predicted and experimental reaction rates has been fair to good. Light hydrocarbons are predicted fairly accurately, whereas the model underpredicts values of higher molecular weight

  6. Development of precipitated iron Fischer-Tropsch catalysts. Quarterly technical progress report, April 1, 1995--June 30, 1995

    SciTech Connect (OSTI)

    Bukur, D.B.; Lang, X.; Wei, G.; Xiao, S.

    1995-08-17

    Work continued on the development of catalysts for Fischer-Tropsch synthesis. Six catalysts were synthesised. The effects of a calcium oxide promoter were evaluated. Catalysts were characterized for pore size and BET surface area.

  7. Incorporation of catalytic dehydrogenation into fischer-tropsch synthesis to significantly reduce carbon dioxide emissions

    DOE Patents [OSTI]

    Huffman, Gerald P.

    2012-11-13

    A new method of producing liquid transportation fuels from coal and other hydrocarbons that significantly reduces carbon dioxide emissions by combining Fischer-Tropsch synthesis with catalytic dehydrogenation is claimed. Catalytic dehydrogenation (CDH) of the gaseous products (C1-C4) of Fischer-Tropsch synthesis (FTS) can produce large quantities of hydrogen while converting the carbon to multi-walled carbon nanotubes (MWCNT). Incorporation of CDH into a FTS-CDH plant converting coal to liquid fuels can eliminate all or most of the CO.sub.2 emissions from the water-gas shift (WGS) reaction that is currently used to elevate the H.sub.2 level of coal-derived syngas for FTS. Additionally, the FTS-CDH process saves large amounts of water used by the WGS reaction and produces a valuable by-product, MWCNT.

  8. Design of generic coal conversion facilities: Indirect coal liquefaction, Fischer-Tropsch synthesis

    SciTech Connect (OSTI)

    Not Available

    1991-10-01

    A comprehensive review of Fischer-Tropsch (F-T) technology, including fixed, fluidized, and bubble column reactors, was undertaken in order to develop an information base before initiating the design of the Fischer-Tropsch indirect liquefaction PDU as a part of the Generic Coal Conversion Facilities to be built at the Pittsburgh Energy Technology Center (PETC). The pilot plant will include a fixed bed and slurry bubble column reactor for the F-T mode of operation. The review encompasses current status of both these technologies, their key variables, catalyst development, future directions, and potential improvement areas. However, more emphasis has been placed on the slurry bubble column reactor since this route is likely to be the preferred technology for commercialization, offering process advantages and, therefore, better economics than fixed and fluidized bed approaches.

  9. Development and process evaluation of improved Fischer-Tropsch slurry catalysts

    SciTech Connect (OSTI)

    Withers, H.P. ); Bukur, D.B.; Rosynek, M.P. )

    1989-01-01

    The objective of this contract is to develop a consistent technical data base on the use of iron-based catalysts in Fischer-Tropsch (FT) synthesis reactions. This data base will be developed to allow the unambiguous comparison of the performance of these catalysts with each other and with state-of-the-art iron catalyst compositions. Particular attention will be devoted to generating reproducible kinetic and selectivity data and to developing reproducible improved catalyst compositions.

  10. Development and process evaluation of improved Fischer-Tropsch slurry catalysts

    SciTech Connect (OSTI)

    Withers, H.P. ); Bukur, D.B.; Rosynek, M.P. )

    1988-01-01

    The objective of this contract is to develop a consistent technical data base on the use of iron-based catalysts in Fischer-Tropsch (FT) synthesis reactions. This data base will be developed to allow the unambiguous comparison of the performance of these catalysts with each other and with state-of-the-art iron catalyst comparisons. Particular attention will be devoted to generating reproducible kinetic and selectivity data and to developing reproducible improved catalyst compositions.

  11. Development and process evaluation of improved Fischer-Tropsch slurry catalysts

    SciTech Connect (OSTI)

    Withers, H.P. ); Bukur, D.B.; Rosynek, M.P. )

    1988-01-01

    The objective of this contract is to develop a consistent technical data base on the use of iron-based catalysts in Fischer-Tropsch (FT) synthesis reactions. This data base will be developed to allow the unambiguous comparison of the performance of these catalysts with each other and with state-of-the-art iron catalyst compositions. Particular attention will be devoted to generating reproducible kinetic and selectivity data and to developing reproducible improved catalyst compositions.

  12. Development of process evaluation of improved Fischer-Tropsch slurry catalysts

    SciTech Connect (OSTI)

    Withers, H.P. ); Bukur, D.B.; Rosynek, M.P. )

    1988-01-01

    The objective of this contract is to develop a consistent technical data base on the use of iron-based catalysts in Fischer-Tropsch (FT) synthesis reactions. This data base will be developed to allow the unambiguous comparison of the performance of these catalysts with each other and with state-of-the-art iron catalyst compositions. Particular attention will be devoted to generating reproducible kinetic and selectivity data and to developing reproducible improved catalyst compositions.

  13. Development and process evaluation of improved Fischer-Tropsch slurry catalysts

    SciTech Connect (OSTI)

    Withers, H.P. ); Bukur, D.B.; Rosynek, M.P. )

    1988-01-01

    The objective of this contract is to develop a consistent technical data base on the use of iron-based catalysts in Fischer-Tropsch (F-T) synthesis reactions. This data base will be developed to allow the unambiguous comparison of the performance of these catalysts with each other and with state-of-the-art iron catalyst compositions. Particular attention will be devoted to generating reproducible kinetic and selectivity data and to developing reproducible improved catalyst compositions.

  14. Processes and catalysts for conducting Fischer-Tropsch synthesis in a slurry bubble column reactor

    DOE Patents [OSTI]

    Singleton, A.H.; Oukaci, R.; Goodwin, J.G.

    1999-08-17

    Processes and catalysts are disclosed for conducting Fischer-Tropsch synthesis in a slurry bubble column reactor (SBCR). One aspect of the invention involves the use of cobalt catalysts without noble metal promotion in an SBCR. Another aspect involves using palladium promoted cobalt catalysts in an SBCR. Methods for preparing noble metal promoted catalysts via totally aqueous impregnation and procedures for producing attrition resistant catalysts are also provided. 1 fig.

  15. Processes and catalysts for conducting fischer-tropsch synthesis in a slurry bubble column reactor

    DOE Patents [OSTI]

    Singleton, Alan H.; Oukaci, Rachid; Goodwin, James G.

    1999-01-01

    Processes and catalysts for conducting Fischer-Tropsch synthesis in a slurry bubble column reactor (SBCR). One aspect of the invention involves the use of cobalt catalysts without noble metal promotion in an SBCR. Another aspect involves using palladium promoted cobalt catalysts in an SBCR. Methods for preparing noble metal promoted catalysts via totally aqueous impregnation and procedures for producing attrition resistant catalysts are also provided.

  16. Emissions characteristics of Military Helicopter Engines Fueled with JP-8 and a Fischer-Tropsch Fuel

    SciTech Connect (OSTI)

    Corporan, E.; DeWitt, M.; Klingshirn, Christopher D; Striebich, Richard; Cheng, Mengdawn

    2010-01-01

    The rapid growth in aviation activities and more stringent U.S. Environmental Protection Agency regulations have increased concerns regarding aircraft emissions, due to their harmful health and environmental impacts, especially in the vicinity of airports and military bases. In this study, the gaseous and particulate-matter emissions of two General Electric T701C engines and one T700 engine were evaluated. The T700 series engines power the U.S. Army's Black Hawk and Apache helicopters. The engines were fueled with standard military JP-8 fuel and were tested at three power settings. In addition, one of the T701C engines was operated on a natural-gas-derived Fischer-Tropsch synthetic paraffinic kerosene jet fuel. Test results show that the T701C engine emits significantly lower particulate-matter emissions than the T700 for all conditions tested. Particulate-matter mass emission indices ranged from 0.2-1.4 g/kg fuel for the T700 and 0.2-0.6 g/kg fuel for the T701C. Slightly higher NOx and lower CO emissions were observed for the T701C compared with the T700. Operation of the T701C with the Fischer-Tropsch fuel rendered dramatic reductions in soot emissions relative to operation on JP-8, due primarily to the lack of aromatic compounds in the alternative fuel. The Fischer-Tropsch fuel also produced smaller particles and slight reductions in CO emissions.

  17. An Ab Initio Approach Towards Engineering Fischer-Tropsch Surface Chemistry

    SciTech Connect (OSTI)

    Matthew Neurock

    2005-06-13

    As petroleum prices continue to rise and the United States seeks to reduce its dependency on foreign oil, there is a renewed interest in the research and development of more efficient and alternative energy sources, such as fuel cells. One approach is to utilize processes that can produce long-chain hydrocarbons from other sources. One such reaction is Fischer-Tropsch synthesis. Fischer-Tropsch synthesis is a process by which syngas (CO and H{sub 2}) is converted to higher molecular weight hydrocarbons. The reaction involves a complex set of bond-breaking and bond-making reactions, such as CO and H{sub 2} activation, hydrocarbon hydrogenation reactions, and hydrocarbon coupling reactions. This report details our initial construction of an ab initio based kinetic Monte Carlo code that can be used to begin to simulate Fischer-Tropsch synthesis over model Co(0001) surfaces. The code is based on a stochastic kinetic formalism that allows us to explicitly track the transformation of all reactants, intermediates and products. The intrinsic kinetics for the simulations were derived from the ab initio results that we reported in previous year summaries.

  18. Kinetics of Slurry Phase Fischer-Tropsch Synthesis

    SciTech Connect (OSTI)

    Dragomir B. Bukur; Gilbert F. Froment; Tomasz Olewski; Lech Nowicki; Madhav Nayapati

    2006-12-31

    The overall objective of this project is to develop a comprehensive kinetic model for slurry-phase Fischer-Tropsch synthesis (FTS) employing iron-based catalysts. This model will be validated with experimental data obtained in a stirred-tank slurry reactor (STSR) over a wide range of process conditions. Three STSR tests of the Ruhrchemie LP 33/81 catalyst were conducted to collect data on catalyst activity and selectivity under 25 different sets of process conditions. The observed decrease in 1-olefin content and increase in 2-olefin and n-paraffin contents with the increase in conversion are consistent with a concept that 1-olefins participate in secondary reactions (e.g. 1-olefin hydrogenation, isomerization and readsorption), whereas 2-olefins and n-paraffins are formed in these reactions. Carbon number product distribution showed an increase in chain growth probability with increase in chain length. Vapor-liquid equilibrium calculations were made to check validity of the assumption that the gas and liquid phases are in equilibrium during FTS in the STSR. Calculated vapor phase compositions were in excellent agreement with experimental values from the STSR under reaction conditions. Discrepancies between the calculated and experimental values for the liquid-phase composition (for some of the experimental data) are ascribed to experimental errors in the amount of wax collected from the reactor, and the relative amounts of hydrocarbon wax and Durasyn 164 oil (start-up fluid) in the liquid samples. Kinetic parameters of four kinetic models (Lox and Froment, 1993b; Yang et al., 2003; Van der Laan and Beenackers, 1998, 1999; and an extended kinetic model of Van der Laan and Beenackers) were estimated from experimental data in the STSR tests. Two of these kinetic models (Lox and Froment, 1993b; Yang et al., 2003) can predict a complete product distribution (inorganic species and hydrocarbons), whereas the kinetic model of Van der Laan and Beenackers (1998, 1999) can

  19. Yosemite Waters Vehicle Evaluation Report: Final Results (Brochure)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Results Prepared for South Coast Air Quality Management District by the National Renewable Energy Laboratory CRD-01-098 Fischer-Tropsch Synthetic Fuel Demonstration in a Southern California Vehicle Fleet Yosemite Waters Vehicle Evaluation Report Yosemite Waters Vehicle Evaluation Report i Alternative Fuel Trucks YOSEMITE WATERS VEHICLE EVALUATION REPORT Authors Leslie Eudy, National Renewable Energy Laboratory (NREL) Robb Barnitt, NREL Teresa L. Alleman, NREL August 2005 Acknowledgements This

  20. Young PhDs in Physics | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Results Prepared for South Coast Air Quality Management District by the National Renewable Energy Laboratory CRD-01-098 Fischer-Tropsch Synthetic Fuel Demonstration in a Southern California Vehicle Fleet Yosemite Waters Vehicle Evaluation Report Yosemite Waters Vehicle Evaluation Report i Alternative Fuel Trucks YOSEMITE WATERS VEHICLE EVALUATION REPORT Authors Leslie Eudy, National Renewable Energy Laboratory (NREL) Robb Barnitt, NREL Teresa L. Alleman, NREL August 2005 Acknowledgements This

  1. PROGRESS TOWARDS MODELING OF FISCHER TROPSCH SYNTHESIS IN A SLURRY BUBBLE COLUMN REACTOR

    SciTech Connect (OSTI)

    Donna Post Guillen; Tami Grimmett; Anastasia M. Gandrik; Steven P. Antal

    2010-11-01

    The Hybrid Energy Systems Testing (HYTEST) Laboratory is being established at the Idaho National Laboratory to develop and test hybrid energy systems with the principal objective to safeguard U.S. Energy Security by reducing dependence on foreign petroleum. A central component of the HYTEST is the slurry bubble column reactor (SBCR) in which the gas-to-liquid reactions will be performed to synthesize transportation fuels using the Fischer Tropsch (FT) process. SBCRs are cylindrical vessels in which gaseous reactants (for example, synthesis gas or syngas) is sparged into a slurry of liquid reaction products and finely dispersed catalyst particles. The catalyst particles are suspended in the slurry by the rising gas bubbles and serve to promote the chemical reaction that converts syngas to a spectrum of longer chain hydrocarbon products, which can be upgraded to gasoline, diesel or jet fuel. These SBCRs operate in the churn-turbulent flow regime which is characterized by complex hydrodynamics, coupled with reacting flow chemistry and heat transfer, that effect reactor performance. The purpose of this work is to develop a computational multiphase fluid dynamic (CMFD) model to aid in understanding the physico-chemical processes occurring in the SBCR. Our team is developing a robust methodology to couple reaction kinetics and mass transfer into a four-field model (consisting of the bulk liquid, small bubbles, large bubbles and solid catalyst particles) that includes twelve species: (1) CO reactant, (2) H2 reactant, (3) hydrocarbon product, and (4) H2O product in small bubbles, large bubbles, and the bulk fluid. Properties of the hydrocarbon product were specified by vapor liquid equilibrium calculations. The absorption and kinetic models, specifically changes in species concentrations, have been incorporated into the mass continuity equation. The reaction rate is determined based on the macrokinetic model for a cobalt catalyst developed by Yates and Satterfield [1]. The

  2. An Ab Initio Approach Towards Engineering Fischer-Tropsch Surface Chemistry

    SciTech Connect (OSTI)

    Matthew Neurock; David A. Walthall

    2006-05-07

    One of the greatest societal challenges over the next decade is the production of cheap, renewable energy for the 10 billion people that inhabit the earth. This will require the development of various different energy sources potentially including fuels derived from methane, coal, and biomass and alternatives sources such as solar, wind and nuclear energy. One approach will be to synthesize gasoline and other fuels from simpler hydrocarbons such as CO derived from methane or other U.S. based sources such as coal. Syngas (CO and H{sub 2}) can be readily converted into higher molecular weight hydrocarbons through Fischer-Tropsch synthesis. Fischer-Tropsch synthesis involves the initiation or activation of CO and H{sub 2} bonds, the subsequent propagation steps including hydrogenation and carbon-carbon coupling, followed by chain termination reactions. Commercially viable catalysts include supported Co and Co-alloys. Over the first two years of this project we have used ab initio methods to determine the adsorption energies for all reactants, intermediates, and products along with the overall reaction energies and their corresponding activation barriers over the Co(0001) surface. Over the third year of the project we developed and advanced an ab initio-based kinetic Monte Carlo simulation code to simulate Fischer Tropsch synthesis. This report details our work over the last year which has focused on the derivation of kinetic parameters for the elementary steps involved in FT synthesis from ab initio density functional theoretical calculations and the application of the kinetic Monte Carlo algorithm to simulate the initial rates of reaction for FT over the ideal Co(0001) surface. The results from our simulations over Co(0001) indicate the importance of stepped surfaces for the activation of adsorbed CO. In addition, they demonstrate that the dominant CH{sub x}* surface intermediate under steady state conditions is CH*. This strongly suggests that hydrocarbon coupling

  3. Assessment of well-to-wheel energy use and greenhouse gas emissions of Fischer-Tropsch diesel.

    SciTech Connect (OSTI)

    Wang, M.

    2001-12-13

    The middle distillate fuel produced from natural gas (NG) via the Fischer-Tropsch (FT) process has been proposed as a motor fuel for compression-ignition (CI) engine vehicles. FT diesel could help reduce U.S. dependence on imported oil. The U.S. Department of Energy (DOE) is evaluating the designation of FT diesel as an alternative motor fuel under the 1992 Energy Policy Act (EPACT). As part of this evaluation, DOE has asked the Center for Transportation Research at Argonne National Laboratory to conduct an assessment of well-to-wheels (WTW) energy use and greenhouse gas (GHG) emissions of FT diesel compared with conventional motor fuels (i.e., petroleum diesel). For this assessment, we applied Argonne's Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model to conduct WTW analysis of FT diesel and petroleum diesel. This report documents Argonne's assessment. The results are presented in Section 2. Appendix A describes the methodologies and assumptions used in the assessment.

  4. Technology development for iron Fischer-Tropsch catalysis. Quarterly technical progress report No. 5, October 1, 1995--December 31, 1995

    SciTech Connect (OSTI)

    Davis, B.H.

    1996-01-19

    The objective of this research project is to develop the technology for the production of physically robust iron-based Fischer-Tropsch catalysts that have suitable activity, selectivity and stability to be used in the slurry phase synthesis reactor development. The catalysts that are developed shall be suitable for testing in the Advanced Fuels Development Facility at LaPorte, Texas, to produce either low- or high-alpha product distributions. Previous work by the offeror has produced a catalyst formulation that is 1.5 times as active as the ``standard-catalyst`` developed by German workers for slurry phase synthesis. The proposed work will optimize the catalyst composition and pretreatment operation for this low-alpha catalyst. In parallel, work will be conducted to design a high-alpha iron catalyst this is suitable for slurry phase synthesis. Studies will be conducted to define the chemical phases present at various stages of the pretreatment and synthesis stages and to define the course of these changes. The oxidation/reduction cycles that are anticipated to occur in large, commercial reactors will be studied at the laboratory scale. Catalyst performance will be determined for catalysts synthesized in this program for activity, selectivity and aging characteristics. The research is divided into four major topical areas: (a) catalyst preparation and characterization, (b) product characterization, (c) reactor operations, and (d) data assessment. Accomplishments to date are described.

  5. Technology development for iron Fischer-Tropsch catalysis. Quarterly technical progress report No. 6, January 1, 1996--March 31, 1996

    SciTech Connect (OSTI)

    Davis, B.H.

    1996-05-01

    The objective of this research project is to develop the technology for the production of physically robust iron-based Fischer-Tropsch catalysts that have suitable activity, selectivity and stability to be used in the slurry phase synthesis reactor development. The catalysts that are developed shall be suitable for testing in the Advanced Fuels Development Facility at LaPorte, Texas, to produce either low- or high-alpha product distributions. Previous work by the offeror has produced a catalyst formulation that is 1.5 times as active as the ``standard-catalyst`` developed by German workers for slurry phase synthesis. The proposed work will optimize the catalyst composition and pretreatment operation for this low-alpha catalyst. In parallel, work will be conducted to design a high-alpha iron catalyst that is suitable for slurry phase synthesis. Studies will be conducted to define the chemical phases present at various stages of the pretreatment and synthesis stages and to define the course of these changes. The oxidation/reduction cycles that are anticipated to occur in large, commercial reactors will be studied at the laboratory scale. Catalyst performance will be determined for catalysts synthesized in this program for activity, selectivity and aging characteristics. The research is divided into four major topical areas: (a) catalyst preparation and characterization, (b) product characterization, (c) reactor operations, and (d) data assessment. Accomplishments for this period are discussed.

  6. Baseline design/economics for advanced Fischer-Tropsch technology. Quarterly report, October--December 1991

    SciTech Connect (OSTI)

    Not Available

    1992-04-27

    The objectives of the study are to: Develop a baseline design for indirect liquefaction using advanced Fischer-Tropsch (F-T) technology. Prepare the capital and operating costs for the baseline design. Develop a process flowsheet simulation (PFS) model. The baseline design, the economic analysis, and the computer model will be the major research planning tools that Pittsburgh Energy Technology Center will use to plan, guide, and evaluate its ongoing and future research and commercialization programs relating to indirect coal liquefaction for the manufacture of synthetic liquid fuels from coal.

  7. An Ab Initio Approach Towards Engineering Fischer-Tropsch Surface Chemistry

    SciTech Connect (OSTI)

    Matthew Neurock

    2002-09-11

    As the US seeks to develop an energy strategy that reduces the reliance on foreign oil, there is a renewed interest in research and development of the Fischer Tropsch synthesis of converting syngas into long chain hydrocarbon products. This report investigates some of the basic elementary steps for Fischer-Tropsch synthesis over ideal Co and Ru metal surfaces by using ab initio density functional theoretical calculations. This includes activation of CO of CO, the hydrogenation of CH{sub x} intermediates, and the adsorption and dissociation of water. The activation of CO is studied in detail showing a strong dependence on the surface coverage, defect sites and Co-Ru alloy formation. The barriers for CO activation over the ideal (0001) surfaces are quite high making CO activation at the terrace sites unlikely under operating conditions. The calculations for the overall reaction energies at the step edges indicate that these sites are much more reactive. The hydrogenation of the CHx intermediates occurs in a sequential fashion. CH1 was found to be the most stable intermediate over various surfaces. The barriers to form both CH* as well as CH{sub 4} are both found to be highly activated and potentially difficult steps. Water which is a reaction product was found to be weakly adsorbed on Co. Analysis of the microscopic reverse reaction of water activation indicates that this process has a very low activation barrier. Consequently, any water which forms desorbs or is activated to form surface hydroxyl intermediates.

  8. Development and process evaluation of improved Fischer-Tropsch slurry catalysts. Final report

    SciTech Connect (OSTI)

    Bukur, D.B.; Mukesh, D.; Patel, S.A.; Zimmerman, W.H.; Rosynek, M.P.; Kellogg, L.J.

    1990-04-01

    This report describes results of a study aimed at developing and evaluating improved catalysts for a slurry Fischer-Tropsch (FT) process for converting synthesis gas to high quality transportation fuels (gasoline and distillate). The improvements in catalyst performance were sought by studying effects of pretreatment conditions, promoters and binders/supports. A total of 20 different, iron based, catalysts were evaluated in 58 fixed bed reactor tests and 10 slurry reactor tests. The major accomplishments and conclusions are summarized below. The pretreatment conditions (temperature, duration and the nature of reducing gas) have significant effect on catalyst performance (activity, selectivity and stability) during Fischer-Tropsch synthesis. One of precipitated unsupported catalysts had hydrocarbon selectivity similar to Mobil`s I-B catalyst in high wax mode operation, and had not experienced any loss in activity during 460 hours of testing under variable process conditions in a slurry reactor. The effect of promoters (copper and potassium) on catalyst performance during FT synthesis has been studied in a systematic way. It was found that potassium promotion increases activities of the FT and water-gas-shift (WGS) reactions, the average molecular weight of hydrocarbon products, and suppresses the olefin hydrogenation and isomerization reactions. The addition of binders/supports (silica or alumina) to precipitated Fe/Cu/K catalysts, decreased their activity but improved their stability and hydrocarbon selectivity. The performance of catalysts of this type was very promising and additional studies are recommended to evaluate their potential for use in commercial slurry reactors.

  9. Effect of product upgrading on Fischer-Tropsch indirect coal liquefaction economics

    SciTech Connect (OSTI)

    Choi, G.N.; Kramer, S.J.; Tam, S.S.; Fox, J.M. III

    1995-12-31

    Conceptual plant designs with cost estimates for indirect coal liquefaction technology to produce environmentally acceptable transportation liquid fuels meeting the Clear Air Act requirements were developed for the US Department of Energy (DOE). The designs incorporate the latest development in coal gasification technology and advanced Fischer-Tropsch (F-T) slurry reactor design. ASPEN process simulation models were developed to provide detailed plant material and energy balances, utility requirements, operating and capital costs. A linear programming model based on a typical PADD II refinery was developed to assess the values of the produced F-T products. The results then were used in a discounted cash flow spreadsheet model to examine the effect of key process variables on the overall F-T economics. Different models were developed to investigate the various routes of upgrading the F-T products. The effects of incorporating a close-coupled ZSM-5 reactor to upgrade the vapor stream leaving the Fischer-Tropsch reactor have been reported previously. This paper compares two different schemes of F-T was upgrading, namely fluidized bed catalytic cracking verse mild hydrocracking.

  10. Iron Aerogel and Xerogel Catalysts for Fischer-Tropsch Synthesis of Diesel Fuel

    SciTech Connect (OSTI)

    Bali, S.; Huggins, F; Huffman, G; Ernst, R; Pugmire, R; Eyring, E

    2009-01-01

    Iron aerogels, potassium-doped iron aerogels, and potassium-doped iron xerogels have been synthesized and characterized and their catalytic activity in the Fischer-Tropsch (F-T) reaction has been studied. Iron aerogels and xerogels were synthesized by polycondensation of an ethanolic solution of iron(III) chloride hexahydrate with propylene oxide which acts as a proton scavenger for the initiation of hydrolysis and polycondensation. Potassium was incorporated in the iron aerogel and iron xerogel by adding aqueous K{sub 2}CO{sub 3} to the ethanolic solutions of the Fe(III) precursor prior to addition of propylene oxide. Fischer-Tropsch activities of the catalysts were tested in a fixed bed reactor at a pressure of 100 psi with a H{sub 2}:CO ratio of 2:1. Iron aerogels were found to be active for F-T synthesis, and their F-T activities increased on addition of a K containing promoter. Moessbauer spectroscopic data are consistent with an open, nonrigid iron(III) aerogel structure progressing to an iron carbide/metallic iron catalyst via agglomeration as the F-T synthesis proceeds in the course of a 35 h fixed bed reaction test.

