Sample records for laboratory consortium excellence

  1. Laboratory and New Mexico Consortium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    USDA awards 1 million eor e. coli research by Los Alamos National Laboratory and New Mexico Consortium February 29, 2012 LOS ALAMOS, New Mexico, February 29, 2012-Researchers from...

  2. Vehicle Technologies Office: Federal Laboratory Consortium Excellence...

    Energy Savers [EERE]

    of fuel dilution in engine oil. The new tool supports industry in designing durable engines that meet stringent fuel efficiency and emissions requirements. 2007 Compact...

  3. NETL Researcher Honored with 2013 Federal Laboratory Consortium...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jeffrey Hawk of the National Energy Technology Laboratory (NETL) has been awarded a Far West region Federal Laboratory Consortium (FLC) award for Outstanding Technology Development...

  4. Laboratory and New Mexico Consortium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,sand CERN 73-11 Laboratory IRear

  5. Federal Laboratory Consortium Excellence in Technology Transfer Awards |

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of ScienceCurrentEmergencyU.S.U.S. DOE Office of

  6. Vehicle Technologies Office: Federal Laboratory Consortium Excellence in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02Report | Department of EnergyReportTechnology

  7. Consortium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would like submitCollector/ReceiverConflictConsiderationConsortium

  8. Sandia National Laboratories: Engineering Excellence Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering Excellence Awards Sandia Solar Energy Test System Cited in National Engineering Competition On May 16, 2013, in Concentrating Solar Power, Energy, Energy Storage,...

  9. Sandia National Laboratories: Excellence Award in the 2012 Facilities...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Testing Excellence Award in the 2012 Facilities Environmental, Safety and Health Go Green Initiative On December 19, 2012, in Concentrating Solar Power, Energy, Events,...

  10. University of Delaware -Tribology Laboratory Atlantic Advanced O shore Wind Energy Consortium

    E-Print Network [OSTI]

    Firestone, Jeremy

    substantially increased the cost of wind power; improvements are needed to make the technology economically for analysis by the group. Downtime hours accumulated from 2003 to 2007 for wind turbines in Germany #12 Wind Energy Consortium Assessing Tribological Aspects of Gearbox Reliability in Wind Turbines Prof

  11. Performance Evaluation and Analysis Consortium End Station |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    highlighting the "bucket" algorithm from UIUC. Credit: Leonid Oliker, Lawrence Berkeley National Laboratory Performance Evaluation and Analysis Consortium End Station PI Name:...

  12. Combustion Byproducts Recycling Consortium

    SciTech Connect (OSTI)

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul chugh; James Hower

    2008-08-31T23:59:59.000Z

    This paper discusses the roles and responsibilities of each position within the Combustion Byproducts Recyclcing Consortium.

  13. Nuclear Arms Control R&D Consortium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Arms Control R&D Consortium includes Los Alamos April 7, 2014 Laboratory can help groom next generation of arms- control-technology experts LOS ALAMOS, N.M., April 7, 2014-A...

  14. Sandia National Laboratories: Federal Laboratory Consortium Regional...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    active layer. Schematic of the enzymatically active membrane's active layer. Electricity-generating plants, especially coal-fired plants, and other industrial activities...

  15. Federal Laboratory Consortium | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget » FYU.S. DOE Office of Science (SC)

  16. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel Morrison; Elizabeth Wood; Barbara Robuck

    2010-09-30T23:59:59.000Z

    The EMS Energy Institute at The Pennsylvania State University (Penn State) has managed the Gas Storage Technology Consortium (GSTC) since its inception in 2003. The GSTC infrastructure provided a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. The GSTC received base funding from the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) Oil & Natural Gas Supply Program. The GSTC base funds were highly leveraged with industry funding for individual projects. Since its inception, the GSTC has engaged 67 members. The GSTC membership base was diverse, coming from 19 states, the District of Columbia, and Canada. The membership was comprised of natural gas storage field operators, service companies, industry consultants, industry trade organizations, and academia. The GSTC organized and hosted a total of 18 meetings since 2003. Of these, 8 meetings were held to review, discuss, and select proposals submitted for funding consideration. The GSTC reviewed a total of 75 proposals and committed co-funding to support 31 industry-driven projects. The GSTC committed co-funding to 41.3% of the proposals that it received and reviewed. The 31 projects had a total project value of $6,203,071 of which the GSTC committed $3,205,978 in co-funding. The committed GSTC project funding represented an average program cost share of 51.7%. Project applicants provided an average program cost share of 48.3%. In addition to the GSTC co-funding, the consortium provided the domestic natural gas storage industry with a technology transfer and outreach infrastructure. The technology transfer and outreach were conducted by having project mentoring teams and a GSTC website, and by working closely with the Pipeline Research Council International (PRCI) to jointly host technology transfer meetings and occasional field excursions. A total of 15 technology transfer/strategic planning workshops were held.

  17. Newtonian Constant of Gravitation International Consortium

    E-Print Network [OSTI]

    Newtonian Constant of Gravitation International Consortium I. BACKGROUND Recent measurements of the Newtonian constant of gravitation G are in disagreement, with discrepancies that are roughly ten times forces on a laboratory scale. It also raises the question of whether the Newtonian force law

  18. Automotive Composites Consortium Focal Project 4: Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Composites Consortium Focal Project 4: Automotive Components from Structural Composites Automotive Composites Consortium Focal Project 4: Automotive Components from Structural...

  19. Stakeholder Consortium Meeting

    E-Print Network [OSTI]

    Keinan, Alon

    Stakeholder Consortium Meeting March 22, 2013 Susan Riha Director, NYS Water Resources Institute of regional water planning / inefficiencies "Build it they will come" has resulted in significant excess Resources Institute #12;#12;NYS POTW Design Flows 0 5 10 15 20 25 30 35 40 1910 1920 1930 1940 1950 1960

  20. Advanced Separation Consortium

    SciTech Connect (OSTI)

    NONE

    2006-01-01T23:59:59.000Z

    The Center for Advanced Separation Technologies (CAST) was formed in 2001 under the sponsorship of the US Department of Energy to conduct fundamental research in advanced separation and to develop technologies that can be used to produce coal and minerals in an efficient and environmentally acceptable manner. The CAST consortium consists of seven universities - Virginia Tech, West Virginia University, University of Kentucky, Montana Tech, University of Utah, University of Nevada-Reno, and New Mexico Tech. The consortium brings together a broad range of expertise to solve problems facing the US coal industry and the mining sector in general. At present, a total of 60 research projects are under way. The article outlines some of these, on topics including innovative dewatering technologies, removal of mercury and other impurities, and modelling of the flotation process. 1 photo.

  1. Combustion Byproducts Recycling Consortium

    SciTech Connect (OSTI)

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

    2008-08-31T23:59:59.000Z

    The Combustion Byproducts Recycling Consortium (CBRC) program was developed as a focused program to remove and/or minimize the barriers for effective management of over 123 million tons of coal combustion byproducts (CCBs) annually generated in the USA. At the time of launching the CBRC in 1998, about 25% of CCBs were beneficially utilized while the remaining was disposed in on-site or off-site landfills. During the ten (10) year tenure of CBRC (1998-2008), after a critical review, 52 projects were funded nationwide. By region, the East, Midwest, and West had 21, 18, and 13 projects funded, respectively. Almost all projects were cooperative projects involving industry, government, and academia. The CBRC projects, to a large extent, successfully addressed the problems of large-scale utilization of CCBs. A few projects, such as the two Eastern Region projects that addressed the use of fly ash in foundry applications, might be thought of as a somewhat smaller application in comparison to construction and agricultural uses, but as a novel niche use, they set the stage to draw interest that fly ash substitution for Portland cement might not attract. With consideration of the large increase in flue gas desulfurization (FGD) gypsum in response to EPA regulations, agricultural uses of FGD gypsum hold promise for large-scale uses of a product currently directed to the (currently stagnant) home construction market. Outstanding achievements of the program are: (1) The CBRC successfully enhanced professional expertise in the area of CCBs throughout the nation. The enhanced capacity continues to provide technology and information transfer expertise to industry and regulatory agencies. (2) Several technologies were developed that can be used immediately. These include: (a) Use of CCBs for road base and sub-base applications; (b) full-depth, in situ stabilization of gravel roads or highway/pavement construction recycled materials; and (c) fired bricks containing up to 30%-40% F-fly ash. Some developed technologies have similar potential in the longer term. (3) Laboratory studies have been completed that indicate that much higher amounts of fly ash could be added in cement-concrete applications under some circumstances. This could significantly increase use of fly ash in cement-concrete applications. (4) A study of the long-term environmental effects of structural fills in a surface mine in Indiana was completed. This study has provided much sought after data for permitting large-volume management options in both beneficial as well as non-beneficial use settings. (5) The impact of CBRC on CCBs utilization trends is difficult to quantify. However it is fair to say that the CBRC program had a significant positive impact on increased utilization of CCBs in every region of the USA. Today, the overall utilization of CCBs is over 43%. (6) CBRC-developed knowledge base led to a large number of other projects completed with support from other sources of funding. (7) CBRC research has also had a large impact on CCBs management across the globe. Information transfer activities and visitors from leading coal producing countries such as South Africa, Australia, England, India, China, Poland, Czech Republic and Japan are truly noteworthy. (8) Overall, the CBRC has been a truly successful, cooperative research program. It has brought together researchers, industry, government, and regulators to deal with a major problem facing the USA and other coal producing countries in the world.

  2. GAS STORAGE TECHNOLOGY CONSORTIUM

    SciTech Connect (OSTI)

    Robert W. Watson

    2004-04-17T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and is scheduled for completion on March 31, 2004. Phase 1A of the project includes the creation of the GSTC structure, development of constitution (by-laws) for the consortium, and development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with the second 3-months of the project and encompasses the period December 31, 2003, through March 31, 2003. During this 3-month, the dialogue of individuals representing the storage industry, universities and the Department of energy was continued and resulted in a constitution for the operation of the consortium and a draft of the initial Request for Proposals (RFP).

  3. University Research Consortium annual review meeting program

    SciTech Connect (OSTI)

    NONE

    1996-07-01T23:59:59.000Z

    This brochure presents the program for the first annual review meeting of the University Research Consortium (URC) of the Idaho National Engineering Laboratory (INEL). INEL is a multiprogram laboratory with a distinctive role in applied engineering. It also conducts basic science research and development, and complex facility operations. The URC program consists of a portfolio of research projects funded by INEL and conducted at universities in the United States. In this program, summaries and participant lists for each project are presented as received from the principal investigators.

  4. Midwest Nuclear Science and Engineering Consortium

    SciTech Connect (OSTI)

    Dr. Wynn Volkert; Dr. Arvind Kumar; Dr. Bryan Becker; Dr. Victor Schwinke; Dr. Angel Gonzalez; Dr. DOuglas McGregor

    2010-12-08T23:59:59.000Z

    The objective of the Midwest Nuclear Science and Engineering Consortium (MNSEC) is to enhance the scope, quality and integration of educational and research capabilities of nuclear sciences and engineering (NS/E) programs at partner schools in support of the U.S. nuclear industry (including DOE laboratories). With INIE support, MNSEC had a productive seven years and made impressive progress in achieving these goals. Since the past three years have been no-cost-extension periods, limited -- but notable -- progress has been made in FY10. Existing programs continue to be strengthened and broadened at Consortium partner institutions. The enthusiasm generated by the academic, state, federal, and industrial communities for the MNSEC activities is reflected in the significant leveraging that has occurred for our programs.

  5. Carbon Fiber Consortium | Partnerships | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in 2011 to accelerate the development and deployment of new, lower cost carbon fiber composite materials. The Consortium draws on the broad experience that the Oak Ridge National...

  6. CONSORTIUM FOR CLEAN COAL UTILIZATION

    E-Print Network [OSTI]

    Subramanian, Venkat

    CONSORTIUM FOR CLEAN COAL UTILIZATION Call for Proposals Date of Issue: July 29, 2013 The Consortium for Clean Coal Utilization (CCCU) at Washington University in St. Louis was established in January of Clean Coal Utilization. The format may be a conference or workshop, or a seminar given by a leading

  7. Webinar: Algal Biofuels Consortium Releases Groundbreaking Research...

    Energy Savers [EERE]

    Webinar: Algal Biofuels Consortium Releases Groundbreaking Research Results Webinar: Algal Biofuels Consortium Releases Groundbreaking Research Results Dr. Jose Olivares of Los...

  8. GAS STORAGE TECHNOLOGY CONSORTIUM

    SciTech Connect (OSTI)

    Robert W. Watson

    2004-10-18T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. The first phase, Phase 1A, was initiated on September 30, 2003, and was completed on March 31, 2004. Phase 1A of the project included the creation of the GSTC structure, development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with Phase 1B and encompasses the period July 1, 2004, through September 30, 2004. During this time period there were three main activities. First was the ongoing negotiations of the four sub-awards working toward signed contracts with the various organizations involved. Second, an Executive Council meeting was held at Penn State September 9, 2004. And third, the GSTC participated in the SPE Eastern Regional Meeting in Charleston, West Virginia, on September 16th and 17th. We hosted a display booth with the Stripper Well Consortium.

  9. GAS STORAGE TECHNOLOGY CONSORTIUM

    SciTech Connect (OSTI)

    Robert W. Watson

    2004-07-15T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and was completed on March 31, 2004. Phase 1A of the project included the creation of the GSTC structure, development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with Phase 1B and encompasses the period April 1, 2004, through June 30, 2004. During this 3-month period, a Request for Proposals (RFP) was made. A total of 17 proposals were submitted to the GSTC. A proposal selection meeting was held June 9-10, 2004 in Morgantown, West Virginia. Of the 17 proposals, 6 were selected for funding.

  10. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2006-07-06T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission & distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1 to June 30, 2006. Key activities during this time period include: (1) Develop and process subcontract agreements for the eight projects selected for cofunding at the February 2006 GSTC Meeting; (2) Compiling and distributing the three 2004 project final reports to the GSTC Full members; (3) Develop template, compile listserv, and draft first GSTC Insider online newsletter; (4) Continue membership recruitment; (5) Identify projects and finalize agenda for the fall GSTC/AGA Underground Storage Committee Technology Transfer Workshop in San Francisco, CA; and (6) Identify projects and prepare draft agenda for the fall GSTC Technology Transfer Workshop in Pittsburgh, PA.

  11. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2007-06-30T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2007 through June 30, 2007. Key activities during this time period included: (1) Organizing and hosting the 2007 GSTC Spring Meeting; (2) Identifying the 2007 GSTC projects, issuing award or declination letters, and begin drafting subcontracts; (3) 2007 project mentoring teams identified; (4) New NETL Project Manager; (5) Preliminary planning for the 2007 GSTC Fall Meeting; (6) Collecting and compiling the 2005 GSTC project final reports; and (7) Outreach and communications.

  12. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2006-05-10T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January 1, 2006 through March 31, 2006. Activities during this time period were: (1) Organize and host the 2006 Spring Meeting in San Diego, CA on February 21-22, 2006; (2) Award 8 projects for co-funding by GSTC for 2006; (3) New members recruitment; and (4) Improving communications.

  13. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2007-03-31T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created - the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January1, 2007 through March 31, 2007. Key activities during this time period included: {lg_bullet} Drafting and distributing the 2007 RFP; {lg_bullet} Identifying and securing a meeting site for the GSTC 2007 Spring Proposal Meeting; {lg_bullet} Scheduling and participating in two (2) project mentoring conference calls; {lg_bullet} Conducting elections for four Executive Council seats; {lg_bullet} Collecting and compiling the 2005 GSTC Final Project Reports; and {lg_bullet} Outreach and communications.

  14. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel Morrison

    2005-09-14T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2005 through June 30, 2005. During this time period efforts were directed toward (1) GSTC administration changes, (2) participating in the American Gas Association Operations Conference and Biennial Exhibition, (3) issuing a Request for Proposals (RFP) for proposal solicitation for funding, and (4) organizing the proposal selection meeting.

  15. Nuclear Fabrication Consortium

    SciTech Connect (OSTI)

    Levesque, Stephen

    2013-04-05T23:59:59.000Z

    This report summarizes the activities undertaken by EWI while under contract from the Department of Energy (DOE) â?? Office of Nuclear Energy (NE) for the management and operation of the Nuclear Fabrication Consortium (NFC). The NFC was established by EWI to independently develop, evaluate, and deploy fabrication approaches and data that support the re-establishment of the U.S. nuclear industry: ensuring that the supply chain will be competitive on a global stage, enabling more cost-effective and reliable nuclear power in a carbon constrained environment. The NFC provided a forum for member original equipment manufactures (OEM), fabricators, manufacturers, and materials suppliers to effectively engage with each other and rebuild the capacity of this supply chain by : â?¢ Identifying and removing impediments to the implementation of new construction and fabrication techniques and approaches for nuclear equipment, including system components and nuclear plants. â?¢ Providing and facilitating detailed scientific-based studies on new approaches and technologies that will have positive impacts on the cost of building of nuclear plants. â?¢ Analyzing and disseminating information about future nuclear fabrication technologies and how they could impact the North American and the International Nuclear Marketplace. â?¢ Facilitating dialog and initiate alignment among fabricators, owners, trade associations, and government agencies. â?¢ Supporting industry in helping to create a larger qualified nuclear supplier network. â?¢ Acting as an unbiased technology resource to evaluate, develop, and demonstrate new manufacturing technologies. â?¢ Creating welder and inspector training programs to help enable the necessary workforce for the upcoming construction work. â?¢ Serving as a focal point for technology, policy, and politically interested parties to share ideas and concepts associated with fabrication across the nuclear industry. The report the objectives and summaries of the Nuclear Fabrication Consortium projects. Full technical reports for each of the projects have been submitted as well.

  16. Sandia National Laboratories: Consortium for Advanced Simulation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the modeling simulation tools built during its first phase to include additional nuclear reactor designs, including small, modular reactors. "As President Obama made clear...

  17. Sandia Energy - Federal Laboratory Consortium Regional

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46Energy Storage

  18. Excel-lent Experiences: Computational Research Internships

    E-Print Network [OSTI]

    Gobbert, Matthias K.

    ;Websites · NSF REU http://www.nsf.gov/crssprgm/reu/reu_search.cfm · State Space Grant Consortium Funding. Valainis 3 Woodburn Ridge Road, Spartanburg, SC 29302 (864) 580 ­ 8847 valainisgt, Spartanburg, SC Computer Science Major: B.S., Mathematics Minor (May 2013) GPA: 3.63/4.0 Relevant Courses

  19. National Advanced Biofuels Consortium (NABC), Biofuels for Advancing America (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01T23:59:59.000Z

    Introduction to the National Advanced Biofuels Consortium, a collaboration between 17 national laboratory, university, and industry partners that is conducting cutting-edge research to develop infrastructure-compatible, sustainable, biomass-based hydrocarbon fuels.

  20. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2006-09-30T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created-the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of July 1, 2006 to September 30, 2006. Key activities during this time period include: {lg_bullet} Subaward contracts for all 2006 GSTC projects completed; {lg_bullet} Implement a formal project mentoring process by a mentor team; {lg_bullet} Upcoming Technology Transfer meetings: {sm_bullet} Finalize agenda for the American Gas Association Fall Underground Storage Committee/GSTC Technology Transfer Meeting in San Francisco, CA. on October 4, 2006; {sm_bullet} Identify projects and finalize agenda for the Fall GSTC Technology Transfer Meeting, Pittsburgh, PA on November 8, 2006; {lg_bullet} Draft and compile an electronic newsletter, the GSTC Insider; and {lg_bullet} New members update.

  1. Terragenome: International Soil Metagenome Sequencing Consortium (GSC8 Meeting)

    ScienceCinema (OSTI)

    Jansson, Janet [LBNL

    2011-04-29T23:59:59.000Z

    The Genomic Standards Consortium was formed in September 2005. It is an international, open-membership working body which promotes standardization in the description of genomes and the exchange and integration of genomic data. The 2009 meeting was an activity of a five-year funding "Research Coordination Network" from the National Science Foundation and was organized held at the DOE Joint Genome Institute with organizational support provided by the JGI and by the University of California - San Diego. Janet Jansson of the Lawrence Berkeley National Laboratory discusses the Terragenome Initiative at the Genomic Standards Consortium's 8th meeting at the DOE JGI in Walnut Creek, Calif. on Sept. 9, 2009

  2. A University Consortium on Low Temperature Combustion (LTC) for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LTC University Consortium A University Consortium on Low Temperature Combustion (LTC) for High Efficiency, Ultra-Low Emission Engines Acknowledgements DOE LTC Consortium project...

  3. A consortium approach to glass furnace modeling.

    SciTech Connect (OSTI)

    Chang, S.-L.; Golchert, B.; Petrick, M.

    1999-04-20T23:59:59.000Z

    Using computational fluid dynamics to model a glass furnace is a difficult task for any one glass company, laboratory, or university to accomplish. The task of building a computational model of the furnace requires knowledge and experience in modeling two dissimilar regimes (the combustion space and the liquid glass bath), along with the skill necessary to couple these two regimes. Also, a detailed set of experimental data is needed in order to evaluate the output of the code to ensure that the code is providing proper results. Since all these diverse skills are not present in any one research institution, a consortium was formed between Argonne National Laboratory, Purdue University, Mississippi State University, and five glass companies in order to marshal these skills into one three-year program. The objective of this program is to develop a fully coupled, validated simulation of a glass melting furnace that may be used by industry to optimize the performance of existing furnaces.

  4. Combustion Byproducts Recycling Consortium

    SciTech Connect (OSTI)

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

    2008-08-31T23:59:59.000Z

    Each year, over 100 million tons of solid byproducts are produced by coal-burning electric utilities in the United States. Annual production of flue gas desulfurization (FGD) byproducts continues to increase as the result of more stringent sulfur emission restrictions. In addition, stricter limits on NOx emissions mandated by the 1990 Clean Air Act have resulted in utility burner/boiler modifications that frequently yield higher carbon concentrations in fly ash, which restricts the use of the ash as a cement replacement. Controlling ammonia in ash is also of concern. If newer, 'clean coal' combustion and gasification technologies are adopted, their byproducts may also present a management challenge. The objective of the Combustion Byproducts Recycling Consortium (CBRC) is to develop and demonstrate technologies to address issues related to the recycling of byproducts associated with coal combustion processes. A goal of CBRC is that these technologies, by the year 2010, will lead to an overall ash utilization rate from the current 34% to 50% by such measures as increasing the current rate of FGD byproduct use and increasing in the number of uses considered 'allowable' under state regulations. Another issue of interest to the CBRC would be to examine the environmental impact of both byproduct utilization and disposal. No byproduct utilization technology is likely to be adopted by industry unless it is more cost-effective than landfilling. Therefore, it is extremely important that the utility industry provide guidance to the R&D program. Government agencies and private-sector organizations that may be able to utilize these materials in the conduct of their missions should also provide input. The CBRC will serve as an effective vehicle for acquiring and maintaining guidance from these diverse organizations so that the proper balance in the R&D program is achieved.

  5. Combustion Byproducts Recycling Consortium

    SciTech Connect (OSTI)

    Ziemkiewicz, Paul; Vandivort, Tamara; Pflughoeft-Hassett, Debra; Chugh, Y Paul; Hower, James

    2008-08-31T23:59:59.000Z

    Each year, over 100 million tons of solid byproducts are produced by coal-burning electric utilities in the United States. Annual production of flue gas desulfurization (FGD) byproducts continues to increase as the result of more stringent sulfur emission restrictions. In addition, stricter limits on NOx emissions mandated by the 1990 Clean Air Act have resulted in utility burner/boiler modifications that frequently yield higher carbon concentrations in fly ash, which restricts the use of the ash as a cement replacement. Controlling ammonia in ash is also of concern. If newer, clean coal combustion and gasification technologies are adopted, their byproducts may also present a management challenge. The objective of the Combustion Byproducts Recycling Consortium (CBRC) is to develop and demonstrate technologies to address issues related to the recycling of byproducts associated with coal combustion processes. A goal of CBRC is that these technologies, by the year 2010, will lead to an overall ash utilization rate from the current 34% to 50% by such measures as increasing the current rate of FGD byproduct use and increasing in the number of uses considered allowable under state regulations. Another issue of interest to the CBRC would be to examine the environmental impact of both byproduct utilization and disposal. No byproduct utilization technology is likely to be adopted by industry unless it is more cost-effective than landfilling. Therefore, it is extremely important that the utility industry provide guidance to the R&D program. Government agencies and privatesector organizations that may be able to utilize these materials in the conduct of their missions should also provide input. The CBRC will serve as an effective vehicle for acquiring and maintaining guidance from these diverse organizations so that the proper balance in the R&D program is achieved.

  6. Sandia National Laboratories: Fuel Cell Technologies Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cell Technologies Office Federal Laboratory Consortium Regional Technology-Transfer Awards Salute Innovation, Commercialization at Sandia On September 23, 2014, in...

  7. NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer Novel...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for "Outstanding Commercialization Success" from the Federal Laboratory Consortium for Technology Transfer. On October 4, 2012, the NETL team who developed this alloy received...

  8. BETO Announces June Webinar: Algal Biofuels Consortium Releases...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    June Webinar: Algal Biofuels Consortium Releases Groundbreaking Research Results BETO Announces June Webinar: Algal Biofuels Consortium Releases Groundbreaking Research Results...

  9. Consortium for Petroleum & Natural Gas Stripper Wells

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2007-03-31T23:59:59.000Z

    The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), established a national industry-driven Stripper Well Consortium (SWC) that is focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The SWC represents a partnership between U.S. petroleum and natural gas producers, trade associations, state funding agencies, academia, and the NETL. This document serves as the twelfth quarterly technical progress report for the SWC. Key activities for this reporting period included: (1) Drafting and releasing the 2007 Request for Proposals; (2) Securing a meeting facility, scheduling and drafting plans for the 2007 Spring Proposal Meeting; (3) Conducting elections and announcing representatives for the four 2007-2008 Executive Council seats; (4) 2005 Final Project Reports; (5) Personal Digital Assistant Workshops scheduled; and (6) Communications and outreach.

  10. National Alternative Fuels Training Consortium (NAFTC) Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ti017ebron2012o.pdf More Documents & Publications National Alternative Fuels Training Consortium (NAFTC) Clean Cities Learning Program Clean Cities Education & Outreach...

  11. National Alternative Fuels Training Consortium (NAFTC) Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ti017ebron2011p.pdf More Documents & Publications National Alternative Fuels Training Consortium (NAFTC) Clean Cities Learning Program Clean Cities Education & Outreach...

  12. 2011 Municipal Consortium Northwest Region Workshop Materials

    Broader source: Energy.gov [DOE]

    This page provides links to the presentations given at the DOE Municipal Solid-State Street Lighting Consortium Northwest Region Workshop, held in Seattle July 15, 2011.

  13. Proteogenomic Analysis of a Thermophilic Bacterial Consortium...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    not well-explored. Here we report on the metagenomic and proteogenomic analyses of a compost-derived bacterial consortium adapted to switchgrass at elevated temperature with high...

  14. A Documentation Consortium 1 8/18/10 A Documentation Consortium

    E-Print Network [OSTI]

    A Documentation Consortium 1 8/18/10 A Documentation Consortium Ted Habermann Executive Documentation Consortium," it would leverage the efforts and commitments of multiple agencies, such as NOAA in the deployment of ISOcompliant documentation. Such exemplars can be found in a growing and diverse set

  15. Lab Subcontractor Consortium provides grants

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,s -Lab Subcontractor Consortium

  16. Los Alamos National Laboratory Scientific Excellence for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ostics for Control Manufacturing Processes - Prototype to Large-scale Advanced (including Additive) Manufacturing: Prediction and control of manufacturing processes - bringing...

  17. Nuclear Arms Control R&D Consortium includes Los Alamos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Arms Control R&D Consortium includes Los Alamos Nuclear Arms Control R&D Consortium includes Los Alamos A consortium led by the University of Michigan that includes LANL as...

  18. ESF Consortium for Ocean Drilling White Paper

    E-Print Network [OSTI]

    Purkis, Sam

    ESF Consortium for Ocean Drilling (ECOD) White Paper An ESF Programme September 2003 #12;The, maintains the ship over a specific location while drilling into water depths up to 27,000 feet. A seven Amsterdam, The Netherlands #12;1 ESF Consortium for Ocean Drilling (ECOD) White Paper Foreword 3

  19. A University Consortium on Low Temperature Combustion (LTC) for...

    Energy Savers [EERE]

    A University Consortium on Low Temperature Combustion (LTC) for High Efficiency, Ultra-Low Emission Engines A University Consortium on Low Temperature Combustion (LTC) for High...

  20. SMART Wind Consortium Composites Subgroup Virtual Meeting: Advanced...

    Energy Savers [EERE]

    SMART Wind Consortium Composites Subgroup Virtual Meeting: Advanced Manufacturing of Wind Turbine Blades SMART Wind Consortium Composites Subgroup Virtual Meeting: Advanced...

  1. A University Consortium on Low Temperature Combustion (LTC) for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Consortium on Efficient and Clean High-Pressure, Lean Burn (HPLB) Engines A University Consortium on Low Temperature Combustion (LTC) for High Efficiency, Ultra-Low Emission...

  2. Sandia Energy - Consortium for Advanced Simulation of Light Water...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Consortium for Advanced Simulation of Light Water Reactors (CASL) Home Stationary Power Nuclear Fuel Cycle Advanced Nuclear Energy Consortium for Advanced Simulation of Light Water...

  3. Smart Grid Consortium, Response of New York State Smart Grid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Consortium, Response of New York State Smart Grid Addressing Policy and Logistical Challenges Smart Grid Consortium, Response of New York State Smart Grid Addressing Policy and...

  4. DOE Announces Webinars on Algal Biofuels Consortium Research...

    Office of Environmental Management (EM)

    Algal Biofuels Consortium Research Results, Solar Energy Maps, and More DOE Announces Webinars on Algal Biofuels Consortium Research Results, Solar Energy Maps, and More June 10,...

  5. Consortium for Electric Reliability Technology Solutions Grid of the Future White Paper on

    E-Print Network [OSTI]

    LBNL-45272 Consortium for Electric Reliability Technology Solutions Grid of the Future White Paper on The Federal Role in Electric System R&D During a Time of Industry Transition: An Application of Scenario Berkeley National Laboratory CERTS Grid of the Future Project Team Carlos Martinez, Edison Technology

  6. DTC DATA MINING CONSORTIUM MEMBERSHIP BENEFITS

    E-Print Network [OSTI]

    Minnesota, University of

    DTC DATA MINING CONSORTIUM MEMBERSHIP BENEFITS I Collaboration with leading companies I BEHAVIORAL ECOLOGY DRUG DISCOVERY BUSINESS SALES & MARKETING AUTOMOTIVE CRM GOVERNMENT CYBER SECURITY Creation Analysis Optimization Scalable Database Mining Auto-Mining Agents CUTTING-EDGE CAPABILITIES

  7. 2011 Municipal Consortium Northeast Region Workshop Materials

    Broader source: Energy.gov [DOE]

    This page provides links to the presentations given at the DOE Municipal Solid-State Street Lighting Consortium Northeast Region Workshop, held in Philadelphia, May 1920, 2011.

  8. 2011 Municipal Consortium Southwest Region Workshop Materials

    Broader source: Energy.gov [DOE]

    This page provides links to the presentations given at the DOE Municipal Solid-State Street Lighting Consortium Southwest Region Workshop, held in San Jose, California, August 2526, 2011.

  9. 2010 Municipal Consortium Southwest Region Workshop Materials

    Broader source: Energy.gov [DOE]

    This page provides links to the presentations given at the DOE Municipal Solid-State Street Lighting Consortium Southwest Region Workshop, held in Los Angeles on September 30, 2010.

  10. Biometric Consortium 2004 Conference R. JAMES WOOLSEY

    E-Print Network [OSTI]

    Biometric Consortium 2004 Conference R. JAMES WOOLSEY Vice President Booz Allen Hamilton 8283 joined Booz Allen Hamilton in July 2002 as a Vice President and officer in the firm's Global Resilience

  11. INNOVATION EDUCATION EXCELLENCE DISTILLATIONS

    E-Print Network [OSTI]

    Chan, Hue Sun

    INNOVATION EDUCATION EXCELLENCE DISTILLATIONS University of Toronto CHEMISTRY ALUMNI MAGAZINE.utoronto.ca / distillations 2012 MessagefromtheChair Our Department of Chemistry has one of the finest collection of peo- ple to a better, more sustain- able future. This issue of Distillations highlights the accomplishments last year

  12. ENVIRONMENTAL EXCELLENCE APRIL 1, 2009

    E-Print Network [OSTI]

    Minnesota, University of

    MN/DOT'S ENVIRONMENTAL EXCELLENCE AWARDS APRIL 1, 2009 #12;ENVIRONMENTAL EXCELLENCE IN HIGHWAY-rap. #12;ENVIRONMENTAL EXCELLENCE IN HIGHWAY DESIGN CSAH 18 BRIDGE OVER VALLEY CREEK ROAD WASHINGTON COUNTY #12;ENVIRONMENTAL EXCELLENCE IN HIGHWAY CONSTRUCTION HIGHWAY 19 HENNEPIN COUNTY REGIONAL TRAIL #12;A

  13. Consortium wins major Brazilian gas contract

    SciTech Connect (OSTI)

    O`Driscoll

    1994-08-16T23:59:59.000Z

    An international consortium of BHP of Australia, Tenneco Gas of the U.S. and British Gas was selected Monday by Petroleo Braileiro SA (Petrobras) to Monday by Petroleo Brasileiro SA (Petrobras) to develop a $2 billion natural gas pipeline linking reserves in Bolivia with markets in southern and southeastern Brazil.

