National Library of Energy BETA

Sample records for laboratory crd-01-098 fischer-tropsch

  1. Catalysts for Fischer-Tropsch

    SciTech Connect (OSTI)

    Srivastava, R.D. ); Rao, V.U.S.; Cinquegrane, G.; Stiegel, G.J. )

    1990-02-01

    The slurry-phase Fischer-Tropsch (F-T) process has attracted considerable attention recently. The process can make liquid fuels by reacting hydrogen-lean synthesis gas produced from modern energy-efficient gasifiers. continuing assessment of Fischer-Tropsch Synthesis (FTS) has a high priority within an indirect liquefaction program, a part of the liquid fuels program sponsored by the U.S. Department of Energy (DOE) and executed by the Pittsburgh Energy Technology Center (PETC). Funding for the indirect liquefaction program in 1990:0090 is anticipated to be about $8.5 million compared to $6.6 million in 1989 and a like amount in the year before. The studies within the program are conducted by industry, universities, national laboratories and in-house PETC research and development. This article reviews preparation and properties of iron-based catalysts, including recent patent activities and in-depth process analysis of slurry-phase FTS. The review provides an analysis of Fischer-Tropsch catalyst research and development trends and describes options to increase selectivity for iron-based catalysts in a slurry phase.

  2. Fischer-Tropsch process

    DOE Patents [OSTI]

    Dyer, Paul N. (Allentown, PA); Pierantozzi, Ronald (Orefield, PA); Withers, Howard P. (Douglassville, PA)

    1987-01-01

    A Fischer-Tropsch process utilizing a product selective and stable catalyst by which synthesis gas, particularly carbon-monoxide rich synthesis gas is selectively converted to higher hydrocarbons of relatively narrow carbon number range is disclosed. In general, the selective and notably stable catalyst, consist of an inert carrier first treated with a Group IV B metal compound (such as zirconium or titanium), preferably an alkoxide compound, and subsequently treated with an organic compound of a Fischer-Tropsch metal catalyst, such as cobalt, iron or ruthenium carbonyl. Reactions with air and water and calcination are specifically avoided in the catalyst preparation procedure.

  3. Fischer-Tropsch process

    SciTech Connect (OSTI)

    Haag, W.O.; Kuo, J.C.; Weisz, P.B.

    1990-03-06

    This patent describes a method for maximizing the production of diesel oil and heavier hydrocarbon oils. It comprises: contacting a suitable synthesis gas feed comprising hydrogen and carbon oxides with a fluidized or moving bed catalyst system comprising a major proportion of a Fischer-Tropsch synthesis catalyst containing a minor proportion of a zeolite catalyst having an alpha value of from 1 to about 200 and wherein the fraction of zeolite catalyst used, zeolite activity and the amount of liquid product produced are controlled in accordance with the following equation: {ital f {center dot} alpha {center dot} W} + {ital A {center dot} n} where f is the fraction of zeolite catalyst used, alpha is zeolite activity, W is the weight of liquid product per weight of total solid catalyst charge per hour, A is an average number which varies inversely with the operating temperature and n is from about 1 to 10.

  4. Development and Demonstration of Fischer-Tropsch Fueled Heavy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fischer-Tropsch Fueled Heavy-Duty Vehicles with Control Technologies for Reduced Diesel Exhaust Emissions Development and Demonstration of Fischer-Tropsch Fueled Heavy-Duty ...

  5. Sasol's Fischer-Tropsch experience

    SciTech Connect (OSTI)

    Dry, M.E.

    1982-08-01

    Product slate from Fischer-Tropsch processing can be selectively varied over a wide range. Depending on the type reactor chosen and conditions of operation, either gasoline or diesel components can amount to as much as 75% of the hydrocarbons produced. Based on over 26 years of commercial experience in Fischer-Tropsch operations, Sasol has identified factors for controlling the product slate with respect to fraction produced and yields. Experience with two reactor types demonstrates their advantages and limitations while manipulation of the operating conditions has established control techniques for yields. Reactors of the low temperature fixed bed type produce products that are paraffinic and largely wax while yields from operation of higher temperature fluidized catalyst are a product that is highly olefinic and falls in the gasoline boiling range. After work up using normal refinery processing, the final products meet specifications applicable for motor fuels that are entirely compatible with crude oil products. In fact, the diesel product is superior because it has a cetane number higher than normal and a lower ring compound content.

  6. Tailored fischer-tropsch synthesis product distribution

    DOE Patents [OSTI]

    Wang, Yong (Richland, WA); Cao, Chunshe (Kennewick, WA); Li, Xiaohong Shari (Richland, WA); Elliott, Douglas C. (Richland, WA)

    2012-06-19

    Novel methods of Fischer-Tropsch synthesis are described. It has been discovered that conducting the Fischer-Tropsch synthesis over a catalyst with a catalytically active surface layer of 35 microns or less results in a liquid hydrocarbon product with a high ratio of C.sub.5-C.sub.20:C.sub.20+. Descriptions of novel Fischer-Tropsch catalysts and reactors are also provided. Novel hydrocarbon compositions with a high ratio of C.sub.5-C.sub.20:C.sub.20+ are also described.

  7. Moderated ruthenium fischer-tropsch synthesis catalyst

    DOE Patents [OSTI]

    Abrevaya, Hayim (Wilmette, IL)

    1991-01-01

    The subject Fischer-Tropsch catalyst comprises moderated ruthenium on an inorganic oxide support. The preferred moderator is silicon. Preferably the moderator is effectively positioned in relationship to ruthenium particles through simultaneous placement on the support using reverse micelle impregnation.

  8. Fischer-Tropsch Wastewater Utilization

    DOE Patents [OSTI]

    Shah, Lalit S. (Sugar Land, TX)

    2003-03-18

    The present invention is generally directed to handling the wastewater, or condensate, from a hydrocarbon synthesis reactor. More particularly, the present invention provides a process wherein the wastewater of a hydrocarbon synthesis reactor, such as a Fischer-Tropsch reactor, is sent to a gasifier and subsequently reacted with steam and oxygen at high temperatures and pressures so as to produce synthesis gas. The wastewater may also be recycled back to a slurry preparation stage, where solid combustible organic materials are pulverized and mixed with process water and the wastewater to form a slurry, after which the slurry fed to a gasifier where it is reacted with steam and oxygen at high temperatures and pressures so as to produce synthesis gas.

  9. Opportunities for the Early Production of Fischer-Tropsch (F...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for the Early Production of Fischer-Tropsch (F-T) Fuels in the U.S. -- An Overview Opportunities for the Early Production of Fischer-Tropsch (F-T) Fuels in the U.S. -- An Overview...

  10. Novel Fischer-Tropsch catalysts

    DOE Patents [OSTI]

    Vollhardt, Kurt P. C.; Perkins, Patrick

    1981-01-01

    Novel polymer-supported metal complexes of the formula PS -R Me(CO).sub.n H.sub.m where: PS represents a divinylbenzene crosslinked polystyrene in which the divinylbenzene crosslinking is greater than 1% and less than about 18%; R represents a cycloalkadienyl radical of 4 through 6 carbon atoms; Me represents a Group VIII metal; CO represents a carbonyl radical; H represents hydrogen; n represents an integer varying from 0 through 3; m represents an integer varying from 0 through 2 inclusively with the further provision that 2n+m must total 18 when added to the electrons in R and Me, or n+m must total 0; are prepared by: brominating PS -H by treating same with bromine in the presence of a thallium salt in a partially or fully halogenated solvent to form PS -Br; treating said PS -Br so produced with a lithium alkyl of 1 through 12 carbon atoms in an aromatic solvent to produce PS -Li; substituting said PS - Li so produced by reaction with a 2-cycloalkenone of 4 to 6 carbon atoms in the presence of an ether solvent and using a water work-up to form a cycloalkenylalcohol-substituted PS ; dehydrating said alcohol so produced by heating under a vacuum to produce a cycloalkadienyl-substituted PS ; reacting the cycloalkadienyl-substituted PS with metal carbonyl in the presence of a partially or fully halogenated hydrocarbon, aromatic hydrocarbon of 6 through 8 carbon atoms, ethers, or esters of 4 through 10 carbon atoms as a solvent to produce a polystyrene-supported cycloalkadienyl metal carbonyl. The novel compounds are used as improved Fischer-Tropsch catalysts particularly for the conversion of CO+H.sub.2 to gaseous and liquid hydrocarbons at milder conditions than with prior catalysts.

  11. Novel Fischer-Tropsch catalysts

    DOE Patents [OSTI]

    Vollhardt, Kurt P. C.; Perkins, Patrick

    1980-01-01

    Novel polymer-supported metal complexes of the formula: PS --R Me(CO).sub.n H.sub.m where: PS represents a divinylbenzene crosslinked polystyrene in which the divinylbenzene crosslinking is greater than 1% and less than about 18%; R represents a cycloalkadienyl radical of 4 through 6 carbon atoms; Me represents a Group VIII metal; CO represents a carbonyl radical; H represents hydrogen; n represents an integer varying from 0 through 3; m represents an integer varying from 0 through 2 inclusively with the further provision that 2n+m must total 18 when added to the electrons in R and Me, or n+m must total 0; are prepared by: brominating PS --H by treating same with bromine in the presence of a thallium salt in a partially or fully halogenated solvent to form PS --Br; treating said PS --Br so produced with a lithium alkyl of 1 through 12 carbon atoms in an aromatic solvent to produce PS --Li; substituting said PS-- Li so produced by reaction with a 2-cycloalkenone of 4 to 6 carbon atoms in the presence of an ether solvent and using a water work-up to form a cycloalkenylalcohol-substituted PS ; dehydrating said alcohol so produced by heating under a vacuum to produce a cycloalkadienyl-substituted PS ; reacting the cycloalkadienyl-substituted PS with metal carbonyl in the presence of a partially or fully halogenated hydrocarbon, aromatic hydrocarbon of 6 through 8 carbon atoms, ethers, or esters of 4 through 10 carbon atoms as a solvent to produce a polystyrene-supported cycloalkadienyl metal carbonyl. The novel compounds are used as improved Fischer-Tropsch catalysts particularly for the conversion of CO+H.sub.2 to gaseous and liquid hydrocarbons at milder conditions than with prior catalysts.

  12. Novel Fischer-Tropsch catalysts

    DOE Patents [OSTI]

    Vollhardt, Kurt P. C.; Perkins, Patrick

    1981-01-01

    Novel polymer-supported metal complexes of the formula: PS --R Me(CO).sub.n H.sub.m where: PS represents a divinylbenzene crosslinked polystyrene in which the divinylbenzene crosslinking is greater than 1% and less than about 18%; R represents a cycloalkadienyl radical of 4 through 6 carbon atoms; Me represents a Group VIII metal; CO represents a carbonyl radical; H represents hydrogen; n represents an integer varying from 0 through 3; m represents an integer varying from 0 through 2 inclusively with the further provision that 2n+m must total 18 when added to the electrons in R and Me, or n+m must total 0; are prepared by: brominating PS --H by treating same with bromine in the presence of a thallium salt in a partially or fully halogenated solvent to form PS --Br; treating said PS --Br so produced with a lithium alkyl of 1 through 12 carbon atoms in an aromatic solvent to produce PS --Li; substituting said PS-- Li so produced by reaction with a 2-cycloalkenone of 4 to 6 carbon atoms in the presence of an ether solvent and using a water work-up to form a cycloalkenylalcohol-substituted PS ; dehydrating said alcohol so produced by heating under a vacuum to produce a cycloalkadienyl-substituted PS ; reacting the cycloalkadienyl-substituted PS with metal carbonyl in the presence of a partially or fully halogenated hydrocarbon, aromatic hydrocarbon of 6 through 8 carbon atoms, ethers, or esters of 4 through 10 carbon atoms as a solvent to produce a polystyrene-supported cycloalkadienyl metal carbonyl. The novel compounds are used as improved Fischer-Tropsch catalysts particularly for the conversion of CO+H.sub.2 to gaseous and liquid hydrocarbons at milder conditions than with prior catalysts.

  13. Novel Attrition-Resistant Fischer Tropsch Catalyst

    SciTech Connect (OSTI)

    Weast, Logan, E.; Staats, William, R.

    2009-05-01

    There is a strong national interest in the Fischer-Tropsch synthesis process because it offers the possibility of making liquid hydrocarbon fuels from reformed natural gas or coal and biomass gasification products. This project explored a new approach that had been developed to produce active, attrition-resistant Fischer-Tropsch catalysts that are based on glass-ceramic materials and technology. This novel approach represented a promising solution to the problem of reducing or eliminating catalyst attrition and maximizing catalytic activity, thus reducing costs. The technical objective of the Phase I work was to demonstrate that glass-ceramic based catalytic materials for Fischer-Tropsch synthesis have resistance to catalytic deactivation and reduction of particle size superior to traditional supported Fischer-Tropsch catalyst materials. Additionally, these novel glass-ceramic-based materials were expected to exhibit catalytic activity similar to the traditional materials. If successfully developed, the attrition-resistant Fischer-Tropsch catalyst materials would be expected to result in significant technical, economic, and social benefits for both producers and public consumers of Fischer-Tropsch products such as liquid fuels from coal or biomass gasification. This program demonstrated the anticipated high attrition resistance of the glass-ceramic materials. However, the observed catalytic activity of the materials was not sufficient to justify further development at this time. Additional testing documented that a lack of pore volume in the glass-ceramic materials limited the amount of surface area available for catalysis and consequently limited catalytic activity. However, previous work on glass-ceramic catalysts to promote other reactions demonstrated that commercial levels of activity can be achieved, at least for those reactions. Therefore, we recommend that glass-ceramic materials be considered again as potential Fischer-Tropsch catalysts if it can be demonstrated that materials with adequate pore volume can be produced. During the attrition resistance tests, it was learned that the glass-ceramic materials are very abrasive. Attention should be paid in any further developmental efforts to the potential for these hard, abrasive materials to damage reactors.

  14. Catalyst structure and method of fischer-tropsch synthesis

    DOE Patents [OSTI]

    Wang, Yong [Richland, WA; Vanderwiel, David P [Richland, WA; Tonkovich, Anna Lee Y [Pasco, WA; Gao, Yufei [Kennewick, WA; Baker, Eddie G [Pasco, WA

    2002-12-10

    The present invention includes Fischer-Tropsch catalysts, reactions using Fischer-Tropsch catalysts, methods of making Fischer-Tropsch catalysts, processes of hydrogenating carbon monoxide, and fuels made using these processes. The invention provides the ability to hydrogenate carbon monoxide with low contact times, good conversion rates and low methane selectivities. In a preferred method, the catalyst is made using a metal foam support.

  15. Catalyst structure and method of Fischer-Tropsch synthesis

    DOE Patents [OSTI]

    Wang, Yong; Vanderwiel, David P.; Tonkovich, Anna Lee Y.; Gao, Yufei; Baker, Eddie G.

    2004-06-15

    The present invention includes Fischer-Tropsch catalysts, reactions using Fischer-Tropsch catalysts, methods of making Fischer-Tropsch catalysts, processes of hydrogenating carbon monoxide, and fuels made using these processes. The invention provides the ability to hydrogenate carbon monoxide with low contact times, good conversion rates and low methane selectivities. In a preferred method, the catalyst is made using a metal foam support.

  16. Cobalt Fischer-Tropsch catalysts having improved selectivity

    DOE Patents [OSTI]

    Miller, James G. (Pearl River, NY); Rabo, Jule A. (Armonk, NY)

    1989-01-01

    A cobalt Fischer-Tropsch catalyst having an improved steam treated, acid extracted LZ-210 support is taught. The new catalyst system demonstrates improved product selectivity at Fischer-Tropsch reaction conditions evidenced by lower methane production, higher C.sub.5.sup.+ yield and increased olefin production.

  17. TECHNOLOGY DEVELOPMENT FOR IRON FISCHER-TROPSCH CATALYSTS

    SciTech Connect (OSTI)

    Davis, B.H.

    1998-07-22

    The goal of the proposed work described in this Final Report was the development of iron-based Fischer-Tropsch catalysts that combined high activity, selectivity and life with physical robustness for slurry phase reactors that will produce either low-alpha or high-alpha products. The work described here has optimized the catalyst composition and pretreatment operation for a low-alpha catalyst. In parallel, work has been conducted to design a high-alpha iron catalyst that is suitable for slurry phase synthesis. Studies have been conducted to define the chemical phases present at various stages of the pretreatment and synthesis stages and to define the course of these changes. The oxidation/reduction cycles that are anticipated to occur in large, commercial reactors have been studied at the laboratory scale. Catalyst performance has been determined for catalysts synthesized in this program for activity, selectivity and aging characteristics.

  18. Fischer-Tropsch slurry catalysts for selective transportation fuel production

    SciTech Connect (OSTI)

    Carroll, W.E.; Cilen, N.; Withers, H.P. Jr.

    1986-01-01

    The future use of coal as a source of conventional transportation fuel will depend on the development of an economical and energy efficient liquefaction process. Technologies that have been commercially proven or that are close to commercialization include the fixed- and fluidized-bed Fischer-Tropsch (FT) synthesis, methanol synthesis (fixed-bed and slurry-phase) and the Mobil methanol-to-gasoline process. Of these technologies, the Fischer-Tropsch hydrocarbon synthesis produces the widest slate of products and has been in operation for the longest period.

  19. Technology Development for Iron Fischer-Tropsch Catalysis.

    SciTech Connect (OSTI)

    Davis, B.H.

    1997-12-16

    The goal of the proposed work is the development of iron-based Fischer-Tropsch catalysts that combined high activity, selectivity and life with physical robustness for slurry phase reactors that will produce either low-alpha or high-alpha products. The catalyst that is developed will be suitable for testing at the Advanced Fuels Development Facility at LaPorte, Texas or similar sized plant. Previous work by the offeror has produced a catalyst formulation that is 1.5 times as active as the `standard-catalyst` developed by German workers for slurry phase synthesis. The proposed work will optimize the catalyst composition and pretreatment operation for this low-alpha catalyst. In parallel, work will be conducted to design a high-alpha iron catalyst that is suitable for slurry phase synthesis. Studies will be conducted to define the chemical phases present at various stages of the pretreatment and synthesis stages and to define the course of these changes. The oxidation/reduction cycles that are anticipated to occur in large, commercial reactors will be studied at the laboratory scale. Catalyst performance will be determined for catalysts synthesized in this program for activity, selectivity and aging characteristics.

  20. Fischer-Tropsch synthesis process employing a moderated ruthenium catalyst

    DOE Patents [OSTI]

    Abrevaya, H.

    1990-07-31

    A Fischer-Tropsch type process produces hydrocarbons from carbon monoxide and hydrogen using a novel catalyst comprising moderated ruthenium on an inorganic oxide support. The preferred moderator is silicon. Preferably the moderator is effectively positioned in relationship to ruthenium particles through simultaneous placement on the support using reverse micelle impregnation. 1 fig.

  1. Cobalt Fischer-Tropsch catalysts having improved selectivity

    DOE Patents [OSTI]

    Miller, James G. (Pearl River, NY); Rabo, Jule A. (Armonk, NY)

    1989-01-01

    The promoter(s) Mn oxide or Mn oxide and Zr oxide are added to a cobalt Fischer-Tropsch catalyst combined with the molecular sieve TC-103 or TC-123 such that the resultant catalyst demonstrates improved product selectivity, stability and catalyst life. The improved selectivity is evidenced by lower methane production, higher C5+ yield and increased olefin production.

  2. BASELINE DESIGN/ECONOMICS FOR ADVANCED FISCHER-TROPSCH TECHNOLOGY

    SciTech Connect (OSTI)

    1998-04-01

    Bechtel, along with Amoco as the main subcontractor, developed a Baseline design, two alternative designs, and computer process simulation models for indirect coal liquefaction based on advanced Fischer-Tropsch (F-T) technology for the U. S. Department of Energy's (DOE's) Federal Energy Technology Center (FETC).

  3. Fischer-Tropsch synthesis process employing a moderated ruthenium catalyst

    DOE Patents [OSTI]

    Abrevaya, Hayim (Wilmette, IL)

    1990-01-01

    A Fischer-Tropsch type process produces hydrocarbons from carbon monoxide and hydrogen using a novel catalyst comprising moderated ruthenium on an inorganic oxide support. The preferred moderator is silicon. Preferably the moderator is effectively positioned in relationship to ruthenium particles through simultaneous placement on the support using reverse micelle impregnation.

  4. Process for upgrading wax from Fischer-Tropsch synthesis

    DOE Patents [OSTI]

    Derr, W.R. Jr.; Garwood, W.E.; Kuo, J.C.; Leib, T.M.; Nace, D.M.; Tabak, S.A.

    1987-08-04

    The waxy liquid phase of an oil suspension of Fischer-Tropsch catalyst containing dissolved wax is separated out and the wax is converted by hydrocracking, dewaxing or by catalytic cracking with a low activity catalyst to provide a highly olefinic product which may be further converted to premium quality gasoline and/or distillate fuel. 2 figs.

  5. Process for upgrading wax from Fischer-Tropsch synthesis

    DOE Patents [OSTI]

    Derr, Jr., W. Rodman (Vincentown, NJ); Garwood, William E. (Haddonfield, NJ); Kuo, James C. (Cherry Hill, NJ); Leib, Tiberiu M. (Voorhees, NJ); Nace, Donald M. (Woodbury, NJ); Tabak, Samuel A. (Wenonah, NJ)

    1987-01-01

    The waxy liquid phase of an oil suspension of Fischer-Tropsch catalyst containing dissolved wax is separated out and the wax is converted by hydrocracking, dewaxing or by catalytic cracking with a low activity catalyst to provide a highly olefinic product which may be further converted to premium quality gasoline and/or distillate fuel.

  6. Separation of catalyst from Fischer-Tropsch slurry

    DOE Patents [OSTI]

    White, Curt M.; Quiring, Michael S.; Jensen, Karen L.; Hickey, Richard F.; Gillham, Larry D.

    1998-10-27

    In a catalytic process for converting synthesis gas including hydrogen and carbon monoxide to hydrocarbons and oxygenates by a slurry Fischer-Tropsch synthesis, the wax product along with dispersed catalyst is removed from the slurry and purified by removing substantially all of the catalyst prior to upgrading the wax and returning a portion to the Fischer-Tropsch reaction. Separation of the catalyst particles from the wax product is accomplished by dense gas and/or liquid extraction in which the organic compounds in the wax are dissolved and carried away from the insoluble inorganic catalyst particles that are primarily inorganic in nature. The purified catalyst free wax product can be subsequently upgraded by various methods such as hydrogenation, isomerization, hydrocracking, conversion to gasoline and other products over ZSM-5 aluminosilicate zeolite, etc. The catalyst particles are returned to the Fischer-Tropsch Reactor by slurring them with a wax fraction of appropriate molecular weight, boiling point and viscosity to avoid reactor gelation.

  7. Separation of catalyst from Fischer-Tropsch slurry

    DOE Patents [OSTI]

    White, C.M.; Quiring, M.S.; Jensen, K.L.; Hickey, R.F.; Gillham, L.D.

    1998-10-27

    In a catalytic process for converting synthesis gas including hydrogen and carbon monoxide to hydrocarbons and oxygenates by a slurry Fischer-Tropsch synthesis, the wax product along with dispersed catalyst is removed from the slurry and purified by removing substantially all of the catalyst prior to upgrading the wax and returning a portion to the Fischer-Tropsch reaction. Separation of the catalyst particles from the wax product is accomplished by dense gas and/or liquid extraction in which the organic compounds in the wax are dissolved and carried away from the insoluble inorganic catalyst particles that are primarily inorganic in nature. The purified catalyst-free wax product can be subsequently upgraded by various methods such as hydrogenation, isomerization, hydrocracking, conversion to gasoline and other products over ZSM-5 aluminosilicate zeolite, etc. The catalyst particles are returned to the Fischer-Tropsch Reactor by mixing them with a wax fraction of appropriate molecular weight, boiling point and viscosity to avoid reactor gelation. 2 figs.

  8. On-Road Use of Fischer-Tropsch Diesel Blends

    SciTech Connect (OSTI)

    Nigel Clark; Mridul Gautam; Donald Lyons; Chris Atkinson; Wenwei Xie; Paul Norton; Keith Vertin; Stephen Goguen; James Eberhardt

    1999-04-26

    Alternative compression ignition engine fuels are of interest both to reduce emissions and to reduce U.S. petroleum fuel demand. A Malaysian Fischer-Tropsch gas-to-liquid fuel was compared with California No.2 diesel by characterizing emissions from over the road Class 8 tractors with Caterpillar 3176 engines, using a chassis dynamometer and full scale dilution tunnel. The 5-Mile route was employed as the test schedule, with a test weight of 42,000 lb. Levels of oxides of nitrogen (NO{sub x}) were reduced by an average of 12% and particulate matter (PM) by 25% for the Fischer-Tropsch fuel over the California diesel fuel. Another distillate fuel produced catalytically from Fischer-Tropsch products originally derived from natural gas by Mossgas was also compared with 49-state No.2 diesel by characterizing emissions from Detroit Diesel 6V-92 powered transit buses, three of them equipped with catalytic converters and rebuilt engines, and three without. The CBD cycle was employed as the test schedule, with a test weight of 33,050 lb. For those buses with catalytic converters and rebuilt engines, NO x was reduced by 8% and PM was reduced by 31% on average, while for those buses without, NO x was reduced by 5% and PM was reduced by 20% on average. It is concluded that advanced compression ignition fuels from non-petroleum sources can offer environmental advantages in typical line haul and city transit applications.

  9. DEVELOPMENT OF PRECIPITATED IRON FISCHER-TROPSCH CATALYSTS

    SciTech Connect (OSTI)

    Dr. Dragomir B. Bukur; Dr. X. Lang; Dr. S. Chokkaram; Dr. L. Nowicki; G. Wei; Dr. Y. Ding; Dr. B. Reddy; Dr. S. Xiao

    1999-07-22

    Despite the current worldwide oil glut, the US will ultimately require large-scale production of liquid (transportation) fuels from coal. Slurry phase Fischer-Tropsch (F-T) technology, with its versatile product slate, may be expected to play a major role in production of transportation fuels via indirect coal liquefaction. Some of the F-T catalysts synthesized and tested at Texas A and M University under DOE Contract No. DE-AC22-89PC89868 were more active than any other known catalysts developed for maximizing production of high molecular weight hydrocarbons (waxes). The objectives of the present contract were to demonstrate repeatability of catalyst performance and reproducibility of preparation procedures of two of these catalysts on a laboratory scale. Improvements in the catalyst performance were attempted through the use of: (a) higher reaction pressure and gas space velocity to maximize the reactor productivity; (b) modifications in catalyst preparation steps; and (c) different pretreatment procedures. Repeatability of catalyst performance and reproducibility of catalyst synthesis procedure have been successfully demonstrated in stirred tank slurry reactor tests. Reactor space-time-yield was increased up to 48% by increasing reaction pressure from 1.48 MPa to 2.17 MPa, while maintaining the gas contact time and synthesis gas conversion at a constant value. Use of calcination temperatures above 300 C, additional CaO promoter, and/or potassium silicate as the source of potassium promoter, instead of potassium bicarbonate, did not result in improved catalyst performance. By using different catalyst activation procedures they were able to increase substantially the catalyst activity, while maintaining low methane and gaseous hydrocarbon selectivities. Catalyst productivity in runs SA-0946 and SA-2186 was 0.71 and 0.86 gHC/g-Fe/h, respectively, and this represents 45-75% improvement in productivity relative to that achieved in Rheinpreussen's demonstration plant unit (the most successful bubble column slurry reactor performance to date), and sets new standards of performance for ''high alpha'' iron catalysts.

  10. TECHNOLOGY DEVELOPMENT FOR IRON AND COBALT FISCHER-TROPSCH CATALYSTS

    SciTech Connect (OSTI)

    Burtron H. Davis

    1999-01-30

    The effects of copper on Fischer-Tropsch activity, selectivity and water-gas shift activity were studied over a wide range of syngas conversion. Three catalyst compositions were prepared for this study: (a) 100Fe/4.6Si/1.4K, (b) 100Fe/4.6Si/0.10Cu/1.4K and (c) 100Fe/4.6Si/2.0Cu/1.4K. The results are reported in Task 2. The literature review for cobalt catalysts is approximately 90% complete. Due to the size of the document, it has been submitted as a separate report labeled Task 6.

  11. Nitrided iron catalysts for the Fischer-Tropsch synthesis in the eighties

    SciTech Connect (OSTI)

    Anderson, R.B.

    1980-01-01

    A survey covers the preparation and structure of nitrided iron catalysts and their activity, selectivity, and stability for the reaction of synthesis gas in comparison with iron catalysts pretreated by various other methods, as measured in laboratory reactors; a comparison of product distributions obtained in fluidized-bed, slurry, and oil-circulation fixed bed pilot plants with nitrided catalysts and by the Kellogg entrained catalyst process SASOL, which uses a reduced iron catalyst; and possible methods for refining the Fischer-Tropsch products from nitrided iron catalysts for producing gasoline, including bauxite treatment, the Mobil process for converting oxygenates to high-octane gasoline and C/sub 3/-C/sub 4/ olefins, and an alkylation-polymerization process for converting the C/sub 3/-C/sub 4/ fraction to high-octane blending stocks.

  12. Supported fischer-tropsch catalyst and method of making the catalyst

    DOE Patents [OSTI]

    Dyer, Paul N. (Allentown, PA); Pierantozzi, Ronald (Orefield, PA); Withers, Howard P. (Douglassville, PA)

    1987-01-01

    A Fischer-Tropsch catalyst and a method of making the catalyst for a Fischer-Tropsch process utilizing the catalyst by which synthesis gas, particularly carbon-monoxide rich synthesis gas, is selectively converted to higher hydrocarbons of relatively narrow carbon number range is disclosed. In general, the selective and notably stable catalyst, consist of an inert carrier first treated with a Group IV B metal compound (such as zirconium or titanium), preferably an alkoxide compound, and subsequently treated with an organic compound of a Fischer-Tropsch metal catalyst, such as cobalt, iron or ruthenium carbonyl. Reactions with air and water and calcination are specifically avoided in the catalyst preparation procedure.

  13. Iron on mixed zirconia-titania substrate Fischer-Tropsch catalyst and method of making same

    DOE Patents [OSTI]

    Dyer, Paul N. (Allentown, PA); Nordquist, Andrew F. (Whitehall, PA); Pierantozzi, Ronald (Macungie, PA)

    1986-01-01

    A Fischer-Tropsch catalyst comprising iron co-deposited with or deposited on particles comprising a mixture of zirconia and titania, preferably formed by co-precipitation of compounds convertible to zirconia and titania, such as zirconium and titanium alkoxide. The invention also comprises the method of making this catalyst and an improved Fischer-Tropsch reaction process in which the catalyst is utilized.

  14. Innovative Gasification to Produce Fischer-Tropsch Jet and Diesel Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovative Gasification to Produce Fischer- Tropsch Jet and Diesel Fuel March 23, 2015 Jerod Smeenk Frontline BioEnergy, LLC This presentation does not contain any proprietary, confidential, or otherwise restricted information 1 Acronyms and definitions * BP - budget period (i.e., project phase) * BPD - barrel per day * BTL - biomass-to-liquids * F-76 - military spec diesel fuel * FT - Fischer-Tropsch process * IE - independent engineer engaged by the DOE to monitor and review project details *

  15. Development and Demonstration of Fischer-Tropsch Fueled Heavy-Duty Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with Control Technologies for Reduced Diesel Exhaust Emissions | Department of Energy Fischer-Tropsch Fueled Heavy-Duty Vehicles with Control Technologies for Reduced Diesel Exhaust Emissions Development and Demonstration of Fischer-Tropsch Fueled Heavy-Duty Vehicles with Control Technologies for Reduced Diesel Exhaust Emissions 2003 DEER Conference Presentation: Ricardo Inc., Chicago Technical Center PDF icon 2003_deer_may.pdf More Documents & Publications Opportunities for the Early

  16. Fischer-Tropsch synthesis in supercritical reaction media

    SciTech Connect (OSTI)

    Subramaniam, B.

    1995-05-01

    The goal of the proposed research is to develop novel reactor operating strategies for the catalytic conversion of syngas to transportation grade fuels and oxygenates using near-critical (nc) fluids as reaction media. This will be achieved through systematic investigations aimed at a better fundamental understanding of the physical and chemical rate processes underlying catalytic syngas conversion in nc reaction media. Syngas conversion to fuels and fuel additives on Fe catalysts (Fischer-Tropsch synthesis) was investigated. Specific objectives are to investigate the effects of various nc media, their flow rates and operating pressure on syngas conversion, reactor temperature profiles, product selectivity and catalyst activity in trickle-bed reactors. Solvents that exhibit gas to liquid-like densities with relatively moderate pressure changes (from 25 to 60 bars) at typical syngas conversion temperatures (in the 220-280{degree}C range) will be chosen as reaction media.

  17. Fischer-Tropsch synthesis in supercritical reaction media

    SciTech Connect (OSTI)

    Subramaniam, B.; Bochniak, D.; Snavely, K.

    1993-04-01

    The reactor configuration has been modified to handle tows both in the upflow and downflow directions. For comparison to bubble column operation, an upflow mode of operation will be used. For comparison to trickle-bed operation, a downflow mode will be employed. Thus, this modification allows the most flexibility for studying the effects of liquid and supercritical reaction media on the Fischer-Tropsch synthesis reaction and permits comparisons of our experimental results with previous work. A stainless steel reactor tube was ordered. This unit along with three other pieces of tubing (greater than 1/4in. i. d.) are to be sent to Alon Processing Co. for alonizing (passivating) the internal surface. This process had been employed by Huff and Satterfield (1983) to ensure that the stainless steel surfaces are catalytically inert at high temperatures (> 200[degree]C).

  18. Predict carbonation rate on iron Fischer-Tropsch catalyst

    SciTech Connect (OSTI)

    Dry, M.E.

    1980-02-01

    An experimental study of the coking rate in 5 cm ID fluidized-bed reactors, in which the feed gas composition, the total pressure, and the fresh feed/recycle gas ratios were varied over wide ranges, showed a strong correlation between the carbon deposition rate and the ratio of carbon monoxide partial pressure to the square of the hydrogen partial pressure at the reactor inlet over a wide gas-composition range. At a given fresh gas composition, the combination rate varied inversely with the total pressure of the system. Coking decreased as the moles of CO + CO/sub 2/ converted to hydrocarbon increased. A Fischer-Tropsch reaction scheme is proposed and is used to derive a rate expression for catalyst carbonation that was approximately confirmed.

  19. Diesel production from Fischer-Tropsch: the past, the present, and new concepts

    SciTech Connect (OSTI)

    Dieter Leckel

    2009-05-15

    Fischer-Tropsch synthesis is technically classified into two categories, the high-temperature Fischer-Tropsch (HTFT) and the low-temperature Fischer-Tropsch (LTFT) processes. The criterion for this classification is the operating temperature of the synthesis, which ranges between 310-340{sup o}C for the HTFT process and 210-260{sup o}C for the LTFT process. A Fischer-Tropsch facility can be divided into roughly three sections, synthesis gas (syngas) generation, FT synthesis, and refining of the synthetic crude (syncrude). Fischer-Tropsch refineries differ regarding the product upgrading, and both transportation fuels and chemicals can be produced. Regarding the FT refinery history, the configuration of each refinery also reflects the requirements of the fuel specification at that time. This paper gives a condensed overview of how Fischer-Tropsch facilities changed during the last 70 years and focuses in particular on the diesel fuel produced. Some conceptual flow schemes are additionally presented with emphasis on the combined upgrading of the high boiling part of the FT product spectrum with liquids derived from coal pyrolysis. 52 refs., 14 figs., 12 tabs.

  20. ATTRITION RESISTANT IRON-BASED FISCHER-TROPSCH CATALYSTS

    SciTech Connect (OSTI)

    K. Jothimurugesan; James G. Goodwin, Jr.; Santosh K. Gangwal

    1999-10-01

    Fischer-Tropsch (FT) synthesis to convert syngas (CO + H{sub 2}) derived from natural gas or coal to liquid fuels and wax is a well-established technology. For low H{sub 2} to CO ratio syngas produced from CO{sub 2} reforming of natural gas or from gasification of coal, the use of Fe catalysts is attractive because of their high water gas shift activity in addition to their high FT activity. Fe catalysts are also attractive due to their low cost and low methane selectivity. Because of the highly exothermic nature of the FT reaction, there has been a recent move away from fixed-bed reactors toward the development of slurry bubble column reactors (SBCRs) that employ 30 to 90 {micro}m catalyst particles suspended in a waxy liquid for efficient heat removal. However, the use of FeFT catalysts in an SBCR has been problematic due to severe catalyst attrition resulting in fines that plug the filter employed to separate the catalyst from the waxy product. Fe catalysts can undergo attrition in SBCRs not only due to vigorous movement and collisions but also due to phase changes that occur during activation and reaction.