  11. State-of-the-art processes for manufacturing synthetic liquid fuels via the Fischer-Tropsch synthesis

    SciTech Connect (OSTI)

    A.Y. Krylova; E.A. Kozyukov

    2007-12-15

    Processes for manufacturing synthetic liquid fuels on the basis of the Fischer-Tropsch synthesis from alternative feedstock (natural gas, coal, biomass of various origins, etc.) are surveyed. State-of-the-art technology, companies that offer such processes, and the quality of products in comparison with their oil analogs, as well as economic features of the processes, are considered.

  12. Fischer-Tropsch synthesis from a low H/sub 2/:CO gas in a dry fluidized-bed system. Volume 2. Development of microreactor systems for unsteady-state Fischer-Tropsch synthesis. Final technical report. [408 references

    SciTech Connect (OSTI)

    Whiting, G.K.; Liu, Y.A.; Squires, A.M.

    1986-10-01

    Vibrofluidized microreactor systems have been developed for studies of unsteady-state Fischer-Tropsch synthesis. This development is aimed at preventing carbon deposition on a fused-iron catalyst in a novel reactor called the ''heat tray.'' This reactor involves a supernatant gas flowing over a shallow fluidized bed of catalyst particles. Three systems were built: (1) a vibrofluidized-bed microreactor system for obtaining baseline carbon deposition information under industrially important reaction conditions; (2) a sliding-plug vibrofluidized-bed microreactor system for rapid switching of feed gases in the F-T synthesis; and (3) a cold-flow microreactor model for studying the gas mixing characteristics of the sliding-plug vibrofluidized-bed microreactor. The results show that catalyst defluidization occurred under steady-state synthesis conditions below 395 C using a feed gas of H/sub 2//CO ratio of 2:1 or less. Above 395 C, the probability of hydrocarbon chain growth (..cap alpha.. < 0.50 to prevent accumulation of high-molecular-weight species that cause defluidization. Carbon deposition was rapid above 395 C when a feed gas of H/sub 2//CO ratio of 2:1 or less was used. Cold-flow microreactor model studies show that rapid (on the order of seconds), quantitative switching of feed gases over a vibrofluidized bed of catalyst could be achieved. Vibrofluidization of the catalyst bed induced little backmixing of feed gas over the investigated flow-rate range of 417 to 1650 actual mm/sup 3//s. Further, cold-flow microreactor model studies showed intense solid mixing when a bed of fused-iron catalyst (150 to 300 microns) was vibrofluidized at 24 cycles per second with a peak-to-peak amplitude of 4 mm. The development of the microreactor systems provided an easy way of accurately determining integral fluid-bed kinetics in a laboratory reactor. 408 refs., 156 figs., 27 tabs.

  13. Upgrading Fischer-Tropsch LPG (liquefied petroleum gas) with the Cyclar process

    SciTech Connect (OSTI)

    Gregor, J.H.; Gosling, C.D.; Fullerton, H.E.

    1989-04-28

    The use of the UOP/BP Cyclar{reg sign} process for upgrading Fischer-Tropsch (F-T) liquefied petroleum gas (LPG) was studied at UOP{reg sign}. The Cyclar process converts LPG into aromatics. The LPG derived from F-T is highly olefinic. Two routes for upgrading F-T LPG were investigated. In one route, olefinic LPG was fed directly to a Cyclar unit (Direct Cyclar). The alternative flow scheme used the Huels CSP process to saturate LPG olefins upstream of the Cyclar unit (Indirect Cyclar). An 18-run pilot plant study verified that each route is technically feasible. An economic evaluation procedure was designed to choose between the Direct and Indirect Cyclar options for upgrading LPG. Four situations involving three different F-T reactor technologies were defined. The main distinction between the cases was the degree of olefinicity, which ranged between 32 and 84 wt % of the fresh feed. 8 refs., 80 figs., 44 tabs.

  14. Role of copper promotion in precipitated iron Fischer-Tropsch catalysts

    SciTech Connect (OSTI)

    O`Brien, R.J.; Xu, L.; Davis, B.H.

    1996-10-01

    Slurry phase Fischer-Tropsch synthesis was conducted on precipitated iron-silicon catalysts. The affect of copper promotion on the activity and selectivity of carbon monoxide, hydrogen and syngas activated catalysts is presented. High activity and stability have been obtained for potassium promoted catalysts when operating at 270{degrees}C; however, it has been found that promotion with potassium and copper is essential to obtaining good activity in a wax producing mode at 230{degrees}C. Promotion with copper is critical to achieving good activity when pretreating catalysts with hydrogen or with syngas at high pressure. XRD and Mossbauer data indicate that copper facilitates the reduction of iron oxide to metallic iron and iron carbides during hydrogen and syngas pretreatments.

  15. Platinum-Modulated Cobalt Nanocatalysts for Low-Temperature Aqueous-Phase Fischer Tropsch Synthesis

    SciTech Connect (OSTI)

    Wang, Hang [Peking University; Zhou, Wu [ORNL; Liu, JinXun [Dalian Institute of Chemical Physics; Si, Rui [Brookhaven National Laboratory (BNL); Sun, Geng [Peking University; Zhong, Mengqi [Peking University; Su, Haiyan [Peking University; Zhao, Huabo [Peking University; Rodrigues, Jose [Brookhaven National Laboratory (BNL); Pennycook, Stephen J [ORNL; Idrobo Tapia, Juan C [ORNL; Li, Weixue [Dalian Institute of Chemical Physics; Kou, Yuan [Peking University; Ma, Ding [Peking University

    2013-01-01

    Fischer Tropsch synthesis (FTS) is an important catalytic process for liquid fuel generation, which converts coal/shale gas/biomass-derived syngas (a mixture of CO and H2) to oil. While FTS is thermodynamically favored at low temperature, it is desirable to develop a new catalytic system that could allow working at a relatively low reaction temperature. In this article, we present a one-step hydrogenation reduction route for the synthesis of Pt Co nanoparticles (NPs) which were found to be excellent catalysts for aqueous-phase FTS at 433 K. Coupling with atomic-resolution scanning transmission electron microscopy (STEM) and theoretical calculations, the outstanding activity is rationalized by the formation of Co overlayer structures on Pt NPs or Pt Co alloy NPs. The improved energetics and kinetics from the change of the transition states imposed by the lattice mismatch between the two metals are concluded to be the key factors responsible for the dramatically improved FTS performance.

  16. Fischer-Tropsch synthesis in supercritical reaction media. Progress report, January 1, 1993--March 31, 1993

    SciTech Connect (OSTI)

    Subramaniam, B.; Bochniak, D.; Snavely, K.

    1993-04-01

    The reactor configuration has been modified to handle tows both in the upflow and downflow directions. For comparison to bubble column operation, an upflow mode of operation will be used. For comparison to trickle-bed operation, a downflow mode will be employed. Thus, this modification allows the most flexibility for studying the effects of liquid and supercritical reaction media on the Fischer-Tropsch synthesis reaction and permits comparisons of our experimental results with previous work. A stainless steel reactor tube was ordered. This unit along with three other pieces of tubing (greater than 1/4in. i. d.) are to be sent to Alon Processing Co. for alonizing (passivating) the internal surface. This process had been employed by Huff and Satterfield (1983) to ensure that the stainless steel surfaces are catalytically inert at high temperatures (> 200{degree}C).

  17. Design and performance of a high-pressure Fischer-Tropsch fluidized bed reactor

    SciTech Connect (OSTI)

    Weimer, A.W.; Quarderer, G.J.; Cochran, G.A.; Conway, M.M. )

    1988-01-01

    A 900 kg/day, CO/H/sub 2/, high-pressure, fluidized bed, pilot reactor was designed from first principles to achieve high reactant conversions and heat removal rates for the Fischer-Tropsch (F-T) synthesis of liquefied petroleum gases (LPG's). Suppressed bubble growth at high pressure allowed high reactant conversions which nearly matched those obtained at identical conditions in a lab scale fixed bed reactor. For GHSV approximately 1400 hr/sup -1/ and T = 658 {Kappa} at P approximately 7000 {kappa}Pa, reactant conversion exceeded 75%. The reactor heat removal capability exceeded twice design performance with the fluidized bed easily operating under thermally stable conditions. The fluidized catalyst was a potassium promoted, molybdenum on carbon (Mo/{Kappa}/C) catalyst which did not produce any detrimental waxy products. Long catalyst lifetimes of 1000 hrs on steam between regenerations allowed the fluidized bed to be operated in a batch mode.

  18. An Ab Initio Approach Towards Engineering Fischer-Tropsch Surface Chemistry

    SciTech Connect (OSTI)

    Matthew Neurock; Siddharth Chopra

    2003-09-11

    As the US seeks to develop an energy strategy that reduces the reliance on foreign oil, there is a renewed interest in the research and development of the Fischer Tropsch synthesis for converting syngas into long chain hydrocarbon products. This report investigates some of the basic elementary steps for Fischer-Tropsch synthesis over ideal Pt, Ru and carbon-covered Pt and Ru metal surfaces by using ab initio density functional theoretical calculations. We examine in detail the adsorption sites as well as the binding energies for C, CH, CH{sub 2}, CH3 and CH4 on Pt(111), Ru(0001), 2x2-C-Pt(111) and 2x2-C-Ru(0001). The results indicate that the binding energies increase with decreasing the hydrogen in the fragment molecule, i.e. CH{sub 4} < CH{sub 3} < CH{sub 2} < CH < C. More specifically the work analyzes the elementary steps involved in the activation of methane. This is simply the reverse set of steps necessary for the hydrogenation of C to CH{sub 4}. The results indicate that these hydrocarbon intermediates bind more strongly to Ru than Pt. The introduction of co-adsorbed carbon atoms onto both Ru(0001) as well as Pt(111) significantly increased the overall energies as well as the activation barriers for C-H bond activation. The results suggest that Ru may be so active that it initially can initially activate CH4 into CH or C but ultimately it dies because the CH and C intermediates poison the surface and thus kill its activity. Methane can dissociate on Pt but subsequent hydrocarbon coupling reactions act to remove the surface carbon.

  19. Development of attrition resistant iron-based Fischer-Tropsch catalysts

    SciTech Connect (OSTI)

    2000-09-20

    The Fischer-Tropsch (F-T) reaction provides a way of converting coal-derived synthesis gas (CO+H{sub 2}) to liquid fuels. Since the reaction is highly exothermic, one of the major problems in control of the reaction is heat removal. Recent work has shown that the use of slurry bubble column reactors (SBCRs) can largely solve this problem. The use of iron-based catalysts is attractive not only due to their low cost and ready availability, but also due to their high water-gas shift activity which makes it possible to use these catalysts with low H{sub 2}/CO ratios. However, a serious problem with use of Fe catalysts in a SBCR is their tendency to undergo attrition. This can cause fouling/plugging of downstream filters and equipment, makes the separation of catalyst from the oil/wax product very difficult if not impossible, and results a steady loss of catalyst from the reactor. The objective of this research is to develop robust iron-based Fischer-Tropsch catalysts that have suitable activity, selectivity and stability to be used in the slurry bubble column reactor. Specifically we aim to develop to: (1) improve the performance and preparation procedure of the high activity, high attrition resistant, high alpha iron-based catalysts synthesized at Hampton University (2) seek improvements in the catalyst performance through variations in process conditions, pretreatment procedures and/or modifications in catalyst preparation steps and (3) investigate the performance in a slurry reactor. The effort during the reporting period has been devoted to effects of pretreating procedures, using H{sub 2}, CO and syngas (H{sub 2}/CO = 0.67) as reductants, on the performance (activity, selectivity and stability with time) of a precipitated iron catalyst (100Fe/5Cu/4.2K/10SiO{sub 2} on a mass basis ) during F-T synthesis were studied in a fixed-bed reactor.

  20. Isotopic tracer studies of Fischer-Tropsch Synthesis over Ru/TiO sub 2 catalysts

    SciTech Connect (OSTI)

    Krishna, K.R.

    1992-01-01

    Fischer-Tropsch synthesis is a process in which CO and H{sub 2} react to give predominantly liquid hydrocarbons. The reaction can be considered a special type of polymerization in which the monomer is produced in situ, and chain growth occurs by a sequence of independently repeated additions of the monomer to the growing chain. A investigation has been conducted to study the CO hydrogenation reaction in order to better understand catalyst deactivation and the elementary surface processes involved in chain growth. Isotopic tracers are used in conjunction with transient-response techniques in this study of Fischer-Tropsch synthesis over Ru/TiO{sub 2} catalysts. Experiments are conducted at a total pressure of 1 atmosphere, reaction temperatures of 453--498 K and D{sub 2}/CO (or H{sub 2}/CO) ratios of 2--5. Synthesis products are analyzed by gas chromatography or isotope-ratio gas chromatography-mass spectrometry. Rate constants for chain initiation, propagation and termination are evaluated under steady-state reaction conditions by using transients in isotopic composition. The activation energy for chain termination is much higher than that for propagation, accounting for the observed decrease in the chain growth parameter are also estimated. Coverages by reaction intermediates are also estimated. When small amounts of {sup 12}C-labelled ethylene are added to {sup 13}CO/H{sub 2} synthesis gas, ethylene acts as the sole chain initiator. Ethylene-derived carbon also accounts for 45% of the C{sub 1} monomer pool. 102 refs., 29 figs., 11 tabs.

  1. Isotopic tracer studies of Fischer-Tropsch Synthesis over Ru/TiO{sub 2} catalysts

    SciTech Connect (OSTI)

    Krishna, K.R.

    1992-01-01

    Fischer-Tropsch synthesis is a process in which CO and H{sub 2} react to give predominantly liquid hydrocarbons. The reaction can be considered a special type of polymerization in which the monomer is produced in situ, and chain growth occurs by a sequence of independently repeated additions of the monomer to the growing chain. A investigation has been conducted to study the CO hydrogenation reaction in order to better understand catalyst deactivation and the elementary surface processes involved in chain growth. Isotopic tracers are used in conjunction with transient-response techniques in this study of Fischer-Tropsch synthesis over Ru/TiO{sub 2} catalysts. Experiments are conducted at a total pressure of 1 atmosphere, reaction temperatures of 453--498 K and D{sub 2}/CO (or H{sub 2}/CO) ratios of 2--5. Synthesis products are analyzed by gas chromatography or isotope-ratio gas chromatography-mass spectrometry. Rate constants for chain initiation, propagation and termination are evaluated under steady-state reaction conditions by using transients in isotopic composition. The activation energy for chain termination is much higher than that for propagation, accounting for the observed decrease in the chain growth parameter are also estimated. Coverages by reaction intermediates are also estimated. When small amounts of {sup 12}C-labelled ethylene are added to {sup 13}CO/H{sub 2} synthesis gas, ethylene acts as the sole chain initiator. Ethylene-derived carbon also accounts for 45% of the C{sub 1} monomer pool. 102 refs., 29 figs., 11 tabs.

  2. Hydrodynamics of Fischer-Tropsch synthesis in slurry bubble column reactors: Final report

    SciTech Connect (OSTI)

    Bukur, D.B.; Daly, J.G.; Patel, S.A.; Raphael, M.L.; Tatterson, G.B.

    1987-06-01

    This report describes studies on hydrodynamics of bubble columns for Fischer-Tropsch synthesis. These studies were carried out in columns of 0.051 m and 0.229 m in diameter and 3 m tall to determine effects of operating conditions (temperature and gas flow rate), distributor type (sintered metal plate and single and multi-hole perforated plates) and liquid media (paraffin and reactor waxes) on gas hold-up and bubble size distribution. In experiments with the Fischer-Tropsch (F-T) derived paraffin wax (FT-300) for temperatures between 230 and 280/sup 0/C there is a range of gas velocities (transition region) where two values of gas hold-up (i.e., two flow regimes) are possible. Higher hold-ups were accompanied by the presence of foam (''foamy'' regime) whereas lower values were obtained in the absence of foam (''slug flow'' in the 0.051 m column, or ''churn-turbulent'' flow regime in the 0.229 m column). This type of behavior has been observed for the first time in a system with molten paraffin wax as the liquid medium. Several factors which have significant effect on foaming characteristics of this system were identified. Reactor waxes have much smaller tendency to foam and produce lower hold-ups due to the presence of larger bubbles. Finally, new correlations for prediction of the gas hold-up and the specific gas-liquid interfacial area were developed on the basis of results obtained in the present study. 49 refs., 99 figs., 19 tabs.

  3. Development and process evaluation of improved Fischer-Tropsch slurry catalysts. Quarterly technical progress report, 1 October--31 December 1988

    SciTech Connect (OSTI)

    Withers, H.P.; Bukur, D.B.; Rosynek, M.P.

    1988-12-31

    The objective of this contract is to develop a consistent technical data base on the use of iron-based catalysts in Fischer-Tropsch (FT) synthesis reactions. This data base will be developed to allow the unambiguous comparison of the performance of these catalysts with each other and with state-of-the-art iron catalyst compositions. Particular attention will be devoted to generating reproducible kinetic and selectivity data and to developing reproducible improved catalyst compositions.

  4. Development of process evaluation of improved Fischer-Tropsch slurry catalysts. Quarterly technical progress report, 1 April--30 June 1988

    SciTech Connect (OSTI)

    Withers, H.P.; Bukur, D.B.; Rosynek, M.P.

    1988-12-31

    The objective of this contract is to develop a consistent technical data base on the use of iron-based catalysts in Fischer-Tropsch (FT) synthesis reactions. This data base will be developed to allow the unambiguous comparison of the performance of these catalysts with each other and with state-of-the-art iron catalyst compositions. Particular attention will be devoted to generating reproducible kinetic and selectivity data and to developing reproducible improved catalyst compositions.

  5. Development and process evaluation of improved Fischer-Tropsch slurry catalysts. Quarterly technical progress report, 1 July--30 September 1988

    SciTech Connect (OSTI)

    Withers, H.P.; Bukur, D.B.; Rosynek, M.P.

    1988-12-31

    The objective of this contract is to develop a consistent technical data base on the use of iron-based catalysts in Fischer-Tropsch (F-T) synthesis reactions. This data base will be developed to allow the unambiguous comparison of the performance of these catalysts with each other and with state-of-the-art iron catalyst compositions. Particular attention will be devoted to generating reproducible kinetic and selectivity data and to developing reproducible improved catalyst compositions.

  6. An Ab Initio Approach Towards Engineering Fischer-Tropsch Surface Chemistry

    SciTech Connect (OSTI)

    Matthew Neurock

    2006-09-11

    One of the greatest societal challenges over the next decade is the production of cheap, renewable energy for the 10 billion people that inhabit the earth. This will require the development of various energy sources which will likely include fuels derived from methane, coal, and biomass and alternatives sources such as solar, wind and nuclear energy. One approach will be to synthesize gasoline and other fuels from simpler hydrocarbons such as CO derived from methane or other U.S. based sources such as coal. Syngas (CO and H{sub 2}) can be readily converted into higher molecular weight hydrocarbons through Fischer-Tropsch synthesis. Fischer-Tropsch (FT) synthesis involves the adsorption and the activation of CO and H{sub 2}, the subsequent propagation steps including hydrogenation and carbon-carbon coupling, followed by chain termination reactions. The current commercial catalysts are supported Co and Co-alloys particles. This project set out with the following objectives in mind: (1) understand the reaction mechanisms that control FT kinetics, (2) predict how the intrinsic metal-adsorbate bond affects the sequence of elementary steps in FT, (3) establish the effects of the reaction environment on catalytic activity and selectivity, (4) construct a first-principles based algorithm that can incorporate the detailed atomic surface structure and simulate the kinetics for the myriad of elementary pathways that make up FT chemistry, and (5) suggest a set of optimal features such as alloy composition and spatial configuration, oxide support, distribution of defect sites. As part of this effort we devoted a significant portion of time to develop an ab initio based kinetic Monte Carlo simulation which can be used to follow FT surface chemistry over different transition metal and alloy surfaces defined by the user. Over the life of this program, we have used theory and have developed and applied stochastic Monte Carlo simulations in order to establish the fundamental

  7. DEVELOPMENT OF A COMPUTATIONAL MULTIPHASE FLOW MODEL FOR FISCHER TROPSCH SYNTHESIS IN A SLURRY BUBBLE COLUMN REACTOR

    SciTech Connect (OSTI)

    Donna Post Guillen; Tami Grimmett; Anastasia M. Gribik; Steven P. Antal

    2010-09-01

    The Hybrid Energy Systems Testing (HYTEST) Laboratory is being established at the Idaho National Laboratory to develop and test hybrid energy systems with the principal objective to safeguard U.S. Energy Security by reducing dependence on foreign petroleum. A central component of the HYTEST is the slurry bubble column reactor (SBCR) in which the gas-to-liquid reactions will be performed to synthesize transportation fuels using the Fischer Tropsch (FT) process. SBCRs are cylindrical vessels in which gaseous reactants (for example, synthesis gas or syngas) is sparged into a slurry of liquid reaction products and finely dispersed catalyst particles. The catalyst particles are suspended in the slurry by the rising gas bubbles and serve to promote the chemical reaction that converts syngas to a spectrum of longer chain hydrocarbon products, which can be upgraded to gasoline, diesel or jet fuel. These SBCRs operate in the churn-turbulent flow regime which is characterized by complex hydrodynamics, coupled with reacting flow chemistry and heat transfer, that effect reactor performance. The purpose of this work is to develop a computational multiphase fluid dynamic (CMFD) model to aid in understanding the physico-chemical processes occurring in the SBCR. Our team is developing a robust methodology to couple reaction kinetics and mass transfer into a four-field model (consisting of the bulk liquid, small bubbles, large bubbles and solid catalyst particles) that includes twelve species: (1) CO reactant, (2) H2 reactant, (3) hydrocarbon product, and (4) H2O product in small bubbles, large bubbles, and the bulk fluid. Properties of the hydrocarbon product were specified by vapor liquid equilibrium calculations. The absorption and kinetic models, specifically changes in species concentrations, have been incorporated into the mass continuity equation. The reaction rate is determined based on the macrokinetic model for a cobalt catalyst developed by Yates and Satterfield [1]. The

  8. Researching Fe catalyst suitable for CO{sub 2}-containing syngas for Fischer-Tropsch synthesis

    SciTech Connect (OSTI)

    Wensheng Ning; Naoto Koizumi; Muneyoshi Yamada

    2009-09-15

    Fischer-Tropsch (FT) synthesis is a technology to produce liquid fuels from coal, natural gas, and biomass as an alternate to crude oil. However, the quantity of emitted CO{sub 2} from the FT process consisting of syngas preparation, FT synthesis, and product workup is one of the serious disadvantages of FT process. The conversion of CO{sub 2} into hydrocarbons is one of the promising methods to decrease CO{sub 2} emissions. Effects of promoter addition on the activity of precipitated Fe catalysts for the conversion of CO{sub 2} were studied using pure CO{sub 2} and CO{sub 2}-containing syngas feeds. The results suggested that CO{sub 2} can be activated by suitable promoter(s) for hydrocarbon synthesis at low temperature. Low K content is suitable for increasing hydrocarbon yield. The Fe catalysts promoted by equal Zn and Cu have higher CO and CO{sub 2} conversion and decreased CH{sub 4} selectivity. 36 refs., 7 figs., 3 tabs.

  9. Potential for Coal-to-Liquids Conversion in the United States-Fischer-Tropsch Synthesis

    SciTech Connect (OSTI)

    Patzek, Tad W. Croft, Gregory D.

    2009-09-15

    The United States has the world's largest coal reserves and Montana the highest potential for mega-mine development. Consequently, a large-scale effort to convert coal to liquids (CTL) has been proposed to create a major source of domestic transportation fuels from coal, and some prominent Montanans want to be at the center of that effort. We calculate that the energy efficiency of the best existing Fischer-Tropsch (FT) process applied to average coal in Montana is less than 1/2 of the corresponding efficiency of an average crude oil refining process. The resulting CO{sub 2} emissions are 20 times (2000%) higher for CTL than for conventional petroleum products. One barrel of the FT fuel requires roughly 800 kg of coal and 800 kg of water. The minimum energy cost of subsurface CO{sub 2} sequestration would be at least 40% of the FT fuel energy, essentially halving energy efficiency of the process. We argue therefore that CTL conversion is not the most valuable use for the coal, nor will it ever be, as long as it is economical to use natural gas for electric power generation. This finding results from the low efficiency inherent in FT synthesis, and is independent of the monumental FT plant construction costs, mine construction costs, acute lack of water, and the associated environmental impacts for Montana.

  10. ULTRA-CLEAN FISCHER-TROPSCH FUELS PRODUCTION AND DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    Steve Bergin

    2003-10-17

    The Syntroleum plant is mechanically complete and currently undergoing start-up. The fuel production and demonstration plan is near completion. The study on the impact of small footprint plant (SFP) fuel on engine performance is about half-completed. Cold start testing has been completed. Preparations have been completed for testing the fuel in diesel electric generators in Alaska. Preparations are in progress for testing the fuel in bus fleets at Denali National Park and the Washington Metropolitan Transit Authority. The experiments and analyses conducted during this project show that Fischer-Tropsch (FT) gas-to-liquid diesel fuel can easily be used in a diesel engine with little to no modifications. Additionally, based on the results and discussion presented, further improvements in performance and emissions can be realized by configuring the engine to take advantage of FT diesel fuel's properties. The FT fuel also shows excellent cold start properties and enabled the engine tested to start at more the ten degrees than traditional fuels would allow. This plant produced through this project will produce large amounts of FT fuel. This will allow the fuel to be tested extensively, in current, prototype, and advanced diesel engines. The fuel may also contribute to the nation's energy security. The military has expressed interest in testing the fuel in aircraft and ground vehicles.