  14. Presented by CASL: The Consortium for Advanced

    E-Print Network [OSTI]

    by enabling higher fuel burnups Enhance nuclear safety by enabling high-fidelity predictive capability integrity Violation of safety limits Reduces cost of electricity Essentially expands existing nuclearPresented by Nuclear Energy CASL: The Consortium for Advanced Simulation of Light Water Reactors

  15. Continuous Casting Consortium Report to POSCO

    E-Print Network [OSTI]

    Thomas, Brian G.

    in Fig. 2, the gas fuel (such as propane C3H8) and oxygen leaving the torch combust into a high of the heat is transported away through radiation and advection with the combustion gas and the rest- 1 - Continuous Casting Consortium Report to POSCO Modeling Steel Slab Heat Transfer During

  16. A Documentation Consortium Ted Habermann, NOAA

    E-Print Network [OSTI]

    A Documentation Consortium Ted Habermann, NOAA Documentation: It's not just discovery... 50% change this settles the issue.. #12;New Documentation Needs For skeptics, the 1,000 or so e-mails and documents hacked Communities - Users Documentation: communicating with the future #12;Geoffrey Moore has attributed the S

  17. Sandia Energy - Transportation Energy Consortiums

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratorySoftware Hometdheinr Home AboutTransportation

  18. NETL Researcher Honored with 2013 Federal Laboratory Consortium...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mechanical homogeneity. This technology helps increase yield in the specialty metals and alloys used in aerospace, chemical, energy, food processing, marine, medical, military,...

  19. NETL Researcher Honored with 2013 Federal Laboratory Consortium...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    next-generation power plants. He grew up in Bay City, Mich., and earned a B.S. in metallurgy from Michigan Technological University (Houghton, Mich.) and Ph.D. in metallurgy...

  20. NETL Researcher Honored with 2013 Federal Laboratory Consortium...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    its training partners are using the system to deliver realistic, cost-effective, and low-risk workforce training to the energy industries. Virtual reality-based training helps...

  1. Launch of the Grid Modernization Laboratory Consortium | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732on ArmedManufacturingJune 17, 2015LMLand andShadeofNews

  2. Launch of the Grid Modernization Laboratory Consortium | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »of Energy Laser-Firing ChemCam VitalJune23,About

  3. NETL Researcher Honored with 2013 Federal Laboratory Consortium Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gif Directorate -AdvancedMIRTBD525AdaptingWater and

  4. NETL Researcher Honored with 2013 Federal Laboratory Consortium Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gif Directorate -AdvancedMIRTBD525AdaptingWater andJeffrey Hawk

  5. NETL Researcher Honored with 2013 Federal Laboratory Consortium Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gif Directorate -AdvancedMIRTBD525AdaptingWater andJeffrey

  6. NETL Researcher Honored with 2013 Federal Laboratory Consortium Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gif Directorate -AdvancedMIRTBD525AdaptingWater andJeffreyKing

  7. NETL Researcher Honored with 2013 Federal Laboratory Consortium Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gif Directorate -AdvancedMIRTBD525AdaptingWater

  8. NETL Researcher Honored with 2013 Federal Laboratory Consortium Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gif Directorate -AdvancedMIRTBD525AdaptingWaterTerry Jordan of

  9. Sandia Energy - Sandia Earns Federal Laboratory Consortium (FLC) Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757Kelley RuehlReportPeter

  10. DOE Municipal Solid-State Street Lighting Consortium

    Broader source: Energy.gov [DOE]

    The DOE Municipal Solid-State Street Lighting Consortium shares technical information and experiences related to LED street and area lighting demonstrations and serves as an objective resource for evaluating new products on the market intended for those applications. Cities, power providers, and others who invest in street and area lighting are invited to join the Consortium and share their experiences. The goal is to build a repository of valuable field experience and data that will significantly accelerate the learning curve for buying and implementing high-quality, energy-efficient LED lighting. Consortium members are part of an international knowledge base and peer group, receive updates on Consortium tools and resources, receive the Consortium E-Newsletter, and help steer the work of the Consortium by participating on a committee. Learn more about the Consortium.

  11. Consortium Support (Fixed Support) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014 BuildingEnergyEnergyConsortium Support (Fixed Support)

  12. As Director of Brookhaven National Laboratory (BNL), I expect nothing less than excellence from our em-ployees and visiting researchers, in terms of the science carried out here, our support operations, and in our role as

    E-Print Network [OSTI]

    Homes, Christopher C.

    . In 2003, the Laboratory continued to demonstrate environmental leadership across the Department of Energy (DOE) complex by having our Environmental Management System (EMS) recertified to the ISO 14001 standard-based Natural Resource Management Plan and approved funding for several research projects. It is important

  13. The Historically Black Colleges and Universities/Minority Institutions Environmental Technology Consortium annual report 1994--1995

    SciTech Connect (OSTI)

    NONE

    1998-07-01T23:59:59.000Z

    The HBCU/MI ET Consortium was established in January 1990, through a Memorandum of Understanding (MOU) among its member institutions. This group of research oriented Historically Black Colleges and Universities and Minority Institutions (HBCU/MIs) agreed to work together to initiate or revise education programs, develop research partnerships with public and private sector organizations, and promote technology development to address the nation`s critical environmental contamination problems. The Consortium`s Research, Education and Technology Transfer (RETT) Plan became the working agenda. The Consortium is a resource for collaboration among the member institutions and with federal an state agencies, national and federal laboratories, industries, (including small businesses), majority universities, and two and four-year technical colleges. As a group of 17 institutions geographically located in the southern US, the Consortium is well positioned to reach a diverse group of women and minority populations of African Americans, Hispanics and American Indians. This Report provides a status update on activities and achievements in environmental curriculum development, outreach at the K--12 level, undergraduate and graduate education, research and development, and technology transfer.

  14. A University Consortium on High Pressure, Lean Combustion for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Pressure, Lean Combustion for Efficient and Clean IC Engines (UM - lead, MIT, UCB) A University Consortium on High Pressure, Lean Combustion for Efficient and Clean IC Engines...

  15. A University Consortium on Low Temperature Combustion (LTC) for...

    Broader source: Energy.gov (indexed) [DOE]

    Vehicle Technologies Program Annual Merit Review Washington, D.C., May 18-22, 2009 LTC University Consortium Overview TIMELINE * Start - Jan 2006 * Finish - June 2009 * 85%...

  16. Municipal Consortium Annual Meeting Presentations and MaterialsPhoenix, AZ

    Broader source: Energy.gov [DOE]

    This page provides links to presentations and materials from the DOE Municipal Solid-State Street Lighting Consortium Annual Meeting held in Phoenix on September 11, 2013.

  17. area consortium research: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    138 Introduction Report 21 of the Consortium project "Seismic Waves in Complex 3D Structures" Geosciences Websites Summary: on Seismic Anisotropy in Bahrain in 2012, and...

  18. U. K. consortium Stirling engine programme

    SciTech Connect (OSTI)

    Rice, G.

    1982-08-01T23:59:59.000Z

    This paper covers the design and construction of a high pressure helium-charged two cylinder 20 kW Stirling engine to be operated in either the alpha or gamma configuration. The design includes a sodium heat pipe head. A joint University/ Industry Consortium was set up for the production of this research engine and the various contributions of the members are outlined in the paper. A dynamic test rig has been built to test regenerators and the paper illustrates the unique feature of this rig which enables measurement of the enthalpy loss through the regenerator and its effectiveness.

  19. Commercial Buildings Consortium | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platformBuildingCoal CombustionSmart Grid RFI:onConsortium Commercial Buildings

  20. Sandia National Laboratories: Solar Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, Solar, Solar Newsletter A team from Sandia National Laboratories' (SNL) National Solar Thermal Test Facility (NSTTF) recently won a first place Excellence Award in the...

  1. Urban Consortium Energy Task Force - Year 21 Final Report

    SciTech Connect (OSTI)

    NONE

    2003-04-01T23:59:59.000Z

    The Urban Consortium Energy Task Force (UCETF), comprised of representatives of large cities and counties in the United States, is a subgroup of the Urban Consortium, an organization of the nation's largest cities and counties joined together to identify, develop and deploy innovative approaches and technological solutions to pressing urban issues.

  2. West Virginia Space Grant Consortium G-68 Engineering Sciences Building

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    NASA West Virginia Space Grant Consortium G-68 Engineering Sciences Building West Virginia.nasa.wvu.edu West Virginia University Bethany College Bluefield State College Fairmont State University Consortium Foundation West Virginia State University WVU Institute of Technology West Virginia Wesleyan

  3. for the Open Source Modelica Consortium December 4, 2007

    E-Print Network [OSTI]

    Zhao, Yuxiao

    1 BYLAWS for the Open Source Modelica Consortium (OSMC) December 4, 2007 Adopted at the statutory Source Modelica Consortium, abbreviated as OSMC. The association has its seat in Linkping, Sweden. 1 and promoting the development and usage of the OpenModelica open source implementation of the Modelica computer

  4. THE DANISH CONSORTIUM FOR WIND ENERGY RESEARCH Lars Landberg1

    E-Print Network [OSTI]

    (Aalborg University) and DHI ­ Water and Environment. The structure of the consortium can be seen in Figure University of Denmark, Aalborg University, DHI ­ Water and Environment. 2.1 Mission and vision The Mission in 2003. Basically the joint R&D effort among the consortium partners in the medium to long term

  5. Excel

    E-Print Network [OSTI]

    It is smart practice to SAVE and PRINT your gradesheet every time you enter new scores. Just select SAVE from the FILE menu to save the sheet to a file and...

  6. Excel

    E-Print Network [OSTI]

    A, B, C, D, E, F. 1, Cantor, Georg, 95, 90, 49, 48. 2, Dedekind, Richard, 98, 80, 40, 45. 3, Gauss, Karl F. 100, 100, 0, 0. 4, Kronecker, Sid, 55, 40, 49, 49.

  7. SEEA SOUTHEAST CONSORTIUM FINAL TECHNICAL REPORT

    SciTech Connect (OSTI)

    Block, Timothy [Southeast Energy Efficiency Alliance] [Southeast Energy Efficiency Alliance; Ball, Kia [Southeast Energy Efficiency Alliance] [Southeast Energy Efficiency Alliance; Fournier, Ashley [Southeast Energy Efficiency Alliance] [Southeast Energy Efficiency Alliance

    2014-01-21T23:59:59.000Z

    In 2010 the Southeast Energy Efficiency Alliance (SEEA) received a $20 million Energy Efficiency and Conservation Block Grant (EECBG) under the U.S. Department of Energys Better Building Neighborhood Program (BBNP). This grant, funded by the American Recovery and Reinvestment Act, also included sub-grantees in 13 communities across the Southeast, known as the Southeast Consortium. The objective of this project was to establish a framework for energy efficiency retrofit programs to create models for replication across the Southeast and beyond. To achieve this goal, SEEA and its project partners focused on establishing infrastructure to develop and sustain the energy efficiency market in specific localities across the southeast. Activities included implementing minimum training standards and credentials for marketplace suppliers, educating and engaging homeowners on the benefits of energy efficiency through strategic marketing and outreach and addressing real or perceived financial barriers to investments in whole-home energy efficiency through a variety of financing mechanisms. The anticipated outcome of these activities would be best practice models for program design, marketing, financing, data collection and evaluation as well as increased market demand for energy efficiency retrofits and products. The Southeast Consortiums programmatic impacts along with the impacts of the other BBNP grantees would further the progress towards the overall goal of energy efficiency market transformation. As the primary grantee SEEA served as the overall program administrator and provided common resources to the 13 Southeast Consortium sub-grantees including contracted services for contractor training, quality assurance testing, data collection, reporting and compliance. Sub-grantee programs were located in cities across eight states including Alabama, Florida, Georgia, Louisiana, North Carolina, South Carolina, Tennessee, Virginia and the U.S. Virgin Islands. Each sub-grantee program was designed to address the unique local conditions and population of its community. There was great diversity in programs design, types of financing and incentives, building stock characteristics, climate and partnerships. From 2010 through 2013, SEEA and its sub-grantee programs focused on determining best practices in program administration, workforce development, marketing and consumer education, financing, and utility partnerships. One of the common themes among programs that were most successful in each of these areas was strong partnerships and collaborations with people or organizations in the community. In many instances engaged partners proved to be the key to addressing barriers such as access to financing, workforce development opportunities and access to utility bill data. The most challenging barrier proved to be the act of building a market for energy efficiency where none previously existed. With limited time and resources, educating homeowners of the value in investing in energy efficiency while engaging electric and gas utilities served as a significant barrier for several programs. While there is still much work to be done to continue to transform the energy efficiency market in the Southeast, the programmatic activities led by SEEA and its sub-grantees resulted in 8,180 energy audits and 5,155 energy efficiency retrofits across the Southeast. In total the Southeast Consortium saved an estimated 27,915,655.93 kWh and generated an estimated $ 2,291,965.90 in annual energy cost savings in the region.

  8. ABB and Energy Utilities Form Consortium to Fund SCADA/EMS Cyber...

    Energy Savers [EERE]

    Utilities Form Consortium to Fund SCADAEMS Cyber Security Assessment at National SCADA Test Bed ABB and Energy Utilities Form Consortium to Fund SCADAEMS Cyber Security...

  9. EMBL International PhD Programme Excellence in advanced training

    E-Print Network [OSTI]

    Uppsala Universitet

    EMBL International PhD Programme Excellence in advanced training European Molecular Biology Laboratory #12;#12;Welcome to the EMBL International PhD Programme 4 Freedom for your independent spirit 6 What's the best thing about doing your PhD at EMBL? 9 EMBL research units 12 EMBL sites 16 Our partner

  10. ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS

    SciTech Connect (OSTI)

    Joel L. Morrison

    2002-09-27T23:59:59.000Z

    The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the eighth quarterly technical progress report for the SWC. Key activities for this reporting period include: (1) issuing subcontracts, (2) SWC membership class expansion, (3) planning SWC technology transfer meetings, and (4) extending selected 2001 project periods of performance. In addition, a literature search that focuses on the use of lasers, microwaves, and acoustics for potential stripper well applications continued.

  11. ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS

    SciTech Connect (OSTI)

    Joel L. Morrison

    2003-04-08T23:59:59.000Z

    The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the ninth quarterly technical progress report for the SWC. Key activities for this reporting period include: (1) organizing and hosting two fall technology transfer meetings, (2) SWC membership class expansion, and (3) planning the SWC 2003 Spring meeting. In addition, a literature search that focuses on the use of lasers, microwaves, and acoustics for potential stripper well applications continued.

  12. Establishment of an Industry-Driven Consortium Focused on Improving the Production Performance of Domestic Stripper Wells

    SciTech Connect (OSTI)

    Joel Morrison; Sharon Elder

    2006-01-24T23:59:59.000Z

    The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the sixth quarterly technical progress report for the SWC. Key activities for this reporting period included: (1) Organized and hosted two technology transfer meetings; (2) Collaborated with the Pennsylvania Oil and Gas Association (POGAM) to host a Natural Gas Outlook conference in Pittsburgh, PA; (3) Provided a SWC presentation at the Interstate Oil and Gas Compact Commission (IOGCC) meeting in Jackson Hole, WY; and (4) Completed and released a stripper well industry documentary entitled: ''Independent Oil: Rediscovering America's Forgotten Wells''.

  13. ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS

    SciTech Connect (OSTI)

    Joel L. Morrison

    2001-09-14T23:59:59.000Z

    The Pennsylvania State University, under contract to the US Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the US petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the four quarterly technical progress report for the SWC. During this reporting period, Penn State primary focus was on finalizing all subcontracts, planning the SWC technology transfer meeting and two workshops in the southern US, and preparing the next SWC newsletter. Membership in the SWC now stands at 49.

  14. Establishment of an Industry-Driven Consortium Focused on Improving the Production Performance of Domestic Stripper Wells

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2006-04-21T23:59:59.000Z

    The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) has established a national industry-driven Stripper Well Consortium (SWC) that is focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the seventh quarterly technical progress report for the SWC. Key activities for this reporting period include: (1) Nomination and election of the Executive Council members for the 2006-07 term, (2) Finalize and release the 2006 Request for Proposals (RFP), (3) Invoice and recruit members, (4) Plan for the spring meeting, (5) Improving communication efforts, and (6) Continue distribution of the DVD entitled: ''Independent Oil: Rediscovering American's Forgotten Wells''.

  15. ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS

    SciTech Connect (OSTI)

    Joel L. Morrison

    2005-01-04T23:59:59.000Z

    The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the seventeenth quarterly technical progress report for the SWC. Key activities for this reporting period include: (1) organizing and hosting the SWC fall technology transfer meetings in Oklahoma City, Oklahoma and State College, Pennsylvania, (2) planning of the upcoming SWC spring proposal meeting, (3) release of the SWC Request-for-proposals (RFP), (4) revision of the SWC By-Laws, and (5) the SWC Executive Council nomination and election for 2005-2006 term members.

  16. Team Excellence Award Nomination Form

    E-Print Network [OSTI]

    Dennett, Daniel

    Team Excellence Award Nomination Form Printed: Tuesday, July 30, 2013 1. Team name: 2. Enter the full names and titles of all team members: 3. Who does this team serve and how did they go above sentences. 4. How did this team develop effective relationships and use resources creatively? Please limit

  17. Genome Analyses and Supplement Data from the International Populus Genome Consortium (IPGC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    International Populus Genome Consortium (IPGC)

    The sequencing of the first tree genome, that of Populus, was a project initiated by the Office of Biological and Environmental Research in DOEs Office of Science. The International Populus Genome Consortium (IPGC) was formed to help develop and guide post-sequence activities. The IPGC website, hosted at the Oak Ridge National Laboratory, provides draft sequence data as it is made available from DOE Joint Genome Institute, genome analyses for Populus, lists of related publications and resources, and the science plan. The data are available at http://www.ornl.gov/sci/ipgc/ssr_resource.htm.

  18. The Waste-Management Education and Research Consortium (WERC) annual progress report, 1990--1991

    SciTech Connect (OSTI)

    None

    1991-02-25T23:59:59.000Z

    In February, 1990, the Secretary of Energy, James Watkins approved a grant for a waste (management) education and research consortium program by New Mexico State University (NMSU) to the US Department of Energy (DOE) . This program known by the acronym, WERC'' includes NMSU, the University of New Mexico (UNM), the New Mexico Institute of Mining and Technology (NMIMT), the Los Alamos National Laboratory and the Sandia National Laboratories. The program is designed to provide an integrated approach to the national need via the following: (1) Education in waste management by the Consortium universities resulting in graduate, undergraduate, and associate degrees with concentration in environmental management. The term waste management is used in a broad sense throughout this paper and includes all aspects of environmental management and environmental restoration. (2) Research programs at the leading edge, providing training to faculty and students and feeding into the education programs. (3) Education and research at the campuses, as well as from three field sites. (4) Ties with other multi-disciplinary university facilities. (5) Ties with two National Laboratories located in New Mexico. (6) Technology transfer and education via an existing fiber optic network, a proposed satellite link, and an existing state-wide extension program. (7) An outreach program to interest others in environmental management, especially precollege students, minority students and practitioners in the field. This report summarizes the accomplishments and status at the end of the first year.

  19. Georgia Southern University Career Services Williams Center (912) 478-5197 www.georgiasouthern.edu/career/ Explore. Experience. Excel.

    E-Print Network [OSTI]

    Hutcheon, James M.

    agencies Consulting engineering firms Utility companies Private laboratories Industrial firms. Excel. Updated 1/13/2011 Possible Areas of Specialization: Robotics Solar Applications Computer

  20. Frequently Asked Questions About the Municipal Solid-State Street Lighting Consortium

    Broader source: Energy.gov [DOE]

    This page addresses many of the questions about the Municipal Solid-State Street Lighting Consortium.

  1. Genome Structure Gallery from the Mycobacterium Tuberculosis Structual Genomics Consortium

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The TB Structural Genomics Consortium works with the structures of proteins from M. tuberculosis, analyzing these structures in the context of functional information that currently exists and that the Consortium generates. The database of linked structural and functional information constructed from this project will form a lasting basis for understanding M. tuberculosis pathogenesis and for structure-based drug design. The Consortium's structural and functional information is publicly available. The Structures Gallery makes more than 650 total structures available by PDB identifier. Some of these are not consortium targets, but all are viewable in 3D color and can be manipulated in various ways by Jmol, an open-source Java viewer for chemical structures in 3D from http://www.jmol.org/

  2. DOE Street Lighting Consortium Releases Results of Public Street...

    Broader source: Energy.gov (indexed) [DOE]

    Solid-State Street Lighting Consortium (MSSLC) has released the results of a voluntary web-based inventory survey of public street and area lighting across the U.S., conducted...

  3. 2011 Municipal Consortium North Central Region Workshop Materials

    Broader source: Energy.gov [DOE]

    This page provides links to the presentations given at the DOE Municipal Solid-State Street Lighting Consortium North Central Region Workshop, held in Kansas City, MO, March 89, 2011.

  4. 2011 Municipal Consortium North Central Region Workshop Materials

    Broader source: Energy.gov [DOE]

    This page provides links to the presentations given at the DOE Municipal Solid-State Street Lighting Consortium North Central Region Workshop, held in Detroit, June 1617, 2011.

  5. 3710 McClintock Avenue Induced Seismicity Consortium (ISC)

    E-Print Network [OSTI]

    Southern California, University of

    of environmental safety associated with hydraulic fracturing operations, waste water injection, fluid production critical and under of environmental safety associated with hydraulic fracturing operations, waste water regulatory agency partners. The consortium will support two key integrated programs; 1) advancing geoscience

  6. CAIIAC: Consortium for Accelerated Innovation and Insertion of

    E-Print Network [OSTI]

    Das, Suman

    Grant Advanced Manufacturing Technology (AMTech) Program will spur consortium-planned, industry-led R Standardized composite design and testing for faster and more affordable certifications Recycling and reuse

  7. Municipal Solid-State Street Lighting Consortium Kickoff Webcast

    Broader source: Energy.gov [DOE]

    This May 6, 2010 webcast served as the first official meeting of the new DOE Municipal Solid-State Street Lighting Consortium. Ed Smalley of Seattle City Light and Bruce Kinzey of Pacific Northwest...

  8. Schwartz emphasizes continued excellence in State of the Laboratory...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    renowned in condensed matter physics and materials, chemical and molecular sciences, and applied materials science and engineering. It's because of all of you." Schwartz...

  9. Los Alamos National Laboratory Scientific Excellence for Mission Impact

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5LetLooking5 million Applauding ourSafety

  10. Forensic Technology Center of Excellence | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New MexicoFinancingProofWorkingEnergyGo modelPForeignForensic

  11. University consortium faulted on management, accounting

    SciTech Connect (OSTI)

    Anderson, C.

    1993-07-09T23:59:59.000Z

    Four years into the job of building the superconducting Super Collider (SSC)-and in the face of growing political pressure to kill the project-congressional and federal officials are questioning whether the university consortium that run the SSC is up to the job. Universities Research Association Inc. (URA), a group of 80 public and private research universities that also operates Fermilab, was selected as prime contractor in January 1989. But after repeated charges of mismanagement and accounting buses, the Department of Energy (DOE), which funds the project, is contemplating major changes to the contract, including terminating it. DOE Secretary Hazel O'Leary has begun a 30-day review of the project and has laid out three options: terminating the URA contract; awarding separate contracts for science and conventional construction; and renegotiating the existing contract to give DOE a larger oversight role. Sources close to the project predict that O'Leary will pick a variation of the third option and will remove at least one of the managers grilled at last week's hearing.

  12. ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS

    SciTech Connect (OSTI)

    Joel L. Morrison

    2004-05-17T23:59:59.000Z

    The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the thirteenth quarterly technical progress report for the SWC. Key activities for this reporting period included: (1) hosting three fall technology transfer meetings in Wyoming, Texas, and Pennsylvania, (2) releasing the 2004 SWC request-for-proposal (RFP), and (3) initial planning of the SWC spring meeting in Golden Colorado for selecting the 2004 SWC projects. The Fall technology transfer meetings attracted 100+ attendees between the three workshops. The SWC membership which attended the Casper, Wyoming workshop was able to see several SWC-funded projects operating in the field at the Rocky Mountain Oilfield Testing Center. The SWC is nearing the end of its initial funding cycle. The Consortium has a solid membership foundation and a demonstrated ability to review and select projects that have relevancy to meet the needs of domestic stripper well operators.

  13. ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS

    SciTech Connect (OSTI)

    Joel L. Morrison

    2002-09-30T23:59:59.000Z

    The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), has established a national industry-driven Stripper Well Consortium (SWC) that is focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the second topical report. The SWC has grown and diversified its membership during its first 24 months of existence. The Consortium is now focused on building strategic alliances with additional industrial, state, and federal entities to expand further the SWC membership base and transfer technologies as they are developed. In addition, the Consortium has successfully worked to attract state support to co-fund SWC projects. Penn State has entered a co-funding arrangement with the New York State Energy Development Authority (NYSERDA) which has provided $200,000 over the last two years to co-fund stripper well production-orientated projects that have relevance to New York state producers. During this reporting period, the Executive Council approved co-funding for 14 projects that have a total project value of $2,116,897. Since its inception, the SWC has approved cofunding for 27 projects that have a total project value of $3,632,109.84. The SWC has provided $2,242,701 in co-funding for these projects and programmatically maintains a cost share of 39%.

  14. Advanced Materials Center of Excellence Jason Boehm

    E-Print Network [OSTI]

    Advanced Materials Center of Excellence Webinar Jason Boehm Program Coordination Office National Materials Genome Initiative Advanced Materials Center of Excellence Overview Federal Funding Opportunity one Center focused on Advanced Materials Depending on FY2014 Funding NIST expects to announce

  15. AVESTAR Center for operational excellence of electricity generation plants

    SciTech Connect (OSTI)

    Zitney, S.

    2012-01-01T23:59:59.000Z

    To address challenges in attaining operational excellence for clean energy plants, the U.S.Department of Energys National Energy Technology Laboratory has launched a world-class facility for Advanced Virtual Energy Simulation Training and Research (AVESTAR). The AVESTAR Center brings together state-of-the-art, real time,high-fidelity dynamic simulators with operator training systems and 3D virtual immersive training systems into an integrated energy plant and control room environment.

  16. Center for Excellence in Logistics and Distribution

    E-Print Network [OSTI]

    Noble, James S.

    Center for Excellence in Logistics and Distribution (CELDi) A National Science Foundation sponsored/UCRC) CELDi has the mission of enabling member organizations to achieve logistics and distribution excellence partnerships achieve logistics and distribution excellence by: 1. Solving real problems that achieve bottom

  17. A Consortium of the United States Council for Automotive Research Nondestructive Evaluation Steering Committee

    E-Print Network [OSTI]

    Knowles, David William

    Automotive Industry September 6, 2006 United States Automotive Materials Partnership, A Consortium .....................................................................................................11 Chapter 2 The Expanding Role of NDE in the Automotive Industry.................................13A Consortium of the United States Council for Automotive Research Nondestructive Evaluation

  18. JV Task 6 - Coal Ash Resources Research Consortium Research

    SciTech Connect (OSTI)

    Debra Pflughoeft-Hassett; Tera Buckley; Bruce Dockter; Kurt Eylands; David Hassett; Loreal Heebink; Erick Zacher

    2008-04-01T23:59:59.000Z

    The Coal Ash Resources Research Consortium{reg_sign} (CARRC{reg_sign}, pronounced 'cars') focuses on performing fundamental and applied scientific and engineering research emphasizing the environmentally safe, economical use of coal combustion by-products (CCBs). CARRC member organizations, which include utilities and marketers, are key to developing industry-driven research in the area of CCB utilization and ensuring its successful application. The U.S. Department of Energy is a partner in CARRC through the EERC Jointly Sponsored Research Program (JSRP), which provides matching funds for industrial member contributions and facilitates an increased level of effort in CARRC. CARRC tasks were designed to provide information on CCB performance, including environmental performance, engineering performance, favorable economics, and improved life cycle of products and projects. CARRC technical research tasks are developed based on member input and prioritization. CARRC special projects are developed with members and nonmembers to provide similar information and to support activities, including the assembly and interpretation of data, support for standards development and technology transfer, and facilitating product development and testing. CARRC activities from 1998 to 2007 included a range of research tasks, with primary work performed in laboratory tasks developed to answer specific questions or evaluate important fundamental properties of CCBs. CARRC topical reports were prepared on several completed tasks. Specific CARRC 1998B2007 accomplishments included: (1) Development of several ASTM International Standard Guides for CCB utilization applications. (2) Organization and presentation of training courses for CCB professionals and teachers. (3) Development of online resources including the Coal Ash Resource Center, Ash from Biomass in Coal (ABC) of cocombustion ash characteristics, and the Buyer's Guide to Coal-Ash Containing Products. In addition, development of expanded information on the environmental performance of CCBs in utilization settings included the following: (1) Development of information on physical properties and engineering performance for concrete, soil-ash blends, and other products. (2) Training of students through participation in CARRC research projects. (3) Participation in a variety of local, national, and international technical meetings, symposia, and conferences by presenting and publishing CCB-related papers.

  19. JV Task 120 - Coal Ash Resources Research Consortium Research

    SciTech Connect (OSTI)

    Debra Pflughoeft-Hassett; Loreal Heebink; David Hassett; Bruce Dockter; Kurt Eylands; Tera Buckley; Erick Zacher

    2009-03-28T23:59:59.000Z

    The Coal Ash Resources Research Consortium{reg_sign} (CARRC{reg_sign}, pronounced 'cars') is the core coal combustion product (CCP) research group at the Energy & Environmental Research Center (EERC). CARRC focuses on performing fundamental and applied scientific and engineering research emphasizing the environmentally safe, economical use of CCPs. CARRC member organizations, which include utilities and marketers, are key to developing industry-driven research in the area of CCP utilization and ensuring its successful application. The U.S. Department of Energy is a partner in CARRC through the EERC Jointly Sponsored Research Program, which provides matching funds for industrial member contributions and facilitates an increased level of effort in CARRC. CARRC tasks were designed to provide information on CCP performance, including environmental performance, engineering performance, favorable economics, and improved life cycle of products and projects. CARRC technical research tasks are developed based on member input and prioritization. CARRC special projects are developed with members and nonmembers to provide similar information and to support activities, including the assembly and interpretation of data, support for standards development and technology transfer, and facilitating product development and testing. CARRC activities from 2007 to 2009 included a range of research tasks, with primary work performed in laboratory tasks developed to answer specific questions or evaluate important fundamental properties of CCPs. The tasks were included in four categories: (1) Environmental Evaluations of CCPs; (2) Evaluation of Impacts on CCPs from Emission Controls; (3) Construction and Product-Related Activities; and (4) Technology Transfer and Maintenance Tasks. All tasks are designed to work toward achieving the CARRC overall goal and supporting objectives. The various tasks are coordinated in order to provide broad and useful technical data for CARRC members. Special projects provide an opportunity for non-CARRC members to sponsor specific research or technology transfer consistent with CARRC goals. This report covers CARRC activities from January 2007 through March 2009. These activities have been reported in CARRC Annual Reports and in member meetings over the past 2 years. CARRC continues to work with industry and various government agencies with its research, development, demonstration, and promotional activities nearing completion at the time of submission of this report. CARRC expects to continue its service to the coal ash industry in 2009 and beyond to work toward the common goal of advancing coal ash utilization by solving CCP-related technical issues and promoting the environmentally safe, technically sound, and economically viable management of these complex and changing materials.

  20. Internship Opportunities at Hessen Universities Consortium, New York Office

    E-Print Network [OSTI]

    Hoffmann, Rolf

    Internship Opportunities at Hessen Universities Consortium, New York Office The New York office in Hessen to serve as interns. Successful candidates will be motivated and energetic individuals who expenses incurred in New York. Important notice: New York City is an expensive city. Applicants must budget

  1. The Chicago Wilderness Consortium Melinda Pruett-Jones, Executive Director

    E-Print Network [OSTI]

    of natural areas embedded in the third largest metropolitan area in the country, a consortium of diverse is to reclaim the cultural tradition of restoring, protecting and managing the globally outstanding natural to the protection, restoration and management of the Chicago region's natural resources. The Chicago Wilderness

  2. Presented by CASL: The Consortium for Advanced Simulation

    E-Print Network [OSTI]

    Reduce nuclear waste volume generated by enabling higher fuel burnups Enhance nuclear safety by enablingPresented by Nuclear Energy CASL: The Consortium for Advanced Simulation of Light Water Reactors A DOE Energy Innovation Hub for Modeling and Simulation of Nuclear Reactors Doug Kothe Director, CASL

  3. Sustainability Research & Development Consortium for DoD Installations

    E-Print Network [OSTI]

    Sustainability Research & Development Consortium for DoD Installations Warner College of Natural the growing need for sustainability planning, imple- mentation, and facilitation on United States military bases. CEMML is already a proven global provider of re- search and sustainable management of natural

  4. Intelligent Storage Consortium A Center of the Institute of Technology

    E-Print Network [OSTI]

    Minnesota, University of

    Intelligent Storage Consortium A Center of the Institute of Technology MEMBERSHIP ADVANTAGES I opportunities MISSION Explores pre-competitive development of intelligent object-based storage systems I, and public sector I OBJECTS INTERCONNECT STORAGE DEVICE BLOCKS FILE SYSTEM FILE SYSTEM USER COMPONENT FILE

  5. Hydrogen Storage Engineering Center of Excellence | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Annual Merit Review and Peer Evaluation Meeting, provide an overview of the Hydrogen Storage Engineering Center of Excellence (HSECoE), including projects to design innovative...

  6. Secretary's Honor Awards: Recognizing Employee Excellence | Department...

    Office of Environmental Management (EM)

    at a reduced cost to taxpayers. Mars Science Laboratory Multi-Mission Radioisotope Thermoelectric Generator team for delivering the Generator for the NASA's Mars Science laboratory...