  1. Romania program targets methanol and Fischer-Tropsch research

    SciTech Connect (OSTI)

    Not Available

    1987-03-01

    Currently, the chemical organic industry, the petrochemical and engine fuels industry in Romania are entirely based on hydrocarbons from oil. To reduce the oil dependence of this sector and to ensure the stipulated growth rate of 8-9%, research and development programs have been set up with a view to the diversification of raw materials. In research on hydrocarbons from alcohol conversion, three process variants are known, i.e. olefins from methanol, gasolines from methanol and a combined gasolines and aromatic hydrocarbons from methanol. The Romanian process of methanol conversion to hydrocarbons is very flexible, with all the variants mentioned being carried out in the same plant by modifying the catalysts. In research on hydrocarbons from synthesis gas a modern process is being developed for gasification of brown coal in a fluidized bed, under pressure, in the presence of oxygen and water vapors. In the field of carbon oxide hydrogenation, studies have been carried out on selective Fischer-Tropsch processes in which the reaction products are high value hydrocarbon fractions.

  2. Process for upgrading wax from Fischer-Tropsch synthesis

    SciTech Connect (OSTI)

    Derr, W.R. Jr.; Garwood, W.E.; Kuo, J.C.; Leib, T.M.; Nace, D.M.; Tabak, S.A.

    1987-08-04

    A processor is described for converting synthesis gas to liquid hydrocarbons comprising the steps of: (a) charging the synthesis gas to a Fischer-Tropsch synthesis conversion zone containing a catalyst providing CO reducing characteristics to produce a waxy hydrocarbon liquid; (b) separating hydrocarbon wax from the waxy liquid; (c) catalytically cracking the wax in a fluidized bed of acid crystalline zeolite at cracking temperature under process conditions requiring a supply of heat to effect cracking, producing olefinic liquid hydrocarbon crackate in the gasoline and distillate boiling range along with olefinic light gas; (d) recovering distillate range hydrocarbons from the liquid crackate; (e) further converting the olefinic gasoline range hydrocarbon crackate and olefinic light gas under oligomerization conditions in contact with a shape selective medium pore acid oligomerization catalyst to upgrade at least a portion of the olefinic crackate and olefinic light gas to distillate range hydrocarbon product and producing by-product light fuel gas; (f) separating the light fuel gas from step (e) and passing the light fuel gas to cracking step (c) to supply heat.

  3. Opportunities for the Early Production of Fischer-Tropsch (F-T) Fuels in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the U.S. -- An Overview | Department of Energy for the Early Production of Fischer-Tropsch (F-T) Fuels in the U.S. -- An Overview Opportunities for the Early Production of Fischer-Tropsch (F-T) Fuels in the U.S. -- An Overview 2002 DEER Conference Presentation: U.S. Department of Energy PDF icon 2002_deer_shen.pdf More Documents & Publications Coal-Derived Liquids to Enable HCCI Technology WA_99_018_TEXACO_ENERGY_SYSTEMS_Waiver_of_Domestic_and_Forei.pdf Advanced Fuels in HDV Applications

  4. ATTRITION RESISTANT IRON-BASED FISCHER-TROPSCH CATALYSTS

    SciTech Connect (OSTI)

    James G. Goodwin, Jr.; James J. Spivey; K. Jothimurugesan; Santosh K. Gangwal

    1999-03-29

    The Fischer-Tropsch (F-T) reaction provides a way of converting coal-derived synthesis gas (CO+H{sub 2}) to liquid fuels. Since the reaction is highly exothermic, one of the major problems in control of the reaction is heat removal. Recent work has shown that the use of slurry bubble column reactors (SBCRs) can largely solve this problem. Iron-based (Fe) catalysts are preferred catalysts for F-T when using low CO/H2 ratio synthesis gases derived from modern coal gasifiers. This is because in addition to reasonable F-T activity, the F-T catalysts also possess high water gas shift (WGS) activity. However, a serious problem with the use of Fe catalysts in a SBCR is their tendency to undergo attrition. This can cause fouling/plugging of downstream filters and equipment, making the separation of catalyst from the oil/wax product very difficult if not impossible, and results in a steady loss of catalyst from the reactor. The objectives of this research are to develop a better understanding of the parameters affecting attrition resistance of Fe F-T catalysts suitable for use in SBCRs and to incorporate this understanding into the design of novel Fe catalysts having superior attrition resistance. Catalyst preparations will be based on the use of spray drying and will be scalable using commercially available equipment. The research will employ among other measurements, attrition testing and F-T synthesis, including long duration slurry reactor runs in order to ascertain the degree of success of the various preparations. The goal is to develop an Fe catalyst which can be used in a SBCR having only an internal filter for separation of the catalyst from the liquid product, without sacrificing F-T activity and selectivity. The effect of silica addition via coprecipitation and as a binder to a doubly promoted Fischer-Tropsch synthesis iron catalyst (100 Fe/5 Cu/4.2 K) was studied. The catalysts were prepared by coprecipitation, followed by binder addition and drying in a 1 m diameter, 2 m tall spray dryer. The binder silica content was varied from 0 to 20 wt %. A catalyst with 12 wt % binder silica was found to have the highest attrition resistance. F-T reaction studies over 100 hours in a fixed-bed reactor showed that this catalyst maintained around 95 % CO conversion with a methane selectivity of less than 7 wt % and a C5 + selectivity of greater than 73 wt %. The effect of adding precipitated silica from 0 to 20 parts by weight to this catalyst (containing 12 wt % binder silica) was also studied. Addition of precipitated silica was found to be detrimental to attrition resistance and resulted in increased methane and reduced wax formation. An HPR series of proprietary catalysts was prepared to further improve the attrition resistance. Based on the experience gained, a proprietary HPR-43 catalyst has been successfully spray dried in 500 g quantity. This catalyst showed 95 % CO conversion over 125 h and had less than 4 % methane selectivity. Its attrition resistance was one of the highest among the catalyst tested.

  5. Attrition Resistant Iron-Based Fischer-Tropsch Catalysts.

    SciTech Connect (OSTI)

    Jothimurugesan, K.; Goodwin, J.S.; Spivey, J.J.; Gangwal, S.K.

    1997-09-22

    The Fischer-Tropsch (F-T) reaction provides a way of converting coal-derived synthesis gas (CO and H{sub 2}) to liquid fuels. Since the reaction is highly exothermic, one of the major problems in control of the reaction is heat removal. Recent work has shown that the use of slurry bubble column reactors (SBCRs) can largely solve this problem. Iron-based (Fe) catalysts are preferred catalysts for F-T when using low CO/H{sub 2} ratio synthesis gases derived from modern coal gasifiers. This is because in addition to reasonable F-T activity, the F-T catalysts also possess high water gas shift (WGS) activity. However, a serious problem with the use of Fe catalysts in a SBCR is their tendency to undergo attrition. This can cause fouling/plugging of downstream filters and equipment, making the separation of catalyst from the oil/wax product very difficult if not impossible, and results in a steady loss of catalyst from the reactor. The objectives of this research are to develop a better understanding of the parameters affecting attrition resistance of Fe F-T catalysts suitable for use in SBCRs and to incorporate this understanding into the design of novel Fe catalysts having superior attrition resistance. Catalyst preparations will be based on the use of spray drying and will be scalable using commercially available equipment. The research will employ among other measurements, attrition testing and F-T synthesis, including long duration slurry reactor runs in order to ascertain the degree of success of the various preparations. The goal is to develop an Fe catalyst which can be used in a SBCR having only an internal filter for separation of the catalyst from the liquid product, without sacrificing F-T activity and selectivity.

  6. Fischer-Tropsch synthesis in supercritical fluids. Final report

    SciTech Connect (OSTI)

    Akgerman, A.; Bukur, D.B.

    1998-12-31

    The objective of this study was to investigate Fischer-Tropsch Synthesis (FTS) in the supercritical phase employing a commercial precipitated iron catalysts. As the supercritical fluid the authors used propane and n-hexane. The catalyst had a nominal composition of 100 Fe/5 Cu/4.2 K/25 SiO{sub 2} on mass basis and was used in a fixed bed reactor under both normal (conventional) and supercritical conditions. Experimental data were obtained at different temperatures (235 C, 250 C, and 260 C) and synthesis gas feed compositions (H{sub 2}/CO molar feed ratio of 0.67, 1.0 and 2.0) in both modes of operation under steady state conditions. The authors compared the performance of the precipitated iron catalyst in the supercritical phase, with the data obtained in gas phase (fixed bed reactor) and slurry phase (STS reactor). Comparisons were made in terms of bulk catalyst activity and various aspects of product selectivity (e.g. lumped hydrocarbon distribution and olefin content as a function of carbon number). In order to gain better understanding of the role of intraparticle mass transfer during FTS under conventional or supercritical conditions, the authors have measured diffusivities of representative hydrocarbon products in supercritical fluids, as well as their effective diffusion rates into the pores of catalyst at the reaction conditions. They constructed a Taylor dispersion apparatus to measure diffusion coefficients of hydrocarbon products of FTS in sub and supercritical ethane, propane, and hexane. In addition, they developed a tracer response technique to measure the effective diffusivities in the catalyst pores at the same conditions. Based on these results they have developed an equation for prediction of diffusion in supercritical fluids, which is based on the rough hard sphere theory.

  7. Slurry phase Fischer-Tropsch synthesis: Cobalt plus a water-gas shift catalyst

    SciTech Connect (OSTI)

    Yates, I.C.; Chanenchuk, C.A.; Satterfield, C.N.

    1989-01-01

    Most of this quarter has been devoted to design, construction and installation of a new external catalyst reduction unit. In this report, methods of reducing cobalt-based Fischer-Tropsch catalysts are reviewed, in an effort to develop an understanding of the important parameters which affect the reduction of cobalt catalysts. Design considerations for the external reduction unit are also presented.

  8. Development of precipitated iron Fischer-Tropsch catalysts. Quarterly technical progress report, April 1, 1995--June 30, 1995

    SciTech Connect (OSTI)

    Bukur, D.B.; Lang, X.; Wei, G.; Xiao, S.

    1995-08-17

    Work continued on the development of catalysts for Fischer-Tropsch synthesis. Six catalysts were synthesised. The effects of a calcium oxide promoter were evaluated. Catalysts were characterized for pore size and BET surface area.

  9. Incorporation of catalytic dehydrogenation into fischer-tropsch synthesis to significantly reduce carbon dioxide emissions

    DOE Patents [OSTI]

    Huffman, Gerald P.

    2012-11-13

    A new method of producing liquid transportation fuels from coal and other hydrocarbons that significantly reduces carbon dioxide emissions by combining Fischer-Tropsch synthesis with catalytic dehydrogenation is claimed. Catalytic dehydrogenation (CDH) of the gaseous products (C1-C4) of Fischer-Tropsch synthesis (FTS) can produce large quantities of hydrogen while converting the carbon to multi-walled carbon nanotubes (MWCNT). Incorporation of CDH into a FTS-CDH plant converting coal to liquid fuels can eliminate all or most of the CO.sub.2 emissions from the water-gas shift (WGS) reaction that is currently used to elevate the H.sub.2 level of coal-derived syngas for FTS. Additionally, the FTS-CDH process saves large amounts of water used by the WGS reaction and produces a valuable by-product, MWCNT.

  10. Design of generic coal conversion facilities: Indirect coal liquefaction, Fischer-Tropsch synthesis

    SciTech Connect (OSTI)

    Not Available

    1991-10-01

    A comprehensive review of Fischer-Tropsch (F-T) technology, including fixed, fluidized, and bubble column reactors, was undertaken in order to develop an information base before initiating the design of the Fischer-Tropsch indirect liquefaction PDU as a part of the Generic Coal Conversion Facilities to be built at the Pittsburgh Energy Technology Center (PETC). The pilot plant will include a fixed bed and slurry bubble column reactor for the F-T mode of operation. The review encompasses current status of both these technologies, their key variables, catalyst development, future directions, and potential improvement areas. However, more emphasis has been placed on the slurry bubble column reactor since this route is likely to be the preferred technology for commercialization, offering process advantages and, therefore, better economics than fixed and fluidized bed approaches.

  11. Processes and catalysts for conducting fischer-tropsch synthesis in a slurry bubble column reactor

    DOE Patents [OSTI]

    Singleton, Alan H. (Marshall Township, Allegheny County, PA); Oukaci, Rachid (Allison Park, PA); Goodwin, James G. (Cranberry Township, PA)

    1999-01-01

    Processes and catalysts for conducting Fischer-Tropsch synthesis in a slurry bubble column reactor (SBCR). One aspect of the invention involves the use of cobalt catalysts without noble metal promotion in an SBCR. Another aspect involves using palladium promoted cobalt catalysts in an SBCR. Methods for preparing noble metal promoted catalysts via totally aqueous impregnation and procedures for producing attrition resistant catalysts are also provided.

  12. Processes and catalysts for conducting Fischer-Tropsch synthesis in a slurry bubble column reactor

    DOE Patents [OSTI]

    Singleton, A.H.; Oukaci, R.; Goodwin, J.G.

    1999-08-17

    Processes and catalysts are disclosed for conducting Fischer-Tropsch synthesis in a slurry bubble column reactor (SBCR). One aspect of the invention involves the use of cobalt catalysts without noble metal promotion in an SBCR. Another aspect involves using palladium promoted cobalt catalysts in an SBCR. Methods for preparing noble metal promoted catalysts via totally aqueous impregnation and procedures for producing attrition resistant catalysts are also provided. 1 fig.

  13. Development and process evaluation of improved Fischer-Tropsch slurry catalysts

    SciTech Connect (OSTI)

    Withers, H.P. ); Bukur, D.B.; Rosynek, M.P. )

    1989-01-01

    The objective of this contract is to develop a consistent technical data base on the use of iron-based catalysts in Fischer-Tropsch (FT) synthesis reactions. This data base will be developed to allow the unambiguous comparison of the performance of these catalysts with each other and with state-of-the-art iron catalyst compositions. Particular attention will be devoted to generating reproducible kinetic and selectivity data and to developing reproducible improved catalyst compositions.

  14. Development and process evaluation of improved Fischer-Tropsch slurry catalysts

    SciTech Connect (OSTI)

    Withers, H.P. ); Bukur, D.B.; Rosynek, M.P. )

    1988-01-01

    The objective of this contract is to develop a consistent technical data base on the use of iron-based catalysts in Fischer-Tropsch (FT) synthesis reactions. This data base will be developed to allow the unambiguous comparison of the performance of these catalysts with each other and with state-of-the-art iron catalyst comparisons. Particular attention will be devoted to generating reproducible kinetic and selectivity data and to developing reproducible improved catalyst compositions.

  15. Development and process evaluation of improved Fischer-Tropsch slurry catalysts

    SciTech Connect (OSTI)

    Withers, H.P. ); Bukur, D.B.; Rosynek, M.P. )

    1988-01-01

    The objective of this contract is to develop a consistent technical data base on the use of iron-based catalysts in Fischer-Tropsch (FT) synthesis reactions. This data base will be developed to allow the unambiguous comparison of the performance of these catalysts with each other and with state-of-the-art iron catalyst compositions. Particular attention will be devoted to generating reproducible kinetic and selectivity data and to developing reproducible improved catalyst compositions.

  16. Development of process evaluation of improved Fischer-Tropsch slurry catalysts

    SciTech Connect (OSTI)

    Withers, H.P. ); Bukur, D.B.; Rosynek, M.P. )

    1988-01-01

    The objective of this contract is to develop a consistent technical data base on the use of iron-based catalysts in Fischer-Tropsch (FT) synthesis reactions. This data base will be developed to allow the unambiguous comparison of the performance of these catalysts with each other and with state-of-the-art iron catalyst compositions. Particular attention will be devoted to generating reproducible kinetic and selectivity data and to developing reproducible improved catalyst compositions.

  17. Development and process evaluation of improved Fischer-Tropsch slurry catalysts

    SciTech Connect (OSTI)

    Withers, H.P. ); Bukur, D.B.; Rosynek, M.P. )

    1988-01-01

    The objective of this contract is to develop a consistent technical data base on the use of iron-based catalysts in Fischer-Tropsch (F-T) synthesis reactions. This data base will be developed to allow the unambiguous comparison of the performance of these catalysts with each other and with state-of-the-art iron catalyst compositions. Particular attention will be devoted to generating reproducible kinetic and selectivity data and to developing reproducible improved catalyst compositions.

  18. Emissions characteristics of Military Helicopter Engines Fueled with JP-8 and a Fischer-Tropsch Fuel

    SciTech Connect (OSTI)

    Corporan, E.; DeWitt, M.; Klingshirn, Christopher D; Striebich, Richard; Cheng, Mengdawn

    2010-01-01

    The rapid growth in aviation activities and more stringent U.S. Environmental Protection Agency regulations have increased concerns regarding aircraft emissions, due to their harmful health and environmental impacts, especially in the vicinity of airports and military bases. In this study, the gaseous and particulate-matter emissions of two General Electric T701C engines and one T700 engine were evaluated. The T700 series engines power the U.S. Army's Black Hawk and Apache helicopters. The engines were fueled with standard military JP-8 fuel and were tested at three power settings. In addition, one of the T701C engines was operated on a natural-gas-derived Fischer-Tropsch synthetic paraffinic kerosene jet fuel. Test results show that the T701C engine emits significantly lower particulate-matter emissions than the T700 for all conditions tested. Particulate-matter mass emission indices ranged from 0.2-1.4 g/kg fuel for the T700 and 0.2-0.6 g/kg fuel for the T701C. Slightly higher NOx and lower CO emissions were observed for the T701C compared with the T700. Operation of the T701C with the Fischer-Tropsch fuel rendered dramatic reductions in soot emissions relative to operation on JP-8, due primarily to the lack of aromatic compounds in the alternative fuel. The Fischer-Tropsch fuel also produced smaller particles and slight reductions in CO emissions.

  19. Yosemite Waters Vehicle Evaluation Report: Final Results (Brochure)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Results Prepared for South Coast Air Quality Management District by the National Renewable Energy Laboratory CRD-01-098 Fischer-Tropsch Synthetic Fuel Demonstration in a Southern California Vehicle Fleet Yosemite Waters Vehicle Evaluation Report Yosemite Waters Vehicle Evaluation Report i Alternative Fuel Trucks YOSEMITE WATERS VEHICLE EVALUATION REPORT Authors Leslie Eudy, National Renewable Energy Laboratory (NREL) Robb Barnitt, NREL Teresa L. Alleman, NREL August 2005 Acknowledgements This

  20. An Ab Initio Approach Towards Engineering Fischer-Tropsch Surface Chemistry

    SciTech Connect (OSTI)

    Matthew Neurock; David A. Walthall

    2006-05-07

    One of the greatest societal challenges over the next decade is the production of cheap, renewable energy for the 10 billion people that inhabit the earth. This will require the development of various different energy sources potentially including fuels derived from methane, coal, and biomass and alternatives sources such as solar, wind and nuclear energy. One approach will be to synthesize gasoline and other fuels from simpler hydrocarbons such as CO derived from methane or other U.S. based sources such as coal. Syngas (CO and H{sub 2}) can be readily converted into higher molecular weight hydrocarbons through Fischer-Tropsch synthesis. Fischer-Tropsch synthesis involves the initiation or activation of CO and H{sub 2} bonds, the subsequent propagation steps including hydrogenation and carbon-carbon coupling, followed by chain termination reactions. Commercially viable catalysts include supported Co and Co-alloys. Over the first two years of this project we have used ab initio methods to determine the adsorption energies for all reactants, intermediates, and products along with the overall reaction energies and their corresponding activation barriers over the Co(0001) surface. Over the third year of the project we developed and advanced an ab initio-based kinetic Monte Carlo simulation code to simulate Fischer Tropsch synthesis. This report details our work over the last year which has focused on the derivation of kinetic parameters for the elementary steps involved in FT synthesis from ab initio density functional theoretical calculations and the application of the kinetic Monte Carlo algorithm to simulate the initial rates of reaction for FT over the ideal Co(0001) surface. The results from our simulations over Co(0001) indicate the importance of stepped surfaces for the activation of adsorbed CO. In addition, they demonstrate that the dominant CH{sub x}* surface intermediate under steady state conditions is CH*. This strongly suggests that hydrocarbon coupling occurs through reaction with the adsorbed CH*.

  1. Technology development for iron Fischer-Tropsch catalysis. Quarterly technical progress report No. 5, October 1, 1995--December 31, 1995

    SciTech Connect (OSTI)

    Davis, B.H.

    1996-01-19

    The objective of this research project is to develop the technology for the production of physically robust iron-based Fischer-Tropsch catalysts that have suitable activity, selectivity and stability to be used in the slurry phase synthesis reactor development. The catalysts that are developed shall be suitable for testing in the Advanced Fuels Development Facility at LaPorte, Texas, to produce either low- or high-alpha product distributions. Previous work by the offeror has produced a catalyst formulation that is 1.5 times as active as the ``standard-catalyst`` developed by German workers for slurry phase synthesis. The proposed work will optimize the catalyst composition and pretreatment operation for this low-alpha catalyst. In parallel, work will be conducted to design a high-alpha iron catalyst this is suitable for slurry phase synthesis. Studies will be conducted to define the chemical phases present at various stages of the pretreatment and synthesis stages and to define the course of these changes. The oxidation/reduction cycles that are anticipated to occur in large, commercial reactors will be studied at the laboratory scale. Catalyst performance will be determined for catalysts synthesized in this program for activity, selectivity and aging characteristics. The research is divided into four major topical areas: (a) catalyst preparation and characterization, (b) product characterization, (c) reactor operations, and (d) data assessment. Accomplishments to date are described.

  2. Technology development for iron Fischer-Tropsch catalysis. Quarterly technical progress report No. 6, January 1, 1996--March 31, 1996

    SciTech Connect (OSTI)

    Davis, B.H.

    1996-05-01

    The objective of this research project is to develop the technology for the production of physically robust iron-based Fischer-Tropsch catalysts that have suitable activity, selectivity and stability to be used in the slurry phase synthesis reactor development. The catalysts that are developed shall be suitable for testing in the Advanced Fuels Development Facility at LaPorte, Texas, to produce either low- or high-alpha product distributions. Previous work by the offeror has produced a catalyst formulation that is 1.5 times as active as the ``standard-catalyst`` developed by German workers for slurry phase synthesis. The proposed work will optimize the catalyst composition and pretreatment operation for this low-alpha catalyst. In parallel, work will be conducted to design a high-alpha iron catalyst that is suitable for slurry phase synthesis. Studies will be conducted to define the chemical phases present at various stages of the pretreatment and synthesis stages and to define the course of these changes. The oxidation/reduction cycles that are anticipated to occur in large, commercial reactors will be studied at the laboratory scale. Catalyst performance will be determined for catalysts synthesized in this program for activity, selectivity and aging characteristics. The research is divided into four major topical areas: (a) catalyst preparation and characterization, (b) product characterization, (c) reactor operations, and (d) data assessment. Accomplishments for this period are discussed.

  3. Development and process evaluation of improved Fischer-Tropsch slurry catalysts. Final report

    SciTech Connect (OSTI)

    Bukur, D.B.; Mukesh, D.; Patel, S.A.; Zimmerman, W.H.; Rosynek, M.P.; Kellogg, L.J.

    1990-04-01

    This report describes results of a study aimed at developing and evaluating improved catalysts for a slurry Fischer-Tropsch (FT) process for converting synthesis gas to high quality transportation fuels (gasoline and distillate). The improvements in catalyst performance were sought by studying effects of pretreatment conditions, promoters and binders/supports. A total of 20 different, iron based, catalysts were evaluated in 58 fixed bed reactor tests and 10 slurry reactor tests. The major accomplishments and conclusions are summarized below. The pretreatment conditions (temperature, duration and the nature of reducing gas) have significant effect on catalyst performance (activity, selectivity and stability) during Fischer-Tropsch synthesis. One of precipitated unsupported catalysts had hydrocarbon selectivity similar to Mobil`s I-B catalyst in high wax mode operation, and had not experienced any loss in activity during 460 hours of testing under variable process conditions in a slurry reactor. The effect of promoters (copper and potassium) on catalyst performance during FT synthesis has been studied in a systematic way. It was found that potassium promotion increases activities of the FT and water-gas-shift (WGS) reactions, the average molecular weight of hydrocarbon products, and suppresses the olefin hydrogenation and isomerization reactions. The addition of binders/supports (silica or alumina) to precipitated Fe/Cu/K catalysts, decreased their activity but improved their stability and hydrocarbon selectivity. The performance of catalysts of this type was very promising and additional studies are recommended to evaluate their potential for use in commercial slurry reactors.

  4. Effect of product upgrading on Fischer-Tropsch indirect coal liquefaction economics

    SciTech Connect (OSTI)

    Choi, G.N.; Kramer, S.J.; Tam, S.S.; Fox, J.M. III

    1995-12-31

    Conceptual plant designs with cost estimates for indirect coal liquefaction technology to produce environmentally acceptable transportation liquid fuels meeting the Clear Air Act requirements were developed for the US Department of Energy (DOE). The designs incorporate the latest development in coal gasification technology and advanced Fischer-Tropsch (F-T) slurry reactor design. ASPEN process simulation models were developed to provide detailed plant material and energy balances, utility requirements, operating and capital costs. A linear programming model based on a typical PADD II refinery was developed to assess the values of the produced F-T products. The results then were used in a discounted cash flow spreadsheet model to examine the effect of key process variables on the overall F-T economics. Different models were developed to investigate the various routes of upgrading the F-T products. The effects of incorporating a close-coupled ZSM-5 reactor to upgrade the vapor stream leaving the Fischer-Tropsch reactor have been reported previously. This paper compares two different schemes of F-T was upgrading, namely fluidized bed catalytic cracking verse mild hydrocracking.

  5. Iron Aerogel and Xerogel Catalysts for Fischer-Tropsch Synthesis of Diesel Fuel

    SciTech Connect (OSTI)

    Bali, S.; Huggins, F; Huffman, G; Ernst, R; Pugmire, R; Eyring, E

    2009-01-01

    Iron aerogels, potassium-doped iron aerogels, and potassium-doped iron xerogels have been synthesized and characterized and their catalytic activity in the Fischer-Tropsch (F-T) reaction has been studied. Iron aerogels and xerogels were synthesized by polycondensation of an ethanolic solution of iron(III) chloride hexahydrate with propylene oxide which acts as a proton scavenger for the initiation of hydrolysis and polycondensation. Potassium was incorporated in the iron aerogel and iron xerogel by adding aqueous K{sub 2}CO{sub 3} to the ethanolic solutions of the Fe(III) precursor prior to addition of propylene oxide. Fischer-Tropsch activities of the catalysts were tested in a fixed bed reactor at a pressure of 100 psi with a H{sub 2}:CO ratio of 2:1. Iron aerogels were found to be active for F-T synthesis, and their F-T activities increased on addition of a K containing promoter. Moessbauer spectroscopic data are consistent with an open, nonrigid iron(III) aerogel structure progressing to an iron carbide/metallic iron catalyst via agglomeration as the F-T synthesis proceeds in the course of a 35 h fixed bed reaction test.

  6. Fischer-Tropsch synthesis from a low H/sub 2/:CO gas in a dry fluidized-bed system. Volume 2. Development of microreactor systems for unsteady-state Fischer-Tropsch synthesis. Final technical report. [408 references

    SciTech Connect (OSTI)

    Whiting, G.K.; Liu, Y.A.; Squires, A.M.

    1986-10-01

    Vibrofluidized microreactor systems have been developed for studies of unsteady-state Fischer-Tropsch synthesis. This development is aimed at preventing carbon deposition on a fused-iron catalyst in a novel reactor called the ''heat tray.'' This reactor involves a supernatant gas flowing over a shallow fluidized bed of catalyst particles. Three systems were built: (1) a vibrofluidized-bed microreactor system for obtaining baseline carbon deposition information under industrially important reaction conditions; (2) a sliding-plug vibrofluidized-bed microreactor system for rapid switching of feed gases in the F-T synthesis; and (3) a cold-flow microreactor model for studying the gas mixing characteristics of the sliding-plug vibrofluidized-bed microreactor. The results show that catalyst defluidization occurred under steady-state synthesis conditions below 395 C using a feed gas of H/sub 2//CO ratio of 2:1 or less. Above 395 C, the probability of hydrocarbon chain growth (..cap alpha.. < 0.50 to prevent accumulation of high-molecular-weight species that cause defluidization. Carbon deposition was rapid above 395 C when a feed gas of H/sub 2//CO ratio of 2:1 or less was used. Cold-flow microreactor model studies show that rapid (on the order of seconds), quantitative switching of feed gases over a vibrofluidized bed of catalyst could be achieved. Vibrofluidization of the catalyst bed induced little backmixing of feed gas over the investigated flow-rate range of 417 to 1650 actual mm/sup 3//s. Further, cold-flow microreactor model studies showed intense solid mixing when a bed of fused-iron catalyst (150 to 300 microns) was vibrofluidized at 24 cycles per second with a peak-to-peak amplitude of 4 mm. The development of the microreactor systems provided an easy way of accurately determining integral fluid-bed kinetics in a laboratory reactor. 408 refs., 156 figs., 27 tabs.

  7. Subtask 3.4 - Fischer - Tropsch Fuels Development

    SciTech Connect (OSTI)

    Joshua Strege; Anthony Snyder; Jason Laumb; Joshua Stanislowski; Michael Swanson

    2012-05-01

    Under Subtask 3.4, the Energy & Environmental Research Center (EERC) examined the opportunities and challenges facing Fischer??Tropsch (FT) technology in the United States today. Work was completed in two distinct budget periods (BPs). In BP1, the EERC examined the technical feasibility of using modern warm-gas cleanup techniques for FT synthesis. FT synthesis is typically done using more expensive and complex cold-gas sweetening. Warm-gas cleanup could greatly reduce capital and operating costs, making FT synthesis more attractive for domestic fuel production. Syngas was generated from a variety of coal and biomass types; cleaned of sulfur, moisture, and condensables; and then passed over a pilot-scale FT catalyst bed. Laboratory and modeling work done in support of the pilot-scale effort suggested that the catalyst was performing suboptimally with warm-gas cleanup. Long-term trends showed that the catalyst was also quickly deactivating. In BP3, the EERC compared FT catalyst results using warm-gas cleanup to results using cold-gas sweetening. A gas-sweetening absorption system (GSAS) was designed, modeled, and constructed to sweeten syngas between the gasifier and the pilot-scale FT reactor. Results verified that the catalyst performed much better with gas sweetening than it had with warm-gas cleanup. The catalyst also showed no signs of rapid deactivation when the GSAS was running. Laboratory tests in support of this effort verified that the catalyst had deactivated quickly in BP1 because of exposure to syngas, not because of any design flaw with the pilot-scale FT reactor itself. Based on these results, the EERC concludes that the two biggest issues with using syngas treated with warm-gas cleanup for FT synthesis are high concentrations of CO{sub 2} and volatile organic matter. Other catalysts tested by the EERC may be more tolerant of CO{sub 2}, but volatile matter removal is critical to ensuring long-term FT catalyst operation. This subtask was funded through the EERC??U.S. Department of Energy (DOE) Joint Program on Research and Development for Fossil Energy-Related Resources Cooperative Agreement No. DE-FC26-08NT43291. Nonfederal funding for BP1 was provided by the North Dakota Industrial Commission??s (NDIC) Renewable Energy Council.

  8. Platinum-Modulated Cobalt Nanocatalysts for Low-Temperature Aqueous-Phase Fischer Tropsch Synthesis

    SciTech Connect (OSTI)

    Wang, Hang [Peking University; Zhou, Wu [ORNL; Liu, JinXun [Dalian Institute of Chemical Physics; Si, Rui [Brookhaven National Laboratory (BNL); Sun, Geng [Peking University; Zhong, Mengqi [Peking University; Su, Haiyan [Peking University; Zhao, Huabo [Peking University; Rodrigues, Jose [Brookhaven National Laboratory (BNL); Pennycook, Stephen J [ORNL; Idrobo Tapia, Juan C [ORNL; Li, Weixue [Dalian Institute of Chemical Physics; Kou, Yuan [Peking University; Ma, Ding [Peking University

    2013-01-01

    Fischer Tropsch synthesis (FTS) is an important catalytic process for liquid fuel generation, which converts coal/shale gas/biomass-derived syngas (a mixture of CO and H2) to oil. While FTS is thermodynamically favored at low temperature, it is desirable to develop a new catalytic system that could allow working at a relatively low reaction temperature. In this article, we present a one-step hydrogenation reduction route for the synthesis of Pt Co nanoparticles (NPs) which were found to be excellent catalysts for aqueous-phase FTS at 433 K. Coupling with atomic-resolution scanning transmission electron microscopy (STEM) and theoretical calculations, the outstanding activity is rationalized by the formation of Co overlayer structures on Pt NPs or Pt Co alloy NPs. The improved energetics and kinetics from the change of the transition states imposed by the lattice mismatch between the two metals are concluded to be the key factors responsible for the dramatically improved FTS performance.

  9. Upgrading Fischer-Tropsch LPG (liquefied petroleum gas) with the Cyclar process

    SciTech Connect (OSTI)

    Gregor, J.H.; Gosling, C.D.; Fullerton, H.E.

    1989-04-28

    The use of the UOP/BP Cyclar{reg sign} process for upgrading Fischer-Tropsch (F-T) liquefied petroleum gas (LPG) was studied at UOP{reg sign}. The Cyclar process converts LPG into aromatics. The LPG derived from F-T is highly olefinic. Two routes for upgrading F-T LPG were investigated. In one route, olefinic LPG was fed directly to a Cyclar unit (Direct Cyclar). The alternative flow scheme used the Huels CSP process to saturate LPG olefins upstream of the Cyclar unit (Indirect Cyclar). An 18-run pilot plant study verified that each route is technically feasible. An economic evaluation procedure was designed to choose between the Direct and Indirect Cyclar options for upgrading LPG. Four situations involving three different F-T reactor technologies were defined. The main distinction between the cases was the degree of olefinicity, which ranged between 32 and 84 wt % of the fresh feed. 8 refs., 80 figs., 44 tabs.

  10. Fischer-Tropsch synthesis in supercritical reaction media. Progress report, January 1, 1993--March 31, 1993

    SciTech Connect (OSTI)

    Subramaniam, B.; Bochniak, D.; Snavely, K.

    1993-04-01

    The reactor configuration has been modified to handle tows both in the upflow and downflow directions. For comparison to bubble column operation, an upflow mode of operation will be used. For comparison to trickle-bed operation, a downflow mode will be employed. Thus, this modification allows the most flexibility for studying the effects of liquid and supercritical reaction media on the Fischer-Tropsch synthesis reaction and permits comparisons of our experimental results with previous work. A stainless steel reactor tube was ordered. This unit along with three other pieces of tubing (greater than 1/4in. i. d.) are to be sent to Alon Processing Co. for alonizing (passivating) the internal surface. This process had been employed by Huff and Satterfield (1983) to ensure that the stainless steel surfaces are catalytically inert at high temperatures (> 200{degree}C).

  11. Design and performance of a high-pressure Fischer-Tropsch fluidized bed reactor

    SciTech Connect (OSTI)

    Weimer, A.W.; Quarderer, G.J.; Cochran, G.A.; Conway, M.M. )

    1988-01-01

    A 900 kg/day, CO/H/sub 2/, high-pressure, fluidized bed, pilot reactor was designed from first principles to achieve high reactant conversions and heat removal rates for the Fischer-Tropsch (F-T) synthesis of liquefied petroleum gases (LPG's). Suppressed bubble growth at high pressure allowed high reactant conversions which nearly matched those obtained at identical conditions in a lab scale fixed bed reactor. For GHSV approximately 1400 hr/sup -1/ and T = 658 {Kappa} at P approximately 7000 {kappa}Pa, reactant conversion exceeded 75%. The reactor heat removal capability exceeded twice design performance with the fluidized bed easily operating under thermally stable conditions. The fluidized catalyst was a potassium promoted, molybdenum on carbon (Mo/{Kappa}/C) catalyst which did not produce any detrimental waxy products. Long catalyst lifetimes of 1000 hrs on steam between regenerations allowed the fluidized bed to be operated in a batch mode.