  11. Baseline design/economics for advanced Fischer-Tropsch technology. Quarterly report, January--March 1992

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    The objectives of the study are to: Develop a baseline design for indirect liquefaction using advanced Fischer-Tropsch (F-T) technology. Prepare the capital and operating costs for the baseline design. Develop a process flow sheet simulation (PFS) model. This report summarizes the activities completed during the period December 23, 1992 through March 15, 1992. In Task 1, Baseline Design and Alternates, the following activities related to the tradeoff studies were completed: approach and basis; oxygen purity; F-T reactor pressure; wax yield; autothermal reformer; hydrocarbons (C{sub 3}/C{sub 4}s) recovery; and hydrogenrecovery. In Task 3, Engineering Design Criteria, activities were initiated to support the process tradeoff studies in Task I and to develop the environmental strategy for the Illinois site. The work completed to date consists of the development of the F-T reactor yield correlation from the Mobil dam and a brief review of the environmental strategy prepared for the same site in the direct liquefaction baseline study.Some work has also been done in establishing site-related criteria, in establishing the maximum vessel diameter for train sizing and in coping with the low H{sub 2}/CO ratio from the Shell gasifier. In Task 7, Project Management and Administration, the following activities were completed: the subcontract agreement between Amoco and Bechtel was negotiated; a first technical progress meeting was held at the Bechtel office in February; and the final Project Management Plan was approved by PETC and issued in March 1992.

  12. Baseline design/economics for advanced Fischer-Tropsch technology. Quarterly report, October--December 1992

    SciTech Connect (OSTI)

    Not Available

    1992-12-31

    Bechtel, with Amoco as the main subcontractor, initiated a study on September 26, 1991, for the US Department of Energy`s (DOE`s) Pittsburgh Energy Technology Center (PETC) to develop a computer model and baseline design for advanced Fischer-Tropsch (F-T) technology. This 24-month study, with an approved budget of $2.3 million, is being performed under DOE Contract Number AC22-91PC90027. (1) Develop a baseline design and two alternative designs for indirect liquefaction using advanced F-T technology. The baseline design uses Illinois No. 6 Eastern Coal and conventional refining. There is an alternative refining case using ZSM-5 treatment of the vapor stream from the slurry F-T reactor and an alternative coal case using Western coal from the Powder River Basin. (2) Prepare the capital and operating costs for the baseline design and the alternatives. Individual plant costs for the alternative cases will be prorated on capacity, wherever possible, from the baseline case. (3) Develop a process flowsheet simulation (PFS) model. The baseline design, the economic analysis and computer model will be major research planning tools that PETC will use to plan, guide and evaluate its ongoing and future research and commercialization programs relating to indirect coal liquefaction for the manufacture of synthetic liquid fuels from coal.

  13. Development of improved iron Fischer-Tropsch catalysts. Final technical report: Project 6464

    SciTech Connect (OSTI)

    Bukur, D.B.; Ledakowicz, S.; Koranne, M.

    1994-02-28

    Despite the current worldwide oil glut, the United States will ultimately require large-scale production of liquid (transportation) fuels from coal. Slurry phase Fischer Tropsch (FT) technology, with its versatile product slate, may be expected to play a major role in production of transportation fuels via indirect coal liquefaction. Texas A&M University (TAMU) with sponsorship from the US Department of Energy, Center for Energy and Mineral Resources at TAMU, Texas Higher Education Coordinating Board, and Air Products and Chemicals, Inc., has been working on development of improved iron FT catalysts and characterization of hydrodynamic parameters in two- and three-phase bubble columns with FT derived waxes. Our previous studies have provided an improved understanding of the role of promoters (Cu and K), binders (silica) and pretreatment procedures on catalyst activity, selectivity and longevity (deactivation). The objective of the present contract was to develop improved catalysts with enhanced slurry phase activity and higher selectivity to liquid fuels and wax. This was accomplished through systematic studies of the effects of pretreatment procedures and variations in catalyst composition (promoters and binders). The major accomplishments and results in each of these two main areas of research are summarized here.

  14. Slurry phase Fischer-Tropsch synthesis: Cobalt plus a water-gas shift catalyst

    SciTech Connect (OSTI)

    Yates, I.C.; Satterfield, C.N.

    1988-01-01

    A cobalt Fischer-Tropsch catalyst (CO/MgO/silica) was reduced and slurried in combination with reduced Cu/ZnO/Al[sub 2]0[sub 3] water-gas-shift catalyst. Combined catalyst system was run at fixed process conditions for more than 400 hours. The system showed stable selectivity. The Cu/ZnO/Al[sub 2]0[sub 3] water-gas-shift catalyst remained reasonably active in the presence of the cobalt catalyst. Hydrocarbon selectivity of the cobalt and Cu/ZnO/Al[sub 2]0[sub 3] catalyst system compared favorably to selectivity of iron-based catalysts. Methane selectivity was slightly higher for the cobalt-based system, but C[sub 5][sup +] selectivity was essentially the same. The hydrocarbon product distribution appeared to exhibit a double-a behavior. a[sub 1] was near 0.80 which is higher than that of iron catalysts, while a[sub 2] was calculated to be 0.86 which is somewhat lower than would be typical for an iron-based catalyst.

  15. MOSSBAUER SPECTROSCOPY STUDIES OF IRON CATALYSTS USED IN SLURRY PHASE FISCHER-TROPSCH SYNTHESIS

    SciTech Connect (OSTI)

    G.P. Huffman; K. R. P. M. Rao; F.E. Huggins

    1998-02-01

    Iron and cobalt are the two principal choices as catalysts for Fischer-Tropsch (F-T) synthesis. As discussed in a recent review by Wender each metal has certain advantages and disadvantages. Davis and co-workers have recently discussed the advantages of iron-based F-T catalysts in some detail. In order to understand the catalytic reaction mechanisms of iron during F-T synthesis, it is critical to identify the active catalytic phases. Moreover, from a practical point of view, it is equally important to identify the reactions and transformations that deactivate the catalysts. {sup 57}Fe Moessbauer spectroscopy is perhaps the best technique available for quantitative characterization of the iron phases in complex samples. For the past several years, our group has been using Moessbauer spectroscopy to characterize the iron-based catalysts prepared and tested for F-T synthesis in a number of DOE-sponsored programs. The results of this investigation have been summarized in detail in DOE reports and in a number of publications released over the past few years. A list of the principal publications resulting from this work is given. A brief summary of the highlights of the results presented in these papers is presented in the current report.

  16. Development of a stable cobalt-ruthenium Fischer-Tropsch catalyst

    SciTech Connect (OSTI)

    Abrevaya, H.

    1991-01-01

    The objective of this contract is to examine the relationship between catalytic properties and the function of cobalt Fischer-Tropsch catalysts and to apply this fundamental knowledge to the development of a stable cobalt-based catalyst with a low methane-plus-ethane selectivity for use in slurry reactors. An experimental cobalt catalyst 585R2723 was tested three times in the fixed-bed reactor. The objective of the tests was to identify suitable testing conditions for screening catalyst. The {alpha}-alumina was determined to be a suitable diluent medium for controlling the catalyst bed temperature close to the inlet temperature. With 13 g of catalyst and 155 g of diluent, the catalyst maximum temperature were within 2{degree}C from the inlet temperatures. As a result of this work, 210{degree}C and 21 atm were shown to result in low methane selectivity and were used as initial conditions in the catalyst screening test. Ethane, which along with methane is undesirable, is typically produced with low selectivity and follows the same trend as methane. Other work reported here indicated that methane selectivity increases with increasing temperature but is not excessively high at 230{degree}C. Consequently, the catalyst screening test should include an evaluation of the catalyst performance at 230{degree}C. During Run 67, the increase in temperature from 210{degree}C to 230{degree}C was initiated at 30 hours on-stream.

  17. SEPARATION OF FISCHER-TROPSCH WAX FROM CATALYST BY SUPERCRITICAL EXTRACTION

    SciTech Connect (OSTI)

    Patrick C. Joyce; Mark C. Thies

    1999-03-31

    The objective of this research project was to evaluate the potential of supercritical fluid (SCF) extraction for the recovery and fractionation of the wax product from the slurry bubble column (SBC) reactor of the Fischer-Tropsch (F-T) process. The wax, comprised mostly of branched and linear alkanes with a broad molecular weight distribution up to C{sub 100}, is to be extracted with a hydrocarbon solvent that has a critical temperature near the operating temperature of the SBC reactor, i.e., 200-300 C. Aspen Plus{trademark} was used to perform process simulation studies on the proposed extraction process, with Redlich-Kwong-Soave (RKS) being used for the thermodynamic property model. In summary, we have made comprehensive VLE measurements for short alkane + long alkane systems over a wide range of pressures and temperatures, dramatically increasing the amount of high-quality data available for these simple, yet highly relevant systems. In addition, our work has demonstrated that, surprisingly, no current thermodynamic model can adequately predict VLE behavior for these systems. Thus, process simulations (such as those for our proposed SCF extraction process) that incorporate these systems can currently only give results that are qualitative at best. Although significant progress has been made in the past decade, more experimental and theoretical work remain to be done before the phase equilibria of asymmetric alkane mixtures can be predicted with confidence.

  18. Development of a microreactor system for unsteady-state Fischer-Tropsch synthesis

    SciTech Connect (OSTI)

    Whiting, G.K.

    1985-01-01

    Vibrofluidized microreactor systems have been developed for studies of unsteady-state Fischer-Tropsch synthesis. This development is aimed at preventing carbon deposition on a fused-iron catalyst in a novel reactor called the heat-tray. This reactor involves a supernatant gas flowing over a shallow fluidized bed of catalyst particles. Three systems were built: (1) a vibrofluidized-bed microreactor system for obtaining baseline carbon deposition information under industrially important reaction conditions: (2) a siding-plug vibrofluidized-bed microreactor system for rapid switching of feed gases in the F-T synthesis; and (3) a cold-flow microreactor model for studying the gas mixing characteristics of the sliding-plug vibrofluidized-bed microreactor. The results show that catalyst defluidization occurred under steady-state synthesis conditions below 395C using a feed gas of H2/CO ratio of 2:1 or less. Above 395C, the probability of hydrocarbon chain growth ( ) on the fused-iron catalyst was low enough ( <0.50) to prevent accumulation of high-molecular-weight species that cause defluidization. Carbon deposition was rapid above 395C when a feed gas of H2/CO ratio of 2:1 or less was used.

  19. Baseline design/economics for advanced Fischer-Tropsch technology. Quarterly report, April--June 1992

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    Effective September 26, 1991, Bechtel, with Amoco as the main subcontractor, initiated a study to develop a computer model and baseline design for advanced Fischer-Tropsch (F-T) technology for the US Department of Energy`s Pittsburgh Energy Technology Center (PETC). The objectives of the study are to: Develop a baseline design for indirect liquefaction using advanced F-T technology; prepare the capital and operating costs for the baseline design; and develop a process flow sheet simulation (PI-S) model. The baseline design, the economic analysis, and the computer model win be the major research planning tools that PETC will use to plan, guide, and evaluate its ongoing and future research and commercialization programs relating to indirect coal liquefaction. for the manufacture of synthetic liquid fuels from coal. This report is Bechtel`s third quarterly technical progress report covering the period from March 16, 1992 through June 21, 1992. This report consists of seven sections: Section 1 - introduction; Section 2 - summary; Section 3 - carbon dioxide removal tradeoff study; Section 4 - preliminary plant designs for coal preparation; Section 5 - preliminary design for syngas production; Section 6 - Task 3 - engineering design criteria; and Section 7 - project management.

  20. Small-Scale Coal-Biomass to Liquids Production Using Highly Selective Fischer-Tropsch Synthesis

    SciTech Connect (OSTI)

    Gangwal, Santosh K.; McCabe, Kevin

    2015-04-30

    The research project advanced coal-to-liquids (CTL) and coal-biomass to liquids (CBTL) processes by testing and validating Chevron’s highly selective and active cobalt-zeolite hybrid Fischer-Tropsch (FT) catalyst to convert gasifier syngas predominantly to gasoline, jet fuel and diesel range hydrocarbon liquids, thereby eliminating expensive wax upgrading operations The National Carbon Capture Center (NCCC) operated by Southern Company (SC) at Wilsonville, Alabama served as the host site for the gasifier slip-stream testing/demonstration. Southern Research designed, installed and commissioned a bench scale skid mounted FT reactor system (SR-CBTL test rig) that was fully integrated with a slip stream from SC/NCCC’s transport integrated gasifier (TRIGTM). The test-rig was designed to receive up to 5 lb/h raw syngas augmented with bottled syngas to adjust the H2/CO molar ratio to 2, clean it to cobalt FT catalyst specifications, and produce liquid FT products at the design capacity of 2 to 4 L/day. It employed a 2-inch diameter boiling water jacketed fixed-bed heat-exchange FT reactor incorporating Chevron’s catalyst in Intramicron’s high thermal conductivity micro-fibrous entrapped catalyst (MFEC) packing to efficiently remove heat produced by the highly exothermic FT reaction.

  1. Silylated Co/SBA-15 catalysts for Fischer-Tropsch synthesis

    SciTech Connect (OSTI)

    Jia Lihong; Jia Litao; Li Debao; Hou Bo; Wang Jungang; Sun Yuhan

    2011-03-15

    A series of silylated Co/SBA-15 catalysts were prepared via the reaction of surface Si-OH of SBA-15 with hexamethyldisilazane (HMDS) under anhydrous, vapor-phase conditions, and then characterized by FT-IR, N{sub 2} physisorption, TG, XRD, and TPR-MS. The results showed that organic modification led to a silylated SBA-15 surface composed of stable hydrophobic Si-(CH{sub 3}){sub 3} species even after calcinations and H{sub 2} reduction at 673 K. Furthermore, the hydrophobic surface strongly influenced both metal dispersion and reducibility. Compared with non-silylated Co/SBA, Co/S-SBA (impregnation after silylation) showed a high activity, due to the better cobalt reducibility on the hydrophobic support. However, S-Co/SBA (silylation after impregnation) had the lowest FT activity among all the catalysts, due to the lower cobalt reducibility along with the steric hindrance of grafted -Si(CH{sub 3}){sub 3} for the re-adsorption of {alpha}-olefins. -- Graphical abstract: The silylation of an SBA-15 before cobalt impregnation enhanced the reducibility of cobalt oxides on an SBA-15-supported cobalt catalyst and consequently increased the catalytic activity for Fischer-Tropsch synthesis. Display Omitted

  2. SEPARATION OF FISCHER-TROPSCH WAX FROM CATALYST BY SUPERCRITICAL EXTRACTION

    SciTech Connect (OSTI)

    MARK C. THIES; PATRICK C. JOYCE

    1998-10-31

    The objective of this research project is to evaluate the potential of supercritical fluid (SCF) extraction for the recovery and fractionation of the wax product from the slurry bubble column (SBC) reactor of the Fischer-Tropsch (F-T) process. The wax, comprised mostly of branched and linear alkanes with a broad molecular weight distribution up to C{sub 100}, will be extracted with a hydrocarbon solvent that has a critical temperature near the operating temperature of the SBC reactor, i.e., 200-300 C. Initial work is being performed using n-hexane as the solvent. The success of the project depends on two factors. First, the supercritical solvent must be able to dissolve the F-T wax; furthermore, this must be accomplished at conditions that do not entrain the solid catalyst. Second, the extraction must be controlled so as not to favor the removal of the low molecular weight wax compounds. That is, a constant carbon-number distribution in the wax slurry must be maintained at steady-state column operation. Three major tasks are being undertaken to evaluate our proposed SCF extraction process. Task 1: Equilibrium solubility measurements for model F-T wax components in supercritical fluids at conditions representative of those in a SBC reactor. Task 2: Thermodynamic modeling of the measured VLE data for extending our results to real wax systems. Task 3: Process design studies of our proposed process. Additional details of the task structure are given.

  3. Incorporation of catalytic dehydrogenation into Fischer-Tropsch synthesis to lower carbon dioxide emissions

    DOE Patents [OSTI]

    Huffman, Gerald P

    2012-09-18

    A method for producing liquid fuels includes the steps of gasifying a starting material selected from a group consisting of coal, biomass, carbon nanotubes and mixtures thereof to produce a syngas, subjecting that syngas to Fischer-Tropsch synthesis (FTS) to produce a hyrdrocarbon product stream, separating that hydrocarbon product stream into C1-C4 hydrocarbons and C5+ hydrocarbons to be used as liquid fuels and subjecting the C1-C4 hydrocarbons to catalytic dehydrogenation (CDH) to produce hydrogen and carbon nanotubes. The hydrogen produced by CDH is recycled to be mixed with the syngas incident to the FTS reactor in order to raise the hydrogen to carbon monoxide ratio of the syngas to values of 2 or higher, which is required to produce liquid hydrocarbon fuels. This is accomplished with little or no production of carbon dioxide, a greenhouse gas. The carbon is captured in the form of a potentially valuable by-product, multi-walled carbon nanotubes (MWNT), while huge emissions of carbon dioxide are avoided and very large quantities of water employed for the water-gas shift in traditional FTS systems are saved.

  4. Technology development for iron Fischer-Tropsch catalysis. Quarterly technical progress report No. 2, January 1, 1995--March 31, 1995

    SciTech Connect (OSTI)

    Davis, B.H.

    1995-05-02

    The Fischer-Tropsch synthesis has been studied over the best low-alpha catalyst developed at the CAER. A wide range of synthesis gas conversions were obtained by varying the space velocity. The experimental results show that: (1) the rate of the water gas shift reaction is lower than the rate of the Fischer-Tropsch reaction at low conversions (< 60%) whereas it closely approaches the rate of the Fischer-Tropsch synthesis at high conversions, (2) the fraction of CO converted to hydrocarbons is higher at low and intermediate conversions whereas it is smaller at high conversions, (3) the H{sub 2}/CO ratio of the product gas is equal to the H{sub 2}/CO ratio of the inlet synthesis gas at an intermediate conversion level of 67%. These findings suggest that it would be beneficial to carry out the reaction at intermediate conversions. This would result in an optimum use of CO to produce hydrocarbons rather than CO{sub 2}. High overall conversions can be obtained by either using a second reactor or recycling the product gas using a single reactor. If the intermediate conversion in a single pass is maintained at 67% there would be no need to adjust the H{sub 2}/CO ratio of the recycle stream or the feed to the second reactor as the product gas from a single pass would have the same H{sub 2}/CO ratio as the feed synthesis gas. The optimum reaction rate expression for synthesis gas conversion which has been developed for this catalyst shows that CO is strongly adsorbed on the catalyst and that the reaction products such as water and CO{sub 2} do not inhibit the reaction rate.

  5. An innovative catalyst system for slurry-phase Fischer-Tropsch synthesis: Cobalt plus a water-gas-shift catalyst

    SciTech Connect (OSTI)

    Satterfield, C.N.; Yates, I.C.; Chanenchuk, C.

    1991-07-01

    The feasibility of using a mechanical mixture of a Co/MgO/SiO{sub 2} Fischer-Tropsch catalyst and a Cu-ZnO/Al{sub 2}O{sub 3} water-gas-shift (WGS) catalyst for hydrocarbon synthesis in a slurry reactor has been established. Such a mixture can combine the superior product distribution from cobalt with the high activity for the WGS reaction characteristic of iron. Weight ratios of Co/MgO/SiO{sub 2} to Cu-ZnO/Al{sub 2}O{sub 3} of 0.27 and 0.51 for the two catalysts were studied at 240{degrees}C, 0.79 MPa, and in situ H{sub 2}/CO ratios between 0.8 and 3.0. Each catalyst mixture showed stable Fischer-Tropsch activity for about 400 hours-on-stream at a level comparable to the cobalt catalyst operating alone. The Cu-ZnO/Al{sub 2}O{sub 3} catalyst exhibited a very slow loss of activity under these conditions, but when operated alone it was stable in a slurry reactor at 200--220{degrees}C, 0.79--1.48 MPa, and H{sub 2}/CO in situ ratios between 1.0 and 2.0. The presence of the water-gas-shift catalyst did not affect the long-term stability of the primary Fischer-Tropsch selectivity, but did increase the extent of secondary reactions, such as l-alkene hydrogenation and isomerization.

  6. Aspen Process Flowsheet Simulation Model of a Battelle Biomass-Based Gasification, Fischer-Tropsch Liquefaction and Combined-Cycle Power Plant

    SciTech Connect (OSTI)

    1998-10-30

    This study was done to support the research and development program of the National Renewable Energy Laboratory (NREL) in the thermochemical conversion of biomass to liquid transportation fuels using current state-of-the-art technology. The Mitretek study investigated the use of two biomass gasifiers; the RENUGAS gasifier being developed by the Institute of Gas Technology, and the indirectly heated gasifier being developed by Battelle Columbus. The Battelle Memorial Institute of Columbus, Ohio indirectly heated biomass gasifier was selected for this model development because the syngas produced by it is better suited for Fischer-Tropsch synthesis with an iron-based catalyst for which a large amount of experimental data are available. Bechtel with Amoco as a subcontractor developed a conceptual baseline design and several alternative designs for indirect coal liquefaction facilities. In addition, ASPEN Plus process flowsheet simulation models were developed for each of designs. These models were used to perform several parametric studies to investigate various alternatives for improving the economics of indirect coal liquefaction.

  7. SEPARATION OF FISCHER-TROPSCH WAX PRODUCTS FROM ULTRAFINE IRON CATALYST PARTICLES

    SciTech Connect (OSTI)

    James K. Neathery; Gary Jacobs; Burtron H. Davis

    2005-03-31

    In this reporting period, a fundamental filtration study was continued to investigate the separation of Fischer-Tropsch Synthesis (FTS) liquids from iron-based catalyst particles. The overall focus of the program is with slurry-phase FTS in slurry bubble column reactor systems. Hydrocarbon products must be separated from catalyst particles before being removed from the reactor system. An efficient wax product/catalyst separation system is a key factor for optimizing operating costs for iron-based slurry-phase FTS. Previous work has focused on catalyst particle attrition and the formation of ultra-fine iron carbide and/or carbon particles. With the current study, we are investigating how the filtration properties are affected by these chemical and physical changes of the catalyst slurry during activation/synthesis. In this reporting period, a series of crossflow filtration experiments were initiated to study the effect of olefins and oxygenates on the filtration flux and membrane performance. Iron-based FTS reactor waxes contain a significant amount of oxygenates, depending on the catalyst formulation and operating conditions. Mono-olefins and aliphatic alcohols were doped into an activated iron catalyst slurry (with Polywax) to test their influence on filtration properties. The olefins were varied from 5 to 25 wt% and oxygenates from 6 to 17 wt% to simulate a range of reactor slurries reported in the literature. The addition of an alcohol (1-dodecanol) was found to decrease the permeation rate while the olefin added (1-hexadecene) had no effect on the permeation rate. A passive flux maintenance technique was tested that can temporarily increase the permeate rate for 24 hours.

  8. Separation of Fischer-Tropsch Wax Products from Ultrafine Iron Catalyst Particles

    SciTech Connect (OSTI)

    James K. Neathery; Gary Jacobs; Amitava Sarkar; Burtron H. Davis

    2005-09-30

    In this reporting period, a study of ultra-fine iron catalyst filtration was initiated to study the behavior of ultra-fine particles during the separation of Fischer-Tropsch Synthesis (FTS) liquids filtration. The overall focus of the program is with slurry-phase FTS in slurry bubble column reactor systems. Hydrocarbon products must be separated from catalyst particles before being removed from the reactor system. An efficient wax product/catalyst separation system is a key factor for optimizing operating costs for iron-based slurry-phase FTS. Previous work has focused on catalyst particle attrition and the formation of ultra-fine iron carbide and/or carbon particles. With the current study, we are investigating how the filtration properties are affected by these chemical and physical changes of the catalyst slurry during activation/synthesis. The change of particle size during the slurry-phase FTS has monitored by withdrawing catalyst sample at different TOS. The measurement of dimension of the HRTEM images of samples showed a tremendous growth of the particles. Carbon rims of thickness 3-6 nm around the particles were observed. This growth in particle size was not due to carbon deposition on the catalyst. A conceptual design and operating philosophy was developed for an integrated wax filtration system for a 4 liter slurry bubble column reactor to be used in Phase II of this research program. The system will utilize a primary inertial hydroclone followed by a Pall Accusep cross-flow membrane. Provisions for cleaned permeate back-pulsing will be included to as a flux maintenance measure.