  7. AVESTAR Center for Operational Excellence of Clean Energy Plants

    SciTech Connect (OSTI)

    Zitney, S.E.

    2012-05-01T23:59:59.000Z

    To address challenges in attaining operational excellence for clean energy plants, the U.S.Department of Energys National Energy Technology Laboratory has launched a world-class facility for Advanced Virtual Energy Simulation Training and Research (AVESTAR). The AVESTAR Center brings together state-of-the-art, real time,high-fidelity dynamic simulators with operator training systems and 3D virtual immersive training systems into an integrated energy plant and control room environment. This presentation will highlight the AVESTAR Center simulators, facilities, and comprehensive training, education, and research programs focused on the operation and control of high-efficiency, near-zero-emission energy plants.

  8. AVESTAR Center for Operational Excellence of Clean Energy Plants

    SciTech Connect (OSTI)

    Zitney, Stephen

    2012-01-01T23:59:59.000Z

    To address challenges in attaining operational excellence for clean energy plants, the U.S. Department of Energy's National Energy Technology Laboratory has launched a world-class facility for Advanced Virtual Energy Simulation Training and Research (AVESTAR{trademark}). The AVESTAR Center brings together state-of-the-art, real time,high-fidelity dynamic simulators with operator training systems and 3D virtual immersive training systems into an integrated energy plant and control room environment. This presentation will highlight the AVESTAR Center simulators, facilities, and comprehensive training, education, and research programs focused on the operation and control of high-efficiency, near-zero-emission energy plants.

  9. A University Consortium on Homogeneous Charge Compression Ignition Engine Research

    SciTech Connect (OSTI)

    Assanis, Dennis; Atreya, Arvind; Bowman, Craig; Chen, Jyh-Yuan; Cheng, Wai; Davidson, David; Dibble, Robert; Edwards, Chris; Filipi, Zoran; Golden, David; Green, William; Hanson, Ronald; Hedrick, J Karl; Heywood, John; Im, Hong; Lavoie, George; Sick, Volker; Wooldridge, Margaret

    2007-03-31T23:59:59.000Z

    Over the course of this four year project, the consortium team members from UM, MIT, Stanford, and Berkeley along with contributors from Sandia National Labs and LLNL, have produced a wide range of results on gasoline HCCI control and implementation. The work spanned a wide range of activities including engine experiments, fundamental chemical kinetics experiments, and an array of analytical modeling techniques and simulations. Throughout the project a collaborative approach has produced a many significant new insights into HCCI engines and their behavior while at the same time we achieved our key consortium goal: to develop workable strategies for gasoline HCCI control and implementation. The major accomplishments in each task are summarized, followed by detailed discussion.

  10. Linking Texas irrigation: Consortium communicates research, education projects

    E-Print Network [OSTI]

    Supercinski, Danielle

    2008-01-01T23:59:59.000Z

    on the development and implementation of irrigation systems and practices in Texas, yet few efforts have been made to coordinate ongoing programs and results. With the formation of the Consortium for Irrigation Research and Education (CIRE) in 2007... research plots, and center pivot and drip irrigation systems at the Texas AgriLife Research and Extension Center at Uvalde. These plots are part of the Precision Irrigators Network project funded by Texas Water Development Board and the Rio Grande Basin...

  11. Consortium Template (Expenditure-Based) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014 BuildingEnergyEnergyConsortium Support (Fixed

  12. ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS

    SciTech Connect (OSTI)

    Joel L. Morrison

    2001-09-12T23:59:59.000Z

    The Pennsylvania State University, under contract to the US Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. the consortium creates a partnership with the US petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the third quarterly technical progress report for the SWC. During this reporting period the SWC entered into a co-funding arrangement with the New York State Energy Development Authority (NYSERDA) to provide an additional $100,000 in co-funding for stripper well production-orientated projects.The SWC hosted its first meeting in which members proposed research projects to the SWC membership. The meeting was held on April 9-10, 2001 in State College, Pennsylvania. Twenty three proposals were submitted to the SWC for funding consideration. Investigators of the proposed projects provided the SWC membership with a 20 minute (15 minute technical discussion, 5 minute question and answer session) presentation. Of the 23 proposals, the Executive Council approved $921,000 in funding for 13 projects. Penn State then immediately started the process of issuing subcontracts to the various projects approved for funding.

  13. ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS

    SciTech Connect (OSTI)

    Joel L. Morrison

    2004-05-10T23:59:59.000Z

    The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the eleventh quarterly technical progress report for the SWC. Key activities for this reporting period include: (1) organizing and hosting the Spring SWC meeting in Pearl River, New York, (2) working with successful applicants and Penn State's Office of Sponsored Research to get subcontracts in place, and (3) planning three SWC technology transfer meetings to take place in the fall of 2003. During this reporting period, the efforts were focused primarily on the organizing and hosting the SWC Spring proposal meeting and organizing the fall technology transfer meetings.

  14. Training is sponsoring Excel Intermediate & Advanced Courses...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Due to a tremendous response, Training is sponsoring additional Excel Intermediate & Advanced Courses. The classes will be held on Wednesday and Thursday, May 20-21, 8 a.m.-5 p.m....

  15. Hydrogen Storage Engineering Center of Excellence

    Broader source: Energy.gov [DOE]

    The collaborative Hydrogen Storage Engineering Center of Excellence (HSECoE) conducts engineering research, development, and demonstration (RD&D) activities to address the engineering challenges posed by various storage technologies.

  16. Center for Excellence in Logistics and Distribution

    E-Print Network [OSTI]

    Noble, James S.

    Center for Excellence in Logistics and Distribution (CELDi) James S. Noble, MU Site Director Logistics Network Design in a PBL Environment The Boeing Company Research Team: James Noble (PI), Wooseung Reverse logistics network evaluation tool Network configuration Network operation Broader

  17. The first pilot project of the consortium for top-down proteomics: A status report

    SciTech Connect (OSTI)

    Dang, Xibei; Scotcher, Jenna; Wu, Si; Chu, Rosalie K.; Tolic, Nikola; Ntai, Ioanna; Thomas, Paul; Fellers , Ryan T.; Early, Bryan P.; Zheng, Yupeng; Durbin, Kenneth R.; LeDuc, Richard D.; Wolff, Jeremy J.; Thompson, Christopher J.; Pan, Jingxi; Han, Jun; Shaw, Jared B.; Salisbury, Joseph P.; Easterling, Michael; Borchers, Christoph H.; Brodbelt, Jennifer S.; Agar, Jeffrey; Pasa-Tolic, Ljiljana; Kelleher, Neil; Young, Nicolas L.

    2014-05-31T23:59:59.000Z

    Pilot Project #1the identification and characterization of human histone H4 proteoforms by top-down MSis the first project launched by the Consortium for Top-Down Proteomics (CTDP) to refine and validate top-down MS. Within the initial results from seven participating laboratories, all reported the probability-based identification of human histone H4 (UniProt accession P62805) with expectation values ranging from 10?13 to 10?105. Regarding characterization, a total of 74 proteoforms were reported, with 21 done so unambiguously; one new PTM, K79ac, was identified. Inter-laboratory comparison reveals aspects of the results that are consistent, such as the localization of individual PTMs and binary combinations, while other aspects are more variable, such as the accurate characterization of low-abundance proteoforms harboring >2 PTMs. An open-access tool and discussion of proteoform scoring are included, along with a description of general challenges that lie ahead including improved proteoform separations prior to mass spectrometric analysis, better instrumentation performance, and software development.

  18. Report on the CEPA activities [Consorcio Educativo para la Proteccion Ambiental/Educational Consortium for Environmental Preservation] [Final report of activities from 1998 to 2002

    SciTech Connect (OSTI)

    Cruz, Miriam

    2003-02-01T23:59:59.000Z

    This report compiles the instances of scientific, educational, and institutional cooperation on environmental issues and other activities in which CEPA was engaged during the past five years, and includes several annual reports and meeting summaries. CEPA is a collaborative international consortium that brings together higher education institutions with governmental agencies, research laboratories, and private sector entities. CEPA's mission is to strengthen the technical, professional, and educational environmental infrastructure in the United States and Latin America. The CEPA program includes curriculum development, student exchange, faculty development, and creation of educational materials, joint research, and other cooperative activities. CEPA's goals are accomplished by actively working with Hispanic-serving institutions of higher education in the United States, in collaboration with institutions of higher education in Latin America and other Consortium members to deliver competitive environmental programs.

  19. Consolidated Bio-Processing of Cellulosic Biomass for Efficient Biofuel Production Using Yeast Consortium

    E-Print Network [OSTI]

    Goyal, Garima

    2011-01-01T23:59:59.000Z

    Biomass for Efficient Biofuel Production Using YeastBiomass for Efficient Biofuel Production Using YeastConsortium for efficient biofuel production: A New Candidate

  20. Text-Alternative Version: Municipal Solid-State Street Lighting Consortium Retrofit Financial Analysis Tool Webcast

    Broader source: Energy.gov [DOE]

    Below is the text-alternative version of the "Municipal Solid-State Street Lighting Consortium Retrofit Financial Analysis Tool" webcast, held April 3, 2012.

  1. Municipal Consortium LED Street Lighting Workshop Presentations and MaterialsLos Angeles, CA

    Broader source: Energy.gov [DOE]

    This page provides links to the presentations given at the DOE Municipal Solid-State Street Lighting Consortium Workshop held in Los Angeles April 1920, 2012.

  2. Municipal Consortium LED Street Lighting Workshop Presentations and MaterialsDallas, TX

    Broader source: Energy.gov [DOE]

    This page provides links to the presentations given at the DOE Municipal Solid-State Street Lighting Consortium Workshop held in Dallas March 1516, 2012.

  3. Text-Alternative Version: Municipal Solid-State Street Lighting Consortium Kickoff

    Broader source: Energy.gov [DOE]

    Below is the text-alternative version of the Municipal Solid-State Street Lighting Consortium Kickoff webcast, held May 6, 2010.

  4. Municipal Consortium LED Street Lighting Workshop Presentations and MaterialsBoston, MA

    Broader source: Energy.gov [DOE]

    This page provides links to the presentations given at the DOE Municipal Solid-State Street Lighting Consortium Workshop held in Boston August 23, 2012.

  5. Two Los Alamos National Laboratory organizations receive Performance...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory organizations receive Performance Excellence recognition from Quality New Mexico Nuclear Material Control and Accountability Group and the Quality and Performance...

  6. Sandia National Laboratories: National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, Solar, Solar Newsletter A team from Sandia National Laboratories' (SNL) National Solar Thermal Test Facility (NSTTF) recently won a first place Excellence Award in the...

  7. UNIVERSITY OF OREGON SOLAR MONITORING LABORATORY The University of Oregon (UO) Solar Moni-

    E-Print Network [OSTI]

    Oregon, University of

    i UNIVERSITY OF OREGON SOLAR MONITORING LABORATORY The University of Oregon (UO) Solar Moni- toring Laboratory has been measuring incident solar radiation since 1975. Current support for this work comes from the Regional Solar Radiation Monitoring Project (RSRMP), a utility consortium project including the Bon

  8. Kansas Consortium Plug-in Hybrid Medium Duty

    SciTech Connect (OSTI)

    None, None

    2012-03-31T23:59:59.000Z

    On September 30, 2008, the US Department of Energy (DoE), issued a cooperative agreement award, DE-FC26-08NT01914, to the Metropolitan Energy Center (MEC), for a project known as Kansas Consortium Plug-in Hybrid Medium Duty Certification project. The cooperative agreement was awarded pursuant to H15915 in reference to H. R. 2764 Congressionally Directed Projects. The original agreement provided funding for The Consortium to implement the established project objectives as follows: (1) to understand the current state of the development of a test protocol for PHEV configurations; (2) to work with industry stakeholders to recommend a medium duty vehicle test protocol; (3) to utilize the Phase 1 Eaton PHEV F550 Chassis or other appropriate PHEV configurations to conduct emissions testing; (4) and to make an industry PHEV certification test protocol recommendation for medium duty trucks. Subsequent amendments to the initial agreement were made, the most significant being a revised Scope of Project Objectives (SOPO) that did not address actual field data since it was not available as originally expected. This project was mated by DOE with a parallel project award given to the South Coast Air Quality Management District (SCAQMD) in California. The SCAQMD project involved designing, building and testing of five medium duty plug-in hybrid electric trucks. SCAQMD had contracted with the Electric Power Research Institute (EPRI) to manage the project. EPRI provided the required match to the federal grant funds to both the SCAQMD project and the Kansas Consortium project. The rational for linking the two projects was that the data derived from the SCAQMD project could be used to validate the protocols developed by the Kansas Consortium team. At the same time, the consortium team would be a useful resource to SCAQMD in designating their test procedures for emissions and operating parameters and determining vehicle mileage. The years between award of the cooperative agreements and their completion were problematic for the US and world economies. This resulted in the President and Congress implementing the American Recovery and Reinvestment Act of 2009, abbreviated ARRA (Pub.L. 111-5), commonly referred to as the Stimulus or The Recovery Act. The stimulus money available for transportation projects encouraged the SCAQMD to seek additional funds. In August of 2009, they eventually were awarded an additional $45.5 M, and the scope of their project was expanded to 378 vehicles. However, as a consequence of the stimulus money and the inundation of DOE with applications for new project under the ARRA, the expected time table for producing and testing vehicles was significantly delayed. As a result, these vehicles were not available for validating the protocols developed by the Kansas Consortium. Therefore, in April of 2011, the Scope of Project Objectives (SOPO) for the project was revised, and limited to producing the draft protocol for PHEV certification as its deliverable.

  9. NNSA Hosts Cybersecurity Consortium Members Following White House...

    National Nuclear Security Administration (NNSA)

    Livermore National Laboratory and Sandia National Laboratory in California and New Mexico. Vice President Biden and Secretary of Energy Ernest Moniz highlighted DOENNSA's...

  10. Consortium on Digital Energy CoDE | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationinConcentrating SolarConsortium on Digital Energy CoDE Jump to:

  11. Consortium for Algal Biofuels Commercialization (CAB-Comm)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJuly 30, 2013 Sanyo: Notice of AllowanceAugustPublicConsortium

  12. India-US Lab Consortium Activities | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunan Runhua NewSmallholder Systems (SAMPLES) | OpenConsortium

  13. ISO 9001 : 2000 and the Baldrige criteria for performance excellence - a comparison.

    SciTech Connect (OSTI)

    Willette, Gail L.; Richards, Robert Ray

    2004-06-01T23:59:59.000Z

    The Sandia National Laboratories Nuclear Weapons Strategic Management Unit (NWSMU) is pursuing performance excellence, by focusing on compliance with the ISO 9001:2000 standard for quality management systems. The NWSMU also intends to achieve ISO Certification and eventually reach levels of performance excellence that are consistent with those of Malcolm Baldrige National Quality Award winners. In that context, this report documents a study undertaken to answer these questions: {sm_bullet} Would achieving ISO 9001:2000 compliance or certification help an organization prepare to achieve Baldrige-level performance excellence? {sm_bullet} Would pursuing Baldrige-based performance excellence help an organization achieve ISO certification? {sm_bullet} What are the areas where the Baldrige and ISO systems are most closely aligned? The study produced answers to those questions, as well as a number of comparisons and contrasts between the ISO standard and the Baldrige criteria.

  14. Inner-City Energy and Environmental Education Consortium

    SciTech Connect (OSTI)

    Not Available

    1993-06-11T23:59:59.000Z

    The numbers of individuals with adequate education and training to participate effectively in the highly technical aspects of environmental site cleanup are insufficient to meet the increasing demands of industry and government. Young people are particularly sensitive to these issues and want to become better equipped to solve the problems which will confront them during their lives. Educational institutions, on the other hand, have been slow in offering courses and curricula which will allow students to fulfill these interests. This has been in part due to the lack of federal funding to support new academic programs. This Consortium has been organized to initiate focused educational effort to reach inner-city youth with interesting and useful energy and environmental programs which can lead to well-paying and satisfying careers. Successful Consortium programs can be replicated in other parts of the nation. This report describes a pilot program in Washington, DC, Philadelphia, and Baltimore with the goal to attract and retain inner-city youth to pursue careers in energy-related scientific and technical areas, environmental restoration, and waste management.

  15. Certifications http://OperationsExcellence.utk.edu

    E-Print Network [OSTI]

    Grissino-Mayer, Henri D.

    Certifications http://OperationsExcellence.utk.edu Green, Black, Lean Six Sigma, and Master Black) Lean (one week of coursework) 2) Lean Six Sigma (two weeks of coursework) 3) Six Sigma (two weeks) lean Six Sigma Green Belt coursework: Location: Knoxville, Tennessee Tuition: $4,500 (5 days) or $3

  16. Center of Excellence in Structural Health Monitoring

    E-Print Network [OSTI]

    Center of Excellence in Structural Health Monitoring Inaugural Meeting April 1213 2007 Nittany, Aeronautics and As- tronautics, is Editor-in-Chief of the Structural Health Monitoring international journal and the organizer of the International Workshops on Structural Health Monitoring. His research interests include

  17. Chemical Hydrogen Storage Center Center of Excellence

    E-Print Network [OSTI]

    Carver, Jeffrey C.

    Chemical Hydrogen Storage Center Center of Excellence for Chemical Hydrogen Storage William Tumas proprietary or confidential information #12;2 Chemical Hydrogen Storage Center Overview Project Start Date: FY Barriers Addressed #12;3 Chemical Hydrogen Storage Center Chemical Hydrogen Storage Center National

  18. Green Impact Universities and Colleges: EXCELLENCE guidance

    E-Print Network [OSTI]

    Harman, Neal.A.

    Green Impact Universities and Colleges: EXCELLENCE guidance 1.0 Introduction Green Impact progressing through institutionally bespoke workbooks to green their departments and campuses, the need, rather than reaching a pre-set endpoint, so we are developing Green Impact to ensure our participants

  19. Center for Excellence in Logistics and Distribution

    E-Print Network [OSTI]

    Noble, James S.

    Center for Excellence in Logistics and Distribution (CELDi) James S. Noble, MU Site Director Center Designated Projects Logistics Network Design for Less-than-Truckload Consolidation Helping Green Belts Use What They Know 3 #12;Development of Logistics Efficiency Metrics Supply Chain Networks

  20. The Open Geospatial Consortium and EarthCube An EarthCube Technology Paper

    E-Print Network [OSTI]

    Tarboton, David

    1 The Open Geospatial Consortium and EarthCube An EarthCube Technology Paper Prepared by David information that is used by the entire geosciences community. The Open Geospatial Consortium (OGC open source standards for sharing geospatial and observational information. The authors of this paper

  1. Excellence in Celebrating Small Business: Meet the Woman who...

    Broader source: Energy.gov (indexed) [DOE]

    Excellence in Celebrating Small Business: Meet the Woman who Runs our Small Business Awards Program Excellence in Celebrating Small Business: Meet the Woman who Runs our Small...

  2. Proposed Virtual Center for Excellence for Metal Hydride Development

    Broader source: Energy.gov (indexed) [DOE]

    & Engineering Sciences Center Atoms to Continuum Proposed Virtual Center of Excellence Proposed Virtual Center of Excellence for Metal Hydride Development for Metal Hydride...

  3. Virtual Center of Excellence for Hydrogen Storage - Chemical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Virtual Center of Excellence for Hydrogen Storage - Chemical Hydrides Virtual Center of Excellence for Hydrogen Storage - Chemical Hydrides Presentation from the Hydrogen Storage...

  4. GATE Center of Excellence at UAB in Lightweight Materials for...

    Broader source: Energy.gov (indexed) [DOE]

    GATE Center of Excellence at UAB in Lightweight Materials for Automotive Applications GATE Center of Excellence at UAB in Lightweight Materials for Automotive Applications 2011 DOE...

  5. Y-12 employees receive awards recognizing excellence in nuclear...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    receive ... Y-12 employees receive awards recognizing excellence in nuclear weapons program Posted: October 6, 2014 - 9:09am Defense Programs 2013 Award of Excellence recipient...

  6. GATE Center of Excellence at UAB in Lightweight Materials for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications GATE Center of Excellence at UAB in Lightweight Materials for Automotive Applications GATE Center of Excellence at UAB in Lightweight Materials for...

  7. Samuel P. Massie Chair of Excellence Program

    SciTech Connect (OSTI)

    Johnson, James H

    2014-12-15T23:59:59.000Z

    Abstract In 1994 the Department of Energy established the DOE Chair of Excellence Professorship in Environmental Disciplines Program. In 2004, the Massie Chair of Excellence Professor at Howard University transitioned from Dr. Edward Martin to Dr. James H. Johnson, Jr. At the time of his appointment Dr. Johnson served as professor of civil engineering and Dean of the College of Engineering, Architecture and Computer Sciences. Program activities under Dr. Johnson were in the following areas: Increase the institutions capacity to conduct scientific research and technical investigations at the cutting-edge. Promote interactions, collaborations and partnerships between the private sector, Federal agencies, majority research institutes and other HBCUs. Assist other HBCUs in reaching parity in engineering and related fields. Mentor young investigators and be a role model for students.

  8. Technical Progress Report for the Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel L. Morrison

    2005-10-24T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of July 1, 2005 through September 30, 2005. During this time period efforts were directed toward (1) receiving proposals in response to the RFP, and (2) organizing and hosting the proposal selection meeting on August 30-31, 2005.

  9. Technical Progress Report for the Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2006-02-27T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of October 1, 2005 through December 31, 2005. Activities during this time period were: (1) Nomination and election of Executive Council members for 2006-07 term, (2) Release the 2006 GSTC request-for-proposals (RFP), (3) Recruit and invoice membership for FY2006, (4) Improve communication efforts, and (5) Continue planning the GSTC spring meeting in San Diego, CA on February 21-22, 2006.

  10. Consortium for Petroleum & Natural Gas Stripper Wells PART 2 OF 3

    SciTech Connect (OSTI)

    Morrison, Joel

    2011-12-01T23:59:59.000Z

    The United States has more oil and gas wells than any other country. As of December 31, 2004, there were more than half a million producing oil wells in the United States. That is more than three times the combined total for the next three leaders: China, Canada, and Russia. The Stripper Well Consortium (SWC) is a partnership that includes domestic oil and gas producers, service and supply companies, trade associations, academia, the Department of Energys Strategic Center for Natural Gas and Oil (SCNGO) at the National Energy Technology Laboratory (NETL), and the New York State Energy Research and Development Authority (NYSERDA). The Consortium was established in 2000. This report serves as a final technical report for the SWC activities conducted over the May 1, 2004 to December 1, 2011 timeframe. During this timeframe, the SWC worked with 173 members in 29 states and three international countries, to focus on the development of new technologies to benefit the U.S. stripper well industry. SWC worked with NETL to develop a nationwide request-for-proposal (RFP) process to solicit proposals from the U.S. stripper well industry to develop and/or deploy new technologies that would assist small producers in improving the production performance of their stripper well operations. SWC conducted eight rounds of funding. A total of 132 proposals were received. The proposals were compiled and distributed to an industrydriven SWC executive council and program sponsors for review. Applicants were required to make a formal technical presentation to the SWC membership, executive council, and program sponsors. After reviewing the proposals and listening to the presentations, the executive council made their funding recommendations to program sponsors. A total of 64 projects were selected for funding, of which 59 were fully completed. Penn State then worked with grant awardees to issue a subcontract for their approved work. SWC organized and hosted a total of 14 meetings dedicated to technology transfer to showcase and review SWC-funded technology. The workshops were open to the stripper well industry.

  11. Consortium for Petroleum & Natural Gas Stripper Wells PART 1 OF 3

    SciTech Connect (OSTI)

    Morrison, Joel

    2011-12-01T23:59:59.000Z

    The United States has more oil and gas wells than any other country. As of December 31, 2004, there were more than half a million producing oil wells in the United States. That is more than three times the combined total for the next three leaders: China, Canada, and Russia. The Stripper Well Consortium (SWC) is a partnership that includes domestic oil and gas producers, service and supply companies, trade associations, academia, the Department of Energys Strategic Center for Natural Gas and Oil (SCNGO) at the National Energy Technology Laboratory (NETL), and the New York State Energy Research and Development Authority (NYSERDA). The Consortium was established in 2000. This report serves as a final technical report for the SWC activities conducted over the May 1, 2004 to December 1, 2011 timeframe. During this timeframe, the SWC worked with 173 members in 29 states and three international countries, to focus on the development of new technologies to benefit the U.S. stripper well industry. SWC worked with NETL to develop a nationwide request-for-proposal (RFP) process to solicit proposals from the U.S. stripper well industry to develop and/or deploy new technologies that would assist small producers in improving the production performance of their stripper well operations. SWC conducted eight rounds of funding. A total of 132 proposals were received. The proposals were compiled and distributed to an industrydriven SWC executive council and program sponsors for review. Applicants were required to make a formal technical presentation to the SWC membership, executive council, and program sponsors. After reviewing the proposals and listening to the presentations, the executive council made their funding recommendations to program sponsors. A total of 64 projects were selected for funding, of which 59 were fully completed. Penn State then worked with grant awardees to issue a subcontract for their approved work. SWC organized and hosted a total of 14 meetings dedicated to technology transfer to showcase and review SWC-funded technology. The workshops were open to the stripper well industry.

  12. Consortium for Petroleum & Natural Gas Stripper Wells PART 3 OF 3

    SciTech Connect (OSTI)

    Morrison, Joel

    2011-12-01T23:59:59.000Z

    The United States has more oil and gas wells than any other country. As of December 31, 2004, there were more than half a million producing oil wells in the United States. That is more than three times the combined total for the next three leaders: China, Canada, and Russia. The Stripper Well Consortium (SWC) is a partnership that includes domestic oil and gas producers, service and supply companies, trade associations, academia, the Department of Energys Strategic Center for Natural Gas and Oil (SCNGO) at the National Energy Technology Laboratory (NETL), and the New York State Energy Research and Development Authority (NYSERDA). The Consortium was established in 2000. This report serves as a final technical report for the SWC activities conducted over the May 1, 2004 to December 1, 2011 timeframe. During this timeframe, the SWC worked with 173 members in 29 states and three international countries, to focus on the development of new technologies to benefit the U.S. stripper well industry. SWC worked with NETL to develop a nationwide request-for-proposal (RFP) process to solicit proposals from the U.S. stripper well industry to develop and/or deploy new technologies that would assist small producers in improving the production performance of their stripper well operations. SWC conducted eight rounds of funding. A total of 132 proposals were received. The proposals were compiled and distributed to an industrydriven SWC executive council and program sponsors for review. Applicants were required to make a formal technical presentation to the SWC membership, executive council, and program sponsors. After reviewing the proposals and listening to the presentations, the executive council made their funding recommendations to program sponsors. A total of 64 projects were selected for funding, of which 59 were fully completed. Penn State then worked with grant awardees to issue a subcontract for their approved work. SWC organized and hosted a total of 14 meetings dedicated to technology transfer to showcase and review SWC-funded technology. The workshops were open to the stripper well industry.

  13. Hydrogen Storage Engineering Center of Excellence

    Energy Savers [EERE]

    Donald L. Anton Director Theodore Motyka Assistant Director Savannah River National Laboratory June 18, 2014 P r o j e c t I D ST0 0 4 This presentation does not contain any...

  14. An Industrial-Based Consortium to Develop Premium Carbon Products from Coal Final Report - Part 3

    SciTech Connect (OSTI)

    Miller, Bruce; Shea, Winton

    2010-12-31T23:59:59.000Z

    Since 1998, The Pennsylvania State University successfully managed the Consortium for Premium Carbon Products from Coal (CPCPC), which was a vehicle for industry-driven research on the promotion, development, and transfer of innovative technologies on premium carbon products from coal to the U.S. industry. The CPCPC was an initiative led by Penn State, its cocharter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provided the base funding for the program, with Penn State responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement ended November 2004 but the CPCPC activity continued under cooperative agreement No. DE-FC26-03NT41874, which started October 1, 2003 and ended December 31, 2010. The objective of the second agreement was to continue the successful operation of the CPCPC. The CPCPC enjoyed tremendous success with its organizational structure, which included Penn State and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC was its industry-led council that selected proposals submitted by CPCPC members to ensure CPCPC target areas had strong industrial support. CPCPC had 58 member companies and universities engaged over the 7-year period of this contract. Members were from 17 states and five countries outside of the U.S. During this period, the CPCPC Executive Council selected 46 projects for funding. DOE/CPCPC provided $3.9 million in funding or an average of $564,000 per year. The total project costs were $5.45 million with $1.5 million, or ~28% of the total, provided by the members as cost share. Total average project size was $118,000 with $85,900 provided by DOE/CPCPC. In addition to the research, technology transfer/outreach was a large component of CPCPC's activities. Efficient technology transfer was critical for the deployment of new technologies into the field. CPCPC organized and hosted technology transfer meetings, tours, and tutorials, attended outreach conferences and workshops to represent CPCPC and attract new members, prepared and distributed reports and publications, and developed and maintained a Web site. The second contract ended December 31, 2010, and it is apparent that CPCPC positively impacted the carbon industry and coal research. Statistics and information were compiled to provide a comprehensive account of the impact the consortium had and the beneficial outcomes of many of the individual projects. Project fact sheet, success stories, and other project information were prepared. Two topical reports, a Synthesis report and a Web report, were prepared detailing this information.

  15. An Industrial-Based Consortium to Develop Premium Carbon Products from Coal Final Report - Part 4

    SciTech Connect (OSTI)

    Miller, Bruce; Shea, Winton

    2010-12-31T23:59:59.000Z

    Since 1998, The Pennsylvania State University successfully managed the Consortium for Premium Carbon Products from Coal (CPCPC), which was a vehicle for industry-driven research on the promotion, development, and transfer of innovative technologies on premium carbon products from coal to the U.S. industry. The CPCPC was an initiative led by Penn State, its cocharter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provided the base funding for the program, with Penn State responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement ended November 2004 but the CPCPC activity continued under cooperative agreement No. DE-FC26-03NT41874, which started October 1, 2003 and ended December 31, 2010. The objective of the second agreement was to continue the successful operation of the CPCPC. The CPCPC enjoyed tremendous success with its organizational structure, which included Penn State and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC was its industry-led council that selected proposals submitted by CPCPC members to ensure CPCPC target areas had strong industrial support. CPCPC had 58 member companies and universities engaged over the 7-year period of this contract. Members were from 17 states and five countries outside of the U.S. During this period, the CPCPC Executive Council selected 46 projects for funding. DOE/CPCPC provided $3.9 million in funding or an average of $564,000 per year. The total project costs were $5.45 million with $1.5 million, or {approx}28% of the total, provided by the members as cost share. Total average project size was $118,000 with $85,900 provided by DOE/CPCPC. In addition to the research, technology transfer/outreach was a large component of CPCPC's activities. Efficient technology transfer was critical for the deployment of new technologies into the field. CPCPC organized and hosted technology transfer meetings, tours, and tutorials, attended outreach conferences and workshops to represent CPCPC and attract new members, prepared and distributed reports and publications, and developed and maintained a Web site. The second contract ended December 31, 2010, and it is apparent that CPCPC positively impacted the carbon industry and coal research. Statistics and information were compiled to provide a comprehensive account of the impact the consortium had and the beneficial outcomes of many of the individual projects. Project fact sheet, success stories, and other project information were prepared. Two topical reports, a Synthesis report and a Web report, were prepared detailing this information.

  16. An Industrial-Based Consortium to Develop Premium Carbon Products from Coal Final Report - Part 2

    SciTech Connect (OSTI)

    Miller, Bruce; Winton, Shea

    2010-12-31T23:59:59.000Z

    Since 1998, The Pennsylvania State University successfully managed the Consortium for Premium Carbon Products from Coal (CPCPC), which was a vehicle for industry-driven research on the promotion, development, and transfer of innovative technologies on premium carbon products from coal to the U.S. industry. The CPCPC was an initiative led by Penn State, its cocharter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provided the base funding for the program, with Penn State responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement ended November 2004 but the CPCPC activity continued under cooperative agreement No. DE-FC26-03NT41874, which started October 1, 2003 and ended December 31, 2010. The objective of the second agreement was to continue the successful operation of the CPCPC. The CPCPC enjoyed tremendous success with its organizational structure, which included Penn State and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC was its industry-led council that selected proposals submitted by CPCPC members to ensure CPCPC target areas had strong industrial support. CPCPC had 58 member companies and universities engaged over the 7-year period of this contract. Members were from 17 states and five countries outside of the U.S. During this period, the CPCPC Executive Council selected 46 projects for funding. DOE/CPCPC provided $3.9 million in funding or an average of $564,000 per year. The total project costs were $5.45 million with $1.5 million, or ~28% of the total, provided by the members as cost share. Total average project size was $118,000 with $85,900 provided by DOE/CPCPC. In addition to the research, technology transfer/outreach was a large component of CPCPC's activities. Efficient technology transfer was critical for the deployment of new technologies into the field. CPCPC organized and hosted technology transfer meetings, tours, and tutorials, attended outreach conferences and workshops to represent CPCPC and attract new members, prepared and distributed reports and publications, and developed and maintained a Web site. The second contract ended December 31, 2010, and it is apparent that CPCPC positively impacted the carbon industry and coal research. Statistics and information were compiled to provide a comprehensive account of the impact the consortium had and the beneficial outcomes of many of the individual projects. Project fact sheet, success stories, and other project information were prepared. Two topical reports, a Synthesis report and a Web report, were prepared detailing this information.