  12. An Ab Initio Approach Towards Engineering Fischer-Tropsch Surface Chemistry

    SciTech Connect (OSTI)

    Matthew Neurock; Siddharth Chopra

    2003-09-11

    As the US seeks to develop an energy strategy that reduces the reliance on foreign oil, there is a renewed interest in the research and development of the Fischer Tropsch synthesis for converting syngas into long chain hydrocarbon products. This report investigates some of the basic elementary steps for Fischer-Tropsch synthesis over ideal Pt, Ru and carbon-covered Pt and Ru metal surfaces by using ab initio density functional theoretical calculations. We examine in detail the adsorption sites as well as the binding energies for C, CH, CH{sub 2}, CH3 and CH4 on Pt(111), Ru(0001), 2x2-C-Pt(111) and 2x2-C-Ru(0001). The results indicate that the binding energies increase with decreasing the hydrogen in the fragment molecule, i.e. CH{sub 4} < CH{sub 3} < CH{sub 2} < CH < C. More specifically the work analyzes the elementary steps involved in the activation of methane. This is simply the reverse set of steps necessary for the hydrogenation of C to CH{sub 4}. The results indicate that these hydrocarbon intermediates bind more strongly to Ru than Pt. The introduction of co-adsorbed carbon atoms onto both Ru(0001) as well as Pt(111) significantly increased the overall energies as well as the activation barriers for C-H bond activation. The results suggest that Ru may be so active that it initially can initially activate CH4 into CH or C but ultimately it dies because the CH and C intermediates poison the surface and thus kill its activity. Methane can dissociate on Pt but subsequent hydrocarbon coupling reactions act to remove the surface carbon.

  13. Isotopic tracer studies of Fischer-Tropsch Synthesis over Ru/TiO sub 2 catalysts

    SciTech Connect (OSTI)

    Krishna, K.R.

    1992-01-01

    Fischer-Tropsch synthesis is a process in which CO and H{sub 2} react to give predominantly liquid hydrocarbons. The reaction can be considered a special type of polymerization in which the monomer is produced in situ, and chain growth occurs by a sequence of independently repeated additions of the monomer to the growing chain. A investigation has been conducted to study the CO hydrogenation reaction in order to better understand catalyst deactivation and the elementary surface processes involved in chain growth. Isotopic tracers are used in conjunction with transient-response techniques in this study of Fischer-Tropsch synthesis over Ru/TiO{sub 2} catalysts. Experiments are conducted at a total pressure of 1 atmosphere, reaction temperatures of 453--498 K and D{sub 2}/CO (or H{sub 2}/CO) ratios of 2--5. Synthesis products are analyzed by gas chromatography or isotope-ratio gas chromatography-mass spectrometry. Rate constants for chain initiation, propagation and termination are evaluated under steady-state reaction conditions by using transients in isotopic composition. The activation energy for chain termination is much higher than that for propagation, accounting for the observed decrease in the chain growth parameter are also estimated. Coverages by reaction intermediates are also estimated. When small amounts of {sup 12}C-labelled ethylene are added to {sup 13}CO/H{sub 2} synthesis gas, ethylene acts as the sole chain initiator. Ethylene-derived carbon also accounts for 45% of the C{sub 1} monomer pool. 102 refs., 29 figs., 11 tabs.

  14. Isotopic tracer studies of Fischer-Tropsch Synthesis over Ru/TiO{sub 2} catalysts

    SciTech Connect (OSTI)

    Krishna, K.R.

    1992-01-01

    Fischer-Tropsch synthesis is a process in which CO and H{sub 2} react to give predominantly liquid hydrocarbons. The reaction can be considered a special type of polymerization in which the monomer is produced in situ, and chain growth occurs by a sequence of independently repeated additions of the monomer to the growing chain. A investigation has been conducted to study the CO hydrogenation reaction in order to better understand catalyst deactivation and the elementary surface processes involved in chain growth. Isotopic tracers are used in conjunction with transient-response techniques in this study of Fischer-Tropsch synthesis over Ru/TiO{sub 2} catalysts. Experiments are conducted at a total pressure of 1 atmosphere, reaction temperatures of 453--498 K and D{sub 2}/CO (or H{sub 2}/CO) ratios of 2--5. Synthesis products are analyzed by gas chromatography or isotope-ratio gas chromatography-mass spectrometry. Rate constants for chain initiation, propagation and termination are evaluated under steady-state reaction conditions by using transients in isotopic composition. The activation energy for chain termination is much higher than that for propagation, accounting for the observed decrease in the chain growth parameter are also estimated. Coverages by reaction intermediates are also estimated. When small amounts of {sup 12}C-labelled ethylene are added to {sup 13}CO/H{sub 2} synthesis gas, ethylene acts as the sole chain initiator. Ethylene-derived carbon also accounts for 45% of the C{sub 1} monomer pool. 102 refs., 29 figs., 11 tabs.

  15. Hydrodynamics of Fischer-Tropsch synthesis in slurry bubble column reactors: Final report

    SciTech Connect (OSTI)

    Bukur, D.B.; Daly, J.G.; Patel, S.A.; Raphael, M.L.; Tatterson, G.B.

    1987-06-01

    This report describes studies on hydrodynamics of bubble columns for Fischer-Tropsch synthesis. These studies were carried out in columns of 0.051 m and 0.229 m in diameter and 3 m tall to determine effects of operating conditions (temperature and gas flow rate), distributor type (sintered metal plate and single and multi-hole perforated plates) and liquid media (paraffin and reactor waxes) on gas hold-up and bubble size distribution. In experiments with the Fischer-Tropsch (F-T) derived paraffin wax (FT-300) for temperatures between 230 and 280/sup 0/C there is a range of gas velocities (transition region) where two values of gas hold-up (i.e., two flow regimes) are possible. Higher hold-ups were accompanied by the presence of foam (''foamy'' regime) whereas lower values were obtained in the absence of foam (''slug flow'' in the 0.051 m column, or ''churn-turbulent'' flow regime in the 0.229 m column). This type of behavior has been observed for the first time in a system with molten paraffin wax as the liquid medium. Several factors which have significant effect on foaming characteristics of this system were identified. Reactor waxes have much smaller tendency to foam and produce lower hold-ups due to the presence of larger bubbles. Finally, new correlations for prediction of the gas hold-up and the specific gas-liquid interfacial area were developed on the basis of results obtained in the present study. 49 refs., 99 figs., 19 tabs.

  16. Development and process evaluation of improved Fischer-Tropsch slurry catalysts. Quarterly technical progress report, 1 October--31 December 1988

    SciTech Connect (OSTI)

    Withers, H.P.; Bukur, D.B.; Rosynek, M.P.

    1988-12-31

    The objective of this contract is to develop a consistent technical data base on the use of iron-based catalysts in Fischer-Tropsch (FT) synthesis reactions. This data base will be developed to allow the unambiguous comparison of the performance of these catalysts with each other and with state-of-the-art iron catalyst compositions. Particular attention will be devoted to generating reproducible kinetic and selectivity data and to developing reproducible improved catalyst compositions.

  17. Development of process evaluation of improved Fischer-Tropsch slurry catalysts. Quarterly technical progress report, 1 April--30 June 1988

    SciTech Connect (OSTI)

    Withers, H.P.; Bukur, D.B.; Rosynek, M.P.

    1988-12-31

    The objective of this contract is to develop a consistent technical data base on the use of iron-based catalysts in Fischer-Tropsch (FT) synthesis reactions. This data base will be developed to allow the unambiguous comparison of the performance of these catalysts with each other and with state-of-the-art iron catalyst compositions. Particular attention will be devoted to generating reproducible kinetic and selectivity data and to developing reproducible improved catalyst compositions.

  18. Development and process evaluation of improved Fischer-Tropsch slurry catalysts. Quarterly technical progress report, 1 July--30 September 1988

    SciTech Connect (OSTI)

    Withers, H.P.; Bukur, D.B.; Rosynek, M.P.

    1988-12-31

    The objective of this contract is to develop a consistent technical data base on the use of iron-based catalysts in Fischer-Tropsch (F-T) synthesis reactions. This data base will be developed to allow the unambiguous comparison of the performance of these catalysts with each other and with state-of-the-art iron catalyst compositions. Particular attention will be devoted to generating reproducible kinetic and selectivity data and to developing reproducible improved catalyst compositions.

  19. An Ab Initio Approach Towards Engineering Fischer-Tropsch Surface Chemistry

    SciTech Connect (OSTI)

    Matthew Neurock

    2006-09-11

    One of the greatest societal challenges over the next decade is the production of cheap, renewable energy for the 10 billion people that inhabit the earth. This will require the development of various energy sources which will likely include fuels derived from methane, coal, and biomass and alternatives sources such as solar, wind and nuclear energy. One approach will be to synthesize gasoline and other fuels from simpler hydrocarbons such as CO derived from methane or other U.S. based sources such as coal. Syngas (CO and H{sub 2}) can be readily converted into higher molecular weight hydrocarbons through Fischer-Tropsch synthesis. Fischer-Tropsch (FT) synthesis involves the adsorption and the activation of CO and H{sub 2}, the subsequent propagation steps including hydrogenation and carbon-carbon coupling, followed by chain termination reactions. The current commercial catalysts are supported Co and Co-alloys particles. This project set out with the following objectives in mind: (1) understand the reaction mechanisms that control FT kinetics, (2) predict how the intrinsic metal-adsorbate bond affects the sequence of elementary steps in FT, (3) establish the effects of the reaction environment on catalytic activity and selectivity, (4) construct a first-principles based algorithm that can incorporate the detailed atomic surface structure and simulate the kinetics for the myriad of elementary pathways that make up FT chemistry, and (5) suggest a set of optimal features such as alloy composition and spatial configuration, oxide support, distribution of defect sites. As part of this effort we devoted a significant portion of time to develop an ab initio based kinetic Monte Carlo simulation which can be used to follow FT surface chemistry over different transition metal and alloy surfaces defined by the user. Over the life of this program, we have used theory and have developed and applied stochastic Monte Carlo simulations in order to establish the fundamental catalytic processes that control FT synthesis, thus enabling us to accomplish the first 4 of these objectives. In addition, we were able to begin to suggest the design features of these materials, the final task of the proposed effort. The following report details the specific findings and proposes recommendations. The support from DOE NETL was used to fund a portion of a postdoctoral and a graduate student's salaries. The postdoctoral fellow (Dr. Qingfeng Ge) who was working on this project was hired as an Assistant Professor in chemistry at the Southern Illinois University.

  20. DEVELOPMENT OF A COMPUTATIONAL MULTIPHASE FLOW MODEL FOR FISCHER TROPSCH SYNTHESIS IN A SLURRY BUBBLE COLUMN REACTOR

    SciTech Connect (OSTI)

    Donna Post Guillen; Tami Grimmett; Anastasia M. Gribik; Steven P. Antal

    2010-09-01

    The Hybrid Energy Systems Testing (HYTEST) Laboratory is being established at the Idaho National Laboratory to develop and test hybrid energy systems with the principal objective to safeguard U.S. Energy Security by reducing dependence on foreign petroleum. A central component of the HYTEST is the slurry bubble column reactor (SBCR) in which the gas-to-liquid reactions will be performed to synthesize transportation fuels using the Fischer Tropsch (FT) process. SBCRs are cylindrical vessels in which gaseous reactants (for example, synthesis gas or syngas) is sparged into a slurry of liquid reaction products and finely dispersed catalyst particles. The catalyst particles are suspended in the slurry by the rising gas bubbles and serve to promote the chemical reaction that converts syngas to a spectrum of longer chain hydrocarbon products, which can be upgraded to gasoline, diesel or jet fuel. These SBCRs operate in the churn-turbulent flow regime which is characterized by complex hydrodynamics, coupled with reacting flow chemistry and heat transfer, that effect reactor performance. The purpose of this work is to develop a computational multiphase fluid dynamic (CMFD) model to aid in understanding the physico-chemical processes occurring in the SBCR. Our team is developing a robust methodology to couple reaction kinetics and mass transfer into a four-field model (consisting of the bulk liquid, small bubbles, large bubbles and solid catalyst particles) that includes twelve species: (1) CO reactant, (2) H2 reactant, (3) hydrocarbon product, and (4) H2O product in small bubbles, large bubbles, and the bulk fluid. Properties of the hydrocarbon product were specified by vapor liquid equilibrium calculations. The absorption and kinetic models, specifically changes in species concentrations, have been incorporated into the mass continuity equation. The reaction rate is determined based on the macrokinetic model for a cobalt catalyst developed by Yates and Satterfield [1]. The model includes heat generation due to the exothermic chemical reaction, as well as heat removal from a constant temperature heat exchanger. Results of the CMFD simulations (similar to those shown in Figure 1) will be presented.

  1. Incorporation of catalytic dehydrogenation into Fischer-Tropsch synthesis to lower carbon dioxide emissions

    DOE Patents [OSTI]

    Huffman, Gerald P

    2012-09-18

    A method for producing liquid fuels includes the steps of gasifying a starting material selected from a group consisting of coal, biomass, carbon nanotubes and mixtures thereof to produce a syngas, subjecting that syngas to Fischer-Tropsch synthesis (FTS) to produce a hyrdrocarbon product stream, separating that hydrocarbon product stream into C1-C4 hydrocarbons and C5+ hydrocarbons to be used as liquid fuels and subjecting the C1-C4 hydrocarbons to catalytic dehydrogenation (CDH) to produce hydrogen and carbon nanotubes. The hydrogen produced by CDH is recycled to be mixed with the syngas incident to the FTS reactor in order to raise the hydrogen to carbon monoxide ratio of the syngas to values of 2 or higher, which is required to produce liquid hydrocarbon fuels. This is accomplished with little or no production of carbon dioxide, a greenhouse gas. The carbon is captured in the form of a potentially valuable by-product, multi-walled carbon nanotubes (MWNT), while huge emissions of carbon dioxide are avoided and very large quantities of water employed for the water-gas shift in traditional FTS systems are saved.

  2. ULTRA-CLEAN FISCHER-TROPSCH FUELS PRODUCTION AND DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    Steve Bergin

    2003-10-17

    The Syntroleum plant is mechanically complete and currently undergoing start-up. The fuel production and demonstration plan is near completion. The study on the impact of small footprint plant (SFP) fuel on engine performance is about half-completed. Cold start testing has been completed. Preparations have been completed for testing the fuel in diesel electric generators in Alaska. Preparations are in progress for testing the fuel in bus fleets at Denali National Park and the Washington Metropolitan Transit Authority. The experiments and analyses conducted during this project show that Fischer-Tropsch (FT) gas-to-liquid diesel fuel can easily be used in a diesel engine with little to no modifications. Additionally, based on the results and discussion presented, further improvements in performance and emissions can be realized by configuring the engine to take advantage of FT diesel fuel's properties. The FT fuel also shows excellent cold start properties and enabled the engine tested to start at more the ten degrees than traditional fuels would allow. This plant produced through this project will produce large amounts of FT fuel. This will allow the fuel to be tested extensively, in current, prototype, and advanced diesel engines. The fuel may also contribute to the nation's energy security. The military has expressed interest in testing the fuel in aircraft and ground vehicles.

  3. Baseline design/economics for advanced Fischer-Tropsch technology. Quarterly report, January--March 1992

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    The objectives of the study are to: Develop a baseline design for indirect liquefaction using advanced Fischer-Tropsch (F-T) technology. Prepare the capital and operating costs for the baseline design. Develop a process flow sheet simulation (PFS) model. This report summarizes the activities completed during the period December 23, 1992 through March 15, 1992. In Task 1, Baseline Design and Alternates, the following activities related to the tradeoff studies were completed: approach and basis; oxygen purity; F-T reactor pressure; wax yield; autothermal reformer; hydrocarbons (C{sub 3}/C{sub 4}s) recovery; and hydrogenrecovery. In Task 3, Engineering Design Criteria, activities were initiated to support the process tradeoff studies in Task I and to develop the environmental strategy for the Illinois site. The work completed to date consists of the development of the F-T reactor yield correlation from the Mobil dam and a brief review of the environmental strategy prepared for the same site in the direct liquefaction baseline study.Some work has also been done in establishing site-related criteria, in establishing the maximum vessel diameter for train sizing and in coping with the low H{sub 2}/CO ratio from the Shell gasifier. In Task 7, Project Management and Administration, the following activities were completed: the subcontract agreement between Amoco and Bechtel was negotiated; a first technical progress meeting was held at the Bechtel office in February; and the final Project Management Plan was approved by PETC and issued in March 1992.

  4. Development of improved iron Fischer-Tropsch catalysts. Final technical report: Project 6464

    SciTech Connect (OSTI)

    Bukur, D.B.; Ledakowicz, S.; Koranne, M.

    1994-02-28

    Despite the current worldwide oil glut, the United States will ultimately require large-scale production of liquid (transportation) fuels from coal. Slurry phase Fischer Tropsch (FT) technology, with its versatile product slate, may be expected to play a major role in production of transportation fuels via indirect coal liquefaction. Texas A&M University (TAMU) with sponsorship from the US Department of Energy, Center for Energy and Mineral Resources at TAMU, Texas Higher Education Coordinating Board, and Air Products and Chemicals, Inc., has been working on development of improved iron FT catalysts and characterization of hydrodynamic parameters in two- and three-phase bubble columns with FT derived waxes. Our previous studies have provided an improved understanding of the role of promoters (Cu and K), binders (silica) and pretreatment procedures on catalyst activity, selectivity and longevity (deactivation). The objective of the present contract was to develop improved catalysts with enhanced slurry phase activity and higher selectivity to liquid fuels and wax. This was accomplished through systematic studies of the effects of pretreatment procedures and variations in catalyst composition (promoters and binders). The major accomplishments and results in each of these two main areas of research are summarized here.

  5. Slurry phase Fischer-Tropsch synthesis: Cobalt plus a water-gas shift catalyst

    SciTech Connect (OSTI)

    Yates, I.C.; Satterfield, C.N.

    1988-01-01

    A cobalt Fischer-Tropsch catalyst (CO/MgO/silica) was reduced and slurried in combination with reduced Cu/ZnO/Al[sub 2]0[sub 3] water-gas-shift catalyst. Combined catalyst system was run at fixed process conditions for more than 400 hours. The system showed stable selectivity. The Cu/ZnO/Al[sub 2]0[sub 3] water-gas-shift catalyst remained reasonably active in the presence of the cobalt catalyst. Hydrocarbon selectivity of the cobalt and Cu/ZnO/Al[sub 2]0[sub 3] catalyst system compared favorably to selectivity of iron-based catalysts. Methane selectivity was slightly higher for the cobalt-based system, but C[sub 5][sup +] selectivity was essentially the same. The hydrocarbon product distribution appeared to exhibit a double-a behavior. a[sub 1] was near 0.80 which is higher than that of iron catalysts, while a[sub 2] was calculated to be 0.86 which is somewhat lower than would be typical for an iron-based catalyst.

  6. Baseline design/economics for advanced Fischer-Tropsch technology. Quarterly report, April--June 1992

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    Effective September 26, 1991, Bechtel, with Amoco as the main subcontractor, initiated a study to develop a computer model and baseline design for advanced Fischer-Tropsch (F-T) technology for the US Department of Energy`s Pittsburgh Energy Technology Center (PETC). The objectives of the study are to: Develop a baseline design for indirect liquefaction using advanced F-T technology; prepare the capital and operating costs for the baseline design; and develop a process flow sheet simulation (PI-S) model. The baseline design, the economic analysis, and the computer model win be the major research planning tools that PETC will use to plan, guide, and evaluate its ongoing and future research and commercialization programs relating to indirect coal liquefaction. for the manufacture of synthetic liquid fuels from coal. This report is Bechtel`s third quarterly technical progress report covering the period from March 16, 1992 through June 21, 1992. This report consists of seven sections: Section 1 - introduction; Section 2 - summary; Section 3 - carbon dioxide removal tradeoff study; Section 4 - preliminary plant designs for coal preparation; Section 5 - preliminary design for syngas production; Section 6 - Task 3 - engineering design criteria; and Section 7 - project management.

  7. MOSSBAUER SPECTROSCOPY STUDIES OF IRON CATALYSTS USED IN SLURRY PHASE FISCHER-TROPSCH SYNTHESIS

    SciTech Connect (OSTI)

    G.P. Huffman; K. R. P. M. Rao; F.E. Huggins

    1998-02-01

    Iron and cobalt are the two principal choices as catalysts for Fischer-Tropsch (F-T) synthesis. As discussed in a recent review by Wender each metal has certain advantages and disadvantages. Davis and co-workers have recently discussed the advantages of iron-based F-T catalysts in some detail. In order to understand the catalytic reaction mechanisms of iron during F-T synthesis, it is critical to identify the active catalytic phases. Moreover, from a practical point of view, it is equally important to identify the reactions and transformations that deactivate the catalysts. {sup 57}Fe Moessbauer spectroscopy is perhaps the best technique available for quantitative characterization of the iron phases in complex samples. For the past several years, our group has been using Moessbauer spectroscopy to characterize the iron-based catalysts prepared and tested for F-T synthesis in a number of DOE-sponsored programs. The results of this investigation have been summarized in detail in DOE reports and in a number of publications released over the past few years. A list of the principal publications resulting from this work is given. A brief summary of the highlights of the results presented in these papers is presented in the current report.

  8. Development of a stable cobalt-ruthenium Fischer-Tropsch catalyst

    SciTech Connect (OSTI)

    Abrevaya, H.

    1991-01-01

    The objective of this contract is to examine the relationship between catalytic properties and the function of cobalt Fischer-Tropsch catalysts and to apply this fundamental knowledge to the development of a stable cobalt-based catalyst with a low methane-plus-ethane selectivity for use in slurry reactors. An experimental cobalt catalyst 585R2723 was tested three times in the fixed-bed reactor. The objective of the tests was to identify suitable testing conditions for screening catalyst. The {alpha}-alumina was determined to be a suitable diluent medium for controlling the catalyst bed temperature close to the inlet temperature. With 13 g of catalyst and 155 g of diluent, the catalyst maximum temperature were within 2{degree}C from the inlet temperatures. As a result of this work, 210{degree}C and 21 atm were shown to result in low methane selectivity and were used as initial conditions in the catalyst screening test. Ethane, which along with methane is undesirable, is typically produced with low selectivity and follows the same trend as methane. Other work reported here indicated that methane selectivity increases with increasing temperature but is not excessively high at 230{degree}C. Consequently, the catalyst screening test should include an evaluation of the catalyst performance at 230{degree}C. During Run 67, the increase in temperature from 210{degree}C to 230{degree}C was initiated at 30 hours on-stream.

  9. SEPARATION OF FISCHER-TROPSCH WAX FROM CATALYST BY SUPERCRITICAL EXTRACTION

    SciTech Connect (OSTI)

    Patrick C. Joyce; Mark C. Thies

    1999-03-31

    The objective of this research project was to evaluate the potential of supercritical fluid (SCF) extraction for the recovery and fractionation of the wax product from the slurry bubble column (SBC) reactor of the Fischer-Tropsch (F-T) process. The wax, comprised mostly of branched and linear alkanes with a broad molecular weight distribution up to C{sub 100}, is to be extracted with a hydrocarbon solvent that has a critical temperature near the operating temperature of the SBC reactor, i.e., 200-300 C. Aspen Plus{trademark} was used to perform process simulation studies on the proposed extraction process, with Redlich-Kwong-Soave (RKS) being used for the thermodynamic property model. In summary, we have made comprehensive VLE measurements for short alkane + long alkane systems over a wide range of pressures and temperatures, dramatically increasing the amount of high-quality data available for these simple, yet highly relevant systems. In addition, our work has demonstrated that, surprisingly, no current thermodynamic model can adequately predict VLE behavior for these systems. Thus, process simulations (such as those for our proposed SCF extraction process) that incorporate these systems can currently only give results that are qualitative at best. Although significant progress has been made in the past decade, more experimental and theoretical work remain to be done before the phase equilibria of asymmetric alkane mixtures can be predicted with confidence.

  10. Development of a microreactor system for unsteady-state Fischer-Tropsch synthesis

    SciTech Connect (OSTI)

    Whiting, G.K.

    1985-01-01

    Vibrofluidized microreactor systems have been developed for studies of unsteady-state Fischer-Tropsch synthesis. This development is aimed at preventing carbon deposition on a fused-iron catalyst in a novel reactor called the heat-tray. This reactor involves a supernatant gas flowing over a shallow fluidized bed of catalyst particles. Three systems were built: (1) a vibrofluidized-bed microreactor system for obtaining baseline carbon deposition information under industrially important reaction conditions: (2) a siding-plug vibrofluidized-bed microreactor system for rapid switching of feed gases in the F-T synthesis; and (3) a cold-flow microreactor model for studying the gas mixing characteristics of the sliding-plug vibrofluidized-bed microreactor. The results show that catalyst defluidization occurred under steady-state synthesis conditions below 395C using a feed gas of H2/CO ratio of 2:1 or less. Above 395C, the probability of hydrocarbon chain growth ( ) on the fused-iron catalyst was low enough ( <0.50) to prevent accumulation of high-molecular-weight species that cause defluidization. Carbon deposition was rapid above 395C when a feed gas of H2/CO ratio of 2:1 or less was used.

  11. Small-Scale Coal-Biomass to Liquids Production Using Highly Selective Fischer-Tropsch Synthesis

    SciTech Connect (OSTI)

    Gangwal, Santosh K.; McCabe, Kevin

    2015-04-30

    The research project advanced coal-to-liquids (CTL) and coal-biomass to liquids (CBTL) processes by testing and validating Chevron’s highly selective and active cobalt-zeolite hybrid Fischer-Tropsch (FT) catalyst to convert gasifier syngas predominantly to gasoline, jet fuel and diesel range hydrocarbon liquids, thereby eliminating expensive wax upgrading operations The National Carbon Capture Center (NCCC) operated by Southern Company (SC) at Wilsonville, Alabama served as the host site for the gasifier slip-stream testing/demonstration. Southern Research designed, installed and commissioned a bench scale skid mounted FT reactor system (SR-CBTL test rig) that was fully integrated with a slip stream from SC/NCCC’s transport integrated gasifier (TRIGTM). The test-rig was designed to receive up to 5 lb/h raw syngas augmented with bottled syngas to adjust the H2/CO molar ratio to 2, clean it to cobalt FT catalyst specifications, and produce liquid FT products at the design capacity of 2 to 4 L/day. It employed a 2-inch diameter boiling water jacketed fixed-bed heat-exchange FT reactor incorporating Chevron’s catalyst in Intramicron’s high thermal conductivity micro-fibrous entrapped catalyst (MFEC) packing to efficiently remove heat produced by the highly exothermic FT reaction.

  12. An innovative catalyst system for slurry-phase Fischer-Tropsch synthesis: Cobalt plus a water-gas-shift catalyst

    SciTech Connect (OSTI)

    Satterfield, C.N.; Yates, I.C.; Chanenchuk, C.

    1991-07-01

    The feasibility of using a mechanical mixture of a Co/MgO/SiO{sub 2} Fischer-Tropsch catalyst and a Cu-ZnO/Al{sub 2}O{sub 3} water-gas-shift (WGS) catalyst for hydrocarbon synthesis in a slurry reactor has been established. Such a mixture can combine the superior product distribution from cobalt with the high activity for the WGS reaction characteristic of iron. Weight ratios of Co/MgO/SiO{sub 2} to Cu-ZnO/Al{sub 2}O{sub 3} of 0.27 and 0.51 for the two catalysts were studied at 240{degrees}C, 0.79 MPa, and in situ H{sub 2}/CO ratios between 0.8 and 3.0. Each catalyst mixture showed stable Fischer-Tropsch activity for about 400 hours-on-stream at a level comparable to the cobalt catalyst operating alone. The Cu-ZnO/Al{sub 2}O{sub 3} catalyst exhibited a very slow loss of activity under these conditions, but when operated alone it was stable in a slurry reactor at 200--220{degrees}C, 0.79--1.48 MPa, and H{sub 2}/CO in situ ratios between 1.0 and 2.0. The presence of the water-gas-shift catalyst did not affect the long-term stability of the primary Fischer-Tropsch selectivity, but did increase the extent of secondary reactions, such as l-alkene hydrogenation and isomerization.

  13. Effect of surface modification by chelating agents on Fischer-Tropsch performance of Co/SiO2 catalysts

    SciTech Connect (OSTI)

    Bambal, Ashish S. [WVU; Kyugler, Edwin L. [WVU; Gardner, Todd H. [U.S. DOE; Dadyburjor, Dady B. [WVU

    2013-01-01

    The silica support of a Co-based catalyst for Fischer?Tropsch (FT) synthesis was modified by the chelating agents (CAs) nitrilotriacetic acid (NTA) and ethylenediaminetetraacetic acid (EDTA). After the modification, characterization of the fresh and spent catalysts shows reduced crystallite sizes, a better-dispersed Co3O4 phase on the calcined samples, and increased metal dispersions for the reduced samples. The CA-modified catalysts display higher CO conversions, product yields, reaction rates, and rate constants. The improved FT performance of CA-modified catalysts is attributed to the formation of stable complexes with Co. The superior performance of the EDTA-modified catalyst in comparison to the NTA-modified catalyst is due to the higher affinity of the former for complex formation with Co ions. 1. INTRODUCTION Fischer?Tropsch (FT) synthesis has been recognized as one of the most promising technologies for the conversion of coal, natural gas, and biomass-derived syngas into liquid fuels and chemicals.1 Limited oil reserves, energy supply security concerns, carbon credits,1 pollution abatement laws, and, most notably, uncertainty about fuel prices have increased the prospect of commercializing the FT process. Catalysts that are typically used for FT synthesis include supported Co or Fe. Cobased catalysts have the advantage of higher syngas conversion, more high-

  14. Slurry phase Fischer-Tropsch synthesis: Cobalt plus a water-gas shift catalyst. [Quarterly] report, January 1, 1989--March 31, 1989

    SciTech Connect (OSTI)

    Yates, I.C.; Chanenchuk, C.A.; Satterfield, C.N.

    1989-12-31

    Most of this quarter has been devoted to design, construction and installation of a new external catalyst reduction unit. In this report, methods of reducing cobalt-based Fischer-Tropsch catalysts are reviewed, in an effort to develop an understanding of the important parameters which affect the reduction of cobalt catalysts. Design considerations for the external reduction unit are also presented.

  15. Emissions of Volatile Particulate Components from Turboshaft Engines running JP-8 and Fischer-Tropsch Fuels

    SciTech Connect (OSTI)

    Cheng, Mengdawn; Corporan, E.; DeWitt, M.; Landgraf, Bradley J

    2009-01-01

    Rotating-wing aircraft or helicopters are heavily used by the US military and also a wide range of commercial applications around the world, but emissions data for this class of engines are limited. In this study, we focus on emissions from T700-GE-700 and T700-GE-701C engines; T700 engine was run with military JP-8 and T701C run with both JP-8 and Fischer-Tropsch (FT) fuels. Each engine was run at three engine power settings from the idle to maximum power in sequence. Exhaust particles measured at the engine exhaust plane (EEP) have a peak mobility diameter less than 50nm in all engine power settings. At a 4-m downstream location, sulfate/sulfur measurements indicate all particulate sulfur exists practically as sulfate, and the particulate sulfur and sulfate contents increased as the engine power increased. The conversion of sulfur to sulfate was found not to be dependent on engine power setting. Analysis also showed that conversion of sulfur to sulfate was not by the adsorption of sulfur dioxide gas on the soot particles and then subsequently oxidized to form sulfate, but by gas-phase conversion of SO2 via OH or O then subsequently forming H2SO4 and condensing on soot particles. Without the sulfur and aromatic components, use of the FT fuel led to significant reduction of soot emissions as compared to that of the JP-8 fuel producing less number of particles than that of the JP-8 fuel; however, the FT fuel produced much higher number concentrations of particles smaller than 7nm than that of JP-8 in all engine power settings. This indicates non-aromatics components in the FT fuel could have contributed to the enhancement of emissions of particles smaller than 7nm. These small particles are volatile, not observed at the EEP, and may be important in playing a role for the formation of secondary particles in the atmosphere or serving as a site for effective cloud nuclei condensation to occur.

  16. LIQUID PHASE FISCHER-TROPSCH (III & IV) DEMONSTRATION IN THE LAPORTE ALTERNATIVE FUELS DEVELOPMENT UNIT. Final Topical Report. Volume I/II: Main Report. Task 1: Engineering Modifications (Fischer-Tropsch III & IV Demonstration) and Task 2: AFDU Shakedown, Operations, Deactivation (Shut-Down) and Disposal (Fischer-Tropsch III & IV Demonstration).

    SciTech Connect (OSTI)

    Bharat L. Bhatt

    1999-06-01

    Slurry phase Fischer-Tropsch technology was successfully demonstrated in DOE's Alternative Fuels Development Unit (AFDU) at LaPorte, Texas. Earlier work at LaPorte, with iron catalysts in 1992 and 1994, had established proof-of-concept status for the slurry phase process. The third campaign (Fischer-Tropsch III), in 1996, aimed at aggressively extending the operability of the slurry reactor using a proprietary cobalt catalyst. Due to an irreversible plugging of catalyst-wax separation filters as a result of unexpected catalyst fines generation, the operations had to be terminated after seven days on-stream. Following an extensive post-run investigation by the participants, the campaign was successfully completed in March-April 1998, with an improved proprietary cobalt catalyst. These runs were sponsored by the U. S. Department of Energy (DOE), Air Products & Chemicals, Inc., and Shell Synthetic Fuels, Inc. (SSFI). A productivity of approximately 140 grams (gm) of hydrocarbons (HC)/ hour (hr)-liter (lit) of expanded slurry volume was achieved at reasonable system stability during the second trial (Fischer-Tropsch IV). The productivity ranged from 110-140 at various conditions during the 18 days of operations. The catalyst/wax filters performed well throughout the demonstration, producing a clean wax product. For the most part, only one of the four filter housings was needed for catalyst/wax filtration. The filter flux appeared to exceed the design flux. A combination of use of a stronger catalyst and some innovative filtration techniques were responsible for this success. There was no sign of catalyst particle attrition and very little erosion of the slurry pump was observed, in contrast to the Fischer-Tropsch III operations. The reactor operated hydrodynamically stable with uniform temperature profile and gas hold-ups. Nuclear density and differential pressure measurements indicated somewhat higher than expected gas hold-up (45 - 50 vol%) during Fischer-Tropsch IV operations. The high gas hold-up was confirmed by a dynamic gas disengagement test conducted at the end of the run. Heat transfer in the reactor was better than expected. Heat, mass and elemental balance calculations indicated excellent closure. After the initial learning curve with system dynamics, the plant was restarted very quickly (24 hours and 17 hours) following two plant trips. This demonstrates the ease and flexibility of the slurry technology. In-situ reduction of catalyst pre-cursor was completed successfully during F-T IV operations. Water measurements proved to be inaccurate due to wax/oil contamination of the analytical system. However, the reduction appeared to proceed well as close to expected syngas conversion was obtained at the beginning of the run. The selectivity to wax was lower than expected, with higher methane selectivity. Returning to the baseline condition indicated a productivity decline from 135-140 to 125-130 gm HC/hr-lit. of reactor volume in two weeks of operation. This may be a result of some catalyst loss from the reactor as well as initial catalyst deactivation. Significant quantities of product and samples were collected for further processing and analysis by the participants. Gas, liquid and solid phase mixing were studied as planned at two operating conditions using radioactive materials. A large amount of data were collected by ICI Tracerco using 43 detectors around the reactor. The data are being analyzed by Washington University as part of the Hydrodynamic Program with DOE.

  17. Effect of Surface Modification by Chelating Agents on Fischer- Tropsch Performance of Co/SiO{sub 2} Catalysts

    SciTech Connect (OSTI)

    Bambal, Ashish S.; Kugler, Edwin L.; Gardner, Todd H.; Dadyburjor, Dady B.

    2013-11-27

    The silica support of a Co-based catalyst for Fischer-Tropsch (FT) synthesis was modified by the chelating agents (CAs) nitrilotriacetic acid (NTA) and ethylenediaminetetraacetic acid (EDTA). After the modification, characterization of the fresh and spent catalysts show reduced crystallite sizes, a better-dispersed Co{sub 3}O{sub 4} phase on the calcined samples, and increased metal dispersions for the reduced samples. The CA-modified catalysts display higher CO conversions, product yields, reaction rates and rate constants. The improved FT performance of CA-modified catalysts is attributed to the formation of stable complexes with Co. The superior performance of the EDTA-modified catalyst in comparison to the NTA-modified catalyst is due to the higher affinity of the former for complex formation with Co ions.