  9. Baseline design/economics for advanced Fischer-Tropsch technology. Quarterly report, July--September 1993

    SciTech Connect (OSTI)

    1993-12-31

    The objectives of this study are to: Develop a baseline design and two alternative designs for indirect liquefaction using advanced F-T technology. The baseline design uses Illinois No. 6 Eastern Coal and conventional refining. There is an alternative refining case using ZSM-5 treatment of the vapor stream from the slurry F-T reactor and an alternative coal case using Western coal from the Powder River Basin. Prepare the capital and operating costs for the baseline design and the alternatives. Individual plant costs for the alternative cases will be prorated on capacity, wherever possible, from the baseline case. Develop a process flowsheet simulation (PFS) model. During the period of this report, a Topical Report summarizing the Baseline Case design was drafted and issued to DOE/PETC for review and release approval. Major effort was spent on the Alternate Upgrading and Refining Case. Its design specifications were finalized, and material and utility balances completed. Initial capital cost estimates were developed. A Topical Report, summarizing the Alternative (ZSM-5) Upgrading and Refining Case design, is being drafted. Under Task 4, some of the individual plant models were expanded and enhanced. An overall ASPEN/SP process simulation model was developed for the Baseline Design Case by combining the individual models of Areas 100, 200 and 300. In addition, a separate model for the simplified product refining area, Area 300, of the Alternate Upgrading and Refining case was developed. Under Task 7, cost and schedule control was the primary activity. A technical paper entitled ``Baseline Design/Economics for Advanced Fischer-Tropsch Technology`` was presented in the DOE/PETC`s Annual Contractors Review Conference, held at Pittsburgh, Pennsylvania, on September 27-29, 1993. A contract amendment was submitted to include the Kerr McGee ROSE unit in the Baseline design case and to convert the PFS models from the ASPEN/SP to ASPEN/Plus software code.

  10. The combination of once-through Fischer-Tropsch with baseload IGCC Technology

    SciTech Connect (OSTI)

    Tam, S.S.; Pollock, D.C.; Fox, J.M. III

    1993-12-31

    Integrated Gasification Combined Cycle (IGCC) is an emerging technology for electric power generation from coal with minimum impact on the environment. Power is generated efficiently by a combination of syngas-driven gas turbines and steam turbines. Studies have shown that the capital cost of an IGCC plant is relatively high when compared to a natural-gas-fired combined cycle plant while its variable operating costs are comparatively low because coal is a lower priced fuel. Favorable IGCC economics thus require high capacity utilization as well as the high availability and reliability normally required for utility industry power plans. A base load plant will meet these criteria if adequate attention is paid to gasifier reliability. In a study sponsored by Florida Power and Light Company (FPL) and the Electric Power Research Institute (EPRI), Bechtel investigated the addition of an operating spare gasification train with methanol co-production from the syngas in order to improve the reliability of a base load electric power plant. As shown, the net result was an improved plant availability along with the co-production of a valuable by-product which paid for the addition of the spare gasifier. Co-production of hydrocarbons via Fischer-Tropsch (F-T) technology is a logical alternative to methanol co-production because it can offer the similar synergistic effects on the power plant similar to the methanol co-production scheme. Bechtel is currently carrying out a Baseline Design/Economics Study for Department of Energy, Pittsburgh Energy Technology Center (DOE/PETC) on indirect coal liquefaction using advanced F-T technology.

  11. Slurry phase Fischer-Tropsch synthesis: Cobalt plus a water-gas shift catalyst. [Quarterly] report, January 1, 1989--March 31, 1989

    SciTech Connect (OSTI)

    Yates, I.C.; Chanenchuk, C.A.; Satterfield, C.N.

    1989-12-31

    Most of this quarter has been devoted to design, construction and installation of a new external catalyst reduction unit. In this report, methods of reducing cobalt-based Fischer-Tropsch catalysts are reviewed, in an effort to develop an understanding of the important parameters which affect the reduction of cobalt catalysts. Design considerations for the external reduction unit are also presented.

  12. Emissions of Volatile Particulate Components from Turboshaft Engines running JP-8 and Fischer-Tropsch Fuels

    SciTech Connect (OSTI)

    Cheng, Mengdawn; Corporan, E.; DeWitt, M.; Landgraf, Bradley J

    2009-01-01

    Rotating-wing aircraft or helicopters are heavily used by the US military and also a wide range of commercial applications around the world, but emissions data for this class of engines are limited. In this study, we focus on emissions from T700-GE-700 and T700-GE-701C engines; T700 engine was run with military JP-8 and T701C run with both JP-8 and Fischer-Tropsch (FT) fuels. Each engine was run at three engine power settings from the idle to maximum power in sequence. Exhaust particles measured at the engine exhaust plane (EEP) have a peak mobility diameter less than 50nm in all engine power settings. At a 4-m downstream location, sulfate/sulfur measurements indicate all particulate sulfur exists practically as sulfate, and the particulate sulfur and sulfate contents increased as the engine power increased. The conversion of sulfur to sulfate was found not to be dependent on engine power setting. Analysis also showed that conversion of sulfur to sulfate was not by the adsorption of sulfur dioxide gas on the soot particles and then subsequently oxidized to form sulfate, but by gas-phase conversion of SO2 via OH or O then subsequently forming H2SO4 and condensing on soot particles. Without the sulfur and aromatic components, use of the FT fuel led to significant reduction of soot emissions as compared to that of the JP-8 fuel producing less number of particles than that of the JP-8 fuel; however, the FT fuel produced much higher number concentrations of particles smaller than 7nm than that of JP-8 in all engine power settings. This indicates non-aromatics components in the FT fuel could have contributed to the enhancement of emissions of particles smaller than 7nm. These small particles are volatile, not observed at the EEP, and may be important in playing a role for the formation of secondary particles in the atmosphere or serving as a site for effective cloud nuclei condensation to occur.

  13. LIQUID PHASE FISCHER-TROPSCH (III & IV) DEMONSTRATION IN THE LAPORTE ALTERNATIVE FUELS DEVELOPMENT UNIT. Final Topical Report. Volume I/II: Main Report. Task 1: Engineering Modifications (Fischer-Tropsch III & IV Demonstration) and Task 2: AFDU Shakedown, Operations, Deactivation (Shut-Down) and Disposal (Fischer-Tropsch III & IV Demonstration).

    SciTech Connect (OSTI)

    Bharat L. Bhatt

    1999-06-01

    Slurry phase Fischer-Tropsch technology was successfully demonstrated in DOE's Alternative Fuels Development Unit (AFDU) at LaPorte, Texas. Earlier work at LaPorte, with iron catalysts in 1992 and 1994, had established proof-of-concept status for the slurry phase process. The third campaign (Fischer-Tropsch III), in 1996, aimed at aggressively extending the operability of the slurry reactor using a proprietary cobalt catalyst. Due to an irreversible plugging of catalyst-wax separation filters as a result of unexpected catalyst fines generation, the operations had to be terminated after seven days on-stream. Following an extensive post-run investigation by the participants, the campaign was successfully completed in March-April 1998, with an improved proprietary cobalt catalyst. These runs were sponsored by the U. S. Department of Energy (DOE), Air Products & Chemicals, Inc., and Shell Synthetic Fuels, Inc. (SSFI). A productivity of approximately 140 grams (gm) of hydrocarbons (HC)/ hour (hr)-liter (lit) of expanded slurry volume was achieved at reasonable system stability during the second trial (Fischer-Tropsch IV). The productivity ranged from 110-140 at various conditions during the 18 days of operations. The catalyst/wax filters performed well throughout the demonstration, producing a clean wax product. For the most part, only one of the four filter housings was needed for catalyst/wax filtration. The filter flux appeared to exceed the design flux. A combination of use of a stronger catalyst and some innovative filtration techniques were responsible for this success. There was no sign of catalyst particle attrition and very little erosion of the slurry pump was observed, in contrast to the Fischer-Tropsch III operations. The reactor operated hydrodynamically stable with uniform temperature profile and gas hold-ups. Nuclear density and differential pressure measurements indicated somewhat higher than expected gas hold-up (45 - 50 vol%) during Fischer-Tropsch IV

  14. Effect of Surface Modification by Chelating Agents on Fischer- Tropsch Performance of Co/SiO{sub 2} Catalysts

    SciTech Connect (OSTI)

    Bambal, Ashish S.; Kugler, Edwin L.; Gardner, Todd H.; Dadyburjor, Dady B.

    2013-11-14

    The silica support of a Co-based catalyst for Fischer-Tropsch (FT) synthesis was modified by the chelating agents (CAs) nitrilotriacetic acid (NTA) and ethylenediaminetetraacetic acid (EDTA). After the modification, characterization of the fresh and spent catalysts show reduced crystallite sizes, a better-dispersed Co₃O₄ phase on the calcined samples, and increased metal dispersions for the reduced samples. The CA-modified catalysts display higher CO conversions, product yields, reaction rates and rate constants. The improved FT performance of CA-modified catalysts is attributed to the formation of stable complexes with Co. The superior performance of the EDTA-modified catalyst in comparison to the NTA-modified catalyst is due to the higher affinity of the former for complex formation with Co ions.

  15. Predicting the performance of system for the co-production of Fischer-Tropsch synthetic liquid and power from coal

    SciTech Connect (OSTI)

    Wang, X.; Xiao, Y.; Xu, S.; Guo, Z.

    2008-01-15

    A co-production system based on Fischer-Tropsch (FT) synthesis reactor and gas turbine was simulated and analyzed. Syngas from entrained bed coal gasification was used as feedstock of the low-temperature slurry phase Fischer-Tropsch reactor. Raw synthetic liquid produced was fractioned and upgraded to diesel, gasoline, and liquid petrol gas (LPG). Tail gas composed of unconverted syngas and FT light components was fed to the gas turbine. Supplemental fuel (NG, or refinery mine gas) might be necessary, which was dependent on gas turbine capacity expander through flow capacity, etc. FT yield information was important to the simulation of this co-production system. A correlation model based on Mobil's two step pilot plant was applied. User models that can predict product yields and cooperate with other units were embedded into Aspen plus simulation. Performance prediction of syngas fired gas turbine was the other key of this system. The increase in mass flow through the turbine affects the match between compressor and turbine operating conditions. The calculation was carried out by GS software developed by Politecnico Di Milano and Princeton University. Various cases were investigated to match the FT synthesis island, power island, and gasification island in co-production systems. Effects of CO{sub 2} removal/LPG recovery, co-firing, and CH{sub 4} content variation were studied. Simulation results indicated that more than 50% of input energy was converted to electricity and FT products. Total yield of gasoline, diesel, and LPG was 136-155 g/N m{sup 3} (CO+H{sub 2}). At coal feed of 21.9 kg/s, net electricity exported to the grid was higher than 100 MW. Total production of diesel and gasoline (and LPG) was 118,000 t (134,000 t)/year. Under the economic analysis conditions assumed in this paper the co-production system was economically feasible.

  16. Ultra-clean Fischer-Tropsch (F-T) Fuels Production and Demonstration Project

    SciTech Connect (OSTI)

    Stephen P. Bergin

    2006-06-30

    The objective of the DOE-NETL Fischer-Tropsch (F-T) Production and Demonstration Program was to produce and evaluate F-T fuel derived from domestic natural gas. The project had two primary phases: (1) fuel production of ultra-clean diesel transportation fuels from domestic fossil resources; and (2) demonstration and performance testing of these fuels in engines. The project also included a well-to-wheels economic analysis and a feasibility study of small-footprint F-T plants (SFPs) for remote locations such as rural Alaska. During the fuel production phase, ICRC partnered and cost-shared with Syntroleum Corporation to complete the mechanical design, construction, and operation of a modular SFP that converts natural gas, via F-T and hydro-processing reactions, into hydrogensaturated diesel fuel. Construction of the Tulsa, Oklahoma plant started in August 2002 and culminated in the production of over 100,000 gallons of F-T diesel fuel (S-2) through 2004, specifically for this project. That fuel formed the basis of extensive demonstrations and evaluations that followed. The ultra-clean F-T fuels produced had virtually no sulfur (less than 1 ppm) and were of the highest quality in terms of ignition quality, saturation content, backend volatility, etc. Lubricity concerns were investigated to verify that commercially available lubricity additive treatment would be adequate to protect fuel injection system components. In the fuel demonstration and testing phase, two separate bus fleets were utilized. The Washington DC Metropolitan Area Transit Authority (WMATA) and Denali National Park bus fleets were used because they represented nearly opposite ends of several spectra, including: climate, topography, engine load factor, mean distance between stops, and composition of normally used conventional diesel fuel. Fuel evaluations in addition to bus fleet demonstrations included: bus fleet emission measurements; F-T fuel cold weather performance; controlled engine dynamometer

  17. DEVELOPMENT OF ATTRITION RESISTANT IRON-BASED FISCHER-TROPSCH CATALYSTS

    SciTech Connect (OSTI)

    Adeyinka A. Adeyiga

    2003-12-01

    Fischer-Tropsch (FT) synthesis to convert syngas (CO + H{sub 2}) derived from natural gas or coal to liquid fuels and wax is a well-established technology. For low H{sub 2} to CO ratio syngas produced from CO{sub 2} reforming of natural gas or from gasification of coal, the use of Fe catalysts is attractive because of their high water gas shift activity in addition to their high FT activity. Fe catalysts are also attractive due to their low cost and low methane selectivity. Because of the highly exothermic nature of the FT reaction, there has been a recent move away from fixed-bed reactors toward the development of slurry bubble column reactors (SBCRs) that employ 30 to 90 {micro}m catalyst particles suspended in a waxy liquid for efficient heat removal. However, the use of Fe FT catalysts in an SBCR has been problematic due to severe catalyst attrition resulting in fines that plug the filter employed to separate the catalyst from the waxy product. Fe catalysts can undergo attrition in SBCRs not only due to vigorous movement and collisions but also due to phase changes that occur during activation and reaction. The objectives of this research were to develop a better understanding of the parameters affecting attrition of Fe F-T catalysts suitable for use in SBCRs and to incorporate this understanding into the design of novel Fe catalysts having superior attrition resistance. The catalysts were prepared by co-precipitation, followed by binder addition and spray drying at 250 C in a 1 m diameter, 2 m tall spray dryer. The binder silica content was varied from 0 to 20 wt %. The results show that use of small amounts of precipitated SiO{sub 2} alone in spray-dried Fe catalysts can result in good attrition resistance. All catalysts investigated with SiO{sub 2} wt% {le} 12 produced fines less than 10 wt% during the jet cup attrition test, making them suitable for long-term use in a slurry bubble column reactor. Thus, concentration rather than type of SiO{sub 2

  18. Development and process evaluation of improved Fischer-Tropsch slurry catalysts. [Tenth] quarterly technical progress report, 1 January--31 March 1989

    SciTech Connect (OSTI)

    Withers, H.P.; Bukur, D.B.; Rosynek, M.P.

    1989-12-31

    The objective of this contract is to develop a consistent technical data base on the use of iron-based catalysts in Fischer-Tropsch (FT) synthesis reactions. This data base will be developed to allow the unambiguous comparison of the performance of these catalysts with each other and with state-of-the-art iron catalyst compositions. Particular attention will be devoted to generating reproducible kinetic and selectivity data and to developing reproducible improved catalyst compositions.

  19. Development and process evaluation of improved Fischer-Tropsch slurry catalysts. Sixth quarterly technical progress report, 1 January--31 March 1988

    SciTech Connect (OSTI)

    Withers, H.P.; Bukur, D.B.; Rosynek, M.P.

    1988-12-31

    The objective of this contract is to develop a consistent technical data base on the use of iron-based catalysts in Fischer-Tropsch (FT) synthesis reactions. This data base will be developed to allow the unambiguous comparison of the performance of these catalysts with each other and with state-of-the-art iron catalyst comparisons. Particular attention will be devoted to generating reproducible kinetic and selectivity data and to developing reproducible improved catalyst compositions.

  20. Shape-selective catalysts for Fischer-Tropsch chemistry. Final report : January 1, 2001 - December 31, 2008.

    SciTech Connect (OSTI)

    Cronauer, D. C.

    2011-04-11

    Argonne National Laboratory carried out a research program to create, prepare, and evaluate catalysts to promote Fischer-Tropsch (FT) chemistry-specifically, the reaction of hydrogen with carbon monoxide to form long-chain hydrocarbons. In addition to needing high activity, it was desirable that the catalysts have high selectivity and stability with respect to both mechanical strength and aging properties. It was desired that selectivity be directed toward producing diesel fraction components and avoiding excess yields of both light hydrocarbons and heavy waxes. The original goal was to produce shape-selective catalysts that had the potential to limit the formation of long-chain products and yet retain the active metal sites in a protected 'cage.' This cage would also restrict their loss by attrition during use in slurry-bed reactors. The first stage of this program was to prepare and evaluate iron-containing particulate catalysts. Such catalysts were prepared with silica-containing fractal cages. The activity and strength was essentially the same as that of catalysts without the cages. Since there was no improvement, the program plan was modified as discussed below. A second experimental stage was undertaken to prepare and evaluate active FT catalysts formed by atomic-layer deposition [ALD] of active components on supported membranes and particulate supports. The concept was that of depositing active metals (i.e. ruthenium, iron or cobalt) upon membranes with well defined flow channels of small diameter and length such that the catalytic activity and product molecular weight distribution could be controlled. In order to rapidly evaluate the catalytic membranes, the ALD coating processes were performed in an 'exploratory mode' in which ALD procedures from the literature appropriate for coating flat surfaces were applied to the high surface area membranes. Consequently, the Fe and Ru loadings in the membranes were likely to be smaller than those expected for

  1. Incorporation of Reaction Kinetics into a Multiphase, Hydrodynamic Model of a Fischer Tropsch Slurry Bubble Column Reactor

    SciTech Connect (OSTI)

    Donna Guillen, PhD; Anastasia Gribik; Daniel Ginosar, PhD; Steven P. Antal, PhD

    2008-11-01

    This paper describes the development of a computational multiphase fluid dynamics (CMFD) model of the Fischer Tropsch (FT) process in a Slurry Bubble Column Reactor (SBCR). The CMFD model is fundamentally based which allows it to be applied to different industrial processes and reactor geometries. The NPHASE CMFD solver [1] is used as the robust computational platform. Results from the CMFD model include gas distribution, species concentration profiles, and local temperatures within the SBCR. This type of model can provide valuable information for process design, operations and troubleshooting of FT plants. An ensemble-averaged, turbulent, multi-fluid solution algorithm for the multiphase, reacting flow with heat transfer was employed. Mechanistic models applicable to churn turbulent flow have been developed to provide a fundamentally based closure set for the equations. In this four-field model formulation, two of the fields are used to track the gas phase (i.e., small spherical and large slug/cap bubbles), and the other two fields are used for the liquid and catalyst particles. Reaction kinetics for a cobalt catalyst is based upon values reported in the published literature. An initial, reaction kinetics model has been developed and exercised to demonstrate viability of the overall solution scheme. The model will continue to be developed with improved physics added in stages.

  2. Technology development for iron Fischer-Tropsch catalysts. Technical progress report No. 10, December 26, 1992--March 26, 1993

    SciTech Connect (OSTI)

    Frame, R.R.; Gala, H.B.

    1993-12-31

    The objectives of this contract are to develop a technology for the production of active and stable iron Fischer-Tropsch catalysts for use in slurry-phase synthesis reactors and to develop a scaleup procedure for large-scale synthesis of such catalysts for process development and long-term testing in slurry bubble-column reactors. With a feed containing hydrogen and carbon monoxide in the molar ratio of 0.5 to 1.0 to the slurry bubble-column reactor, the catalyst performance target is 88% CO + H{sub 2} conversion at a minimum space velocity of 2.4 NL/hr/gFe. The desired sum of methane and ethane selectivities is no more than 4%, and the conversion loss per week is not to exceed 1%. Contract tasks are as follows: 1.0: Catalyst development; 1.1--Technology assessment; 1.2--Precipitated catalyst preparation method development; 1.3--Novel catalyst preparation methods investigation; 1.4--Catalyst pretreatment; 1.5--Catalyst characterization; 2.0--Catalyst testing; 3.0--Catalyst aging studies, and 4.0--Preliminary design and cost estimate of a catalyst synthesis facility. This paper reports progress made on Task 1.2 and 2.0.

  3. An innovative catalyst system for slurry-phase Fischer-Tropsch synthesis: Cobalt plus a water-gas-shift catalyst. Final technical report

    SciTech Connect (OSTI)

    Satterfield, C.N.; Yates, I.C.; Chanenchuk, C.

    1991-07-01

    The feasibility of using a mechanical mixture of a Co/MgO/SiO{sub 2} Fischer-Tropsch catalyst and a Cu-ZnO/Al{sub 2}O{sub 3} water-gas-shift (WGS) catalyst for hydrocarbon synthesis in a slurry reactor has been established. Such a mixture can combine the superior product distribution from cobalt with the high activity for the WGS reaction characteristic of iron. Weight ratios of Co/MgO/SiO{sub 2} to Cu-ZnO/Al{sub 2}O{sub 3} of 0.27 and 0.51 for the two catalysts were studied at 240{degrees}C, 0.79 MPa, and in situ H{sub 2}/CO ratios between 0.8 and 3.0. Each catalyst mixture showed stable Fischer-Tropsch activity for about 400 hours-on-stream at a level comparable to the cobalt catalyst operating alone. The Cu-ZnO/Al{sub 2}O{sub 3} catalyst exhibited a very slow loss of activity under these conditions, but when operated alone it was stable in a slurry reactor at 200--220{degrees}C, 0.79--1.48 MPa, and H{sub 2}/CO in situ ratios between 1.0 and 2.0. The presence of the water-gas-shift catalyst did not affect the long-term stability of the primary Fischer-Tropsch selectivity, but did increase the extent of secondary reactions, such as l-alkene hydrogenation and isomerization.

  4. Fischer-Tropsch synthesis from a low H/sub 2/:CO gas in a dry fluidized-bed system. Technical progress report, April 1-June 30, 1983

    SciTech Connect (OSTI)

    Liu, Y.A.; Squires, A.M.; Konrad, K.

    1983-01-01

    The objective of this project is to experimentally develop and demonstrate a novel dry fluidized-bed reactor system (called heat tray) for Fischer-Tropsch synthesis from a low H/sub 2/:CO gas. The new reactor involves conducting catalytic synthesis reactions primarily in a horizontal conveying zone, in which fine particles of iron catalyst are carried in a relatively dilute suspension by a large flow of reacting gas. A secondary reaction zone, in the form of a shallow fluidized bed of catalyst particles, is situated beneath the primary reaction zone. This shallow bed also has immersed horizontal heat-transfer tubes for removing reaction heat. A major thrust of the new reactor development is to prevent carbon deposits from forming on the iron catalyst, which cause deactivation and physical degradation. This is to be achieved by conducting the Fischer-Tropsch synthesis in an unsteady-state mode, particularly by alternately exposing the iron catalyst to a large flow of low H/sub 2/:CO gas for a short period of time and to a small flow of H/sub 2/-rich gas for a long period of time. Experimental work was initiated on the unsteady-state Fischer-Tropsch synthesis using a fully-automated vibrofluidized microreactor system and a computer-controlled on-line gas chromatographic (GC) system for product analysis. Both the reactor and GC systems performed well in all experiments, and no mechanical problems were observed throughout the experiments lasting as long as twenty hours. Preliminary estimates indicated that the conversion of CO to carbon was only on the order of one-tenth of one percent. This encouraging result provided evidence that it should be possible to experimentally identify cycling conditions which could prevent carbon deposits on the catalyst while treating a synthesis gas of low H/sub 2/:CO ratio.

  5. Atomic-Scale Design of Iron Fischer-Tropsch Catalysts: A Combined Computational Chemistry, Experimental, and Microkinetic Modeling Approach

    SciTech Connect (OSTI)

    Manos Mavrikakis; James A. Dumesic; Amit A. Gokhale; Rahul P. Nabar; Calvin H. Bartholomew; Hu Zou; Brian Critchfield

    2006-03-03

    Efforts during this second year focused on four areas: (1) continued searching and summarizing of published Fischer-Tropsch synthesis (FTS) mechanistic and kinetic studies of FTS reactions on iron catalysts; (2) investigation of CO adsorption/desorption and temperature programmed hydrogenation (TPH) of carbonaceous species after FTS on unsupported iron and alumina-supported iron catalysts; (3) activity tests of alumina-supported iron catalysts in a fixed bed reactor; (4) sequential design of experiments, for the collection of rate data in a Berty CSTR reactor, and nonlinear-regression analysis to obtain kinetic parameters. Literature sources describing mechanistic and kinetic studies of Fischer-Tropsch synthesis on iron catalysts were compiled in a review. Temperature-programmed desorption/reaction methods (the latter using mass-spectrometry detection and also thermogravimetric analyzer (TGA)) were utilized to study CO adsorption/-desorption on supported and unsupported iron catalysts. Molecular and dissociative adsorptions of CO occur on iron catalysts at 25-150 C. The amounts adsorbed and bond strengths of adsorption are influenced by supports and promoters. That CO adsorbs dissociatively on polycrystalline Fe at temperatures well below those of FT reaction indicates that CO dissociation is facile and unlikely to be the rate-limiting step during FTS. Carbonaceous species formed after FT reaction for only 5 minutes at 200 C were initially hydrogenated under mild, isothermal condition (200 C and 1 atm), followed by TPH to 800 C. During the mild, isothermal hydrogenation, only about 0.1-0.2 mL of atomic carbon is apparently removed, while during TPH to 800 C multilayer equivalents of atomic, polymeric, carbidic, and graphitic carbons are removed. Rates of CO conversion on alumina-supported iron catalysts at 220-260 C and 20 atm are correlated well by a Langmuir-Hinshelwood expression, derived assuming carbon hydrogenation to CH and OH recombination to water to be

  6. Atomic-Scale Design of Iron Fischer-Tropsch Catalysts: A Combined Computational Chemistry, Experimental, and Microkinetic Modeling Approach

    SciTech Connect (OSTI)

    Manos Mavrikakis; James A. Dumesic; Rahul P. Nabar

    2006-09-29

    Work continued on the development of a microkinetic model of Fischer-Tropsch synthesis (FTS) on supported and unsupported Fe catalysts. The following aspects of the FT mechanism on unsupported iron catalysts were investigated on during this third year: (1) the collection of rate data in a Berty CSTR reactor based on sequential design of experiments; (2) CO adsorption and CO-TPD for obtaining the heat of adsorption of CO on polycrystalline iron; and (3) isothermal hydrogenation (IH) after Fischer Tropsch reaction to identify and quantify surface carbonaceous species. Rates of C{sub 2+} formation on unsupported iron catalysts at 220 C and 20 atm correlated well to a Langmuir-Hinshelwood type expression, derived assuming carbon hydrogenation to CH and OH recombination to water to be rate-determining steps. From desorption of molecularly adsorbed CO at different temperatures the heat of adsorption of CO on polycrystalline iron was determined to be 100 kJ/mol. Amounts and types of carbonaceous species formed after FT reaction for 5-10 minutes at 150, 175, 200 and 285 C vary significantly with temperature. Mr. Brian Critchfield completed his M.S. thesis work on a statistically designed study of the kinetics of FTS on 20% Fe/alumina. Preparation of a paper describing this work is in progress. Results of these studies were reported at the Annual Meeting of the Western States Catalysis and at the San Francisco AIChE meeting. In the coming period, studies will focus on quantitative determination of the rates of kinetically-relevant elementary steps on unsupported Fe catalysts with/without K and Pt promoters by SSITKA method. This study will help us to (1) understand effects of promoter and support on elementary kinetic parameters and (2) build a microkinetics model for FTS on iron. Calculations using periodic, self-consistent Density Functional Theory (DFT) methods were performed on models of defected Fe surfaces, most significantly the stepped Fe(211) surface. Binding

  7. Fossil-fuel processing technical/professional services: comparison of Fischer-Tropsch reactor systems. Phase I, final report

    SciTech Connect (OSTI)

    Thompson, G.J.; Riekena, M.L.; Vickers, A.G.