  17. An Industrial-Based Consortium to Develop Premium Carbon Products from Coal Final Report - Part 5

    SciTech Connect (OSTI)

    Miller, Bruce; Shea, Winton

    2010-12-31T23:59:59.000Z

    Since 1998, The Pennsylvania State University successfully managed the Consortium for Premium Carbon Products from Coal (CPCPC), which was a vehicle for industry-driven research on the promotion, development, and transfer of innovative technologies on premium carbon products from coal to the U.S. industry. The CPCPC was an initiative led by Penn State, its cocharter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provided the base funding for the program, with Penn State responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement ended November 2004 but the CPCPC activity continued under cooperative agreement No. DE-FC26-03NT41874, which started October 1, 2003 and ended December 31, 2010. The objective of the second agreement was to continue the successful operation of the CPCPC. The CPCPC enjoyed tremendous success with its organizational structure, which included Penn State and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC was its industry-led council that selected proposals submitted by CPCPC members to ensure CPCPC target areas had strong industrial support. CPCPC had 58 member companies and universities engaged over the 7-year period of this contract. Members were from 17 states and five countries outside of the U.S. During this period, the CPCPC Executive Council selected 46 projects for funding. DOE/CPCPC provided $3.9 million in funding or an average of $564,000 per year. The total project costs were $5.45 million with $1.5 million, or {approx}28% of the total, provided by the members as cost share. Total average project size was $118,000 with $85,900 provided by DOE/CPCPC. In addition to the research, technology transfer/outreach was a large component of CPCPC's activities. Efficient technology transfer was critical for the deployment of new technologies into the field. CPCPC organized and hosted technology transfer meetings, tours, and tutorials, attended outreach conferences and workshops to represent CPCPC and attract new members, prepared and distributed reports and publications, and developed and maintained a Web site. The second contract ended December 31, 2010, and it is apparent that CPCPC positively impacted the carbon industry and coal research. Statistics and information were compiled to provide a comprehensive account of the impact the consortium had and the beneficial outcomes of many of the individual projects. Project fact sheet, success stories, and other project information were prepared. Two topical reports, a Synthesis report and a Web report, were prepared detailing this information.

  18. An Industrial-Based Consortium to Develop Premium Carbon Products from Coal Final Report - Part 1

    SciTech Connect (OSTI)

    Miller, Bruce; Winton, Shea

    2010-12-31T23:59:59.000Z

    Since 1998, The Pennsylvania State University successfully managed the Consortium for Premium Carbon Products from Coal (CPCPC), which was a vehicle for industry-driven research on the promotion, development, and transfer of innovative technologies on premium carbon products from coal to the U.S. industry. The CPCPC was an initiative led by Penn State, its cocharter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provided the base funding for the program, with Penn State responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement ended November 2004 but the CPCPC activity continued under cooperative agreement No. DE-FC26-03NT41874, which started October 1, 2003 and ended December 31, 2010. The objective of the second agreement was to continue the successful operation of the CPCPC. The CPCPC enjoyed tremendous success with its organizational structure, which included Penn State and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC was its industry-led council that selected proposals submitted by CPCPC members to ensure CPCPC target areas had strong industrial support. CPCPC had 58 member companies and universities engaged over the 7-year period of this contract. Members were from 17 states and five countries outside of the U.S. During this period, the CPCPC Executive Council selected 46 projects for funding. DOE/CPCPC provided $3.9 million in funding or an average of $564,000 per year. The total project costs were $5.45 million with $1.5 million, or ~28% of the total, provided by the members as cost share. Total average project size was $118,000 with $85,900 provided by DOE/CPCPC. In addition to the research, technology transfer/outreach was a large component of CPCPC's activities. Efficient technology transfer was critical for the deployment of new technologies into the field. CPCPC organized and hosted technology transfer meetings, tours, and tutorials, attended outreach conferences and workshops to represent CPCPC and attract new members, prepared and distributed reports and publications, and developed and maintained a Web site. The second contract ended December 31, 2010, and it is apparent that CPCPC positively impacted the carbon industry and coal research. Statistics and information were compiled to provide a comprehensive account of the impact the consortium had and the beneficial outcomes of many of the individual projects. Project fact sheet, success stories, and other project information were prepared. Two topical reports, a Synthesis report and a Web report, were prepared detailing this information.

  19. Special Relativity is an Excellent Theory

    E-Print Network [OSTI]

    E. Comay

    2006-03-05T23:59:59.000Z

    Criteria for defining errors of a physical theory are formulated. It is shown that the Special Theory of Relativity (STR) has a solid mathematical basis. An enormous amount of experiments carried out in particle physics use beams of particles having a very high energy. The data of these experiments are consistent with STR and support our confidence that STR is an excellent theory. Several specific cases of this issue are discussed explicitly. Contrary to a common belief, it is proved that the contemporary mainstream of physicists adhere to some theoretical ideas that violate STR.

  20. Secretary's Award of Excellence | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCO OverviewRepository |Complex"Department ofEnergyAward of Excellence

  1. Northern Excellence Seed LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: EnergyExcellence Seed LLC Jump to: navigation, search Name: Northern

  2. New Technologies that Enhance Environmental Protection, Increase Domestic Production, Result from DOE-Supported Consortium

    Broader source: Energy.gov [DOE]

    New technologies that help small, independent oil and natural gas operators contribute to domestic energy production while improving environmental protection have resulted from U.S. Department of Energy support of the Stripper Well Consortium.

  3. Webcast: Municipal Solid-State Street Lighting Consortium Retrofit Financial Analysis Tool

    Broader source: Energy.gov [DOE]

    This April 3, 2012 webcast presented information about the Retrofit Financial Analysis Tool developed by DOE"s Municipal Solid-State Street Lighting Consortium. Doug Elliott of Pacific Northwest...

  4. Municipal Consortium Releases Updated Model Specification for Networked Outdoor Lighting Control Systems

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's Municipal Solid-State Street Lighting Consortium (MSSLC) has released an update to its Model Specification for Adaptive Control and Remote Monitoring of LED Roadway...

  5. Genomic Standards Consortium's Eighth Annual Meeting: Opening Remarks (GSC8 Meeting)

    SciTech Connect (OSTI)

    Field, Dawn

    2009-09-09T23:59:59.000Z

    Dawn Field of the UK Centre for Ecology and Hydrology presents the overview of the Genomic Standards Consortium 8th meeting at the DOE JGI in Walnut Creek, Calif. on Sept. 9, 2009.

  6. Bioconversion of cyanide and acetonitrile by a municipal-sewage-derived anaerobic consortium

    SciTech Connect (OSTI)

    Nagle, N.J.; Rivard, C.J.; Mohagheghi, A.; Philippidis, G. [National Renewable Energy Lab., Golden, CO (United States)

    1995-12-31T23:59:59.000Z

    In this study, an anaerobic consortium was examined for its ability to adapt to and degrade the representative organonitriles, cyanide and acetonitrile. Adaptation to cyanide and acetonitrile was achieved by adding increasing levels of cyanide and acetonitrile to the anaerobic consortium, followed by extensive incubation over a 90-day period. The anaerobic consortium adapted most rapidly to the lower concentrations of each substrate and resulted in reductions of 85% and 83% of the cyanide and acetonitrile, respectively, at the 50 mg/L addition level. Increasing the concentration of both cyanide and acetonitrile resulted in reduced bioconversion. Two continuously stirred tank reactors (CSTR) were set up to examine the potential for continuous bioconversion of organonitriles. The anaerobic consortium was adapted to continuous infusion of acetonitrile at an initial concentration of 10 mg/L{center_dot}day in phosphate buffer.

  7. GreenTouch Consortium Passes 50-Member Milestone, Adds Seven...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    will define them. The new members are: CommScopeAndrew - United States Energy Sciences Network (ESnet)Lawrence Berkeley National Laboratory - United States Korea Advanced...

  8. Eliot Feibush leads new Princeton consortium to visualize Big...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fluid Dynamics Laboratory (GFDL), institutions whose research ranges from exploring supernovae and the interior of the Earth to predicting climate variability and change. "People...

  9. DOE Chair Excellence Professorship Environmental Disciplines

    SciTech Connect (OSTI)

    Riley, Reginald

    2014-10-08T23:59:59.000Z

    The DECM Team worked closely with other academic institutions, industrial companies and government laboratories to do research and educate engineers in cutting edge environmentally conscious manufacturing practices and instrumentation. The participating universities also worked individually with local companies on research projects in their specialty areas. Together, they were charged with research application, integration and education in environmentally conscious manufacturing.

  10. Washoe Tribe Nevada Inter-Tribal Energy Consortium Energy Organization Enhancement Project Final Report

    SciTech Connect (OSTI)

    Johnson, Jennifer [Washoe Tribe of NV and Ca

    2014-11-06T23:59:59.000Z

    The Washoe Tribe of Nevada and California was awarded funding from the Department of Energy to complete the Nevada Inter-Tribal Energy Consortium Energy Organization Enhancement Project. The main goal of the project was to enhance the capacity of the Nevada Inter-Tribal Energy Consortium (NITEC) to effectively assist tribes within Nevada to technically manage tribal energy resources and implement tribal energy projects.

  11. Oil Production by a Consortium of Oleaginous Microorganisms grown on primary effluent wastewater

    SciTech Connect (OSTI)

    Hall, Jacqueline; Hetrick, Mary; French, Todd; Hernandez, Rafael; Donaldson, Janet; Mondala, Andro; Holmes, William

    2011-01-01T23:59:59.000Z

    Municipal wastewater could be a potential growth medium that has not been considered for cultivating oleaginous microorganisms. This study is designed to determine if a consortium of oleaginous microorganism can successfully compete for carbon and other nutrients with the indigenous microorganisms contained in primary effluent wastewater. RESULTS: The oleaginous consortium inoculated with indigenous microorganisms reached stationary phase within 24 h, reaching a maximum cell concentration of 0.58 g L -1. Water quality post-oleaginous consortium growth reached a maximum chemical oxygen demand (COD) reduction of approximately 81%, supporting the consumption of the glucose within 8 h. The oleaginous consortium increased the amount of oil produced per gram by 13% compared with indigenous microorganisms in raw wastewater. Quantitative polymerase chain reaction (qPCR) results show a substantial population increase in bacteria within the first 24 h when the consortium is inoculated into raw wastewater. This result, along with the fatty acid methyl esters (FAMEs) results, suggests that conditions tested were not sufficient for the oleaginous consortium to compete with the indigenous microorganisms.

  12. SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION PROJECT

    SciTech Connect (OSTI)

    J. Robert Woolsey; Tom McGee; Carol Lutken; Elizabeth Stidham

    2006-06-01T23:59:59.000Z

    The Gulf of Mexico Hydrates Research Consortium (GOM-HRC) was established in 1999 to assemble leaders in gas hydrates research. The Consortium is administered by the Center for Marine Resources and Environmental Technology, CMRET, at the University of Mississippi. The primary objective of the group is to design and emplace a remote monitoring station or sea floor observatory (MS/SFO) on the sea floor in the northern Gulf of Mexico by the year 2007, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission, although unavoidably delayed by hurricanes and other disturbances, necessitates assembling a station that will monitor physical and chemical parameters of the marine environment, including sea water and sea-floor sediments, on a more-or-less continuous basis over an extended period of time. In 2005, biological monitoring, as a means of assessing environmental health was added to the mission of the MS/SFO. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in the arena of gas hydrates research. Complementary expertise, both scientific and technical, has been assembled to promote innovative research methods and construct necessary instrumentation. The observatory has now achieved a microbial dimension in addition to the geophysical and geochemical components it had already included. Initial components of the observatory, a probe that collects pore-fluid samples and another that records sea floor temperatures, were deployed in Mississippi Canyon 118 in May of 2005. Follow-up deployments, planned for fall 2005, had to be postponed due to the catastrophic effects of Hurricane Katrina (and later, Rita) on the Gulf Coast. Every effort was made to locate and retain the services of a suitable vessel and submersibles or Remotely Operated Vehicles (ROVs) following the storms and the loss of the contracted vessel, the M/V Ocean Quest and its two submersibles, but these efforts have been fruitless due to the demand for these resources in the tremendous recovery effort being made in the Gulf area. Station/observatory completion, anticipated for 2007, will likely be delayed by at least one year. The seafloor monitoring station/observatory is funded approximately equally by three federal Agencies: Minerals Management Services (MMS) of the Department of the Interior (DOI), National Energy Technology Laboratory (NETL) of the Department of Energy (DOE), and the National Institute for Undersea Science and Technology (NIUST), an agency of the National Oceanographic and Atmospheric Administration (NOAA).

  13. NEJC Board Member Receives 2015 National Planning Excellence Award

    Broader source: Energy.gov [DOE]

    National Environmental Justice Conference, Inc. Board of Directors Member Receives American Planning Association 2015 National Planning Excellence Award

  14. Established: 2010 Updated: Jan 2011 USSU Excellence Awards

    E-Print Network [OSTI]

    Saskatchewan, University of

    Established: 2010 Updated: Jan 2011 USSU Excellence Awards Engaged Alumni Excellence Award Terms of Reference 1) The Award: a) shall be named the "Engaged Alumni Excellence Award "; b) need not be awarded annually 2) Award criteria to be met by recipient: a) must be a member (a "Member") of the University

  15. The Historically Black Colleges and Universities/Minority Institutions Environmental Technology Consortium annual report, 1991--1992

    SciTech Connect (OSTI)

    NONE

    1992-12-31T23:59:59.000Z

    The member institutions of the Consortium continue to play a significant role in increasing the number of African Americans who enter the environmental professions through the implementation of the Consortium`s RETT Plan for Research, Education, and Technology Transfer. The four major program areas identified in the RETT Plan are as follows: (1) minority outreach and precollege education; (2) undergraduate education and postsecondary training; (3) graduate and postgraduate education and research; and (4) technology transfer.

  16. BETO Live Webinar: Algal Biofuels Consortium Releases Groundbreaking Research Results

    Office of Energy Efficiency and Renewable Energy (EERE)

    Dr. Jose Olivares of Los Alamos National Laboratory will present the results of algal biofuels research conducted by the National Alliance for Advanced Biofuels and Bioproducts (NAABB). NAABB is...

  17. The Consortium for Advanced Simulation of Light Water Reactors

    SciTech Connect (OSTI)

    Ronaldo Szilard; Hongbin Zhang; Doug Kothe; Paul Turinsky

    2011-10-01T23:59:59.000Z

    The Consortium for Advanced Simulation of Light Water Reactors (CASL) is a DOE Energy Innovation Hub for modeling and simulation of nuclear reactors. It brings together an exceptionally capable team from national labs, industry and academia that will apply existing modeling and simulation capabilities and develop advanced capabilities to create a usable environment for predictive simulation of light water reactors (LWRs). This environment, designated as the Virtual Environment for Reactor Applications (VERA), will incorporate science-based models, state-of-the-art numerical methods, modern computational science and engineering practices, and uncertainty quantification (UQ) and validation against data from operating pressurized water reactors (PWRs). It will couple state-of-the-art fuel performance, neutronics, thermal-hydraulics (T-H), and structural models with existing tools for systems and safety analysis and will be designed for implementation on both today's leadership-class computers and the advanced architecture platforms now under development by the DOE. CASL focuses on a set of challenge problems such as CRUD induced power shift and localized corrosion, grid-to-rod fretting fuel failures, pellet clad interaction, fuel assembly distortion, etc. that encompass the key phenomena limiting the performance of PWRs. It is expected that much of the capability developed will be applicable to other types of reactors. CASL's mission is to develop and apply modeling and simulation capabilities to address three critical areas of performance for nuclear power plants: (1) reduce capital and operating costs per unit energy by enabling power uprates and plant lifetime extension, (2) reduce nuclear waste volume generated by enabling higher fuel burnup, and (3) enhance nuclear safety by enabling high-fidelity predictive capability for component performance.

  18. Support of Gulf of Mexico Hydrate Research Consortium: Activities of Support Establishment of a Sea Floor Monitoring Station Project

    SciTech Connect (OSTI)

    J. Robert Woolsey; Thomas McGee; Carol Lutken

    2008-05-31T23:59:59.000Z

    The Gulf of Mexico Hydrates Research Consortium (GOM-HRC) was established in 1999 to assemble leaders in gas hydrates research that shared the need for a way to conduct investigations of gas hydrates and their stability zone in the Gulf of Mexico in situ on a more-or-less continuous basis. The primary objective of the group is to design and emplace a remote monitoring station or sea floor observatory (SFO) on the sea floor in the northern Gulf of Mexico, in an area where gas hydrates are known to be present at, or just below, the sea floor and to discover the configuration and composition of the subsurface pathways or 'plumbing' through which fluids migrate into and out of the hydrate stability zone (HSZ) to the sediment-water interface. Monitoring changes in this zone and linking them to coincident and perhaps consequent events at the seafloor and within the water column is the eventual goal of the Consortium. This mission includes investigations of the physical, chemical and biological components of the gas hydrate stability zone - the sea-floor/sediment-water interface, the near-sea-floor water column, and the shallow subsurface sediments. The eventual goal is to monitor changes in the hydrate stability zone over time. Establishment of the Consortium succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among those involved in gas hydrates research. Complementary expertise, both scientific and technical, has been assembled to promote innovative methods and construct necessary instrumentation. Following extensive investigation into candidate sites, Mississippi Canyon 118 (MC118) was chosen by consensus of the Consortium at their fall, 2004, meeting as the site most likely to satisfy all criteria established by the group. Much of the preliminary work preceding the establishment of the site - sensor development and testing, geophysical surveys, and laboratory studies - has been reported in agency documents including the Final Technical Report to DOE covering Cooperative Agreement DEFC26-00NT40920 and Semiannual Progress Reports for this award, DE-FC26-02NT41628. Initial components of the observatory, a probe that collects pore-fluid samples and another that records sea floor temperatures, were deployed in MC118 in May of 2005. Follow-up deployments, planned for fall 2005, had to be postponed due to the catastrophic effects of Hurricane Katrina (and later, Rita) on the Gulf Coast. SFO completion, now anticipated for 2009-10, has, therefore, been delayed. Although delays caused scheduling and deployment difficulties, many sensors and instruments were completed during this period. Software has been written that will accommodate the data that the station retrieves, when it begins to be delivered. In addition, new seismic data processing software has been written to treat the peculiar data to be received by the vertical line array (VLA) and additional software has been developed that will address the horizontal line array (HLA) data. These packages have been tested on data from the test deployments of the VLA and on data from other, similar, areas of the Gulf (in the case of the HLA software). During the life of this Cooperative Agreement (CA), the CMRET conducted many cruises. Early in the program these were executed primarily to survey potential sites and test sensors and equipment being developed for the SFO. When MC118 was established as the observatory site, subsequent cruises focused on this location. Beginning in 2005 and continuing to the present, 13 research cruises to MC118 have been conducted by the Consortium. During September, 2006, the Consortium was able to secure 8 days aboard the R/V Seward Johnson with submersible Johnson SeaLink, a critical chapter in the life of the Observatory project as important documentation, tests, recoveries and deployments were accomplished during this trip (log appended). Consortium members have participated materially in a number of additional cruises including several of the NIUST autonomous underwater vehicle (AUV), Ea

  19. Space System Architecture: Final Report of SSPARC: the Space Systems, Policy, and Architecture Research Consortium (Thrust I and II)

    E-Print Network [OSTI]

    Hastings, Daniel

    The Space Systems, Policy and Architecture Research Consortium (SSPARC) was formed to make substantial progress on problems of national importance. The goals of SSPARC were to:

  20. Support of Gulf of Mexico Hydrate Research Consortium: Activities to Support Establishment of a Sea Floor Monitoring Station Project

    SciTech Connect (OSTI)

    Carol Lutken

    2006-09-30T23:59:59.000Z

    The Gulf of Mexico Hydrates Research Consortium (GOM-HRC) was established in 1999 to assemble leaders in gas hydrates research. The Consortium is administered by the Center for Marine Resources and Environmental Technology, CMRET, at the University of Mississippi. The primary objective of the group is to design and emplace a remote monitoring station or sea floor observatory (MS/SFO) on the sea floor in the northern Gulf of Mexico by the year 2007, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission, although unavoidably delayed by hurricanes and other disturbances, necessitates assembling a station that will monitor physical and chemical parameters of the marine environment, including sea water and sea-floor sediments, on a more-or-less continuous basis over an extended period of time. In 2005, biological monitoring, as a means of assessing environmental health, was added to the mission of the MS/SFO. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in the arena of gas hydrates research. Complementary expertise, both scientific and technical, has been assembled to promote innovative research methods and construct necessary instrumentation. The observatory has now achieved a microbial dimension in addition to the geophysical, geological, and geochemical components it had already included. Initial components of the observatory, a probe that collects pore-fluid samples and another that records sea floor temperatures, were deployed in Mississippi Canyon 118 in May of 2005. Follow-up deployments, planned for fall 2005, had to be postponed due to the catastrophic effects of Hurricane Katrina (and later, Rita) on the Gulf Coast. Station/observatory completion, anticipated for 2007, will likely be delayed by at least one year. The CMRET has conducted several research cruises during this reporting period: one in April, one in June, one in September. April's effort was dedicated to surveying the mound at MC118 with the Surface-Source-Deep-Receiver (SSDR) seismic surveying system. This survey was completed in June and water column and bottom samples were collected via box coring. A microbial filtering system developed by Consortium participants at the University of Georgia was also deployed, run for {approx}12 hours and retrieved. The September cruise, designed to deploy, test, and in some cases recover, geochemical and microbial instruments and experiments took place aboard Harbor Branch's Seward Johnson and employed the Johnson SeaLink manned submersible. The seafloor monitoring station/observatory is funded approximately equally by three federal Agencies: Minerals Management Services (MMS) of the Department of the Interior (DOI), National Energy Technology Laboratory (NETL) of the Department of Energy (DOE), and the National Institute for Undersea Science and Technology (NIUST), an agency of the National Oceanographic and Atmospheric Administration (NOAA). Subcontractors with FY03 funding fulfilled their technical reporting requirements in a previously submitted report (41628R10). Only unresolved matching funds issues remain and will be addressed in the report of the University of Mississippi's Office of Research and Sponsored Programs. In addition, Barrodale Computing Services Ltd. (BCS) completed their work; their final report is the bulk of the semiannual report that precedes (abstract truncated)

  1. Innovations in Nuclear Infrastructure and Education From the SW Consortium

    SciTech Connect (OSTI)

    Warren Reece

    2011-03-22T23:59:59.000Z

    This report describes the final expenditures for the INIE project during FY 08/09. (There were no expenditures during FY09/10 or during FY10/11.) To see the list of accomplishments done using the INIE funds, please see the reports included here. The last of the FY 07/08 funds were brought forward and used to complete two distance education modules teaching reactor experiments. These modules and parts from the modules are still being used and are being disseminated off-campus as a part of our distance education effort. The second largest expenditure was sending students to the ANS to present student papers on work that they had done the previous year underwritten by INIE funds. The remaining expenditures were IDC charges and minor travel expenses to give students a tour of a medical facility. Once again we wish to express of sincere appreciation of the INIE program and hope that the return on investment is appreciated by the DOE. Although INIE has come to a close, looking back at all the Consortium has accomplished is astounding. And, as was hoped, these funds have proved to be a springboard for continuing work, particularly at Texas A&M. With the resurgence of nuclear power, the utilities have realized that the nuclear workforce in the near future will be too small for the task of bringing dozens of new plants on line and have turned their attention to the URRs to help feed the workforce pipeline. The distance education modules developed at the A&M are soon to be broadcast throughout the country to help train a new generation of nuclear workers. Our students at the Nuclear Science Center at being snapped up by the nuclear power plants after graduating. Our research projects at A&M have all ended with new data, new ways of looking at old problems, and produced a covey of good students. I want to say 'Thanks' with utmost sincerity because without the INIE funds our efforts would yield a small fraction of the accomplishments you see in this report.

  2. Race to Zero 2015 Systems Integration Excellence Award Winners...

    Energy Savers [EERE]

    the 2015 Systems Integration Excellence Award winner presentations. Habitat for Humanity Net Zero Energy Home - Redbird Red Team Illinois State University, Normal, IL H4: Heritage...

  3. GATE Center of Excellence at UAB in Lightweight Materials for...

    Broader source: Energy.gov (indexed) [DOE]

    February 28, 2008 GATE Center of Excellence at UAB in Lightweight Materials for Automotive Applications Uday Vaidya (Principal Investigator) & J. Barry Andrews (Project Director)...

  4. NNSA Presents Legal Excellence Award to Timothy Fischer from...

    National Nuclear Security Administration (NNSA)

    Press Releases Video Gallery Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home Media Room Press Releases NNSA Presents Legal Excellence Award to...

  5. Proposed Virtual Center for Excellence for Metal Hydride Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Virtual Center for Excellence for Metal Hydride Development Presentation from the Hydrogen Storage Pre-Solicitation Meeting held June 19, 2003 in Washington, DC....

  6. GATE Center of Excellence in Lightweight Materials and Manufacturing...

    Broader source: Energy.gov (indexed) [DOE]

    materials and manufacturing technologies. Recent developments in low-cost composite materials and lightweight castings and fabrication technologies offer excellent potential for...

  7. GATE Center of Excellence at UAB in Lightweight Materials for...

    Broader source: Energy.gov (indexed) [DOE]

    materials and manufacturing technologies. Recent developments in low-cost composite materials and lightweight castings and fabrication technologies offer excellent potential for...

  8. GATE Center of Excellence at UAB for Lightweight Materials and...

    Broader source: Energy.gov (indexed) [DOE]

    at UAB for Lightweight Materials and Manufacturing for Automotive, Truck and Mass Transit GATE Center of Excellence at UAB for Lightweight Materials and Manufacturing for...

  9. Biodegradation by bioaugmentation of dairy wastewater by fungal consortium on a bioreactor lab-scale and on a pilot-scale

    E-Print Network [OSTI]

    Boyer, Edmond

    1 Biodegradation by bioaugmentation of dairy wastewater by fungal consortium on a bioreactor lab 257 and 153% after bio-augmentation with fungi. An inoculated bioreactor with fungal consortium

  10. Volume 7, Issue 3 pet center of excellence

    E-Print Network [OSTI]

    Jadvar, Hossein

    Volume 7, Issue 3 2010.3 newsletter pet center of excellence ImagingEvaluationofProstateCancer withFDG-PET/CT, was PET/CT. I say sur- prisingly because FDG PET/CT is excellent for overall cancer staging, but Tc-99m cancer is biologically and clini- cally a heterogeneous disease. The utility of FDG-PET in prostate

  11. SECOND BEST PAPER PRIZE in excellence for applied research, Presented at IEEE ComSoc sponsored THIRD ANNUAL WIRELESS TELECOMMUNICATIONS SYMPOSIUM (WTS 2004)

    E-Print Network [OSTI]

    California at Los Angeles, University of

    -Cheng Chu, Rajit Gadh UCLA - Wireless Internet for Mobile Enterprise Consortium (WINMEC) 420 Westwood Plaza

  12. Wireless Internet for The Mobile Enterprise Consortium http://winmec.ucla.edu/ WHITE PAPER

    E-Print Network [OSTI]

    California at Los Angeles, University of

    -WINMEC-2003-301-MOBILE-MULTIMEDIA-MW CONFIDENTIAL, Su, Prabhu, Chu and Gadh, UCLA-WINMEC-2003-301-MOBILE-Cheng Chu, Rajit Gadh Wireless Internet for the Mobile Enterprise Consortium (WINMEC) - wireless://winmec.ucla.edu/ WHITE PAPER UCLA-WINMEC-2003-301-MOBILE-MULTIMEDIA-MW CONFIDENTIAL, Su, Prabhu, Chu and Gadh, UCLA

  13. Results from an array produced by the Consortium for Functional Glycomics. A

    E-Print Network [OSTI]

    Sasisekharan, Ram

    to provide internal controls. (Source: Consortium for Functional Glycomics) Sugar-Coated Proteins Though its, Counting Carbs: Glycomics Gears Up Alan Dove, PhD, Contributing Editor Drug Discovery & Development - March sugar modifications is the biochemical equivalent of an extreme sport, and much of the gear is still

  14. Enhanced biodegradation of phenol by a microbial consortium in a solidliquid two phase partitioning bioreactor

    E-Print Network [OSTI]

    Daugulis, Andrew J.

    partitioning bioreactor George P. Prpich & Andrew J. Daugulis* Department of Chemical Engineering, Queen@chee.queensu.ca) Accepted 10 August 2004 Key words: biodegradation, bioreactor, ethylene vinyl acetate, microbial consortium, phenol Abstract Two phase partitioning bioreactors (TPPBs) operate by partitioning toxic substrates

  15. THE CONSORTIUM OF MANON ASSELIN ARCHITECTE + JODOIN LAMARRE PRATTE ARCHITECTES WIN THE MONTREAL MUSEUM

    E-Print Network [OSTI]

    Barthelat, Francois

    MUSEUM OF FINE ARTS' ARCHITECTURAL COMPETITION TO DESIGN ITS NEW FIFTH PAVILION THIS NEW PAVILION, in the presence of Maka Kotto, Quebec's Ministre de la Culture et des Communications, the Montreal Museum of Fine Museums Day, Sunday, May 26, at the MMFA. "With the consortium of Manon Asselin Architecte and Jodoin

  16. Short Communication A rapid selection strategy for an anodophilic consortium for microbial fuel cells

    E-Print Network [OSTI]

    Microbial fuel cell (MFC) a b s t r a c t A rapid selection method was developed to enrich for a stable and efficient anodophilic consortium (AC) for microbial fuel cells (MFCs). A biofilm sample from a microbial. Introduction Current generation in microbial fuel cells (MFCs) is dependent on the presence of exoelectrogenic

  17. Consortium for Robotics and Unmanned Systems Education and Research Captain Jeff Kline, USN (ret)

    E-Print Network [OSTI]

    /SSG § Advanced Undersea Warfare Systems (AUWS) Warfare Innovation Workshop § Systems Engineering Analysis § Ux) Wargame Competition § Chair for Undersea Warfare FUNS Wargame ­ Mar 2011 AUWS ­ Dec 2010 #12;Consortium Aerial Vehicles (UAV) § LT Matthew Pawlenko § Self-propelled semi-submersibles [electronic resource

  18. Genome Sequence of the Pea Aphid Acyrthosiphon The International Aphid Genomics Consortium"

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    Genome Sequence of the Pea Aphid Acyrthosiphon pisum The International Aphid Genomics Consortium we present the 464 Mb draft genome assembly of the pea aphid Acyrthosiphon pisum. This first published whole genome sequence of a basal hemimetabolous insect provides an outgroup to the multiple

  19. Cyberinfrastructure Development for the Western Consortium of Idaho, Nevada, and New Mexico Project Summary

    E-Print Network [OSTI]

    Walden, Von P.

    Cyberinfrastructure Development for the Western Consortium of Idaho, Nevada, and New Mexico Project, and New Mexico independently submitted NSF EPSCoR Track 1 Research Infrastructure Improvement (RII monitoring tools across the state. New Mexico: New Mexico activities will enhance connectivity to academic

  20. Dr. Brian L. Wardle Director, Nano-Engineered Composite aerospace STructures (NECST) Consortium

    E-Print Network [OSTI]

    Guiltinan, Mark

    are in the areas of nano-engineered advanced composites, bulk nanostructured materials, carbon-based material applications. Such hybrid advanced composites employ aligned carbon nanotubes (CNTs) to enhance laminate Composite aerospace STructures (NECST) Consortium and has served as the materials/structures lead on MIT

  1. Microbial Corrosion in Linepipe Steel Under the Influence of a Sulfate-Reducing Consortium Isolated

    E-Print Network [OSTI]

    Microbial Corrosion in Linepipe Steel Under the Influence of a Sulfate-Reducing Consortium Isolated) This work investigates microbiologically influenced corrosion of API 5L X52 linepipe steel by a sulfate the corrosion behavior. Through circuit modeling, EIS results were used to interpret the physicoelectric

  2. A RESTful API for exchanging Materials Data in the AFLOWLIB.org consortium

    E-Print Network [OSTI]

    Curtarolo, Stefano

    A RESTful API for exchanging Materials Data in the AFLOWLIB.org consortium Richard H. Taylor1 Institute of Standards and Technology, Gaithersburg, Maryland, 20878, USA 2 Department of Mechanical, an Application Program Interface (API) follow- ing REST principles is introduced for the AFLOWLIB.org materials

  3. U of M awarded $51 million, joins national consortium of Clinical and Translational Science

    E-Print Network [OSTI]

    Dahlberg, E. Dan

    at which the results of clinical trials translate into new treatments, cures and improved health outcomes, therapies and clinical trials outcomes to patients faster, offering more immediate benefits from discoveriesU of M awarded $51 million, joins national consortium of Clinical and Translational Science Award

  4. The Southern Ontario Smart Computing Consortium helps strengthen Canada's digital economy by providing a new innovation

    E-Print Network [OSTI]

    Denham, Graham

    conservation and management through the application of advanced weather modeling and smart grid technologiesThe Southern Ontario Smart Computing Consortium helps strengthen Canada's digital economy by providing a new innovation framework that helps solve critical challenges facing our cities, environment

  5. CAR 2 CAR Communication Consortium WG Workshop 3 -Wireless Aspects for

    E-Print Network [OSTI]

    Gesbert, David

    1 CAR 2 CAR Communication Consortium WG Workshop 3 - Wireless Aspects for deployment StationIdentities Management MAC, IP addresses, Station ID, Driver ID, ... Shared with Security Layer (protects the identities... Forum 2011 Operational components Cross-layer Management Managing and sharing common parameters

  6. Sandia National Laboratories: Geomechanics Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    including studies of coupled effects Extrapolation of laboratory measurements to field conditions In situ stress measurements and evaluation of in situ boundary conditions...