  18. Predicting the performance of system for the co-production of Fischer-Tropsch synthetic liquid and power from coal

    SciTech Connect (OSTI)

    Wang, X.; Xiao, Y.; Xu, S.; Guo, Z.

    2008-01-15

    A co-production system based on Fischer-Tropsch (FT) synthesis reactor and gas turbine was simulated and analyzed. Syngas from entrained bed coal gasification was used as feedstock of the low-temperature slurry phase Fischer-Tropsch reactor. Raw synthetic liquid produced was fractioned and upgraded to diesel, gasoline, and liquid petrol gas (LPG). Tail gas composed of unconverted syngas and FT light components was fed to the gas turbine. Supplemental fuel (NG, or refinery mine gas) might be necessary, which was dependent on gas turbine capacity expander through flow capacity, etc. FT yield information was important to the simulation of this co-production system. A correlation model based on Mobil's two step pilot plant was applied. User models that can predict product yields and cooperate with other units were embedded into Aspen plus simulation. Performance prediction of syngas fired gas turbine was the other key of this system. The increase in mass flow through the turbine affects the match between compressor and turbine operating conditions. The calculation was carried out by GS software developed by Politecnico Di Milano and Princeton University. Various cases were investigated to match the FT synthesis island, power island, and gasification island in co-production systems. Effects of CO{sub 2} removal/LPG recovery, co-firing, and CH{sub 4} content variation were studied. Simulation results indicated that more than 50% of input energy was converted to electricity and FT products. Total yield of gasoline, diesel, and LPG was 136-155 g/N m{sup 3} (CO+H{sub 2}). At coal feed of 21.9 kg/s, net electricity exported to the grid was higher than 100 MW. Total production of diesel and gasoline (and LPG) was 118,000 t (134,000 t)/year. Under the economic analysis conditions assumed in this paper the co-production system was economically feasible.

  19. Ultra-clean Fischer-Tropsch (F-T) Fuels Production and Demonstration Project

    SciTech Connect (OSTI)

    Stephen P. Bergin

    2006-06-30

    The objective of the DOE-NETL Fischer-Tropsch (F-T) Production and Demonstration Program was to produce and evaluate F-T fuel derived from domestic natural gas. The project had two primary phases: (1) fuel production of ultra-clean diesel transportation fuels from domestic fossil resources; and (2) demonstration and performance testing of these fuels in engines. The project also included a well-to-wheels economic analysis and a feasibility study of small-footprint F-T plants (SFPs) for remote locations such as rural Alaska. During the fuel production phase, ICRC partnered and cost-shared with Syntroleum Corporation to complete the mechanical design, construction, and operation of a modular SFP that converts natural gas, via F-T and hydro-processing reactions, into hydrogensaturated diesel fuel. Construction of the Tulsa, Oklahoma plant started in August 2002 and culminated in the production of over 100,000 gallons of F-T diesel fuel (S-2) through 2004, specifically for this project. That fuel formed the basis of extensive demonstrations and evaluations that followed. The ultra-clean F-T fuels produced had virtually no sulfur (less than 1 ppm) and were of the highest quality in terms of ignition quality, saturation content, backend volatility, etc. Lubricity concerns were investigated to verify that commercially available lubricity additive treatment would be adequate to protect fuel injection system components. In the fuel demonstration and testing phase, two separate bus fleets were utilized. The Washington DC Metropolitan Area Transit Authority (WMATA) and Denali National Park bus fleets were used because they represented nearly opposite ends of several spectra, including: climate, topography, engine load factor, mean distance between stops, and composition of normally used conventional diesel fuel. Fuel evaluations in addition to bus fleet demonstrations included: bus fleet emission measurements; F-T fuel cold weather performance; controlled engine dynamometer lab evaluation; cold-start test-cell evaluations; overall feasibility, economics, and efficiency of SFP fuel production; and an economic analysis. Two unexpected issues that arose during the project were further studied and resolved: variations in NOx emissions were accounted for and fuel-injection nozzle fouling issues were traced to the non-combustible (ash) content of the engine oil, not the F-T fuel. The F-T fuel domestically produced and evaluated in this effort appears to be a good replacement candidate for petroleum-based transportation fuels. However, in order for domestic F-T fuels to become a viable cost-comparable alternative to petroleum fuels, the F-T fuels will need to be produced from abundant U.S. domestic resources such as coal and biomass, rather than stranded natural gas.

  20. DEVELOPMENT OF ATTRITION RESISTANT IRON-BASED FISCHER-TROPSCH CATALYSTS

    SciTech Connect (OSTI)

    Adeyinka A. Adeyiga

    2003-12-01

    Fischer-Tropsch (FT) synthesis to convert syngas (CO + H{sub 2}) derived from natural gas or coal to liquid fuels and wax is a well-established technology. For low H{sub 2} to CO ratio syngas produced from CO{sub 2} reforming of natural gas or from gasification of coal, the use of Fe catalysts is attractive because of their high water gas shift activity in addition to their high FT activity. Fe catalysts are also attractive due to their low cost and low methane selectivity. Because of the highly exothermic nature of the FT reaction, there has been a recent move away from fixed-bed reactors toward the development of slurry bubble column reactors (SBCRs) that employ 30 to 90 {micro}m catalyst particles suspended in a waxy liquid for efficient heat removal. However, the use of Fe FT catalysts in an SBCR has been problematic due to severe catalyst attrition resulting in fines that plug the filter employed to separate the catalyst from the waxy product. Fe catalysts can undergo attrition in SBCRs not only due to vigorous movement and collisions but also due to phase changes that occur during activation and reaction. The objectives of this research were to develop a better understanding of the parameters affecting attrition of Fe F-T catalysts suitable for use in SBCRs and to incorporate this understanding into the design of novel Fe catalysts having superior attrition resistance. The catalysts were prepared by co-precipitation, followed by binder addition and spray drying at 250 C in a 1 m diameter, 2 m tall spray dryer. The binder silica content was varied from 0 to 20 wt %. The results show that use of small amounts of precipitated SiO{sub 2} alone in spray-dried Fe catalysts can result in good attrition resistance. All catalysts investigated with SiO{sub 2} wt% {le} 12 produced fines less than 10 wt% during the jet cup attrition test, making them suitable for long-term use in a slurry bubble column reactor. Thus, concentration rather than type of SiO{sub 2} incorporated into catalyst has a more critical impact on catalyst attrition resistance of spray-dried Fe catalysts. Lower amounts of SiO{sub 2} added to a catalyst give higher particle densities and therefore higher attrition resistances. In order to produce a suitable SBCR catalyst, however, the amount of SiO{sub 2} added has to be optimized to provide adequate surface area, particle density, and attrition resistance. Two of the catalysts with precipitated and binder silica were tested in Texas A&M University's CSTR (Autoclave Engineers). Spray-dried catalysts with compositions 100 Fe/5 Cu/4.2 K/11 (P) SiO{sub 2} and 100 Fe/5 Cu/4.2 K/1.1 (B) SiO{sub 2} have excellent selectivity characteristics (low methane and high C{sub 5}{sup +} yields), but their productivity and stability (deactivation rate) need to be improved. Mechanical integrity (attrition strength) of these two catalysts was markedly dependent upon their morphological features. The attrition strength of the catalyst made out of largely spherical particles (1.1 (B) SiO{sub 2}) was considerably higher than that of the catalyst consisting of irregularly shaped particles (11 (P) SiO{sub 2}).

  1. Development and process evaluation of improved Fischer-Tropsch slurry catalysts. [Tenth] quarterly technical progress report, 1 January--31 March 1989

    SciTech Connect (OSTI)

    Withers, H.P.; Bukur, D.B.; Rosynek, M.P.

    1989-12-31

    The objective of this contract is to develop a consistent technical data base on the use of iron-based catalysts in Fischer-Tropsch (FT) synthesis reactions. This data base will be developed to allow the unambiguous comparison of the performance of these catalysts with each other and with state-of-the-art iron catalyst compositions. Particular attention will be devoted to generating reproducible kinetic and selectivity data and to developing reproducible improved catalyst compositions.

  2. Development and process evaluation of improved Fischer-Tropsch slurry catalysts. Sixth quarterly technical progress report, 1 January--31 March 1988

    SciTech Connect (OSTI)

    Withers, H.P.; Bukur, D.B.; Rosynek, M.P.

    1988-12-31

    The objective of this contract is to develop a consistent technical data base on the use of iron-based catalysts in Fischer-Tropsch (FT) synthesis reactions. This data base will be developed to allow the unambiguous comparison of the performance of these catalysts with each other and with state-of-the-art iron catalyst comparisons. Particular attention will be devoted to generating reproducible kinetic and selectivity data and to developing reproducible improved catalyst compositions.

  3. Shape-selective catalysts for Fischer-Tropsch chemistry. Final report : January 1, 2001 - December 31, 2008.

    SciTech Connect (OSTI)

    Cronauer, D. C.

    2011-04-11

    Argonne National Laboratory carried out a research program to create, prepare, and evaluate catalysts to promote Fischer-Tropsch (FT) chemistry-specifically, the reaction of hydrogen with carbon monoxide to form long-chain hydrocarbons. In addition to needing high activity, it was desirable that the catalysts have high selectivity and stability with respect to both mechanical strength and aging properties. It was desired that selectivity be directed toward producing diesel fraction components and avoiding excess yields of both light hydrocarbons and heavy waxes. The original goal was to produce shape-selective catalysts that had the potential to limit the formation of long-chain products and yet retain the active metal sites in a protected 'cage.' This cage would also restrict their loss by attrition during use in slurry-bed reactors. The first stage of this program was to prepare and evaluate iron-containing particulate catalysts. Such catalysts were prepared with silica-containing fractal cages. The activity and strength was essentially the same as that of catalysts without the cages. Since there was no improvement, the program plan was modified as discussed below. A second experimental stage was undertaken to prepare and evaluate active FT catalysts formed by atomic-layer deposition [ALD] of active components on supported membranes and particulate supports. The concept was that of depositing active metals (i.e. ruthenium, iron or cobalt) upon membranes with well defined flow channels of small diameter and length such that the catalytic activity and product molecular weight distribution could be controlled. In order to rapidly evaluate the catalytic membranes, the ALD coating processes were performed in an 'exploratory mode' in which ALD procedures from the literature appropriate for coating flat surfaces were applied to the high surface area membranes. Consequently, the Fe and Ru loadings in the membranes were likely to be smaller than those expected for complete monolayer coverage. In addition, there was likely to be significant variation in the Fe and Ru loading among the membranes due to difficulties in nucleating these materials on the aluminum oxide surfaces. The first series of experiments using coated membranes demonstrated that the technology needed further improvement. Specifically, observed catalytic FT activity was low. This low activity appeared to be due to: (1) low available surface area, (2) atomic deposition techniques that needed improvements, and (3) insufficient preconditioning of the catalyst surface prior to FT testing. Therefore, experimentation was expanded to the use of particulate silica supports having defined channels and reasonably high surface area. An effective FT catalyst consisting of ALD-deposited Co and Pt on a silica support has been prepared and demonstrated. This catalyst was more effective than a similar catalyst deposited upon a support of ALD-deposited Al{sub 2}O{sub 3} on silica. This result implies that the deposition of Al{sub 2}O{sub 3} to form a support is not as effective as desired. The addition of Pt as a Co-containing catalyst promoter has been demonstrated; it appears to primarily affect the catalyst pre-conditioning step. Co on Al{sub 2}O{sub 3} catalyst prepared by the Center for Applied Energy Research (CAER) is more effective than Argonne-prepared ALD-deposited Co on ALD-deposited Al{sub 2}O{sub 3} catalyst. The FT activity of ALD-coated Co catalyst on Al{sub 2}O{sub 3} is about linear with Co level from about 9 to 25%. A cooperative research effort was undertaken to test the deposition of platinum on Co FT catalysts; this Pt influences the effectiveness of catalyst conditioning and its continuing activity. In summary, the ALD Pt at a low concentration (0.1 wt %) was as effective as that of the wet chemical deposition technique of CAER (specifically incipient deposition on a Co catalyst that had been prepared and calcined before the Pt deposition.) The ALD technique appeared to be nominally better than the incipient wetness technique that involved co-deposition of

  4. Incorporation of Reaction Kinetics into a Multiphase, Hydrodynamic Model of a Fischer Tropsch Slurry Bubble Column Reactor

    SciTech Connect (OSTI)

    Donna Guillen, PhD; Anastasia Gribik; Daniel Ginosar, PhD; Steven P. Antal, PhD

    2008-11-01

    This paper describes the development of a computational multiphase fluid dynamics (CMFD) model of the Fischer Tropsch (FT) process in a Slurry Bubble Column Reactor (SBCR). The CMFD model is fundamentally based which allows it to be applied to different industrial processes and reactor geometries. The NPHASE CMFD solver [1] is used as the robust computational platform. Results from the CMFD model include gas distribution, species concentration profiles, and local temperatures within the SBCR. This type of model can provide valuable information for process design, operations and troubleshooting of FT plants. An ensemble-averaged, turbulent, multi-fluid solution algorithm for the multiphase, reacting flow with heat transfer was employed. Mechanistic models applicable to churn turbulent flow have been developed to provide a fundamentally based closure set for the equations. In this four-field model formulation, two of the fields are used to track the gas phase (i.e., small spherical and large slug/cap bubbles), and the other two fields are used for the liquid and catalyst particles. Reaction kinetics for a cobalt catalyst is based upon values reported in the published literature. An initial, reaction kinetics model has been developed and exercised to demonstrate viability of the overall solution scheme. The model will continue to be developed with improved physics added in stages.

  5. Technology development for iron Fischer-Tropsch catalysts. Technical progress report No. 10, December 26, 1992--March 26, 1993

    SciTech Connect (OSTI)

    Frame, R.R.; Gala, H.B.

    1993-12-31

    The objectives of this contract are to develop a technology for the production of active and stable iron Fischer-Tropsch catalysts for use in slurry-phase synthesis reactors and to develop a scaleup procedure for large-scale synthesis of such catalysts for process development and long-term testing in slurry bubble-column reactors. With a feed containing hydrogen and carbon monoxide in the molar ratio of 0.5 to 1.0 to the slurry bubble-column reactor, the catalyst performance target is 88% CO + H{sub 2} conversion at a minimum space velocity of 2.4 NL/hr/gFe. The desired sum of methane and ethane selectivities is no more than 4%, and the conversion loss per week is not to exceed 1%. Contract tasks are as follows: 1.0: Catalyst development; 1.1--Technology assessment; 1.2--Precipitated catalyst preparation method development; 1.3--Novel catalyst preparation methods investigation; 1.4--Catalyst pretreatment; 1.5--Catalyst characterization; 2.0--Catalyst testing; 3.0--Catalyst aging studies, and 4.0--Preliminary design and cost estimate of a catalyst synthesis facility. This paper reports progress made on Task 1.2 and 2.0.

  6. An innovative catalyst system for slurry-phase Fischer-Tropsch synthesis: Cobalt plus a water-gas-shift catalyst. Final technical report

    SciTech Connect (OSTI)

    Satterfield, C.N.; Yates, I.C.; Chanenchuk, C.

    1991-07-01

    The feasibility of using a mechanical mixture of a Co/MgO/SiO{sub 2} Fischer-Tropsch catalyst and a Cu-ZnO/Al{sub 2}O{sub 3} water-gas-shift (WGS) catalyst for hydrocarbon synthesis in a slurry reactor has been established. Such a mixture can combine the superior product distribution from cobalt with the high activity for the WGS reaction characteristic of iron. Weight ratios of Co/MgO/SiO{sub 2} to Cu-ZnO/Al{sub 2}O{sub 3} of 0.27 and 0.51 for the two catalysts were studied at 240{degrees}C, 0.79 MPa, and in situ H{sub 2}/CO ratios between 0.8 and 3.0. Each catalyst mixture showed stable Fischer-Tropsch activity for about 400 hours-on-stream at a level comparable to the cobalt catalyst operating alone. The Cu-ZnO/Al{sub 2}O{sub 3} catalyst exhibited a very slow loss of activity under these conditions, but when operated alone it was stable in a slurry reactor at 200--220{degrees}C, 0.79--1.48 MPa, and H{sub 2}/CO in situ ratios between 1.0 and 2.0. The presence of the water-gas-shift catalyst did not affect the long-term stability of the primary Fischer-Tropsch selectivity, but did increase the extent of secondary reactions, such as l-alkene hydrogenation and isomerization.

  7. Fischer-Tropsch synthesis from a low H/sub 2/:CO gas in a dry fluidized-bed system. Technical progress report, April 1-June 30, 1983

    SciTech Connect (OSTI)

    Liu, Y.A.; Squires, A.M.; Konrad, K.

    1983-01-01

    The objective of this project is to experimentally develop and demonstrate a novel dry fluidized-bed reactor system (called heat tray) for Fischer-Tropsch synthesis from a low H/sub 2/:CO gas. The new reactor involves conducting catalytic synthesis reactions primarily in a horizontal conveying zone, in which fine particles of iron catalyst are carried in a relatively dilute suspension by a large flow of reacting gas. A secondary reaction zone, in the form of a shallow fluidized bed of catalyst particles, is situated beneath the primary reaction zone. This shallow bed also has immersed horizontal heat-transfer tubes for removing reaction heat. A major thrust of the new reactor development is to prevent carbon deposits from forming on the iron catalyst, which cause deactivation and physical degradation. This is to be achieved by conducting the Fischer-Tropsch synthesis in an unsteady-state mode, particularly by alternately exposing the iron catalyst to a large flow of low H/sub 2/:CO gas for a short period of time and to a small flow of H/sub 2/-rich gas for a long period of time. Experimental work was initiated on the unsteady-state Fischer-Tropsch synthesis using a fully-automated vibrofluidized microreactor system and a computer-controlled on-line gas chromatographic (GC) system for product analysis. Both the reactor and GC systems performed well in all experiments, and no mechanical problems were observed throughout the experiments lasting as long as twenty hours. Preliminary estimates indicated that the conversion of CO to carbon was only on the order of one-tenth of one percent. This encouraging result provided evidence that it should be possible to experimentally identify cycling conditions which could prevent carbon deposits on the catalyst while treating a synthesis gas of low H/sub 2/:CO ratio.

  8. Atomic-Scale Design of Iron Fischer-Tropsch Catalysts: A Combined Computational Chemistry, Experimental, and Microkinetic Modeling Approach

    SciTech Connect (OSTI)

    Manos Mavrikakis; James A. Dumesic; Rahul P. Nabar

    2006-09-29

    Work continued on the development of a microkinetic model of Fischer-Tropsch synthesis (FTS) on supported and unsupported Fe catalysts. The following aspects of the FT mechanism on unsupported iron catalysts were investigated on during this third year: (1) the collection of rate data in a Berty CSTR reactor based on sequential design of experiments; (2) CO adsorption and CO-TPD for obtaining the heat of adsorption of CO on polycrystalline iron; and (3) isothermal hydrogenation (IH) after Fischer Tropsch reaction to identify and quantify surface carbonaceous species. Rates of C{sub 2+} formation on unsupported iron catalysts at 220 C and 20 atm correlated well to a Langmuir-Hinshelwood type expression, derived assuming carbon hydrogenation to CH and OH recombination to water to be rate-determining steps. From desorption of molecularly adsorbed CO at different temperatures the heat of adsorption of CO on polycrystalline iron was determined to be 100 kJ/mol. Amounts and types of carbonaceous species formed after FT reaction for 5-10 minutes at 150, 175, 200 and 285 C vary significantly with temperature. Mr. Brian Critchfield completed his M.S. thesis work on a statistically designed study of the kinetics of FTS on 20% Fe/alumina. Preparation of a paper describing this work is in progress. Results of these studies were reported at the Annual Meeting of the Western States Catalysis and at the San Francisco AIChE meeting. In the coming period, studies will focus on quantitative determination of the rates of kinetically-relevant elementary steps on unsupported Fe catalysts with/without K and Pt promoters by SSITKA method. This study will help us to (1) understand effects of promoter and support on elementary kinetic parameters and (2) build a microkinetics model for FTS on iron. Calculations using periodic, self-consistent Density Functional Theory (DFT) methods were performed on models of defected Fe surfaces, most significantly the stepped Fe(211) surface. Binding Energies (BE's), preferred adsorption sites and geometries of all the FTS relevant stable species and intermediates were evaluated. Each elementary step of our reaction model was fully characterized with respect to its thermochemistry and comparisons between the stepped Fe(211) facet and the most-stable Fe(110) facet were established. In most cases the BE's on Fe(211) reflected the trends observed earlier on Fe(110), yet there were significant variations imposed on the underlying trends. Vibrational frequencies were evaluated for the preferred adsorption configurations of each species with the aim of evaluating the entropy-changes and preexponential factors for each elementary step. Kinetic studies were performed for the early steps of FTS (up to CH{sub 4} formation) and CO dissociation. This involved evaluation of the Minimum Energy Pathway (MEP) and activation energy barrier for the steps involved. We concluded that Fe(211) would allow for far more facile CO dissociation in comparison to other Fe catalysts studied so far, but the other FTS steps studied remained mostly unchanged.

  9. Fossil-fuel processing technical/professional services: comparison of Fischer-Tropsch reactor systems. Phase I, final report

    SciTech Connect (OSTI)

    Thompson, G.J.; Riekena, M.L.; Vickers, A.G.

    1981-09-01

    The Fischer-Tropsch reaction was commercialized in Germany and used to produce military fuels in fixed bed reactors. It was recognized from the start that this reactor system had severe operating and yield limitations and alternative reactor systems were sought. In 1955 the Sasol I complex, using an entrained bed (Synthol) reactor system, was started up in South Africa. Although this reactor was a definite improvement and is still operating, the literature is filled with proponents of other reactor systems, each claiming its own advantages. This report provides a summary of the results of a study to compare the development potential of three of these reactor systems with the commercially operating Synthol-entrained bed reactor system. The commercial Synthol reactor is used as a benchmark against which the development potential of the other three reactors can be compared. Most of the information on which this study is based was supplied by the M.W. Kellogg Co. No information beyond that in the literature on the operation of the Synthol reactor system was available for consideration in preparing this study, nor were any details of the changes made to the original Synthol system to overcome the operating problems reported in the literature. Because of conflicting claims and results found in the literature, it was decided to concentrate a large part of this study on a kinetic analysis of the reactor systems, in order to provide a theoretical analysis of intrinsic strengths and weaknesses of the reactors unclouded by different catalysts, operating conditions and feed compositions. The remainder of the study considers the physical attributes of the four reactor systems and compares their respective investment costs, yields, catalyst requirements and thermal efficiencies from simplified conceptual designs.

  10. Shape-selective catalysts for Fischer-Tropsch chemistry : iron-containing particulate catalysts. Activity report : January 1, 2001 - December 31, 2004.

    SciTech Connect (OSTI)

    Cronauer, D.; Chemical Engineering

    2006-05-12

    Argonne National Laboratory is carrying out a research program to create, prepare, and evaluate catalysts to promote Fischer-Tropsch (FT) chemistry--specifically, the reaction of hydrogen with carbon monoxide to form long-chain hydrocarbons. In addition to needing high activity, it is desirable that the catalysts have high selectivity and stability with respect to both mechanical strength and aging properties. It is desired that selectivity be directed toward producing diesel fraction components and avoiding excess yields of both light hydrocarbons and heavy waxes. The goal is to produce shape-selective catalysts that have the potential to limit the formation of longchain products and yet retain the active metal sites in a protected 'cage'. This cage also restricts their loss by attrition during use in slurry-bed reactors. The first stage of this program was to prepare and evaluate iron-containing particulate catalysts. This activity report centers upon this first stage of experimentation with particulate FT catalysts. (For reference, a second experimental stage is under way to prepare and evaluate active FT catalysts formed by atomic-layer deposition [ALD] of active components on supported membranes.) To date, experimentation has centered upon the evaluation of a sample of iron-based, spray-dried catalyst prepared by B.H. Davis of the Center of Applied Energy Research (CAER) and samples of his catalyst onto which inorganic 'shells' were deposited. The reference CAER catalyst contained a high level of dispersed fine particles, a portion of which was removed by differential settling. Reaction conditions have been established using a FT laboratory unit such that reasonable levels of CO conversion can be achieved, where therefore a valid catalyst comparison can be made. A wide range of catalytic activities was observed with SiO{sub 2}-coated FT catalysts. Two techniques were used for SiO{sub 2}coating. The first involved a caustic precipitation of SiO{sub 2} from an organo-silicate onto the CAER catalyst. The second was the acidic precipitation of an organo-silicate with aging to form fractal particles that were then deposited onto the CAER catalyst. Several resulting FT catalysts were as active as the coarse catalyst on which they were prepared. The most active ones were those with the least amount of coating, namely about 2.2 wt% SiO{sub 2}. In the case of the latter acid technique, the use of HCl and HNO{sub 3} was much more effective than that of H{sub 2}SO{sub 4}. Scanning electron microscopy (SEM) was used to observe and analyze as-received and treated FT catalysts. It was observed that (1) spherical particles of CAER FT catalyst were made up of agglomerates of particles that were, in turn, also agglomerates; (2) the spray drying process of CAER apparently concentrated the Si precursor at the surface during drying; (3) while SEM pointed out broad differences in the appearance of the prepared catalyst particles, there was little indication that the catalysts were being uniformly coated with a cage-like protective surface, with perhaps the exception of HNO{sub 3}-precipitated catalyst; and (4) there was only a limited penetration of carbon (i.e., CO) into the FT catalyst during the conditioning and FT reaction steps.

  11. KINETIC MODELING OF A FISCHER-TROPSCH REACTION OVER A COBALT CATALYST IN A SLURRY BUBBLE COLUMN REACTOR FOR INCORPORATION INTO A COMPUTATIONAL MULTIPHASE FLUID DYNAMICS MODEL

    SciTech Connect (OSTI)

    Anastasia Gribik; Doona Guillen, PhD; Daniel Ginosar, PhD

    2008-09-01

    Currently multi-tubular fixed bed reactors, fluidized bed reactors, and slurry bubble column reactors (SBCRs) are used in commercial Fischer Tropsch (FT) synthesis. There are a number of advantages of the SBCR compared to fixed and fluidized bed reactors. The main advantage of the SBCR is that temperature control and heat recovery are more easily achieved. The SBCR is a multiphase chemical reactor where a synthesis gas, comprised mainly of H2 and CO, is bubbled through a liquid hydrocarbon wax containing solid catalyst particles to produce specialty chemicals, lubricants, or fuels. The FT synthesis reaction is the polymerization of methylene groups [-(CH2)-] forming mainly linear alkanes and alkenes, ranging from methane to high molecular weight waxes. The Idaho National Laboratory is developing a computational multiphase fluid dynamics (CMFD) model of the FT process in a SBCR. This paper discusses the incorporation of absorption and reaction kinetics into the current hydrodynamic model. A phased approach for incorporation of the reaction kinetics into a CMFD model is presented here. Initially, a simple kinetic model is coupled to the hydrodynamic model, with increasing levels of complexity added in stages. The first phase of the model includes incorporation of the absorption of gas species from both large and small bubbles into the bulk liquid phase. The driving force for the gas across the gas liquid interface into the bulk liquid is dependent upon the interfacial gas concentration in both small and large bubbles. However, because it is difficult to measure the concentration at the gas-liquid interface, coefficients for convective mass transfer have been developed for the overall driving force between the bulk concentrations in the gas and liquid phases. It is assumed that there are no temperature effects from mass transfer of the gas phases to the bulk liquid phase, since there are only small amounts of dissolved gas in the liquid phase. The product from the incorporation of absorption is the steady state concentration profile of the absorbed gas species in the bulk liquid phase. The second phase of the model incorporates a simplified macrokinetic model to the mass balance equation in the CMFD code. Initially, the model assumes that the catalyst particles are sufficiently small such that external and internal mass and heat transfer are not rate limiting. The model is developed utilizing the macrokinetic rate expression developed by Yates and Satterfield (1991). Initially, the model assumes that the only species formed other than water in the FT reaction is C27H56. Change in moles of the reacting species and the resulting temperature of the catalyst and fluid phases is solved simultaneously. The macrokinetic model is solved in conjunction with the species transport equations in a separate module which is incorporated into the CMFD code.

  12. Atomic-Scale Design of Iron Fischer-Tropsch Catalysts; A Combined Computational Chemistry, Experimental, and Microkinetic Modeling Approach

    SciTech Connect (OSTI)

    Manos Mavrikakis; James Dumesic; Rahul Nabar; Calvin Bartholonew; Hu Zou; Uchenna Paul

    2008-09-29

    This work focuses on (1) searching/summarizing published Fischer-Tropsch synthesis (FTS) mechanistic and kinetic studies of FTS reactions on iron catalysts; (2) preparation and characterization of unsupported iron catalysts with/without potassium/platinum promoters; (3) measurement of H{sub 2} and CO adsorption/dissociation kinetics on iron catalysts using transient methods; (3) analysis of the transient rate data to calculate kinetic parameters of early elementary steps in FTS; (4) construction of a microkinetic model of FTS on iron, and (5) validation of the model from collection of steady-state rate data for FTS on iron catalysts. Three unsupported iron catalysts and three alumina-supported iron catalysts were prepared by non-aqueous-evaporative deposition (NED) or aqueous impregnation (AI) and characterized by chemisorption, BET, temperature-programmed reduction (TPR), extent-of-reduction, XRD, and TEM methods. These catalysts, covering a wide range of dispersions and metal loadings, are well-reduced and relatively thermally stable up to 500-600 C in H{sub 2} and thus ideal for kinetic and mechanistic studies. Kinetic parameters for CO adsorption, CO dissociation, and surface carbon hydrogenation on these catalysts were determined from temperature-programmed desorption (TPD) of CO and temperature programmed surface hydrogenation (TPSR), temperature-programmed hydrogenation (TPH), and isothermal, transient hydrogenation (ITH). A microkinetic model was constructed for the early steps in FTS on polycrystalline iron from the kinetic parameters of elementary steps determined experimentally in this work and from literature values. Steady-state rate data were collected in a Berty reactor and used for validation of the microkinetic model. These rate data were fitted to 'smart' Langmuir-Hinshelwood rate expressions derived from a sequence of elementary steps and using a combination of fitted steady-state parameters and parameters specified from the transient measurements. The results provide a platform for further development of microkinetic models of FTS on Fe and a basis for more precise modeling of FTS activity of Fe catalysts. Calculations using periodic, self-consistent Density Functional Theory (DFT) methods were performed on various realistic models of industrial, Fe-based FTS catalysts. Close-packed, most stable Fe(110) facet was analyzed and subsequently carbide formation was found to be facile leading to the choice of the FeC(110) model representing a Fe facet with a sub-surface C atom. The Pt adatom (Fe{sup Pt}(110)) was found to be the most stable model for our studies into Pt promotion and finally the role of steps was elucidated by recourse to the defected Fe(211) facet. Binding Energies(BEs), preferred adsorption sites and geometries for all FTS relevant stable species and intermediates were evaluated on each model catalyst facet. A mechanistic model (comprising of 32 elementary steps involving 19 species) was constructed and each elementary step therein was fully characterized with respect to its thermochemistry and kinetics. Kinetic calculations involved evaluation of the Minimum Energy Pathways (MEPs) and activation energies (barriers) for each step. Vibrational frequencies were evaluated for the preferred adsorption configuration of each species with the aim of evaluating entropy-changes, pre exponential factors and serving as a useful connection with experimental surface science techniques. Comparative analysis among these four facets revealed important trends in their relative behavior and roles in FTS catalysis. Overall the First Principles Calculations afforded us a new insight into FTS catalysis on Fe and modified-Fe catalysts.

  13. EA-1642-S1: Small-Scale Pilot Plant for the Gasification of Coal and Coal-Biomass Blends and Conversion of Derived Syngas to Liquid Fuels via Fischer-Tropsch Synthesis, Lexington, KY

    Broader source: Energy.gov [DOE]

    This draft Supplemental Environmental Assessment (SEA) analyzes the potential environmental impacts of DOE’s proposed action of providing cost-shared funding for the University of Kentucky (UK) Center for Applied Energy Research (CAER) Small-Scale Pilot Plant for the Gasification of Coal and Coal-Biomass Blends and Conversion of Derived Syngas to Liquid Fuels via Fischer-Tropsch Synthesis project and of the No-Action Alternative.

  14. Fischer-Tropsch synthesis from a low H/sub 2/:CO gas in a dry fluidized-bed system. Technical progress report, July 1, 1983-April 30, 1984

    SciTech Connect (OSTI)

    Liu, Y.A.; Squires, A.M.

    1984-05-01

    The objective of this project is to experimentally develop and demonstrate a novel dry fluidized-bed reactor system (called heat tray) for Fischer-Tropsch synthesis from a low H/sub 2/:CO gas. The new reactor involves conducting catalytic synthesis reactions primarily in a horizontal conveying zone, in which fine particles of iron catalyst are carried in a relatively dilute suspension by a large flow of reacting gas. A secondary reaction zone, in the form of a shallow fluidized bed of catalyst particles, is situated beneath the primary reaction zone. This shallow bed also has immersed horizontal heat-transfer tubes for removing reaction heat. A major thrust of the new reactor development is to prevent carbon deposits from forming on the iron catalyst, which cause deactivation and physical degradation. This is to be achieved by conducting the Fischer-Tropsch synthesis in an unsteady-state mode, particularly by alternately exposing the iron catalyst to a large flow of low H/sub 2/CO gas for a short period of time and to a small flow of H/sub 2/-rich gas for a long period of time. During the past ten months, numerous steady-state and unsteady-state Fischer-Tropsch synthesis experiments from a low H/sub 2/:CO gas were performed using a computer-controlled vibrofluidized microreactor and gas chromatographic (GC) system. The results have revealed specific directions for design and operational improvements of the microreactor system so as to effectively control the cycling of reactant gases during unsteady-state Fischer-Tropsch synthesis, and several modified microreactor systems have been constructed and tested.

  15. Assessment of fuel-cycle energy use and greenhouse gas emissions for Fischer-Tropsch diesel from coal and cellulosic biomass.

    SciTech Connect (OSTI)

    Xie, X.; Wang, M.; Han, J.

    2011-04-01

    This study expands and uses the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model to assess the effects of carbon capture and storage (CCS) technology and cellulosic biomass and coal cofeeding in Fischer-Tropsch (FT) plants on energy use and greenhouse gas (GHG) emissions of FT diesel (FTD). To demonstrate the influence of the coproduct credit methods on FTD life-cycle analysis (LCA) results, two allocation methods based on the energy value and the market revenue of different products and a hybrid method are employed. With the energy-based allocation method, fossil energy use of FTD is less than that of petroleum diesel, and GHG emissions of FTD could be close to zero or even less than zero with CCS when forest residue accounts for 55% or more of the total dry mass input to FTD plants. Without CCS, GHG emissions are reduced to a level equivalent to that from petroleum diesel plants when forest residue accounts for 61% of the total dry mass input. Moreover, we show that coproduct method selection is crucial for LCA results of FTD when a large amount of coproducts is produced.

  16. Slurry phase Fischer-Tropsch synthesis: Cobalt plus a water-gas shift catalyst. [Quarterly] report, October 1, 1988--December 31, 1988

    SciTech Connect (OSTI)

    Yates, I.C.; Satterfield, C.N.

    1988-12-31

    A cobalt Fischer-Tropsch catalyst (CO/MgO/silica) was reduced and slurried in combination with reduced Cu/ZnO/Al{sub 2}0{sub 3} water-gas-shift catalyst. Combined catalyst system was run at fixed process conditions for more than 400 hours. The system showed stable selectivity. The Cu/ZnO/Al{sub 2}0{sub 3} water-gas-shift catalyst remained reasonably active in the presence of the cobalt catalyst. Hydrocarbon selectivity of the cobalt and Cu/ZnO/Al{sub 2}0{sub 3} catalyst system compared favorably to selectivity of iron-based catalysts. Methane selectivity was slightly higher for the cobalt-based system, but C{sub 5}{sup +} selectivity was essentially the same. The hydrocarbon product distribution appeared to exhibit a double-a behavior. a{sub 1} was near 0.80 which is higher than that of iron catalysts, while a{sub 2} was calculated to be 0.86 which is somewhat lower than would be typical for an iron-based catalyst.

  17. Development of a stable cobalt-ruthenium Fischer-Tropsch catalyst. Technical progress reports No. 7 and 8, April 1, 1991--September 30, 1991

    SciTech Connect (OSTI)

    Abrevaya, H.