    1981-09-01

    The Fischer-Tropsch reaction was commercialized in Germany and used to produce military fuels in fixed bed reactors. It was recognized from the start that this reactor system had severe operating and yield limitations and alternative reactor systems were sought. In 1955 the Sasol I complex, using an entrained bed (Synthol) reactor system, was started up in South Africa. Although this reactor was a definite improvement and is still operating, the literature is filled with proponents of other reactor systems, each claiming its own advantages. This report provides a summary of the results of a study to compare the development potential of three of these reactor systems with the commercially operating Synthol-entrained bed reactor system. The commercial Synthol reactor is used as a benchmark against which the development potential of the other three reactors can be compared. Most of the information on which this study is based was supplied by the M.W. Kellogg Co. No information beyond that in the literature on the operation of the Synthol reactor system was available for consideration in preparing this study, nor were any details of the changes made to the original Synthol system to overcome the operating problems reported in the literature. Because of conflicting claims and results found in the literature, it was decided to concentrate a large part of this study on a kinetic analysis of the reactor systems, in order to provide a theoretical analysis of intrinsic strengths and weaknesses of the reactors unclouded by different catalysts, operating conditions and feed compositions. The remainder of the study considers the physical attributes of the four reactor systems and compares their respective investment costs, yields, catalyst requirements and thermal efficiencies from simplified conceptual designs.

  8. Application of a novel TPR EXAFS/XANES method using a multi-sample holder to characterize promoted iron and cobalt fFischer-Tropsch synthesis catalysts.

    SciTech Connect (OSTI)

    Jacobs, G.; Sarkar, A.; Ji, Y.; Davis, B. H.; Cronauer, D.; Kropf, A. J.; Marshall, C. L.; Chemical Sciences and Engineering Division; Univ. of Kentucky

    2008-01-01

    Coal-to-liquids. Iron-based Fischer-Tropsch synthesis catalysts are not only used commercially for high temperature Fischer-Tropsch synthesis, but are increasingly becoming the focus for converting low H{sub 2}/CO ratio synthesis gas at lower temperature. Such low temperature processing yields hydrocarbon distributions with higher {alpha} values, and as a consequence, much less light hydrocarbon gas production (and especially, less methane). Another benefit to the use of iron-based catalysts is that the product slate is richer in {alpha}-olefinic products, which are more valuable than the paraffinic products produced using cobalt-based catalysts. Iron-based catalysts are often used to convert low H{sub 2}/CO ratio syngas, because the catalysts can intrinsically adjust the syngas ratio upward by converting a fraction of CO by reaction with H{sub 2}O to produce H{sub 2} and CO{sub 2} via the water-gas shift reaction.

  9. ATOMIC-SCALE DESIGN OF IRON FISCHER-TROPSCH CATALYSTS: A COMBINED COMPUTATIONAL CHEMISTRY, EXPERIMENTAL, AND MICROKINETIC MODELING APPROACH

    SciTech Connect (OSTI)

    Manos Mavrikakis; James A. Dumesic; Amit A. Gokhale; Rahul P. Nabar; Calvin H. Bartholomew; Hu Zou; Brian Critchfield

    2005-03-22

    Efforts during this first year focused on four areas: (1) searching/summarizing published FTS mechanistic and kinetic studies of FTS reactions on iron catalysts; (2) construction of mass spectrometer-TPD and Berty CSTR reactor systems; (3) preparation and characterization of unsupported iron and alumina-supported iron catalysts at various iron loadings (4) Determination of thermochemical parameters such as binding energies of reactive intermediates, heat of FTS elementary reaction steps, and kinetic parameters such as activation energies, and frequency factors of FTS elementary reaction steps on a number of model surfaces. Literature describing mechanistic and kinetic studies of Fischer-Tropsch synthesis on iron catalysts was compiled in a draft review. Construction of the mass spectrometer-TPD system is 90% complete and of a Berty CSTR reactor system 98% complete. Three unsupported iron catalysts and three alumina-supported iron catalysts were prepared by nonaqueous-evaporative deposition (NED) or aqueous impregnation (AI) and characterized by chemisorption, BET, extent-of-reduction, XRD, and TEM methods. These catalysts, covering a wide range of dispersions and metal loadings, are well-reduced and relatively thermally stable up to 500-600 C in H{sub 2}, thus ideal for kinetic and mechanistic studies. The alumina-supported iron catalysts will be used for kinetic and mechanistic studies. In the coming year, adsorption/desorption properties, rates of elementary steps, and global reaction rates will be measured for these catalysts, with and without promoters, providing a database for understanding effects of dispersion, metal loading, and support on elementary kinetic parameters and for validation of computational models that incorporate effects of surface structure and promoters. Furthermore, using state-of-the-art self-consistent Density Functional Theory (DFT) methods, we have extensively studied the thermochemistry and kinetics of various elementary steps on

  10. Shape-selective catalysts for Fischer-Tropsch chemistry : iron-containing particulate catalysts. Activity report : January 1, 2001 - December 31, 2004.

    SciTech Connect (OSTI)

    Cronauer, D.; Chemical Engineering

    2006-05-12

    Argonne National Laboratory is carrying out a research program to create, prepare, and evaluate catalysts to promote Fischer-Tropsch (FT) chemistry--specifically, the reaction of hydrogen with carbon monoxide to form long-chain hydrocarbons. In addition to needing high activity, it is desirable that the catalysts have high selectivity and stability with respect to both mechanical strength and aging properties. It is desired that selectivity be directed toward producing diesel fraction components and avoiding excess yields of both light hydrocarbons and heavy waxes. The goal is to produce shape-selective catalysts that have the potential to limit the formation of longchain products and yet retain the active metal sites in a protected 'cage'. This cage also restricts their loss by attrition during use in slurry-bed reactors. The first stage of this program was to prepare and evaluate iron-containing particulate catalysts. This activity report centers upon this first stage of experimentation with particulate FT catalysts. (For reference, a second experimental stage is under way to prepare and evaluate active FT catalysts formed by atomic-layer deposition [ALD] of active components on supported membranes.) To date, experimentation has centered upon the evaluation of a sample of iron-based, spray-dried catalyst prepared by B.H. Davis of the Center of Applied Energy Research (CAER) and samples of his catalyst onto which inorganic 'shells' were deposited. The reference CAER catalyst contained a high level of dispersed fine particles, a portion of which was removed by differential settling. Reaction conditions have been established using a FT laboratory unit such that reasonable levels of CO conversion can be achieved, where therefore a valid catalyst comparison can be made. A wide range of catalytic activities was observed with SiO{sub 2}-coated FT catalysts. Two techniques were used for SiO{sub 2}coating. The first involved a caustic precipitation of SiO{sub 2} from an

  11. Shape-selective catalysts for Fischer-Tropsch chemistry : atomic layer deposition of active catalytic metals. Activity report : January 1, 2005 - September 30, 2005.

    SciTech Connect (OSTI)

    Cronauer, D. C.

    2011-04-15

    Argonne National Laboratory is carrying out a research program to create, prepare, and evaluate catalysts to promote Fischer-Tropsch (FT) chemistry - specifically, the reaction of hydrogen with carbon monoxide to form long-chain hydrocarbons. In addition to needing high activity, it is desirable that the catalysts have high selectivity and stability with respect to both mechanical strength and aging properties. The broad goal is to produce diesel fraction components and avoiding excess yields of both light hydrocarbons and heavy waxes. Originally the goal was to prepare shape-selective catalysts that would limit the formation of long-chain products and yet retain the active metal sites in a protected 'cage.' Such catalysts were prepared with silica-containing fractal cages. The activity was essentially the same as that of catalysts without the cages. We are currently awaiting follow-up experiments to determine the attrition strength of these catalysts. A second experimental stage was undertaken to prepare and evaluate active FT catalysts formed by atomic-layer deposition [ALD] of active components on supported membranes and particulate supports. The concept was that of depositing active metals (i.e. ruthenium, iron or cobalt) upon membranes with well defined flow channels of small diameter and length such that the catalytic activity and product molecular weight distribution could be controlled. In order to rapidly evaluate the catalytic membranes, the ALD coating processes were performed in an 'exploratory mode' in which ALD procedures from the literature appropriate for coating flat surfaces were applied to the high surface area membranes. Consequently, the Fe and Ru loadings in the membranes were likely to be smaller than those expected for complete monolayer coverage. In addition, there was likely to be significant variation in the Fe and Ru loading among the membranes due to difficulties in nucleating these materials on the aluminum oxide surfaces. The first

  12. KINETIC MODELING OF A FISCHER-TROPSCH REACTION OVER A COBALT CATALYST IN A SLURRY BUBBLE COLUMN REACTOR FOR INCORPORATION INTO A COMPUTATIONAL MULTIPHASE FLUID DYNAMICS MODEL

    SciTech Connect (OSTI)

    Anastasia Gribik; Doona Guillen, PhD; Daniel Ginosar, PhD

    2008-09-01

    Currently multi-tubular fixed bed reactors, fluidized bed reactors, and slurry bubble column reactors (SBCRs) are used in commercial Fischer Tropsch (FT) synthesis. There are a number of advantages of the SBCR compared to fixed and fluidized bed reactors. The main advantage of the SBCR is that temperature control and heat recovery are more easily achieved. The SBCR is a multiphase chemical reactor where a synthesis gas, comprised mainly of H2 and CO, is bubbled through a liquid hydrocarbon wax containing solid catalyst particles to produce specialty chemicals, lubricants, or fuels. The FT synthesis reaction is the polymerization of methylene groups [-(CH2)-] forming mainly linear alkanes and alkenes, ranging from methane to high molecular weight waxes. The Idaho National Laboratory is developing a computational multiphase fluid dynamics (CMFD) model of the FT process in a SBCR. This paper discusses the incorporation of absorption and reaction kinetics into the current hydrodynamic model. A phased approach for incorporation of the reaction kinetics into a CMFD model is presented here. Initially, a simple kinetic model is coupled to the hydrodynamic model, with increasing levels of complexity added in stages. The first phase of the model includes incorporation of the absorption of gas species from both large and small bubbles into the bulk liquid phase. The driving force for the gas across the gas liquid interface into the bulk liquid is dependent upon the interfacial gas concentration in both small and large bubbles. However, because it is difficult to measure the concentration at the gas-liquid interface, coefficients for convective mass transfer have been developed for the overall driving force between the bulk concentrations in the gas and liquid phases. It is assumed that there are no temperature effects from mass transfer of the gas phases to the bulk liquid phase, since there are only small amounts of dissolved gas in the liquid phase. The product from the

  13. Atomic-Scale Design of Iron Fischer-Tropsch Catalysts; A Combined Computational Chemistry, Experimental, and Microkinetic Modeling Approach

    SciTech Connect (OSTI)

    Manos Mavrikakis; James Dumesic; Rahul Nabar; Calvin Bartholonew; Hu Zou; Uchenna Paul

    2008-09-29

    This work focuses on (1) searching/summarizing published Fischer-Tropsch synthesis (FTS) mechanistic and kinetic studies of FTS reactions on iron catalysts; (2) preparation and characterization of unsupported iron catalysts with/without potassium/platinum promoters; (3) measurement of H{sub 2} and CO adsorption/dissociation kinetics on iron catalysts using transient methods; (3) analysis of the transient rate data to calculate kinetic parameters of early elementary steps in FTS; (4) construction of a microkinetic model of FTS on iron, and (5) validation of the model from collection of steady-state rate data for FTS on iron catalysts. Three unsupported iron catalysts and three alumina-supported iron catalysts were prepared by non-aqueous-evaporative deposition (NED) or aqueous impregnation (AI) and characterized by chemisorption, BET, temperature-programmed reduction (TPR), extent-of-reduction, XRD, and TEM methods. These catalysts, covering a wide range of dispersions and metal loadings, are well-reduced and relatively thermally stable up to 500-600 C in H{sub 2} and thus ideal for kinetic and mechanistic studies. Kinetic parameters for CO adsorption, CO dissociation, and surface carbon hydrogenation on these catalysts were determined from temperature-programmed desorption (TPD) of CO and temperature programmed surface hydrogenation (TPSR), temperature-programmed hydrogenation (TPH), and isothermal, transient hydrogenation (ITH). A microkinetic model was constructed for the early steps in FTS on polycrystalline iron from the kinetic parameters of elementary steps determined experimentally in this work and from literature values. Steady-state rate data were collected in a Berty reactor and used for validation of the microkinetic model. These rate data were fitted to 'smart' Langmuir-Hinshelwood rate expressions derived from a sequence of elementary steps and using a combination of fitted steady-state parameters and parameters specified from the transient

  14. Fischer-Tropsch synthesis from a low H/sub 2/:CO gas in a dry fluidized-bed system. Technical progress report, July 1, 1983-April 30, 1984

    SciTech Connect (OSTI)

    Liu, Y.A.; Squires, A.M.

    1984-05-01

    The objective of this project is to experimentally develop and demonstrate a novel dry fluidized-bed reactor system (called heat tray) for Fischer-Tropsch synthesis from a low H/sub 2/:CO gas. The new reactor involves conducting catalytic synthesis reactions primarily in a horizontal conveying zone, in which fine particles of iron catalyst are carried in a relatively dilute suspension by a large flow of reacting gas. A secondary reaction zone, in the form of a shallow fluidized bed of catalyst particles, is situated beneath the primary reaction zone. This shallow bed also has immersed horizontal heat-transfer tubes for removing reaction heat. A major thrust of the new reactor development is to prevent carbon deposits from forming on the iron catalyst, which cause deactivation and physical degradation. This is to be achieved by conducting the Fischer-Tropsch synthesis in an unsteady-state mode, particularly by alternately exposing the iron catalyst to a large flow of low H/sub 2/CO gas for a short period of time and to a small flow of H/sub 2/-rich gas for a long period of time. During the past ten months, numerous steady-state and unsteady-state Fischer-Tropsch synthesis experiments from a low H/sub 2/:CO gas were performed using a computer-controlled vibrofluidized microreactor and gas chromatographic (GC) system. The results have revealed specific directions for design and operational improvements of the microreactor system so as to effectively control the cycling of reactant gases during unsteady-state Fischer-Tropsch synthesis, and several modified microreactor systems have been constructed and tested.

  15. EA-1642-S1: Small-Scale Pilot Plant for the Gasification of Coal and Coal-Biomass Blends and Conversion of Derived Syngas to Liquid Fuels via Fischer-Tropsch Synthesis, Lexington, KY

    Broader source: Energy.gov [DOE]

    This draft Supplemental Environmental Assessment (SEA) analyzes the potential environmental impacts of DOE’s proposed action of providing cost-shared funding for the University of Kentucky (UK) Center for Applied Energy Research (CAER) Small-Scale Pilot Plant for the Gasification of Coal and Coal-Biomass Blends and Conversion of Derived Syngas to Liquid Fuels via Fischer-Tropsch Synthesis project and of the No-Action Alternative.

  16. Impact of Contaminants Present in Coal-Biomass Derived Synthesis Gas on Water-gas Shift and Fischer-Tropsch Synthesis Catalysts

    SciTech Connect (OSTI)

    Alptekin, Gokhan

    2013-02-15

    Co-gasification of biomass and coal in large-scale, Integrated Gasification Combined Cycle (IGCC) plants increases the efficiency and reduces the environmental impact of making synthesis gas ("syngas") that can be used in Coal-Biomass-to-Liquids (CBTL) processes for producing transportation fuels. However, the water-gas shift (WGS) and Fischer-Tropsch synthesis (FTS) catalysts used in these processes may be poisoned by multiple contaminants found in coal-biomass derived syngas; sulfur species, trace toxic metals, halides, nitrogen species, the vapors of alkali metals and their salts (e.g., KCl and NaCl), ammonia, and phosphorous. Thus, it is essential to develop a fundamental understanding of poisoning/inhibition mechanisms before investing in the development of any costly mitigation technologies. We therefore investigated the impact of potential contaminants (H2S, NH3, HCN, AsH3, PH3, HCl, NaCl, KCl, AS3, NH4NO3, NH4OH, KNO3, HBr, HF, and HNO3) on the performance and lifetime of commercially available and generic (prepared in-house) WGS and FT catalysts.

  17. Assessment of fuel-cycle energy use and greenhouse gas emissions for Fischer-Tropsch diesel from coal and cellulosic biomass.

    SciTech Connect (OSTI)

    Xie, X.; Wang, M.; Han, J.

    2011-04-01

    This study expands and uses the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model to assess the effects of carbon capture and storage (CCS) technology and cellulosic biomass and coal cofeeding in Fischer-Tropsch (FT) plants on energy use and greenhouse gas (GHG) emissions of FT diesel (FTD). To demonstrate the influence of the coproduct credit methods on FTD life-cycle analysis (LCA) results, two allocation methods based on the energy value and the market revenue of different products and a hybrid method are employed. With the energy-based allocation method, fossil energy use of FTD is less than that of petroleum diesel, and GHG emissions of FTD could be close to zero or even less than zero with CCS when forest residue accounts for 55% or more of the total dry mass input to FTD plants. Without CCS, GHG emissions are reduced to a level equivalent to that from petroleum diesel plants when forest residue accounts for 61% of the total dry mass input. Moreover, we show that coproduct method selection is crucial for LCA results of FTD when a large amount of coproducts is produced.

  18. Slurry phase Fischer-Tropsch synthesis: Cobalt plus a water-gas shift catalyst. [Quarterly] report, October 1, 1988--December 31, 1988

    SciTech Connect (OSTI)

    Yates, I.C.; Satterfield, C.N.

    1988-12-31

    A cobalt Fischer-Tropsch catalyst (CO/MgO/silica) was reduced and slurried in combination with reduced Cu/ZnO/Al{sub 2}0{sub 3} water-gas-shift catalyst. Combined catalyst system was run at fixed process conditions for more than 400 hours. The system showed stable selectivity. The Cu/ZnO/Al{sub 2}0{sub 3} water-gas-shift catalyst remained reasonably active in the presence of the cobalt catalyst. Hydrocarbon selectivity of the cobalt and Cu/ZnO/Al{sub 2}0{sub 3} catalyst system compared favorably to selectivity of iron-based catalysts. Methane selectivity was slightly higher for the cobalt-based system, but C{sub 5}{sup +} selectivity was essentially the same. The hydrocarbon product distribution appeared to exhibit a double-a behavior. a{sub 1} was near 0.80 which is higher than that of iron catalysts, while a{sub 2} was calculated to be 0.86 which is somewhat lower than would be typical for an iron-based catalyst.

  19. Development of a stable cobalt-ruthenium Fischer-Tropsch catalyst. Technical progress reports No. 7 and 8, April 1, 1991--September 30, 1991

    SciTech Connect (OSTI)

    Abrevaya, H.

    1991-12-31

    The objective of this contract is to examine the relationship between catalytic properties and the function of cobalt Fischer-Tropsch catalysts and to apply this fundamental knowledge to the development of a stable cobalt-based catalyst with a low methane-plus-ethane selectivity for use in slurry reactors. An experimental cobalt catalyst 585R2723 was tested three times in the fixed-bed reactor. The objective of the tests was to identify suitable testing conditions for screening catalyst. The {alpha}-alumina was determined to be a suitable diluent medium for controlling the catalyst bed temperature close to the inlet temperature. With 13 g of catalyst and 155 g of diluent, the catalyst maximum temperature were within 2{degree}C from the inlet temperatures. As a result of this work, 210{degree}C and 21 atm were shown to result in low methane selectivity and were used as initial conditions in the catalyst screening test. Ethane, which along with methane is undesirable, is typically produced with low selectivity and follows the same trend as methane. Other work reported here indicated that methane selectivity increases with increasing temperature but is not excessively high at 230{degree}C. Consequently, the catalyst screening test should include an evaluation of the catalyst performance at 230{degree}C. During Run 67, the increase in temperature from 210{degree}C to 230{degree}C was initiated at 30 hours on-stream.

  20. Separation of Fischer-Tropsch wax from catalyst using supercritical fluid extraction. Quarterly technical progress report, April 1, 1996--June 30, 1996

    SciTech Connect (OSTI)

    Joyce, P.C.; Thies, M.C.

    1996-11-01

    The objective of this research project is to evaluate the potential of SCF extraction for separating the catalyst slurry of a Fischer- Tropsch (F-T) slurry bubble column (SBC) reactor into two fractions: (1) a catalyst-free wax containing less than 10 ppm particulate matter and (2) a concentrated catalyst slurry that is ready for recycle or regeneration. The wax will be extracted with a hydrocarbon solvent that has a critical temperature near the operating temperature of the SBC reactor, i.e., 200-300{degrees}C. Initial work is being performed using n-hexane as the solvent. The success of the project depends on two major factors. First, the supercritical solvent must be able to dissolve the F-T wax; furthermore, this must be accomplished without entraining the solid catalyst. Second, the extraction must be controlled so as not to favor the removal of the low molecular weight wax compounds, i.e., a constant carbon-number distribution of the alkanes in the wax slurry must be maintained at steady-state column operation. To implement our objectives, the following task structure is being implemented: Task 1 equilibrium solubility measurements; Task 2 thermodynamic modeling; and Task 3 process design studies. Progress reports are presented for each task.

  1. Fischer-Tropsch synthesis from a low HH/sub 2/:CO gas in a dry fluidized-bed system. Volume 1. Project summary. Final technical report, October 1, 1986. [Heat tray

    SciTech Connect (OSTI)

    Liu, Y.A.; Squires, A.M.

    1986-10-01

    The objective of this project is to experimentally develop and demonstrate a dry fluidized-bed reactor system (called ''heat tray'') for Fischer-Tropsch synthesis from a low H/sub 2/:CO gas. The reactor involves conducting catalytic synthesis reactions primarily in a horizontal conveying zone, in which fine particles of an iron catalyst are carried in a relatively dilute suspension by a large flow of reacting gas. A secondary reaction zone, in the form of a shallow fluidized bed of catalyst particles, is situated beneath the primary reaction zone. This shallow bed also has immersed horizontal heat-transfer tubes for removing reaction heat. A major thrust of the new reactor development is to prevent carbon deposits from forming on the iron catalyst, which cause deactivation and physical degradation. This is to be achieved by conducting the Fischer-Tropsch synthesis in an unsteady-state mode, particularly by alternately exposing the iron catalyst to a large flow of low H/sub 2/:CO gas for a short period of time and to a small flow of H/sub 2/-rich gas for a long period of time. The project has been carried out in two key tasks: (1) development of a microreactor system for unsteady-state Fischer-Tropsch synthesis, simulating the life history of an iron catalyst particle in a ''heat-tray'' reactor; and (2) supporting fluidization studies. The present Volume I summarizes the key conclusions and recommendations from this project, and the accompanying Volumes II and III describes the details of experimental investigations and results. 12 refs., 8 figs., 2 tabs.

  2. Catalyst and reactor development for a liquid-phase Fischer-Tropsch process. Quarterly technical progress report, 1 January 1983-31 March 1983

    SciTech Connect (OSTI)

    Dyer, P.N.; Pierantozzi, R.; Brian, B.W.; Nordquist, A.F.; Parsons, R.L.

    1983-09-01

    Two major tasks continued in the APCI/US DOE contract, Catalysts and Reactor Development for a Liquid Phase Fischer-Tropsch Process: (1) Slurry Catalyst Development; and (2) Slurry Reactor Design Studies. The first extended slurry test was continued using a proprietary catalyst. The results showed that it was possible to produce yields in the diesel fuel region equal to or greater than the Schulz-Flory maximum, without further optimization. Low deactivation rates were observed. Kinetic rate constants were derived from the CSTR experiments, and used in a computer simulation to predict conversions from bubble column operation under Rheinpreussen conditions. Short term (21 day) slurry tests were carried out on two other catalysts, optimized by the screening program. Parametric gas phase screening results were concluded for two additional modified conventional catalysts, and the optimum preparation and activation methods for diesel fuel selectively were chosen. In the hydrodynamic studies, work in the 5'' column was completed with measurements on the Fe/sub 2/O/sub 3//water slurries. In the 12'' column, fitted with 7 heat transfer tubes, hydrodynamic parameters were determined for slurries of Fe/sub 2/O/sub 3/ in paraffin and water, and SiO/sub 2/ in water. Gas holdups were close to the Akita and Yoshida correlation for the hydrocarbon slurries, but lower for the aqueous ones. Solid concentration profiles, modelled by the sedimentation model, gave evidence of particle agglomeration in SiO/sub 2//hydrocarbon slurries, underlining the need to use chemically similar slurries in cold-flow modelling work. In the 5'' column, solid and liquid dispersion coefficients were found to be equal.