  7. Exporting to Word, PDF or Excel v4 1 myPublications: Exporting to Word, PDF or Excel

    E-Print Network [OSTI]

    Oakley, Jeremy

    Exporting to Word, PDF or Excel v4 1 myPublications: Exporting to Word, PDF or Excel You can export applications and other documents. Links to export lists of elements in a range of formats are shown on a range can be chosen. Publications lists, where you can choose to export all your publications, or mark

  8. Stimulating Manufacturing Excellence in Small and Medium Enterprises, SMESME 2005 Stimulating Industrial Excellence in European Textile SME's

    E-Print Network [OSTI]

    Aristomenis, Antoniadis

    Industrial Excellence in European Textile SME's Nicholas Bilalis 1 , Emmanuel Alvizos 1 , Emmanuel There are more than 100.000 European SME's, in the whole chain of operation from spinning to clothing. Keywords: Industrial Excellence, Textile Sector, IEA, SME 1. Introduction The findings presented

  9. Accelerating progress toward operational excellence of fossil energy plants with CO2 capture

    SciTech Connect (OSTI)

    Zitney, S.; Liese, E.; Mahapatra, P.; Turton, R. Bhattacharyya, D.

    2012-01-01T23:59:59.000Z

    To address challenges in attaining operational excellence for clean energy plants, the National Energy Technology Laboratory has launched a world-class facility for Advanced Virtual Energy Simulation Training And Research (AVESTARTM). The AVESTAR Center brings together state-of-the-art, real-time, high-fidelity dynamic simulators with operator training systems and 3D virtual immersive training systems into an integrated energy plant and control room environment. This paper will highlight the AVESTAR Center simulators, facilities, and comprehensive training, education, and research programs focused on the operation and control of an integrated gasification combined cycle power plant (IGCC) with carbon dioxide capture.

  10. Idaho National Engineering and Environmental Laboratory Virtual Center of Excellence for

    E-Print Network [OSTI]

    using SOFC technology (EE) Thermochemical cycles for water splitting (NE and LDRD) Separation Ion hydrogen and CNG fueling station (EE) Advanced Vehicle Test Program (EE) Fabrication of SOFCs (NIST

  11. SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION PROJECT

    SciTech Connect (OSTI)

    Paul Higley; J. Robert Woolsey; Ralph Goodman; Vernon Asper; Boris Mizaikoff; Angela Davis; Bob A. Hardage; Jeffrey Chanton; Rudy Rogers

    2006-03-01T23:59:59.000Z

    The Gulf of Mexico Hydrates Research Consortium was established in 1999 to assemble leaders in gas hydrates research. The group is administered by the Center for Marine Resources and Environmental Technology, CMRET, at the University of Mississippi. The primary objective of the group is to design and emplace a remote monitoring station or sea floor observatory on the sea floor in the northern Gulf of Mexico by the year 2005, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission necessitates assembling a station that will monitor physical and chemical parameters of the sea water and sea floor sediments on a more-or-less continuous basis over an extended period of time. Development of the station has always included the possibility of expanding its capabilities to include biological monitoring, as a means of assessing environmental health. This possibility has recently received increased attention and the group of researchers working on the station has expanded to include several microbial biologists. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in this relatively new research arena. Complementary expertise, both scientific and technical, has been assembled to promote innovative research methods and construct necessary instrumentation. Initial components of the observatory, a probe that collects pore-fluid samples and another that records sea floor temperatures, were deployed in Mississippi Canyon 118 in May of 2005. Follow-up deployments are planned for fall 2005 and center about the use of the vessel M/V Ocean Quest and its two manned submersibles. The subs will be used to effect bottom surveys, emplace sensors and sea floor experiments and make connections between sensor data loggers and the integrated data power unit (IDP). Station/observatory completion is anticipated for 2007 following the construction, testing and deployment of the horizontal line arrays, not yet funded. The seafloor monitoring station/observatory is funded approximately equally by three federal Agencies: Minerals Management Services (MMS) of the Department of the Interior (DOI), National Energy Technology Laboratory (NETL) of the Department of Energy (DOE), and the National Institute for Undersea Science and Technology (NIUST), an agency of the National Oceanographic and Atmospheric Administration (NOAA).

  12. The Mississippi University Research Consortium for the Utilization of Biomass: Production of Alternative Fuels from Waste Biomass Initiative

    SciTech Connect (OSTI)

    Drs. Mark E. Zapp; Todd French; Lewis Brown; Clifford George; Rafael Hernandez; Marvin Salin (from Mississippie State University); Drs. Huey-Min Hwang, Ken Lee, Yi Zhang; Maria Begonia (from Jackson State University); Drs. Clint Williford; Al Mikell (from the University of Mississippi); Drs. Robert Moore; Roger Hester (from the University of Southern Mississippi).

    2009-03-31T23:59:59.000Z

    The Mississippi Consortium for the Utilization of Biomass was formed via funding from the US Department of Energy's EPSCoR Program, which is administered by the Office of Basic Science. Funding was approved in July of 1999 and received by participating Mississippi institutions by 2000. The project was funded via two 3-year phases of operation (the second phase was awarded based on the high merits observed from the first 3-year phase), with funding ending in 2007. The mission of the Consortium was to promote the utilization of biomass, both cultured and waste derived, for the production of commodity and specialty chemicals. These scientific efforts, although generally basic in nature, are key to the development of future industries within the Southeastern United States. In this proposal, the majority of the efforts performed under the DOE EPSCoR funding were focused primarily toward the production of ethanol from lignocellulosic feedstocks and biogas from waste products. However, some of the individual projects within this program investigated the production of other products from biomass feeds (i.e. acetic acid and biogas) along with materials to facilitate the more efficient production of chemicals from biomass. Mississippi is a leading state in terms of raw biomass production. Its top industries are timber, poultry production, and row crop agriculture. However, for all of its vast amounts of biomass produced on an annual basis, only a small percentage of the biomass is actually industrially produced into products, with the bulk of the biomass being wasted. This situation is actually quite representative of many Southeastern US states. The research and development efforts performed attempted to further develop promising chemical production techniques that use Mississippi biomass feedstocks. The three processes that were the primary areas of interest for ethanol production were syngas fermentation, acid hydrolysis followed by hydrolyzate fermentation, and enzymatic conversion. All three of these processes are of particular interest to states in the Southeastern US since the agricultural products produced in this region are highly variable in terms of actual crop, production quantity, and the ability of land areas to support a particular type of crop. This greatly differs from the Midwestern US where most of this region's agricultural land supports one to two primary crops, such as corn and soybean. Therefore, developing processes which are relatively flexible in terms of biomass feedstock is key to the southeastern region of the US if this area is going to be a 'player' in the developing biomass to chemicals arena. With regard to the fermentation of syngas, research was directed toward developing improved biocatalysts through organism discovery and optimization, improving ethanol/acetic acid separations, evaluating potential bacterial contaminants, and assessing the use of innovative fermentors that are better suited for supporting syngas fermentation. Acid hydrolysis research was directed toward improved conversion yields and rates, acid recovery using membranes, optimization of fermenting organisms, and hydrolyzate characterization with changing feedstocks. Additionally, a series of development efforts addressed novel separation techniques for the separation of key chemicals from fermentation activities. Biogas related research focused on key factors hindering the widespread use of digester technologies in non-traditional industries. The digestion of acetic acids and other fermentation wastewaters was studied and methods used to optimize the process were undertaken. Additionally, novel laboratory methods were designed along with improved methods of digester operation. A search for better performing digester consortia was initiated coupled with improved methods to initiate their activity within digester environments. The third activity of the consortium generally studied the production of 'other' chemicals from waste biomass materials found in Mississippi. The two primary examples of this activity are production of chem

  13. ASSOCIATED LABORATORY PLASMA PHYSICS AND ENGINEERING

    E-Print Network [OSTI]

    Lisboa, Universidade Tcnica de

    ASSOCIATED LABORATORY ON PLASMA PHYSICS AND ENGINEERING Centro de Fuso Nuclear Centro de Fsica dos PlasmasCentro de Fuso Nuclear INSTITUTO SUPERIOR TCNICO Centro de Fsica dos Plasmas WORK Units of excellence in Europe, in the fields of Nuclear Fusion, Plasma Physics and Technologies

  14. Guidelines for Nominations 2012-13 Chancellor's Awards for Excellence

    E-Print Network [OSTI]

    Reed, Christopher A.

    Guidelines for Nominations 2012-13 Chancellor's Awards for Excellence in Undergraduate Research and Creative Achievement Nominations for Students Nominations for awards should include a description activities showcased (including the significance of the student's contribution). * Awards for scholarly

  15. T-613: Microsoft Excel Axis Properties Remote Code Execution Vulnerability

    Broader source: Energy.gov [DOE]

    Microsoft Excel is prone to a remote code-execution vulnerability because the applications fails to sufficiently validate user-supplied input. Attackers can exploit this issue by enticing an unsuspecting user to open a specially crafted Excel file. Successful exploits can allow attackers to execute arbitrary code with the privileges of the user running the application. Failed exploit attempts will result in a denial-of-service condition.

  16. Wireless Internet for The Mobile Enterprise Consortium http://winmec.ucla.edu/ TECHNICAL REPORT/WHITE PAPER

    E-Print Network [OSTI]

    California at Los Angeles, University of

    , COMMUNICATIONS AND APPLICATIONS (TOMCCAP) CONFIDENTIAL, Su, Prabhu, Chu and Gadh, UCLA-WINMEC-2005-201-SVG Gadh UCLA Wireless Internet for Mobile Enterprise Consortium (WINMEC) This research investigates, Prabhu, Chu and Gadh, UCLA-WIN

  17. Standards in Genomic Science: An Open-Access Journal of the Genomic Standards Consortium (GSC8 Meeting)

    ScienceCinema (OSTI)

    Garrity, George

    2011-06-03T23:59:59.000Z

    George Garrity of Michigan State University talks about the GSC's open-access journal SIGS at the Genomic Standards Consortium's 8th meeting at the DOE JGI in Walnut Creek, Calif. on Sept. 9, 2009.

  18. Standards in Genomic Science: An Open-Access Journal of the Genomic Standards Consortium (GSC8 Meeting)

    SciTech Connect (OSTI)

    Garrity, George

    2009-09-09T23:59:59.000Z

    George Garrity of Michigan State University talks about the GSC's open-access journal SIGS at the Genomic Standards Consortium's 8th meeting at the DOE JGI in Walnut Creek, Calif. on Sept. 9, 2009.

  19. The Historically Black Colleges and Universities/Minority Institutions Environmental Technology and Waste Management Consortium annual report, 1990--1991

    SciTech Connect (OSTI)

    NONE

    1991-12-31T23:59:59.000Z

    The HBCU/MI Environmental Technology and Waste Management Consortium was established in January 1990, through a Memorandum of Understanding (MOU) among the member institutions. This group of research-oriented Historically Black Colleges and Universities and Minority Institutions (HBCU/MI) agreed to work together to initiate research, technology development and education programs to address the nation`s critical environmental problems. As a group the HBCU/MI Consortium is uniquely positioned to reach women and the minority populations of African Americans, Hispanics and American Indians. As part of their initial work, they developed the Research, Education, and Technology Transfer (RETT) Plan to actualize the Consortium`s guiding principles. In addition to developing a comprehensive research agenda, four major programs were begun to meet these goals. This report summarizes the 1990--1991 progress.

  20. Midwest Consortium for Wind Turbine Reliability and Optimization

    SciTech Connect (OSTI)

    Scott R. Dana; Douglas E. Adams; Noah J. Myrent

    2012-05-11T23:59:59.000Z

    This report provides an overview of the efforts aimed to establish a student focused laboratory apparatus that will enhance Purdue's ability to recruit and train students in topics related to the dynamics, operations and economics of wind turbines. The project also aims to facilitate outreach to students at Purdue and in grades K-12 in the State of Indiana by sharing wind turbine operational data. For this project, a portable wind turbine test apparatus was developed and fabricated utilizing an AirX 400W wind energy converter. This turbine and test apparatus was outfitted with an array of sensors used to monitor wind speed, turbine rotor speed, power output and the tower structural dynamics. A major portion of this project included the development of a data logging program used to display real-time sensor data and the recording and creation of output files for data post-processing. The apparatus was tested in an open field to subject the turbine to typical operating conditions and the data acquisition system was adjusted to obtain desired functionality to facilitate use for student projects in existing courses offered at Purdue University and Indiana University. Data collected using the data logging program is analyzed and presented to demonstrate the usefulness of the test apparatus related to wind turbine dynamics and operations.

  1. Battery research at Argonne National Laboratory

    SciTech Connect (OSTI)

    Thackeray, M.M.

    1997-10-01T23:59:59.000Z

    Argonne National Laboratory (ANL) has, for many years, been engaged in battery-related R and D programs for DOE and the transportation industry. In particular, from 1973 to 1995, ANL played a pioneering role in the technological development of the high-temperature (400 C) lithium-iron disulfide battery. With the emphasis of battery research moving away from high temperature systems toward ambient temperature lithium-based systems for the longer term, ANL has redirected its efforts toward the development of a lithium-polymer battery (60--80 C operation) and room temperature systems based on lithium-ion technologies. ANL`s lithium-polymer battery program is supported by the US Advanced Battery Consortium (USABC), 3M and Hydro-Quebec, and the lithium-ion battery R and D efforts by US industry and by DOE.

  2. Create a Consortium and Develop Premium Carbon Products from Coal

    SciTech Connect (OSTI)

    Frank Rusinko; John Andresen; Jennifer E. Hill; Harold H. Schobert; Bruce G. Miller

    2006-01-01T23:59:59.000Z

    The objective of these projects was to investigate alternative technologies for non-fuel uses of coal. Special emphasis was placed on developing premium carbon products from coal-derived feedstocks. A total of 14 projects, which are the 2003 Research Projects, are reported herein. These projects were categorized into three overall objectives. They are: (1) To explore new applications for the use of anthracite in order to improve its marketability; (2) To effectively minimize environmental damage caused by mercury emissions, CO{sub 2} emissions, and coal impounds; and (3) To continue to increase our understanding of coal properties and establish coal usage in non-fuel industries. Research was completed in laboratories throughout the United States. Most research was performed on a bench-scale level with the intent of scaling up if preliminary tests proved successful. These projects resulted in many potential applications for coal-derived feedstocks. These include: (1) Use of anthracite as a sorbent to capture CO{sub 2} emissions; (2) Use of anthracite-based carbon as a catalyst; (3) Use of processed anthracite in carbon electrodes and carbon black; (4) Use of raw coal refuse for producing activated carbon; (5) Reusable PACs to recycle captured mercury; (6) Use of combustion and gasification chars to capture mercury from coal-fired power plants; (7) Development of a synthetic coal tar enamel; (8) Use of alternative binder pitches in aluminum anodes; (9) Use of Solvent Extracted Carbon Ore (SECO) to fuel a carbon fuel cell; (10) Production of a low cost coal-derived turbostratic carbon powder for structural applications; (11) Production of high-value carbon fibers and foams via the co-processing of a low-cost coal extract pitch with well-dispersed carbon nanotubes; (12) Use of carbon from fly ash as metallurgical carbon; (13) Production of bulk carbon fiber for concrete reinforcement; and (14) Characterizing coal solvent extraction processes. Although some of the projects funded did not meet their original goals, the overall objectives of the CPCPC were completed as many new applications for coal-derived feedstocks have been researched. Future research in many of these areas is necessary before implementation into industry.

  3. SULI at Ames Laboratory

    SciTech Connect (OSTI)

    None

    2011-01-01T23:59:59.000Z

    A video snapshot of the Science Undergraduate Laboratory Internship (SULI) program at Ames Laboratory.

  4. AVESTAR Center for Operational Excellence of Electricity Generation Plants

    SciTech Connect (OSTI)

    Zitney, Stephen

    2012-08-29T23:59:59.000Z

    To address industry challenges in attaining operational excellence for electricity generation plants, the U.S. Department of Energys (DOE) National Energy Technology Laboratory (NETL) has launched a world-class facility for Advanced Virtual Energy Simulation Training and Research (AVESTARTM). This presentation will highlight the AVESTARTM Center simulators, facilities, and comprehensive training, education, and research programs focused on the operation and control of high-efficiency, near-zero-emission electricity generation plants. The AVESTAR Center brings together state-of-the-art, real-time, high-fidelity dynamic simulators with full-scope operator training systems (OTSs) and 3D virtual immersive training systems (ITSs) into an integrated energy plant and control room environment. AVESTARs initial offering combines--for the first time--a gasification with CO2 capture process simulator with a combined-cycle power simulator together in a single OTS/ITS solution for an integrated gasification combined cycle (IGCC) power plant with carbon dioxide (CO2) capture. IGCC systems are an attractive technology option for power generation, especially when capturing and storing CO2 is necessary to satisfy emission targets. The AVESTAR training program offers a variety of courses that merge classroom learning, simulator-based OTS learning in a control-room operations environment, and immersive learning in the interactive 3D virtual plant environment or ITS. All of the courses introduce trainees to base-load plant operation, control, startups, and shutdowns. Advanced courses require participants to become familiar with coordinated control, fuel switching, power-demand load shedding, and load following, as well as to problem solve equipment and process malfunctions. Designed to ensure work force development, training is offered for control room and plant field operators, as well as engineers and managers. Such comprehensive simulator-based instruction allows for realistic training without compromising worker, equipment, and environmental safety. It also better prepares operators and engineers to manage the plant closer to economic constraints while minimizing or avoiding the impact of any potentially harmful, wasteful, or inefficient events. The AVESTAR Center is also used to augment graduate and undergraduate engineering education in the areas of process simulation, dynamics, control, and safety. Students and researchers gain hands-on simulator-based training experience and learn how the commercial-scale power plants respond dynamically to changes in manipulated inputs, such as coal feed flow rate and power demand. Students also analyze how the regulatory control system impacts power plant performance and stability. In addition, students practice start-up, shutdown, and malfunction scenarios. The 3D virtual ITSs are used for plant familiarization, walk-through, equipment animations, and safety scenarios. To further leverage the AVESTAR facilities and simulators, NETL and its university partners are pursuing an innovative and collaborative R&D program. In the area of process control, AVESTAR researchers are developing enhanced strategies for regulatory control and coordinated plant-wide control, including gasifier and gas turbine lead, as well as advanced process control using model predictive control (MPC) techniques. Other AVESTAR R&D focus areas include high-fidelity equipment modeling using partial differential equations, dynamic reduced order modeling, optimal sensor placement, 3D virtual plant simulation, and modern grid. NETL and its partners plan to continue building the AVESTAR portfolio of dynamic simulators, immersive training systems, and advanced research capabilities to satisfy industrys growing need for training and experience with the operation and control of clean energy plants. Future dynamic simulators under development include natural gas combined cycle (NGCC) and supercritical pulverized coal (SCPC) plants with post-combustion CO2 capture. These dynamic simulators are targeted for us

  5. automotive technology excellence: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    automotive technology excellence First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Does Automotive...

  6. A Climate Modelling Primer Building an EBM with Excel

    E-Print Network [OSTI]

    McCready, Mark J.

    A Climate Modelling Primer Building an EBM with Excel 1. Introduction This document tells you how this guide to get the EBM coded up in whatever programming language you have available. To get a fuller understanding of where the equations come from, you'll need a copy of the book handy. 2. The model domain

  7. ~ Lois B. DeFleur Scholarship for Excellence in Leadership

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    ~ Lois B. DeFleur Scholarship for Excellence in Leadership 2012-2013 Are YOU a leader? We leadership abilities for the advancement and enhancement of Binghamton University. These abilities may be demonstrated by having participated in a leadership capacity in student activities on campus. Because financial

  8. NEXTOR: The National Center of Excellence for Aviation Operations Research

    E-Print Network [OSTI]

    Shapiro, Benjamin

    Administration (FAA) established The National Center of Excellence for Aviation Operations Research (NEXTOR for the Federal Aviation Administration to analyze the impact of new technologies for the entire NAS and devise Mathematics, Economics, Civil Engineering and Electrical Engineering. BACKGROUND The Federal Aviation

  9. Excellence Environment Learning Discovery People We are one of

    E-Print Network [OSTI]

    Northern British Columbia, University of

    knowledge and skills they acquired during their studies. A Renewable Energy Leader UNBC is implementing small universities. We welcome you to share our passion for excellence, the environment, people, inclusive, and supportive. Quick Facts: Total Students: 4177 International Students: 320 (40 Countries

  10. Call for Nominations 2012-2013 Chancellor's Awards for Excellence

    E-Print Network [OSTI]

    Reed, Christopher A.

    Call for Nominations 2012-2013 Chancellor's Awards for Excellence in Undergraduate Research awards for graduating seniors for outstanding research or creative activity Two awards for faculty their careers Awards are announced in the spring. Each recipient is given a crystal trophy, a certificate

  11. Call for Nominations 2013-2014 Chancellor's Awards for Excellence

    E-Print Network [OSTI]

    Reed, Christopher A.

    Call for Nominations 2013-2014 Chancellor's Awards for Excellence in Undergraduate Research awards for graduating seniors for outstanding research or creative activity Up to two awards for faculty their careers Nominations for awards may come from department chairs or other faculty; for faculty awards

  12. Executive Summaries Hydrogen Storage Materials Centers of Excellence

    E-Print Network [OSTI]

    of performance metrics for onboard hydrogen storage systems based on comparison with gasoline fueled vehiclesExecutive Summaries for the Hydrogen Storage Materials Centers of Excellence Chemical Hydrogen Storage CoE, Hydrogen Sorption CoE, and Metal Hydride CoE Period of Performance: 2005

  13. Process Improvement Center of Excellence Service Proposal Recommendation

    E-Print Network [OSTI]

    Process Improvement Center of Excellence Service Proposal Recommendation Operational Oversight.docx Template Rev. Date: 3/17/2011 File name: 4 0 Service Proposal Recommendation Process Reengineering regarding a possible addition to a service. This process is being initiated as the proposal likely

  14. Heavy-Duty Truck Engine: 2007 Emissions with Excellent Fuel Economy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Truck Engine: 2007 Emissions with Excellent Fuel Economy Heavy-Duty Truck Engine: 2007 Emissions with Excellent Fuel Economy 2004 Diesel Engine Emissions Reduction (DEER)...

  15. Laboratory Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PM toLED Lighting5-15TradeLaboratories

  16. Laboratory Directors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLSLaboratory Directors Laboratory Directors A

  17. Laboratory Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,sand CERN 73-11 Laboratory I |

  18. SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION PROJECT

    SciTech Connect (OSTI)

    Paul Higley; J. Robert Woolsey; Ralph Goodman; Vernon Asper; Boris Mizaikoff; Angela Davis

    2005-08-01T23:59:59.000Z

    A Consortium, designed to assemble leaders in gas hydrates research, has been established at the University of Mississippi's Center for Marine Resources and Environmental Technology, CMRET. The primary objective of the group is to design and emplace a remote monitoring station on the sea floor in the northern Gulf of Mexico by the year 2005, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission necessitates assembling a station that will monitor physical and chemical parameters of the sea water and sea floor sediments on a more-or-less continuous basis over an extended period of time. Development of the station allows for the possibility of expanding its capabilities to include biological monitoring, as a means of assessing environmental health. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in this relatively new research arena. Complementary expertise, both scientific and technical, has been assembled to innovate research methods and construct necessary instrumentation. A year into the life of this cooperative agreement, we note the following achievements: (1) Progress on the vertical line array (VLA) of sensors: (A) Software and hardware upgrades to the data logger for the prototype vertical line array, including enhanced programmable gains, increased sampling rates, improved surface communications, (B) Cabling upgrade to allow installation of positioning sensors, (C) Adaptation of SDI's Angulate program to use acoustic slant ranges and DGPS data to compute and map the bottom location of the vertical array, (D) Progress in T''0'' delay and timing issues for improved control in data recording, (E) Successful deployment and recovery of the VLA twice during an October, 2003 cruise, once in 830m water, once in 1305m water, (F) Data collection and recovery from the DATS data logger, (G) Sufficient energy supply and normal functioning of the pressure compensated battery even following recharge after the first deployment, (H) Survival of the acoustic modem following both deployments though it was found to have developed a slow leak through the transducer following the second deployment due, presumably, to deployment in excess of 300m beyond its rating. (2) Progress on the Sea Floor Probe: (A) The Sea Floor Probe and its delivery system, the Multipurpose sled have been completed, (B) The probe has been modified to penetrate the <1m blanket of hemipelagic ooze at the water/sea floor interface to provide the necessary coupling of the accelerometer with the denser underlying sediments, (C) The MPS has been adapted to serve as an energy source for both p- and s-wave studies at the station as well as to deploy the horizontal line arrays and the SFP. (3) Progress on the Electromagnetic Bubble Detector and Counter: (A) Components for the prototype have been assembled, including a dedicated microcomputer to control power, readout and logging of the data, all at an acceptable speed, (B) The prototype has been constructed and preliminary data collected, (C) The construction of the field system is underway. (4) Progress on the Acoustic Systems for Monitoring Gas Hydrates: (A) Video recordings of bubbles emitted from a seep in Mississippi Canyon have been made from a submersible dive and the bubbles analyzed with respect to their size, number, and rise rate. These measurements have been used to determine the parameters to build the system capable of measuring gas escaping at the site of the monitoring station, (B) Laboratory tests performed using the project prototype have produced a conductivity data set that is being used to refine parameters of the field model. (5) Progress on the Mid-Infrared Sensor for Continuous Methane Monitoring: (A) Preliminary designs of mounting pieces for electrical components of ''sphereIR'' have been completed using AutoCAD software, (B) The preliminary design of an electronics baseplate has been completed and aided in the optimization of

  19. SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION PROJECT

    SciTech Connect (OSTI)

    Paul Higley; J. Robert Woolsey; Ralph Goodman; Vernon Asper; Boris Mizaikoff; Angela Davis; Bob A. Hardage; Jeffrey Chanton; Rudy Rogers

    2006-05-18T23:59:59.000Z

    The Gulf of Mexico Hydrates Research Consortium (GOM-HRC) was established in 1999 to assemble leaders in gas hydrates research. The primary objective of the group has been to design and emplace a remote monitoring station or sea floor observatory (MS/SFO) on the sea floor in the northern Gulf of Mexico by the year 2005, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission, although unavoidably delayed by hurricanes and other disturbances, necessitates assembling a station that will monitor physical and chemical parameters of the sea water and sea floor sediments on a more-or-less continuous basis over an extended period of time. Development of the station has always included the possibility of expanding its capabilities to include biological monitoring, as a means of assessing environmental health. This possibility has recently achieved reality via the National Institute for Undersea Science and Technology's (NIUST) solicitation for proposals for research to be conducted at the MS/SFO. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in the arena of gas hydrates research. Complementary expertise, both scientific and technical, has been assembled to promote innovative research methods and construct necessary instrumentation. The observatory has achieved a microbial dimension in addition to the geophysical and geochemical components it had already included. Initial components of the observatory, a probe that collects pore-fluid samples and another that records sea floor temperatures, were deployed in Mississippi Canyon 118 in May of 2005. Follow-up deployments, planned for fall 2005, have had to be postponed and the use of the vessel M/V Ocean Quest and its two manned submersibles sacrificed due to the catastrophic effects of Hurricane Katrina (and later, Rita) on the Gulf Coast. Every effort is being made to locate and retain the services of a replacement vessel and submersibles or Remotely Operated Vehicles (ROVs) but these efforts have been fruitless due to the demand for these resources in the tremendous recovery effort being made in the Gulf area. Station/observatory completion, anticipated for 2007, will likely be delayed by at least one year. The seafloor monitoring station/observatory is funded approximately equally by three federal Agencies: Minerals Management Services (MMS) of the Department of the Interior (DOI), National Energy Technology Laboratory (NETL) of the Department of Energy (DOE), and the National Institute for Undersea Science and Technology (NIUST), an agency of the National Oceanographic and Atmospheric Administration (NOAA). Subcontractors with FY03 funding fulfilled their technical reporting requirements in the previous report (41628R10). Only unresolved matching funds issues remain and will be addressed in the report of the University of Mississippi's Office of Research and Sponsored Programs.

  20. Connecting Genomic Alterations to Cancer Biology with Proteomics: The NCI Clinical Proteomic Tumor Analysis Consortium

    SciTech Connect (OSTI)

    Ellis, Matthew; Gillette, Michael; Carr, Steven A.; Paulovich, Amanda G.; Smith, Richard D.; Rodland, Karin D.; Townsend, Reid; Kinsinger, Christopher; Mesri, Mehdi; Rodriguez, Henry; Liebler, Daniel

    2013-10-03T23:59:59.000Z

    The National Cancer Institute (NCI) Clinical Proteomic Tumor Analysis Consortium is applying the latest generation of proteomic technologies to genomically annotated tumors from The Cancer Genome Atlas (TCGA) program, a joint initiative of the NCI and the National Human Genome Research Institute. By providing a fully integrated accounting of DNA, RNA, and protein abnormalities in individual tumors, these datasets will illuminate the complex relationship between genomic abnormalities and cancer phenotypes, thus producing biologic insights as well as a wave of novel candidate biomarkers and therapeutic targets amenable to verifi cation using targeted mass spectrometry methods.

  1. The Solar Energy Consortium of New York Photovoltaic Research and Development Center

    SciTech Connect (OSTI)

    Klein, Petra M.

    2012-10-15T23:59:59.000Z

    Project Objective: To lead New York State to increase its usage of solar electric systems. The expected outcome is that appropriate technologies will be made available which in turn will help to eliminate barriers to solar energy usage in New York State. Background: The Solar Energy Consortium has been created to lead New York State research on solar systems specifically directed at doubling the efficiency, halving the cost and reducing the cost of installation as well as developing unique form factors for the New York City urban environment.

  2. GreenTouch Consortium Passes 50-Member Milestone, Adds Seven New Members

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental AssessmentsGeoffrey(SC)Graphite Reactor 'InGreenTouch Consortium

  3. Sandia National Laboratories: Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NYC Energy Storage Expo. NYSERDA and Con Edison, with support from NY-BEST (the New York Battery & Energy Storage Technology consortium) and AGRION, will be hosting a series of...

  4. Laboratory Waste | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLSLaboratory Directors LaboratoryPlanning

  5. Geoscience Laboratory | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental AssessmentsGeoffrey CampbelllongApplyingGeorge T.Geoscience Laboratory

  6. CONSORTIUM MODEL

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platformBuilding Removal OngoingCERCLA(Expenditure-Based) TECHNOLOGY INVESTMENT

  7. CONSORTIUM MODEL

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platformBuilding Removal OngoingCERCLA(Expenditure-Based) TECHNOLOGY INVESTMENT

  8. CONSORTIUM MODEL

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platformBuilding Removal OngoingCERCLA(Expenditure-Based) TECHNOLOGY INVESTMENT

  9. CONSORTIUM MODEL

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platformBuilding Removal OngoingCERCLA(Expenditure-Based) TECHNOLOGY

  10. Sandia National Laboratories: Photovoltaics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PV Facilities On November 10, 2010, in Photovoltaic System Evaluation Laboratory Distributed Energy Technologies Laboratory Microsystems and Engineering Sciences Applications...

  11. Sandia National Laboratories: Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory (PSEL) National Supervisory Control and Data Acquisition (SCADA) Test Bed Center for Integrated Nanotechnologies (CINT) Distributed Energy Technologies Laboratory...

  12. Environmental | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environmental Management Program at the Ames Laboratory includes Waste Management, Pollution Prevention, Recycling, Cultural Resources, and the Laboratory's Environmental...

  13. Achieving competitive excellence in nuclear energy: The threat of proliferation; the challenge of inertial confinement fusion

    SciTech Connect (OSTI)

    Nuckolls, J.H.

    1994-06-01T23:59:59.000Z

    Nuclear energy will have an expanding role in meeting the twenty-first-century challenges of population and economic growth, energy demand, and global warming. These great challenges are non-linearly coupled and incompletely understood. In the complex global system, achieving competitive excellence for nuclear energy is a multi-dimensional challenge. The growth of nuclear energy will be driven by its margin of economic advantage, as well as by threats to energy security and by growing evidence of global warming. At the same time, the deployment of nuclear energy will be inhibited by concerns about nuclear weapons proliferation, nuclear waste and nuclear reactor safety. These drivers and inhibitors are coupled: for example, in the foreseeable future, proliferation in the Middle East may undermine energy security and increase demand for nuclear energy. The Department of Energy`s nuclear weapons laboratories are addressing many of these challenges, including nuclear weapons builddown and nonproliferation, nuclear waste storage and burnup, reactor safety and fuel enrichment, global warming, and the long-range development of fusion energy. Today I will focus on two major program areas at the Lawrence Livermore National Laboratory (LLNL): the proliferation of nuclear weapons and the development of inertial confinement fusion (ICF) energy.

  14. Star of Excellence for Safety Performance | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2Uranium Transfer toSensorSoftwareStar of Excellence for Safety Performance Star

  15. Sandia National Laboratories: advanced auxiliary power units...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    auxiliary power units (including biofuels) Sandia Participated in the 3rd Annual Technology Forum of the U.S.-China Clean Energy Research Center - Clean Vehicles Consortium...