    1991-12-31

    The objective of this contract is to examine the relationship between catalytic properties and the function of cobalt Fischer-Tropsch catalysts and to apply this fundamental knowledge to the development of a stable cobalt-based catalyst with a low methane-plus-ethane selectivity for use in slurry reactors. An experimental cobalt catalyst 585R2723 was tested three times in the fixed-bed reactor. The objective of the tests was to identify suitable testing conditions for screening catalyst. The {alpha}-alumina was determined to be a suitable diluent medium for controlling the catalyst bed temperature close to the inlet temperature. With 13 g of catalyst and 155 g of diluent, the catalyst maximum temperature were within 2{degree}C from the inlet temperatures. As a result of this work, 210{degree}C and 21 atm were shown to result in low methane selectivity and were used as initial conditions in the catalyst screening test. Ethane, which along with methane is undesirable, is typically produced with low selectivity and follows the same trend as methane. Other work reported here indicated that methane selectivity increases with increasing temperature but is not excessively high at 230{degree}C. Consequently, the catalyst screening test should include an evaluation of the catalyst performance at 230{degree}C. During Run 67, the increase in temperature from 210{degree}C to 230{degree}C was initiated at 30 hours on-stream.

  18. Separation of Fischer-Tropsch wax from catalyst using supercritical fluid extraction. Quarterly technical progress report, April 1, 1996--June 30, 1996

    SciTech Connect (OSTI)

    Joyce, P.C.; Thies, M.C.

    1996-11-01

    The objective of this research project is to evaluate the potential of SCF extraction for separating the catalyst slurry of a Fischer- Tropsch (F-T) slurry bubble column (SBC) reactor into two fractions: (1) a catalyst-free wax containing less than 10 ppm particulate matter and (2) a concentrated catalyst slurry that is ready for recycle or regeneration. The wax will be extracted with a hydrocarbon solvent that has a critical temperature near the operating temperature of the SBC reactor, i.e., 200-300{degrees}C. Initial work is being performed using n-hexane as the solvent. The success of the project depends on two major factors. First, the supercritical solvent must be able to dissolve the F-T wax; furthermore, this must be accomplished without entraining the solid catalyst. Second, the extraction must be controlled so as not to favor the removal of the low molecular weight wax compounds, i.e., a constant carbon-number distribution of the alkanes in the wax slurry must be maintained at steady-state column operation. To implement our objectives, the following task structure is being implemented: Task 1 equilibrium solubility measurements; Task 2 thermodynamic modeling; and Task 3 process design studies. Progress reports are presented for each task.

  19. Fischer-Tropsch synthesis from a low HH/sub 2/:CO gas in a dry fluidized-bed system. Volume 1. Project summary. Final technical report, October 1, 1986. [Heat tray

    SciTech Connect (OSTI)

    Liu, Y.A.; Squires, A.M.

    1986-10-01

    The objective of this project is to experimentally develop and demonstrate a dry fluidized-bed reactor system (called ''heat tray'') for Fischer-Tropsch synthesis from a low H/sub 2/:CO gas. The reactor involves conducting catalytic synthesis reactions primarily in a horizontal conveying zone, in which fine particles of an iron catalyst are carried in a relatively dilute suspension by a large flow of reacting gas. A secondary reaction zone, in the form of a shallow fluidized bed of catalyst particles, is situated beneath the primary reaction zone. This shallow bed also has immersed horizontal heat-transfer tubes for removing reaction heat. A major thrust of the new reactor development is to prevent carbon deposits from forming on the iron catalyst, which cause deactivation and physical degradation. This is to be achieved by conducting the Fischer-Tropsch synthesis in an unsteady-state mode, particularly by alternately exposing the iron catalyst to a large flow of low H/sub 2/:CO gas for a short period of time and to a small flow of H/sub 2/-rich gas for a long period of time. The project has been carried out in two key tasks: (1) development of a microreactor system for unsteady-state Fischer-Tropsch synthesis, simulating the life history of an iron catalyst particle in a ''heat-tray'' reactor; and (2) supporting fluidization studies. The present Volume I summarizes the key conclusions and recommendations from this project, and the accompanying Volumes II and III describes the details of experimental investigations and results. 12 refs., 8 figs., 2 tabs.

  20. Determination of the Effect of Coal/Biomass-Derived Syngas Contaminants on the Performance of Fischer-Tropsch and Water-Gas-Shift Catalysts

    SciTech Connect (OSTI)

    Trembly, Jason; Cooper, Matthew; Farmer, Justin; Turk, Brian; Gupta, Raghubir

    2010-12-31

    Today, nearly all liquid fuels and commodity chemicals are produced from non-renewable resources such as crude oil and natural gas. Because of increasing scrutiny of carbon dioxide (CO{sub 2}) emissions produced using traditional fossil-fuel resources, the utilization of alternative feedstocks for the production of power, hydrogen, value-added chemicals, and high-quality hydrocarbon fuels such as diesel and substitute natural gas (SNG) is critical to meeting the rapidly growing energy needs of modern society. Coal and biomass are particularly attractive as alternative feedstocks because of the abundant reserves of these resources worldwide. The strategy of co-gasification of coal/biomass (CB) mixtures to produce syngas for synthesis of Fischer-Tropsch (FT) fuels offers distinct advantages over gasification of either coal or biomass alone. Co-feeding coal with biomass offers the opportunity to exploit economies of scale that are difficult to achieve in biomass gasification, while the addition of biomass to the coal gasifier feed leverages proven coal gasification technology and allows CO{sub 2} credit benefits. Syngas generated from CB mixtures will have a unique contaminant composition because coal and biomass possess different concentrations and types of contaminants, and the final syngas composition is also strongly influenced by the gasification technology used. Syngas cleanup for gasification of CB mixtures will need to address this unique contaminant composition to support downstream processing and equipment. To investigate the impact of CB gasification on the production of transportation fuels by FT synthesis, RTI International conducted thermodynamic studies to identify trace contaminants that will react with water-gas-shift and FT catalysts and built several automated microreactor systems to investigate the effect of single components and the synergistic effects of multiple contaminants on water-gas-shift and FT catalyst performance. The contaminants investigated were sodium chloride (NaCl), potassium chloride (KCl), hydrogen sulfide (H{sub 2}S), carbonyl sulfide (COS), ammonia (NH{sub 3}), and combinations thereof. This report details the thermodynamic studies and the individual and multi-contaminant results from this testing program.

  1. Liquid phase Fischer-Tropsch (II) demonstration in the LaPorte Alternative Fuels Development Unit. Volume 1/2, Main Report. Final report

    SciTech Connect (OSTI)

    Bhatt, B.L.

    1995-09-01

    This report presents results from a demonstration of Liquid Phase Fischer-Tropsch (LPFT) technology in DOE`s Alternative Fuels Development Unit (AFDU) at LaPorte, Texas. The run was conducted in a bubble column at the AFDU in May--June 1994. The 10-day run demonstrated a very high level of reactor productivity for LPFT, more than five times the previously demonstrated productivity. The productivity was constrained by mass transfer limitations, perhaps due to slurry thickening as a result of carbon formation on the catalyst. With a cobalt catalyst or an improved iron catalyst, if the carbon formation can be avoided, there is significant room for further improvements. The reactor was operated with 0.7 H{sub 2}/CO synthesis gas in the range of 2400--11700 sl/hr-kg Fe, 175--750 psig and 270--300C. The inlet gas velocity ranged from 0.19 to 0.36 ft/sec. The demonstration was conducted at a pilot scale of 5 T/D. Catalyst activation with CO/N{sub 2} proceeded well. Initial catalyst activity was close to the expectations from the CAER autoclave runs. CO conversion of about 85% was obtained at the baseline condition. The catalyst also showed good water-gas shift activity and a low {alpha}. At high productivity conditions, reactor productivity of 136 grams of HC/hr -- liter of slurry volume was demonstrated, which was within the target of 120--150. However, mass transfer limitations were observed at these conditions. To alleviate these limitations and prevent excessive thickening, the slurry was diluted during the run. This enabled operations under kinetic control later in the run. But, the dilution resulted in lower conversion and reactor productivity. A new reactor internal heat exchanger, installed for high productivity conditions, performed well above design,and the system never limited the performance. The control can expected, the reactor temperature control needed manual intervention. The control can be improved by realigning the utility oil system.

  2. Sensitivity of Fischer-Tropsch Synthesis and Water-Gas Shift Catalysts to Poisons from High-Temperature High-Pressure Entrained-Flow (EF) Oxygen-Blown Gasifier Gasification of Coal/Biomass Mixtures

    SciTech Connect (OSTI)

    Burton Davis; Gary Jacobs; Wenping Ma; Dennis Sparks; Khalid Azzam; Janet Chakkamadathil Mohandas; Wilson Shafer; Venkat Ramana Rao Pendyala

    2011-09-30

    There has been a recent shift in interest in converting not only natural gas and coal derived syngas to Fischer-Tropsch synthesis products, but also converting biomass-derived syngas, as well as syngas derived from coal and biomass mixtures. As such, conventional catalysts based on iron and cobalt may not be suitable without proper development. This is because, while ash, sulfur compounds, traces of metals, halide compounds, and nitrogen-containing chemicals will likely be lower in concentration in syngas derived from mixtures of coal and biomass (i.e., using entrained-flow oxygen-blown gasifier gasification gasification) than solely from coal, other compounds may actually be increased. Of particular concern are compounds containing alkali chemicals like the chlorides of sodium and potassium. In the first year, University of Kentucky Center for Applied Energy Research (UK-CAER) researchers completed a number of tasks aimed at evaluating the sensitivity of cobalt and iron-based Fischer-Tropsch synthesis (FT) catalysts and a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to alkali halides. This included the preparation of large batches of 0.5%Pt-25%Co/Al{sub 2}O{sub 3} and 100Fe: 5.1Si: 3.0K: 2.0Cu (high alpha) catalysts that were split up among the four different entities participating in the overall project; the testing of the catalysts under clean FT and WGS conditions; the testing of the Fe-Cr WGS catalyst under conditions of co-feeding NaCl and KCl; and the construction and start-up of the continuously stirred tank reactors (CSTRs) for poisoning investigations. In the second and third years, researchers from the University of Kentucky Center for Applied Energy Research (UK-CAER) continued the project by evaluating the sensitivity of a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to a number of different compounds, including KHCO{sub 3}, NaHCO{sub 3}, HCl, HBr, HF, H{sub 2}S, NH{sub 3}, and a combination of H{sub 2}S and NH{sub 3}. Cobalt and iron-based Fischer-Tropsch synthesis (FT) catalysts were also subjected to a number of the same compounds in order to evaluate their sensitivities at different concentration levels of added contaminant.

  3. Fischer-Tropsch synthesis from a low H/sub 2/:CO gas in a dry fluidized-bed system. Technical progress report, September 1, 1982-March 31, 1983. [Large number of references

    SciTech Connect (OSTI)

    Liu, Y.A.; Squires, A.M.; Konrad, K.

    1983-01-01

    The objective of this project is to experimentally develop and demonstrate a novel dry fluidized-bed reactor system (called heat tray) for Fischer-Tropsch synthesis from a low H/sub 2/:CO gas. The new reactor involves conducting catalytic synthesis reactions primarily in a horizontal conveying zone, in which fine particles of iron catalyst are carried in a relatively dilute suspension by a large flow of reacting gas. A secondary reaction zone, in the form of a shallow fluidized bed of catalyst particles, is situated beneath the primary reaction zone. This shallow bed also has immersed horizontal heat-transfer tubes for removing reaction heat. A major thrust of the new reactor development is to prevent carbon deposits from forming on the iron catalyst, which cause deactivation and physical degradation. This is to be achieved by conducting the Fischer-Tropsch synthesis in an unsteady-state mode, particularly by alternately exposing the iron catalyst to a large flow of low H/sub 2/:CO gas for a short period of time and to a small flow of H/sub 2/-rich gas for a long period of time. During the past several months, the design, construction and steady-state testing of a fully-automated vibrofluidized microreactor system have been successfully completed, and a computer-controlled gas chromatographic (GC) system for gas-product analysis has also been tied to the reactor system. Work on unsteady-state Fischer-Tropsch synthesis experiments is to be initiated shortly. In addition, supporting hydrodynamic and heat-transfer studies in several shallow fluidized-bed systems have produced some encouraging data. The results indicate very high heat-transfer coefficients of 300-400 W/m/sup 2/-/sup 0/K between a shallow bed and its immersed horizontal heat-transfer tube, and of about 7000 W/m/sup 2/-/sup 0/K between a supernatant gas stream and a shallow bed which closely simulates the microreactor system in use.

  4. Impact of Contaminants Present in Coal-Biomass Derived Synthesis Gas on Water-gas Shift and Fischer-Tropsch Synthesis Catalysts

    SciTech Connect (OSTI)

    Gokhan Alptekin

    2012-09-30

    Co-gasification of biomass and coal in large-scale, Integrated Gasification Combined Cycle (IGCC) plants increases the efficiency and reduces the environmental impact of making synthesis gas ("syngas") that can be used in Coal-Biomass-to-Liquids (CBTL) processes for producing transportation fuels. However, the water-gas shift (WGS) and Fischer-Tropsch synthesis (FTS) catalysts used in these processes may be poisoned by multiple contaminants found in coal-biomass derived syngas; sulfur species, trace toxic metals, halides, nitrogen species, the vapors of alkali metals and their salts (e.g., KCl and NaCl), ammonia, and phosphorous. Thus, it is essential to develop a fundamental understanding of poisoning/inhibition mechanisms before investing in the development of any costly mitigation technologies. We therefore investigated the impact of potential contaminants (H{sub 2}S, NH{sub 3}, HCN, AsH{sub 3}, PH{sub 3}, HCl, NaCl, KCl, AS{sub 3}, NH{sub 4}NO{sub 3}, NH{sub 4}OH, KNO{sub 3}, HBr, HF, and HNO{sub 3}) on the performance and lifetime of commercially available and generic (prepared in-house) WGS and FT catalysts; ferrochrome-based high-temperature WGS catalyst (HT-WGS, Shiftmax 120?, Süd-Chemie), low-temperature Cu/ZnO-based WGS catalyst (LT-WGS, Shiftmax 230?, Süd-Chemie), and iron- and cobalt-based Fischer-Trospch synthesis catalysts (Fe-FT & Co-FT, UK-CAER). In this project, TDA Research, Inc. collaborated with a team at the University of Kentucky Center for Applied Energy Research (UK-CAER) led by Dr. Burt Davis. We first conducted a detailed thermodynamic analysis. The three primary mechanisms whereby the contaminants may deactivate the catalyst are condensation, deposition, and reaction. AsH{sub 3}, PH{sub 3}, H{sub 2}S, HCl, NH{sub 3} and HCN were found to have a major impact on the Fe-FT catalyst by producing reaction products, while NaCl, KCl and PH{sub 3} produce trace amounts of deposition products. The impact of the contaminants on the activity, selectivity, and deactivation rates (lifetime) of the catalysts was determined in bench-scale tests. Most of the contaminants appeared to adsorb onto (or react with) the HT- and LT-WGS catalysts were they were co-fed with the syngas: ? 4.5 ppmv AsH{sub 3} or 1 ppmv PH{sub 3} in the syngas impacted the selectivity and CO conversion of both catalysts; ? H{sub 2}S slowly degraded both WGS catalysts; - A binary mixture of H{sub 2}S (60 ppmv) and NH{sub 3} (38 ppmv) impacted the activity of the LT-WGS catalyst, but not the HT-WGS catalyst ? Moderate levels of NH{sub 3} (100 ppmv) or HCN (10 ppmv) had no impact ? NaCl or KCl had essentially no effect on the HT-WGS catalyst, but the activity of the LT-WGS catalyst decreased very slowly Long-term experiments on the Co-FT catalyst at 260 and 270 °C showed that all of the contaminants impacted it to some extent with the exception of NaCl and HF. Irrespective of its source (e.g., NH{sub 3}, KNO{sub 3}, or HNO{sub 3}), ammonia suppressed the activity of the Co-FT catalyst to a moderate degree. There was essentially no impact the Fe-FT catalyst when up to 100 ppmw halide compounds (NaCl and KCl), or up to 40 ppmw alkali bicarbonates (NaHCO{sub 3} and KHCO{sub 3}). After testing, BET analysis showed that the surface areas, and pore volumes and diameters of both WGS catalysts decreased during both single and binary H2S and NH3 tests, which was attributed to sintering and pore filling by the impurities. The HT-WGS catalyst was evaluated with XRD after testing in syngas that contained 1 ppmv PH{sub 3}, or 2 ppmv H{sub 2}S, or both H{sub 2}S (60 ppmv) and NH{sub 3} (38 ppmv). The peaks became sharper during testing, which was indicative of crystal growth and sintering, but no new phases were detected. After LT-WGS tests (3-33 ppmv NH{sub 3} and/or 0-88 ppmv H{sub 2}S) there were a few new phases that appeared, including sulfides. The fresh Fe-FT catalyst was nanocrystalline and amorphous. ICP-AA spectroscopy and other methods (e.g., chromatography) were used to analyze for

  5. Improved Fischer-Tropsch Slurry Reactors

    SciTech Connect (OSTI)

    Andrew Lucero

    2009-03-20

    The conversion of synthesis gas to hydrocarbons or alcohols involves highly exothermic reactions. Temperature control is a critical issue in these reactors for a number of reasons. Runaway reactions can be a serious safety issue, even raising the possibility of an explosion. Catalyst deactivation rates tend to increase with temperature, particularly of there are hot spots in the reactor. For alcohol synthesis, temperature control is essential because it has a large effect on the selectivity of the catalysts toward desired products. For example, for molybdenum disulfide catalysts unwanted side products such as methane, ethane, and propane are produced in much greater quantities if the temperature increases outside an ideal range. Slurry reactors are widely regarded as an efficient design for these reactions. In a slurry reactor a solid catalyst is suspended in an inert hydrocarbon liquid, synthesis gas is sparged into the bottom of the reactor, un-reacted synthesis gas and light boiling range products are removed as a gas stream, and heavy boiling range products are removed as a liquid stream. This configuration has several positive effects for synthesis gas reactions including: essentially isothermal operation, small catalyst particles to reduce heat and mass transfer effects, capability to remove heat rapidly through liquid vaporization, and improved flexibility on catalyst design through physical mixtures in addition to use of compositions that cannot be pelletized. Disadvantages include additional mass transfer resistance, potential for significant back-mixing on both the liquid and gas phases, and bubble coalescence. In 2001 a multiyear project was proposed to develop improved FT slurry reactors. The planned focus of the work was to improve the reactors by improving mass transfer while considering heat transfer issues. During the first year of the project the work was started and several concepts were developed to prepare for bench-scale testing. PowerEnerCat was unable to raise their cash contribution for the project, and the work was stopped. This report summarizes some of the progress of the project and the concepts that were intended for experimental tests.

  6. Fischer-Tropsch synthesis from a low H/sub 2/:CO gas in a dry fluidized-bed system. Volume 3. Heat transfer between a supernatant gas and a flowing shallow fluidized bed of solids. Final technical report, October 1, 1986

    SciTech Connect (OSTI)

    Boyd, J.H.; Liu, Y.A.; Squires, A.M.

    1986-10-01

    Volume II describes the details of heat-transfer studies in a dry fluidized-bed system (called ''heat tray''), which has been proposed for heat recovery from hot gases and for heat management in exothermic reactions. In particular, this report presents the results of bench-scale and pilot-scale experimental studies which quantify heat transfer between a hot supernatant gas (S-gas) and a flowing shallow fluidized bed of solids. A fractional-factorial design of experiments has been performed on two heat-tray systems using three different solids. The results show that fine fluid cracking catalyst (FCC) particles out-perform larger alumina spheres as a fluidized solid. Heat transfer coefficients between the supernatant gas and the shallow fluidized bed approaches 440 W/m/sup 2/-K using FCC with a heat-exchange area of 0.124 m/sup 2/. Various S-gas inlet nozzle configurations have been studied, with a nozzle height equal to one-half of the static bed height (0.051 m) giving the best results. The study shows that short heat-tray lengths (< 0.8 m) are desirable and that S-gas redistributors are needed to compartmentalize the unit. An economic analysis shows that the proposed heat tray would be economically feasible for adaption as a boiler feedwater preheater in a small steam-generation facility, using boiler combustion gases as the S-gas. The payback time for the system would be as short as 1.9 years when used continuously. The heat transfer results from a supernatant gas to a flowing shallow fluidized bed represent the only data reported thus far, and have led to a better understanding of the heat management in the proposed ''heat-tray'' reactor for Fischer-Tropsch synthesis. 20 refs., 46 figs., 15 tabs.

  7. Attrition resistant Fischer-Tropsch catalyst and support

    DOE Patents [OSTI]

    Singleton, Alan H.; Oukaci, Rachid; Goodwin, James G.

    2004-05-25

    A catalyst support having improved attrition resistance and a catalyst produced therefrom. The catalyst support is produced by a method comprising the step of treating calcined .gamma.-alumina having no catalytic material added thereto with an acidic aqueous solution having an acidity level effective for increasing the attrition resistance of the calcined .gamma.-alumina.

  8. HEFA and Fischer-Tropsch Jet Fuel Cost Analyses

    Broader source: Energy.gov [DOE]

    This is a presentation from the November 27, 2012, Sustainable Alternative Fuels Cost Workshop given by Robert Malina, MIT.

  9. Attrition Resistant Fischer-Tropsch Catalysts Based on FCC Supports

    SciTech Connect (OSTI)

    Adeyinka Adeyiga

    2010-02-05

    Commercial spent fluid catalytic cracking (FCC) catalysts provided by Engelhard and Albemarle were used as supports for Fe-based catalysts with the goal of improving the attrition resistance of typical F-T catalysts. Catalysts with the Ruhrchemie composition (100 Fe/5 Cu/4.2 K/25 spent FCC on mass basis) were prepared by wet impregnation. XRD and XANES analysis showed the presence of Fe{sub 2}O{sub 3} in calcined catalysts. FeC{sub x} and Fe{sub 3}O{sub 4} were present in the activated catalysts. The metal composition of the catalysts was analyzed by ICP-MS. F-T activity of the catalysts activated in situ in CO at the same conditions as used prior to the attrition tests was measured using a fixed bed reactor at T = 573 K, P = 1.38 MPa and H{sub 2}:CO ratio of 0.67. Cu and K promoted Fe supported over Engelhard provided spent FCC catalyst shows relatively good attrition resistance (8.2 wt% fines lost), high CO conversion (81%) and C{sub 5}+ hydrocarbons selectivity (18.3%).

  10. CX-001328: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Fischer Tropsch LaboratoryCX(s) Applied: B3.6Date: 03/17/2010Location(s): Pittsburgh, PennsylvaniaOffice(s): Fossil Energy, National Energy Technology Laboratory

  11. CX-002358: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Fischer-Tropsch Fuels DevelopmentCX(s) Applied: B3.6Date: 05/10/2010Location(s): Grand Forks, North DakotaOffice(s): Fossil Energy, National Energy Technology Laboratory

  12. CX-009372: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Small Scale Coal-Biomass to Liquids Using Highly Selective Fischer-Tropsch Synthesis CX(s) Applied: A9 Date: 09/17/2012 Location(s): California Offices(s): National Energy Technology Laboratory

  13. UK FT PDU Facility Draft EA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    42S Final Supplemental Environmental Assessment for University of Kentucky Small-Scale Pilot Plant for the Gasification of Coal and Coal-Biomass Blends and Conversion of Derived Syngas to Liquid Fuels via Fischer-Tropsch Synthesis Lexington, KY February 2014 Prepared for: Department of Energy National Energy Technology Laboratory This page intentionally left blank. Final Supplemental Environmental Assessment DOE/EA-1642S Fischer-Tropsch Process Development Unit February 2014 Cover Sheet Proposed

  14. Processes and palladium-promoted catalysts for conducting Fischer-Tropsch synthesis

    DOE Patents [OSTI]

    Singleton, Alan H. (Baden, PA); Oukaci, Rachid (Gibsonia, PA); Goodwin, James G. (Cranberry Township, PA)

    2000-01-01

    A process for hydrocarbon synthesis comprising the step of reacting a synthesis gas in the presence of a cobalt catalyst promoted with palladium.

  15. Separation of Fischer-Tropsch Wax Products from Ultrafine Iron Catalyst Particles

    SciTech Connect (OSTI)

    James K. Neathery; Gary Jacobs; Amitava Sarkar; Adam Crawford; Burtron H. Davis

    2006-09-30

    In the previous reporting period, modifications were completed for integrating a continuous wax filtration system for a 4 liter slurry bubble column reactor. During the current reporting period, a shakedown of the system was completed. Several problems were encountered with the progressive cavity pump used to circulate the wax/catalyst slurry though the cross-flow filter element and reactor. During the activation of the catalyst with elevated temperature (> 270 C) the elastomer pump stator released sulfur thereby totally deactivating the iron-based catalyst. Difficulties in maintaining an acceptable leak rate from the pump seal and stator housing were also encountered. Consequently, the system leak rate exceeded the expected production rate of wax; therefore, no online filtration could be accomplished. Work continued regarding the characterization of ultra-fine catalyst structures. The effect of carbidation on the morphology of iron hydroxide oxide particles was the focus of the study during this reporting period. Oxidation of Fe (II) sulfate results in predominantly {gamma}-FeOOH particles which have a rod-shaped (nano-needles) crystalline structure. Carbidation of the prepared {gamma}-FeOOH with CO at atmospheric pressure produced iron carbides with spherical layered structure. HRTEM and EDS analysis revealed that carbidation of {gamma}-FeOOH particles changes the initial nano-needles morphology and generates ultrafine carbide particles with irregular spherical shape.

  16. Reducing fischer-tropsch catalyst attrition losses in high agitation reaction systems

    DOE Patents [OSTI]

    Singleton, Alan H. (Baden, PA); Oukaci, Rachid (Gibsonia, PA); Goodwin, James G. (Cranberry Township, PA)

    2001-01-01

    A method for reducing catalyst attrition losses in hydrocarbon synthesis processes conducted in high agitation reaction systems; a method of producing an attrition-resistant catalyst; a catalyst produced by such method; a method of producing an attrition-resistant catalyst support; and a catalyst support produced by such method. The inventive method of reducing catalyst attrition losses comprises the step of reacting a synthesis gas in a high agitation reaction system in the presence of a catalyst. In one aspect, the catalyst preferably comprises a .gamma.-alumina support including an amount of titanium effective for increasing the attrition resistance of the catalyst. In another aspect, the catalyst preferably comprises a .gamma.-alumina support which has been treated, after calcination, with an acidic, aqueous solution. The acidic aqueous solution preferably has a pH of not more than about 5. In another aspect, the catalyst preferably comprises cobalt on a .gamma.-alumina support wherein the cobalt has been applied to the .gamma.-alumina support by totally aqueous, incipient wetness-type impregnation. In another aspect, the catalyst preferably comprises cobalt on a .gamma.-alumina support with an amount of a lanthana promoter effective for increasing the attrition resistance of the catalyst. In another aspect, the catalyst preferably comprises a .gamma.-alumina support produced from boehmite having a crystallite size, in the 021 plane, in the range of from about 30 to about 55 .ANG.ngstrons. In another aspect, the inventive method of producing an attrition-resistant catalyst comprises the step of treating a .gamma.-alumina support, after calcination of and before adding catalytic material to the support, with an acidic solution effective for increasing the attrition resistance of the catalyst. In another aspect, the inventive method of producing an attrition-resistant catalyst support comprises the step of treating calcined .gamma.-alumina with an acidic, aqueous solution effective for increasing the attrition resistance of the .gamma.-alumina.

  17. Separation of Fischer-Tropsch Wax from Catalyst by Supercritical Extraction

    SciTech Connect (OSTI)

    Mark C. Thies; Patrick C. Joyce

    1998-04-30

    Further progress in achieving the objectives of the project was made in the period of January I to March 31, 1998. The direct numerical simulation of particle removal process in turbulent gas flows was completed. Variations of particle trajectories are studied. It is shown that the near wall vortices profoundly affect the particle removal process in turbulent boundary layer flows. Experimental data for transport and deposition of fibrous particles in the aerosol wind tunnel was obtained. The measured deposition velocity for irregular fibrous particles is compared with the empirical correlation and the available data for glass fibers and discussed. Additional progress on the sublayer model for evaluating the particle deposition and resuspension in turbulent flows was made.

  18. ULTRA-CLEAN FISCHER-TROPSCH FUELS PRODUCTION AND DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    Steve Bergin

    2004-10-18

    The Report Abstract provides summaries of the past year's activities relating to each of the main project objectives. Some of the objectives will be expanded on in greater detail further down in the report. The following objectives have their own addition sections in the report: SFP Construction and Fuel Production, Impact of SFP Fuel on Engine Performance, Fleet Testing at WMATA and Denali National Park, Demonstration of Clean Diesel Fuels in Diesel Electric Generators in Alaska, and Economic Analysis. ICRC provided overall project organization and budget management for the project. ICRC held meetings with various project participants. ICRC presented at the Department of Energy's annual project review meeting. The plant began producing fuel in October 2004. The first delivery of finished fuel was made in March of 2004 after the initial start-up period.

  19. Technology development for iron Fischer-Tropsch catalysis. [Pretreatment of catalyst in carbon monoxide

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    The present study shows that activation of a high surface area Fe{sub 2}O{sub 3} catalyst in CO in a (CSTR), continuously stirred tank reactor using tetralin as solvent results in an activated that is three times of material that is activated in H{sub 2} or directly in the syngas.

  20. Nitrided iron catalysts for the Fischer-Tropsch synthesis in the eighties

    SciTech Connect (OSTI)

    Anderson, R.B.

    1980-01-01

    Nitrided iron catalysts are active and durable and have an unusal selectivity. They do not produce significant amounts of wax, which should be advantageous in situations where gasoline is the desired product. The low yield of wax permits operation of nitrided iron in fluidized fixed-bed or entrained reactors at 230 to 255/sup 0/C. Conventional reduced iron catalysts in these reactors must be operated at about 325/sup 0/C to prevent formation of higher hydrocarbon that leads to agglomeration of the fluidized particles. At 325/sup 0/C carbon deposition and other processes leading to catalyst deterioration proceed rapidly. The yields of methane and ethane from nitrided iron are larger than desired for most purposes. Possibly promoters may be found to improve the selectivity of nitrided iron catalysts. The Bureau of Mines did not conduct a systematic catalyst development program on iron nitrides. (DP) 5 fgures, 6 tables.

  1. Fischer-Tropsch activity for non-promoted cobalt-on-alumina catalysts

    DOE Patents [OSTI]

    Singleton, Alan H. (Baden, PA); Oukaci, Rachid (Gibsonia, PA); Goodwin, James G. (Gibsonia, PA)

    2001-01-01

    Cobalt catalysts, and processes employing these inventive catalysts, for hydrocarbon synthesis. The inventive catalyst comprises cobalt on an alumina support and is not promoted with any noble or near noble metals. In one aspect of the invention, the alumina support preferably includes a dopant in an amount effective for increasing the activity of the inventive catalyst. The dopant is preferably a titanium dopant. In another aspect of the invention, the cobalt catalyst is preferably reduced in the presence of hydrogen at a water vapor partial pressure effective to increase the activity of the cobalt catalyst for hydrocarbon synthesis. The water vapor partial pressure is preferably in the range of from 0 to about 0.1 atmospheres.

  2. Ultra-Clean Fischer-Tropsch Fuels Production and Demonstration Project

    SciTech Connect (OSTI)

    Steve Bergin

    2005-10-14

    The Report Abstract provides summaries of the past year's activities relating to each of the main project objectives. Some of the objectives will be expanded on in greater detail further down in the report. The following objectives have their own addition sections in the report: Dynamometer Durability Testing, the Denali Bus Fleet Demonstration, Bus Fleet Demonstrations Emissions Analysis, Impact of SFP Fuel on Engine Performance, Emissions Analysis, Feasibility Study of SFPs for Rural Alaska, and Cold Weather Testing of Ultra Clean Fuel.

  3. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Builders place final beam in first phase of CMRR project at Los Alamos National Laboratory July 22, 2008 LOS ALAMOS, New Mexico, July 22, 2008- Workers hoisted the final steel beam atop the skeleton of what will be the Radiological Laboratory Utility Office Building at Los Alamos National Laboratory Tuesday morning, marking a milestone for the first of three phases in the multiyear Chemistry and Metallurgy Research Replacement Project (CMRR). At the "topping-out" ceremony, Laboratory

  4. Development of precipitated iron Fischer-Tropsch catalysts. Quarterly technical progress report, 1 January 1995--31 March 1995

    SciTech Connect (OSTI)

    Bukur, D.B.; Lang, X.; Reddy, B.

    1995-05-23

    During the reporting period we completed synthesis of about 100 g of catalyst with nominal composition 100 Fe/3 Cu/4 K/16 SiO{sub 2} (S-3416-2), and of another batch (173 g) of the same catalyst (S-3416-3). Also, we synthesized two additional batches of catalyst with nominal composition 100 Fe/5 Cu/6 K/24 SiO{sub 2}, in the amounts of 240 g (S-5624-3) and 200 g (S-5624-4). These amounts are sufficient for all planned tests with these two catalysts for the entire duration of this contract. The synthesized catalysts were characterized by atomic absorption, and BET surface area and pore size distribution measurements.

  5. Technology development for iron Fischer-Tropsch catalysis. Quarterly technical progress report for period ending March 31, 1991

    SciTech Connect (OSTI)

    Not Available

    1991-12-31

    The present study shows that activation of a high surface area Fe{sub 2}O{sub 3} catalyst in CO in a (CSTR), continuously stirred tank reactor using tetralin as solvent results in an activated that is three times of material that is activated in H{sub 2} or directly in the syngas.

  6. Separation of Fischer-Tropsch wax from catalyst by supercritical extraction. Quarterly progress report, October 1, 1996--December 31, 1996

    SciTech Connect (OSTI)

    Joyce, P.C.; Thies, M.C.

    1997-01-01

    One of the major objectives of this research project is to predict the phase behavior of model wax compounds in dense supercritical fluids such as hexane. Because initial results with the SAFT equation have been less promising than expected, the group at North Carolina State University has focused their recent attention on cubic equations of state, in particular the Peng-Robinson and Soave-Redlich-Kwong versions. The focus of this work has been on developing correlations that can be used to predict binary interaction parameters (i.e., k{sub ij}s) for a given binary wax-solvent system. As a first step, k{sub ij}s were first calculated from experimental data on systems containing alkanes between nC{sub 4} and nC{sub 23} at temperatures between 25 and 357{degrees} C. Attempts were then made to correlate these parameters with specific pure component properties of the alkanes of interest. Reasonably good agreement between experimental and predicted k{sub ij}s was found using a correlation that incorporates both temperature and the molecular size of the alkanes. As phase equilibrium data becomes available for higher molecular weight model wax compounds, the ability of the correlation to handle such systems will need to be tested. The phase equilibrium apparatus is currently undergoing modifications that will allow the system to run components that are solids at ambient temperatures. Some problems are still being resolved, as the heavy component tends to precipitate in the sample lines. Modifications have been made that should allow the system to operate reliably.

  7. Carbon number distribution of Fischer-Tropsch products formed on an iron catalyst in a slurry reactor

    SciTech Connect (OSTI)

    Satterfield, C.N.; Huff, G.A. Jr.

    1982-01-01

    Studies at 234 to 269/sup 0/C and at 790 kPa showed a precise linear relationship between the log of mole fraction m/sub n/ of products of carbon number n, and n, as predicted by the Flory molecular-weight distribution provided that all products, including oxygenated species, are considered. The relationship held over more than four orders of magnitude of m/sub n/, values of n of from 1 to about 20, and over a wide range of gas composition. The chain growth probability factor, ..cap alpha.., increased slightly from 0.67 at 269/sup 0/C to 0.71 at 234/sup 0/C. 8 figures, 1 table.

  8. Fischer-Tropsch synthesis in supercritical reaction media. [Quarterly] progress report, July 1, 1993--September 30, 1993

    SciTech Connect (OSTI)

    Subramaniam, B.