  3. Determination of the Effect of Coal/Biomass-Derived Syngas Contaminants on the Performance of Fischer-Tropsch and Water-Gas-Shift Catalysts

    SciTech Connect (OSTI)

    Trembly, Jason; Cooper, Matthew; Farmer, Justin; Turk, Brian; Gupta, Raghubir

    2010-12-31

    Today, nearly all liquid fuels and commodity chemicals are produced from non-renewable resources such as crude oil and natural gas. Because of increasing scrutiny of carbon dioxide (CO{sub 2}) emissions produced using traditional fossil-fuel resources, the utilization of alternative feedstocks for the production of power, hydrogen, value-added chemicals, and high-quality hydrocarbon fuels such as diesel and substitute natural gas (SNG) is critical to meeting the rapidly growing energy needs of modern society. Coal and biomass are particularly attractive as alternative feedstocks because of the abundant reserves of these resources worldwide. The strategy of co-gasification of coal/biomass (CB) mixtures to produce syngas for synthesis of Fischer-Tropsch (FT) fuels offers distinct advantages over gasification of either coal or biomass alone. Co-feeding coal with biomass offers the opportunity to exploit economies of scale that are difficult to achieve in biomass gasification, while the addition of biomass to the coal gasifier feed leverages proven coal gasification technology and allows CO{sub 2} credit benefits. Syngas generated from CB mixtures will have a unique contaminant composition because coal and biomass possess different concentrations and types of contaminants, and the final syngas composition is also strongly influenced by the gasification technology used. Syngas cleanup for gasification of CB mixtures will need to address this unique contaminant composition to support downstream processing and equipment. To investigate the impact of CB gasification on the production of transportation fuels by FT synthesis, RTI International conducted thermodynamic studies to identify trace contaminants that will react with water-gas-shift and FT catalysts and built several automated microreactor systems to investigate the effect of single components and the synergistic effects of multiple contaminants on water-gas-shift and FT catalyst performance. The contaminants

  4. Liquid phase Fischer-Tropsch (II) demonstration in the LaPorte Alternative Fuels Development Unit. Volume 1/2, Main Report. Final report

    SciTech Connect (OSTI)

    Bhatt, B.L.

    1995-09-01

    This report presents results from a demonstration of Liquid Phase Fischer-Tropsch (LPFT) technology in DOE`s Alternative Fuels Development Unit (AFDU) at LaPorte, Texas. The run was conducted in a bubble column at the AFDU in May--June 1994. The 10-day run demonstrated a very high level of reactor productivity for LPFT, more than five times the previously demonstrated productivity. The productivity was constrained by mass transfer limitations, perhaps due to slurry thickening as a result of carbon formation on the catalyst. With a cobalt catalyst or an improved iron catalyst, if the carbon formation can be avoided, there is significant room for further improvements. The reactor was operated with 0.7 H{sub 2}/CO synthesis gas in the range of 2400--11700 sl/hr-kg Fe, 175--750 psig and 270--300C. The inlet gas velocity ranged from 0.19 to 0.36 ft/sec. The demonstration was conducted at a pilot scale of 5 T/D. Catalyst activation with CO/N{sub 2} proceeded well. Initial catalyst activity was close to the expectations from the CAER autoclave runs. CO conversion of about 85% was obtained at the baseline condition. The catalyst also showed good water-gas shift activity and a low {alpha}. At high productivity conditions, reactor productivity of 136 grams of HC/hr -- liter of slurry volume was demonstrated, which was within the target of 120--150. However, mass transfer limitations were observed at these conditions. To alleviate these limitations and prevent excessive thickening, the slurry was diluted during the run. This enabled operations under kinetic control later in the run. But, the dilution resulted in lower conversion and reactor productivity. A new reactor internal heat exchanger, installed for high productivity conditions, performed well above design,and the system never limited the performance. The control can expected, the reactor temperature control needed manual intervention. The control can be improved by realigning the utility oil system.

  5. Fischer-Tropsch synthesis from a low H/sub 2/:CO gas in a dry fluidized-bed system. Technical progress report, September 1, 1982-March 31, 1983. [Large number of references

    SciTech Connect (OSTI)

    Liu, Y.A.; Squires, A.M.; Konrad, K.

    1983-01-01

    The objective of this project is to experimentally develop and demonstrate a novel dry fluidized-bed reactor system (called heat tray) for Fischer-Tropsch synthesis from a low H/sub 2/:CO gas. The new reactor involves conducting catalytic synthesis reactions primarily in a horizontal conveying zone, in which fine particles of iron catalyst are carried in a relatively dilute suspension by a large flow of reacting gas. A secondary reaction zone, in the form of a shallow fluidized bed of catalyst particles, is situated beneath the primary reaction zone. This shallow bed also has immersed horizontal heat-transfer tubes for removing reaction heat. A major thrust of the new reactor development is to prevent carbon deposits from forming on the iron catalyst, which cause deactivation and physical degradation. This is to be achieved by conducting the Fischer-Tropsch synthesis in an unsteady-state mode, particularly by alternately exposing the iron catalyst to a large flow of low H/sub 2/:CO gas for a short period of time and to a small flow of H/sub 2/-rich gas for a long period of time. During the past several months, the design, construction and steady-state testing of a fully-automated vibrofluidized microreactor system have been successfully completed, and a computer-controlled gas chromatographic (GC) system for gas-product analysis has also been tied to the reactor system. Work on unsteady-state Fischer-Tropsch synthesis experiments is to be initiated shortly. In addition, supporting hydrodynamic and heat-transfer studies in several shallow fluidized-bed systems have produced some encouraging data. The results indicate very high heat-transfer coefficients of 300-400 W/m/sup 2/-/sup 0/K between a shallow bed and its immersed horizontal heat-transfer tube, and of about 7000 W/m/sup 2/-/sup 0/K between a supernatant gas stream and a shallow bed which closely simulates the microreactor system in use.

  6. Sensitivity of Fischer-Tropsch Synthesis and Water-Gas Shift Catalysts to Poisons from High-Temperature High-Pressure Entrained-Flow (EF) Oxygen-Blown Gasifier Gasification of Coal/Biomass Mixtures

    SciTech Connect (OSTI)

    Burton Davis; Gary Jacobs; Wenping Ma; Dennis Sparks; Khalid Azzam; Janet Chakkamadathil Mohandas; Wilson Shafer; Venkat Ramana Rao Pendyala

    2011-09-30

    There has been a recent shift in interest in converting not only natural gas and coal derived syngas to Fischer-Tropsch synthesis products, but also converting biomass-derived syngas, as well as syngas derived from coal and biomass mixtures. As such, conventional catalysts based on iron and cobalt may not be suitable without proper development. This is because, while ash, sulfur compounds, traces of metals, halide compounds, and nitrogen-containing chemicals will likely be lower in concentration in syngas derived from mixtures of coal and biomass (i.e., using entrained-flow oxygen-blown gasifier gasification gasification) than solely from coal, other compounds may actually be increased. Of particular concern are compounds containing alkali chemicals like the chlorides of sodium and potassium. In the first year, University of Kentucky Center for Applied Energy Research (UK-CAER) researchers completed a number of tasks aimed at evaluating the sensitivity of cobalt and iron-based Fischer-Tropsch synthesis (FT) catalysts and a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to alkali halides. This included the preparation of large batches of 0.5%Pt-25%Co/Al{sub 2}O{sub 3} and 100Fe: 5.1Si: 3.0K: 2.0Cu (high alpha) catalysts that were split up among the four different entities participating in the overall project; the testing of the catalysts under clean FT and WGS conditions; the testing of the Fe-Cr WGS catalyst under conditions of co-feeding NaCl and KCl; and the construction and start-up of the continuously stirred tank reactors (CSTRs) for poisoning investigations. In the second and third years, researchers from the University of Kentucky Center for Applied Energy Research (UK-CAER) continued the project by evaluating the sensitivity of a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to a number of different compounds, including KHCO{sub 3}, NaHCO{sub 3}, HCl, HBr, HF, H{sub 2}S, NH{sub 3}, and a combination of H

  7. The application of inelastic neutron scattering to explore the significance of a magnetic transition in an iron based Fischer-Tropsch catalyst that is active for the hydrogenation of CO

    SciTech Connect (OSTI)

    Warringham, Robbie; McFarlane, Andrew R.; Lennon, David; MacLaren, Donald A.; Webb, Paul B.; Tooze, Robert P.; Taylor, Jon; Ewings, Russell A.; Parker, Stewart F.

    2015-11-07

    An iron based Fischer-Tropsch synthesis catalyst is evaluated using CO hydrogenation at ambient pressure as a test reaction and is characterised by a combination of inelastic neutron scattering (INS), powder X-ray diffraction, temperature-programmed oxidation, Raman scattering, and transmission electron microscopy. The INS spectrum of the as-prepared bulk iron oxide pre-catalyst (hematite, α-Fe{sub 2}O{sub 3}) is distinguished by a relatively intense band at 810 cm{sup −1}, which has previously been tentatively assigned as a magnon (spinon) feature. An analysis of the neutron scattering intensity of this band as a function of momentum transfer unambiguously confirms this assignment. Post-reaction, the spinon feature disappears and the INS spectrum is characterised by the presence of a hydrocarbonaceous overlayer. A role for the application of INS in magnetic characterisation of iron based FTS catalysts is briefly considered.

  8. Sensitivity of Fischer-Tropsch Synthesis and Water-Gas Shift Catalystes to Poisons form High-Temperature High-Pressure Entrained-Flow (EF) Oxygen-Blown Gasifier Gasification of Coal/Biomass Mixtures

    SciTech Connect (OSTI)

    Burton Davis; Gary Jacobs; Wenping Ma; Khalid Azzam; Janet ChakkamadathilMohandas; Wilson Shafer

    2009-09-30

    There has been a recent shift in interest in converting not only natural gas and coal derived syngas to Fischer-Tropsch synthesis products, but also converting biomass-derived syngas, as well as syngas derived from coal and biomass mixtures. As such, conventional catalysts based on iron and cobalt may not be suitable without proper development. This is because, while ash, sulfur compounds, traces of metals, halide compounds, and nitrogen-containing chemicals will likely be lower in concentration in syngas derived from mixtures of coal and biomass (i.e., using entrained-flow oxygen-blown gasifier gasification gasification) than solely from coal, other compounds may actually be increased. Of particular concern are compounds containing alkali chemicals like the chlorides of sodium and potassium. In the first year, University of Kentucky Center for Applied Energy Research (UK-CAER) researchers completed a number of tasks aimed at evaluating the sensitivity of cobalt and iron-based Fischer-Tropsch synthesis (FT) catalysts and a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to alkali halides. This included the preparation of large batches of 0.5%Pt-25%Co/Al{sub 2}O{sub 3} and 100Fe: 5.1Si: 3.0K: 2.0Cu (high alpha) catalysts that were split up among the four different entities participating in the overall project; the testing of the catalysts under clean FT and WGS conditions; the testing of the Fe-Cr WGS catalyst under conditions of co-feeding NaCl and KCl; and the construction and start-up of the continuously stirred tank reactors (CSTRs) for poisoning investigations.

  9. Improved Fischer-Tropsch Slurry Reactors

    SciTech Connect (OSTI)

    Andrew Lucero

    2009-03-20

    The conversion of synthesis gas to hydrocarbons or alcohols involves highly exothermic reactions. Temperature control is a critical issue in these reactors for a number of reasons. Runaway reactions can be a serious safety issue, even raising the possibility of an explosion. Catalyst deactivation rates tend to increase with temperature, particularly of there are hot spots in the reactor. For alcohol synthesis, temperature control is essential because it has a large effect on the selectivity of the catalysts toward desired products. For example, for molybdenum disulfide catalysts unwanted side products such as methane, ethane, and propane are produced in much greater quantities if the temperature increases outside an ideal range. Slurry reactors are widely regarded as an efficient design for these reactions. In a slurry reactor a solid catalyst is suspended in an inert hydrocarbon liquid, synthesis gas is sparged into the bottom of the reactor, un-reacted synthesis gas and light boiling range products are removed as a gas stream, and heavy boiling range products are removed as a liquid stream. This configuration has several positive effects for synthesis gas reactions including: essentially isothermal operation, small catalyst particles to reduce heat and mass transfer effects, capability to remove heat rapidly through liquid vaporization, and improved flexibility on catalyst design through physical mixtures in addition to use of compositions that cannot be pelletized. Disadvantages include additional mass transfer resistance, potential for significant back-mixing on both the liquid and gas phases, and bubble coalescence. In 2001 a multiyear project was proposed to develop improved FT slurry reactors. The planned focus of the work was to improve the reactors by improving mass transfer while considering heat transfer issues. During the first year of the project the work was started and several concepts were developed to prepare for bench-scale testing. PowerEnerCat was unable to raise their cash contribution for the project, and the work was stopped. This report summarizes some of the progress of the project and the concepts that were intended for experimental tests.

  10. Fischer-Tropsch synthesis from a low H/sub 2/:CO gas in a dry fluidized-bed system. Volume 3. Heat transfer between a supernatant gas and a flowing shallow fluidized bed of solids. Final technical report, October 1, 1986

    SciTech Connect (OSTI)

    Boyd, J.H.; Liu, Y.A.; Squires, A.M.

    1986-10-01

    Volume II describes the details of heat-transfer studies in a dry fluidized-bed system (called ''heat tray''), which has been proposed for heat recovery from hot gases and for heat management in exothermic reactions. In particular, this report presents the results of bench-scale and pilot-scale experimental studies which quantify heat transfer between a hot supernatant gas (S-gas) and a flowing shallow fluidized bed of solids. A fractional-factorial design of experiments has been performed on two heat-tray systems using three different solids. The results show that fine fluid cracking catalyst (FCC) particles out-perform larger alumina spheres as a fluidized solid. Heat transfer coefficients between the supernatant gas and the shallow fluidized bed approaches 440 W/m/sup 2/-K using FCC with a heat-exchange area of 0.124 m/sup 2/. Various S-gas inlet nozzle configurations have been studied, with a nozzle height equal to one-half of the static bed height (0.051 m) giving the best results. The study shows that short heat-tray lengths (< 0.8 m) are desirable and that S-gas redistributors are needed to compartmentalize the unit. An economic analysis shows that the proposed heat tray would be economically feasible for adaption as a boiler feedwater preheater in a small steam-generation facility, using boiler combustion gases as the S-gas. The payback time for the system would be as short as 1.9 years when used continuously. The heat transfer results from a supernatant gas to a flowing shallow fluidized bed represent the only data reported thus far, and have led to a better understanding of the heat management in the proposed ''heat-tray'' reactor for Fischer-Tropsch synthesis. 20 refs., 46 figs., 15 tabs.

  11. Attrition resistant Fischer-Tropsch catalyst and support

    DOE Patents [OSTI]

    Singleton, Alan H.; Oukaci, Rachid; Goodwin, James G.

    2004-05-25

    A catalyst support having improved attrition resistance and a catalyst produced therefrom. The catalyst support is produced by a method comprising the step of treating calcined .gamma.-alumina having no catalytic material added thereto with an acidic aqueous solution having an acidity level effective for increasing the attrition resistance of the calcined .gamma.-alumina.

  12. Attrition Resistant Fischer-Tropsch Catalysts Based on FCC Supports

    SciTech Connect (OSTI)

    Adeyinka Adeyiga

    2010-02-05

    Commercial spent fluid catalytic cracking (FCC) catalysts provided by Engelhard and Albemarle were used as supports for Fe-based catalysts with the goal of improving the attrition resistance of typical F-T catalysts. Catalysts with the Ruhrchemie composition (100 Fe/5 Cu/4.2 K/25 spent FCC on mass basis) were prepared by wet impregnation. XRD and XANES analysis showed the presence of Fe{sub 2}O{sub 3} in calcined catalysts. FeC{sub x} and Fe{sub 3}O{sub 4} were present in the activated catalysts. The metal composition of the catalysts was analyzed by ICP-MS. F-T activity of the catalysts activated in situ in CO at the same conditions as used prior to the attrition tests was measured using a fixed bed reactor at T = 573 K, P = 1.38 MPa and H{sub 2}:CO ratio of 0.67. Cu and K promoted Fe supported over Engelhard provided spent FCC catalyst shows relatively good attrition resistance (8.2 wt% fines lost), high CO conversion (81%) and C{sub 5}+ hydrocarbons selectivity (18.3%).

  13. IMPROVED IRON CATALYSTS FOR SLURRY PHASE FISCHER-TROPSCH SYNTHESIS

    SciTech Connect (OSTI)

    Dr. Dragomir B. Bukur; Dr. Lech Nowicki; Victor Carreto-Vazquez; Dr. Wen-Ping Ma

    2001-11-28

    PureVision Technology, Inc. (PureVision) of Fort Lupton, Colorado is developing a process for the conversion of lignocellulosic biomass into fuel-grade ethanol and specialty chemicals in order to enhance national energy security, rural economies, and environmental quality. Lignocellulosic-containing plants are those types of biomass that include wood, agricultural residues, and paper wastes. Lignocellulose is composed of the biopolymers cellulose, hemicellulose, and lignin. Cellulose, a polymer of glucose, is the component in lignocellulose that has potential for the production of fuel-grade ethanol by direct fermentation of the glucose. However, enzymatic hydrolysis of lignocellulose and raw cellulose into glucose is hindered by the presence of lignin. The cellulase enzyme, which hydrolyzes cellulose to glucose, becomes irreversibly bound to lignin. This requires using the enzyme in reagent quantities rather than in catalytic concentration. The extensive use of this enzyme is expensive and adversely affects the economics of ethanol production. PureVision has approached this problem by developing a biomass fractionator to pretreat the lignocellulose to yield a highly pure cellulose fraction. The biomass fractionator is based on sequentially treating the biomass with hot water, hot alkaline solutions, and polishing the cellulose fraction with a wet alkaline oxidation step. In September 2001 PureVision and Western Research Institute (WRI) initiated a jointly sponsored research project with the U.S. Department of Energy (DOE) to evaluate their pretreatment technology, develop an understanding of the chemistry, and provide the data required to design and fabricate a one- to two-ton/day pilot-scale unit. The efforts during the first year of this program completed the design, fabrication, and shakedown of a bench-scale reactor system and evaluated the fractionation of corn stover. The results from the evaluation of corn stover have shown that water hydrolysis prior to alkaline hydrolysis may be beneficial in removing hemicellulose and lignin from the feedstock. In addition, alkaline hydrolysis has been shown to remove a significant portion of the hemicellulose and lignin. The resulting cellulose can be exposed to a finishing step with wet alkaline oxidation to remove the remaining lignin. The final product is a highly pure cellulose fraction containing less than 1% of the native lignin with an overall yield in excess of 85% of the native cellulose. This report summarizes the results from the first year's effort to move the technology to commercialization.

  14. Development and Demonstration of Fischer-Tropsch Fueled Heavy...

    Broader source: Energy.gov (indexed) [DOE]

    2003 DEER Conference Presentation: Ricardo Inc., Chicago Technical Center 2003deermay.pdf (657.25 KB) More Documents & Publications Opportunities for the Early Production of ...

  15. CX-001328: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Fischer Tropsch LaboratoryCX(s) Applied: B3.6Date: 03/17/2010Location(s): Pittsburgh, PennsylvaniaOffice(s): Fossil Energy, National Energy Technology Laboratory

  16. CX-009372: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Small Scale Coal-Biomass to Liquids Using Highly Selective Fischer-Tropsch Synthesis CX(s) Applied: A9 Date: 09/17/2012 Location(s): California Offices(s): National Energy Technology Laboratory

  17. CX-002358: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Fischer-Tropsch Fuels DevelopmentCX(s) Applied: B3.6Date: 05/10/2010Location(s): Grand Forks, North DakotaOffice(s): Fossil Energy, National Energy Technology Laboratory

  18. UK FT PDU Facility Draft EA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    42S Final Supplemental Environmental Assessment for University of Kentucky Small-Scale Pilot Plant for the Gasification of Coal and Coal-Biomass Blends and Conversion of Derived Syngas to Liquid Fuels via Fischer-Tropsch Synthesis Lexington, KY February 2014 Prepared for: Department of Energy National Energy Technology Laboratory This page intentionally left blank. Final Supplemental Environmental Assessment DOE/EA-1642S Fischer-Tropsch Process Development Unit February 2014 Cover Sheet Proposed

  19. Ultra-Clean Fischer-Tropsch Fuels Production and Demonstration Project

    SciTech Connect (OSTI)

    Steve Bergin

    2005-10-14

    The Report Abstract provides summaries of the past year's activities relating to each of the main project objectives. Some of the objectives will be expanded on in greater detail further down in the report. The following objectives have their own addition sections in the report: Dynamometer Durability Testing, the Denali Bus Fleet Demonstration, Bus Fleet Demonstrations Emissions Analysis, Impact of SFP Fuel on Engine Performance, Emissions Analysis, Feasibility Study of SFPs for Rural Alaska, and Cold Weather Testing of Ultra Clean Fuel.

  20. Processes and palladium-promoted catalysts for conducting Fischer-Tropsch synthesis

    DOE Patents [OSTI]

    Singleton, Alan H.; Oukaci, Rachid; Goodwin, James G.

    2000-01-01

    A process for hydrocarbon synthesis comprising the step of reacting a synthesis gas in the presence of a cobalt catalyst promoted with palladium.

  1. Reducing fischer-tropsch catalyst attrition losses in high agitation reaction systems

    DOE Patents [OSTI]

    Singleton, Alan H.; Oukaci, Rachid; Goodwin, James G.

    2001-01-01

    A method for reducing catalyst attrition losses in hydrocarbon synthesis processes conducted in high agitation reaction systems; a method of producing an attrition-resistant catalyst; a catalyst produced by such method; a method of producing an attrition-resistant catalyst support; and a catalyst support produced by such method. The inventive method of reducing catalyst attrition losses comprises the step of reacting a synthesis gas in a high agitation reaction system in the presence of a catalyst. In one aspect, the catalyst preferably comprises a .gamma.-alumina support including an amount of titanium effective for increasing the attrition resistance of the catalyst. In another aspect, the catalyst preferably comprises a .gamma.-alumina support which has been treated, after calcination, with an acidic, aqueous solution. The acidic aqueous solution preferably has a pH of not more than about 5. In another aspect, the catalyst preferably comprises cobalt on a .gamma.-alumina support wherein the cobalt has been applied to the .gamma.-alumina support by totally aqueous, incipient wetness-type impregnation. In another aspect, the catalyst preferably comprises cobalt on a .gamma.-alumina support with an amount of a lanthana promoter effective for increasing the attrition resistance of the catalyst. In another aspect, the catalyst preferably comprises a .gamma.-alumina support produced from boehmite having a crystallite size, in the 021 plane, in the range of from about 30 to about 55 .ANG.ngstrons. In another aspect, the inventive method of producing an attrition-resistant catalyst comprises the step of treating a .gamma.-alumina support, after calcination of and before adding catalytic material to the support, with an acidic solution effective for increasing the attrition resistance of the catalyst. In another aspect, the inventive method of producing an attrition-resistant catalyst support comprises the step of treating calcined .gamma.-alumina with an acidic, aqueous solution effective for increasing the attrition resistance of the .gamma.-alumina.

  2. Fischer-Tropsch activity for non-promoted cobalt-on-alumina catalysts

    DOE Patents [OSTI]

    Singleton, Alan H.; Oukaci, Rachid; Goodwin, James G.

    2001-01-01

    Cobalt catalysts, and processes employing these inventive catalysts, for hydrocarbon synthesis. The inventive catalyst comprises cobalt on an alumina support and is not promoted with any noble or near noble metals. In one aspect of the invention, the alumina support preferably includes a dopant in an amount effective for increasing the activity of the inventive catalyst. The dopant is preferably a titanium dopant. In another aspect of the invention, the cobalt catalyst is preferably reduced in the presence of hydrogen at a water vapor partial pressure effective to increase the activity of the cobalt catalyst for hydrocarbon synthesis. The water vapor partial pressure is preferably in the range of from 0 to about 0.1 atmospheres.

  3. Separation of Fischer-Tropsch Wax Products from Ultrafine Iron Catalyst Particles

    SciTech Connect (OSTI)

    James K. Neathery; Gary Jacobs; Amitava Sarkar; Burtron H. Davis

    2006-03-31

    The morphological and chemical nature of ultrafine iron catalyst particles (3-5 nm diameters) during activation/FTS was studied by HRTEM, EELS, and Moessbauer spectroscopy. With the progress of FTS, the carbide re-oxidized to magnetite and catalyst activity gradually decreased. The growth of oxide phase continued and average particle size also increased simultaneously. The phase transformation occurred in a ''growing oxide core'' manner with different nano-zones. The nano-range carbide particles did not show fragmentation or attrition as generally observed in micrometer range particles. Nevertheless, when the dimension of particles reached the micrometer range, the crystalline carbide phase appeared to be sprouted on the surface of magnetite single crystal. In the previous reporting period, a design and operating philosophy was developed for an integrated wax filtration system for a 4 liter slurry bubble column reactor to be used in Phase II of this research program. During the current reporting period, we have started construction of the new filtration system and began modifications to the 4 liter slurry bubble column reactor (SBCR) reactor. The system will utilize a primary wax separation device followed by a Pall Accusep or Membralox ceramic cross-flow membrane. As of this writing, the unit is nearly complete except for the modification of a moyno-type pump; the pump was shipped to the manufacturer to install a special leak-free, high pressure seal.