  16. Wireless Internet for The Mobile Enterprise Consortium http://winmec.ucla.edu/ TECHNICAL REPORT/WHITE PAPER

    E-Print Network [OSTI]

    California at Los Angeles, University of

    /WHITE PAPER UCLA-WINMEC-2005-110-CONTENT SUBMITTED TO WIRELESSCOM2005 CONFIDENTIAL, Su, Prabhu, Chu and Gadh Engineering Computing Xiaoyong Su, B.S. Prabhu, Chi-Cheng Chu, Rajit Gadh UCLA Wireless Internet for Mobile Enterprise Consortium (WINMEC) 420 Westwood Plaza, Los Angeles, CA 90095 x.y.su, bsp, cchu, gadh

  17. Wireless Internet for The Mobile Enterprise Consortium http://winmec.ucla.edu/ TECHNICAL REPORT/WHITE PAPER

    E-Print Network [OSTI]

    California at Los Angeles, University of

    /WHITE PAPER UCLA-WINMEC-2003-303-MOBILE_MULTIMEDIA-ENTERPRISE CONFIDENTIAL, Su, Prabhu and Gadh, UCLA (MobIME) Xiaoyong Su, B. S. Prabhu, Rajit Gadh Wireless Internet for the Mobile Enterprise Consortium and Gadh, UCLA-WINMEC-2003-303-MOBILE-MULTIMEDIA- ENTERPRISE, December 2003. PCA device [2]. CC/PP is very

  18. Digital Gas Joins Asian Waste-to-Energy Consortium: To Eliminate Coal as a Power Plant Fuel

    E-Print Network [OSTI]

    Columbia University

    Energy's patented technology produces a clean-burning by-product from the widest variety of processed-efficient technology represented by the coal-substitute technology. The same technology will be deployed by DIGGDigital Gas Joins Asian Waste-to-Energy Consortium: To Eliminate Coal as a Power Plant Fuel Digital

  19. Wireless Internet for The Mobile Enterprise Consortium http://winmec.ucla.edu/ TECHNICAL REPORT/WHITE PAPER

    E-Print Network [OSTI]

    California at Los Angeles, University of

    . Content delivery will be based on IP networks in which packets of data are used to deliver content-609-MULTICAST-Bband, Nov. 2003. 1 Efficient broadband multi-media data distribution over the Internet using Enterprise Consortium, wireless@winmec.ucla.edu University of California, Los Angeles, 420 Westwood Plaza

  20. Wireless Internet for The Mobile Enterprise Consortium http://winmec.ucla.edu/ TECHNICAL REPORT/WHITE PAPER

    E-Print Network [OSTI]

    California at Los Angeles, University of

    the smart RFID data management scheme developed in WINMEC. It pre-processes received RFID data based Consortium (WINMEC) http://winmec.ucla.edu/, 420 Westwood Plaza, University of California, Los Angeles, CA to upper-layer applications. This makes it easy to be integrated into various backend data processing

  1. Vehicle Technologies Office 2013 Merit Review: A University Consortium on Efficient and Clean High-Pressure, Lean Burn (HPLB) Engines

    Broader source: Energy.gov [DOE]

    A presentation given by the University of Michigan at the 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting about a university consortium to research efficient and clean high-pressure lean burn engines.

  2. Laboratory Directed Research and Development Program

    SciTech Connect (OSTI)

    Ogeka, G.J.

    1991-12-01T23:59:59.000Z

    Today, new ideas and opportunities, fostering the advancement of technology, are occurring at an ever-increasing rate. It, therefore, seems appropriate that a vehicle be available which fosters the development of these new ideas and technologies, promotes the early exploration and exploitation of creative and innovative concepts, and which develops new fundable'' R D projects and programs. At Brookhaven National Laboratory (BNL), one such method is through its Laboratory Directed Research and Development (LDRD) Program. This discretionary research and development tool is critical in maintaining the scientific excellence and vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor achieving and maintaining staff excellence, and a means to address national needs, with the overall mission of the Department of Energy (DOE) and the Brookhaven National Laboratory. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, they have resulted in numerous publications in various professional and scientific journals, and presentations at meetings and forums.

  3. Sandia National Laboratories: Heliostat

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    test capabilities, and the resulting research is expected to lead to more solar power use on the electric grid. ... Excellence Award in the 2012 Facilities...

  4. Sandia National Laboratories: NSTTF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Excellence Award in the 2012 Facilities Environmental, Safety and Health Go Green Initiative On December 19, 2012, in Concentrating Solar Power, Energy, Events, Facilities,...

  5. Sandia National Laboratories: NEDO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NEDO Mesa del Sol Project Is Finalist for International Smart Grid Action Network 2014 Award of Excellence On July 31, 2014, in Distribution Grid Integration, Energy, Energy...

  6. Sandia National Laboratories: Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TechnologiesCombustion Combustion The Combustion Research Facility (CRF) is an internationally recognized center of excellence for combustion science and technology whose...

  7. Selective enrichment of a methanol-utilizing consortium using pulp & paper mill waste streams

    SciTech Connect (OSTI)

    Gregory R. Mockos; William A. Smith; Frank J. Loge; David N. Thompson

    2007-04-01T23:59:59.000Z

    Efficient utilization of carbon inputs is critical to the economic viability of the current forest products sector. Input carbon losses occur in various locations within a pulp mill, including losses as volatile organics and wastewater . Opportunities exist to capture this carbon in the form of value-added products such as biodegradable polymers. Waste activated sludge from a pulp mill wastewater facility was enriched for 80 days for a methanol-utilizing consortium with the goal of using this consortium to produce biopolymers from methanol-rich pulp mill waste streams. Five enrichment conditions were utilized: three high-methanol streams from the kraft mill foul condensate system, one methanol-amended stream from the mill wastewater plant, and one methanol-only enrichment. Enrichment reactors were operated aerobically in sequencing batch mode at neutral pH and 25C with a hydraulic residence time and a solids retention time of four days. Non-enriched waste activated sludge did not consume methanol or reduce chemical oxygen demand. With enrichment, however, the chemical oxygen demand reduction over 24 hour feed/decant cycles ranged from 79 to 89 %, and methanol concentrations dropped below method detection limits. Neither the non-enriched waste activated sludge nor any of the enrichment cultures accumulated polyhydroxyalkanoates (PHAs) under conditions of nitrogen sufficiency. Similarly, the non-enriched waste activated sludge did not accumulate PHAs under nitrogen limited conditions. By contrast, enriched cultures accumulated PHAs to nearly 14% on a dry weight basis under nitrogen limited conditions. This indicates that selectively-enriched pulp mill waste activated sludge can serve as an inoculum for PHA production from methanol-rich pulp mill effluents.

  8. An Industrial-Based Consortium to Develop Premium Carbon Products from Coal, Annual Progress Report, October 1, 2005 through September 30, 2006

    SciTech Connect (OSTI)

    Bruce G. Miller

    2006-09-29T23:59:59.000Z

    Since 1998, The Pennsylvania State University has been successfully managing the Consortium for Premium Carbon Products from Coal (CPCPC), which is a vehicle for industry-driven research on the promotion, development, and transfer of innovative technology on premium carbon produces from coal to the U.S. industry. The CPCPC is an initiative being led by Penn State, its co-charter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provides the base funding for the program, with Penn State responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement ended November 2004 but the CPCPC activity has continued under the present cooperative agreement, No. DE-FC26-03NT41874, which started October 1, 2003. The objective of the second agreement is to continue the successful operation of the CPCPC. The CPCPC has enjoyed tremendous success with its organizational structure, that includes Penn State and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC is its industry-led council that selects proposals submitted by CPCPC members to ensure CPCPC target areas have strong industrial support. Base funding for the selected projects is provided by NETL with matching funds from industry. At the annual funding meeting held in October 2003, ten projects were selected for funding. Subcontracts were let from Penn State to the subcontractors on March 1, 2004. Nine of the ten 2004 projects were completed during the previous annual reporting period and their final reports were submitted with the previous annual report (i.e., 10/01/04-09/30/05). The final report for the remaining project, which was submitted during this reporting period (i.e., 10/01/05-09/30/06), is attached. At the annual funding meeting held in November 2004, eleven projects were selected for funding. Subcontracts were let from Penn State to the subcontractors on March 1, 2005. Three additional projects were selected for funding during the April 2005 tutorial/funding meeting. Subcontracts were let from Penn State to the subcontractors on July 1, 2005. Of these fourteen 2005 projects, eleven have been completed and the final reports are attached. An annual funding meeting was held in November 2005 and the council selected five projects for funding. Subcontracts were let from Penn State to the subcontractors on March 1, 2006, except for one that started October 1, 2006.

  9. An Industrial-Based Consortium to Develop Premium Carbon Products from Coal, Annual Progress Report, October 1, 2004 through September 30, 2005

    SciTech Connect (OSTI)

    Miller, Bruce G

    2006-03-01T23:59:59.000Z

    Since 1998, The Pennsylvania State University (PSU) has been successfully operating the Consortium for Premium Carbon Products from Coal (CPCPC), which is a vehicle for industry-driven research on the promotion, development, and transfer of innovative technology on premium carbon produces from coal to the U.S. industry. The CPCPC is an initiative being led by PSU, its co-charter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provides the base funding for the program, with PSU responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement ended November 2004 but the CPCPC activity has continued under the present cooperative agreement, No. DE-FC26-03NT41874, which started October 1, 2003. The objective of the second agreement is to continue the successful operation of the CPCPC. The CPCPC has enjoyed tremendous success with its organizational structure, that includes PSU and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC is its industry-led council that selects proposals submitted by CPCPC members to ensure CPCPC target areas have strong industrial support. A second contract was executed with DOE NETL starting in October 2003 to continue the activities of CPCPC. An annual funding meeting was held in October 2003 and the council selected ten projects for funding. Base funding for the projects is provided by NETL with matching funds from industry. Subcontracts were let from Penn State to the subcontractors on March 1, 2004. Nine of the ten projects have been completed and the final reports for these 2004 projects are attached. An annual funding meeting was held in November 2004 and the council selected eleven projects for funding. Subcontracts were let from Penn State to the subcontractors on March 1, 2005. Three additional projects were selected for funding during the April 2005 tutorial/funding meeting. Subcontracts were let from Penn State to the subcontractors on July 1, 2005.

  10. Sandia National Laboratories: Nuclear Energy Systems Laboratory...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory (NESL) Transient Nuclear Fuels Testing Radiation Effects Sciences Solar Electric Propulsion Nuclear Energy Safety Technologies Experimental Testing...

  11. Sandia National Laboratories: Nuclear Energy Systems Laboratory...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory (NESL) Transient Nuclear Fuels Testing Radiation Effects Sciences Solar Electric Propulsion Nuclear Energy Safety Technologies Experimental Testing Phenomenological...

  12. Integrating environment, safety and health training at a national laboratory

    SciTech Connect (OSTI)

    Larson, D.R.

    1993-01-01T23:59:59.000Z

    In a multi-purpose research laboratory, innovation and creativity are required to satisfy the training requirements for hazards to people and the environment. A climate that encourages excellence in research and enhances hazard minimization skills is created by combining technical expertise with instructional design talent.

  13. Final report for the DOE Metal Hydride Center of Excellence.

    SciTech Connect (OSTI)

    Keller, Jay O.; Klebanoff, Leonard E.

    2012-01-01T23:59:59.000Z

    This report summarizes the R&D activities within the U.S. Department of Energy Metal Hydride Center of Excellence (MHCoE) from March 2005 to June 2010. The purpose of the MHCoE has been to conduct highly collaborative and multi-disciplinary applied R&D to develop new reversible hydrogen storage materials that meet or exceed DOE 2010 and 2015 system goals for hydrogen storage materials. The MHCoE combines three broad areas: mechanisms and modeling (which provide a theoretically driven basis for pursuing new materials), materials development (in which new materials are synthesized and characterized) and system design and engineering (which allow these new materials to be realized as practical automotive hydrogen storage systems). This Final Report summarizes the organization and execution of the 5-year research program to develop practical hydrogen storage materials for light duty vehicles. Major results from the MHCoE are summarized, along with suggestions for future research areas.

  14. Ames Laboratory Ames, Iowa Argonne National Laboratory Argonne...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory Los Alamos, New Mexico National Energy Technology Laboratory Morgantown, West Virginia Pittsburgh, Pennsylvania Albany, Oregon National Renewable Energy Laboratory...

  15. Samuel P. Massie Chair of Excellence in Environmental Disciplines

    SciTech Connect (OSTI)

    Adeyiga, Adeyinka A.

    2014-12-17T23:59:59.000Z

    The establishment of the DOE-EM Dr. Samuel P. Massie Chair of Excellence provides an excellent opportunity for Hampton University to be involved in key environmental issues in the 21st Century. The main areas of focus are on: 1. Coal gasification with respect to pollution prevention and reduction. 2. Solid waste treatment through bioremediation technology and 3. Industrial wastewater treatment Synthesizing ion catalysts suitable for use in slurry bubble column reaction was carried out. Construction of an autoclave continuous stirred tank reactor has been completed. At the initial stage of the development of this program, work was conducted in the area of formic acid recovery from waste streams, which yielded useful results. We also succeeded in the removal of priority metal ions such as cadmium, chromium, copper, lead, mercury, nickel, silver, thallium, zinc, etc., from industrial and municipal wastewater by using natural wastes. The process uses tree leaves to adsorb the metal ions in the wastewater. The ultimate goal is to develop inexpensive, highly available, effective metal ion adsorbents from natural wastes as an alternative to existing commercial adsorbents, and also to explain the possible adsorption mechanism that is taking place. This technology uses natural wastes to eliminate other wastes. Obviously, there are several advantages: (1) the negative impact on environment is eliminated, (2) the complicated regeneration step is not needed, and (3) the procedure saves money and energy. Twelve different types of leaves have been tested with lead, zinc, and nickel. The study mechanism showed that the leaf tannin is an active ingredient in the adsorption of metal ions. The ion-exchange mechanism controlled the adsorption process.

  16. Nanosheet-structured LiV3O8 with high capacity and excellent...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanosheet-structured LiV3O8 with high capacity and excellent stability for high energy lithium batteries . Nanosheet-structured LiV3O8 with high capacity and excellent stability...

  17. Sandia National Laboratories: IRED

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SMART Grid, Solar Sandia National Laboratories, the Electric Power Research Institute (EPRI) and European Distributed Energies Research Laboratories (DERlab) have organized a...

  18. Using SAS to generate DDI-Codebook XML from Information Managed in Excel Spreadsheets

    E-Print Network [OSTI]

    Wright, Philip A.

    2013-04-02T23:59:59.000Z

    \\fem_variable_formats.txt' delimiter = '09'x MISSOVER DSD lrecl = 32767 firstobs = 2 ; input VARIABLE $ FORMAT $ ; run ; There is more than one way to import information from Excel into SAS External File Interface Import Wizard Proc Import Excel Library... into SAS Proc Import There is more than one way to import information from Excel into SAS proc import datafile = "C:\\worksheets\\female_metadata.xls" out = user.female_metadata dbms = excel ; range = "'FINAL SECTION J'" ; getnames = yes ; mixed...

  19. DOE Chair of Excellence Professorship in Environmental Disciplines

    SciTech Connect (OSTI)

    Shoou-Yuh Chang

    2013-01-31T23:59:59.000Z

    The United States (US) nuclear weapons program during the Cold War left a legacy of radioactive, hazardous, chemical wastes and facilities that may seriously harm the environment and people even today. Widespread public concern about the environmental pollution has created an extraordinary demand for the treatment and disposal of wastes in a manner to protect the public health and safety. The pollution abatement and environmental protection require an understanding of technical, regulatory, economic, permitting, institutional, and public policy issues. Scientists and engineers have a major role in this national effort to clean our environment, especially in developing alternative solutions and evaluation criteria and designing the necessary facilities to implement the solutions. The objective of the DOE Chair of Excellence project is to develop a high quality educational and research program in environmental engineering at North Carolina A&T State University (A&T). This project aims to increase the number of graduate and undergraduate students trained in environmental areas while developing a faculty concentrated in environmental education and research. Although A&T had a well developed environmental program prior to the Massie Chair grant, A&T's goal is to become a model of excellence in environmental engineering through the program's support. The program will provide a catalyst to enhance collaboration of faculty and students among various engineering departments to work together in a focus research area. The collaboration will be expanded to other programs at A&T. The past research focus areas include: hazardous and radioactive waste treatment and disposal fate and transport of hazardous chemicals in the environment innovative technologies for hazardous waste site remediation pollution prevention Starting from 2005, the new research focus was in the improvement of accuracy for radioactive contaminant transport models by ensemble based data assimilation. The specific objectives are to: 1). improve model accuracy for use in minimizing health and environmental risk, and 2). improve the decision making process in the selection and application of available technologies for long-term monitoring and safeguard operation at NNSA sites.

  20. The Center for Petroleum and Geosystems Engineering will be host-ing our 6th annual consortium meeting on August 16-18, 2006. We

    E-Print Network [OSTI]

    Texas at Austin, University of

    as well as refereed technical publications in reputable scien- tific journals. Our strength lies in yet collaboration with consortium members through summer intern- ships and new in-house application projects. Our

  1. National Renewable Energy Laboratory

    E-Print Network [OSTI]

    National Renewable Energy Laboratory Innovation for Our Energy Future ponsorship Format Reversed Color:White rtical Format Reversed-A ertical Format Reversed-B National Renewable Energy Laboratory National Renewable Energy Laboratory Innovation for Our Energy Future National Renewable Energy Laboratory

  2. Sandia National Laboratories: Sandia National Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Hosted by Sandia National Laboratories and the Electric Power Research Institute (EPRI) Inverter reliability drives project life cycle costs and plant performance. This...

  3. Argonne National Laboratory | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory Slip sliding away Graphene and diamonds prove a slippery combination Read More ACT-SO winners Argonne mentors students for the next generation of...

  4. Materials Design Laboratory | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Design Laboratory, scheduled for completion in FY 2020, is designed to meet U.S. Green Building Council Leadership in Energy and Environmental Design (LEED) Gold...

  5. A University Consortium on Low Temperature Combustion for High Efficiency, Ultra-Low Emission Engines

    SciTech Connect (OSTI)

    Dennis N. Assanis; Arvind Atreya; Jyh-Yuan Chen; Wai K. Cheng; Robert W. Dibble; Chris Edwards; Zoran S. Filipi; Christian Gerdes; Hong Im; George A. Lavoie; Margaret S. Wooldridge

    2009-12-31T23:59:59.000Z

    The objective of the University consortium was to investigate the fundamental processes that determine the practical boundaries of Low Temperature Combustion (LTC) engines and develop methods to extend those boundaries to improve the fuel economy of these engines, while operating with ultra low emissions. This work involved studies of thermal effects, thermal transients and engine management, internal mixing and stratification, and direct injection strategies for affecting combustion stability. This work also examined spark-assisted Homogenous Charge Compression Ignition (HCCI) and exhaust after-treatment so as to extend the range and maximize the benefit of Homogenous Charge Compression Ignition (HCCI)/ Partially Premixed Compression Ignition (PPCI) operation. In summary the overall goals were: ? Investigate the fundamental processes that determine the practical boundaries of Low Temperature Combustion (LTC) engines. ? Develop methods to extend LTC boundaries to improve the fuel economy of HCCI engines fueled on gasoline and alternative blends, while operating with ultra low emissions. ? Investigate alternate fuels, ignition and after-treatment for LTC and Partially Premixed compression Ignition (PPCI) engines.

  6. Industrial Consortium for the Utilization of the Geopressured-Geothermal Resource. Volume 2

    SciTech Connect (OSTI)

    Negus-deWys, J. (ed.)

    1990-03-01T23:59:59.000Z

    The Geopressured-Geothermal Program, now in its fifteenth year, is entering the transition period to commercial use. The industry cost-shared proposals to the consortium, represented in the presentations included in these proceedings, attest to the interest developing in the industrial community in utilizing the geopressured-geothermal resource. Sixty-five participants attended these sessions, two-thirds of whom represented industry. The areas represented by cost-shared proposals include (1) thermal enhanced oil recovery, (2) direct process use of thermal energy, e.g., aquaculture and agriculture, (3) conversion of thermal energy to electricity, (4) environment related technologies, e.g., use of supercritical processes, and (5) operational proposals, e.g., a field manual for scale inhibitors. It is hoped that from this array of potential use projects, some will persist and be successful in proving the viability of using the geopressured-geothermal resource. Such industrial use of an alternative and relatively clean energy resource will benefit our nation and its people.

  7. Industrial Consortium for the Utilization of the Geopressured-Geothermal Resource. Volume 1

    SciTech Connect (OSTI)

    Negus-deWys, J. (ed.)

    1990-03-01T23:59:59.000Z

    The Geopressured-Geothermal Program, now in its fifteenth year, is entering the transition period to commercial use. The industry cost-shared proposals to the consortium, represented in the presentations included in these proceedings, attest to the interest developing in the industrial community in utilizing the geopressured-geothermal resource. Sixty-five participants attended these sessions, two-thirds of whom represented industry. The areas represented by cost-shared proposals include (1) thermal enhanced oil recovery, (2) direct process use of thermal energy, e.g., aquaculture and agriculture, (3) conversion of thermal energy to electricity, (4) environment related technologies, e.g., use of supercritical processes, and (5) operational proposals, e.g., a field manual for scale inhibitors. It is hoped that from this array of potential use projects, some will persist and be successful in proving the viability of using the geopressured-geothermal resource. Such industrial use of an alternative and relatively clean energy resource will benefit our nation and its people.

  8. Indiana Advanced Electric Vehicle Training and Education Consortium (I-AEVtec)

    SciTech Connect (OSTI)

    Caruthers, James; Dietz, J.; Pelter, Libby; Chen, Jie; Roberson, Glen; McGinn, Paul; Kizhanipuram, Vinodegopal

    2013-01-31T23:59:59.000Z

    The Indiana Advanced Electric Vehicle Training and Education Consortium (I-AEVtec) is an educational partnership between six universities and colleges in Indiana focused on developing the education materials needed to support electric vehicle technology. The I-AEVtec has developed and delivered a number of degree and certificate programs that address various aspects of electric vehicle technology, including over 30 new or significantly modified courses to support these programs. These courses were shared on the SmartEnergyHub. The I-AEVtec program also had a significant outreach to the community with particular focus on K12 students. Finally, the evGrandPrix was established which is a university/college student electric go-kart race, where the students get hands-on experience in designing, building and racing electric vehicles. The evGrandPrix now includes student teams from across the US as well as from Europe and it is currently being held on Opening Day weekend for the Indy500 at the Indianapolis Motor Speedway.

  9. Pacific Northwest National Laboratory

    E-Print Network [OSTI]

    Pacific Northwest National Laboratory Operated by Battelle for the U.S. Department of Energy Northwest National Laboratory (PNNL) operated by Battelle Memorial Institute. Battelle has a unique contract

  10. Argonne National Laboratory's Nondestructive

    E-Print Network [OSTI]

    Kemner, Ken

    Argonne National Laboratory's Nondestructive Evaluation Technologies NDE #12;Over45yearsexperienceinNondestructiveEvaluation... Argonne National Laboratory's world-renowned researchers have a proven the safe operationof advanced nuclear reactors. Argonne's World-Class Nondestructive Evaluation

  11. Mentoring | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    As one of the largest laboratories in the nation for science and engineering research, Argonne National Laboratory is home to some of the most prolific and well-renowned scientists...

  12. Naval Civil Engineering Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Naval Civil Engineering Laboratory Personnel from the Power Systems Department have participated in numerous distribution equipment research, development, demonstration, testing,...

  13. Employment at National Laboratories

    SciTech Connect (OSTI)

    E. S. Peterson; C. A. Allen

    2007-04-01T23:59:59.000Z

    Scientists enter the National Laboratory System for many different reasons. For some, faculty positions are scarce, so they take staff-scientist position at national laboratories (i.e. Pacific Northwest, Idaho, Los Alamos, and Brookhaven). Many plan to work at the National Laboratory for 5 to 7 years and then seek an academic post. For many (these authors included), before they know it its 15 or 20 years later and they never seriously considered leaving the laboratory system.

  14. Sandia National Laboratories: Photovoltaic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Computational Modeling & Simulation, Energy, Facilities, News, News & Events, Photovoltaic, Photovoltaic Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar...

  15. DOE Provides $4.7 Million to Support Excellence in Automotive...

    Energy Savers [EERE]

    Centers of Excellence. The goal of GATE is to train a future workforce of automotive engineering professionals to overcome technology barriers preventing the development and...

  16. Math 138 Assignment #20 Make two pie charts using Excel. Pie ...

    E-Print Network [OSTI]

    rroames

    2007-10-11T23:59:59.000Z

    Math 138. Assignment #20. Make two pie charts using Excel. Pie Chart I: Using a week day as an example, indicate the number of hours you spend doing.

  17. Materials Down Select Decisions Made Within the Department of Energy Hydrogen Sorption Center of Excellence

    Fuel Cell Technologies Publication and Product Library (EERE)

    Technical report describing DOE's Hydrogen Sorption Center of Excellence investigation into various adsorbent and chemisorption materials and progress towards meeting DOE's hydrogen storage targets. T

  18. LABORATORY NEW HIRE NOTICE: LABORATORY DELAYED OPENING OR CLOSURE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LABORATORY NEW HIRE NOTICE: LABORATORY DELAYED OPENING OR CLOSURE DUE TO INCLEAMENT WEATHER During the winter months, the Los Alamos National Laboratory (LANL) may at times...

  19. The Consortium of Advanced Residential Buildings (CARB) - A Building America Energy Efficient Housing Partnership

    SciTech Connect (OSTI)

    Robb Aldrich; Lois Arena; Dianne Griffiths; Srikanth Puttagunta; David Springer

    2010-12-31T23:59:59.000Z

    This final report summarizes the work conducted by the Consortium of Advanced Residential Buildings (CARB) (http://www.carb-swa.com/), one of the 'Building America Energy Efficient Housing Partnership' Industry Teams, for the period January 1, 2008 to December 31, 2010. The Building America Program (BAP) is part of the Department of Energy (DOE), Energy Efficiency and Renewable Energy, Building Technologies Program (BTP). The long term goal of the BAP is to develop cost effective, production ready systems in five major climate zones that will result in zero energy homes (ZEH) that produce as much energy as they use on an annual basis by 2020. CARB is led by Steven Winter Associates, Inc. with Davis Energy Group, Inc. (DEG), MaGrann Associates, and Johnson Research, LLC as team members. In partnership with our numerous builders and industry partners, work was performed in three primary areas - advanced systems research, prototype home development, and technical support for communities of high performance homes. Our advanced systems research work focuses on developing a better understanding of the installed performance of advanced technology systems when integrated in a whole-house scenario. Technology systems researched included: - High-R Wall Assemblies - Non-Ducted Air-Source Heat Pumps - Low-Load HVAC Systems - Solar Thermal Water Heating - Ventilation Systems - Cold-Climate Ground and Air Source Heat Pumps - Hot/Dry Climate Air-to-Water Heat Pump - Condensing Boilers - Evaporative condensers - Water Heating CARB continued to support several prototype home projects in the design and specification phase. These projects are located in all five program climate regions and most are targeting greater than 50% source energy savings over the Building America Benchmark home. CARB provided technical support and developed builder project case studies to be included in near-term Joule Milestone reports for the following community scale projects: - SBER Overlook at Clipper Mill (mixed, humid climate) - William Ryan Homes - Tampa (hot, humid climate).

  20. DOE Chair of Excellence in Environmental Disciplines-Final Technical Report

    SciTech Connect (OSTI)

    Kurunganty, Sastry; Lorn, Roberto; Roque-Malherbe, Rolando; Hijazi, Yazan; Nieto, Santander; Gmez, Will A.; Ducong, Jos; Cotto, Mara del C.; Muiz, Carlos; Daz, Francisco J.; Neira, Carlos F.; Mrquez, Francisco; Del Valle, W.; Thommes, M.

    2014-02-19T23:59:59.000Z

    The report Massie Chair of Excellence Program at Universidad del Turabo, contract DE-FG02-95EW12610, during the period of 9/29/1995 to 9/29/2011. The initial program aims included development of academic programs in the Environmental Sciences and Engineering, and Research and Development focused initially on environmentally friendly processes and later revised also include: renewable energy and international cooperation. From 1995 -2005, the Program at UT lead the establishment of the new undergraduate program in electrical engineering at the School of Engineering (SoE), worked on requirements to achieve ABET accreditation of the SoE B.S. Mechanical Engineering and B.S. Electrical Engineering programs, mentored junior faculty, taught undergraduate courses in electrical engineering, and revised the electrical engineering curriculum. Engineering undergraduate laboratories were designed and developed. The following research sub-project was developed: Research and development of new perovskite-alumina hydrogen permeable asymmetrical nanostructured membranes for hydrogen purification, and extremely high specific surface area silica materials for hydrogen storage in the form of ammonia, Dr. Rolando Roque-Malherbe Subproject PI, Dr. Santander Nieto and Mr. Will Gmez Research Assistants. In 2006, the Massie Chair of Excellence Program was transferred to the National Nuclear Security Agency, NNSA and DNN. DoE required a revised proposal aligned with the priorities of the Administration. The revised approved program aims included: (1) Research (2) Student Development: promote the development of minority undergraduate and graduate students through research teams, internships, conferences, new courses; and, (3) Support: (a) Research administration and (b) Dissemination through international conferences, the UT Distinguished Lecturer Series in STEM fields and at the annual Universidad del Turabo (UT) Researchers Conference. Research included: Sub-Project 1: Synthesis and Characterization of low Refractive Index Aerogel Silica for Cherenkov Counters- Dr. Rolando Roque-Malherbe Sub-project PI, Dr. Jose Duconge Sub-project Co-PI, Dr. Santander Nieto Assistant Researcher, Francisco Diaz and Carlos Neira Associate Researchers. The initial aim of this sub-project was changed to the synthesis and characterization of extremely high specific surface area aerogel silica for gas storage. A high specific surface area silica gel that has applications in gas drying, cleaning operation useful in nuclear industry in process was developed. Sub-Project 2: Investigation Study of Magnetic and Electronic Transport Properties at Material Interfaces in Magnetic Multilayer Heterostructure using Gd. Dr. Yazan Hijazi, Sub-project Co-PI. UT developed the capability and infrastructure to produce high quality thin-film magnetic films and magnetic multilayer structures with fine control over film quality and thickness using sputter deposition capability to perform in-house electric and magnetic characterization of these films. The research experimentally quantified the effect of Gd incorporation within the magnetic multilayer structure and produce magnetic media with exchanged decoupled multilevel magnetic anisotropy. From September 2006 to September 2011 the Massie Chair produced nineteen (19) publications, (including 3 books), five (5) presentations and three (3) international conferences abstracts. A total of fourteen (14) undergraduates and (6) graduate students acquired research experience. Two Ph.D. students presented their dissertations on topics related to nuclear energy and graduated as follows: Mara Cotto (May 2009) and Eric Caldern (May 2011). Five of the participating undergraduate students graduated: Ramon Polanco (BSME, May 2009), Jason Prez (BSEE, May 2008), Rafael Coln (BSME, May 2008), Jessenia Marfisi (BS Chemistry, May 2008). Eleven (11) students were sent to National Laboratories (LANL, SNL and LLNL), NNSA and DoE facilities for summer internships. Twenty eight (28) undergraduate students participated in Summer Internships (2010,

  1. Sandia National Laboratories: Electric Power Research Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electric Power Research Institute Consortium for Advanced Simulation of Light-Water Reactors To Receive Up To 121.5M Over Five Years On February 24, 2015, in Computational...

  2. Sandia National Laboratories: University of Michigan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Michigan Consortium for Advanced Simulation of Light-Water Reactors To Receive Up To 121.5M Over Five Years On February 24, 2015, in Computational Modeling & Simulation, Energy,...

  3. College of Engineering and Computing Endowed Chair Search: Center for Economic Excellence for the Hydrogen Economy

    E-Print Network [OSTI]

    Almor, Amit

    College of Engineering and Computing Endowed Chair Search: Center for Economic Excellence for the Hydrogen Economy As part of the State of South Carolina's Center for Economic Excellence for the Hydrogen Economy, the Department of Chemical Engineering in College of Engineering and Computing at the University

  4. Funding Opportunity: Presidential Awards for Excellence in Science, Mathematics and Engineering Mentoring Program

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    Funding Opportunity: Presidential Awards for Excellence in Science, Mathematics and Engineering: June 5, 2013 Program Synopsis The Presidential Awards for Excellence in Science, Mathematics, and Engineering Mentoring (PAESMEM) is a Presidential award established by the White House in 1995. The purpose

  5. Laboratory directed research and development program, FY 1996

    SciTech Connect (OSTI)

    NONE

    1997-02-01T23:59:59.000Z

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) Laboratory Directed Research and Development Program FY 1996 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Berkeley Lab LDRD program is a critical tool for directing the Laboratory`s forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for Berkeley Lab scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances the Laboratory`s core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. Areas eligible for support include: (1) Work in forefront areas of science and technology that enrich Laboratory research and development capability; (2) Advanced study of new hypotheses, new experiments, and innovative approaches to develop new concepts or knowledge; (3) Experiments directed toward proof of principle for initial hypothesis testing or verification; and (4) Conception and preliminary technical analysis to explore possible instrumentation, experimental facilities, or new devices.

  6. Brookhaven National Laboratory Institutional Plan FY2001--FY2005

    SciTech Connect (OSTI)

    Davis, S.

    2000-10-01T23:59:59.000Z

    Brookhaven National Laboratory is a multidisciplinary laboratory in the Department of Energy National Laboratory system and plays a lead role in the DOE Science and Technology mission. The Laboratory also contributes to the DOE missions in Energy Resources, Environmental Quality, and National Security. Brookhaven strives for excellence in its science research and in facility operations and manages its activities with particular sensitivity to environmental and community issues. The Laboratory's programs are aligned continuously with the goals and objectives of the DOE through an Integrated Planning Process. This Institutional Plan summarizes the portfolio of research and capabilities that will assure success in the Laboratory's mission in the future. It also sets forth BNL strategies for our programs and for management of the Laboratory. The Department of Energy national laboratory system provides extensive capabilities in both world class research expertise and unique facilities that cannot exist without federal support. Through these national resources, which are available to researchers from industry, universities, other government agencies and other nations, the Department advances the energy, environmental, economic and national security well being of the US, provides for the international advancement of science, and educates future scientists and engineers.

  7. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In this issue's cover story, "Rethinking the Unthinkable," Houston T. Hawkins, a retired Air Force colonel and a Laboratory senior fellow, points out that since Vladimir Putin...

  8. Sandia National Laboratories: AMI

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manufacturing Initiative (AMI) is a multiple-year, 3-way collaboration among TPI Composites, Iowa State University, and Sandia National Laboratories. The goal of this...