    1993-10-01

    Figure 1 shows the physical appearance of the reactor and analytical units. The feed preparation section consists of a mass flow controller for syngas introduction, the BPLC pump for n-hexane introduction, preheaters, check valves, static mixer, and safety head has been completed. The stainless steel reactor was fabricated and was alonized to passivate the stainless steel surface. The fluidized sand bath surrounding the reactor was fabricated in house. Aluminum oxide (120 mesh) will be used as the fluidized medium. Stepping-motor-driven micrometering (Autoclave{reg_sign}) valves have been installed for pressure control of the reactor and of the syngas feed stream. The sample transfer lines connected to the gas sampling valves in the GC will be routed inside the valve oven and out through the front top of the GC, where they will be connected with the heated sample transfer lines from the reactor. The sample outlet line will be routed through a cold trap operated at 20{degrees}C or lower and the gases from the cold trap will be exhausted to the roof vent. The reactor unit is versatile and permits us to investigate the effect(s) of any of the following variables on syngas conversion, selectivity and reaction rate maintenance: (1) pressure (25--70) bars, (2) syngas flowrate (30--150) cc/min/g{center_dot}cat, (3) syngas ratio (H{sub 2}/CO of 0.5, 1.0 or 2.0) (4) ratio of syngas to reaction media (0.2--5.0), (5) catalyst type (Fe or Co), (6) direction of cocurrent flow (upflow or downflow), (7) cosolvent effects (such as n-pentane), and (8) sulfur content (1--50 mg{center_dot}/g{center_dot}Fe). Based on a literature review (Pennline et al., 1987; Baltrus et al., 1989; Bukur et al., 1990), the pretreatment of Fe catalysts will be performed with flowing CO at low pressure ({approximately}1 atm) and high temperatures ({approximately}280{degrees}C).

  9. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forest fire near Los Alamos National Laboratory June 26, 2011 Los Alamos, New Mexico, June 26, 2011, 6:07pm-The Las Conchas fire burning in the Jemez Mountains approximately 12 miles southwest of the boundary of Los Alamos National Laboratory has not entered Laboratory property at this time. All radioactive material is appropriately accounted for and protected. LANL staff is coordinating the onsite response and supporting the county and federal fire response. Lab Closely Monitoring Las Conchas

  10. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    performance computer system installed at Los Alamos National Laboratory June 17, 2014 Unclassified 'Wolf' system to advance many fields of science LOS ALAMOS, N.M., June 17,...

  11. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mexican pueblo preserves cultural history through collaborative tours with Los Alamos National Laboratory August 24, 2015 Students gain new insights into their ancestry LOS ALAMOS, N.M., Aug. 24, 2015-San Ildefonso Pueblo's Summer Education Enhancement Program brought together academic and cultural learning in the form of a recent tour of Cave Kiva Trail in Mortandad Canyon."Opening up this archaeological site and sharing it with the descendants of its first inhabitants is a

  12. Transportable Heavy Duty Emissions Testing Laboratory and Research Program

    SciTech Connect (OSTI)

    David Lyons

    2008-03-31

    The objective of this program was to quantify the emissions from heavy-duty vehicles operating on alternative fuels or advanced fuel blends, often with novel engine technology or aftertreatment. In the first year of the program West Virginia University (WVU) researchers determined that a transportable chassis dynamometer emissions measurement approach was required so that fleets of trucks and buses did not need to be ferried across the nation to a fixed facility. A Transportable Heavy-Duty Vehicle Emissions Testing Laboratory (Translab) was designed, constructed and verified. This laboratory consisted of a chassis dynamometer semi-trailer and an analytic trailer housing a full scale exhaust dilution tunnel and sampling system which mimicked closely the system described in the Code of Federal Regulations for engine certification. The Translab was first used to quantify emissions from natural gas and methanol fueled transit buses, and a second Translab unit was constructed to satisfy research demand. Subsequent emissions measurement was performed on trucks and buses using ethanol, Fischer-Tropsch fuel, and biodiesel. A medium-duty chassis dynamometer was also designed and constructed to facilitate research on delivery vehicles in the 10,000 to 20,000lb range. The Translab participated in major programs to evaluate low-sulfur diesel in conjunction with passively regenerating exhaust particulate filtration technology, and substantial reductions in particulate matter were recorded. The researchers also participated in programs to evaluate emissions from advanced natural gas engines with closed loop feedback control. These natural gas engines showed substantially reduced levels of oxides of nitrogen. For all of the trucks and buses characterized, the levels of carbon monoxide, oxides of nitrogen, hydrocarbons, carbon dioxide and particulate matter were quantified, and in many cases non-regulated species such as aldehydes were also sampled. Particle size was also quantified during selected studies. A laboratory was established at WVU to provide for studies which supported and augmented the Translab research, and to provide for development of superior emissions measurement systems. This laboratory research focused on engine control and fuel sulfur issues. In recent years, as engine and aftertreatment technologies advanced, emissions levels were reduced such that they were at or below the Translab detectable limits, and in the same time frame the US Environmental Protection Agency required improved measurement methodologies for engine emissions certification. To remain current and relevant, the researchers designed a new Translab analytic system, housed in a container which can be transported on a semi-trailer. The new system's dilution tunnel flow was designed to use a subsonic venturi with closed loop control of blower speed, and the secondary dilution and particulate matter filter capture were designed to follow new EPA engine certification procedures. A further contribution of the program has been the development of techniques for creating heavy-duty vehicle test schedules, and the creation of schedules to mimic a variety of truck and bus vocations.

  13. Transportation fuels from wood

    SciTech Connect (OSTI)

    Baker, E.G.; Elliott, D.C.; Stevens, D.J.

    1980-01-01

    The various methods of producing transportation fuels from wood are evaluated in this paper. These methods include direct liquefaction schemes such as hydrolysis/fermentation, pyrolysis, and thermochemical liquefaction. Indirect liquefaction techniques involve gasification followed by liquid fuels synthesis such as methanol synthesis or the Fischer-Tropsch synthesis. The cost of transportation fuels produced by the various methods are compared. In addition, three ongoing programs at Pacific Northwest Laboratory dealing with liquid fuels from wood are described.

  14. GREET Life-Cycle Analysis of Biofuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BETO Project Peer Review GREET Life-Cycle Analysis of Biofuels March 24, 2015 Analysis and Sustainability Michael Wang, Jennifer B. Dunn Argonne National Laboratory Key acronyms list AD Anaerobic digestion FR Forest residue AEO Annual Energy Outlook FTD Fischer Tropsch Diesel AEZ Agricultural Ecological Zone FN Fuel gas/natural gas AGE Air emissions, greenhouse gas emissions, energy consumption FY Fiscal year ALU Algal lipid upgrading GHG Greenhouse gas AHTL Algal hydrothermal liquefaction GREET

  15. Technology development for cobalt F-T catalysts. Topical report No.3, Zirconia promotion of Fischer-Tropsch cobalt catalysts: Behavior in fixed-bed and slurry bubble column reactors

    SciTech Connect (OSTI)

    Oukaci, R.; Marcelin, G.; Goodwin, J.G. Jr.

    1995-01-17

    A series of cobalt-based F-T catalysts supported on alumina and silica were prepared with different loadings of Zr and different sequences of impregnation of Co and Zr. All catalysts were extensively characterized by different methods. The catalysts were evaluated in terms of their activity and selectivity both in fixed bed and slurry bubble column reactors. Addition of ZrO{sub 2} to both Co/SiO{sub 2} and Co/Al{sub 2}O{sub 3} catalysts resulted in at least a twofold increase in the catalyst activity for F-T synthesis in the fixed bed reactor. In the slurry bubble column reactor, a similar promotion effect was observed for the SiO{sub 2}-supported catalysts, while the addition of Zr to a cobalt/alumina catalyst had a less significant effect.

  16. Mixed Alcohol Synthesis Catalyst Screening

    SciTech Connect (OSTI)

    Gerber, Mark A.; White, James F.; Stevens, Don J.

    2007-09-03

    National Renewable Energy Laboratory (NREL) and Pacific Northwest National Laboratory (PNNL) are conducting research to investigate the feasibility of producing mixed alcohols from biomass-derived synthesis gas (syngas). PNNL is tasked with obtaining commercially available or preparing promising mixed-alcohol catalysts and screening them in a laboratory-scale reactor system. Commercially available catalysts and the most promising experimental catalysts are provided to NREL for testing using a slipstream from a pilot-scale biomass gasifier. From the standpoint of producing C2+ alcohols as the major product, it appears that the rhodium catalyst is the best choice in terms of both selectivity and space-time yield (STY). However, unless the rhodium catalyst can be improved to provide minimally acceptable STYs for commercial operation, mixed alcohol synthesis will involve significant production of other liquid coproducts. The modified Fischer-Tropsch catalyst shows the most promise for providing both an acceptable selectivity to C2+ alcohols and total liquid STY. However, further optimization of the Fischer-Tropsch catalysts to improve selectivity to higher alcohols is highly desired. Selection of a preferred catalyst will likely entail a decision on the preferred coproduct slate. No other catalysts tested appear amenable to the significant improvements needed for acceptable STYs.

  17. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    able to follow a single nanoscale catalytic particle, a bulk iron oxide promoted with titanium, zinc and potassium oxides, during activation and under Fischer-Tropsch reaction...

  18. EA-1642: Finding of No Significant Impact

    Broader source: Energy.gov [DOE]

    Design and Construction of an Early Lead Mini-Fischer-Tropsch Refinery at the University of Kentucky Center for Applied Energy Research Near Lexington, Kentucky

  19. EA-1642: Final Environmental Assessment

    Broader source: Energy.gov [DOE]

    Design and Construction of an Early Lead Mini Fischer-Tropsch Refinery at the University of Kentucky Center for Applied Energy Research Near Lexington, Kentucky

  20. EIS-0357: Final Environmental Impact Statement | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    to demonstrate the integration of coal waste gasification and Fischer-Tropsch (F-T) synthesis of liquid hydrocarbon fuels at commercial scale. DOEEIS-0357, Department of Energy...

  1. Development of alternative fuels from coal-derived syngas

    SciTech Connect (OSTI)

    Brown, D.M.

    1992-05-19

    The overall objectives of this program are to investigate potential technologies for the conversion of coal-derived synthesis gas to oxygenated fuels, hydrocarbon fuels, fuel intermediates, and octane enhancers; and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). BASF continues to have difficulties in scaling-up the new isobutanol synthesis catalyst developed in Air Products' laboratories. Investigations are proceeding, but the proposed operation at LaPorte in April is now postponed. DOE has accepted a proposal to demonstrate Liquid Phase Shift (LPS) chemistry at LaPorte as an alternative to isobutanol. There are two principal reasons for carrying out this run. First, following the extensive modifications at the site, operation on a relatively benign'' system is needed before we start on Fischer-Tropsch technology in July. Second, use of shift catalyst in a slurry reactor will enable DOE's program on coal-based Fischer-Tropsch to encompass commercially available cobalt catalysts-up to now they have been limited to iron-based catalysts which have varying degrees of shift activity. In addition, DOE is supportive of continued fuel testing of LaPorte methanol-tests of MIOO at Detroit Diesel have been going particularly well. LPS offers the opportunity to produce methanol as the catalyst, in the absence of steam, is active for methanol synthesis.

  2. Development of alternative fuels from coal-derived syngas. Quarterly status report No. 6, January 1--March 31, 1992

    SciTech Connect (OSTI)

    Brown, D.M.

    1992-05-19

    The overall objectives of this program are to investigate potential technologies for the conversion of coal-derived synthesis gas to oxygenated fuels, hydrocarbon fuels, fuel intermediates, and octane enhancers; and to demonstrate the most promising technologies at DOE`s LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). BASF continues to have difficulties in scaling-up the new isobutanol synthesis catalyst developed in Air Products` laboratories. Investigations are proceeding, but the proposed operation at LaPorte in April is now postponed. DOE has accepted a proposal to demonstrate Liquid Phase Shift (LPS) chemistry at LaPorte as an alternative to isobutanol. There are two principal reasons for carrying out this run. First, following the extensive modifications at the site, operation on a relatively ``benign`` system is needed before we start on Fischer-Tropsch technology in July. Second, use of shift catalyst in a slurry reactor will enable DOE`s program on coal-based Fischer-Tropsch to encompass commercially available cobalt catalysts-up to now they have been limited to iron-based catalysts which have varying degrees of shift activity. In addition, DOE is supportive of continued fuel testing of LaPorte methanol-tests of MIOO at Detroit Diesel have been going particularly well. LPS offers the opportunity to produce methanol as the catalyst, in the absence of steam, is active for methanol synthesis.

  3. Laboratory Directors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Directors Laboratory Directors A gallery of Laboratory leadership, 1943 to the present. Laboratory historian Alan B. Carr Email Laboratory directors Charles McMillan (2011-present) Michael R. Anastasio (2006-2011) Robert Kuckuck (2005-2006) G. Peter Nanos (2003-2005) John C. Browne (1997-2003) Siegfried S. Hecker (1985-1997) Donald M. Kerr (1979-1985) Harold M. Agnew (1970-1979) Norris Bradbury (1945-1970) J. Robert Oppenheimer (1943-1945) Laboratory Directors Harold M. Agnew

  4. Status of coal liquefaction in the United States and related research and development at the Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Salmon, R.; Cochran, H.D. Jr.; McNeese, L.E.

    1982-10-05

    We divide coal liquefaction processes into four categories: (1) indirect liquefaction, such as Fischer-Tropsch and methanol synthesis, in which coal is fist gasified to produce a synthesis gas which is then recombined to produce liquids; (2) direct liquefaction processes, typified by H-Coal, Exxon Donor Solvent (EDS), and SRC-I and II, in which a slurry of coal and solvent is subjected to high severity liquefaction conditions, either with or without added catalyst; (3) two-stage liquefaction, such as Conoco's CSF process, in which an initial dissolution at mild conditions is followed by a more severe catalytic hydrogenation-hydrocracking step; or the short contact time two-stage liquefaction processes being developed currently by groups which include Chevron, Electric Power Research Institute (EPRI), Department of Energy/Fossil Energy (DOE/FE); and (4) pyrolysis and hydropyrolysis processes, such as COED and Cities Service-Rockewell, in which coal is carbonized to produce liquids, gases, and char. Pilot plant experience with the various processes is reviewed (including equipment problems, corrosion and abrasion, refractory life, heat recovery, coke deposits, reactor kinetics, scale-up problems, health hazards, environmental impacts, upgrading products, economics, etc.). Commercialization possibilities are discussed somewhat pessimistically in the light of reduction of US Oil imports, weakening oil prices, conversion to coal, smaller automobiles, economics and finally, some uncertainty about SFC goals and policies. (LTN)

  5. Laboratories | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories Our laboratories are available to industry and other organizations for researching, developing, and evaluating energy technologies. We have experienced lab technicians, scientists and engineers ready to design and run tests for you. Some labs are available for conducting your own research. A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z A Accelerated Exposure Testing Laboratory Advanced Optical Materials Laboratory Advanced

  6. Geoscience Laboratory | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    preparation and other relatively straight-forward laboratory manipulations. These include buffer preparations, solid sample grinding, solution concentration, filtration, and...

  7. Laboratory Director

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Director Laboratory Director Charles F. McMillan has demonstrated success at balancing mission performance with security and safety. Contact Operator Los Alamos National Laboratory (505) 667-5061 McMillan has nearly 30 years of scientific and management experience in weapons science and stockpile certification, hands-on experience in both experimental physics and computational science, and demonstrated success at balancing mission performance with security and safety. Charles F.

  8. Laboratory Fellows

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    selected as Los Alamos National Laboratory Fellows November 16, 2010 Scientific disciplines range from fundamental and applied physics to geology LOS ALAMOS, New Mexico, NOVEMBER 16, 2010-Five Los Alamos National Laboratory scientists from diverse fields of research have been named Laboratory Fellows. The five researchers are Brenda Dingus of the Neutron Science and Technology group; William (Bill) Louis of the Subatomic Physics group; John Sarrao, director of Los Alamos's Office of Science

  9. National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    draws more than 200 students to Los Alamos National Laboratory April 16, 2015 NOTE TO EDITORS: Media are welcome to attend the awards ceremony from 9 a.m. to noon a.m., April 21 at...

  10. Laboratory Access | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Access Planning Ahead Planning Ahead Please complete the Beam Time Request (BTR) and Support Request forms thourgh the User Portal. Thorough chemical and sample information must be included in your BTR. Support Request forms include a list of collaborators that require laboratory access and your group's laboratory equipment requests. Researcher safety is taken seriously at SLAC. Please remember that radioactive materials, nanomaterials, and biohazardous materials have additional safety

  11. DOE studies on coal-to-liquids

    SciTech Connect (OSTI)

    2007-07-01

    The US DOE National Energy Technology Laboratory has issued reports that examine the feasibility of coal-to-liquids (CTL) facilities, both general and site specific, which are available at www.netl.gov/energy-analyses/ref-shelf.html. The US Department of Defence has been investigating use of Fischer-Tropsch fuels. Congress is considering various CTL proposals while the private sector is building pilot plants and performing feasibility studies for proposed plants. The article includes a table listing 14 coal-to-liquids plants under consideration. The private sector has formed the coal-to-liquids coalition (www.futurecoalfuels.org). The article mentions other CTL projects in South Africa, China, Indonesia, the Philippines and New Zealand. 1 tab.

  12. Sandia National Laboratories: Electrostatic Discharge (ESD) Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrostatic Discharge (ESD) Laboratory We have field and laboratory capabilities to measure electrostatic environment generation, storage, and charge transfer effects....

  13. Geomechanics Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geomechanics Laboratory - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  14. Lab Plan | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab Plan Ames Laboratory

  15. Laboratory Waste | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Waste Sharps Broken Glass Containment Hazardous Waste All waste produced in the Sample Prep Labs should be appropriately disposed of at SLAC. You are prohibited to transport waste back to your home institution. Designated areas exist in the labs for sharps, broken glass, and hazardous waste. Sharps, broken glass, and hazardous waste must never be disposed of in the trash cans or sink drains. Containment Bottles, jars, and plastic bags are available for containing chemical waste. Place

  16. Laboratory Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory Applications What are contaminants normally found in hydrogen from fueling nozzle? JP Hsu SmartChemistry.com Particulates are most common found in Hydrogen - 96% hydrogen fuel contains particulates in 108 Particulate Samplings. Typical Particulate filter - 0.035mg/kg SmartChemistry.com H 2 Station X Particulate Sample Particulate Concentration at 700 Bar: 2.0 mg/kg Particulate filter after sampling, in which 4.001mg particulates are found in 2 kilogram hydrogen SmartChemistry.com H 2

  17. NATIONAL LABORATORY

    Office of Environmental Management (EM)

    , -QAlamos NATIONAL LABORATORY - - - Ut."., - - - memorandum Environmental Protection Division Water Quality & RCRA Group (ENV-RCRA) To/MS: From /MS: Phone/Fax: Symbol: Date: Davis Christensen, ADEP-LTP-PTS, J910 Mark Haagenstad, ENV-RCRA K404 41,// 5-2014 '11fI ENV-RCRA-12-0053 February 29,2012 SUBJECT: LEGACY TA-55 NITRATE SALT WASTES AT TA-54 - POTENTIAL APPLICABILITY OF RCRA DOOlID002ID003 WASTE CODES This memorandum was prepared in response to your request to provide ENV-RCRA's

  18. Laboratory Activities

    SciTech Connect (OSTI)

    Brown, Christopher F.; Serne, R. Jeffrey

    2008-01-17

    This chapter summarizes the laboratory activities performed by PNNLs Vadose Zone Characterization Project in support of the Tank Farm Vadose Zone Program, led by CH2M HILL Hanford Group, Inc. The results of these studies are contained in numerous reports (Lindenmeier et al. 2002; Serne et al. 2002a, 2002b, 2002c, 2002d, 2002e; Lindenmeier et al. 2003; Serne et al. 2004a, 2004b; Brown et al. 2005, 2006a, 2007; Serne et al. 2007) and have generated much of the data reported in Chapter 22 (Geochemistry-Contaminant Movement), Appendix G (Geochemistry-Contaminant Movement), and Cantrell et al. (2007, SST WMA Geochemistry Data Package in preparation). Sediment samples and characterization results from PNNLs Vadose Zone Characterization Project are also shared with other science and technology (S&T) research projects, such as those summarized in Chapter 12 (Associated Science Activities).

  19. Status of Laboratory Goals | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Status of Laboratory Goals Status of Calendar Year 2015 objectives and targets. Item 1: The EMSSC recommends creating a list of excess property and posting it on the Laboratory's webpage by April 1, 2015. Such a list will allow staff to view Laboratory assets that are available for free reuse for Laboratory purposes. This target has been met. The Ames Laboratory encompasses all the aspects of the Site Sustainability Plan into the Laboratory's efforts to meet DOE's sustainability goals. See the

  20. National Laboratory Impact Initiative

    Broader source: Energy.gov [DOE]

    The National Laboratory Impact Initiative supports the relationship between the Office of Energy Efficiency & Renewable Energy and the national laboratory enterprise.  The national laboratories...

  1. Renewable Energy Laboratory

    Open Energy Info (EERE)

    Radiation Budget Measurement Networks, National Oceanic and Atmospheric Administration Air Resources Laboratory and Earth System Research Laboratory Global Monitoring Division *...

  2. Federal Laboratory Consortium | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Federal Laboratory Consortium The Federal Laboratory Consortium for Technology Transfer (FLC) is the nationwide network of federal laboratories that provides the forum to develop strategies and opportunities for linking laboratory mission technologies and expertise with the marketplace. The FLC is divided up into 6 geographical regions. The Ames Laboratory is a member of the Mid-Continent region. The Mid-Continent Region consists of 14 states: Arkansas, Colorado, Iowa, Kansas, Missouri, Montana,

  3. UK FT PDU Facility Draft EA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for University of Kentucky Small-Scale Pilot Plant for the Gasification of Coal and Coal-Biomass Blends and Conversion of Derived Syngas to Liquid Fuels via Fischer-Tropsch ...

  4. FT Solutions LLC | Open Energy Information

    Open Energy Info (EERE)

    LLC Place: South Jordan, Utah Zip: 84095 Product: JV between Headwaters Technology Innovation Group and Rentech to focus on Fischer-Tropsch (FT) gas-to-liquids processes and...

  5. EA-1642S: Finding of No Significant Impact

    Broader source: Energy.gov [DOE]

    Small-Scale Pilot Plant for the Gasification of Coal and Coal-Biomass Blends and Conversion of Derived Syngas to Liquid Fuels via Fischer-Tropsch Synthesis, Lexington, Kentucky

  6. EA-1642S: Supplemental Draft Environmental Assessment

    Broader source: Energy.gov [DOE]

    Small-Scale Pilot Plant for the Gasification of Coal and Coal-Biomass Blends and Conversion of Derived Syngas to Liquid Fuels via Fischer-Tropsch Synthesis, Lexington, Kentucky

  7. EA-1642S: Final Supplemental Environmental Assessment

    Broader source: Energy.gov [DOE]

    Small-Scale Pilot Plant for the Gasification of Coal and Coal-Biomass Blends and Conversion of Derived Syngas to Liquid Fuels via Fischer-Tropsch Synthesis, Lexington, Kentucky

  8. CX-011112: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Innovative Gasification to Produce Fischer-Tropsch Jet and Diesel Fuel CX(s) Applied: A9 Date: 08/15/2013 Location(s): Iowa Offices(s): Golden Field Office

  9. EA-1870: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    could be suitable for production of clean fuels such as substitute natural gas, sulfur-free Fischer-Tropsch diesel, jet fuel, dimethyl ether, and methane. This MAP identifies...

  10. Coal liquefaction and gas conversion: Proceedings. Volume 2

    SciTech Connect (OSTI)

    Not Available

    1993-12-31

    Volume II contains papers presented at the following sessions: Indirect Liquefaction (oxygenated fuels); and Indirect Liquefaction (Fischer-Tropsch technology). Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  11. Yosemite Waters Vehicle Evaluation Report: Final Results

    SciTech Connect (OSTI)

    Eudy, L.; Barnitt, R.; Alleman, T. L.

    2005-08-01

    Document details the evaluation of Fischer-Tropsch diesel, a gas-to-liquid fuel, in medium-duty delivery vehicles at Yosemite Waters. The study was conducted by NREL at the company's Fullerton, California, bottling headquarters.

  12. Advanced Fuels in HDV Applications | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunities for the Early Production of Fischer-Tropsch (F-T) Fuels in the U.S. -- An Overview Impact of Biodiesel on Modern Diesel Engine Emissions Diesel Health Impacts & ...

  13. NREL and California Air Agency to Test Clean Diesel Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air Quality Management District (SCAQMD) to determine if using the fuel can help reduce air pollution. Fischer-Tropsch fuels can be produced from natural gas, biomass or coal. ...

  14. Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory

    National Nuclear Security Administration (NNSA)

    Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory The Terascale Simulation Facility is a world-class supercomputing

  15. Ames Laboratory Logos | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Laboratory Logos The Ames Laboratory Logo comes in several formats. EPS files are vector graphics created in Adobe Illustrator and saved with a tiff preview so they will...

  16. Ames Laboratory Emergency Plan | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Laboratory Emergency Plan Version Number: 13.0 Document Number: Plan 46300.001 Effective Date: 11/2014

  17. Laboratory Graduate Research Appointment | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Graduate Research Program Perform your thesis research among the best and the brightest at Argonne National Laboratory. About the Program Laboratory Graduate Research (Lab Grad) appointments are available to qualified U.S. university graduate students who wish to carry out their thesis research at Argonne National Laboratory under co-sponsorship of an Argonne staff member and a faculty member. The university sets the academic standard and awards the degree. The participation of the

  18. F-T process using an iron on mixed zirconia-titania supported catalyst

    DOE Patents [OSTI]

    Dyer, Paul N.; Nordquist, Andrew F.; Pierantozzi, Ronald

    1987-01-01

    A Fischer-Tropsch catalyst comprising iron co-deposited with or deposited on particles comprising a mixture of zirconia and titania, preferably formed by co-precipitation of compounds convertible to zirconia and titania, such as zirconium and titanium alkoxide. The invention also comprises the method of making this catalyst and an improved Fischer-Tropsch reaction process in which the catalyst is utilized.

  19. Ames Laboratory Hot Canyon | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Laboratory Hot Canyon This historical film footage, originally produced in the early 1950s as part of a series by WOI-TV, shows atomic research at Ames Laboratory. The work was conducted in a special area of the Laboratory known as the "Hot Canyon."

  20. Sustainability | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sustainability Ames Laboratory is committed to environmental sustainability in all of its operations as outlined in the Laboratory's Site Sustainability Plan. Executive orders set ...

  1. Laboratory Equipment & Supplies | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Equipment & Supplies John Bargar, SSRL Scientist Equipment is available to serve disciplines from biology to material science. All laboratories contain the following standard laboratory equipment: pH meters with standard buffers, analytical balances, microcentrifuges, vortex mixers, ultrasonic cleaning baths, magnetic stirrers, hot plates, and glassware. Most laboratories offer ice machines and cold rooms. Specialty storage areas for samples include a -80 freezer, argon and nitrogen glove

  2. The Sample Preparation Laboratories | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cynthia Patty 1 Sam Webb 2 John Bargar 3 Arizona 4 Chemicals 5 Team Work 6 Bottles 7 Glass 8 Plan Ahead! See the tabs above for Laboratory Access and forms you'll need to complete. Equipment and Chemicals tabs detail resources already available on site. Avoid delays! Hazardous materials use may require a written Standard Operating Procedure (SOP) before you work. Check the Chemicals tab for more information. The Sample Preparation Laboratories The Sample Preparation Laboratories provide wet lab

  3. Sandia National Laboratories: Laboratories' Strategic Framework

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of activities in broader national security. The Laboratories' strategic framework drives strategic decisions about the totality of our work and has positioned our institution...

  4. Analytical Chemistry Laboratory | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemistry Laboratory provides a broad range of analytical chemistry support services to the scientific and engineering programs. AnalyticalChemistryLaboratoryfactsheet...

  5. Equipment | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Zeiss Axiovert 200 Optical Microscope Spark Cutter Fully Equipped Metallographic Laboratory Electropolisher Dimpler

  6. Accounting Resources | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accounting Resources Ames Laboratory Human Resources Forms Ames Laboratory Travel Forms Ames Laboratory Forms (Select Department) ISU Intramural PO Request...

  7. ARM - Laboratory Partners

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OrganizationLaboratory Partners Laboratory Partners Nine DOE national laboratories share the responsibility of managing and operating the ARM Climate Research Facility. ARM Group Links Science Board SISC Charter Data Archive Data Management Facility Data Quality Program Engineering Support External Data Center Laboratory Partners Nine DOE national laboratories share the responsibility of managing and operating the ARM Climate Research Facility. This unique partnership supports the DOE mission to

  8. National Laboratories - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratories Name Address City, State Ames Laboratory Ames Laboratory Ames, IA Argonne National Laboratory 9700 S. Cass Avenue Argonne, IL Brookhaven National...

  9. DOE Laboratory Partnerships

    Broader source: Energy.gov [DOE]

    DOE national laboratories were created to support the various missions of the Department, including energy, national security, science and related environmental activities. The laboratories conduct innovative research and development in literally hundreds of technology areas, some available nowhere else.

  10. Princeton Plasma Physics Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Physics Laboratory P.O. Box 451 Princeton, NJ 08543-0451 GPS: 100 Stellarator Road Princeton, NJ 08540 www.pppl.gov 2015 Princeton Plasma Physics Laboratory. A...

  11. Princeton Plasma Physics Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Physics Laboratory P.O. Box 451 Princeton, NJ 08543-0451 GPS: 100 Stellarator Road Princeton, NJ 08540 www.pppl.gov 2016 Princeton Plasma Physics Laboratory. A ...

  12. aeschoff | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    aeschoff Ames Laboratory Profile Adare Schoff Human Resources Office 151 TASF Phone Number: 515-294-2680 Email Address: aeschoff

  13. Management | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Sciences & Engineering Focus: Understanding & Control of Interfacial Processes Web Site Michael Thackeray Michael Thackeray (Deputy Director) Argonne National Laboratory...

  14. Alamos National Laboratory's 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    $2 million pledged during Los Alamos National Laboratory's 2014 employee giving campaign December 17, 2013 "I Give Because..." theme focuses on unique role Lab plays in local communities LOS ALAMOS, N.M., Dec. 17, 2013-Nearly $2 million has been pledged by Los Alamos National Laboratory employees to United Way and other eligible nonprofit programs during the Laboratory's 2014 Employee Giving Campaign. Los Alamos National Security, LLC, which manages and operates the Laboratory for the

  15. haberer | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    haberer Ames Laboratory Profile Charles Haberer Facilities Services 158 Metals Development Phone Number: 515-294-3757 Email Address: haberer

  16. islowing | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    islowing Ames Laboratory Profile Igor Slowing Assoc Scientist Chemical & Biological Sciences 2756 Gilman Phone Number: 515-294-1959 Email Address: islowing@iastate.edu Ames Laboratory Associate Ames Laboratory Research Projects: Homogeneous and Interfacial Catalysis in 3D Controlled Environment Nanorefinery Education: Ph.D., Iowa State University, 2003-2008 Licenciate in Chemistry, San Carlos University, Guatemala, 1988-1995 Professional Appointments: Staff Scientist, Ames Laboratory,

  17. levin | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    levin Ames Laboratory Profile Evgenii Levin Scientist I Division of Materials Science & Engineering 107 Spedding Phone Number: 515-294-6093 Email Address: levin@iastate.edu Ames Laboratory Research Projects: Novel Materials Preparation & Processing Methodologies Professional Appointments: Scientist I & Adj. Associate Professor, Ames Laboratory U.S. DOE, and Department of Physics and Astronomy, Iowa State University, 2010- present Associate Scientist & Lecturer, Ames Laboratory

  18. Leadership | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Leadership Argonne integrates world-class science, engineering, and user facilities to deliver innovative research and technologies. We create new knowledge that addresses the scientific and societal needs of our nation. Peter B. Littlewood Peter B. Littlewood, Director, Argonne National Laboratory Director, Argonne National Laboratory Argonne National Laboratory Peter B. Littlewood is the Director of Argonne National Laboratory, one of the nation's largest science and engineering research

  19. NREL: Research Facilities - Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories NREL has laboratories available to industry and other organizations for researching, developing, and testing renewable energy and energy efficiency technologies. Here you'll find an alphabetical listing and brief descriptions of NREL's laboratories. A | B | C | D | E | F | G | H | I | J | K | L | M | N |O | P | Q |R | S | T | U | V | W | X | Y | Z A Accelerated Exposure Testing Laboratory Researchers use temperature- and humidity-controlled chambers in this lab to study weathering

  20. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos National Laboratory i Table of Contents Letter from the Division Director 1 Innovation Prize Nominations 2 Innovation Prize Winner 5 About the Feynman Center for Innovation 6 Innovation Assets 7 Strategic Sponsored Work 8 National High Magnetic Field Laboratory 9 Licensing 10 SOLVE 11 Economic Development 12 STAR Cryoelectronics 13 Partnership 14 Verdesian Life Sciences 15 R&D 100 Awards 16 Federal Laboratory Consortium Awards 17 Los Alamos National Laboratory 1 As scientists and

  1. biswasr | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University, 1976 Professional Appointments: Senior Scientist Ames Laboratory and Microelectronics Research Center, 2013- present Adjunct Professor, Dept. of Physics & Astronomy;...

  2. FY 2005 Laboratory Table

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Congressional Budget Request Laboratory Tables Preliminary Department of Energy FY 2005 Congressional Budget Request Office of Management, Budget and Evaluation/CFO February 2004 Laboratory Tables Preliminary Department of Energy Department of Energy FY 2005 Congressional Budget FY 2005 Congressional Budget Request Request Office of Management, Budget and Evaluation/CFO February 2004 Laboratory Tables Laboratory Tables Printed with soy ink on recycled paper Preliminary Preliminary The numbers

  3. National Renewable Energy Laboratory

    Office of Environmental Management (EM)

    DOE Tribal Energy Program Review Roger Taylor Manger State, Local & Tribal Integrated Application Group National Renewable Energy Laboratory November 5-8, 2007 Major DOE National Laboratories Brookhaven Brookhaven Pacific Northwest Pacific Northwest Lawrence Berkeley Lawrence Berkeley Lawrence Livermore Lawrence Livermore h h h h h INEL INEL National Renewable National Renewable Energy Laboratory Energy Laboratory Los Alamos Los Alamos Sandia Sandia Argonne Argonne Oak Ridge Oak Ridge

  4. Heat Transfer Laboratory | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heat Transfer Laboratory Materials in solids or fluid forms play an important role in a wide range of mechanical systems and vehicle cooling applications. Understanding how materials behave when subjected to anticipated thermal conditions is critical to increasing their performance range and longevity. Argonne's Heat Transfer Laboratory enables researchers to: Synthesize and prepare heat transfer fluids Characterize heat transfer fluids Test convection-related heat transfer Test boiling heat

  5. LCLS Sample Preparation Laboratory | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LCLS Sample Preparation Laboratory Kayla Zimmerman | (650) 926-6281 Lisa Hammon, LCLS Lab Coordinator Welcome to the LCLS Sample Preparation Laboratory. This small general use wet lab is located in Rm 109 of the Far Experimental Hall near the MEC, CXI, and XCS hutches. It conveniently serves all LCLS hutches and is available for final stage sample preparation. Due to space limitations, certain types of activities may be restricted and all access must be scheduled in advance. User lab bench

  6. INL Laboratory Scale Atomizer

    SciTech Connect (OSTI)

    C.R. Clark; G.C. Knighton; R.S. Fielding; N.P. Hallinan

    2010-01-01

    A laboratory scale atomizer has been built at the Idaho National Laboratory. This has proven useful for laboratory scale tests and has been used to fabricate fuel used in the RERTR miniplate experiments. This instrument evolved over time with various improvements being made ‘on the fly’ in a trial and error process.

  7. LABORATORY NEW HIRE NOTICE: LABORATORY DELAYED OPENING OR CLOSURE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LABORATORY NEW HIRE NOTICE: LABORATORY DELAYED OPENING OR CLOSURE DUE TO INCLEAMENT WEATHER During the winter months, the Los Alamos National Laboratory (LANL) may at times...

  8. Going green earns Laboratory gold

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Going green earns Laboratory gold Going green earns Laboratory gold The Laboratory's newest facility is its first to achieve both the Leadership in Energy and Environmental Design...

  9. Going green earns Laboratory gold

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Going green earns Laboratory gold Going green earns Laboratory gold The Laboratory's newest facility is its first to achieve both the Leadership in Energy and Environmental Design ...

  10. Laboratory program helps small businesses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab helps small businesses Laboratory program helps small businesses The free program, run jointly by Los Alamos and Sandia National Laboratories, leverages the laboratories'...