  4. Separation of Fischer-Tropsch Wax Products from Ultrafine Iron Catalyst Particles

    SciTech Connect (OSTI)

    James K. Neathery; Gary Jacobs; Amitava Sarkar; Adam Crawford; Burtron H. Davis

    2006-09-30

    In the previous reporting period, modifications were completed for integrating a continuous wax filtration system for a 4 liter slurry bubble column reactor. During the current reporting period, a shakedown of the system was completed. Several problems were encountered with the progressive cavity pump used to circulate the wax/catalyst slurry though the cross-flow filter element and reactor. During the activation of the catalyst with elevated temperature (> 270 C) the elastomer pump stator released sulfur thereby totally deactivating the iron-based catalyst. Difficulties in maintaining an acceptable leak rate from the pump seal and stator housing were also encountered. Consequently, the system leak rate exceeded the expected production rate of wax; therefore, no online filtration could be accomplished. Work continued regarding the characterization of ultra-fine catalyst structures. The effect of carbidation on the morphology of iron hydroxide oxide particles was the focus of the study during this reporting period. Oxidation of Fe (II) sulfate results in predominantly {gamma}-FeOOH particles which have a rod-shaped (nano-needles) crystalline structure. Carbidation of the prepared {gamma}-FeOOH with CO at atmospheric pressure produced iron carbides with spherical layered structure. HRTEM and EDS analysis revealed that carbidation of {gamma}-FeOOH particles changes the initial nano-needles morphology and generates ultrafine carbide particles with irregular spherical shape.

  5. Baseline design/economics for advanced Fischer-Tropsch technology. Quarterly report, October--December 1994

    SciTech Connect (OSTI)

    1994-12-31

    All major tasks associated with the contract study have essentially been completed. Our activities during this quarter comprise mainly of project documentation, management and administration. Topical reports which document the accomplishments of the various tasks were issued. As a result of the current contract study, DOE/PETC is contemplating to modify the subject contract to include: replacing hydrocracking with FCC as an alternative scheme for F-T wax upgrading; enhancing the ZSM-5 reactor ASPEN modeling algorithm; incorporating the ZSM-5 reaction scheme to the Western Coal Case, and considering F-T synthesis using natural gas as feedstock. A detailed scope of work for the above tasks with a formal cost proposal was submitted to DOE/PETC for consideration.

  6. Baseline design/economics for advanced Fischer-Tropsch technology. Quarterly report, April--June 1994

    SciTech Connect (OSTI)

    1994-01-01

    The objectives of this study are to: Develop a baseline design and two alternative designs for indirect liquefaction using advanced F-T technology. The baseline design uses Illinois No. 6 Eastern Coal and conventional refining. There is an alternative refining case using ZSM-5 treatment of the vapor steam from the flurry F-T reactor and an alternative coal case using Western coal from the Powder River Basin. Prepare the capital and operating costs for the baseline design and the alternatives. Individual plant costs for the alternative cases will be prorated on capacity, wherever possible, from the baseline case, develop a process flowsheet simulation (PFS) model. The baseline design, the economic analysis and computer model will be major research planning tools that Pittsburgh Energy Technology Center will use to plan, guide and evaluate its ongoing and future research and commercialization programs relating to indirect coal liquefaction for the manufacture of synthetic liquid fuels from coal. During the reporting period, work progressed on Tasks 1, 4, 5, 6 and 7. This report covers work done during the period and consists of six sections: introduction and summary; Task 1, baseline design and alternatives; Task 4, process flowsheet simulation (PFS) model; Task 5, perform sensitivity studies using the PFS model; Task 6, document the PFS model and develop a DOE training session on its use, and project management and staffing report.

  7. Baseline design/economics for advanced Fischer-Tropsch technology. Quarterly report, April--June 1993

    SciTech Connect (OSTI)

    1993-12-31

    The objectives of this study are to: (1) Develop a baseline design and two alternative designs for indirect liquefaction using advanced F-T technology. The baseline design uses Illinois No. 6 Eastern Coal and conventional refining. There is an alternative refining case using ZSM-5 treatment of the vapor stream from the slurry F-T reactor and an alternative coal case using Western coal from the Powder River Basin. (2) Prepare the capital and operating costs for the baseline design and the alternatives. Individual plant costs for the alternative cases will be prorated on capacity, wherever possible, from the baseline case. (3) Develop a process flowsheet simulation model. The baseline design, the economic analysis and computer model will be major research planning tools that PETC will use to plan, guide and evaluate its ongoing and future research and commercialization programs relating to indirect coal liquefaction for the manufacture of synthetic liquid fuels from coal. The study has been divided into seven major tasks: Task 1: Establish the baseline design and alternatives. Task 2: Evaluate baseline and alternative economics. Task 3: Develop engineering design criteria. Task 4: Develop a process flowsheet simulation (PFS) model. Task 5: Perform sensitivity studies using the PFS model. Task 6: Document the PFS model and develop a DOE training session on its use. Task 7: Perform project management, technical coordination and other miscellaneous support functions. During the reporting period, work progressed on Tasks 1, 4 and 7. This report covers work done during the period and consists of four sections: Introduction and Summary. Task 1--Baseline Design and Alternatives. Task 4--Process Flowsheet Simulation (PFS) Model, and Project Management and Staffing Report.

  8. Baseline design/economics for advanced Fischer-Tropsch technology. Quarterly report, January--March 1993

    SciTech Connect (OSTI)

    1993-12-31

    The objectives of this study are to: Develop a baseline design and two alternative designs for indirect liquefaction using advanced F-T technology. The baseline design uses Illinois No. 6 Eastern Coal and conventional refining. There is an alternative refining case using ZSM- 5 treatment of the vapor stream from the slurry F-T reactor and an alternative coal case using Western coal from the Powder River Basin. Prepare the capital and operating costs for the baseline design and the alternatives. Individual plant costs for the alternative cases will be prorated on capacity, wherever possible, from the baseline case, and develop a process flowsheet simulation model. The baseline design, the economic analysis and computer model will be major research planning tools that Pittsburgh Energy Technology Center will use to plan, guide and evaluate its ongoing and future research and commercialization programs relating to indirect coal liquefaction for the manufacture of synthetic liquid fuels from coal. The study has been divided into seven major tasks: Task 1, establish the baseline design and alternatives; Task 2, evaluate baseline and alternative economics; Task 3, develop engineering design criteria; Task 4, develop a process flowsheet simulation (PFS) model; Task 5, perform sensitivity studies using the PFS model; Task 6, document the PFS model and develop a DOE training session on its use; and Task 7, perform project management, technical coordination and other miscellaneous support functions. This report covers work done during the period and consists of four sections: Introduction and summary; Task 1, baseline design and alternatives; Task 4, process flowsheet simulation (PFS) model; and project management and staffing report.

  9. Baseline design/economics for advanced Fischer-Tropsch technology. Quarterly report, October--December 1994

    SciTech Connect (OSTI)

    1993-12-31

    The objectives of the study are to: Develop a baseline design and two alternative designs for indirect liquefaction using advanced F-T technology. The baseline design uses Illinois No. 6 Eastern Coal and conventional refining. There is an alternative refining case using ZSM-5 treatment of the vapor stream from the slurry F-T reactor and an alternative coal case using Western coal from the Powder River Basin. Prepare the capital and operating costs for the baseline design and the alternatives. Individual plant costs for the alternative cases will be prorated on capacity, wherever possible, from the baseline case. Develop a process flowsheet simulation model. The baseline design, the economic analysis and computer model will be major research planning tools that PETC will use to plan, guide and evaluate its ongoing and future research and commercialization programs relating to indirect coal liquefaction for the manufacture of synthetic liquid fuels from coal. The study has been divided into seven major tasks. Task 1: Establish the baseline design and alternatives. Task 2: Evaluate baseline and alternative economics. Task 3: Develop engineering design criteria. Task 4: Develop a process flowsheet simulation model. Task 5: Perform sensitivity studies using the PFS model. Task 6: Document the PFS model and develop a DOE training session on its use, and Task 7: Perform project management, technical coordination and other miscellaneous support functions. During the reporting period, work progressed on Tasks 1, 4 and 7. This report covers work done during the period and consists of four sections: Introduction and Summary. Task 1--Baseline Design and Alternatives. Task 4--Process Flowsheet Simulation Model. Project Management and Staffing Report.

  10. Baseline design/economics for advanced Fischer-Tropsch technology. Quarterly report, July--September 1994

    SciTech Connect (OSTI)

    1994-12-31

    This report is Bechtel`s twelfth quarterly technical progress report and covers the period of July through September, 1994. All major tasks associated with the contract study have essentially been completed. Effort is under way in preparing various topical reports for publication. The objectives of this study are to: Develop a baseline design and two alternative designs for indirect liquefaction using advanced F-T technology. The baseline design uses Illinois No. 6 Eastern Coal and conventional refining. There is an alternative refining case using ZSM-5 treatment of the vapor stream from the slurry F-T reactor and an alternative coal case using Western coal from the Powder River Basin. Prepare the capital and operating costs for the baseline design and the alternatives. Individual plant costs for the alternative cases win be prorated on capacity, wherever possible, from the baseline case. Develop a process flowsheet simulation (PFS) model; establish the baseline design and alternatives; evaluate baseline and alternative economics; develop engineering design criteria; develop a process flowsheet simulation (PFS) model; perform sensitivity studies using the PFS model; document the PFS model and develop a DOE training session on its use; and perform project management, technical coordination and other miscellaneous support functions. Tasks 1, 2, 3 and 5 have essentially been completed. Effort is under way in preparing topical reports for publication. During the current reporting period, work progressed on Tasks 4, 6 and 7. This report covers work done during this period and consists of four sections: Introduction and Summary; Task 4 - Process Flowsheet Simulation (PFS) Model and Conversion to ASPEN PLUS; Task 6 - Document the PFS model and develop a DOE training session on its use; and Project Management and Staffing Report.

  11. Baseline design/economics for advanced Fischer-Tropsch technology. Auarterly report, July--September 1992

    SciTech Connect (OSTI)

    1992-12-31

    The objectives of this study are to: Develop a baseline design for indirect liquefaction using advanced F-T technology; prepare the capital and operating costs for the baseline design; and develop a process flowsheet simulation model. The baseline design, the economic analysis and computer model will be major research planning tools that Pittsburgh Energy Technology Center will use to plan, guide and evaluate its ongoing and future research and commercialisation programs relating to indirect coal liquefaction for the manufacture of synthetic liquid fuels from coal. The study has been divided into seven major tasks: Task 1, establish the baseline design and alternatives; Task 2, evaluate baseline economics; Task 3: Develop engineering design criteria; Task 4, develop a process flowsheet simulation (PFS) model; Task 5, perform sensitivity studies using the PFS model; Task 6, document the PFS model and develop a DOE training session on its use; Task 7, perform project management, technical coordination and other miscellaneous support functions. During the reporting period work progressed on Tasks 1, 4 and 7. This report covers work done during the period and consists of five sections: Introduction and summary; preliminary design for syngas production; Task 1, preliminary F-T reaction loop design; Task 1, development of a process simulation model; Task 4, key personnel staffing report, Task 7.

  12. Baseline design/economics for advanced Fischer-Tropsch technology. Quarterly report, January--March 1994

    SciTech Connect (OSTI)

    1994-12-31

    The objectives of the study are to: Develop a baseline design and two alternative designs for indirect liquefaction using advanced F-T technology. The baseline design uses Illinois No. 6 Eastern Coal and conventional refining. There is an alternative refining case using ZSM-5 treatment of the vapor stream from the slurry F-T reactor and an alternative coal case using Western, coal from the Powder River Basin. Prepare the capital and operating costs for the baseline design and the alternatives. Individual plant costs for the alternative cases will be prorated on capacity, wherever possible, from the baseline case. Develop a process flowsheet simulation (PFS) model. During the reporting period, work progressed on Tasks 1, 2, 4, 6 and 7. This report covers work done during the period and consists of four sections: Introduction and Summary. Task 1: Baseline Design and Alternatives. Task 2: Evaluate baseline and alternative economics. Task 4: Process Flowsheet Simulation (PFS) model. Task 6: Document the PFS model and develop a DOE training session on its use and Project Management and Staffing Report.

  13. ULTRA-CLEAN FISCHER-TROPSCH FUELS PRODUCTION AND DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    Steve Bergin

    2004-10-18

    The Report Abstract provides summaries of the past year's activities relating to each of the main project objectives. Some of the objectives will be expanded on in greater detail further down in the report. The following objectives have their own addition sections in the report: SFP Construction and Fuel Production, Impact of SFP Fuel on Engine Performance, Fleet Testing at WMATA and Denali National Park, Demonstration of Clean Diesel Fuels in Diesel Electric Generators in Alaska, and Economic Analysis. ICRC provided overall project organization and budget management for the project. ICRC held meetings with various project participants. ICRC presented at the Department of Energy's annual project review meeting. The plant began producing fuel in October 2004. The first delivery of finished fuel was made in March of 2004 after the initial start-up period.

  14. Separation of Fischer-Tropsch Wax from Catalyst by Supercritical Extraction

    SciTech Connect (OSTI)

    Mark C. Thies; Patrick C. Joyce

    1998-04-30

    Further progress in achieving the objectives of the project was made in the period of January I to March 31, 1998. The direct numerical simulation of particle removal process in turbulent gas flows was completed. Variations of particle trajectories are studied. It is shown that the near wall vortices profoundly affect the particle removal process in turbulent boundary layer flows. Experimental data for transport and deposition of fibrous particles in the aerosol wind tunnel was obtained. The measured deposition velocity for irregular fibrous particles is compared with the empirical correlation and the available data for glass fibers and discussed. Additional progress on the sublayer model for evaluating the particle deposition and resuspension in turbulent flows was made.

  15. Technology development for iron Fischer-Tropsch catalysis. [Pretreatment of catalyst in carbon monoxide

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    The present study shows that activation of a high surface area Fe{sub 2}O{sub 3} catalyst in CO in a (CSTR), continuously stirred tank reactor using tetralin as solvent results in an activated that is three times of material that is activated in H{sub 2} or directly in the syngas.

  16. Nitrided iron catalysts for the Fischer-Tropsch synthesis in the eighties

    SciTech Connect (OSTI)

    Anderson, R.B.

    1980-01-01

    Nitrided iron catalysts are active and durable and have an unusal selectivity. They do not produce significant amounts of wax, which should be advantageous in situations where gasoline is the desired product. The low yield of wax permits operation of nitrided iron in fluidized fixed-bed or entrained reactors at 230 to 255/sup 0/C. Conventional reduced iron catalysts in these reactors must be operated at about 325/sup 0/C to prevent formation of higher hydrocarbon that leads to agglomeration of the fluidized particles. At 325/sup 0/C carbon deposition and other processes leading to catalyst deterioration proceed rapidly. The yields of methane and ethane from nitrided iron are larger than desired for most purposes. Possibly promoters may be found to improve the selectivity of nitrided iron catalysts. The Bureau of Mines did not conduct a systematic catalyst development program on iron nitrides. (DP) 5 fgures, 6 tables.

  17. In-situ Moessbauer Spectroscopy of Supported Iron Fischer-Tropsch Catalysts During Activation

    SciTech Connect (OSTI)

    Motjope, Thato R.; Dlamini, Thulani H.

    2005-04-26

    The behavior of Fe based catalysts supported on ZrO2, SiO2, {gamma}-Al2O3, CeO2 and TiO2 during calcination, reduction and FT synthesis have been studied via in situ Moessbauer spectroscopy. It was found that the type of metal support interaction i.e. surface migration or bulk diffusion during calcination was dependant on the type of support used. Surface migration of Fe3+ during calcination was dominant for ZrO2, CeO2 and {gamma}-Al2O3 and this resulted in the sintering of {alpha}-Fe2O3 crystallites. Whereas bulk diffusion was observed mainly for the catalysts prepared using SiO2 and TiO2, causing a stabilization of the small crystallites of Fe3+ that interacted strongly with the support. Upon reduction, the large crystallites of {alpha}-Fe2O3 were found to reduce readily compared to the small crystallites of Fe3+, except for the catalyst prepared using {gamma}-Al2O3, as a support, where the presence of Al3+ resulted in the formation of spinel like species with the formula (Fe{sup 3+}{sub 2-x}Al{sup 3+}{sub x}Fe{sup 2+})O{sub 4} which are resistant to reduction. Upon exposure to synthesis gas, it was found that catalysts supported on ZrO2 and CeO2 carburized readily resulting in the formation of circa 80% {chi}-Fe2.5C. From this study it was observed that {gamma}-Al2O3 is not the preferred support for Fe based FT catalysts, as it forms the least amount of Fe carbides during FT synthesis.

  18. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    performance computer system installed at Los Alamos National Laboratory June 17, 2014 Unclassified 'Wolf' system to advance many fields of science LOS ALAMOS, N.M., June 17, 2014-Los Alamos National Laboratory recently installed a new high-performance computer system, called Wolf, which will be used for unclassified research. "This machine modernizes our mid-tier resources available to Laboratory scientists," said Bob Tomlinson, of the Laboratory's High Performance Computing group.

  19. Effect of surface modification by chelating agents on Fischer-Tropsch performance of Co/SiO2 catalysts

    SciTech Connect (OSTI)

    Bambal, Ashish S.; Kyugler, Edwin L.; Gardner, Todd H.; Dadyburjor, Dady B.

    2013-01-01

    The silica support of a Co-based catalyst for Fischer−Tropsch (FT) synthesis was modified by the chelating agents (CAs) nitrilotriacetic acid (NTA) and ethylenediaminetetraacetic acid (EDTA). After the modification, characterization of the fresh and spent catalysts shows reduced crystallite sizes, a better-dispersed Co3O4 phase on the calcined samples, and increased metal dispersions for the reduced samples. The CA-modified catalysts display higher CO conversions, product yields, reaction rates, and rate constants. The improved FT performance of CA-modified catalysts is attributed to the formation of stable complexes with Co. The superior performance of the EDTA-modified catalyst in comparison to the NTA-modified catalyst is due to the higher affinity of the former for complex formation with Co ions. 1. INTRODUCTION Fischer−Tropsch (FT) synthesis has been recognized as one of the most promising technologies for the conversion of coal, natural gas, and biomass-derived syngas into liquid fuels and chemicals.1 Limited oil reserves, energy supply security concerns, carbon credits,1 pollution abatement laws, and, most notably, uncertainty about fuel prices have increased the prospect of commercializing the FT process. Catalysts that are typically used for FT synthesis include supported Co or Fe. Cobased catalysts have the advantage of higher syngas conversion, more high-

  20. Development of precipitated iron Fischer-Tropsch catalysts. Quarterly technical progress report, 1 January 1995--31 March 1995

    SciTech Connect (OSTI)

    Bukur, D.B.; Lang, X.; Reddy, B.

    1995-05-23

    During the reporting period we completed synthesis of about 100 g of catalyst with nominal composition 100 Fe/3 Cu/4 K/16 SiO{sub 2} (S-3416-2), and of another batch (173 g) of the same catalyst (S-3416-3). Also, we synthesized two additional batches of catalyst with nominal composition 100 Fe/5 Cu/6 K/24 SiO{sub 2}, in the amounts of 240 g (S-5624-3) and 200 g (S-5624-4). These amounts are sufficient for all planned tests with these two catalysts for the entire duration of this contract. The synthesized catalysts were characterized by atomic absorption, and BET surface area and pore size distribution measurements.

  1. Technology development for iron Fischer-Tropsch catalysis. Quarterly technical progress report for period ending March 31, 1991

    SciTech Connect (OSTI)

    Not Available

    1991-12-31

    The present study shows that activation of a high surface area Fe{sub 2}O{sub 3} catalyst in CO in a (CSTR), continuously stirred tank reactor using tetralin as solvent results in an activated that is three times of material that is activated in H{sub 2} or directly in the syngas.

  2. Separation of Fischer-Tropsch wax from catalyst by supercritical extraction. Quarterly progress report, October 1, 1996--December 31, 1996

    SciTech Connect (OSTI)

    Joyce, P.C.; Thies, M.C.

    1997-01-01

    One of the major objectives of this research project is to predict the phase behavior of model wax compounds in dense supercritical fluids such as hexane. Because initial results with the SAFT equation have been less promising than expected, the group at North Carolina State University has focused their recent attention on cubic equations of state, in particular the Peng-Robinson and Soave-Redlich-Kwong versions. The focus of this work has been on developing correlations that can be used to predict binary interaction parameters (i.e., k{sub ij}s) for a given binary wax-solvent system. As a first step, k{sub ij}s were first calculated from experimental data on systems containing alkanes between nC{sub 4} and nC{sub 23} at temperatures between 25 and 357{degrees} C. Attempts were then made to correlate these parameters with specific pure component properties of the alkanes of interest. Reasonably good agreement between experimental and predicted k{sub ij}s was found using a correlation that incorporates both temperature and the molecular size of the alkanes. As phase equilibrium data becomes available for higher molecular weight model wax compounds, the ability of the correlation to handle such systems will need to be tested. The phase equilibrium apparatus is currently undergoing modifications that will allow the system to run components that are solids at ambient temperatures. Some problems are still being resolved, as the heavy component tends to precipitate in the sample lines. Modifications have been made that should allow the system to operate reliably.

  3. Carbon number distribution of Fischer-Tropsch products formed on an iron catalyst in a slurry reactor

    SciTech Connect (OSTI)

    Satterfield, C.N.; Huff, G.A. Jr.

    1982-01-01

    Studies at 234 to 269/sup 0/C and at 790 kPa showed a precise linear relationship between the log of mole fraction m/sub n/ of products of carbon number n, and n, as predicted by the Flory molecular-weight distribution provided that all products, including oxygenated species, are considered. The relationship held over more than four orders of magnitude of m/sub n/, values of n of from 1 to about 20, and over a wide range of gas composition. The chain growth probability factor, ..cap alpha.., increased slightly from 0.67 at 269/sup 0/C to 0.71 at 234/sup 0/C. 8 figures, 1 table.

  4. Fischer-Tropsch synthesis in supercritical reaction media. [Quarterly] progress report, July 1, 1993--September 30, 1993

    SciTech Connect (OSTI)

    Subramaniam, B.

    1993-10-01

    Figure 1 shows the physical appearance of the reactor and analytical units. The feed preparation section consists of a mass flow controller for syngas introduction, the BPLC pump for n-hexane introduction, preheaters, check valves, static mixer, and safety head has been completed. The stainless steel reactor was fabricated and was alonized to passivate the stainless steel surface. The fluidized sand bath surrounding the reactor was fabricated in house. Aluminum oxide (120 mesh) will be used as the fluidized medium. Stepping-motor-driven micrometering (Autoclave{reg_sign}) valves have been installed for pressure control of the reactor and of the syngas feed stream. The sample transfer lines connected to the gas sampling valves in the GC will be routed inside the valve oven and out through the front top of the GC, where they will be connected with the heated sample transfer lines from the reactor. The sample outlet line will be routed through a cold trap operated at 20{degrees}C or lower and the gases from the cold trap will be exhausted to the roof vent. The reactor unit is versatile and permits us to investigate the effect(s) of any of the following variables on syngas conversion, selectivity and reaction rate maintenance: (1) pressure (25--70) bars, (2) syngas flowrate (30--150) cc/min/g{center_dot}cat, (3) syngas ratio (H{sub 2}/CO of 0.5, 1.0 or 2.0) (4) ratio of syngas to reaction media (0.2--5.0), (5) catalyst type (Fe or Co), (6) direction of cocurrent flow (upflow or downflow), (7) cosolvent effects (such as n-pentane), and (8) sulfur content (1--50 mg{center_dot}/g{center_dot}Fe). Based on a literature review (Pennline et al., 1987; Baltrus et al., 1989; Bukur et al., 1990), the pretreatment of Fe catalysts will be performed with flowing CO at low pressure ({approximately}1 atm) and high temperatures ({approximately}280{degrees}C).

  5. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Builders place final beam in first phase of CMRR project at Los Alamos National Laboratory July 22, 2008 LOS ALAMOS, New Mexico, July 22, 2008- Workers hoisted the final steel beam ...

  6. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forest fire near Los Alamos National Laboratory June 26, 2011 Los Alamos, New Mexico, June 26, 2011, 6:07pm-The Las Conchas fire burning in the Jemez Mountains approximately 12...

  7. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mexican pueblo preserves cultural history through collaborative tours with Los Alamos National Laboratory August 24, 2015 Students gain new insights into their ancestry LOS ALAMOS, N.M., Aug. 24, 2015-San Ildefonso Pueblo's Summer Education Enhancement Program brought together academic and cultural learning in the form of a recent tour of Cave Kiva Trail in Mortandad Canyon."Opening up this archaeological site and sharing it with the descendants of its first inhabitants is a

  8. Transportable Heavy Duty Emissions Testing Laboratory and Research Program

    SciTech Connect (OSTI)

    David Lyons

    2008-03-31

    The objective of this program was to quantify the emissions from heavy-duty vehicles operating on alternative fuels or advanced fuel blends, often with novel engine technology or aftertreatment. In the first year of the program West Virginia University (WVU) researchers determined that a transportable chassis dynamometer emissions measurement approach was required so that fleets of trucks and buses did not need to be ferried across the nation to a fixed facility. A Transportable Heavy-Duty Vehicle Emissions Testing Laboratory (Translab) was designed, constructed and verified. This laboratory consisted of a chassis dynamometer semi-trailer and an analytic trailer housing a full scale exhaust dilution tunnel and sampling system which mimicked closely the system described in the Code of Federal Regulations for engine certification. The Translab was first used to quantify emissions from natural gas and methanol fueled transit buses, and a second Translab unit was constructed to satisfy research demand. Subsequent emissions measurement was performed on trucks and buses using ethanol, Fischer-Tropsch fuel, and biodiesel. A medium-duty chassis dynamometer was also designed and constructed to facilitate research on delivery vehicles in the 10,000 to 20,000lb range. The Translab participated in major programs to evaluate low-sulfur diesel in conjunction with passively regenerating exhaust particulate filtration technology, and substantial reductions in particulate matter were recorded. The researchers also participated in programs to evaluate emissions from advanced natural gas engines with closed loop feedback control. These natural gas engines showed substantially reduced levels of oxides of nitrogen. For all of the trucks and buses characterized, the levels of carbon monoxide, oxides of nitrogen, hydrocarbons, carbon dioxide and particulate matter were quantified, and in many cases non-regulated species such as aldehydes were also sampled. Particle size was also

  9. Transportation fuels from wood

    SciTech Connect (OSTI)

    Baker, E.G.; Elliott, D.C.; Stevens, D.J.