  9. Sandia National Laboratories: Photovoltaics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2013 Inverter Reliability Workshop On May 31, 2013, in Hosted by Sandia National Laboratories and the Electric Power Research Institute (EPRI) Inverter reliability drives project...

  10. Sandia National Laboratories: photovoltaic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    photovoltaic Microsystems Enabled Photovoltaics (MEPV) On April 14, 2011, in About MEPV Flexible MEPV MEPV Publications MEPV Awards Researchers at Sandia National Laboratories are...

  11. News | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Researchers from Argonne National Laboratory modeled several scenarios to add more solar power to the electric grid, using real-world data from the southwestern power...

  12. Sandia National Laboratories: SPI

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conference, the Department of Energy (DOE), the Electric Power Research Instisute (EPRI), Sandia National Laboratories, ... Last Updated: September 10, 2012 Go To Top ...

  13. Sandia National Laboratories: Workshops

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geoscience, Climate and Consequence Effect at Sandia National Laboratories presented on "Hydraulic Fracturing: Role of Government-Sponsored R&D." Marianne's presentation was part...

  14. nfang | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Laboratory Research Projects: Chemical Analysis of Nanodomains Education: Ph.D., the University of British Columbia, Canada, 2006 B.S. from Xiamen University, China, 1998...

  15. Sandia National Laboratories: Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories on a new concentrated solar power (CSP) installation with thermal energy storage. The CSP storage project combines Areva's modular Compact Linear Fresnel...

  16. Sandia National Laboratories: publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories, August 2010. 2009 Adrian R. Chavez, Position Paper: Protecting Process Control Systems against Lifecycle Attacks Using Trust Anchors Sandia National ... Page 1...

  17. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the first results of joint work by scientists from Lawrence Berkeley, Pacific Northwest, Savannah River, and Los Alamos national laboratories at the Savannah River Site to model...

  18. Sandia National Laboratories: Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Center for SCADA Security Assets On August 25, 2011, in Sandia established its SCADA Security Development Laboratory in 1998. Its purpose was to analyze vulnerabilities in...

  19. Sandia National Laboratories: solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interactive Tour Operated by Sandia National Laboratories for the U.S. Department of Energy (DOE), the National Solar Thermal Test Facility (NSTTF) is the only test facility...

  20. National Laboratory Photovoltaics Research

    Broader source: Energy.gov [DOE]

    DOE supports photovoltaic (PV) research and development and facilities at its national laboratories to accelerate progress toward achieving the SunShot Initiative's technological and economic...

  1. Sandia National Laboratories: Geothermal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geothermal Sandia Wins DOE Geothermal Technologies Office Funding Award On December 15, 2014, in Advanced Materials Laboratory, Capabilities, Energy, Facilities, Geothermal,...

  2. Sandia National Laboratories: PV

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2014 Sandia Corporation | Questions & Comments | Privacy & Security U.S. Department of Energy National Nuclear Security Administration Sandia National Laboratories is a...

  3. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    23, 2013-Nearly 400 Los Alamos National Laboratory employees on 47 teams received Pollution Prevention awards for protecting the environment and saving taxpayers more than 8...

  4. Sandia National Laboratories: HRSAM

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and the National Renewable Energy Laboratory (NREL) announce the publication of two new Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) reports on...

  5. Sandia National Laboratories: Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Testing Center (PV RTC), Photovoltaic Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar Newsletter, SunShot, Systems Analysis A research team that included...

  6. Sandia National Laboratories: NASA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratories (partnering with Northrup Grumman Aerospace Systems and the University of Michigan) has developed a solar electric propulsion concept capable of a wide...

  7. Facilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Some of the nation's most powerful and sophisticated facilities for energy research Argonne National Laboratory is home to some of the nation's most powerful and sophisticated...

  8. ARGONNE NATIONAL LABORATORY May

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARGONNE NATIONAL LABORATORY May 9, 1994 Light Source Note: LS234 Comparison of the APS and UGIMAG Helmholtz Coil Systems David W. Carnegie Accelerator Systems Division Advanced...

  9. Licensing | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (TDC) Division negotiates and manages license agreements on behalf of UChicago Argonne, LLC, which operates Argonne National Laboratory for the U.S. Department of Energy....

  10. Procurement | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Procurement More than 150 attend second joint Argonne-Fermilab small business fairSeptember 2, 2014 On Thursday, Aug. 28, Illinois' two national laboratories - Argonne and Fermi...

  11. Exercise Design Laboratory

    Broader source: Energy.gov [DOE]

    The Emergency Operations Training Academy (EOTA), NA 40.2, Readiness and Training, Albuquerque, NM is pleased to announce the EXR231, Exercise Design Laboratory course

  12. Sandia National Laboratories: Partnership

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Armstrong using deep level optical spectroscopy to investigate defects in the m-plane GaN. Jim is a professor ... Vermont and Sandia National Laboratories Announce Energy...

  13. 1MIT Lincoln Laboratory MIT Lincoln Laboratory

    E-Print Network [OSTI]

    Clancy, Ted

    · About the Laboratory ­ Overview ­ Research Areas ­ Demographics · The MQP program ­ Logistics Primary Field Sites White Sands Missile Range Socorro, New Mexico Reagan Test Site Kwajalein, Marshall ­ Demographics · The MQP program ­ Logistics ­ Admission ­ Summer & Full-time Employment · Past Projects #12;9MIT

  14. Laboratory Director PRINCETON PLASMA PHYSICS LABORATORY

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    .C. Zarnstorff Deputy Director for Operations A.B. Cohen Laboratory Management Council Research Council Associate Diagnostics D.W. Johnson Electrical Systems C. Neumeyer Lab Astrophysics M. Yamada, H. Ji Projects: MRX, MRI Science Education A. Post-Zwicker Quality Assurance J.A. Malsbury Tech. Transfer Patents & Publications L

  15. Commercial Fisheries Biological Laboratory

    E-Print Network [OSTI]

    , and tidal estuaries with bottom types ranging from soft mud to hard sand and rock. The Laboratory has grown research laboratories, an experimental shell- fish hatchery, administrative offices, a combined library freezer, and quick freezer. The library is limited to publications that have a direct bearing on current

  16. LABORATORY I: GEOMETRIC OPTICS

    E-Print Network [OSTI]

    Minnesota, University of

    Lab I - 1 LABORATORY I: GEOMETRIC OPTICS In this lab, you will solve several problems related to the formation of optical images. Most of us have a great deal of experience with the formation of optical images this laboratory, you should be able to: Describe features of real optical systems in terms of ray diagrams

  17. Technical Report Computer Laboratory

    E-Print Network [OSTI]

    Haddadi, Hamed

    the opportunity to consider a physical attack, with very little to lose. We thus set out to analyse the deviceTechnical Report Number 592 Computer Laboratory UCAM-CL-TR-592 ISSN 1476-2986 Unwrapping J. Murdoch Technical reports published by the University of Cambridge Computer Laboratory are freely

  18. Reservoir Characterization Research Laboratory

    E-Print Network [OSTI]

    Texas at Austin, University of

    Reservoir Characterization Research Laboratory for Carbonate Studies Executive Summary for 2014 Outcrop and Subsurface Characterization of Carbonate Reservoirs for Improved Recovery of Remaining/Al 0.00 0.02 0.04 Eagle Ford Fm #12;#12; Reservoir Characterization Research Laboratory Research Plans

  19. McCormick School's Mission Statement Excellence at All Levels The Robert R. McCormick School of Engineering and Applied Science seeks excellence at all levels

    E-Print Network [OSTI]

    Grzybowski, Bartosz A.

    , science, and engineering (including probability and statistics). (b) Ability to design and conduct of Engineering and Applied Science seeks excellence at all levels from its students, faculty, and staff. Our goal and Environmental Engineering's (CEE) two Undergraduate Programs--the Bachelor of Science in Civil Engineering

  20. Data Analysis and Graphing in Microsoft Excel: Microsoft Excel is a program for entering, storing, and analyzing data. It is available on

    E-Print Network [OSTI]

    Schladow, S. Geoffrey

    seedlings grow when watered with tap water or water of different pHs. There were ten replicates for each watering treatment. Weight of the seedlings was measured in grams. The data is entered in the Excel of corn and bean seeds for each pH environment and allow us to compare seed growth across different p

  1. THE NATIONAL CENTER FOR RADIOECOLOGY: A NETWORK OF EXCELLENCE FOR ENVIRONMENTAL AND HUMAN RADIATION RISK REDUCTION

    SciTech Connect (OSTI)

    Jannik, T.

    2013-01-09T23:59:59.000Z

    Radioecology in the United States can be traced back to the early 1950s when small research programs were established to address the fate and effects of radionuclides released in the environment from activities at nuclear facilities. These programs focused primarily on local environmental effects, but global radioactive fallout from nuclear weapons testing and the potential for larger scale local releases of radioisotopes resulted in major concerns about the threat, not only to humans, but to other species and to ecosystems that support all life. These concerns were shared by other countries and it was quickly recognized that a multi-disciplinary approach would be required to address and understand the implications of anthropogenic radioactivity in the environment. The management, clean-up and long-term monitoring of legacy wastes at Department of Energy (DOE), Department of Defense (DOD), and Nuclear Regulatory Commission (NRC)-regulated facilities continues to be of concern as long as nuclear operations continue. Research conducted through radioecology programs provides the credible scientific data needed for decision-making purposes. The current status of radioecology programs in the United States are: fragmented with little coordination to identify national strategies and direct programs; suffering from a steadily decreasing funding base; soon to be hampered by closure of key infrastructure; hampered by aging and retiring workforce (loss of technical expertise); and in need of training of young scientists to ensure continuation of the science (no formal graduate education program in radioecology remaining in the U.S.). With these concerns in mind, the Savannah River National Laboratory (SRNL) took the lead to establish the National Center for Radioecology (NCoRE) as a network of excellence of the remaining radioecology expertise in the United States. As part of the NCoRE mission, scientists at SRNL are working with six key partner universities to re-establish a graduate education training program for radioecology. Recently, NCoRE hosted a workshop to identify the immediate needs for science-driven discoveries, tool development and the generation of scientific data to support the legislative decision-making process for remediation strategies, long-term monitoring of radiologically-contaminated sites and protection of human health and the environment. Some of the immediate strategic research needs were identified in the fields of functional genomics for determining low-dose effects, improved low-level dosimetry, and mixed (radiological and chemical) contaminant studies. Longer term strategic research and tool development areas included development of radioecology case study sites, comprehensive decision-making tools, consequence response actions, and optimized scenario based ecosystem modeling. A summary of the NCoRE workshop findings related to waste management needs and priority areas will be presented in this paper.

  2. Excellent Sulfur Resistance of Pt/BaO/CeO2 Lean NOx Trap Catalysts...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and CHF Peden.2008."Excellent Sulfur Resistance of PtBaOCeO2 Lean NOx Trap Catalysts."Applied Catalysis. B, Environmental 84(3-4):545-551. doi:10.1016j.apcatb.2008.05.009...

  3. Vehicle Technologies Office Merit Review 2015: GATE Center of Excellence in Sustainable Vehicle Systems

    Broader source: Energy.gov [DOE]

    Presentation given by Clemson University at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about GATE center of excellence...

  4. Properties of Structurally Excellent N-doped TiO2 Rutile. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Citation: Chambers SA, SH Cheung, V Shutthanandan, S Thevuthasan, MK Bowman, and AG Joly.2007."Properties of Structurally Excellent N-doped TiO2 Rutile."Chemical Physics...

  5. Estimating third -party examiners' scoring stability on selected applications to the Texas Award for Performance Excellence

    E-Print Network [OSTI]

    Plunkett, Brandi Lyn

    2007-04-25T23:59:59.000Z

    ESTIMATING THIRD-PARTY EXAMINERS? SCORING STABILITY ON SELECTED APPLICATIONS TO THE TEXAS AWARD FOR PERFORMANCE EXCELLENCE A Dissertation by BRANDI LYN PLUNKETT Submitted to the Office of Graduate Studies of Texas A&M... ON SELECTED APPLICATIONS TO THE TEXAS AWARD FOR PERFORMANCE EXCELLENCE A Dissertation by BRANDI LYN PLUNKETT Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree...

  6. Oak Ridge National Laboratory Institutional Plan, FY 1991--FY 1996

    SciTech Connect (OSTI)

    Not Available

    1991-02-01T23:59:59.000Z

    The Oak Ridge National Laboratory -- one of DOE's major multiprogram laboratories -- focuses its resources on energy research and development (R D). To be able to meet these R D challenges, the Laboratory must achieve excellence in its operations relative to environmental, safety, and health (ES H) protection and to restore its aging facility infrastructure. ORNL's missions are carried out in compliance with all applicable ES H regulations. The Laboratory conducts applied R D in energy technologies -- in conservation; fission; magnetic fusion; health and environmental protection; waste management; renewable resources; and fossil energy. Experimental and theoretical research is undertaken to investigate fundamental problems in physical, chemical, materials, computational, biomedical, earth, and environmental sciences; to advance scientific knowledge; and to support energy technology R D. ORNL designs, builds, and operates unique research facilities for the benefit of university, industrial, and national laboratory researchers. The Laboratory serves as a catalyst in bringing national and international research elements together for important scientific and technical collaborations. ORNL helps to prepare the scientific and technical work force of the future by offering innovative and varied learning and R D experiences at the Laboratory for students and faculty from preschool level through postdoctoral candidates. The transfer of science and technology to US industries and universities is an integral component of ORNL's R D missions. ORNL also undertakes research and development for non-DOE sponsors when such work is synergistic with DOE mission. 66 figs., 55 tabs.

  7. Carbon Characterization Laboratory Report

    SciTech Connect (OSTI)

    David Swank; William Windes; D.C. Haggard; David Rohrbaugh; Karen Moore

    2009-03-01T23:59:59.000Z

    The newly completed Idaho National Laboratory (INL) Carbon Characterization Laboratory (CCL) is located in Lab-C20 of the Idaho National Laboratory Research Center. This laboratory was established under the Next Generation Nuclear Plant (NGNP) Project to support graphite research and development activities. The CCL is designed to characterize and test carbon-based materials such as graphite, carbon-carbon composites, and silicon-carbide composite materials. The laboratory is fully prepared to measure material properties for nonirradiated carbon-based materials. Plans to establish the laboratory as a radiological facility within the next year are definitive. This laboratory will be modified to accommodate irradiated materials, after which it can be used to perform material property measurements on both irradiated and nonirradiated carbon-based material. Instruments, fixtures, and methods are in place for preirradiation measurements of bulk density, thermal diffusivity, coefficient of thermal expansion, elastic modulus, Youngs modulus, Shear modulus, Poisson ratio, and electrical resistivity. The measurement protocol consists of functional validation, calibration, and automated data acquisition.

  8. Laboratory Directed Research and Development Program. Annual report

    SciTech Connect (OSTI)

    Ogeka, G.J.

    1991-12-01T23:59:59.000Z

    Today, new ideas and opportunities, fostering the advancement of technology, are occurring at an ever-increasing rate. It, therefore, seems appropriate that a vehicle be available which fosters the development of these new ideas and technologies, promotes the early exploration and exploitation of creative and innovative concepts, and which develops new ``fundable`` R&D projects and programs. At Brookhaven National Laboratory (BNL), one such method is through its Laboratory Directed Research and Development (LDRD) Program. This discretionary research and development tool is critical in maintaining the scientific excellence and vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor achieving and maintaining staff excellence, and a means to address national needs, with the overall mission of the Department of Energy (DOE) and the Brookhaven National Laboratory. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, they have resulted in numerous publications in various professional and scientific journals, and presentations at meetings and forums.

  9. Sandia National Laboratories: SMART Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ISGAN Award of Excellence competition showcases the innovative and effective ... Wind Generator Modeling On June 26, 2014, in Computational Modeling & Simulation, Energy, Energy...

  10. Leadership Development | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Connect with Argonne LinkedIn Facebook Twitter YouTube Google+ More Social Media Leadership Development Argonne's excellence and innovation is driven by exemplary leadership....

  11. Sandia National Laboratories: SMART Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SMART Grid Mesa del Sol Project Is Finalist for International Smart Grid Action Network 2014 Award of Excellence On July 31, 2014, in Distribution Grid Integration, Energy, Energy...

  12. Sensor Consortium, Rm 214 Old Chemistry Building, State University of New York at Stony Brook, Stony Brook NY 11794-3717

    E-Print Network [OSTI]

    Luryi, Serge

    Sensor Consortium, Rm 214 Old Chemistry Building, State University of New York at Stony Brook twice won the NYS Advisor of the Year Award. The seminar will cover the following topics: Statement and rationales Lunch will be served at 12:30 PM The NYS SBDC is partially funded by the U.S. Small Business

  13. Nature of Institutional Sponsorship/Compliance Policy/Definitions The GME Consortium will oversee all matters pertaining to graduate medical education including ensuring that all

    E-Print Network [OSTI]

    Kornfeld, S. Kerry

    /or educational arrangement for major affiliation agreements. The DIO will provide periodic updates to the GME all matters pertaining to graduate medical education including ensuring that all GME programs comply, the GME Consortium will serve as the "sponsoring institution" for all graduate medical education conducted

  14. An introduction to the special section on application of leading pretreatments to switchgrass by the Biomass Refining Consortium for Applied Fundamentals

    E-Print Network [OSTI]

    California at Riverside, University of

    data was prepared. It was also desired to dig dee- per into pretreatment attributes to try to revealAn introduction to the special section on application of leading pretreatments to switchgrass by the Biomass Refining Consortium for Applied Fundamentals and Innovation (CAFI) Pretreatment is among the most

  15. 5:00 6:00 p.m.: Displays by Arizona Energy Consortium 6:00 7:30 p.m.: Panel Discussion

    E-Print Network [OSTI]

    Hall, Sharon J.

    , a prominent atmospheric and energy scientist, and an environmental filmmaker. Sustainability reporter Eve-in-Residence for Sustainability, ASU's School of Sustainability Founder, Citizens for Affordable Energy Former President, Shell5:00 6:00 p.m.: Displays by Arizona Energy Consortium 6:00 7:30 p.m.: Panel Discussion 7:30 8

  16. Sonication standard laboratory module

    DOE Patents [OSTI]

    Beugelsdijk, Tony (Los Alamos, NM); Hollen, Robert M. (Los Alamos, NM); Erkkila, Tracy H. (Los Alamos, NM); Bronisz, Lawrence E. (Los Alamos, NM); Roybal, Jeffrey E. (Santa Fe, NM); Clark, Michael Leon (Menan, ID)

    1999-01-01T23:59:59.000Z

    A standard laboratory module for automatically producing a solution of cominants from a soil sample. A sonication tip agitates a solution containing the soil sample in a beaker while a stepper motor rotates the sample. An aspirator tube, connected to a vacuum, draws the upper layer of solution from the beaker through a filter and into another beaker. This beaker can thereafter be removed for analysis of the solution. The standard laboratory module encloses an embedded controller providing process control, status feedback information and maintenance procedures for the equipment and operations within the standard laboratory module.

  17. Reservoir CharacterizationReservoir Characterization Research LaboratoryResearch Laboratory

    E-Print Network [OSTI]

    Texas at Austin, University of

    Reservoir CharacterizationReservoir Characterization Research LaboratoryResearch Laboratory at Austin Austin, Texas 78713Austin, Texas 78713--89248924 #12;Reservoir Characterization Research Laboratory for Carbonate Studies Research Plans for 2012 Outcrop and Subsurface Characterization of Carbonate

  18. Laboratory Directed Research and Development Program Activities for FY 2007.

    SciTech Connect (OSTI)

    Newman,L.

    2007-12-31T23:59:59.000Z

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal year 2007 budget was $515 million. There are about 2,600 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development', April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. In accordance this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2007. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. We explicitly indicate that research conducted under the LDRD Program should be highly innovative, and an element of high risk as to success is acceptable. In the solicitation for new proposals for Fiscal Year 2007 we especially requested innovative new projects in support of RHIC and the Light Source and any of the Strategic Initiatives listed at the LDRD web site. These included support for NSLS-II, RHIC evolving to a quantum chromo dynamics (QCD) lab, nanoscience, translational and biomedical neuroimaging, energy and, computational sciences. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL.

  19. Laboratory Directed Research and Development Program Assessment for FY 2007

    SciTech Connect (OSTI)

    Newman,L.; Fox, K.J.

    2007-12-31T23:59:59.000Z

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal Year 2007 spending was $515 million. There are approximately 2,600 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development', April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL. The LDRD Program Assessment Report contains a review of the program. The report includes a summary of the management processes, project peer review, and the portfolio's relatedness to BNL's mission, initiatives and strategic plans. Also included are a metric of success indicators and Self Assessment.

  20. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT PROGRAM ASSESSMENT FOR FY 2006.

    SciTech Connect (OSTI)

    FOX,K.J.

    2006-01-01T23:59:59.000Z

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's total annual budget has averaged about $460 million. There are about 2,500 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, ''Laboratory Directed Research and Development,'' April 19,2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy National Nuclear Security Administration Laboratories dated June 13,2006. The goals and' objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL. The LDRD Program Assessment Report contains a review of the program. The report includes a summary of the management processes, project peer review, and the portfolio's relatedness to BNL's mission, initiatives and strategic plans. Also included is a metric of success indicators and Self Assessment.

  1. The Scanning Electron Microscope As An Accelerator For The Undergraduate Advanced Physics Laboratory

    E-Print Network [OSTI]

    Berggren, Karl K.

    The Scanning Electron Microscope As An Accelerator For The Undergraduate Advanced Physics physics laboratory, the SEM is an excellent substitute for an ion accelerator. Although for experimental work on accelerator physics, atomic physics, electron-solid interactions, and the basics of modern

  2. Sandia National Laboratories: EFRC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    region where sunlight is most concentrated and to which ... Overview On November 11, 2010, in Sandia National Laboratories is home to one of the 46 multi-million dollar Energy...

  3. Sandia National Laboratories: Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, Wind Energy ALBUQUERQUE, N.M. - Sandia National Laboratories and Kirtland Air Force Base may soon share a wind farm that will provide as much as one-third of the...

  4. Brookhaven National Laboratory

    Broader source: Energy.gov [DOE]

    Site OverviewThe Brookhaven National Laboratory (BNL) was established in 1947 by the Atomic Energy Commission (AEC) (predecessor to U.S. Department of Energy [DOE]). Formerly Camp Upton, a U.S....

  5. Sandia National Laboratories: Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10, 2012, in Images Videos Energy Storage Image Gallery Energy Storage B-Roll Videos Battery Abuse Testing Laboratory (BATLab) Abuse Testing B-Roll BatLab 894 B-Roll Cell...

  6. Biosafety | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Biosafety Biosafety Links Biosafety Contacts Biosafety Office Argonne National Laboratory 9700 S. Cass Ave. Bldg. 202, Room B333 Argonne, IL 60439 USA 630-252-5191 Committee...

  7. Safety | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Argonne National Laboratory and the U.S. Department of Energy (DOE) are very concerned about the well-being of all employees. Students at the undergraduate and graduate...

  8. Idaho National Laboratory

    ScienceCinema (OSTI)

    McCarthy, Kathy

    2013-05-28T23:59:59.000Z

    INL is the leading laboratory for nuclear R&D. Nuclear engineer Dr. Kathy McCarthy talks aobut the work there and the long-term benefits it will provide.

  9. Argonne National Laboratory

    Broader source: Energy.gov [DOE]

    HISTORYThe Argonne National Laboratory (ANL) site is approximately 27 miles southwest of downtown Chicago in DuPage County, Illinois. The 1,500 acre ANL site is completely surrounded by the 2,240...

  10. Genome Clone Libraries and Data from the Integrated Molecular Analysis of Genomes and their Expression (I.M.A.G.E.) Consortium

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The I.M.A.G.E. Consortium was initiated in 1993 by four academic groups on a collaborative basis after informal discussions led to a common vision of how to achieve an important goal in the study of the human genome: the Integrated Molecular Analysis of Genomes and their Expression Consortium's primary goal is to create arrayed cDNA libraries and associated bioinformatics tools, and make them publicly available to the research community. The primary organisms of interest include intensively studied mammalian species, including human, mouse, rat and non-human primate species. The Consortium has also focused on several commonly studied model organisms; as part of this effort it has arrayed cDNAs from zebrafish, and Fugu (pufferfish) as well as Xenopus laevis and X. tropicalis (frog). Utilizing high speed robotics, over nine million individual cDNA clones have been arrayed into 384-well microtiter plates, and sufficient replicas have been created to distribute copies both to sequencing centers and to a network of five distributors located worldwide. The I.M.A.G.E. Consortium represents the world's largest public cDNA collection, and works closely with the National Institutes of Health's Mammalian Gene Collection(MGC) to help it achieve its goal of creating a full-length cDNA clone for every human and mouse gene. I.M.A.G.E. is also a member of the ORFeome Collaboration, working to generate a complete set of expression-ready open reading frame clones representing each human gene. Custom informatics tools have been developed in support of these projects to better allow the research community to select clones of interest and track and collect all data deposited into public databases about those clones and their related sequences. I.M.A.G.E. clones are publicly available, free of any royalties, and may be used by anyone agreeing with the Consortium's guidelines.

  11. Interlaboratory Evaluation of in Vitro Cytotoxicity and Inflammatory Responses to Engineered Nanomaterials: The NIEHS Nano GO Consortium

    SciTech Connect (OSTI)

    Xia, Tian; Hamilton, Raymond F.; Bonner, James C.; Crandall, Edward D.; Elder, Alison C.; Fazlollahi, Farnoosh; Girtsman, Teri A.; Mitra, Somenath; Ntim, Susana A.; Orr, Galya; Tagmount, Mani; Taylor, Alexia J.; Telesca, Donatello; Tolic, Ana; Vulpe, Chris D.; Walker, Andrea J.; Wang, Xiang; Witzmann, Frank A.; Wu, Nianqiang; Xie, Yumei; Zink, Jeffery I.; Nel, Andre; Holian, Andrij

    2013-06-01T23:59:59.000Z

    Background: Differences in interlaboratory research protocols contribute to the conflicting data in the literature regarding engineered nanomaterial (ENM) bioactivity. Objectives: Grantees of a National Institute of Health Sciences (NIEHS)-funded consortium program performed two phases of in vitro testing with selected ENMs in an effort to identify and minimize sources of variability. Methods: Consortium program participants (CPPs) conducted ENM bioactivity evaluations on zinc oxide (ZnO), three forms of titanium dioxide (TiO2), and three forms of multiwalled carbon nanotubes (MWCNTs). In addition, CPPs performed bioassays using three mammalian cell lines (BEAS-2B, RLE-6TN, and THP-1) selected in order to cover two different species (rat and human), two different lung epithelial cells (alveolar type II and bronchial epithelial cells), and two different cell types (epithelial cells and macrophages). CPPs also measured cytotoxicity in all cell types while measuring inflammasome activation [interleukin-1? (IL-1?) release] using only THP-1 cells. Results: The overall in vitro toxicity profiles of ENM were as follows: ZnO was cytotoxic to all cell types at ? 50 ? g/mL, but did not induce IL-1?. TiO2 was not cytotoxic except for the nanobelt form, which was cytotoxic and induced significant IL-1? production in THP-1 cells. MWCNTs did not produce cytotoxicity, but stimulated lower levels of IL-1? production in THP-1 cells, with the original MWCNT producing the most IL-1?. Conclusions: The results provide justification for the inclusion of mechanism-linked bioactivity assays along with traditional cytotoxicity assays for in vitro screening. In addition, the results suggest that conducting studies with multiple relevant cell types to avoid false-negative outcomes is critical for accurate evaluation of ENM bioactivity.

  12. Accomplished Excellence "

    E-Print Network [OSTI]

    Davis, Lloyd M.

    Surface Improvement (LISI) Molybdenum-on-Chromium Dual Coating on Steel Unique Corrosion and Wear of Bioactive and Biomimetic Surfaces Phase Constituent and Microstructure Controlled Hard Coating via Laser

  13. Operational Excellence

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Astrophysics One ofSpeedingthis site » OpenOperational

  14. PaceXL: Statistics Add-in for Excel Robin Boyle, Faculty of Business and Law, Deakin University, Australia

    E-Print Network [OSTI]

    Spagnolo, Filippo

    60 PaceXL: Statistics Add-in for Excel Robin Boyle, Faculty of Business and Law, Deakin University, Australia Abstract PaceXL is a statistics add-in for Excel, meaning that it operates inside Excel using its range of extra statistical and graphical options. PaceXL is designed for introductory

  15. Laboratory Equipment & Supplies | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLSLaboratory Directors Laboratory Directors

  16. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-04-30T23:59:59.000Z

    To establish Department of Energy (DOE) requirements for laboratory directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation

  17. Los Alamos National Laboratory Institutes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    research interests are important to the Laboratory. Sponsoring, partnering with, and funding university professors and students in areas that are important to meet Laboratory...

  18. Materials Characterization Laboratory (Fact Sheet), NREL (National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Characterization Laboratory may include: * PEMFC industry * Certification laboratories * Universities * Other National laboratories Contact Us If you are interested in...

  19. Waste-Management Education and Research Consortium (WERC) annual progress report, 1992--1993. Appendices

    SciTech Connect (OSTI)

    Not Available

    1993-02-15T23:59:59.000Z

    This report contains the following appendices: Appendix A - Requirements for Undergraduate Level; Appendix B - Requirements for Graduate Level; Appendix C - Graduate Degree In Environmental Engineeringat New Mexico State University; Appendix D - Non-degree Certificate program; Appendix E - Curriculum for Associate Degree Program in Radioactive & Hazardous Waste Materials; Appendix F - Curriculum for NCC Program in Earth & Environmental Sciences; Appendix G - Brochure of 1992 Teleconference Series; Appendix H - Sites for Hazardous/Radioactive Waste Management Series; Appendix I - WERC Interactive Television Courses; Appendix J - WERC Research Seminar Series Brochures; Appendix K - Summary of Technology Development of the Third Year; Appendix L - List of Major Publications Resulting From WERC; Appendix M - Types of Equipment at WERC Laboratories; and Appendix N - WERC Newsletter Examples.

  20. Waste-Management Education and Research Consortium (WERC) annual progress report, 1992--1993

    SciTech Connect (OSTI)

    Eiceman, Gary A.; King, J. Phillip; Smith, Geoffrey B.; Park, Su-Moon; Munson-McGee, Stuart H.; Rajtar, Jerzy; Chen, Z.; Johnson, James E.; Heger, A. Sharif; Martin, David W.; Wilks, Maureen E.; Schreyer, H. L.; Thomson, Bruce M.; Samani, Zohrab A.; Hanson, Adrian; Cadena, Fernando; Gopalan, Aravamudan; Barton, Larry L.; Sillerud, Laurel O.; Fekete, Frank A.; Rogers, Terry; Lindemann, William C.; Pigg, C. Joanne; Blake, Robert; Kieft, Thomas L.; Ross, Timothy J.; LaPointe, Joe L.; Khandan, Nirmala; Bedell, Glenn W.; Rayson, Gary D.; Leslie, Ian H.; Ondrias, Mark R.; Starr, Gregory P.; Colbaugh, Richard; Niemczyk, Thomas M.; Campbell, Andrew; Phillips, Fred; Wilson, John L.; Gutjahr, Allan; Sammis, T. W.; Steinberg, Stanly; Nuttall, H. E.; Genin, Joseph; Conley, Edgar; Aimone-Martin, Catherine T.; Wang, Ming L.; Chua, Koon Meng; Smith, Phillip; Skowland, Chris T.; McGuckin, Tom; Harrison, Glenn; Jenkins-Smith, Hank C.; Kelsey, Charles A.

    1993-02-15T23:59:59.000Z

    This report contains the following appendices: Appendix A - Requirements for Undergraduate Level; Appendix B - Requirements for Graduate Level; Appendix C - Graduate Degree In Environmental Engineeringat New Mexico State University; Appendix D - Non-degree Certificate program; Appendix E - Curriculum for Associate Degree Program in Radioactive Hazardous Waste Materials; Appendix F - Curriculum for NCC Program in Earth Environmental Sciences; Appendix G - Brochure of 1992 Teleconference Series; Appendix H - Sites for Hazardous/Radioactive Waste Management Series; Appendix I - WERC Interactive Television Courses; Appendix J - WERC Research Seminar Series Brochures; Appendix K - Summary of Technology Development of the Third Year; Appendix L - List of Major Publications Resulting From WERC; Appendix M - Types of Equipment at WERC Laboratories; and Appendix N - WERC Newsletter Examples.

  1. The Waste Isolation Pilot Plant - An International Center of Excellence for ''Training in and Demonstration of Waste Disposal Technologies''

    SciTech Connect (OSTI)

    Matthews, Mark L.; Eriksson, Leif G.

    2003-02-25T23:59:59.000Z

    The Waste Isolation Pilot Plant (WIPP) site, which is managed and operated by the United States (U.S.) Department of Energy (USDOE) Carlsbad Field Office (CBFO) and located in the State of New Mexico, presently hosts an underground research laboratory (URL) and the world's first certified and operating deep geological repository for safe disposition of long-lived radioactive materials (LLRMs). Both the URL and the repository are situated approximately 650 meters (m) below the ground surface in a 250-million-year-old, 600-m-thick, undisturbed, bedded salt formation, and they have been in operation since 1982 and 1999, respectively. Founded on long-standing CBFO collaborations with international and national radioactive waste management organizations, since 2001, WIPP serves as the Center of Excellence in Rock Salt for the International Atomic Energy Agency's (IAEA's) International Network of Centers on ''Training in and Demonstration of Waste Disposal Technologies in Underground Research Facilities'' (the IAEA Network). The primary objective for the IAEA Network is to foster collaborative projects among IAEA Member States that: supplement national efforts and promote public confidence in waste disposal schemes; contribute to the resolution of key technical issues; and encourage the transfer and preservation of knowledge and technologies.