  11. Visa Information | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    must be processed in iStart, the Ames Laboratory host must contact Ames Laboratory Human Resources to process this request. Ames Laboratory Human Resources will work with...

  12. Workshops | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Workshops September 17-18, 2015 Argonne National Laboratory and the Interdisciplinary Consortium for Research and Education and Access in Science and Engineering (INCREASE) Argonne National Laboratory The goal of this partnership was to increase the participation in and diversity of the user base at Argonne's scientific user facilities by providing awareness of tools freely available at national laboratories. Within tailored conversations about writing competitive proposals, INCREASE members and

  13. National Laboratory's Weapons Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    McMillan to lead Los Alamos National Laboratory's Weapons Program July 28, 2009 Los Alamos, New Mexico, July 28, 2009- Charles McMillan has been appointed the new principal associate director for Weapons Programs at Los Alamos National Laboratory. McMillan succeeds Glenn Mara, who recently retired. McMillan has been the Laboratory's associate director for weapons physics. In his new capacity, he will provide oversight and direction for the nuclear weapons program at Los Alamos to accomplish the

  14. jevans | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    jevans Ames Laboratory Profile James Evans Associate Chemical & Biological Sciences 505 Zaffarano Phone Number: 515-294-1638 Email Address: evans@ameslab.gov Ames Laboratory Associate and Professor, Iowa State University Website(s): Evans Research Group Ames Laboratory Research Projects: Chemical Physics Theoretical/Computational Tools for Energy-Relevant Catalysis Education: Postdoctoral Fellow, Chemical Physics, Iowa State University, 1979-81 Ph.D. Mathematical Physics, University of

  15. jwang | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    jwang Ames Laboratory Profile Jigang Wang Associate Division of Materials Science & Engineering B15 Spedding Phone Number: 515-294-2964 Email Address: jgwang@iastate.edu Ames Laboratory Research Projects: Metamaterials Education: Ph.D. Electrical Engineering, Rice University, Houston, TX, 2005 M.S. Electrical Engineering, Rice University, Houston, TX, 2002 B.S. Physics, Jilin University, Changchun, P. R. China, 2000 Professional Appointments: Associate Scientist, Ames Laboratory, Iowa State

  16. makinc | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    makinc Ames Laboratory Profile Mufit Akinc Associate Division of Materials Science & Engineering 2220C Hoover Phone Number: 515-294-0738 Email Address: makinc@iastate.edu Ames Laboratory Associate and Professor, Iowa State University Ames Laboratory Research Projects: Bioinspired Materials Education: Post-doc Materials Sciences, Argonne National Lab., Argonne, IL, 1977 Ph.D. Ceramic Engineering, Iowa State University, Ames IA, 1977 M.S. Chemistry, Middle East Technical University, Ankara,

  17. mark | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mark Ames Laboratory Profile Mark Gordon Associate Chemical & Biological Sciences 201 Spedding Phone Number: 515-294-0452 Email Address: mark@si.msg.chem.iastate.edu Ames Laboratory Associate and Distinguished Professor, Iowa State University Website(s): Mark Gordon's Quantum Theory Group Ames Laboratory Research Projects: Chemical Physics Theoretical/Computational Tools for Energy-Relevant Catalysis Education: Postdoctoral Associate, Iowa State University, 1967-1970 Ph.D. Carnegie-Mellon

  18. sadow | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sadow Ames Laboratory Profile Aaron Sadow Assoc Prof Chemical & Biological Sciences 2101B Hach Phone Number: 515-294-8069 Email Address: sadow@iastate.edu Scientist, Ames Laboratory and Associate Professor, Iowa State University Website(s): Sadow's Group Page Ames Laboratory Research Projects: Homogeneous and Interfacial Catalysis in 3D Controlled Environment Education: Postdoctoral Associate, Swiss Federal Institute of Technology (ETH), 2003-2005 PhD., University of California, Berkeley,

  19. Education | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Education Education The MFRC has established a network of Midwest crime laboratories and university-based forensic science programs. This network has two general goals: help universities become better casework, research, and development partners for crime laboratories; and to engage crime laboratories in university efforts. These efforts can better-prepare the next generation of forensic scientists, advance the state-of-the-art in forensic science research, and influence students whose

  20. Laboratory announces 2008 Fellows

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab announces 2008 Fellows Laboratory announces 2008 Fellows Robert C. Albers, Paul A. Johnson and Kurt E. Sickafus recognized for contributions. December 4, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in

  1. Mentoring | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mentoring Why mentoring? As one of the largest laboratories in the nation for science and engineering research, Argonne National Laboratory is home to some of the most prolific and well-renowned scientists and engineers. To maintain an environment that fosters innovative research, we are committed to ensuring the success of our major players on the frontlines of our research-our Postdoctoral Scientists. The Argonne National Laboratory has a long-standing reputation as a place that offers

  2. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    purchases nearly $1 billion in goods and services last fiscal year December 6, 2010 Surpasses goals for small business procurements LOS ALAMOS, New Mexico, December 6, 2010-Los Alamos National Laboratory purchased nearly $1 billion in goods and services in the 2010 fiscal year ending September 30, 2010. The $925 million in purchases was helped in part by funding from the American Reinvestment and Recovery Act the Laboratory received for environmental remediation and basic research.The Laboratory

  3. Sandia National Laboratories: Locations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Locations Locations Sandia California CINT photo A national and international presence Sandia operates laboratories, testing facilities, and offices in multiple sites around the United States and participates in research collaborations around the world. Sandia's executive management offices and larger laboratory complex are located in Albuquerque, New Mexico. Our second principal laboratory is located in Livermore, California. Although most of our 9,840 employees work at these two locations,

  4. The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Timothy Hackett and Kathryn White are the SULI students for spring semester 2016. Ames Laboratory's fall Science Undergraduate Laboratory Internship (SULI) students began their program with the start of fall semester Aug. 24. The students are, left to right, Kathryn White, Shannon Goes, Kaiser Aguirre, and Adam Dziulko. Department of Energy Deputy Secretary Elizabeth Sherwood-Randall poses with SULI and CCI students who participated in a roundtable discussion during her visit to Ames Laboratory

  5. National Renewable Energy Laboratory

    Office of Environmental Management (EM)

    8 Annual Review Roger Taylor November 17, 2008 National Renewable Energy Laboratory Innovation for Our Energy Future Major DOE National Laboratories Brookhaven Pacific Northwest Lawrence Berkeley Lawrence Livermore          INEL National Renewable Energy Laboratory Los Alamos Sandia Argonne Oak Ridge   Defense Program Labs  Office of Science Labs  Energy Efficiency and Renewable Energy Lab  Environmental Management Lab  Fossil Energy Lab NETL 

  6. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3, 2015 Projects save taxpayer dollars, promote environmental stewardship, sustainability LOS ALAMOS, N.M., April 22, 2015-Nearly 400 Los Alamos National Laboratory employees on 32...

  7. Sustainability | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sustainability "Much of Argonne's cutting-edge research is dedicated to discovery and ... Argonne's Sustainability and Environmental Program embodies the laboratory's commitment to ...

  8. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sustainability award October 14, 2010 LOS ALAMOS, New Mexico, October 14, 2010-Los Alamos National Laboratory recently received an Environmental Sustainability (EStar) ...

  9. ackerman | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ackerman Ames Laboratory Profile David Ackerman Associate Chemical & Biological Sciences 2025 Black Engineering Phone Number: 515-294-1638 Email Address: ackerman...

  10. carraher | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carraher Ames Laboratory Profile Jack Carraher Postdoc Res Associate Chemical & Biological Sciences 2118 BRL Phone Number: 515-294-5826 Email Address: carraher@iastate.edu...

  11. andresg | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    andresg Ames Laboratory Profile Andres Garcia Grad Asst-RA Chemical & Biological Sciences 307 Wilhelm Phone Number: 515-294-6027 Email Address: andresg

  12. angiemcg | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    angiemcg Ames Laboratory Profile Angela Mcguigan Secretary II Simulation, Modeling, & Decision Science 1620 Howe Phone Number: 515-294-8060 Email Address: angiemcg

  13. ashheath | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ashheath Ames Laboratory Profile Ashley Heath Simulation, Modeling, & Decision Science 1620 Howe Phone Number: 515-294-3891 Email Address: ashheath

  14. bartine | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bartine Ames Laboratory Profile Jeffrey Bartine Program Coord III Environmental, Safety, Health, and Assurance G40 TASF Phone Number: 515-294-4743 Email Address: bartine

  15. bastaw | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bastaw Ames Laboratory Profile Ashraf Bastawros Associate Chemical & Biological Sciences 2347 Howe Phone Number: 515-294-3039 Email Address: bastaw

  16. bbergman | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bbergman Ames Laboratory Profile Brian Bergman Facil Mechanic III Facilities Services Maintenance Shop Phone Number: 515-294-4346 Email Address: bbergman@ameslab.gov

  17. bboote | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bboote Ames Laboratory Profile Brett Boote Grad Asst-RA Chemical & Biological Sciences 712 Gilman Phone Number: 515-294-8586 Email Address: bboote@iastate.edu

  18. bcleland | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bcleland Ames Laboratory Profile Beth Cleland Custodian I Facilities Services 241C Metals Development Phone Number: 515-294-5446 Email Address: bcleland

  19. boehmer | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    boehmer Ames Laboratory Profile Anna Boehmer Postdoc Res Associate Division of Materials Science & Engineering A15 Zaffarano Phone Number: 515-294-3246 Email Address: boehmer

  20. boersma | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    boersma Ames Laboratory Profile Stephanie Boersma Budget Analyst V Budget Office 231 TASF Phone Number: 515-294-8785 Email Address: boersma

  1. bondarenko | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bondarenko Ames Laboratory Profile Volodymyr Bondarenko Division of Materials Science & Engineering 219 Zaffarano Phone Number: 515-294-4072 Email Address: bondarenko

  2. burghera | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    burghera Ames Laboratory Profile Alexander Burgher Facil Mechanic III Facilities Services 158B Metals Development Phone Number: 515-294-3756 Email Address: burghera

  3. byrd | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    byrd Ames Laboratory Profile David Byrd Asst Scientist I Division of Materials Science & Engineering 109 Metals Development Phone Number: 515-294-5747 Email Address: byrd

  4. cbenetti | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cbenetti Ames Laboratory Profile Caleb Benetti Student Associate Division of Materials Science & Engineering A204 Zaffarano Phone Number: 515-294-4446 Email Address: cbenetti

  5. ccelania | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ccelania Ames Laboratory Profile Christopher Celania Grad Asst-TA/RA Division of Materials Science & Engineering 260 Spedding Phone Number: 515-294-3630 Email Address: ccelania

  6. chenx | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    chenx Ames Laboratory Profile Xiang Chen Division of Materials Science & Engineering 249 Spedding Phone Number: 515-294-4446 Email Address: chenx

  7. cmarquardt | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cmarquardt Ames Laboratory Profile Cynthia Marquardt Secretary II Facilities Services 158 Metals Development Phone Number: 515-294-3756 Email Address: cmarquardt@ameslab.gov

  8. cmcarlin | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cmcarlin Ames Laboratory Profile Caleb Carlin Student Associate Chemical & Biological Sciences 201 Spedding Phone Number: 515-294-4604 Email Address: cmcarlin@iastate.edu

  9. crossm | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    crossm Ames Laboratory Profile Jeanine Crosman Secretary III Facilities Services 158H Metals Development Phone Number: 515-294-3496 Email Address: crossm

  10. dabrice | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dabrice Ames Laboratory Profile David Brice Division of Materials Science & Engineering 150 Metals Development Phone Number: 515-294-4446 Email Address: dabrice

  11. dbaldwin | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dbaldwin Ames Laboratory Profile David Baldwin Director II Chemical & Biological Sciences 130 Spedding Phone Number: 515-294-2069 Email Address: dbaldwin

  12. dballal | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dballal Ames Laboratory Profile Deepti Ballal Division of Materials Science & Engineering 112 Wilhelm Phone Number: 515-294-9636 Email Address: dballal

  13. djchadde | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    djchadde Ames Laboratory Profile David Chadderdon Grad Asst-RA Division of Materials Science & Engineering 2140 BRL Phone Number: 515-294-4446 Email Address: djchadde

  14. dmeyer | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dmeyer Ames Laboratory Profile Dale Meyer Engr Tech II Facilities Services 158D Metals Development Phone Number: 515-294-3614 Email Address: dmeyer@ameslab.gov

  15. eckels | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    eckels Ames Laboratory Profile David Eckels Associate Chemical & Biological Sciences 105 Spedding Phone Number: 515-294-7943 Email Address: eckels@ameslab.gov

  16. ecochran | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ecochran Ames Laboratory Profile Eric Cochran Associate Division of Materials Science & Engineering 1035 Sweeney Phone Number: 515-294-0625 Email Address: ecochran

  17. eguidez | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    eguidez Ames Laboratory Profile Emilie Guidez Associate Chemical & Biological Sciences 201 Spedding Phone Number: 515-294-7568 Email Address: eguidez@ameslab.gov

  18. finzell | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    finzell Ames Laboratory Profile Peter Finzell Grad Asst-RA Simulation, Modeling, & Decision Science 1620 Howe Phone Number: 515-294-8060 Email Address: surgeftr

  19. flanders | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    flanders Ames Laboratory Profile Duane Flanders Sheet Metal Mech Facilities Services Maintenance Shop Phone Number: 515-294-1746 Email Address: flanders@ameslab.gov

  20. foughtel | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    foughtel Ames Laboratory Profile Eliscia Fought Student Associate Chemical & Biological Sciences 124 Spedding Phone Number: 515-294-7568 Email Address: foughtel

  1. bender | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bender Ames Laboratory Profile Lee Bendickson Lab Tech III Division of Materials Science & Engineering 3288 Molecular Biology Bldg Phone Number: 515-294-5682 Email Address: bender...

  2. baugie | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    baugie Ames Laboratory Profile Brent Augustine Student Associate Division of Materials Science & Engineering 206 Wilhelm Phone Number: 515-294-4446 Email Address: baugie...

  3. National Laboratory Photovoltaics Research

    Broader source: Energy.gov [DOE]

    DOE supports photovoltaic (PV) research and development and facilities at its national laboratories to accelerate progress toward achieving the SunShot Initiative's technological and economic...

  4. abhranil | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    abhranil Ames Laboratory Profile Abhranil Biswas Student Associate Chemical & Biological Sciences 2236 Hach Phone Number: 515-294-7568 Email Address: abiswas

  5. aboesenb | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    aboesenb Ames Laboratory Profile Adam Boesenberg Associate Division of Materials Science & Engineering 110 Metals Development Phone Number: 515-294-5903 Email Address: aboesenb

  6. achatman | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    achatman Ames Laboratory Profile Andrew Chatman Division of Materials Science & Engineering 37 Spedding Phone Number: 515-294-4446 Email Address: achatman

  7. adabbott | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    adabbott Ames Laboratory Profile Adam Abbott Chemical & Biological Sciences Critical Materials Institute 122 Spedding Phone Number: 515-294-4500 Email Address: adabbott

  8. adaoud | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    adaoud Ames Laboratory Profile Abdelwadood Daoud Simulation, Modeling, & Decision Science 1620 Howe Phone Number: 515-294-8060 Email Address: adaoud

  9. adf | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    adf Ames Laboratory Profile Alex Findlater Student Associate Chemical & Biological Sciences 231 Spedding Phone Number: 515-294-7568 Email Address: adf

  10. aklekner | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    aklekner Ames Laboratory Profile Alon Klekner Engr Tech I Facilities Services 167C Metals Development Phone Number: 515-294-1589 Email Address: aklekner@ameslab.gov

  11. National Laboratory Geothermal Publications

    Broader source: Energy.gov [DOE]

    You can find publications, including technical papers and reports, about geothermal technologies, research, and development at the following U.S. Department of Energy national laboratories.

  12. antropov | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Laboratory Research Projects: Exploratory Development of Theoretical Methods Education: Ph.D. Condensed Matter Physics, Institute of Physics of Metals, Yekaterinburg,...

  13. covey | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    covey Ames Laboratory Profile Debra Covey Director II Director's Office Office of Sponsored Research Administration 311 TASF Phone Number: 515-294-1048 Email Address: covey...

  14. Awards | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Performance Award, 2013 (with two other researchers) U.S. Department of Energy Vehicle Technologies Office R&D Award, 2013 Argonne National Laboratory Distinguished...

  15. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    accomplishment," Deputy Laboratory Director and this year's campaign champion Ike Richardson said of this year's pledged - 2 - amount. "The LANL team raised 1.5 million, which...

  16. Purchasing | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in 44 states. Purchased Items and supplier base: Biological Materials Chemicals Computers, Monitors and Printers Furniture Laboratory Supplies Metals Office Supplies...

  17. Transportation | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and the environmental impact of our vehicles. Some of the most exciting new vehicle technologies are being ushered along by research conducted at Argonne National Laboratory....

  18. cbertoni | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cbertoni Ames Laboratory Profile Colleen Bertoni Grad Asst-RA Chemical & Biological Sciences 201 Spedding Phone Number: 515-294-7568 Email Address: cbertoni...

  19. carter | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carter Ames Laboratory Profile Steven Carter Engr IV Facilities Services 158 Metals Development Phone Number: 515-294-7889 Email Address: carter@ameslab.gov...

  20. Sandia National Laboratories: Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Report Initial assessment of an airborne Ku-band polarimetric SAR. Raynal, Ann Marie; Doerry, Armin Walter Feb. 2013 Sandia National Laboratories (SNL-NM), Albuquerque, NM...

  1. galvin | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    galvin Ames Laboratory Profile Glen Galvin Mgr Info Tech I Simulation, Modeling, & Decision Science 1620 Howe Phone Number: 515-294-6604 Email Address: galvin

  2. gharper | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gharper Ames Laboratory Profile Gregory Harper Sys Control Tech Facilities Services Maintenance Shop Phone Number: 515-294-1746 Email Address: gharper

  3. gillilan | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gillilan Ames Laboratory Profile Steven Gilliland Sys Control Tech Facilities Services Maintenance Shop Phone Number: 515-294-3078 Email Address: gillilan

  4. goldston | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    goldston Ames Laboratory Profile Jennifer Goldston Grad Asst-RA Chemical & Biological Sciences 213 Spedding Phone Number: 515-294-4992 Email Address: goldston@iastate.edu

  5. grootvel | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    grootvel Ames Laboratory Profile Mark Grootveld Mgr Facility Serv Facilities Services 158 Metals Development Phone Number: 515-294-7895 Email Address: grootveld@ameslab.gov

  6. guan | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    guan Ames Laboratory Profile Yong Guan Associate Chemical & Biological Sciences 3219 Coover Phone Number: 515-294-8378 Email Address: guan@iastate.edu

  7. haaland | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    haaland Ames Laboratory Profile Maggie Haaland Admin Spec III Chemical & Biological Sciences 142 Spedding Phone Number: 515-294-7568 Email Address: haaland

  8. hanrahanm | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hanrahanm Ames Laboratory Profile Michael Hanrahan Chemical & Biological Sciences 331 Spedding Phone Number: 515-294-7568 Email Address: hanrahanm

  9. hauptman | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hauptman Ames Laboratory Profile John Hauptman Associate Facilities Services A411 Zaffarano Phone Number: 515-294-8572 Email Address: hauptman@iastate.edu

  10. hcelliott | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hcelliott Ames Laboratory Profile Henrietta Elliott Custodian I Facilities Services 241C Metals Development Phone Number: 515-294-5446 Email Address: hcelliott

  11. herrman | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    herrman Ames Laboratory Profile Terrance Herrman Engr V Facilities Services 167 Metals Development Phone Number: 515-294-7896 Email Address: herrman

  12. himashir | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    himashir Ames Laboratory Profile Himashi Andaraarachchi Student Associate Chemical & Biological Sciences 209B Wilhelm Phone Number: 515-294-7568 Email Address: himashir

  13. hoenig | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hoenig Ames Laboratory Profile Douglas Hoenig Mgr Facility Serv Facilities Services 158J Metals Development Phone Number: 515-294-0930 Email Address: hoenig@ameslab.gov

  14. jac | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    jac Ames Laboratory Profile Justin Conrad Student Associate Chemical & Biological Sciences 305 TASF Phone Number: 515-294-4604 Email Address: jac

  15. jasongoh | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    jasongoh Ames Laboratory Profile Tian Goh Student Associate Chemical & Biological Sciences 2305 Hach Phone Number: 515-294-7568 Email Address: jasongoh

  16. jbobbitt | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    jbobbitt Ames Laboratory Profile Jonathan Bobbitt Grad Asst-RA Chemical & Biological Sciences 712 Gilman Phone Number: 515-294-4285 Email Address: jbobbitt

  17. jboschen | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    jboschen Ames Laboratory Profile Jeffery Boschen Grad Asst-RA Chemical & Biological Sciences 124 Spedding Phone Number: 515-294-7568 Email Address: jboschen

  18. jeffgustafson | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    jeffgustafson Ames Laboratory Profile Jeffrey Gustafson Associate Chemical & Biological Sciences Critical Materials Institute 122 Spedding Phone Number: 515-294-4500 Email Address: jeffgus

  19. jiahao | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    jiahao Ames Laboratory Profile Jiahao Chen Division of Materials Science & Engineering A300 Zaffarano Phone Number: 515-294-0689 Email Address: jiahao@iastate.edu

  20. jrblaum | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    jrblaum Ames Laboratory Profile Jacqueline Blaum Division of Materials Science & Engineering 37 Spedding Phone Number: 515-294-4446 Email Address: jrblaum

  1. kabryden | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    kabryden Ames Laboratory Profile Kristy Bryden Associate Simulation, Modeling, & Decision Science 149 Music Phone Number: 515-294-3971 Email Address: kabryden

  2. kasuni | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    kasuni Ames Laboratory Profile Walikadage Boteju Grad Asst-RA Chemical & Biological Sciences Critical Materials Institute 2306 Hach Phone Number: 515-294-6342 Email Address: kasuni

  3. kbratlie | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    kbratlie Ames Laboratory Profile Kaitlin Bratlie Associate Division of Materials Science & Engineering 2220 Hoover Phone Number: 515-294-7304 Email Address: kbratlie

  4. kgalayda | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    kgalayda Ames Laboratory Profile Katherine Galayda Grad Asst-RA Chemical & Biological Sciences B5 Spedding Phone Number: 515-294-3887 Email Address: kgalayda

  5. kmbryden | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    kmbryden Ames Laboratory Profile Kenneth Bryden Associate Simulation, Modeling, & Decision Science 2274 Howe Phone Number: 515-294-3891 Email Address: kmbryden

  6. lcademar | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lcademar Ames Laboratory Profile Ludovico Cademartiri Associate Division of Materials Science & Engineering 2240J Hoover Phone Number: 515-294-4549 Email Address: lcademar

  7. lenyeart | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lenyeart Ames Laboratory Profile Linda Enyeart Chemical & Biological Sciences 144 Spedding Phone Number: 515-294-6063 Email Address: lenyeart@ameslab.gov

  8. long | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    long Ames Laboratory Profile Catherine Long Supv-Custodial Svc Facilities Services 158G Metals Development Phone Number: 515-294-4360 Email Address: long

  9. maheedhar | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    maheedhar Ames Laboratory Profile Maheedhar Gunasekharan Grad Asst-RA Chemical & Biological Sciences 327 Wilhelm Phone Number: 515-294-7568 Email Address: maheedhar

  10. mbonilla | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mbonilla Ames Laboratory Profile Claudia Bonilla escobar Postdoc Res Associate Division of Materials Science & Engineering 252 Spedding Phone Number: 515-294-2041 Email Address: mbonilla

  11. mdotzler | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mdotzler Ames Laboratory Profile Mike Dotzler Facil Mechanic III Facilities Services Maintenance Shop Phone Number: 515-294-4346 Email Address: mdotzler

  12. mhenely | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mhenely Ames Laboratory Profile Michael Henely Custodian I Facilities Services 241C Metals Development Phone Number: 515-294-5446 Email Address: mhenely

  13. nalms | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nalms Ames Laboratory Profile Nathan Alms Lab Assistant-X Division of Materials Science & Engineering 322 Spedding Phone Number: 515-294-4446 Email Address: nalms

  14. nbarbee | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nbarbee Ames Laboratory Profile Nicole Barbee Lab Assistant-X Simulation, Modeling, & Decision Science 1620 Howe Phone Number: 515-294-3891 Email Address: nbarbee

  15. ndesilva | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ndesilva Ames Laboratory Profile Nuwan De silva Postdoc Res Associate Critical Materials Institute Chemical & Biological Sciences 236 Wilhelm Phone Number: 515-294-7568 Email Address: ndesilva

  16. olsenjro | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    olsenjro Ames Laboratory Profile Jarrett Olsen Custodian I Facilities Services 241C Metals Development Phone Number: 515-294-4360 Email Address: olsenjro@ameslab.gov

  17. pbenzoni | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pbenzoni Ames Laboratory Profile Peter Benzoni Chemical & Biological Sciences 327 Wilhelm Phone Number: 515-294-7568 Email Address: pbenzoni

  18. ppezzini | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ppezzini Ames Laboratory Profile Paolo Pezzini Postdoc Res Associate Simulation, Modeling, & Decision Science Off Campus Phone Number: 515-294-3891 Email Address: ppezzini

  19. qslin | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    qslin Ames Laboratory Profile Qisheng Lin Assoc Scientist Division of Materials Science & Engineering 353 Spedding Phone Number: 515-294-3513 Email Address: qslin@ameslab.gov

  20. rberrett | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rberrett Ames Laboratory Profile Ronald Berrett Sys Control Tech Facilities Services Maintenance Shop Phone Number: 515-294-1746 Email Address: rberrett

  1. rfry | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rfry Ames Laboratory Profile Robert Fry Electronics Tech I Facilities Services 258 Metals Development Phone Number: 515-294-4823 Email Address: rfry

  2. rmalmq | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rmalmq Ames Laboratory Profile Richard Malmquist Facil Mechanic III Facilities Services Maintenance Shop Phone Number: 515-294-1228 Email Address: rmalmq

  3. rodgers | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rodgers Ames Laboratory Profile Elizabeth Rodgers Program Coord III Office of Sponsored Research Administration Director's Office 305 TASF Phone Number: 515-294-1254 Email Address: rodgers

  4. rofox | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rofox Ames Laboratory Profile Rodney Fox Associate Chemical & Biological Sciences 3162 Sweeney Phone Number: 515-294-9104 Email Address: rofox

  5. sburkhow | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sburkhow Ames Laboratory Profile Sadie Burkhow Chemical & Biological Sciences 712 Gilman Phone Number: 515-294-7568 Email Address: sburkhow

  6. schenad | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    schenad Ames Laboratory Profile Shen Chen Division of Materials Science & Engineering 211 Physics Phone Number: 515-294-9361 Email Address: schenad

  7. seliger | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    seliger Ames Laboratory Profile Victoria Seliger Custodian I Facilities Services 241C Metals Development Phone Number: 515-294-4360 Email Address: seliger

  8. sumitc | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sumitc Ames Laboratory Profile Sumit Chaudhary Associate Division of Materials Science & Engineering 2124 Coover Phone Number: 515-294-0606 Email Address: sumitc

  9. tjoliveira | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tjoliveira Ames Laboratory Profile Tiago De oliveira Associate Chemical & Biological Sciences 505 Zaffarano Phone Number: 515-294-7568 Email Address: tjoliveira@ameslab.gov

  10. tkales | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tkales Ames Laboratory Profile Thomas Ales Division of Materials Science & Engineering 150 Metals Development Phone Number: 515-294-4446 Email Address: tkales

  11. umesse | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    umesse Ames Laboratory Profile Umesh Chaudhary Student Associate Chemical & Biological Sciences 2710 Gilman Phone Number: 515-294-3414 Email Address: umesse

  12. vaclav | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    vaclav Ames Laboratory Profile Michael Vaclav Engr IV Facilities Services 158E Metals Development Phone Number: 515-294-7891 Email Address: vaclav

  13. valery | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    valery Ames Laboratory Profile Valery Borovikov Postdoc Res Associate Division of Materials Science & Engineering 205 Metals Development Phone Number: 515-294-4312 Email Address: valery

  14. vdahl | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    vdahl Ames Laboratory Profile Vincent Dahl Mgr Facilities Mnt Facilities Services Maintenance Shop Phone Number: 515-294-1746 Email Address: vdahl

  15. weverett | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    weverett Ames Laboratory Profile William Everett Student Associate Chemical & Biological Sciences 121 Spedding Phone Number: 515-294-7568 Email Address: weverett@iastate.edu

  16. xinyufu | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    xinyufu Ames Laboratory Profile Xinyu Fu Student Associate Chemical & Biological Sciences 2238 Molecular Biology Bldg Phone Number: 515-294-7568 Email Address: xinyufu

  17. sjbajic | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sjbajic Ames Laboratory Profile Stanley Bajic Assoc Scientist Chemical & Biological Sciences 5 Spedding Phone Number: 515-294-8194 Email Address: sjbajic...

  18. tchou | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tchou Ames Laboratory Profile Tsung-han Chou Student Associate Division of Materials Science & Engineering 132 Spedding Phone Number: 515-294-6822 Email Address: tchou...

  19. Sandia National Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Sandia National Laboratories Utility-Scale Grid-Tied PV Inverter Reliability Technical Workshop Phillips Technology Institute Collaboration Center Albuquerque, New Mexico...

  20. The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    READ MORE Research: Ames Laboratory to lead new consortium to advance refrigeration ... friendly and energy-efficient refrigeration technologies, sponsored by DOE's ...

  1. Sandia National Laboratories:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    event Annual Exercise an earth-shaking activity Sandia President and Laboratories Director Jill Hruby Partnerships, mission synergy key to Sandia's future Sandia California...

  2. anderegg | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    anderegg Ames Laboratory Profile James Anderegg Asst Scientist III Division of Materials Science & Engineering 325 Spedding Phone Number: 515-294-3480 Email Address:...

  3. jacton | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    jacton Ames Laboratory Profile James Acton Grad Asst-RA Division of Materials Science & Engineering 0215 Hach Phone Number: 515-294-4446 Email Address: jacton...

  4. oliver | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    oliver Ames Laboratory Profile James Oliver Associate Simulation, Modeling, & Decision Science 2274 Howe Phone Number: 515-294-2649 Email Address: oliver@iastate.edu...

  5. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2009 Lab contributes computer modeling, antibody engineering capabilities Los Alamos, New Mexico, July 28, 2009- Los Alamos National Laboratory scientists will codirect a new...

  6. marit | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Honors & Awards: AAAS Fellow, 2007 Regents Award for Faculty Excellence, 2003 Inventor Incentive Award, Ames Laboratory, 2002 Iowa Regents Faculty Citation Award, 2000...

  7. Projects | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Tool Mark Characterization Development of an AccuTOF-DART Database for Use by Forensic Laboratories Forensic Technology Center of Excellence MFRC Training Development &...

  8. bspire | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bspire Ames Laboratory Profile Bruce Spire Erd Machinist Sr Facilities Services 160 Metals Development Phone Number: 515-294-5428 Email Address: bspire...

  9. dboeke | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dboeke Ames Laboratory Profile David Boeke Research Tech Sr Division of Materials Science & Engineering 123 Metals Development Phone Number: 515-294-5816 Email Address: dboeke...

  10. bwing | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bwing Ames Laboratory Profile William Wing Erd Machinist Sr Division of Materials Science & Engineering Facilities Services 160 Metals Development Phone Number: 515-294-5428 Email...

  11. Los Alamos National Laboratory's

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    produced by current operations. LANL and regulatory agencies survey the air, soil, sediment, groundwater, and surface water around the Laboratory to make sure contaminants from...

  12. tdball | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tdball Ames Laboratory Profile Teresa Ball Custodian I Facilities Services 241C Metals Development Phone Number: 515-294-4360 Email Address: tdball...

  13. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for the Laboratory's Environmental Programs directorate and includes work such as environmental engineering design, regulatory support, risk assessment and reporting. - 2 -...

  14. dscomito | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dscomito Ames Laboratory Profile Daniel Comito Student Associate Division of Materials Science & Engineering A524 Zaffarano Phone Number: 515-294-9800 Email Address: dscomito...

  15. dfreppon | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dfreppon Ames Laboratory Profile Daniel Freppon Grad Asst-RA Chemical & Biological Sciences 0712 Gilman Phone Number: 515-294-8586 Email Address: dfreppon...

  16. drbohlke | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    drbohlke Ames Laboratory Profile Daniel Bohlke Division of Materials Science & Engineering 115 Spedding Phone Number: 209-761-4100 Email Address: drbohlke...

  17. djbell | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    djbell Ames Laboratory Profile Daniel Bell Grad Asst-RA Simulation, Modeling, & Decision Science 1620 Howe Phone Number: 515-294-3891 Email Address: djbell...

  18. vanmarel | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    vanmarel Ames Laboratory Profile Ross Vanmarel Facil Mechanic III Facilities Services 158 Metals Development Phone Number: 515-294-1746 Email Address: vanmarel...

  19. dpaulc | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dpaulc Ames Laboratory Profile Daniel Cole Student Associate Chemical & Biological Sciences 10 Carver Co-Lab Phone Number: 515-294-1235 Email Address: dpaulc...

  20. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory has awarded master task order agreements to three small businesses for environmental support services work worth up to 400 million within a five-year period....

  1. hansenre | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hansenre Ames Laboratory Profile Rebecca Hansen Grad Asst-RA Chemical & Biological Sciences 35A Carver Co-Lab Phone Number: 515-294-2368 Email Address: hansenre...

  2. andersoi | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    andersoi Ames Laboratory Profile Iver Anderson Adj Prof Division of Materials Science & Engineering 222 Metals Development Phone Number: 515-294-9791 Email Address:...

  3. timma | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    timma Ames Laboratory Profile Timothy Anderson Associate Chemical & Biological Sciences B28 Spedding Phone Number: 515-294-7568 Email Address: timma...

  4. rdanders | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rdanders Ames Laboratory Profile Ross Anderson Research Tech Sr Division of Materials Science & Engineering 108 Metals Development Phone Number: 515-294-5816 Email Address:...

  5. Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    short-pulse laser, scientists from Los Alamos, the Technical University of Darmstadt, Germany, and Sandia National Laboratories focus high-intensity light on an ultra-thin...

  6. Princeton Plasma Physics Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    generations. The Laboratory, managed by Princeton University, has a more-than 60-year history of discovery and leadership in the field of fusion energy. PPPL researchers are...

  7. hilstromj | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hilstromj Ames Laboratory Profile Jeremy Hilstrom Office Assistant-X Human Resources Office 151 TASF Phone Number: 515-294-2680 Email Address: hilst000...

  8. hillr | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hillr Ames Laboratory Profile Rhonda Hill Clerk IV Human Resources Office 151 TASF Phone Number: 515-294-2681 Email Address: hillr...

  9. schon | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    schon Ames Laboratory Profile Mallory Schon Program Coord II Human Resources Office 151 TASF Phone Number: 515-294-8062 Email Address: schon...

  10. mmdaub | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mmdaub Ames Laboratory Profile Molly Granseth Program Asst II Human Resources Office Environmental, Safety, Health, and Assurance 105 TASF Phone Number: 515-294-2864 Email Address:...

  11. ccowan | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ccowan Ames Laboratory Profile Carol Cowan Secretary III Human Resources Office 151 TASF Phone Number: 515-294-2680 Email Address: ccowan...

  12. Muncrief | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Muncrief Ames Laboratory Profile Diane Muncrief Personnel Officer Human Resources Office 151 TASF Phone Number: 515-294-5731 Email Address: muncrief...

  13. deshong | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    deshong Ames Laboratory Profile Rhonda Deshong Program Asst II Human Resources Office 151 TASF Phone Number: 515-294-0931 Email Address: deshong@ameslab.gov...

  14. witt | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    witt Ames Laboratory Profile Lynnette Witt Asst Pers Officer Human Resources Office 151 TASF Phone Number: 515-294-5740 Email Address: witt@ameslab.gov...

  15. hmorris | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hmorris Ames Laboratory Profile Haley Morris Office Assistant-X Human Resources Office Environmental, Safety, Health, and Assurance 105 TASF Phone Number: 515-294-2153 Email...

  16. dcheng | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dcheng Ames Laboratory Profile Di Cheng Student Associate Division of Materials Science & Engineering A311 Zaffarano Phone Number: 515-294-5373 Email Address: dcheng@iastate.edu...