    1980-01-01

    The various methods of producing transportation fuels from wood are evaluated in this paper. These methods include direct liquefaction schemes such as hydrolysis/fermentation, pyrolysis, and thermochemical liquefaction. Indirect liquefaction techniques involve gasification followed by liquid fuels synthesis such as methanol synthesis or the Fischer-Tropsch synthesis. The cost of transportation fuels produced by the various methods are compared. In addition, three ongoing programs at Pacific Northwest Laboratory dealing with liquid fuels from wood are described.

  10. Fischer-Tropsch Synthesis over CO/SiO{sub 2} Catalyst Modified by a Chelating Agent: Characterization, Activity and Selectivity

    SciTech Connect (OSTI)

    Bambal, Ashish, S.; Kababji, Alaa; Guggilla, Vidya, Sagar; Gardner, Todd; Gardner, Edwin L.; Dadyburjor, Dady, B.

    2011-06-01

    In this study, modification of a support with a chelating agent (CA) has been proposed to improve the performance of the Co/SiO{sub 2} catalyst.

  11. Catalyst and reactor development for a liquid phase Fischer-Tropsch process. Quarterly technical progress report, 1 July 1983-30 September 1983

    SciTech Connect (OSTI)

    Brian, B.W.; Carroll, W.E.; Cilen, N.; Pierantozzi, R.; Nordquist, A.F.

    1984-11-01

    Two major tasks of the contract continued: (1) slurry catalyst development, and (2) slurry reactor design studies. The second extended slurry test, using a proprietary catalyst was completed. The results were not consistent with a previous short term test of this catalyst where high activity and yields in the diesel fuel region equal to or greater than the Schulz-Flory maximum were observed. The increased methane production and lower bulk activity over the previous test may have been the result of a variation in the surface active species of this catalyst. A short term (21 day) slurry test was carried out on another modified conventional catalyst. Parametric gas phase screening results were concluded for four additional catalysts, and the optimum preparation and activation methods for diesel fuel selectivity were chosen. In the hydrodynamic studies, work in the 12 inch Cold Flow Simulator continued. The following observations and/or conclusions were obtained: superficial gas velocity is the major factor for determining gas holdup; the major determining factor of the solids concentration profile in a slurry bed is particle size; heat transfer coefficients for the two-phase isoparaffin/N/sub 2/ were 64% of that predicted by Deckwer's correlation and for the three-phase Fe/sub 2/O/sub 3//isoparaffin, the results were better at 71%; bubble diameter measurements were obtained using a double hot film probe; the Air Products gas holdup correlation was incorporated into Deckwer's model of the three phase bubble column. A simulation utilizing kinetic data from an Air Products diesel fuel selective catalyst, under Rheinpreussen conditions, resulted in doubling the space time yield of the Rheinpreussen base case catalyst. 9 references, 12 figures, 8 tables.

  12. Catalyst and reactor development for a liquid phase Fischer-Tropsch process. Quarterly technical progress report, 1 April-30 June 1983

    SciTech Connect (OSTI)

    Brian, B W; Carroll, W E; Cilen, N; Pierantozzi, R; Nordquist, A F

    1984-10-01

    Two major tasks of the contract continued: (1) Slurry Catalyst Development, and (2) Slurry Reactor Design Studies. A third phase of the extended slurry test of the proprietary catalyst was conducted using a new catalyst batch to confirm that the change in selectivity and loss of activity, observed in the second phase, was due to air exposure of the catalyst. The results were in line with the high diesel fuel production as before the suspected oxidation. Excess CO exposure during this last phase of testing resulted in a reduction in catalyst activity and a shift in selectivity to heavier hydrocarbons with a Schulz-Flory maximum centered around C/sub 30/. The variations in selectivity and activity upon oxidation through air exposure, or surface carbon deposition through excess CO exposure, have confirmed the importance of understanding the mechanism for product selectivity. Further development with the aid of surface analysis techniques is required to control and center the selectivity for the diesel fuel range. Short term slurry tests were carried out on three catalysts, the preparation and activation procedures of which were optimized by the gas phase screening program. In the hydrodynamic studies, correlations were derived for the 5'' column data. In the 12'' column, fitted with 7 vertical heat transfer tubes, hydrodynamic parameters were determined for slurries of 45 to 90 ..mu..m Fe/sub 2/O/sub 3/ in paraffin and water. A double, conical, hot film probe to measure bubble diameter was successfully operated in a three phase slurry. Using Deckwer's model of the three phase bubble column, and kinetic data derived from the lab CSTR tests, the performance of Air Products' selective catalysts in a 1.5 x 8 m column (i.e., the size of Rheinpruessen) was simulated under both quiescent and churn turbulent conditions. 7 references, 8 figures, 6 tables.

  13. Catalyst and reactor development for a liquid phase Fischer-Tropsch process. Quarterly technical progress report, 1 October 1983-31 December 1983

    SciTech Connect (OSTI)

    Brian, B.W.; Carroll, W.E.; Cilen, N.; Pierantozzi, R.; Nordquist, A.F.

    1985-01-01

    Two major tasks continued in the thirteenth quarter: (1) Slurry Catalyst Development; and (2) Slurry Reactor Design Studies. In addition, work, as part of a three month contract modification, was begun to develop and improve the activity and center the selectivity for diesel fuel products of a proprietary catalyst A. This catalyst was found to produce yields in the diesel fuel region equal to or greater than the Schulz-Flory maximum with low rates of deactivation and good stability during previous extended periods of testing. A phase two extended slurry test of a proprietary catalyst B was completed this quarter. A considerable improvement in activity was observed, making this batch nearly four times as active as in the first phase of testing. The selectivity for total, gasoline and diesel, fuels was over 65 wt % in both phases of testing. The results of this test show the importance of metals loading and the need for further development work to optimize the activity and selectivity for diesel fuel of this catalyst. A short term (21 day) slurry test was conducted on another modified catalyst optimized by the gas phase screening program. Parametric gas phase screening tests were conducted on three additional catalysts. The optimum preparation and activation methods for diesel fuel selectivity will be chosen as these tests are completed. In the hydrodynamic studies, work in the 12 inch Cold-Flow Simulator was completed. A Box-Behnken experimental design was utilized to determine the statistical significance of the independent parameters studied (superficial gas velocity, solids weight fraction, solid size, etc.) on gas holdup, as well as, any synergistic effects. Correlations for gas holdup in the 12 inch and 5 inch columns were obtained. In each column, a strong linear dependence on superficial gas velocity was obtained. 6 references, 5 figures, 5 tables.

  14. Transportation Energy Futures (TEF) Data and Sources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ...d|cd|cg|gasoline|diesel|ft|fischer tropsch|lng|liquified|po|pyrolysis|distillate|renewable...d|cd|cg|gasoline|diesel|ft|fischer tropsch|lng|liquified|po|pyrolysis|distillate|renewable...

  15. Fischer-Tropsch Synthesis: Assessment of the Ripening of Cobalt Clusters and Mixing Between Co and Ru Promoter via Oxidation-Reduction-Cycles over Lower Co-Loaded Ru-Co/A12O3 Catalysts

    SciTech Connect (OSTI)

    Jacobs,G.; Sarkar, A.; Ji, Y.; Luo, M.; Dozier, A.; Davis, B.

    2008-01-01

    A 2% Ru-promoted 15% Co/Al2O3 catalyst was tested after reduction and after being subjected to oxidation-reduction cycles. The catalysts were characterized over four oxidation-reduction cycles by XANES/EXAFS, TPR, HRTEM, and EDS elemental mapping. The oxidation-reduction treatments were found to assist in sintering the metallic clusters to a larger size, and to promote mixing on at least the order of the nanoscale. The larger crystallites in closer proximity to the Ru promoter led to a more facile reduction of the cobalt crystallites. In addition, a catalyst exposed to two oxidation-reduction cycles resulted in slightly higher conversion, higher a-value product, slightly lower methane selectivity, and greater stability over a reduced freshly calcined catalyst.

  16. Technology development for cobalt F-T catalysts. Topical report No.3, Zirconia promotion of Fischer-Tropsch cobalt catalysts: Behavior in fixed-bed and slurry bubble column reactors

    SciTech Connect (OSTI)

    Oukaci, R.; Marcelin, G.; Goodwin, J.G. Jr.

    1995-01-17

    A series of cobalt-based F-T catalysts supported on alumina and silica were prepared with different loadings of Zr and different sequences of impregnation of Co and Zr. All catalysts were extensively characterized by different methods. The catalysts were evaluated in terms of their activity and selectivity both in fixed bed and slurry bubble column reactors. Addition of ZrO{sub 2} to both Co/SiO{sub 2} and Co/Al{sub 2}O{sub 3} catalysts resulted in at least a twofold increase in the catalyst activity for F-T synthesis in the fixed bed reactor. In the slurry bubble column reactor, a similar promotion effect was observed for the SiO{sub 2}-supported catalysts, while the addition of Zr to a cobalt/alumina catalyst had a less significant effect.

  17. Mixed Alcohol Synthesis Catalyst Screening

    SciTech Connect (OSTI)

    Gerber, Mark A.; White, James F.; Stevens, Don J.

    2007-09-03

    National Renewable Energy Laboratory (NREL) and Pacific Northwest National Laboratory (PNNL) are conducting research to investigate the feasibility of producing mixed alcohols from biomass-derived synthesis gas (syngas). PNNL is tasked with obtaining commercially available or preparing promising mixed-alcohol catalysts and screening them in a laboratory-scale reactor system. Commercially available catalysts and the most promising experimental catalysts are provided to NREL for testing using a slipstream from a pilot-scale biomass gasifier. From the standpoint of producing C2+ alcohols as the major product, it appears that the rhodium catalyst is the best choice in terms of both selectivity and space-time yield (STY). However, unless the rhodium catalyst can be improved to provide minimally acceptable STYs for commercial operation, mixed alcohol synthesis will involve significant production of other liquid coproducts. The modified Fischer-Tropsch catalyst shows the most promise for providing both an acceptable selectivity to C2+ alcohols and total liquid STY. However, further optimization of the Fischer-Tropsch catalysts to improve selectivity to higher alcohols is highly desired. Selection of a preferred catalyst will likely entail a decision on the preferred coproduct slate. No other catalysts tested appear amenable to the significant improvements needed for acceptable STYs.

  18. EIS-0357: Final Environmental Impact Statement | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    to demonstrate the integration of coal waste gasification and Fischer-Tropsch (F-T) synthesis of liquid hydrocarbon fuels at commercial scale. DOEEIS-0357, Department of Energy...

  19. EA-1642: Finding of No Significant Impact

    Broader source: Energy.gov [DOE]

    Design and Construction of an Early Lead Mini-Fischer-Tropsch Refinery at the University of Kentucky Center for Applied Energy Research Near Lexington, Kentucky

  20. EA-1642: Final Environmental Assessment

    Broader source: Energy.gov [DOE]

    Design and Construction of an Early Lead Mini Fischer-Tropsch Refinery at the University of Kentucky Center for Applied Energy Research Near Lexington, Kentucky

  1. Investigations of element spatial correlation in Mn-promoted...

    Office of Scientific and Technical Information (OSTI)

    Investigations of element spatial correlation in Mn-promoted Co-based Fischer-Tropsch synthesis catalysts This content will become publicly available on June 4, 2017 Title: ...

  2. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    follow a single nanoscale catalytic particle, a bulk iron oxide promoted with titanium, zinc and potassium oxides, during activation and under Fischer-Tropsch reaction conditions. ...

  3. Development of alternative fuels from coal-derived syngas

    SciTech Connect (OSTI)

    Brown, D.M.

    1992-05-19

    The overall objectives of this program are to investigate potential technologies for the conversion of coal-derived synthesis gas to oxygenated fuels, hydrocarbon fuels, fuel intermediates, and octane enhancers; and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). BASF continues to have difficulties in scaling-up the new isobutanol synthesis catalyst developed in Air Products' laboratories. Investigations are proceeding, but the proposed operation at LaPorte in April is now postponed. DOE has accepted a proposal to demonstrate Liquid Phase Shift (LPS) chemistry at LaPorte as an alternative to isobutanol. There are two principal reasons for carrying out this run. First, following the extensive modifications at the site, operation on a relatively benign'' system is needed before we start on Fischer-Tropsch technology in July. Second, use of shift catalyst in a slurry reactor will enable DOE's program on coal-based Fischer-Tropsch to encompass commercially available cobalt catalysts-up to now they have been limited to iron-based catalysts which have varying degrees of shift activity. In addition, DOE is supportive of continued fuel testing of LaPorte methanol-tests of MIOO at Detroit Diesel have been going particularly well. LPS offers the opportunity to produce methanol as the catalyst, in the absence of steam, is active for methanol synthesis.

  4. Development of alternative fuels from coal-derived syngas. Quarterly status report No. 6, January 1--March 31, 1992

    SciTech Connect (OSTI)

    Brown, D.M.

    1992-05-19

    The overall objectives of this program are to investigate potential technologies for the conversion of coal-derived synthesis gas to oxygenated fuels, hydrocarbon fuels, fuel intermediates, and octane enhancers; and to demonstrate the most promising technologies at DOE`s LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). BASF continues to have difficulties in scaling-up the new isobutanol synthesis catalyst developed in Air Products` laboratories. Investigations are proceeding, but the proposed operation at LaPorte in April is now postponed. DOE has accepted a proposal to demonstrate Liquid Phase Shift (LPS) chemistry at LaPorte as an alternative to isobutanol. There are two principal reasons for carrying out this run. First, following the extensive modifications at the site, operation on a relatively ``benign`` system is needed before we start on Fischer-Tropsch technology in July. Second, use of shift catalyst in a slurry reactor will enable DOE`s program on coal-based Fischer-Tropsch to encompass commercially available cobalt catalysts-up to now they have been limited to iron-based catalysts which have varying degrees of shift activity. In addition, DOE is supportive of continued fuel testing of LaPorte methanol-tests of MIOO at Detroit Diesel have been going particularly well. LPS offers the opportunity to produce methanol as the catalyst, in the absence of steam, is active for methanol synthesis.

  5. Laboratory Directors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Directors Laboratory Directors A gallery of Laboratory leadership, 1943 to the present. Laboratory historian Alan B. Carr Email Laboratory directors Charles McMillan (2011-present) Michael R. Anastasio (2006-2011) Robert Kuckuck (2005-2006) G. Peter Nanos (2003-2005) John C. Browne (1997-2003) Siegfried S. Hecker (1985-1997) Donald M. Kerr (1979-1985) Harold M. Agnew (1970-1979) Norris Bradbury (1945-1970) J. Robert Oppenheimer (1943-1945) Laboratory Directors Harold M. Agnew

  6. Status of coal liquefaction in the United States and related research and development at the Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Salmon, R.; Cochran, H.D. Jr.; McNeese, L.E.

    1982-10-05

    We divide coal liquefaction processes into four categories: (1) indirect liquefaction, such as Fischer-Tropsch and methanol synthesis, in which coal is fist gasified to produce a synthesis gas which is then recombined to produce liquids; (2) direct liquefaction processes, typified by H-Coal, Exxon Donor Solvent (EDS), and SRC-I and II, in which a slurry of coal and solvent is subjected to high severity liquefaction conditions, either with or without added catalyst; (3) two-stage liquefaction, such as Conoco's CSF process, in which an initial dissolution at mild conditions is followed by a more severe catalytic hydrogenation-hydrocracking step; or the short contact time two-stage liquefaction processes being developed currently by groups which include Chevron, Electric Power Research Institute (EPRI), Department of Energy/Fossil Energy (DOE/FE); and (4) pyrolysis and hydropyrolysis processes, such as COED and Cities Service-Rockewell, in which coal is carbonized to produce liquids, gases, and char. Pilot plant experience with the various processes is reviewed (including equipment problems, corrosion and abrasion, refractory life, heat recovery, coke deposits, reactor kinetics, scale-up problems, health hazards, environmental impacts, upgrading products, economics, etc.). Commercialization possibilities are discussed somewhat pessimistically in the light of reduction of US Oil imports, weakening oil prices, conversion to coal, smaller automobiles, economics and finally, some uncertainty about SFC goals and policies. (LTN)

  7. Laboratories | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories Our laboratories are available to industry and other organizations for researching, developing, and evaluating energy technologies. We have experienced lab technicians, scientists and engineers ready to design and run tests for you. Some labs are available for conducting your own research. A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z A Accelerated Exposure Testing Laboratory Advanced Optical Materials Laboratory Advanced

  8. Geoscience Laboratory | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    preparation and other relatively straight-forward laboratory manipulations. These include buffer preparations, solid sample grinding, solution concentration, filtration, and...

  9. Laboratory Fellows

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    selected as Los Alamos National Laboratory Fellows November 16, 2010 Scientific disciplines range from fundamental and applied physics to geology LOS ALAMOS, New Mexico, NOVEMBER 16, 2010-Five Los Alamos National Laboratory scientists from diverse fields of research have been named Laboratory Fellows. The five researchers are Brenda Dingus of the Neutron Science and Technology group; William (Bill) Louis of the Subatomic Physics group; John Sarrao, director of Los Alamos's Office of Science

  10. Laboratory Director

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Director Laboratory Director Charles F. McMillan has demonstrated success at balancing mission performance with security and safety. Contact Operator Los Alamos National Laboratory (505) 667-5061 McMillan has nearly 30 years of scientific and management experience in weapons science and stockpile certification, hands-on experience in both experimental physics and computational science, and demonstrated success at balancing mission performance with security and safety. Charles F.

  11. Laboratory Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Operations Laboratory Operations Latest announcements from the Lab on its operations. News Releases Science Briefs Photos Picture of the Week Publications Social Media Videos Fact Sheets The Laboratory began the Hazmat Challenge in 1996 to hone the skills of its own hazmat team members. 20th Hazmat Challenge tests skills of hazardous materials response teams Ten hazardous materials response teams from New Mexico, Missouri, Oklahoma and Nebraska test their skills in a series of graded,

  12. Laboratory Building.

    SciTech Connect (OSTI)

    Herrera, Joshua M.

    2015-03-01

    This report is an analysis of the means of egress and life safety requirements for the laboratory building. The building is located at Sandia National Laboratories (SNL) in Albuquerque, NM. The report includes a prescriptive-based analysis as well as a performance-based analysis. Following the analysis are appendices which contain maps of the laboratory building used throughout the analysis. The top of all the maps is assumed to be north.

  13. The Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    existing programs in climate change science and infrastructure. The Laboratory has a 15- year history in climate change science. The Climate, Ocean and Sea Ice Modeling (COSIM) ...

  14. Laboratory Access | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Access Planning Ahead Planning Ahead Please complete the Beam Time Request (BTR) and Support Request forms thourgh the User Portal. Thorough chemical and sample information must be included in your BTR. Support Request forms include a list of collaborators that require laboratory access and your group's laboratory equipment requests. Researcher safety is taken seriously at SLAC. Please remember that radioactive materials, nanomaterials, and biohazardous materials have additional safety

  15. National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supercomputing Challenge draws more than 200 students to Los Alamos National Laboratory April 16, 2015 NOTE TO EDITORS: Media are welcome to attend the awards ceremony from 9 a.m. to noon a.m., April 21 at the Church of Christ, 2323 Diamond Drive, Los Alamos. Student teams from around New Mexico showcase year-long research projects April 20-21 LOS ALAMOS, N.M., April 16, 2015-More than 200 New Mexico students and their teachers are at Los Alamos National Laboratory April 20-21 for the 25th

  16. National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Community invited to learn about emerging technologies July 6, 2016 DisrupTech showcases innovation from Los Alamos National Laboratory LOS ALAMOS, N.M., July 6, 2016-New technologies emerging from Los Alamos National Laboratory that address everything from fusion energy to medical testing will be on display for members of the community, investors and business leaders at the DisrupTech showcase, Thursday, July 14, starting at 1:00 p.m. at the Los Alamos Golf Course Event Center. "We call it

  17. Geomechanics Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geomechanics Laboratory - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  18. Lab Plan | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab Plan Ames Laboratory

  19. National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ignition Facility Former Army Ranger wins Sandia-sponsored student of the year award Former Army Ranger Damon Alcorn recently received the Sandia National Laboratories-Livermore Chamber of Commerce Student of the Year Award. Presented at the Chamber's State of the City Luncheon last month, the annual award highlights a Las Positas College student with exemplary academic... NNSA makers and hackers engage innovation and partnerships NNSA's labs change the world everyday through cutting-edge

  20. DOE studies on coal-to-liquids

    SciTech Connect (OSTI)

    2007-07-01

    The US DOE National Energy Technology Laboratory has issued reports that examine the feasibility of coal-to-liquids (CTL) facilities, both general and site specific, which are available at www.netl.gov/energy-analyses/ref-shelf.html. The US Department of Defence has been investigating use of Fischer-Tropsch fuels. Congress is considering various CTL proposals while the private sector is building pilot plants and performing feasibility studies for proposed plants. The article includes a table listing 14 coal-to-liquids plants under consideration. The private sector has formed the coal-to-liquids coalition (www.futurecoalfuels.org). The article mentions other CTL projects in South Africa, China, Indonesia, the Philippines and New Zealand. 1 tab.

  1. Laboratory Waste | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Waste Sharps Broken Glass Containment Hazardous Waste All waste produced in the Sample Prep Labs should be appropriately disposed of at SLAC. You are prohibited to transport waste back to your home institution. Designated areas exist in the labs for sharps, broken glass, and hazardous waste. Sharps, broken glass, and hazardous waste must never be disposed of in the trash cans or sink drains. Containment Bottles, jars, and plastic bags are available for containing chemical waste. Place

  2. Laboratory Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory Applications What are contaminants normally found in hydrogen from fueling nozzle? JP Hsu SmartChemistry.com Particulates are most common found in Hydrogen - 96% hydrogen fuel contains particulates in 108 Particulate Samplings. Typical Particulate filter - 0.035mg/kg SmartChemistry.com H 2 Station X Particulate Sample Particulate Concentration at 700 Bar: 2.0 mg/kg Particulate filter after sampling, in which 4.001mg particulates are found in 2 kilogram hydrogen SmartChemistry.com H 2

  3. Laboratory Activities

    SciTech Connect (OSTI)

    Brown, Christopher F.; Serne, R. Jeffrey

    2008-01-17

    This chapter summarizes the laboratory activities performed by PNNLs Vadose Zone Characterization Project in support of the Tank Farm Vadose Zone Program, led by CH2M HILL Hanford Group, Inc. The results of these studies are contained in numerous reports (Lindenmeier et al. 2002; Serne et al. 2002a, 2002b, 2002c, 2002d, 2002e; Lindenmeier et al. 2003; Serne et al. 2004a, 2004b; Brown et al. 2005, 2006a, 2007; Serne et al. 2007) and have generated much of the data reported in Chapter 22 (Geochemistry-Contaminant Movement), Appendix G (Geochemistry-Contaminant Movement), and Cantrell et al. (2007, SST WMA Geochemistry Data Package in preparation). Sediment samples and characterization results from PNNLs Vadose Zone Characterization Project are also shared with other science and technology (S&T) research projects, such as those summarized in Chapter 12 (Associated Science Activities).

  4. Heat Transfer Laboratory | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heat Transfer Laboratory Materials in solids or fluid forms play an important role in a ... Argonne's Heat Transfer Laboratory enables researchers to: Synthesize and prepare heat ...

  5. National Laboratory Impact Initiative

    Broader source: Energy.gov [DOE]

    The National Laboratory Impact Initiative supports the relationship between the Office of Energy Efficiency & Renewable Energy and the national laboratory enterprise.  The national laboratories...

  6. Renewable Energy Laboratory

    Open Energy Info (EERE)

    Radiation Budget Measurement Networks, National Oceanic and Atmospheric Administration Air Resources Laboratory and Earth System Research Laboratory Global Monitoring Division *...

  7. EA-1642S: Finding of No Significant Impact

    Broader source: Energy.gov [DOE]

    Small-Scale Pilot Plant for the Gasification of Coal and Coal-Biomass Blends and Conversion of Derived Syngas to Liquid Fuels via Fischer-Tropsch Synthesis, Lexington, Kentucky

  8. Microsoft Word - 12.18.13 NEPA UK FT DSEA draft DearReaderLtr...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pilot plant for research related to the gasification of coal and coal-biomass blends and conversion of derived syngas to liquid fuels via Fischer-Tropsch (FT) synthesis. ...

  9. CX-011112: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Innovative Gasification to Produce Fischer-Tropsch Jet and Diesel Fuel CX(s) Applied: A9 Date: 08/15/2013 Location(s): Iowa Offices(s): Golden Field Office

  10. EA-1870: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    could be suitable for production of clean fuels such as substitute natural gas, sulfur-free Fischer-Tropsch diesel, jet fuel, dimethyl ether, and methane. This MAP identifies...