  2. Total Quality Management at an Oak Ridge laboratory and the establishment of an internal quality program

    SciTech Connect (OSTI)

    Dorsey, J.G.

    1993-11-01T23:59:59.000Z

    In order for any laboratory to be successful today, it is imperative that a total commitment to quality management be the keystone of that laboratory. Modern industry has begun to recognize that it must reach beyond traditional Quality Assurance methods and enlist the participation of all members of the organization for their unique contributions to make their organizations truly excellent. This report discusses Total Quality Management in the Analytical Services Organization at Oak Ridge, Tennessee. Laboratories are in the Y-12 Plant, which is one of three government sites located in Oak Ridge that are managed by Martin Marietta Energy Systems for the Department of Energy (DOE).

  3. Advanced Hydride Laboratory

    SciTech Connect (OSTI)

    Motyka, T.

    1989-01-01T23:59:59.000Z

    Metal hydrides have been used at the Savannah River Tritium Facilities since 1984. However, the most extensive application of metal hydride technology at the Savannah River Site is being planned for the Replacement Tritium Facility, a $140 million facility schedules for completion in 1990 and startup in 1991. In the new facility, metal hydride technology will be used to store, separate, isotopically purify, pump, and compress hydrogen isotopes. In support of the Replacement Tritium Facility, a $3.2 million, cold,'' process demonstration facility, the Advanced Hydride Laboratory began operation in November of 1987. The purpose of the Advanced Hydride Laboratory is to demonstrate the Replacement Tritium Facility's metal hydride technology by integrating the various unit operations into an overall process. This paper will describe the Advanced Hydride Laboratory, its role and its impact on the application of metal hydride technology to tritium handling.

  4. Advanced Hydride Laboratory

    SciTech Connect (OSTI)

    Motyka, T.

    1989-12-31T23:59:59.000Z

    Metal hydrides have been used at the Savannah River Tritium Facilities since 1984. However, the most extensive application of metal hydride technology at the Savannah River Site is being planned for the Replacement Tritium Facility, a $140 million facility schedules for completion in 1990 and startup in 1991. In the new facility, metal hydride technology will be used to store, separate, isotopically purify, pump, and compress hydrogen isotopes. In support of the Replacement Tritium Facility, a $3.2 million, ``cold,`` process demonstration facility, the Advanced Hydride Laboratory began operation in November of 1987. The purpose of the Advanced Hydride Laboratory is to demonstrate the Replacement Tritium Facility`s metal hydride technology by integrating the various unit operations into an overall process. This paper will describe the Advanced Hydride Laboratory, its role and its impact on the application of metal hydride technology to tritium handling.

  5. Digital Technology Group Computer Laboratory

    E-Print Network [OSTI]

    Cambridge, University of

    Digital Technology Group 1/20 Computer Laboratory Digital Technology Group Computer Laboratory William R Carson Building on the presentation by Francisco Monteiro Matlab #12;Digital Technology Group 2/20 Computer Laboratory Digital Technology Group Computer Laboratory The product: MATLAB - The Language

  6. National Voluntary Laboratory Accreditation Program

    E-Print Network [OSTI]

    procedure lists all the items Handbook 150 requires be covered in a management review. The records do and Management Reviews #12;National Voluntary Laboratory Accreditation Program Pre-assessment... A laboratory;National Voluntary Laboratory Accreditation Program Pre-assessment... A laboratory's management review

  7. Laboratory, Valles Caldera sponsor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,sand CERN 73-11 LaboratoryLaboratory,

  8. National Center of Excellence for Energy Storage Technology 168.10

    SciTech Connect (OSTI)

    Guezennec, Yann

    2011-12-31T23:59:59.000Z

    This report documents the performance of the Ohio State University (OSU) and Edison Welding Institute (EWI) in the period from 10/1/2010 to 12/31/2012. The objective of the project is to establish a Center of Excellence that leverages the strengths of the partners to establish a unique capability to develop and transfer energy storage industries to establish a unique capability in the development and transfer of energy storage system technology through a fundamental understanding of battery electrical and thermal performance, damage and aging mechanisms, and through the development of reliable, high-speed processes for joining substrates in battery cell, module and pack assemblies with low manufacturing variability. During this period, the OSU activity focused on procuring the equipment, materials and supplies necessary to conduct the experiments planned in the statement of project objectives. In detail, multiple laboratory setups were developed to enable for characterizing the open-circuit potential of cathode and anode materials for Li-ion batteries, perform experiments on calorimetry, and finally built multiple cell and module battery cyclers to be able to perform aging campaign on a wide variety of automotive grade battery cells and small modules. This suite of equipment feeds directly into the development, calibration of battery models ranging from first principle electrochemical models to electro-thermal equivalent circuit models suitable for use in control and xEV vehicle simulations. In addition, it allows to develop and calibrate aging models for Li-ion batteries that enable the development of diagnostics and prognostics tools to characterize and predict battery degradation from automotive usage under a wide array of environmental and usage scenarios. The objective of the EWI work scope is to develop improved processes for making metal-tometal joints in advanced battery cells and packs. It will focus on developing generic techniques for making functional (electrically conductive and mechanically robust) metal-to-metal joints between thin substrates. Joints with multiple layers and bimetallic constituents will be investigated. During the current period of performance, EWI has defined the test matrix to evaluate the application of different welding technologies (laser welding, ultrasonic welding, resistance welding) to specific components of battery cells and modules, such as foils-to-tabs, tabs-to-tabs, and tabs-to-bus bars. The test matrix also includes a range of substrates (aluminum 1145 and 1100, copper 110 and nickel 200 as substrates). Furthermore, a set of procedures was defined to perform mechanical and electrical testing of the samples, including metallography, and non-destructive evaluations. Both on the OSU and EWI, this project enabled to leverage very significant industrial collaborations with a wide array of companies ranging from battery manufacturers and pack integrator all the ways to Tier 1 automotive suppliers and OEMs during the period of exercise of the project, and in the future for years to come.

  9. Final report for the protocol extensions for ATM Security Laboratory Directed Research and Development Project

    SciTech Connect (OSTI)

    Tarman, T.D.; Pierson, L.G.; Brenkosh, J.P. [and others

    1996-03-01T23:59:59.000Z

    This is the summary report for the Protocol Extensions for Asynchronous Transfer Mode project, funded under Sandia`s Laboratory Directed Research and Development program. During this one-year effort, techniques were examined for integrating security enhancements within standard ATM protocols, and mechanisms were developed to validate these techniques and to provide a basic set of ATM security assurances. Based on our experience during this project, recommendations were presented to the ATM Forum (a world-wide consortium of ATM product developers, service providers, and users) to assist with the development of security-related enhancements to their ATM specifications. As a result of this project, Sandia has taken a leading role in the formation of the ATM Forum`s Security Working Group, and has gained valuable alliances and leading-edge experience with emerging ATM security technologies and protocols.

  10. LABORATORY III POTENTIAL ENERGY

    E-Print Network [OSTI]

    Minnesota, University of

    LABORATORY III POTENTIAL ENERGY Lab III - 1 In previous problems, you have been introduced to the concepts of kinetic energy, which is associated with the motion of an object, and internal energy, which is associated with the internal structure of a system. In this section, you work with another form of energy

  11. Pacific Northwest National Laboratory

    E-Print Network [OSTI]

    Science. Technology. Innovation. PNNL-SA-34741 Pacific Northwest National Laboratory (PNNL) is addressing cognition and learning to the development of student- centered, scenario-based training. PNNL's Pachelbel (PNNL) has developed a cognitive-based, student-centered approach to training that is being applied

  12. Technical Report Computer Laboratory

    E-Print Network [OSTI]

    Haddadi, Hamed

    for criminal activity. One general attack route to breach the security is to carry out physical attack afterTechnical Report Number 829 Computer Laboratory UCAM-CL-TR-829 ISSN 1476-2986 Microelectronic report is based on a dissertation submitted January 2009 by the author for the degree of Doctor

  13. Radiochemical Radiochemical Processing Laboratory

    E-Print Network [OSTI]

    in development, scale- up and deployment of first-of-a-kind processes to solve environmental problems in the fundamental chemistry of 4 RPL: RadiochemicalProcessingLaboratory Researchers design, build and operate small-scale-liquid suspensions. Developing Radiochemical Processes at All Scales Among the key features of the RPL are extensive

  14. Energy Systems Laboratory Groundbreaking

    ScienceCinema (OSTI)

    Hill, David; Otter, C.L.; Simpson, Mike; Rogers, J.W.;

    2013-05-28T23:59:59.000Z

    INL recently broke ground for a research facility that will house research programs for bioenergy, advanced battery systems, and new hybrid energy systems that integrate renewable, fossil and nuclear energy sources. Here's video from the groundbreaking ceremony for INL's new Energy Systems Laboratory. You can learn more about CAES research at http://www.facebook.com/idahonationallaboratory.

  15. National Laboratory Contacts

    Broader source: Energy.gov [DOE]

    Several of the U.S. Department of Energy (DOE) national laboratories host multidisciplinary transportation research centers. A wide-range of cutting-edge transportation research occurs at these facilities, funded by both DOE and cooperative research and development agreements (CRADAs) with industry

  16. LABORATORY IV OSCILLATIONS

    E-Print Network [OSTI]

    Minnesota, University of

    some of these laboratory problems before your lecturer addresses this material. It is very important, a stopwatch, a balance, a set of weights, and a computer with a video analysis application written in Lab with basic physics principles, show how you get an equation that gives the solution to the problem for each

  17. Nevis Laboratories Columbia University

    E-Print Network [OSTI]

    Detector 27 4 Data Selection 40 5 Majorana Neutrino Search Results 75 6 General Neutrino Search Results 79#12; Nevis Laboratories Columbia University Physics Department IrvingtononHudson, New York Search for an O(100 GeV ) Mass RightHanded Electron Neutrino at the HERA ElectronProton Collider Using the ZEUS

  18. ECOLOGY LABORATORY BIOLOGY 341

    E-Print Network [OSTI]

    Vonessen, Nikolaus

    Page 1 ECOLOGY LABORATORY BIOLOGY 341 Fall Semester 2008 Bighorn Sheep Rams at Bison Range National ecological data; and 3) oral and written communication skills. Thus, these ecology labs, and statistical analyses appropriate for ecological data. A major goal of this class will be for you to gain

  19. Laboratory for Atmospheric and

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    . Along with this growth came a new building on campus and a new name: the Laboratory for Atmospheric of the Sun to the outermost fringes of the solar system. With LASP's continuing operations role in the planet traditional and stable approach based on federal agency funding of research grant

  20. FUTURE LOGISTICS LIVING LABORATORY

    E-Print Network [OSTI]

    Heiser, Gernot

    FUTURE LOGISTICS LIVING LABORATORY Delivering Innovation The Future Logistics Living Lab that will provide logistics solutions for the future. The Living Lab is a demonstration, exhibition and work space by a group of logistics companies, research organisations, universities, and IT providers that includes NICTA

  1. Radiochemical Radiochemical Processing Laboratory

    E-Print Network [OSTI]

    -cycle applications. These proficiencies include extensive experience with U.S. Department of Energy tank waste.S. Department of Energy Hanford Site in south-central Washington State, the Radiochemical Processing Laboratory) thermogravimetric and calorimetric analysis microscopy (visible light, SEM, TEM, AFM) gas and thermal ionization

  2. AgExcellence 2006 The College of Agriculture and Montana Agricultural Experiment Station in Review

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    AgExcellence 2006 The College of Agriculture and Montana Agricultural Experiment Station in Review #12;ACAdEMiC pRogRAMS College of Agriculture Baccalaureate: Agricultural Education Options: AgRelations Teaching Agricultural Operations Technology MasterofScience: Agricultural Education Baccalaureate

  3. Business Excellence '03 A Supporting Tool for Business Process Modeling Castela, Tribolet, Guerra, Lopes

    E-Print Network [OSTI]

    Business Excellence '03 A Supporting Tool for Business Process Modeling Castela, Tribolet, Guerra, Lopes A SUPPORTING TOOL FOR BUSINESS PROCESS MODELING Nuno Castela* INESC-CEO / Instituto Politécnico de It is largely recognized that Business Process Modeling it is an increasingly task for nowadays organizations

  4. Session: Poster Session + Poster Award + Scientific Award + Excellent young wind doctor award (PO.56) Track: Technical

    E-Print Network [OSTI]

    Session: Poster Session + Poster Award + Scientific Award + Excellent young wind doctor award (PO.56) Track: Technical CONNECTING THE OFFSHORE WIND AND WAVE RESOURCE CALCULATIONS (abstract-ID: 462) Gregor Giebel (Ris DTU, Wind Energy Department, Denmark) Teresa Pontes, Portugal (1) Rebecca Barthelmie

  5. Session: Poster Session + Poster Award + Scientific Award + Excellent young wind doctor award (PO.206) Track: Technical

    E-Print Network [OSTI]

    Session: Poster Session + Poster Award + Scientific Award + Excellent young wind doctor award (PO.206) Track: Technical INVESTIGATION OF THE MEASUREMENT OF THE WIND SPEED STANDARD DEVIATION USING) Siemens wind power The LiDAR seems to be an effective alternative to met masts measurements of wind

  6. Session: Poster Session + Poster Award + Scientific Award + Excellent young wind doctor award (PO.201) Track: Technical

    E-Print Network [OSTI]

    Session: Poster Session + Poster Award + Scientific Award + Excellent young wind doctor award (PO.201) Track: Technical OPERATIONAL EXPERIENCE AND ANALYSIS OF A SPINNER ANEMOMETER ON A MW SIZE WIND TURBINE (abstract-ID: 356) Troels Friis Pedersen (Ris DTU, Wind Energy Department, Denmark) Uwe Schmidt

  7. The Leadership Institute : Description Learning Communities for Institutional Change & Excellence (LCICE), UW Madison

    E-Print Network [OSTI]

    Sheridan, Jennifer

    1 The Leadership Institute : Description Learning Communities for Institutional Change & Excellence (LCICE), UW Madison What is the Leadership Institute (LI)? The LI is a unique opportunity for honing your personal leadership capacities to support the University's strategic priorities and diversity goals

  8. IST Strategic Plan: Building the Brand through Partnership Networks for Excellence June 2008

    E-Print Network [OSTI]

    Giles, C. Lee

    3D reconstructions of their "cold cases". These have been productive relationships, and we to the new media revolution and provide them handson experiences with technologies that may not be discussed Networks for Excellence June 2008 2 Missing and Exploited Children (NCMEC), rendering and printing

  9. Excellent optical thermometry based on short-wavelength upconversion emissions in Er3

    E-Print Network [OSTI]

    Cao, Wenwu

    Excellent optical thermometry based on short-wavelength upconversion emissions in Er3 Yb3 codoped (Doc. ID 175753); published November 22, 2012 Excited by a 980 nm laser, upconversion emissions coupled levels, which can emit the shortest wavelength emissions for optical thermometry known so far

  10. Conference Chair: Dr. Matthew Mench Condra Chair of Excellence in Energy Conversion & Storage

    E-Print Network [OSTI]

    Tennessee, University of

    Conference Chair: Dr. Matthew Mench Condra Chair of Excellence in Energy Conversion & Storage Dept Electrochemical Energy Storage and Conversion Forum April 19-20 Knoxville, Tennessee Proudly sponsored by Engineering, University of Tennessee Physical Chemistry of Materials Group at ORNL tzawodzi@utk.edu 2012

  11. Session: Poster Session + Poster Award + Scientific Award + Excellent young wind doctor award (PO.210) Track: Technical

    E-Print Network [OSTI]

    , United Kingdom (1) Ioannis Antoniou, Spain (1) Stuart Bradley, Greece (2) Sabine Von Hunerbein, United interest for the introduction these techniques in wind energy is therefore present. The UPWIND EUSession: Poster Session + Poster Award + Scientific Award + Excellent young wind doctor award (PO

  12. Session: Poster Session + Poster Award + Scientific Award + Excellent young wind doctor award (PO.65) Track: Technical

    E-Print Network [OSTI]

    Session: Poster Session + Poster Award + Scientific Award + Excellent young wind doctor award (PO FOR OFFSHORE WIND POWER (abstract-ID: 252) Pierre Pinson (DTU-Informatics and Mathematical Modelling, , Denmark (5) Ris DTU (6) DONG Energy Generation (7) Vattenfall One of the benefits of Offshore Wind Power

  13. The Consortium The CORAS consortium consists

    E-Print Network [OSTI]

    Stølen, Ketil

    ), - Solinet (Germany) and - Telenor (Norway); seven research institutes: - CLRC/RAL (UK), - CTI (Greece), - FORTH (Greece), - IFE (Norway), - NST (Norway), - NR (Norway) and - SINTEF (Norway); as well as one

  14. The Utility of the Texas Award for Performance Excellence Criteria as a Framework for Assessing and Improving Performance Excellence in the Texas A&M Foundation: A Case Study

    E-Print Network [OSTI]

    Wine, Sherryl Leigh

    2012-02-14T23:59:59.000Z

    THE UTILITY OF THE TEXAS AWARD FOR PERFORMANCE EXCELLENCE CRITERIA AS A FRAMEWORK FOR ASSESSING AND IMPROVING PERFORMANCE EXCELLENCE IN THE TEXAS A&M FOUNDATION: A CASE STUDY A Dissertation by SHERRYL LEIGH WINE Submitted to the Office... of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY December 2011 Major Subject: Educational Administration THE UTILITY OF THE TEXAS AWARD FOR PERFORMANCE EXCELLENCE CRITERIA...

  15. Sandia National Laboratories: green transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an easy task for start-up companies. But for clients of the i-GATE (Innovation for Green Advanced Transportation Excellence) innovation hub, there is a mechanism in place to...

  16. Pacific Northwest National Laboratory FY1996 midyear self-evaluation

    SciTech Connect (OSTI)

    NONE

    1996-04-01T23:59:59.000Z

    As stated in our mission, the Laboratory is concentrated on DOE`s environmental quality mission and the scientific research required to support that mission. The Laboratory also supports the energy resources and national security missions in areas where an overlap between our core competencies and DOE`s goals exists. Our intent for fiscal year l996 is to focus our efforts on the critical outcomes necessary for us to meet DOE`s needs. Six Critical Outcomes were established and substantial progress has been made against five of those outcomes during the first half of the fiscal year. A summary of progress and key issues is provided. The Critical Outcomes are: Environmental Molecular Sciences Laboratory; Environmental Management; Scientific Excellence and Productivity; ES&H/Conduct of Operations; Leadership; and Economic Development. The Laboratory has also made a significant commitment to the implementation of a fully integrated self-assessment program. Efforts during the first half of the fiscal year have been focused on developing an approach for the overall program and implementation in selected organizations. The approach is holistic and focuses assessment on activities important to the successful completion of our critical outcomes. Progress towards full implementation of the integrated assessment program is meeting expectations in general, but significant effort still needs to be applied to obtain effective implementation across the Laboratory and to ensure integration with the business planning process.

  17. Remote Sensing Laboratory - RSL

    ScienceCinema (OSTI)

    None

    2015-01-09T23:59:59.000Z

    One of the primary resources supporting homeland security is the Remote Sensing Laboratory, or RSL. The Laboratory creates advanced technologies for emergency response operations, radiological incident response, and other remote sensing activities. RSL emergency response teams are on call 24-hours a day, and maintain the capability to deploy domestically and internationally in response to threats involving the loss, theft, or release of nuclear or radioactive material. Such incidents might include Nuclear Power Plant accidents, terrorist incidents involving nuclear or radiological materials, NASA launches, and transportation accidents involving nuclear materials. Working with the US Department of Homeland Security, RSL personnel equip, maintain, and conduct training on the mobile detection deployment unit, to provide nuclear radiological security at major national events such as the super bowl, the Indianapolis 500, New Year's Eve celebrations, presidential inaugurations, international meetings and conferences, just about any event where large numbers of people will gather.

  18. Remote Sensing Laboratory - RSL

    SciTech Connect (OSTI)

    None

    2014-11-06T23:59:59.000Z

    One of the primary resources supporting homeland security is the Remote Sensing Laboratory, or RSL. The Laboratory creates advanced technologies for emergency response operations, radiological incident response, and other remote sensing activities. RSL emergency response teams are on call 24-hours a day, and maintain the capability to deploy domestically and internationally in response to threats involving the loss, theft, or release of nuclear or radioactive material. Such incidents might include Nuclear Power Plant accidents, terrorist incidents involving nuclear or radiological materials, NASA launches, and transportation accidents involving nuclear materials. Working with the US Department of Homeland Security, RSL personnel equip, maintain, and conduct training on the mobile detection deployment unit, to provide nuclear radiological security at major national events such as the super bowl, the Indianapolis 500, New Year's Eve celebrations, presidential inaugurations, international meetings and conferences, just about any event where large numbers of people will gather.

  19. Princeton Plasma Physics Laboratory:

    SciTech Connect (OSTI)

    Phillips, C.A. (ed.)

    1986-01-01T23:59:59.000Z

    This paper discusses progress on experiments at the Princeton Plasma Physics Laboratory. The projects and areas discussed are: Principal Parameters Achieved in Experimental Devices, Tokamak Fusion Test Reactor, Princeton Large Torus, Princeton Beta Experiment, S-1 Spheromak, Current-Drive Experiment, X-ray Laser Studies, Theoretical Division, Tokamak Modeling, Spacecraft Glow Experiment, Compact Ignition Tokamak, Engineering Department, Project Planning and Safety Office, Quality Assurance and Reliability, and Administrative Operations.

  20. Smart Grid Integration Laboratory

    SciTech Connect (OSTI)

    Wade Troxell

    2011-09-30T23:59:59.000Z

    The initial federal funding for the Colorado State University Smart Grid Integration Laboratory is through a Congressionally Directed Project (CDP), DE-OE0000070 Smart Grid Integration Laboratory. The original program requested in three one-year increments for staff acquisition, curriculum development, and instrumentation ?? all which will benefit the Laboratory. This report focuses on the initial phase of staff acquisition which was directed and administered by DOE NETL/ West Virginia under Project Officer Tom George. Using this CDP funding, we have developed the leadership and intellectual capacity for the SGIC. This was accomplished by investing (hiring) a core team of Smart Grid Systems engineering faculty focused on education, research, and innovation of a secure and smart grid infrastructure. The Smart Grid Integration Laboratory will be housed with the separately funded Integrid Laboratory as part of CSU??s overall Smart Grid Integration Center (SGIC). The period of performance of this grant was 10/1/2009 to 9/30/2011 which included one no cost extension due to time delays in faculty hiring. The Smart Grid Integration Laboratory??s focus is to build foundations to help graduate and undergraduates acquire systems engineering knowledge; conduct innovative research; and team externally with grid smart organizations. Using the results of the separately funded Smart Grid Workforce Education Workshop (May 2009) sponsored by the City of Fort Collins, Northern Colorado Clean Energy Cluster, Colorado State University Continuing Education, Spirae, and Siemens has been used to guide the hiring of faculty, program curriculum and education plan. This project develops faculty leaders with the intellectual capacity to inspire its students to become leaders that substantially contribute to the development and maintenance of Smart Grid infrastructure through topics such as: (1) Distributed energy systems modeling and control; (2) Energy and power conversion; (3) Simulation of electrical power distribution system that integrates significant quantities of renewable and distributed energy resources; (4) System dynamic modeling that considers end-user behavior, economics, security and regulatory frameworks; (5) Best practices for energy management IT control solutions for effective distributed energy integration (including security with the underlying physical power systems); (6) Experimental verification of effects of various arrangements of renewable generation, distributed generation and user load types along with conventional generation and transmission. Understanding the core technologies for enabling them to be used in an integrated fashion within a distribution network remains is a benefit to the future energy paradigm and future and present energy engineers.

  1. The Prospective Role of JAEA Nuclear Fuel Cycle Engineering Laboratories

    SciTech Connect (OSTI)

    Ojima, Hisao; Dojiri, Shigeru; Tanaka, Kazuhiko; Takeda, Seiichiro; Nomura, Shigeo [Nuclear Fuel Cycle Engineering Laboratories, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki 319-1194 (Japan)

    2007-07-01T23:59:59.000Z

    JAEA Nuclear Fuel Cycle Engineering Laboratories was established in 2005 to take over the activities of the JNC Tokai Works. Many kinds of development activities have been carried out since 1959. Among these, the results on the centrifuge for U enrichment, LWR spent fuel reprocessing and MOX fuel fabrication have already provided the foundation of the fuel cycle industry in Japan. R and D on the treatment and disposal of high-level waste and FBR fuel reprocessing has also been carried out. Through such activities, radioactive material release to the environment has been appropriately controlled and all nuclear materials have been placed under IAEA safeguards. The Laboratories has sufficient experience and ability to establish the next generation closed cycle and strives to become a world-class Center Of Excellence (COE). (authors)

  2. Laboratories to Explore, Explain VLBACHANDRA

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory Sandia National Laboratory Stone and Webster The Boeing Company on FIRE and fusion science accessible and up to date. A steady stream of about 150 visitors per week log

  3. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-01-08T23:59:59.000Z

    To establish the Department's, including the NNSA's, requirements for laboratory-directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation. Cancels DOE O 413.2. Canceled by DOE O 413.2B.

  4. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-04-19T23:59:59.000Z

    The Order establishes DOE requirements and responsibilities for laboratory directed research and development while providing laboratory directors with broad flexibility for program implementation. Cancels DOE O 413.2A. Admin Chg 1, 1-31-11.

  5. Laboratory compaction of cohesionless sands

    E-Print Network [OSTI]

    Delphia, John Girard

    1998-01-01T23:59:59.000Z

    on the maximum dry unit weight during compaction. Three different laboratory compaction methods were used: 1) Standard Proctor', 2) Modified Proctor; and 3) Vibrating hammer. The effects of the grain size distribution, particle shape and laboratory compaction...

  6. Internship Opportunities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Undergraduate Laboratory Internship Community College Internships Cooperative Education Student Research Participation Program Lee Teng Fellowship Temporary Employment...

  7. CERTS Microgrid Laboratory Test Bed

    E-Print Network [OSTI]

    Lasseter, R. H.

    2010-01-01T23:59:59.000Z

    Roy, Nancy Jo Lewis, CERTS Microgrid Laboratory Test Bed Report:Appendix K, http://certs.lbl.gov/CERTS_P_

  8. Sandia National Laboratories: Systems Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic, Photovoltaic Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar Newsletter, Systems Analysis The PV Performance Modeling Collaborative (PVPMC)...

  9. Sandia National Laboratories: Phenomenological Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory (NESL) Transient Nuclear Fuels Testing Radiation Effects Sciences Solar Electric Propulsion Nuclear Energy Safety Technologies Experimental Testing...

  10. Sandia National Laboratories: photovoltaic analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Computational Modeling & Simulation, Energy, Facilities, News, News & Events, Photovoltaic, Photovoltaic Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar...

  11. Created: July, 2014 Laboratory Safety Design Guide Section 3 Laboratory Ventilation

    E-Print Network [OSTI]

    Queitsch, Christine

    Created: July, 2014 Laboratory Safety Design Guide Section 3 Laboratory Ventilation 3-1 Section 3 LABORATORY VENTILATION Contents A. Scope .................................................................................................................3-2 B. General Laboratory Ventilation

  12. Humidity requirements in WSCF Laboratories

    SciTech Connect (OSTI)

    Evans, R.A.

    1994-10-01T23:59:59.000Z

    The purpose of this paper is to develop and document a position on Relative Humidity (RH) requirements in the WSCF Laboratories. A current survey of equipment vendors for Organic, Inorganic and Radiochemical laboratories indicate that 25% - 80% relative humidity may meet the environmental requirements for safe operation and protection of all the laboratory equipment.

  13. U.S. Department of Energy National Center of Excellence for Metals Recycle

    SciTech Connect (OSTI)

    Adams, V.; Bennett, M.; Bishop, L. [Dept. of Energy, Oak Ridge, TN (United States)] [and others

    1998-05-01T23:59:59.000Z

    The US Department of Energy (DOE) National Center of Excellence for Metals Recycle has recently been established. The vision of this new program is to develop a DOE culture that promotes pollution prevention by considering the recycle and reuse of metal as the first and primary disposition option and burial as a last option. The Center of Excellence takes the approach that unrestricted release of metal is the first priority because it is the most cost-effective disposition pathway. Where this is not appropriate, restricted release, beneficial reuse, and stockpile of ingots are considered. Current recycling activities include the sale of 40,000 tons of scrap metal from the East Tennessee Technology Park (formerly K-25 Plant) K-770 scrap yard, K-1064 surplus equipment and machinery, 7,000 PCB-contaminated drums, 12,000 tons of metal from the Y-l2 scrap yard, and 1,000 metal pallets. In addition, the Center of Excellence is developing a toolbox for project teams that will contain a number of specific tools to facilitate metals recycle. This Internet-based toolbox will include primers, computer programs, and case studies designed to help sites to perform life cycle analysis, perform ALARA (As Low As is Reasonably Achievable) analysis for radiation exposures, provide pollution prevention information and documentation, and produce independent government estimates. The use of these tools is described for two current activities: disposition of scrap metal in the Y-12 scrapyard, and disposition of PCB-contaminated drums.

  14. Manufacturing Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Manufacturing Laboratory at the Energy Systems Integration Facility. The Manufacturing Laboratory at NREL's Energy Systems Integration Facility (ESIF) focuses on developing methods and technologies that will assist manufacturers of hydrogen and fuel cell technologies, as well as other renewable energy technologies, to scale up their manufacturing capabilities to volumes that meet DOE and industry targets. Specifically, the manufacturing activity is currently focused on developing and validating quality control techniques to assist manufacturers of low temperature and high temperature fuel cells in the transition from low to high volume production methods for cells and stacks. Capabilities include initial proof-of-concept studies through prototype system development and in-line validation. Existing diagnostic capabilities address a wide range of materials, including polymer films, carbon and catalyst coatings, carbon fiber papers and wovens, and multi-layer assemblies of these materials, as well as ceramic-based materials in pre- or post-fired forms. Work leading to the development of non-contact, non-destructive techniques to measure critical dimensional and functional properties of fuel cell and other materials, and validation of those techniques on the continuous processing line. This work will be supported by materials provided by our partners. Looking forward, the equipment in the laboratory is set up to be modified and extended to provide processing capabilities such as coating, casting, and deposition of functional layers, as well as associated processes such as drying or curing. In addition, continuous processes are used for components of organic and thin film photovoltaics (PV) as well as battery technologies, so synergies with these important areas will be explored.

  15. Purdue Hydrogen Systems Laboratory

    SciTech Connect (OSTI)

    Jay P Gore; Robert Kramer; Timothee L Pourpoint; P. V. Ramachandran; Arvind Varma; Yuan Zheng

    2011-12-28T23:59:59.000Z

    The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up. Efforts continued to explore existing catalytic methods involving nano catalysts for capture of CO2 from the fermentation process.

  16. Undergraduate Research Aide Appointment | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Undergraduates Internship Opportunities Temporary Employment Research Aide Appointment Undergraduate Symposium Louis Stokes Midwest Center for Excellence Research Catalog Contact...

  17. Princeton Plasma Physics Laboratory

    SciTech Connect (OSTI)

    Not Available

    1990-01-01T23:59:59.000Z

    This report discusses the following topics: principal parameters achieved in experimental devices fiscal year 1990; tokamak fusion test reactor; compact ignition tokamak; Princeton beta experiment- modification; current drive experiment-upgrade; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma processing: deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for fiscal year 1990; graduate education; plasma physics; graduate education: plasma science and technology; science education program; and Princeton Plasma Physics Laboratory reports fiscal year 1990.

  18. gangh | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., Decembergangh Ames Laboratory Profile Gang Han

  19. garberc | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., Decembergangh Ames Laboratory Profile Gang

  20. jbobbitt | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , (Energy Informationjbobbitt Ames Laboratory Profile

  1. jboschen | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , (Energy Informationjbobbitt Ames Laboratory

  2. kmbryden | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , (Energy9 Evaluation of thekmbryden Ames Laboratory

  3. nalms | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , (Energy97 UpperJointmoveLINQnalms Ames Laboratory

  4. rluyendi | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, ,Development ofrluyendi Ames Laboratory Profile Rudi

  5. rmalmq | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, ,Development ofrluyendi Ames Laboratory Profile

  6. rodgers | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, ,Development ofrluyendi Ames Laboratory

  7. rofox | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, ,Development ofrluyendi Ames LaboratoryComparisons

  8. seliger | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, ,Development1 Comparison ofseliger Ames Laboratory

  9. FY 2008 Laboratory Table

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Department of.pdf6-OPAMDepartment ofAppropriationBudgetLaboratory Table

  10. FY 2011 Laboratory Table

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Department of.pdf6-OPAMDepartment6 FY 2007 FY 2008State71Laboratory

  11. Laboratory Organization Chart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLSLaboratory Directors Laboratory

  12. Laboratory announces 2008 Fellows

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLSLaboratory Directors LaboratoryPlanningR&DLab

  13. Laboratory Shuttle Bus Routes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,sand CERN 73-11 Laboratory IRear bike

  14. Laboratory disputes citizens' lawsuit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,sand CERN 73-11 Laboratory IRearLab

  15. Sandia National Laboratories: Agreements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratorySoftware100 ResilientHistory ViewAgreements

  16. Sandia National Laboratories: Careers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratorySoftware100 ResilientHistory

  17. Sandia National Laboratories: Locations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratorySoftware100LifeAnnouncementsLocations

  18. Lawrence Livermore National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu,IntelligenceYou are hereNews item slideshowLaboratory

  19. amdavis | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhatY-12Zero Energyamdavis Ames Laboratory Profile

  20. andresg | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhatY-12Zero Energyamdavis Amesandresg Ames Laboratory