  17. perrya | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    perrya Ames Laboratory Profile Perry Antonelli Grad Asst-RA Simulation, Modeling, & Decision Science 2240H Hoover Phone Number: 515-294-1841 Email Address: perrya...

  18. The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    David Jiles, Palmer Endowed Chair of the electrical and computer engineering ... When Ames Laboratory was experiencing a seemingly elevated number of power outages, Lab staff ...

  19. chumbley | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    chumbley Ames Laboratory Profile Leonard Chumbley Associate Division of Materials Science & Engineering Chemical & Biological Sciences 214 Wilhelm Phone Number: 515-294-7903 Email Address: chumbley@iastate.edu Ames Laboratory Research Projects: Complex Hydrides-A New Frontier for Future Energy Applications Extraordinary Responsive Rare Earth Magnetic Materials Education: Metallurgical Engineering, University of Illinois, Urbana, Illinois, 1986 Metallurgical Engineering, University of

  20. devo | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    devo Ames Laboratory Profile Deborah Schlagel Asst Scientist III Division of Materials Science & Engineering 110 Metals Development Phone Number: 515-294-3924 Email Address: schlagel@iastate.edu Ames Laboratory Research Projects: Novel Materials Preparation & Processing Methodologies Research Interests: Synthesis of single crystals of Huesler alloys, magneto-responsive materials, superconductors, elements and alloys Single crystal characterization and property analysis

  1. riedemann | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    riedemann Ames Laboratory Profile Trevor Riedemann Asst Scientist III Division of Materials Science & Engineering 110 Metals Development Phone Number: 515-294-1366 Email Address: riedemann@ameslab.gov Assistant Scientist III Website(s): Novel Materials Preparation & Processing Methodologies Materials Preparation Center Ames Laboratory Research Projects: Novel Materials Preparation & Processing Methodologies Education: Masters of Science, Metallurgy, Iowa State University, 1996

  2. Idaho National Laboratory

    Broader source: Energy.gov [DOE]

    The Snake River Geothermal Consortium (SRGC) is a research partnership focused on advancing geothermal energy. Hosted by the Idaho National Laboratory (INL), SRGC proposes establishing FORGE as a resource for technology development, deployment, and validation. Their team includes members from national laboratories, universities, industry, and state and federal agencies. The technical team consists of members from Baker Hughes, the Center for Advanced Energy Studies (CAES) – Idaho National Laboratory, University of Idaho, Idaho State University, Boise State University, University of Wyoming - Campbell Scientific, Chena Power, Geothermal Resources Group, Idaho Department of Water Resources, Idaho Geologic Survey, Lawrence Livermore National Laboratory, Mink GeoHydro, National Renewable Energy Laboratory, University of Oklahoma, University of Utah, U.S. Geothermal, and the U.S. Geological Survey (USGS).

  3. Sandia National Laboratories: Sandia National Laboratories: Missions:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Defense Systems & Assessments: About Us Defense Systems About Defense Systems & Assessments Program Areas Accomplishments Cybersecurity Programs About Defense Systems & Assessments soldier silhouetted by a sunset Defense Systems & Assessments supports guardians of peace and freedom on the battlefield and in the laboratory by applying engineering, science, and technology solutions to deter, detect, defeat, and defend threats to our national security. We analyze and exploit the

  4. Sandia National Laboratories beginnings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia National Laboratories beginnings focus of Los Alamos' 70th anniversary lecture March 6, 2013 LOS ALAMOS, N.M., March 6, 2013-Sandia National Laboratories historian Rebecca Ullrich discusses Sandia's transition from a Los Alamos division to an independent organization during a talk at 5:30 p.m., March 13 at the Bradbury Science Museum in Los Alamos. The talk is part of the Laboratory's 70th anniversary lecture series. Sandia Labs' origins are in Los Alamos' Z Division, the engineering

  5. Sonication standard laboratory module

    DOE Patents [OSTI]

    Beugelsdijk, Tony (Los Alamos, NM); Hollen, Robert M. (Los Alamos, NM); Erkkila, Tracy H. (Los Alamos, NM); Bronisz, Lawrence E. (Los Alamos, NM); Roybal, Jeffrey E. (Santa Fe, NM); Clark, Michael Leon (Menan, ID)

    1999-01-01

    A standard laboratory module for automatically producing a solution of cominants from a soil sample. A sonication tip agitates a solution containing the soil sample in a beaker while a stepper motor rotates the sample. An aspirator tube, connected to a vacuum, draws the upper layer of solution from the beaker through a filter and into another beaker. This beaker can thereafter be removed for analysis of the solution. The standard laboratory module encloses an embedded controller providing process control, status feedback information and maintenance procedures for the equipment and operations within the standard laboratory module.

  6. Factsheets | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Factsheets There's a wealth of information about Ames Laboratory in the fact sheets available here. To open a printable pdf version, simply click on the thumbnail of the particular fact sheet in which you're interested. We will continue to add fact sheets on individual research efforts so check back and if there's something specific about Ames Laboratory that you'd like to know more about but can't locate, please check with us at info@ameslab.gov. Material Facts Find out Ames Laboratory's vital

  7. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    70th anniversary app for iPhone, iPads June 5, 2013 LOS ALAMOS, N.M., June 4, 2013-Los Alamos National Laboratory has launched its first app for iPhones and iPads as part of the Laboratory's yearlong celebration of 70 years serving the nation. The free application is available from the Apple Store (search for Los Alamos National Lab). The app enables users to learn more about the Laboratory's national security mission, cutting edge research, unique history, top-flight scientists and the many

  8. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    remembers former director Harold Agnew September 30, 2013 Manhattan Project pioneer was LANL director from 1970-1979 LOS ALAMOS, N.M., Sept. 30, 2013-Los Alamos National Laboratory Director Charlie McMillan today remembered Harold Agnew as a national treasure who transformed the Laboratory into what it is in the 21st century. "His contributions to the Laboratory made us the institution we are today," McMillan said. "It was his vision - decades ago - that recognized that national

  9. Sandia National Laboratories

    National Nuclear Security Administration (NNSA)

    National Laboratories Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Sand 2011-4582 P. ENERGY U.S. DEPARTMENT OF Albuquerque N e w M e x i c o Sandia Mountains Q Q ApproximatelyQ8,800QacresQQ ofQDOE-ownedQandQQ permittedQland Q Q LocatedQwithinQtheQQ KirtlandQAirQForceQQ

  10. baik | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    baik Ames Laboratory Profile Kamalakar Baikerikar Assoc Scientist Division of Materials Science & Engineering 221 Metals Development Phone Number: 515-294-7995 Email Address: baik@ameslab.gov

  11. bcarsten | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bcarsten Ames Laboratory Profile Beverly Carstensen Secretary II Division of Materials Science & Engineering 105 Metals Development Phone Number: 515-294-4071 Email Address: bcarsten@ameslab.gov

  12. feenstra | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    feenstra Ames Laboratory Profile Adam Feenstra Grad Asst-RA Chemical & Biological Sciences 35B Carver Co-Lab Phone Number: 515-294-2368 Email Address: feenstra

  13. Los Alamos National Laboratory

    Broader source: Energy.gov [DOE]

    HISTORYLos Alamos National Laboratory (LANL) is located in Los Alamos County in north central New Mexico (NM). LANL, founded in 1943 during World War II as Project Y, served as a secret facility...

  14. ambrose | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ambrose Ames Laboratory Profile Michael Ambrose Lab Assistant-X Division of Materials Science & Engineering 258 Metals Development Phone Number: 515-294-1602 Email Address: ambrose@iastate.edu

  15. BENSON | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BENSON Ames Laboratory Profile Zackery Benson Lab Assistant-X Division of Materials Science & Engineering A204 Zaffarano Phone Number: 515-294-4446 Email Address: zbenson@ameslab.gov

  16. Lawrence Berkeley National Laboratory

    National Nuclear Security Administration (NNSA)

    7%2A en Solar power purchase for DOE laboratories http:nnsa.energy.govmediaroompressreleasessolarpower

  17. Idaho National Laboratory

    ScienceCinema (OSTI)

    McCarthy, Kathy

    2013-05-28

    INL is the leading laboratory for nuclear R&D. Nuclear engineer Dr. Kathy McCarthy talks aobut the work there and the long-term benefits it will provide.

  18. Brookhaven National Laboratory

    Broader source: Energy.gov [DOE]

    Site OverviewThe Brookhaven National Laboratory (BNL) was established in 1947 by the Atomic Energy Commission (AEC) (predecessor to U.S. Department of Energy [DOE]). Formerly Camp Upton, a U.S....

  19. sandia national laboratory

    National Nuclear Security Administration (NNSA)

    %2A en Sandia National Laboratories http:nnsa.energy.govaboutusourlocationssandia

    Page...

  20. The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    85th birthday While scientists often talk about their life's work, few lives have been fuller than that of Ames Laboratory's Karl A. Gschneidner, Jr. who was honored for over six...

  1. Research | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    combined with the laboratory's state-of-the-art facilities has produced a wide variety of game-changing discoveries and inventions in fields as diverse as energy storage and...

  2. Tours | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Care is taken to match tours to the expressed interests of the visiting group. Our hope is to help the public become more aware of the Ames Laboratory, create stronger Lab...

  3. joiner | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    joiner Ames Laboratory Profile Stacy Joiner Program Manager I Office of Sponsored Research Administration Director's Office 306 TASF Phone Number: 515-294-5932 Email Address: joiner@ameslab.gov

  4. jwgong | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    jwgong Ames Laboratory Profile Jianwu Gong Student Associate Division of Materials Science & Engineering Chemical & Biological Sciences 326 Wilhelm Phone Number: 515-294-7568 Email Address: jwgong

  5. kcho | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    kcho Ames Laboratory Profile Kyuil Cho Asst Scientist III Division of Materials Science & Engineering A117 Zaffarano Phone Number: 515-294-4908 Email Address: kcho@ameslab.gov

  6. liza | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    liza Ames Laboratory Profile Liza Alexander Grad Asst-RA Chemical & Biological Sciences 2242 Molecular Biology Bldg Phone Number: 515-294-6116 Email Address: liza@iastate.edu

  7. mduenas | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mduenas Ames Laboratory Profile Maria Duenas fadic Grad Asst-RA Chemical & Biological Sciences 35A Carver Co-Lab Phone Number: 515-294-2368 Email Address: mduenas

  8. nabrajbhattarai | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nabrajbhattarai Ames Laboratory Profile Nabraj Bhattarai Postdoc Res Associate Division of Materials Science & Engineering 216 Wilhelm Phone Number: 515-294-2162 Email Address: nabrajbhattarai@ameslab.gov

  9. pieper | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pieper Ames Laboratory Profile Elizabeth Pieper Program Coord I Office of Sponsored Research Administration Director's Office 311 TASF Phone Number: 515-294-6486 Email Address: pieper@ameslab.gov

  10. pmberge | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pmberge Ames Laboratory Profile Paul Berge Industrial Spec Division of Materials Science & Engineering 111 Metals Development Phone Number: 515-294-5972 Email Address: pmberge@iastate.edu

  11. szhou | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    szhou Ames Laboratory Profile Shihuai Zhou Asst Scientist III Division of Materials Science & Engineering 204 Wilhelm Phone Number: 515-294-5489 Email Address: szhou@ameslab.gov

  12. zdorkowski | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    zdorkowski Ames Laboratory Profile Richard Zdorkowski Program Manager I Director's Office Office of Sponsored Research Administration 128 Spedding Phone Number: 515-294-5640 Email Address: zdorkowski@ameslab.gov

  13. zrein | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    zrein Ames Laboratory Profile Zachary Reinhart Grad Asst-RA Simulation, Modeling, & Decision Science 1620 Howe Phone Number: 515-294-3891 Email Address: zrein@iastate.edu

  14. Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hazardous devices teams showcase skills at Robot Rodeo June 24-27 June 18, 2014 Bomb squads compete in timed scenarios at Los Alamos National Laboratory LOS ALAMOS, N.M., June 19,...

  15. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    science. Information about the teacher conference is available from the Laboratory's Scott Robbins of the Education and Postdoc Office at 667-3639 or srobbins@lanl.gov by e-mail...

  16. Argonne National Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE)

    HISTORYThe Argonne National Laboratory (ANL) site is approximately 27 miles southwest of downtown Chicago in DuPage County, Illinois.  The 1,500 acre ANL site is completely surrounded by the 2,240...

  17. Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (45.8 ha) Set-Aside Area, adjacent to the former location of the Savannah River Ecology Laboratory, is one of the original ten SREL habitat reserves and was selected to...

  18. Sandia National Laboratories

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Sandia National Laboratories (SNL) is comprised of 2,820 acres within the boundaries of the 118 square miles Kirtland Air Force Base, and is located 6.5 miles east of downtown Albuquerque, New...

  19. naa | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    naa Ames Laboratory Profile Nathaniel Anderson Grad Asst-RA Division of Materials Science & Engineering B36 Spedding Phone Number: 515-294-0255 Email Address: naa@iastate.edu...

  20. CASL - Idaho National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for advanced NE R&D Integration of LWR Sustainability system analysis tools with CASL in-core tools Advanced fuel performance code Learn More Idaho National Laboratory INL Core...

  1. Safety | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Argonne National Laboratory and the U.S. Department of Energy (DOE) are very concerned about the well-being of all employees. Students at the undergraduate and graduate level as well as postdoctoral appointees form an essential component of the research endeavor at the laboratory. However, research does not stand alone but must be integrated into a program of environment, safety, and security. From time to time, incidents regarding students and postdocs occur across the DOE complex. It is

  2. Sandia National Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PHOTOVOLTAIC ARRAY PERFORMANCE MODEL D. L. King, W. E. Boyson, J. A. Kratochvil Sandia National Laboratories Albuquerque, New Mexico 87185-0752 2 SAND2004-3535 Unlimited Release Printed August 2004 Photovoltaic Array Performance Model David L. King, William E. Boyson, Jay A. Kratochvil Photovoltaic System R&D Department Sandia National Laboratories P. O. Box 5800 Albuquerque, New Mexico 87185-0752 Abstract This document summarizes the equations and applications associated with the

  3. Sandia National Laboratories:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    21, 2016 Articles 25 years of Laboratory-Directed Research and Development Headlights of a laboratory Sandia total spending, economic impact up in 2015 A driving force Sandia researchers break down lightning strikes into microseconds When lightning strikes Enormous blades for offshore energy A mighty wind CSI: Dognapping program honored for science outreach CSI: Dognapping Program helps new Sandians get started on the right path ANGLEing toward success

  4. SANDIA NATIONAL LABORATORIES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2009 Highlights 2 SANDIA NATIONAL LABORATORIES From the Chief Technology O cer The Laboratory Directed Research and Development (LDRD) program is the sole discretionary research and development (R&D) investment program at Sandia. LDRD provides the opportunity for our technical sta to contribute to our Nation's future, to our collective ability to address and nd solutions to a range of daunting scienti c and technological challenges. The results of their work will shape the course of science

  5. Advanced Materials Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SunShot Grand Challenge: Regional Test Centers Advanced Materials Laboratory Home/Tag:Advanced Materials Laboratory - Structures of the zwitterionic coatings synthesized for this study. Permalink Gallery Investigations on Anti-biofouling Zwitterionic Coatings for MHK Is Now in Press Analysis, Capabilities, Energy, News, News & Events, Renewable Energy, Research & Capabilities, Water Power Investigations on Anti-biofouling Zwitterionic Coatings for MHK Is Now in Press Sandia's Marine

  6. Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    record neutron beam at Los Alamos National Laboratory July 10, 2012 New method has potential to advance materials measurement LOS ALAMOS, New Mexico, July 10, 2012-Using a one-of-a-kind laser system at Los Alamos National Laboratory, scientists have created the largest neutron beam ever made by a short-pulse laser, breaking a world record. Neutron beams are usually made with particle accelerators or nuclear reactors and are commonly used in a wide variety of scientific research, particularly in

  7. Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Economic development in Northern New Mexico focus of new podcast from Los Alamos National Laboratory November 25, 2013 Podcast part of Lab's new multi-channel effort to better engage with the community LOS ALAMOS, N.M., Nov. 27, 2013-Podcasts and webinars are among the new communications tools being rolled out by Los Alamos National Laboratory's Community Programs Office to reach a broader audience. The first podcast discusses economic development and the Northern New Mexico 20/20 Campaign, a

  8. National Renewable Energy Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RENEWABLE ENERGY AND ENERGY EFFICIENCY SCIENCE PROJECTS 1 SCIENCE PROECTS IN RENEWABLE ENERGY AND ENERGY EFFICIENCY A guide for Secondary School Teachers Authors and Acknowledgements: This second edition was produced at the National Renewable Energy Laboratory (NREL), through the laboratory's Office of Education Programs, under the leadership of the Manager, Dr. Cynthia Howell and guidance of the Program Coordinators, Matt Kuhn and Linda Lung. The contents are the result of contributions by a

  9. FY 2006 Laboratory Table

    Energy Savers [EERE]

    Laboratory Tables Preliminary Department of Energy FY 2006 Congressional Budget Request Office of Management, Budget and Evaluation/CFO February 2005 Laboratory Tables Preliminary Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals,

  10. FY 2008 Laboratory Table

    Energy Savers [EERE]

    Laboratory Table Preliminary Department of Energy FY 2008 Congressional Budget Request February 2007 Office of Chief Financial Officer Laboratory Table Preliminary Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or other

  11. FY 2011 Laboratory Table

    Energy Savers [EERE]

    Laboratory Tables Department of Energy FY 2011 Congressional Budget Request DOE/CF-0055 March 2010 Office of Chief Financial Officer Laboratory Tables Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments

  12. jonesll | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    jonesll Ames Laboratory Profile Lawrence Jones Assoc Scientist Division of Materials Science & Engineering Facilities Services 121 Metals Development Phone Number: 515-294-5236 Email Address: jonesll@ameslab.gov Ames Laboratory Research Projects: Novel Materials Preparation & Processing Methodologies Education: M.S. Metallurgical Engineering, Iowa State University, 1985 B.S. Metallurgical Engineering, Iowa State University, 1983 Professional Appointments: Iowa State University; Ames

  13. kmh | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    kmh Ames Laboratory Profile Kai-ming Ho Associate Division of Materials Science & Engineering A502 Zaffarano Phone Number: 515-294-1960 Email Address: kmh@ameslab.gov Ames Laboratory Research Projects: Exploratory Development of Theoretical Methods Photonic Systems Structures and Dynamics in Condensed Systems Surface Structures Far-from-Equilibrium Education: Ph.D. Physics, University of California, Berkeley (thesis advisor: Marvin Cohen), 1978 B.Sc., B.Sc(Sp) University of Hong Kong, 1973

  14. mjkramer | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mjkramer Ames Laboratory Profile Matthew Kramer Director III Division of Materials Science & Engineering 125 Metals Development Phone Number: 515-294-0276 Email Address: mjkramer@ameslab.gov Ames Laboratory Research Projects: Structures and Dynamics in Condensed Systems Nanotwinned Materials for Energy Technologies Education: Ph.D. Geology, Iowa State University, 1988 M.S. Geology, University of Rochester, 1983 B.S. Geomechanics, University of Rochester, 1979 Professional Appointments:

  15. Facilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Some of the nation's most powerful and sophisticated facilities for energy research Argonne National Laboratory is home to some of the nation's most powerful and sophisticated research facilities. As a U.S. Department of Energy national laboratory, Argonne offers access to the facilities listed below through a variety of arrangements. Advanced Powertrain Research Facility Center for Transportation Research Materials Engineering Research Facility Distributed Energy Research Center

  16. Laboratory Organization Chart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Organization Chart Director Deputy Director Leadership Team Advisory Board Directorate Staff Org Chart ⇒ Navigate Section Director Deputy Director Leadership Team Advisory Board Directorate Staff Org Chart Berkeley Lab Organization Chart ESnet Protective Services ETA/ESDR ETA/EAEI ETA Chief Operating Officer Laboratory Council RIIO Sustainability Deputy Director Innovation & Partnerships Office Public Affairs Information Technology Office of the Chief Financial Officer Human

  17. Laboratory disputes citizens' lawsuit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab disputes ctizens' lawsuit Laboratory disputes citizens' lawsuit Lab officials expressed surprise to a lawsuit alleging noncompliance with the federal Clean Water Act filed today by citizens groups. February 7, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos

  18. Cytogenetic Biodosimetry Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cytogenetic Biodosimetry Laboratory Blood samples are shipped at room temperature to the laboratory. White blood cells, lymphocytes, are cultured under sterile conditions in an incubator for 48 hours using a standard growth medium. Culture tubes are centrifuged, and cells are re-suspended in a weak salt solution, which allows the chromosomes to separate and spread evenly on slides. Chromosomes are stained making them visible under a microscope at up to 1,000x magnifcation. Slides are then

  19. Environmental | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environmental The Environmental Management Program at the Ames Laboratory includes Waste Management, Pollution Prevention, Recycling, Cultural Resources, and the Laboratory's Environmental Management System. Click on a subject to view applicable documents about each category. For more information you can also contact Sarah Morris-Benavides, Environmental Specialist at (515) 294-7923 or at sarahmb@ameslab.gov. Waste Management Pollution Prevention Recycling Cultural Resources Environmental

  20. Employees | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    For Employees Argonne offers many resources to employees, users, students, visitors and others working at or with the laboratory. Listed on these pages you'll find information about notification when operations changes due to weather or other circumstances, assistance for working remotely, clubs and sports leagues, and many other topics of interest to the laboratory community. Quick Reference Switchboard: 630-252-2000 Info-Line: 630-252-4636 CIS Help Desk: 630-252-9999 VPN (Virtual Private

  1. Laboratory, Valles Caldera sponsor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory, Valles Caldera sponsor environmental science event July 9, 2009 LOS ALAMOS, New Mexico, July 9, 2009-How would you like to study environmental science in a million-year-old outdoor "classroom?" The Summer Environmental Science Program lets students explore a wide range of science-related topics in the Valles Caldera National Preserve, a vast collapsed volcanic crater ringed by pine-shrouded mountains. The June 16 workshop is sponsored by Los Alamos National Laboratory and

  2. Los Alamos NATIONAL LABORATORY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    / Los Alamos NATIONAL LABORATORY - - - - EST.1943 ....,,..... _ _ _ memorandum E ter Management ' . McMillan, DIR, AIOO -5101/Fax 7-2997 Office of the Director DIR-15-094 July 23, 2015 SUBJECT: SUBCONTRACTING OPPORTUNITIES WITH SMALL BUSINESS Los Alamos National Laboratory has maintained a strong institutional commitment to small business subcontracting over the years. It is my intention that we continue this commitment, which was formalized in the Prime Contract Appendix M provision for a

  3. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and LANS partner to record $2 million in pledges for local United Way programs November 20, 2008 LOS ALAMOS, New Mexico, November 20, 2008- Los Alamos National Laboratory employees once again demonstrated concern for their communities and those in need by pledging a record $1 million to United Way programs in Northern New Mexico and Santa Fe. With a dollar-for-dollar match by Los Alamos National Security, LLC, which operates the Laboratory, the total contribution is more than $2 million.

  4. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 13 construction forum in Albuquerque April 7, 2009 LOS ALAMOS, New Mexico, April 7, 2009- Companies big and small can learn about upcoming construction projects and procurement opportunities at Los Alamos National Laboratory by attending a construction forum April 13 at the Hotel Albuquerque, 800 Rio Grande Blvd. N.W., in Albuquerque's Old Town. "The forum is designed to provide key information about Laboratory construction business opportunities. We want interested businesses to have

  5. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    captures eight NNSA Pollution Prevention awards April 15, 2009 LOS ALAMOS, New Mexico, April 15, 2009-Los Alamos National Laboratory employee teams and organizations earned eight 2009 Pollution Prevention awards from the National Nuclear Security Administration (NNSA). The awards are based on an NNSA-wide competition that acknowledges pollution prevention, recycling, and affirmative procurement accomplishments. The Laboratory also received a Department of Energy "E Star" award for its

  6. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 million to local United Way organizations, other nonprofits December 1, 2009 Los Alamos, New Mexico, December 1, 2009-Los Alamos National Laboratory employees once more demonstrated concern for their communities and those in need by pledging a record $1.3 million to United Way and other eligible nonprofit programs.Los Alamos National Security, LLC, which operates the Laboratory, plans to prorate its $1 million match among the selected nonprofit organizations, bringing the total donation to

  7. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hazmat Challenge July 27, 2009 Competition test skills of hazardous materials response teams Los Alamos, New Mexico, July 27, 2009-Seven hazardous materials response teams from New Mexico and Oklahoma will test their skills at the 13th annual Hazmat Challenge July 28-31 sponsored by Los Alamos National Laboratory. The challenge provides hazardous materials responders the opportunity to network and learn new techniques under realistic conditions in a safe environment. Held at the Laboratory's

  8. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    communicators capture numerous awards from Society for Technical Communication April 15, 2010 Recognizing outstanding technical communications products LOS ALAMOS, New Mexico, April 15, 2010-Los Alamos National Laboratory employees received a number of awards in the 2009 Technical Publications and Online Communication competition sponsored by the East Tennessee chapter of the Society for Technical Communication (STC). - 2 - Laboratory entries competed at a regional, national and international

  9. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 million to local United Way organizations, other nonprofits November 18, 2010 LOS ALAMOS, New Mexico, November 18, 2010-Los Alamos National Laboratory employees have again demonstrated concern for their communities and those in need by pledging a record $1.5 million to United Way and other eligible nonprofit programs. Los Alamos National Security, LLC, which operates the Laboratory, plans to prorate its $1 million match among the selected nonprofit organizations, bringing the total donation to

  10. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy environmental sustainability award October 14, 2010 LOS ALAMOS, New Mexico, October 14, 2010-Los Alamos National Laboratory recently received an Environmental Sustainability (EStar) award from the Department of Energy for integrating sustainable practices in its design for the Radiological Laboratory/ Utility/Office Building (RLUOB). The RLUOB is part of the Lab's Chemistry and Metallurgy Research Replacement (CMRR) Project. The Lab ultimately expects to achieve Leadership

  11. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    celebrates 1000th transuranic waste shipment June 26, 2012 LOS ALAMOS, New Mexico, June 26, 2012-Federal, state, and county officials gathered at Los Alamos National Laboratory today to celebrate the 1000th shipment of transuranic waste from the Laboratory to a permanent repository at the Waste Isolation Pilot Plant near Carlsbad, N.M. The event, which fell on the first anniversary of the Las Conchas forest fire, featured remarks from New Mexico Governor Susana Martinez. "On the anniversary

  12. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    strategy for long-term environmental sustainability March 1, 2013 Blueprint for planning work activities with the environment in mind LOS ALAMOS, N.M., March 1, 2013-The Department of Energy and Los Alamos National Laboratory have developed a long-term strategy for environmental stewardship and sustainability that provides a blueprint for protecting the environment while accomplishing the Laboratory's national security missions. "This plan represents a significant amount of effort on the

  13. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 14, 2013 Value of up to $150 million over five years LOS ALAMOS, N.M., May 14, 2013-Los Alamos National Laboratory has awarded a master task order agreement in which three small businesses will compete for environmental work worth up to $150 million over five years. The businesses each have offices in northern New Mexico. The agreement is for technical services for the Laboratory's Environmental Programs directorate and includes work such as environmental engineering design, regulatory

  14. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    new student app July 15, 2014 Job searching tool for students, postdocs LOS ALAMOS, N.M., July 15, 2014-Los Alamos National Laboratory recently launched its new student mobile app that students and postdoctoral candidates can use to learn about employment opportunities, science research, education programs and more. The Los Alamos Students mobile app is free and can be downloaded from iTunes and Google Play (for android platforms). "The Laboratory's new Student App is a great way for

  15. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos National Laboratory 3 National Security Science July 2015 Films of the U.S. atmospheric nuclear tests provide breathtaking reminders of the power of nuclear weapons. Now a new project is salvaging and mining these deteriorating films for fresh-and crucial- scientific data about the weapons' yields. To understand why Lawrence Livermore National Laboratory nuclear weapons physicist Greg Spriggs is spearheading, in partnership with Los Alamos, an urgent search-and-rescue mission to

  16. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos National Laboratory For Lawrence Livermore National Laboratory's weapon-physicist Greg Spriggs, leader of the Film Scanning and Reanalysis Project, the work has become a search-and-rescue mission. He has to find thousands of scientific test films and digitize them before they deteriorate beyond usefulness. Lost and Found Old and imprecise records told Spriggs how many original films there were, but not where they were. In fact, they were stored in several different archives. He has

  17. Los Alamos National Laboratory's

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Short program wins Department of Energy Innovation Award October 7, 2010 Laboratory recognized for "outstanding industry performance" LOS ALAMOS, New Mexico, October 7-Los Alamos National Laboratory received the U.S. Department of Energy Voluntary Protection Program's Innovation Award for its Safety Short program of videos, fliers, and posters at a recent DOE-VPP conference in Orlando, Florida. - 2 - Los Alamos was honored for "Outstanding industry performance and

  18. Safety | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Careers Education Community Diversity Directory Argonne National Laboratory About Safety News Careers Education Community Diversity Directory Energy Environment Security User Facilities Science Work with Argonne Safety Biosafety Safety Safety is integral to Argonne's scientific research and engineering technology mission. As a leading U.S. Department of Energy multi-program research laboratory, our obligation to the American people demands that we conduct our research and operations safely

  19. Visitors | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Visitors Visitors are welcome at Ames Laboratory. As a U.S. Department of Energy research facility, Ames Laboratory is subject to security conditions established by the Department of Homeland Security. To make sure that you are complying with the current security conditions, please check with the Plant Protection Desk on the ground floor level of the Technical and Administrative Services Facility (TASF) building. Protection personnel can help you locate a specific staff member or direct you to a

  20. Sandia National Laboratories- Fallon

    Broader source: Energy.gov [DOE]

    The Fallon FORGE team seeks to establish and manage a well characterized and highly instrumented field test site dedicated to advancing EGS research, enabling the broader engineering and science community to accelerate the deployment of EGS. The team is working in partnership with the U.S. Department of Defense to reduce our Nations dependency on fossil fuels and to safeguard the military readiness for the United States. Prior geothermal exploration at the proposed site has identified attractive temperatures but sub-commercial permeabilities have prevented conventional geothermal development in the area. Led by Sandia National Laboratories, the Fallon FORGE team is strongly committed to the underground R&D laboratory and includes: Lawrence Berkeley National Laboratory, U.S. Navy & the U.S. Navy Geothermal Program Office, Ormat Nevada, Inc., U.S. Geological Survey (Menlo Park, California), University of Nevada, Reno (UNR), GeothermEx / Schlumberger, and Itasca Consulting Group, Inc.

  1. Laboratory Directed Research and Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Phone Book Jobs Laboratory Directorate - Strategic Planning Office Laboratory Directed Research and Development (LDRD) LBNL LDRD Program Guidelines LDRD FY 2017 Call for...

  2. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    To establish Department of Energy (DOE) requirements for laboratory directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation.

  3. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-04-30

    To establish Department of Energy (DOE) requirements for laboratory directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation

  4. Remote Access | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Laboratory Information Systems supports VPN for remotely accessing internal computers and network services. These are: Once connected remotely to Ames Laboratory,...

  5. Ames Laboratory | Open Energy Information

    Open Energy Info (EERE)

    Laboratory Jump to: navigation, search Name: Ames Laboratory Place: Ames, Iowa Zip: 50011-3020 Product: Research facility focused on solutions to energy-related problems....

  6. Hydrokinetic Laboratory | Open Energy Information

    Open Energy Info (EERE)

    Hydrokinetic Laboratory Jump to: navigation, search Name: Hydrokinetic Laboratory Region: United States Sector: Marine and Hydrokinetic Website: www.hklabllc.com This company is...

  7. Stephen Streiffer | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stephen Streiffer, Associate Lab Director Stephen Streiffer Associate Laboratory Director - Photon Sciences Stephen Streiffer is the Associate Laboratory Director for Photon...

  8. Management Council | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Illinois at Urbana-Champaign Vice Chancellor for Research Professor of Physics Web Site Harry Weerts Harry Weerts Argonne National Laboratory Interim Associate Laboratory Director...

  9. Los Alamos National Laboratory Institutes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    educational programs to provide Laboratory personnel with specific knowledge and skills that make them more effective in completing projects that meet Laboratory...

  10. Los Alamos National Laboratory attracts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Los Alamos National Laboratory Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national...

  11. Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hazardous devices teams showcase skills at Robot Rodeo June 24-27 June 18, 2014 Bomb squads compete in timed scenarios at Los Alamos National Laboratory LOS ALAMOS, N.M., June 19, 2014-Hazardous devices teams from around the Southwest will wrangle their bomb squad robots at the eighth annual Robot Rodeo beginning Tuesday, June 24 at Los Alamos National Laboratory. "The Robot Rodeo gives bomb squad teams the opportunity to practice and hone their skills in a lively but low-risk

  12. FY 2012 Laboratory Table

    Energy Savers [EERE]

    5 Department of Energy FY 2012 Congressional Budget Request Laboratory Tables y Preliminary February 2012 Office of Chief Financial Officer DOE/CF-0065 Department of Energy FY 2012 Congressional Budget Request Laboratory Tables P li i Preliminary h b d i d i hi d h l l f b d h i f h The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider

  13. IDAHO NATIONAL LABORATORY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Idaho National Laboratory (INL) You are here: DOE-ID Home > Inside ID > Brief History Site History The Idaho National Laboratory (INL), an 890-square-mile section of desert in southeast Idaho, was established in 1949 as the National Reactor Testing Station. Initially, the missions at the INL were the development of civilian and defense nuclear reactor technologies and management of spent nuclear fuel. Fifty-two reactors—most of them first-of-a-kind—were built, including the Navy’s

  14. Inquiry | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inquiry Welcome to Inquiry 2015, Issue 1 There's a lot going on these Days at the Ames Laboratory We're in the final stages of construction on our new Sensitive Instrument Facility, a nearly $10 million building that will house an array of state-of-the art electron microscopy equipment. It's Ames Laboratory's first new research facility in more than 50 years. Through a combination of funding sources, including the Department of Energy and our contractor, Iowa State University, the SIF will be

  15. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pledge $2.17 million in 2015 giving campaign November 25, 2014 More than 250 nonprofits, social service providers will benefit LOS ALAMOS, N.M., Nov. 25, 2014-The work of more than 250 community and social service organizations will benefit from the more than $2.17 million pledged by Los Alamos National Laboratory employees to United Way and other nonprofits during the Laboratory's 2015 Employee Giving Campaign. "We are proud to help the many community focused non-profit organizations

  16. FY 2013 Laboratory Table

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8 Department of Energy FY 2013 Congressional Budget Request Laboratory Tables y Preliminary February 2012 Office of Chief Financial Officer DOE/CF-0078 Department of Energy FY 2013 Congressional Budget Request Laboratory Tables P li i Preliminary h b d i d i hi d h l l f b d h i f h The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider

  17. National Laboratory Contacts

    Broader source: Energy.gov [DOE]

    Several of the U.S. Department of Energy (DOE) national laboratories host multidisciplinary transportation research centers. A wide-range of cutting-edge transportation research occurs at these facilities, funded by both DOE and cooperative research and development agreements (CRADAs) with industry

  18. Energy Systems Laboratory Groundbreaking

    ScienceCinema (OSTI)

    Hill, David; Otter, C.L.; Simpson, Mike; Rogers, J.W.;

    2013-05-28

    INL recently broke ground for a research facility that will house research programs for bioenergy, advanced battery systems, and new hybrid energy systems that integrate renewable, fossil and nuclear energy sources. Here's video from the groundbreaking ceremony for INL's new Energy Systems Laboratory. You can learn more about CAES research at http://www.facebook.com/idahonationallaboratory.

  19. Competitions | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Teacher Programs Classroom Resources Undergraduates Graduates Faculty Partners News & Events About Us Staff Directory About Us Staff Directory Argonne National Laboratory Educational Programs Developing the Next Generation of Scientists & Engineers Home Learning Center Undergraduates Graduates Faculty Partners News & Events Learning Center Community Outreach Learning Experiences School Competitions Middle School Science Bowl Middle School Electric Car Competition High School Rube

  20. Capabilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Catalysis Partnerships Licensing Sponsored Research Technical Services Technologist in Residence News Press Releases Feature Stories In the News Photos Videos Ombudsman Ombudsman Argonne National Laboratory Technology Development and Commercialization About Technologies Available for Licensing Capabilities Partnerships News Capabilities Catalysis Capabilities Argonne offers a wide range of R&D capabilities that collaborators from private industry, federal agencies, and state and local